
The Permute Package

Copyright 1997–1999 by Carsten Heinz

Version 0.12

Abstract

The permute package inputs, outputs and composes permutations. For
example, $\pmt{(123)}\circ\pmt{(321)} = \pmt{(123)(321)}$ produces
(123)◦(132) = id. A misleading example is (a . . . z)◦(z . . . a) = id printed via
$(a\ldots z)\circ(z\ldots a)=\pmt{(a\ldots z)(z\ldots a)}$ — mis-
leading since the package doesn’t care about the human interpretation of
“. . . ”.

1 User’s guide

1.1 Software license

permute.dtx and permute.ins and all files generated from these files are referred
to as ‘the permute package’. It is distributed under the terms of the LATEX Project
Public License from CTAN archives in directory macros/latex/base/lppl.txt.
Either version 1.0 or, at your option, any later version. The use of the package is
completely free.

Permission is granted to modify the permute package. You are not allowed to
distribute any changed version of the package, neither under the same name nor
under a different one.

Send comments, ideas and bug reports via electronic mail to cheinz@gmx.de.

1.2 Installation

1. Following the TEX directory structure (TDS) you should put the files of the
package into directories as follows:

permute.dvi → texmf/doc/latex/permute
permute.dtx, permute.ins → texmf/source/latex/permute

Of course, you need not to use the TDS. Simply adjust the directories below.

2. Create the directory texmf/tex/latex/permute.

3. Change the working directory to texmf/source/latex/permute and run
permute.ins through TEX.

1

4. Move the generated file to texmf/tex/latex/permute if this is not already
done.

5. If your TEX implementation uses a filename database, update it.

1.3 Input and output formats

General notation. First we restrict ourselves to S1, . . . , S9:

Sn := {f : {1, . . . , n} → {1, . . . , n} | f is one-to-one and onto}.

A permutation f ∈ Sn can be written verbose as an explicit sequence of pre-
image/image pairs like this:

f =
(

1
f(1)

2
f(2)

. . .

. . .

n

f(n)

)
.

A permutation σ is a cycle and written σ = (x1x2 . . . xk) if and only if there are
distinct numbers x1, x2, . . . , xk ∈ {1, . . . , n} satisfying

σ(xi) = xi+1 for all 1 ≤ i < k

σ(xk) = x1

σ(x) = x for all x ∈ {1, . . . , n} \ {x1, . . . , xk}.

This means that a cycle (x1x2 . . . xk) maps x1 to x2, x2 to x3, . . . , xk back
to x1, and fixes all other elements. Each permutation in Sn can be written as a
composition of cycles, for example

(
1
2

2
1

3
5

4
3

5
4

)
= (12)◦(354) = (12)(354)—we leave

out the “◦”. Note that Sn is not commutative in general and that we compose
from the right to the left. In the example 3 is mapped to 5 and then 5 stays 5
since unchanged by (12).

Input formats. If you want to enter a permutation cycle based, just write the
cycles after each other. (12)(354) would be legal; there must not be a \circ in
between. The verbose input format lists all pre-image/image pairs without any
separators, but a space is allowed in between. The permutation above could also
be entered as 12 21 35 43 54. The package distinguishes the two formats by
looking at the first token: If and only if it’s a left parenthesis, the package accepts
cycles.

Now we drop the restriction n ≤ 9 and the limitation of permuting numbers;
we can do it with nearly arbitrary (token) strings. To enter a string as pre-image,
image or inside a cycle, enclose the string in braces. That’s all! For example, I
typed

1{f(1)} 2{f(2)} \ldots\ldots n{f(n)}

for
(

1
f(1)

2
f(2)

...

...
n

f(n)

)
, which actually isn’t a permutation at all.

In the sequel 〈pmt〉 means either a verbose sequence or a sequence of cycles.
Do not use \empty or \relax or equivalent definitions inside 〈pmt〉.

2

Output formats. The package provides a cycle based and two verbose output
formats. Some of the commands described below have an optional 〈print order〉
argument. Now let 〈print order〉 equal n1n2 . . . nk where each ni is a single token
or a braced string. If ni and ni+1 both appear in a permutation and appear in
different cycles, then the cycle containing ni is printed first. Moreover the cycle
starts with the element ni. Cycles not covered by 〈print order〉 are printed as they
appear in the internal data format. Some examples on printing (12)(34)(56):

〈print order〉 results in 〈print order〉 results in
no order (12)(34)(56) empty (56)(34)(12)
2 (21)(56)(34) 23 (21)(34)(56)
6 (65)(34)(12)

All results represent the same permutation. Note the difference between ‘no order’
and ‘empty’: The package uses a standard order if you don’t request a special one.

There is some danger if you want to use a single token string as 〈print order〉.
In this case you must enclose the string in two level of braces. Use 〈print
order〉={{one}} to control ({one}{two})({two}{three})({three}{four}), for
example. Since TEX discards one group level, {one} would lead to the order o, n,
e. However, 〈print order〉={one}{two} needs no extra braces.

For the verbose output formats, 〈print order〉 plays the role of domain. The
package uses exactly the elements and order, i.e. all pre-images not appearing
in 〈print order〉 are not printed, and we assume image=pre-image if pre-image
appears in 〈print order〉 but not in the permutation. Some examples on printing
1{f(1)} 2{f(2)} \ldots\ldots n{f(n)}:

〈print order〉 results in
no order

(
1

f(1)
2

f(2)
3
3

4
4

5
5

6
6

7
7

8
8

9
9

a
a

b
b

c
c

d
d

e
e

f
f

g
g

h
h

i
i

)

n\ldots 21
(

n
f(n)

...

...
2

f(2)
1

f(1)

)

2\ldots n{n+1}
(

2
f(2)

...

...
n

f(n)
n+1
n+1

)
empty ()

The first example doesn’t print ‘. . .’ and ‘f(n)’ since the pre-images ‘. . .’ and ‘n’
don’t appear in the standard printing order (which is the domain here). But it
shows image=pre-image pairs not in the permutation since the standard domain
defines the elements as pre-images.

Note: (a) The (full) verbose format uses math mode and the TEX-primitive
\atop. The latter causes a warning if used together with amsmath.sty. (b) The
package defines a short verbose output format, too. It prints the row of images
only. Don’t take it for the cycle based format!

Finally, some commands also have a star-form which separate the output like
this: (1 2 3 4). It is useful if you use strings instead of numbers, for example the
permutation (one two three four) is printed with a *-command.

3

1.4 User commands

\pmt[*][[〈print order〉]]{〈pmt〉}
calculates the composition of the cycles (if any) and prints the permutation:
\pmt{(12)(23)(34)} prints (1234) and \pmt{12 23 34 41} gives (1234).
Note that this command outputs cycles only. Some examples:

\pmt{(12)(34)(56)} prints (12)(34)(56)
\pmt*[2]{(12)(34)(56)} prints (2 1)(5 6)(3 4)
\pmt[23]{(12)(34)(56)} prints (21)(34)(56)
\pmt*[6]{(12)(34)(56)} prints (6 5)(3 4)(1 2)

The macro \pmtprintorder contains the standard printing order, see 1.5.

\pmtv[*][[〈print order〉]]{〈pmt〉}
prints a verbose form of the permutation. The commands \pmtvshorttrue
and \pmtvshortfalse controls whether the package prints only the row of
images or the full pre-image/image format.

\pmttable[*][[〈print order〉]]{〈list of pmts〉}{〈list of pmts〉}
\pmtvtable[*][[〈print order〉]]{〈list of pmts〉}{〈list of pmts〉}

The commands compose each σ1 of the first list with each σ2 of the second
list and write the result σ1 ◦ σ2 in row σ1 and column σ2. For example,

$$\pmttable{(),(12),(13),(23),(123),(132)}

{(),(12),(13),(23),(123),(132)}$$

creates

◦ id (12) (13) (23) (123) (132)

id id (12) (13) (23) (123) (132)

(12) (12) id (132) (123) (23) (13)

(13) (13) (123) id (132) (12) (23)

(23) (23) (132) (123) id (13) (12)

(123) (123) (13) (23) (12) (132) id

(132) (132) (23) (12) (13) id (123)

’()’ stands for the identity map here. Do not write \pmttable{,(12),....
You may write \pmttable{(12),(123)}{(),(23),(123),(132)} to typeset
a piece of the table or use \pmtvtable to print all permutations verbose. The
optional arguments effect all printed permutations.

4

If you create really big tables like the one of S5, you surely want to cut the
whole table in pieces and produce subtables on different pages. This leads
to alignment problems since the first column on the first page need not to
have the width of the first column on the second page. Bad luck!

Now we discuss how to calculate with the permute package. Let 〈current pmt〉
denote the (internal) current permutation and 〈name〉 another internal (stored)
permutation.

\pmtload{〈name〉} 〈current pmt〉 ← 〈name〉
\pmtsave{〈name〉} 〈name〉 ← 〈current pmt〉
\pmtid[[〈name〉]] 〈current pmt〉 ← identity map

\pmtdo[[〈name〉]]{〈pmt〉} 〈current pmt〉 ← 〈pmt〉 ◦ 〈current pmt〉
\pmtcirc[[〈name〉]]{〈pmt〉} 〈current pmt〉 ← 〈current pmt〉 ◦ 〈pmt〉
\pmtprint[*][[〈print order〉]] prints 〈current pmt〉.
\pmtvprint[*][[〈print order〉]] prints 〈current pmt〉.
\pmtimageof[[〈name〉]]{〈pre-image〉}

prints image of 〈pre-image〉 under 〈current pmt〉.
\pmtpreimageof[[〈name〉]]{〈image〉}

prints pre-image of 〈image〉 under 〈current pmt〉.
If you use any optional [〈name〉], this permutation replaces 〈current pmt〉.
For example, \pmtid[a] makes the permutation a to be the identity map or
\pmtdo[a]{〈pmt〉} performs a ← 〈pmt〉 ◦ a.

Finally examples which all print the result of
(

1
f(1)

...

...
k

f(k)
l

f(l)
...
...

n
f(n)

)
◦ (kl),

namely
(

1
f(1)

...

...
k

f(l)
l

f(k)
...
...

n
f(n)

)
.

\pmtid

\pmtdo{1{f(1)} \ldots\ldots k{f(k)} l{f(l)} \ldots\ldots n{f(n)}}

\pmtcirc{(kl)}

\pmtvprint[1\ldots kl\ldots n]

\pmtid

\pmtdo{(kl)}

\pmtdo{1{f(1)} k{f(k)} l{f(l)} n{f(n)}}

\pmtvprint[1\ldots kl\ldots n]

We can drop the two \ldots pairs (also in the first example) since image and
pre-image are equal.

5

1.5 Parameters

\pmtprintorder

contains the standard printing order which is used whenever you leave out
or forget the optional 〈print order〉 argument. By default it contains the
sequence 123456789abcdefghi. You may adjust it to your needs, for exam-
ple, \renewcommand*\pmtprintorder{123456} if you work with S6. This
is especially good if you use the verbose printing format. You can forget the
optional 〈print order〉 in this case:

\renewcommand*\pmtprintorder{123456}
\pmtv{()} prints

(
1
1

2
2

3
3

4
4

5
5

6
6

)
\pmtv{(123)} prints

(
1
2

2
3

3
1

4
4

5
5

6
6

)
\pmtv{(12)(23)(16)(34)(45)} prints

(
1
6

2
3

3
4

4
5

5
1

6
2

)

\pmtseparator

contains the separator used for the optional star. By default it is a space:
\newcommand*\pmtseparator{ }. Since it’s not a backslashed space \ , it
is ignored in math mode, in particular in the verbose output format. But
you may write \renewcommand*\pmtseparator{\ }.

\pmtidname

contains the string which is printed in the cycle based format if a permutation
is the identity map. It is predefined via \newcommand*\pmtidname{id}.

\pmtldelim

\pmtrdelim

contain the left respectively right delimiter for the verbose format. \left(
and \right) are used by default.

\pmttableborders

contains lt which makes a left border column and a top border line. You
may redefine it to be empty or to contain l, t, lt or tl.

\pmtarraystretch

contains 2 and is used as \arraystretch for the table. You may write
\renewcommand*\pmtarraystretch{1.3} and get more compact tables:

◦ id (12) (23)

id id (12) (23)

(12) (12) id (123)

(23) (23) (132) id

6

