
The rtkinenc package

Lars Hellström∗

2000/01/24

Abstract

The rtkinenc package is functionally similar to the standard LATEX pack-
age inputenc—both set up active characters so that input character outside
7-bit ASCII are converted to the corresponding LATEX commands. Names
of commands in rtkinenc have been selected so that it can read inputenc
encoding definition files, and the aim is that rtkinenc should be backwards
compatible with inputenc. rtkinenc is not a new version of inputenc though,
nor is it part of standard LATEX.

The main difference between the two packages lies in the view on the
input. With inputenc, the non-ASCII characters in the input are considered
as shorthand representations of the “true” document contents (usually one
or several commands), and the conversion is therefore irreversible. With
rtkinenc the input file itself is considered the true document, and the conver-
sion of non-ASCII characters to LATEX commands is merely done becuase it
is the first step on the preferred route to typeset output. If the command is
for an unavailable text symbol, then it is possible to return to the raw input
and try some fallback method of typesetting the character.

The inputenc approach is natural for normal LATEX documents, but the
rtkinenc approach is advantageous for program source code, where the true
meaning of a file is not defined by TEX, but by the compiler, interpreter, or
whatever.

1 Implementation

1 〈∗pkg〉
2 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

3 \ProvidesPackage{rtkinenc}

4 [2000/01/24 v1.0 Rethinking input encoding package]

1.1 Basic machanisms

\RIE@last@char \RIE@last@char is a \count register for storing the code of the raw character
currently being typeset. It is minus one if no raw character is being typeset. This
register should always be set globally.

∗E-mail: Lars.Hellstrom@math.umu.se

1



5 \newcount\RIE@last@char

6 \global\RIE@last@char=\m@ne

\RieC

\RIE@char

\RIE@text@char

\RIE@code@char

The syntax for the \RieC command is

\RieC{〈code〉}{〈definition〉}

Here 〈code〉 is assumed to be a sequence of digits giving some raw character code,
and 〈definition〉 is assumed to be robust LATEX code for typesetting (some repre-
sentation of) that raw character. \RieC is used as inputenc’s \IeC command—an
\RieC with arguments form the definition of an active character—but it carries
extra information in the 〈code〉 argument.

Depending on what the control sequences \protect and \RIE@char are there
are three different things this can do.

• It can execute the 〈definition〉 straight off. This happens when \protect is
\@typeset@protect and \RIE@char is \RIE@text@char.

• It can set \RIE@last@char to 〈code〉, then execute the 〈definition〉, and
finally set \RIE@last@char to minus one. This happens when \protect is
\@typeset@protect and \RIE@char is \RIE@code@char.

Setting \RIE@last@char like that has the side-effect of prohibiting kerns
and ligatures between the 〈defintion〉 and what surrounds it. Therefore it is
inapproriate to have \RIE@char equal to \RIE@code@char in many types of
text, and by default it will not be.

• It can expand to itself.1 This happens when \protect is not \@typeset@protect,
e.g. when writing to a file.

\RieC cannot be defined using \DeclareRobustCommand, since that would in-
sert \protects that would prohibit normal kerning and ligaturing. Therefore the
command robustness is maintained through an ad hoc definition (the \def). The
reason for starting with an \@ifundefined is that the user shouldn’t get less info
about a redefinition than he/she would with a \DeclareRobustCommand.

7 \@ifundefined{RieC}{}{%

8 \PackageError{rtkinenc}{Redefining \protect\RieC}{%

9 I had expected \protect\RieC\space to be undefined.\MessageBreak

10 Since it wasn’t, there’s a chance I have\MessageBreak

11 broken something.\MessageBreak\@ehc

12 }

13 }

14 \def\RieC{%

15 \ifx \protect\@typeset@protect

16 \expandafter\RIE@char

17 \else

18 \noexpand\RieC

1Unless some command in the 〈definition〉 was defined using \DeclareRobustCommand, in
which case it is the one level expansion of that command that will expand to itself. It all works
out right in the end anyway.

2



19 \fi

20 }

21 \let\RIE@text@char=\@secondoftwo

22 \let\RIE@char=\RIE@text@char

23 \def\RIE@code@char#1#2{%

24 \global\RIE@last@char=#1

25 #2%

26 \global\RIE@last@char=\m@ne

27 }

RieBC

RIE@both@char

The syntax for the \RieBC command is

\RieBC{〈code〉}{〈text definition〉}{〈math definition〉}

Here 〈code〉 is assumed to be a sequence of digits giving some raw character code,
whereas 〈text definition〉 and 〈math definition〉 are assumed to be robust LATEX
code for typesetting (some representation of) that raw character in text and math
mode, respectively. \RieBC is used like \RieC, but offers the possibility of alter-
native definitions for increased typesetting quality.

28 \@ifundefined{RieBC}{}{%

29 \PackageError{rtkinenc}{Redefining \protect\RieBC}{%

30 I had expected \protect\RieBC\space to be undefined.\MessageBreak

31 Since it wasn’t, there’s a chance I have\MessageBreak

32 broken something.\MessageBreak\@ehc

33 }

34 }

35 \def\RieBC{%

36 \ifx \protect\@typeset@protect

37 \expandafter\RIE@both@char

38 \else

39 \noexpand\RieBC

40 \fi

41 }

42 \def\RIE@both@char#1#2#3{%

43 \ifx \RIE@char\RIE@code@char

44 \global\RIE@last@char=#1

45 \fi

46 \ifmmode #3\else #2\fi

47 \ifx \RIE@char\RIE@code@char

48 \global\RIE@last@char=\m@ne

49 \fi

50 }

\TextSymbolUnavailable

\@@TextSymbolUnavailable

\SetUnavailableAction

\RIE@symbol@unavailable

The only way to know whether a particular text command could be rendered as
intended or not is to seize control of the standard LATEX command \TextSymbol-
Unavailable. This command will then be given a new definition which selects
whether some raw character fallback macro or the standard LATEX error message
should be given. The raw character fallback macro can be set using the \Set-
UnavailableAction command.

3



Before seizing control of \TextSymbolUnavailable, one must make sure that
it does not have its autoload definition. Then the LATEX definition is saved away
in \@@TextSymbolUnavailable.

51 \def\@tempa{\@autoerr\TextSymbolUnavailable}

52 \ifx \@tempa\TextSymbolUnavailable

53 \@autoerr\relax

54 \fi

55 \let\@@TextSymbolUnavailable=\TextSymbolUnavailable

Then the new definition is given. It is pretty straightforward.

56 \def\TextSymbolUnavailable{%

57 \ifnum \m@ne<\RIE@last@char

58 \expandafter\RIE@symbol@unavailable \expandafter\RIE@last@char

59 \else

60 \expandafter\@@TextSymbolUnavailable

61 \fi

62 }

63 \PackageInfo{rtkinenc}{Redefining \protect\TextSymbolUnavailable}

The \SetUnavailableAction command locally defines the \RIE@symbol@-
unavailable macro, which is executed instead of the standard LATEX \Text-
SymbolUnavailable when the text symbol in case was the representation of a
raw input character. \SetUnavailableAction is used as

\SetUnavailableAction{〈definition〉}

where 〈definition〉 is like the last argument of \newcommand. The 〈definition〉 may
contain #1 and #2, where #1 will contain the current raw character number and
#2 will contain the text command for which no definition could be found.

64 \newcommand\SetUnavailableAction{\def\RIE@symbol@unavailable##1##2}

The default fallback action is to call \@@TextSymbolUnavailable, but most of the
definition deals with recognizing and handling the case that the input character
hasn’t been declared, rather than that its definition is not available. Normally, this
shouldn’t be used at all; instead the user should have installed another fallback.

65 \SetUnavailableAction{%

66 \ifx #2\relax

67 \begingroup

68 \let\RIE@char=\RIE@text@char

69 \RIE@undefined{#1}%

70 \endgroup

71 \else

72 \@@TextSymbolUnavailable{#2}%

73 \fi

74 }

\RIE@undefined The \RIE@undefined macro is used in the definition of input characters which
are not defined in the current input encoding. It takes one argument, namely
the code for the character in question. In text mode, this is an error. In code
mode, it is passed on to the unavailable-action macro \RIE@symbol@unavailable.

4



The default value of \RIE@symbol@unavailable recognizes the \relax passed as
second argument below as a flag that in reality it’s the input character that hasn’t
been defined.

75 \def\RIE@undefined#1{%

76 \ifx \RIE@char\RIE@text@char

77 \PackageError{rtkinenc}{%

78 Input character #1 is undefined\MessageBreak

79 in inputencoding \RIE@encoding}\@eha

80 \else

81 \RIE@symbol@unavailable{#1}\relax

82 \fi

83 }

\InputModeCode

\InputModeText

\IfInputModeCode

The \InputModeCode and \InputModeText commands switch to the ‘code’ and
‘text’ respectively modes for the rtkinenc package. They both act locally, since it is
often convenient to have the previous mode restored at the end of an environment.

The \IfInputModeCode command can be used to test which mode the rtkinenc
package currently is in. Is is used as

\IfInputModeCode{〈code〉}{〈text〉}

This will expand to 〈code〉 or 〈text〉 when the current mode is code mode or text
mode, respectively.

84 \newcommand\InputModeCode{\let\RIE@char=\RIE@code@char}

85 \newcommand\InputModeText{\let\RIE@char=\RIE@text@char}

86 \newcommand\IfInputModeCode{%

87 \ifx \RIE@char\RIE@code@char

88 \expandafter\@firstoftwo

89 \else

90 \expandafter\@secondoftwo

91 \fi

92 }

1.2 Setting the input encoding

The first two commands are identical; the duplication is only for being compabile
with inputenc. The reason that there are two different commands in inputenc is
that \DeclareInputMath saves a little memory by not taking special measures to
see to that a space (if there is any) that follows the input character is not gobbled
in case it is written to a temporary file and subsequently read back. Saving that
small amount of memory is not the aim for rtkinenc, which is instead using up
even more memory by including the character code in the definition.

\DeclareInputText

\DeclareInputMath

These two commands are used as

\DeclareInputText{〈slot〉}{〈definition〉}
\DeclareInputMath{〈slot〉}{〈definition〉}

This makes the active character whose character code is 〈slot〉 a parameterless
macro whose expansion is

5



\RieC{〈slot (sanitized)〉}{〈definition〉}

〈slot (sanitized)〉 has the same numerical value as 〈slot〉, but consists only of
decimal digits. 〈definition〉 is the same in both cases.

93 \expandafter\ifx \csname DeclareInputText\endcsname\relax

94 \begingroup

95 \catcode\z@=13

96 \gdef\DeclareInputText#1#2{%

97 \@inpenc@test

98 \begingroup

99 \uccode\z@=#1%

100 \uppercase{%

101 \endgroup

102 \expandafter\def \expandafter^^@%

103 }\expandafter{\expandafter\RieC \expandafter{\number#1}{#2}}%

104 }%

105 \endgroup

106 \else

107 \PackageError{rtkinenc}{\protect\DeclareInputText\space

108 already defined}{\@ehd\MessageBreak

109 Likely cause: you are already using the inputenc package.}

110 \fi

111 \@ifundefined{DeclareInputMath}{%

112 \let\DeclareInputMath=\DeclareInputText

113 }{%

114 \PackageError{rtkinenc}{\protect\DeclareInputMath\space

115 already defined}{\@ehd\MessageBreak

116 Likely cause: you are already using the inputenc package.}

117 }

\DeclareInputBoth The \DeclareInputBoth command is similar to \DeclareInputText and \Declare-
InputMath commands, but it offers an extra feature—the text and math definitions
of a character can be different. \DeclareInputBoth is used as

\DeclareInputBoth{〈slot〉}{〈text〉}{〈math〉}

where 〈text〉 and 〈math〉 are the text and math mode definitions respectively.

118 \expandafter\ifx \csname DeclareInputBoth\endcsname\relax

119 \begingroup

120 \catcode\z@=13

121 \gdef\DeclareInputBoth#1#2#3{%

122 \@inpenc@test

123 \begingroup

124 \uccode\z@=#1%

125 \uppercase{%

126 \endgroup

127 \expandafter\def \expandafter^^@%

128 }\expandafter{\expandafter\RieBC \expandafter{\number#1}%

129 {#2}{#3}%

6



130 }%

131 }%

132 \endgroup

133 \else

134 \PackageError{rtkinenc}{\protect\DeclareInputBoth\space

135 already defined}\@ehd

136 \fi

\inputencoding

\@inpenc@test

\RIE@encoding

The \inputencoding command sets the current input encoding to be the one
specified in its only argument. First all characters are set to be active and defined
as \RIE@undefined{〈slot〉}, except for Null (^^@), tab (^^I), line feed (^^J),
form feed (^^L), carriage return (^^M), and space–~ which are left as they were.
Then #1.def is inputed; this file is expected to contain all the \DeclareInput. . .
commands that are needed for the wanted input encoding.

Besides that, \inputencoding also does a check to see that the file #1.def

actually did execute some \DeclareInput. . . command. Since it wouldn’t at all
surprise me if someone likes to tinker with this test, it is done exactly as in inputenc.

\inputencoding should not be used in horizontal mode since space tokens
within the file inputed will produce unwanted spaces in the output.

\RIE@encoding stores the name of the current input encoding. It is used in
an error message by \RIE@undefined.

137 \def\inputencoding#1{%

138 \gdef\@inpenc@test{\global\let\@inpenc@test\relax}%

139 \protected@edef\RIE@encoding{#1}%

140 \ifvmode

141 \RIE@loop\^^A\^^H%

142 \RIE@loop\^^K\^^K%

143 \RIE@loop\^^N\^^_%

144 \RIE@loop\^^?\^^ff%

145 \input{#1.def}%

146 \fi

147 \ifx \@inpenc@test\relax \else

148 \PackageWarning{rtkinenc}%

149 {No characters defined\MessageBreak

150 by input encoding change to ‘#1’}%

151 \fi

152 }

\RIE@loop The \RIE@loop command makes characters #1 to #2 inclusive active and unde-
fined.

153 \begingroup

154 \catcode\z@=\active

155 \gdef\RIE@loop#1#2{%

156 \@tempcnta=‘#1\relax

157 \count@=\uccode\z@

158 \loop

159 \catcode\@tempcnta\active

160 \uccode\z@=\@tempcnta

7



161 \uppercase{%

162 \expandafter\def \expandafter^^@\expandafter{%

163 \expandafter\RIE@undefined\expandafter{\the\@tempcnta}%

164 }%

165 }%

166 \ifnum ‘#2>\@tempcnta

167 \advance \@tempcnta \@ne

168 \repeat

169 \uccode\z@=\count@

170 }

171 \endgroup

1.3 Miscellanea

\TypesetHexNumber

\TypesetOctalNumber

In many computer languages, special character escape sequences based on charac-
ter codes must be written with the character code in hexadecimal or octal notation.
These commands take a TEX number in the interval 0–255 as argument and type-
sets it using the hexadecimal (figures 0–9 and a–f) or octal (figures 0–7) notation.
No font changes or TEX mode changes are made. \TypesetHexNumber always
typesets two characters, \TypesetOctalNumber always typesets three characters.

Care has been taken to see to that every count register can be used as the
argument of these two macros, and they only make local assignments. They do
not check that the argument is in range, though.

172 \newcommand\TypesetHexNumber[1]{%

173 \begingroup

174 \count@=#1\relax

175 \chardef\@tempa=\count@

176 \divide \count@ \sixt@@n

177 \ifcase\count@

178 0\or 1\or 2\or 3\or 4\or 5\or 6\or 7\or 8\or 9\or a\or b\or

179 c\or d\or e\else f%

180 \fi

181 \multiply \count@ -\sixt@@n

182 \advance \count@ \@tempa

183 \ifcase\count@

184 0\or 1\or 2\or 3\or 4\or 5\or 6\or 7\or 8\or 9\or a\or b\or

185 c\or d\or e\else f%

186 \fi

187 \endgroup

188 }

189 \newcommand\TypesetOctalNumber[1]{%

190 \begingroup

191 \count@=#1\relax

192 \chardef\@tempa=\count@

193 \divide \count@ 64\relax

194 \the\count@

195 \multiply \count@ -64%

196 \advance \count@ \@tempa

8



197 \chardef\@tempa=\count@

198 \divide \count@ 8\relax

199 \the\count@

200 \multiply \count@ -8%

201 \advance \count@ \@tempa

202 \the\count@

203 \endgroup

204 }

\verifycharcode The \verifycharcode command is used as

\verifycharcode{〈character〉}{〈code〉}

Here 〈character〉 can be any 〈character token〉 (as defined in The TEXbook); e.g.
a control sequence whose name consists of one charater. 〈code〉 can be any
valid 〈number〉. If 〈code〉 is not the character code of the 〈character〉, then
\verifycharcode makes a warning about this.

The purpose of this command is to detect when the code of some character used
in a document is changed. Today these things happen mainly when transferring a
document between two systems which use different encodings, and it is usually the
right thing do. Some computer programs (and now I mean the source) do however
rely on the exact character codes used in them, and documents containing such
programs may use the \verifycharcode to test that none of the critical characters
have been altered.

205 \newcommand\verifycharcode[2]{%

206 \ifnum ‘#1=#2 \else

207 \PackageWarning{rtkinenc}{%

208 Input character with code \number#2\MessageBreak

209 should be the character with code \number‘#1}%

210 \fi

211 }

1.4 Option processing

Each option is interpreted as the name of an input encoding. That input encoding
definition file is inputed.

212 \DeclareOption*{\inputencoding{\CurrentOption}}

213 \ProcessOptions

214 〈/pkg〉

9


