
GNU/Linux
Programmer’s Manual

Maintainers:
Alejandro Colomar <alx@kernel.org> 2020 - present (5.09 - HEAD)

Michael Kerrisk <mtk.manpages@gmail.com> 2004 - 2021 (2.00 - 5.13)
Andries Brouwer <aeb@cwi.nl> 1995 - 2004 (1.6 - 1.70)

Rik Faith 1993 - 1995 (1.0 - 1.5)

intro(1) General Commands Manual intro(1)

NAME
intro - introduction to user commands

DESCRIPTION
Section 1 of the manual describes user commands and tools, for example, file manipu-
lation tools, shells, compilers, web browsers, file and image viewers and editors, and
so on.

NOTES
Linux is a flavor of UNIX, and user commands under UNIX work similarly under
Linux (and lots of other UNIX-like systems too, like FreeBSD).

Under Linux, there are GUIs (graphical user interfaces), where you can point and
click and drag, and hopefully get work done without first reading lots of documenta-
tion. The traditional UNIX environment is a CLI (command line interface), where
you type commands to tell the computer what to do. This is faster and more powerful,
but requires finding out what the commands are and how to use them. Below is a bare
minimum guide to get you started.

Login
In order to start working, you’ll probably first have to open a session. The program
login(1) will wait for you to type your username and password, and after that, it will
start a shell (command interpreter) for you. In case of a graphical login, you get a
screen with menus or icons and a mouse click will start a shell in a window. See also
xterm(1)

The shell
One types commands into the shell, the command interpreter. It is not built-in; it is
just another program. You can change your shell, and everybody has their own fa-
vorite one. The standard one is called sh. See also ash(1), bash(1), chsh(1), csh(1),
dash(1), ksh(1), zsh(1)

A session might look like this:

knuth login: aeb
Password: ********
$ date
Tue Aug 6 23:50:44 CEST 2002
$ cal

August 2002
Su Mo Tu We Th Fr Sa

1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

$ ls
bin tel
$ ls -l
total 2
drwxrwxr-x 2 aeb 1024 Aug 6 23:51 bin
-rw-rw-r-- 1 aeb 37 Aug 6 23:52 tel

Linux man-pages 6.13 2024-06-17 2

intro(1) General Commands Manual intro(1)

$ cat tel
maja 0501-1136285
peter 0136-7399214
$ cp tel tel2
$ ls -l
total 3
drwxr-xr-x 2 aeb 1024 Aug 6 23:51 bin
-rw-r--r-- 1 aeb 37 Aug 6 23:52 tel
-rw-r--r-- 1 aeb 37 Aug 6 23:53 tel2
$ mv tel tel1
$ ls -l
total 3
drwxr-xr-x 2 aeb 1024 Aug 6 23:51 bin
-rw-r--r-- 1 aeb 37 Aug 6 23:52 tel1
-rw-r--r-- 1 aeb 37 Aug 6 23:53 tel2
$ diff tel1 tel2
$ rm tel1
$ grep maja tel2
maja 0501-1136285
$

Here typing Control-D ended the session.

The $ here was the command prompt—it is the shell’s way of indicating that it is
ready for the next command. The prompt can be customized in lots of ways, and one
might include stuff like username, machine name, current directory, time, and so on.
An assignment PS1="What next, master? " would change the prompt as indicated.

We see that there are commands date (that gives date and time), and cal (that gives a
calendar).

The command ls lists the contents of the current directory—it tells you what files you
have. With a -l option it gives a long listing, that includes the owner and size and
date of the file, and the permissions people have for reading and/or changing the file.
For example, the file "tel" here is 37 bytes long, owned by aeb and the owner can read
and write it, others can only read it. Owner and permissions can be changed by the
commands chown and chmod .

The command cat will show the contents of a file. (The name is from "concatenate
and print": all files given as parameters are concatenated and sent to "standard output"
(see stdout(3)), here the terminal screen.)

The command cp (from "copy") will copy a file.

The command mv (from "move"), on the other hand, only renames it.

The command diff lists the differences between two files. Here there was no output
because there were no differences.

The command rm (from "remove") deletes the file, and be careful! it is gone. No
wastepaper basket or anything. Deleted means lost.

The command grep (from "g/re/p") finds occurrences of a string in one or more files.
Here it finds Maja’s telephone number.

Linux man-pages 6.13 2024-06-17 3

intro(1) General Commands Manual intro(1)

Pathnames and the current directory
Files live in a large tree, the file hierarchy. Each has a pathname describing the path
from the root of the tree (which is called /) to the file. For example, such a full path-
name might be /home/aeb/tel. Always using full pathnames would be inconvenient,
and the name of a file in the current directory may be abbreviated by giving only the
last component. That is why /home/aeb/tel can be abbreviated to tel when the current
directory is /home/aeb.

The command pwd prints the current directory.

The command cd changes the current directory.

Try alternatively cd and pwd commands and explore cd usage: "cd", "cd .", "cd ..",
"cd /", and "cd ~".

Directories
The command mkdir makes a new directory.

The command rmdir removes a directory if it is empty, and complains otherwise.

The command find (with a rather baroque syntax) will find files with given name or
other properties. For example, "find . -name tel" would find the file tel starting in the
present directory (which is called .). And "find / -name tel" would do the same, but
starting at the root of the tree. Large searches on a multi-GB disk will be time-con-
suming, and it may be better to use locate(1)

Disks and filesystems
The command mount will attach the filesystem found on some disk (or floppy, or
CDROM or so) to the big filesystem hierarchy. And umount detaches it again. The
command df will tell you how much of your disk is still free.

Processes
On a UNIX system many user and system processes run simultaneously. The one you
are talking to runs in the foreground , the others in the background . The command ps
will show you which processes are active and what numbers these processes have.
The command kill allows you to get rid of them. Without option this is a friendly re-
quest: please go away. And "kill -9" followed by the number of the process is an im-
mediate kill. Foreground processes can often be killed by typing Control-C.

Getting information
There are thousands of commands, each with many options. Traditionally commands
are documented on man pages, (like this one), so that the command "man kill" will
document the use of the command "kill" (and "man man" document the command
"man"). The program man sends the text through some pager, usually less. Hit the
space bar to get the next page, hit q to quit.

In documentation it is customary to refer to man pages by giving the name and section
number, as in man(1)Man pages are terse, and allow you to find quickly some forgot-
ten detail. For newcomers an introductory text with more examples and explanations
is useful.

A lot of GNU/FSF software is provided with info files. Type "info info" for an intro-
duction on the use of the program info.

Special topics are often treated in HOWTOs. Look in /usr/share/doc/howto/en and
use a browser if you find HTML files there.

Linux man-pages 6.13 2024-06-17 4

intro(1) General Commands Manual intro(1)

SEE ALSO
ash(1), bash(1), chsh(1), csh(1), dash(1), ksh(1), locate(1), login(1), man(1),
xterm(1), zsh(1), wait(2), stdout(3), man-pages(7), standards(7)

Linux man-pages 6.13 2024-06-17 5

diffman-git(1) General Commands Manual diffman-git(1)

NAME
diffman-git - compare changes to manual pages line by line

SYNOPSIS
diffman-git [diff-options . . .] [[base-commit] commit]

DESCRIPTION
The diffman-git command formats a manual page at two git(1) commits, and then
runs diff (1) on the formatted outputs.

If the commit is not specified, it diffs the working directory against HEAD.

If the base-commit is not specified, the comparison is done against the previous com-
mit.

OPTIONS
-s Report when two files are the same.

-Un output n (default 3) lines of unified context.

-w Ignore all white space.

ENVIRONMENT
See man(1)

EXAMPLES
$ MAN_KEEP_FORMATTING= diffman-git 437e4afec6ca | less -R;
--- 437e4afec6ca^:man/man3/sem_open.3
+++ 437e4afec6ca:man/man3/sem_open.3
@@ -14,3 +14,2 @@
- sem_t *sem_open(const char *name, int oflag);
- sem_t *sem_open(const char *name, int oflag,
- mode_t mode, unsigned int value);
+ sem_t *sem_open(const char *name, int oflag, ...
+ /* mode_t mode, unsigned int value */);

SEE ALSO
diff (1), man(1), git(1), less(1)

Linux man-pages 6.13 2025-01-11 6

getent(1) General Commands Manual getent(1)

NAME
getent - get entries from Name Service Switch libraries

SYNOPSIS
getent [option . . .] database key . . .

DESCRIPTION
The getent command displays entries from databases supported by the Name Service
Switch libraries, which are configured in /etc/nsswitch.conf . If one or more key argu-
ments are provided, then only the entries that match the supplied keys will be dis-
played. Otherwise, if no key is provided, all entries will be displayed (unless the data-
base does not support enumeration).

The database may be any of those supported by the GNU C Library, listed below:

ahosts
When no key is provided, use sethostent(3), gethostent(3), and endhostent(3)
to enumerate the hosts database. This is identical to using hosts(5). When one
or more key arguments are provided, pass each key in succession to getad-
drinfo(3) with the address family AF_UNSPEC, enumerating each socket ad-
dress structure returned.

ahostsv4
Same as ahosts, but use the address family AF_INET.

ahostsv6
Same as ahosts, but use the address family AF_INET6. The call to getad-
drinfo(3) in this case includes the AI_V4MAPPED flag.

aliases
When no key is provided, use setaliasent(3), getaliasent(3), and endaliasent(3)
to enumerate the aliases database. When one or more key arguments are pro-
vided, pass each key in succession to getaliasbyname(3) and display the result.

ethers
When one or more key arguments are provided, pass each key in succession to
ether_aton(3) and ether_hostton(3) until a result is obtained, and display the
result. Enumeration is not supported on ethers, so a key must be provided.

group
When no key is provided, use setgrent(3), getgrent(3), and endgrent(3) to enu-
merate the group database. When one or more key arguments are provided,
pass each numeric key to getgrgid(3) and each nonnumeric key to getgrnam(3)
and display the result.

gshadow
When no key is provided, use setsgent(3), getsgent(3), and endsgent(3) to enu-
merate the gshadow database. When one or more key arguments are provided,
pass each key in succession to getsgnam(3) and display the result.

hosts When no key is provided, use sethostent(3), gethostent(3), and endhostent(3)
to enumerate the hosts database. When one or more key arguments are pro-
vided, pass each key to gethostbyaddr(3) or gethostbyname2(3), depending on
whether a call to inet_pton(3) indicates that the key is an IPv6 or IPv4 address
or not, and display the result.

Linux man-pages 6.13 2024-11-25 7

getent(1) General Commands Manual getent(1)

initgroups
When one or more key arguments are provided, pass each key in succession to
getgrouplist(3) and display the result. Enumeration is not supported on init-
groups, so a key must be provided.

netgroup
When one key is provided, pass the key to setnetgrent(3) and, using getnet-
grent(3) display the resulting string triple (hostname, username, domain-
name). Alternatively, three keys may be provided, which are interpreted as the
hostname, username, and domainname to match to a netgroup name via in-
netgr(3). Enumeration is not supported on netgroup, so either one or three
keys must be provided.

networks
When no key is provided, use setnetent(3), getnetent(3), and endnetent(3) to
enumerate the networks database. When one or more key arguments are pro-
vided, pass each numeric key to getnetbyaddr(3) and each nonnumeric key to
getnetbyname(3) and display the result.

passwd
When no key is provided, use setpwent(3), getpwent(3), and endpwent(3) to
enumerate the passwd database. When one or more key arguments are pro-
vided, pass each numeric key to getpwuid(3) and each nonnumeric key to getp-
wnam(3) and display the result.

protocols
When no key is provided, use setprotoent(3), getprotoent(3), and endpro-
toent(3) to enumerate the protocols database. When one or more key argu-
ments are provided, pass each numeric key to getprotobynumber(3) and each
nonnumeric key to getprotobyname(3) and display the result.

rpc When no key is provided, use setrpcent(3), getrpcent(3), and endrpcent(3) to
enumerate the rpc database. When one or more key arguments are provided,
pass each numeric key to getrpcbynumber(3) and each nonnumeric key to getr-
pcbyname(3) and display the result.

services
When no key is provided, use setservent(3), getservent(3), and endservent(3)
to enumerate the services database. When one or more key arguments are pro-
vided, pass each numeric key to getservbynumber(3) and each nonnumeric key
to getservbyname(3) and display the result.

shadow
When no key is provided, use setspent(3), getspent(3), and endspent(3) to enu-
merate the shadow database. When one or more key arguments are provided,
pass each key in succession to getspnam(3) and display the result.

OPTIONS
--service service
-s service

Override all databases with the specified service. (Since glibc 2.2.5.)

Linux man-pages 6.13 2024-11-25 8

getent(1) General Commands Manual getent(1)

--service database:service
-s database:service

Override only specified databases with the specified service. The option may
be used multiple times, but only the last service for each database will be used.
(Since glibc 2.4.)

--no-idn
-i Disables IDN encoding in lookups for ahosts/getaddrinfo(3) (Since

glibc-2.13.)

--help
-? Print a usage summary and exit.

--usage
Print a short usage summary and exit.

--version
-V Print the version number, license, and disclaimer of warranty for getent.

EXIT STATUS
One of the following exit values can be returned by getent:

0 Command completed successfully.

1 Missing arguments, or database unknown.

2 One or more supplied key could not be found in the database.

3 Enumeration not supported on this database.

SEE ALSO
nsswitch.conf(5)

Linux man-pages 6.13 2024-11-25 9

iconv(1) General Commands Manual iconv(1)

NAME
iconv - convert text from one character encoding to another

SYNOPSIS
iconv [options] [-f from-encoding] [-t to-encoding] [inputfile . . .]

DESCRIPTION
The iconv program reads in text in one encoding and outputs the text in another en-
coding. If no input files are given, or if it is given as a dash (-), iconv reads from
standard input. If no output file is given, iconv writes to standard output.

If no from-encoding is given, the default is derived from the current locale’s character
encoding. If no to-encoding is given, the default is derived from the current locale’s
character encoding.

OPTIONS
--from-code= from-encoding
-f from-encoding

Use from-encoding for input characters.

--to-code=to-encoding
-t to-encoding

Use to-encoding for output characters.

If the string //IGNORE is appended to to-encoding, characters that cannot be
converted are discarded and an error is printed after conversion.

If the string //TRANSLIT is appended to to-encoding, characters being con-
verted are transliterated when needed and possible. This means that when a
character cannot be represented in the target character set, it can be approxi-
mated through one or several similar looking characters. Characters that are
outside of the target character set and cannot be transliterated are replaced
with a question mark (?) in the output.

--list
-l List all known character set encodings.

-c Silently discard characters that cannot be converted instead of terminating
when encountering such characters.

--output=outputfile
-o outputfile

Use outputfile for output.

--silent
-s This option is ignored; it is provided only for compatibility.

--verbose
Print progress information on standard error when processing multiple files.

--help
-? Print a usage summary and exit.

--usage
Print a short usage summary and exit.

Linux man-pages 6.13 2024-11-25 10

iconv(1) General Commands Manual iconv(1)

--version
-V Print the version number, license, and disclaimer of warranty for iconv.

EXIT STATUS
Zero on success, nonzero on errors.

ENVIRONMENT
Internally, the iconv program uses the iconv(3) function which in turn uses gconv
modules (dynamically loaded shared libraries) to convert to and from a character set.
Before calling iconv(3), the iconv program must first allocate a conversion descriptor
using iconv_open(3). The operation of the latter function is influenced by the setting
of the GCONV_PATH environment variable:

• If GCONV_PATH is not set, iconv_open(3) loads the system gconv module con-
figuration cache file created by iconvconfig(8) and then, based on the configura-
tion, loads the gconv modules needed to perform the conversion. If the system
gconv module configuration cache file is not available then the system gconv mod-
ule configuration file is used.

• If GCONV_PATH is defined (as a colon-separated list of pathnames), the system
gconv module configuration cache is not used. Instead, iconv_open(3) first tries to
load the configuration files by searching the directories in GCONV_PATH in or-
der, followed by the system default gconv module configuration file. If a directory
does not contain a gconv module configuration file, any gconv modules that it may
contain are ignored. If a directory contains a gconv module configuration file and
it is determined that a module needed for this conversion is available in the direc-
tory, then the needed module is loaded from that directory, the order being such
that the first suitable module found in GCONV_PATH is used. This allows users
to use custom modules and even replace system-provided modules by providing
such modules in GCONV_PATH directories.

FILES
/usr/lib/gconv

Usual default gconv module path.

/usr/lib/gconv/gconv-modules
Usual system default gconv module configuration file.

/usr/lib/gconv/gconv-modules.cache
Usual system gconv module configuration cache.

Depending on the architecture, the above files may instead be located at directories
with the path prefix /usr/lib64.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
Convert text from the ISO/IEC 8859-15 character encoding to UTF-8:

$ iconv -f ISO-8859-15 -t UTF-8 < input.txt > output.txt

The next example converts from UTF-8 to ASCII, transliterating when possible:

Linux man-pages 6.13 2024-11-25 11

iconv(1) General Commands Manual iconv(1)

$ echo abc ß α € àḃç | iconv -f UTF-8 -t ASCII//TRANSLIT
abc ss ? EUR abc

SEE ALSO
locale(1), uconv(1), iconv(3), nl_langinfo(3), charsets(7), iconvconfig(8)

Linux man-pages 6.13 2024-11-25 12

ldd(1) General Commands Manual ldd(1)

NAME
ldd - print shared object dependencies

SYNOPSIS
ldd [option . . .] file . . .

DESCRIPTION
ldd prints the shared objects (shared libraries) required by each program or shared ob-
ject specified on the command line. An example of its use and output is the follow-
ing:

$ ldd /bin/ls
linux-vdso.so.1 (0x00007ffcc3563000)
libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f87e5459000)
libcap.so.2 => /lib64/libcap.so.2 (0x00007f87e5254000)
libc.so.6 => /lib64/libc.so.6 (0x00007f87e4e92000)
libpcre.so.1 => /lib64/libpcre.so.1 (0x00007f87e4c22000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f87e4a1e000)
/lib64/ld-linux-x86-64.so.2 (0x00005574bf12e000)
libattr.so.1 => /lib64/libattr.so.1 (0x00007f87e4817000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f87e45fa000)

In the usual case, ldd invokes the standard dynamic linker (see ld.so(8)) with the
LD_TRACE_LOADED_OBJECTS environment variable set to 1. This causes the
dynamic linker to inspect the program’s dynamic dependencies, and find (according to
the rules described in ld.so(8)) and load the objects that satisfy those dependencies.
For each dependency, ldd displays the location of the matching object and the (hexa-
decimal) address at which it is loaded. (The linux-vdso and ld-linux shared depen-
dencies are special; see vdso(7) and ld.so(8).)

Security
Be aware that in some circumstances (e.g., where the program specifies an ELF inter-
preter other than ld-linux.so), some versions of ldd may attempt to obtain the depen-
dency information by attempting to directly execute the program, which may lead to
the execution of whatever code is defined in the program’s ELF interpreter, and per-
haps to execution of the program itself. (Before glibc 2.27, the upstream ldd imple-
mentation did this for example, although most distributions provided a modified ver-
sion that did not.)

Thus, you should never employ ldd on an untrusted executable, since this may result
in the execution of arbitrary code. A safer alternative when dealing with untrusted ex-
ecutables is:

$ objdump -p /path/to/program | grep NEEDED

Note, however, that this alternative shows only the direct dependencies of the exe-
cutable, while ldd shows the entire dependency tree of the executable.

OPTIONS
--version

Print the version number of ldd.

--verbose

Linux man-pages 6.13 2024-11-25 13

ldd(1) General Commands Manual ldd(1)

-v Print all information, including, for example, symbol versioning information.

--unused
-u Print unused direct dependencies. (Since glibc 2.3.4.)

--data-relocs
-d Perform relocations and report any missing objects (ELF only).

--function-relocs
-r Perform relocations for both data objects and functions, and report any miss-

ing objects or functions (ELF only).

--help
Usage information.

BUGS
ldd does not work on a.out shared libraries.

ldd does not work with some extremely old a.out programs which were built before
ldd support was added to the compiler releases. If you use ldd on one of these pro-
grams, the program will attempt to run with argc = 0 and the results will be unpre-
dictable.

SEE ALSO
pldd(1), sprof(1), ld.so(8), ldconfig(8)

Linux man-pages 6.13 2024-11-25 14

locale(1) General Commands Manual locale(1)

NAME
locale - get locale-specific information

SYNOPSIS
locale [option]

locale [option] -a

locale [option] -m

locale [option] name . . .

DESCRIPTION
The locale command displays information about the current locale, or all locales, on
standard output.

When invoked without arguments, locale displays the current locale settings for each
locale category (see locale(5)), based on the settings of the environment variables that
control the locale (see locale(7)). Values for variables set in the environment are
printed without double quotes, implied values are printed with double quotes.

If either the -a or the -m option (or one of their long-format equivalents) is specified,
the behavior is as follows:

--all-locales
-a Display a list of all available locales. The -v option causes the LC_IDENTI-

FICATION metadata about each locale to be included in the output.

--charmaps
-m Display the available charmaps (character set description files). To display the

current character set for the locale, use locale -c charmap.

The locale command can also be provided with one or more arguments, which are the
names of locale keywords (for example, date_fmt, ctype-class-names, yesexpr, or
decimal_point) or locale categories (for example, LC_CTYPE or LC_TIME). For
each argument, the following is displayed:

• For a locale keyword, the value of that keyword to be displayed.

• For a locale category, the values of all keywords in that category are displayed.

When arguments are supplied, the following options are meaningful:

--category-name
-c For a category name argument, write the name of the locale category on a sep-

arate line preceding the list of keyword values for that category.

For a keyword name argument, write the name of the locale category for this
keyword on a separate line preceding the keyword value.

This option improves readability when multiple name arguments are specified.
It can be combined with the -k option.

--keyword-name
-k For each keyword whose value is being displayed, include also the name of

that keyword, so that the output has the format:

keyword="value"

The locale command also knows about the following options:

Linux man-pages 6.13 2024-11-25 15

locale(1) General Commands Manual locale(1)

--verbose
-v Display additional information for some command-line option and argument

combinations.

--help
-? Display a summary of command-line options and arguments and exit.

--usage
Display a short usage message and exit.

--version
-V Display the program version and exit.

FILES
/usr/lib/locale/locale-archive

Usual default locale archive location.

/usr/share/i18n/locales
Usual default path for locale definition files.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
$ locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=

$ locale date_fmt
%a %b %e %H:%M:%S %Z %Y

$ locale -k date_fmt
date_fmt="%a %b %e %H:%M:%S %Z %Y"

$ locale -ck date_fmt
LC_TIME
date_fmt="%a %b %e %H:%M:%S %Z %Y"

Linux man-pages 6.13 2024-11-25 16

locale(1) General Commands Manual locale(1)

$ locale LC_TELEPHONE
+%c (%a) %l
(%a) %l
11
1
UTF-8

$ locale -k LC_TELEPHONE
tel_int_fmt="+%c (%a) %l"
tel_dom_fmt="(%a) %l"
int_select="11"
int_prefix="1"
telephone-codeset="UTF-8"

The following example compiles a custom locale from the ./wrk directory with the lo-
caledef(1) utility under the $HOME/.locale directory, then tests the result with the
date(1) command, and then sets the environment variables LOCPATH and LANG in
the shell profile file so that the custom locale will be used in the subsequent user ses-
sions:

$ mkdir -p $HOME/.locale
$ I18NPATH=./wrk/ localedef -f UTF-8 -i fi_SE $HOME/.locale/fi_SE.UTF-8
$ LOCPATH=$HOME/.locale LC_ALL=fi_SE.UTF-8 date
$ echo "export LOCPATH=\$HOME/.locale" >> $HOME/.bashrc
$ echo "export LANG=fi_SE.UTF-8" >> $HOME/.bashrc

SEE ALSO
localedef(1), charmap(5), locale(5), locale(7)

Linux man-pages 6.13 2024-11-25 17

localedef (1) General Commands Manual localedef (1)

NAME
localedef - compile locale definition files

SYNOPSIS
localedef [options] outputpath

localedef --add-to-archive [options] compiledpath

localedef --delete-from-archive [options] localename . . .

localedef --list-archive [options]

localedef --help

localedef --usage

localedef --version

DESCRIPTION
The localedef program reads the indicated charmap and input files, compiles them to
a binary form quickly usable by the locale functions in the C library (setlocale(3), lo-
caleconv(3), etc.), and places the output in outputpath.

The outputpath argument is interpreted as follows:

• If outputpath contains a slash character (’/’), it is interpreted as the name of the di-
rectory where the output definitions are to be stored. In this case, there is a sepa-
rate output file for each locale category (LC_TIME, LC_NUMERIC, and so on).

• If the --no-archive option is used, outputpath is the name of a subdirectory in
/usr/lib/locale where per-category compiled files are placed.

• Otherwise, outputpath is the name of a locale and the compiled locale data is
added to the archive file /usr/lib/locale/locale-archive. A locale archive is a mem-
ory-mapped file which contains all the system-provided locales; it is used by all
localized programs when the environment variable LOCPATH is not set.

In any case, localedef aborts if the directory in which it tries to write locale files has
not already been created.

If no charmapfile is given, the value ANSI_X3.4-1968 (for ASCII) is used by default.
If no inputfile is given, or if it is given as a dash (-), localedef reads from standard in-
put.

OPTIONS
Operation-selection options

A few options direct localedef to do something other than compile locale definitions.
Only one of these options should be used at a time.

--add-to-archive
Add the compiledpath directories to the locale archive file. The directories
should have been created by previous runs of localedef, using --no-archive.

--delete-from-archive
Delete the named locales from the locale archive file.

--list-archive
List the locales contained in the locale archive file.

Linux man-pages 6.13 2024-11-25 18

localedef (1) General Commands Manual localedef (1)

Other options
Some of the following options are sensible only for certain operations; generally, it
should be self-evident which ones. Notice that -f and -c are reversed from what you
might expect; that is, -f is not the same as --force.

-f charmapfile, --charmap=charmapfile
Specify the file that defines the character set that is used by the input file. If
charmapfile contains a slash character (’/’), it is interpreted as the name of the
character map. Otherwise, the file is sought in the current directory and the
default directory for character maps. If the environment variable I18NPATH
is set, $I18NPATH/charmaps/ and $I18NPATH/ are also searched after the
current directory. The default directory for character maps is printed by lo-
caledef --help.

-i inputfile, --inputfile=inputfile
Specify the locale definition file to compile. The file is sought in the current
directory and the default directory for locale definition files. If the environ-
ment variable I18NPATH is set, $I18NPATH/locales/ and $I18NPATH are
also searched after the current directory. The default directory for locale defi-
nition files is printed by localedef --help.

-u repertoirefile, --repertoire-map=repertoirefile
Read mappings from symbolic names to Unicode code points from repertoire-
file. If repertoirefile contains a slash character (’/’), it is interpreted as the
pathname of the repertoire map. Otherwise, the file is sought in the current di-
rectory and the default directory for repertoire maps. If the environment vari-
able I18NPATH is set, $I18NPATH/repertoiremaps/ and $I18NPATH are also
searched after the current directory. The default directory for repertoire maps
is printed by localedef --help.

-A aliasfile, --alias-file=aliasfile
Use aliasfile to look up aliases for locale names. There is no default aliases
file.

--force
-c Write the output files even if warnings were generated about the input file.

--verbose
-v Generate extra warnings about errors that are normally ignored.

--big-endian
Generate big-endian output.

--little-endian
Generate little-endian output.

--no-archive
Do not use the locale archive file, instead create outputpath as a subdirectory
in the same directory as the locale archive file, and create separate output files
for locale categories in it. This is helpful to prevent system locale archive up-
dates from overwriting custom locales created with localedef.

--no-hard-links
Do not create hard links between installed locales.

Linux man-pages 6.13 2024-11-25 19

localedef (1) General Commands Manual localedef (1)

--no-warnings=warnings
Comma-separated list of warnings to disable. Supported warnings are ascii
and intcurrsym.

--posix
Conform strictly to POSIX. Implies --verbose. This option currently has no
other effect. POSIX conformance is assumed if the environment variable
POSIXLY_CORRECT is set.

--prefix=pathname
Set the prefix to be prepended to the full archive pathname. By default, the
prefix is empty. Setting the prefix to foo, the archive would be placed in
foo/usr/lib/locale/locale-archive.

--quiet
Suppress all notifications and warnings, and report only fatal errors.

--replace
Replace a locale in the locale archive file. Without this option, if the locale is
in the archive file already, an error occurs.

--warnings=warnings
Comma-separated list of warnings to enable. Supported warnings are ascii
and intcurrsym.

--help
-? Print a usage summary and exit. Also prints the default paths used by lo-

caledef.

--usage
Print a short usage summary and exit.

--version
-V Print the version number, license, and disclaimer of warranty for localedef.

EXIT STATUS
One of the following exit values can be returned by localedef:

0 Command completed successfully.

1 Warnings or errors occurred, output files were written.

4 Errors encountered, no output created.

ENVIRONMENT
POSIXLY_CORRECT

The --posix flag is assumed if this environment variable is set.

I18NPATH
A colon-separated list of search directories for files.

FILES
/usr/share/i18n/charmaps

Usual default character map path.

/usr/share/i18n/locales
Usual default path for locale definition files.

Linux man-pages 6.13 2024-11-25 20

localedef (1) General Commands Manual localedef (1)

/usr/share/i18n/repertoiremaps
Usual default repertoire map path.

/usr/lib/locale/locale-archive
Usual default locale archive location.

/usr/lib/locale
Usual default path for compiled individual locale data files.

outputpath/LC_ADDRESS
An output file that contains information about formatting of addresses and ge-
ography-related items.

outputpath/LC_COLLATE
An output file that contains information about the rules for comparing strings.

outputpath/LC_CTYPE
An output file that contains information about character classes.

outputpath/LC_IDENTIFICATION
An output file that contains metadata about the locale.

outputpath/LC_MEASUREMENT
An output file that contains information about locale measurements (metric
versus US customary).

outputpath/LC_MESSAGES/SYS_LC_MESSAGES
An output file that contains information about the language messages should
be printed in, and what an affirmative or negative answer looks like.

outputpath/LC_MONETARY
An output file that contains information about formatting of monetary values.

outputpath/LC_NAME
An output file that contains information about salutations for persons.

outputpath/LC_NUMERIC
An output file that contains information about formatting of nonmonetary nu-
meric values.

outputpath/LC_PAPER
An output file that contains information about settings related to standard pa-
per size.

outputpath/LC_TELEPHONE
An output file that contains information about formats to be used with tele-
phone services.

outputpath/LC_TIME
An output file that contains information about formatting of data and time val-
ues.

STANDARDS
POSIX.1-2008.

EXAMPLES
Compile the locale files for Finnish in the UTF-8 character set and add it to the de-
fault locale archive with the name fi_FI.UTF-8:

Linux man-pages 6.13 2024-11-25 21

localedef (1) General Commands Manual localedef (1)

localedef -f UTF-8 -i fi_FI fi_FI.UTF-8

The next example does the same thing, but generates files into the fi_FI.UTF-8 direc-
tory which can then be used by programs when the environment variable LOCPATH
is set to the current directory (note that the last argument must contain a slash):

localedef -f UTF-8 -i fi_FI ./fi_FI.UTF-8

SEE ALSO
locale(1), charmap(5), locale(5), repertoiremap(5), locale(7)

Linux man-pages 6.13 2024-11-25 22

mansect(1) General Commands Manual mansect(1)

NAME
mansect - print the source code of sections of manual pages

SYNOPSIS
mansect section [file . . .]

DESCRIPTION
The mansect command prints the source code of the section of the given manual-page
files. If no files are specified, the standard input is used.

section is a PCRE2 regular expression.

The TH line is unconditionally printed.

The output of this program is suitable for piping to the groff (1) pipeline.

EXAMPLES
$ man -w strtol strtoul | xargs mansect 'NAME|SEE ALSO';
.lf 1 /usr/local/man/man3/strtol.3
.TH strtol 3 2024-07-23 "Linux man-pages 6.9.1"
.SH NAME
strtol, strtoll, strtoq - convert a string to a long integer
.SH SEE ALSO
.BR atof (3),
.BR atoi (3),
.BR atol (3),
.BR strtod (3),
.BR strtoimax (3),
.BR strtoul (3)
.lf 1 /usr/local/man/man3/strtoul.3
.TH strtoul 3 2024-07-23 "Linux man-pages 6.9.1"
.SH NAME
strtoul, strtoull, strtouq - convert a string to an unsigned long integer
.SH SEE ALSO
.BR a64l (3),
.BR atof (3),
.BR atoi (3),
.BR atol (3),
.BR strtod (3),
.BR strtol (3),
.BR strtoumax (3)

SEE ALSO
lexgrog(1), groff (1), pcre2grep(1), mandb(8)

Linux man-pages 6.13 2024-11-25 23

memusage(1) General Commands Manual memusage(1)

NAME
memusage - profile memory usage of a program

SYNOPSIS
memusage [option . . .] program [programoption . . .]

DESCRIPTION
memusage is a bash(1) script which profiles memory usage of the program, program.
It preloads the libmemusage.so library into the caller’s environment (via the
LD_PRELOAD environment variable; see ld.so(8)). The libmemusage.so library
traces memory allocation by intercepting calls to malloc(3), calloc(3), free(3), and re-
alloc(3); optionally, calls to mmap(2), mremap(2), and munmap(2) can also be inter-
cepted.

memusage can output the collected data in textual form, or it can use memusages-
tat(1) (see the -p option, below) to create a PNG file containing graphical representa-
tion of the collected data.

Memory usage summary
The "Memory usage summary" line output by memusage contains three fields:

heap total
Sum of size arguments of all malloc(3) calls, products of arguments
(n*size) of all calloc(3) calls, and sum of length arguments of all
mmap(2) calls. In the case of realloc(3) and mremap(2), if the new size
of an allocation is larger than the previous size, the sum of all such differ-
ences (new size minus old size) is added.

heap peak
Maximum of all size arguments of malloc(3), all products of n*size of
calloc(3), all size arguments of realloc(3), length arguments of mmap(2),
and new_size arguments of mremap(2).

stack peak
Before the first call to any monitored function, the stack pointer address
(base stack pointer) is saved. After each function call, the actual stack
pointer address is read and the difference from the base stack pointer
computed. The maximum of these differences is then the stack peak.

Immediately following this summary line, a table shows the number calls, total mem-
ory allocated or deallocated, and number of failed calls for each intercepted function.
For realloc(3) and mremap(2), the additional field "nomove" shows reallocations that
changed the address of a block, and the additional "dec" field shows reallocations that
decreased the size of the block. For realloc(3), the additional field "free" shows real-
locations that caused a block to be freed (i.e., the reallocated size was 0).

The "realloc/total memory" of the table output by memusage does not reflect cases
where realloc(3) is used to reallocate a block of memory to have a smaller size than
previously. This can cause sum of all "total memory" cells (excluding "free") to be
larger than the "free/total memory" cell.

Histogram for block sizes
The "Histogram for block sizes" provides a breakdown of memory allocations into
various bucket sizes.

Linux man-pages 6.13 2024-11-25 24

memusage(1) General Commands Manual memusage(1)

OPTIONS
-n name, --progname=name

Name of the program file to profile.

-p file, --png= file
Generate PNG graphic and store it in file.

-d file, --data= file
Generate binary data file and store it in file.

-u, --unbuffered
Do not buffer output.

-b size, --buffer=size
Collect size entries before writing them out.

--no-timer
Disable timer-based (SIGPROF) sampling of stack pointer value.

-m, --mmap
Also trace mmap(2), mremap(2), and munmap(2).

-?, --help
Print help and exit.

--usage
Print a short usage message and exit.

-V, --version
Print version information and exit.

The following options apply only when generating graphical output:

-t, --time-based
Use time (rather than number of function calls) as the scale for the X axis.

-T, --total
Also draw a graph of total memory use.

--title=name
Use name as the title of the graph.

-x size, --x-size=size
Make the graph size pixels wide.

-y size, --y-size=size
Make the graph size pixels high.

EXIT STATUS
The exit status of memusage is equal to the exit status of the profiled program.

BUGS
To report bugs, see 〈http://www.gnu.org/software/libc/bugs.html〉

EXAMPLES
Below is a simple program that reallocates a block of memory in cycles that rise to a
peak before then cyclically reallocating the memory in smaller blocks that return to
zero. After compiling the program and running the following commands, a graph of
the memory usage of the program can be found in the file memusage.png:

Linux man-pages 6.13 2024-11-25 25

memusage(1) General Commands Manual memusage(1)

$ memusage --data=memusage.dat ./a.out
...
Memory usage summary: heap total: 45200, heap peak: 6440, stack peak: 224

total calls total memory failed calls
malloc| 1 400 0

realloc| 40 44800 0 (nomove:40, dec:19, free:0)
calloc| 0 0 0

free| 1 440
Histogram for block sizes:

192-207 1 2% ================
...

2192-2207 1 2% ================
2240-2255 2 4% =================================
2832-2847 2 4% =================================
3440-3455 2 4% =================================
4032-4047 2 4% =================================
4640-4655 2 4% =================================
5232-5247 2 4% =================================
5840-5855 2 4% =================================
6432-6447 1 2% ================

$ memusagestat memusage.dat memusage.png

Program source
#include <stdio.h>
#include <stdlib.h>

#define CYCLES 20

int
main(int argc, char *argv[])
{

int i, j;
size_t size;
int *p;

size = sizeof(*p) * 100;
printf("malloc: %zu\n", size);
p = malloc(size);

for (i = 0; i < CYCLES; i++) {
if (i < CYCLES / 2)

j = i;
else

j--;

size = sizeof(*p) * (j * 50 + 110);
printf("realloc: %zu\n", size);
p = realloc(p, size);

Linux man-pages 6.13 2024-11-25 26

memusage(1) General Commands Manual memusage(1)

size = sizeof(*p) * ((j + 1) * 150 + 110);
printf("realloc: %zu\n", size);
p = realloc(p, size);

}

free(p);
exit(EXIT_SUCCESS);

}

SEE ALSO
memusagestat(1), mtrace(1), ld.so(8)

Linux man-pages 6.13 2024-11-25 27

memusagestat(1) General Commands Manual memusagestat(1)

NAME
memusagestat - generate graphic from memory profiling data

SYNOPSIS
memusagestat [option . . .] datafile [outfile]

DESCRIPTION
memusagestat creates a PNG file containing a graphical representation of the mem-
ory profiling data in the file datafile; that file is generated via the -d (or --data) option
of memusage(1).

The red line in the graph shows the heap usage (allocated memory) and the green line
shows the stack usage. The x-scale is either the number of memory-handling function
calls or (if the -t option is specified) time.

OPTIONS
-o file, --output= file

Name of the output file.

-s string, --string=string
Use string as the title inside the output graph.

-t, --time
Use time (rather than number of function calls) as the scale for the X axis.

-T, --total
Also draw a graph of total memory consumption.

-x size, --x-size=size
Make the output graph size pixels wide.

-y size, --y-size=size
Make the output graph size pixels high.

-?, --help
Print a help message and exit.

--usage
Print a short usage message and exit.

-V, --version
Print version information and exit.

BUGS
To report bugs, see 〈http://www.gnu.org/software/libc/bugs.html〉

EXAMPLES
See memusage(1).

SEE ALSO
memusage(1), mtrace(1)

Linux man-pages 6.13 2024-11-25 28

mtrace(1) General Commands Manual mtrace(1)

NAME
mtrace - interpret the malloc trace log

SYNOPSIS
mtrace [option . . .] [binary] mtracedata

DESCRIPTION
mtrace is a Perl script used to interpret and provide human readable output of the
trace log contained in the file mtracedata, whose contents were produced by
mtrace(3). If binary is provided, the output of mtrace also contains the source file
name with line number information for problem locations (assuming that binary was
compiled with debugging information).

For more information about the mtrace(3) function and mtrace script usage, see
mtrace(3).

OPTIONS
--help

Print help and exit.

--version
Print version information and exit.

BUGS
For bug reporting instructions, please see:
〈http://www.gnu.org/software/libc/bugs.html〉.

SEE ALSO
memusage(1), mtrace(3)

Linux man-pages 6.13 2024-11-25 29

pdfman(1) General Commands Manual pdfman(1)

NAME
pdfman - render a manual page in PDF

SYNOPSIS
pdfman [man-options] [section] page

DESCRIPTION
The pdfman command renders a manual page in PDF. All the arguments are inter-
preted by man(1)

SEE ALSO
man(1), groff (1), gropdf (1), xdg-open(1)

Linux man-pages 6.13 2024-11-25 30

pldd(1) General Commands Manual pldd(1)

NAME
pldd - display dynamic shared objects linked into a process

SYNOPSIS
pldd pid

pldd option

DESCRIPTION
The pldd command displays a list of the dynamic shared objects (DSOs) that are
linked into the process with the specified process ID (PID). The list includes the li-
braries that have been dynamically loaded using dlopen(3).

OPTIONS
--help
-? Display a help message and exit.

--usage
Display a short usage message and exit.

--version
-V Display program version information and exit.

EXIT STATUS
On success, pldd exits with the status 0. If the specified process does not exist, the
user does not have permission to access its dynamic shared object list, or no com-
mand-line arguments are supplied, pldd exists with a status of 1. If given an invalid
option, it exits with the status 64.

VERSIONS
Some other systems have a similar command.

STANDARDS
None.

HISTORY
glibc 2.15.

NOTES
The command

lsof -p PID

also shows output that includes the dynamic shared objects that are linked into a
process.

The gdb(1) info shared command also shows the shared libraries being used by a
process, so that one can obtain similar output to pldd using a command such as the
following (to monitor the process with the specified pid):

$ gdb -ex "set confirm off" -ex "set height 0" -ex "info shared" \
-ex "quit" -p $pid | grep '^0x.*0x'

BUGS
From glibc 2.19 to glibc 2.29, pldd was broken: it just hung when executed. This
problem was fixed in glibc 2.30, and the fix has been backported to earlier glibc ver-
sions in some distributions.

Linux man-pages 6.13 2024-11-25 31

pldd(1) General Commands Manual pldd(1)

EXAMPLES
$ echo $$ # Display PID of shell
1143
$ pldd $$ # Display DSOs linked into the shell
1143: /usr/bin/bash
linux-vdso.so.1
/lib64/libtinfo.so.5
/lib64/libdl.so.2
/lib64/libc.so.6
/lib64/ld-linux-x86-64.so.2
/lib64/libnss_files.so.2

SEE ALSO
ldd(1), lsof (1), dlopen(3), ld.so(8)

Linux man-pages 6.13 2024-11-25 32

sortman(1) General Commands Manual sortman(1)

NAME
sortman - sort manual-page path names

SYNOPSIS
sortman

DESCRIPTION
The sortman command sorts manual-page path names in the order that they should
appear in the manual.

The chapters and subchapters are first sorted. Then, within each (sub)chapter, the first
page is the corresponding intro(*) page, and the rest are sorted alphabetically (but
treating specially some special characters).

SEE ALSO
intro(1), man(1), sort(1)

Linux man-pages 6.13 2024-11-26 33

sprof (1) General Commands Manual sprof (1)

NAME
sprof - read and display shared object profiling data

SYNOPSIS
sprof [option . . .] shared-object-path [profile-data-path]

DESCRIPTION
The sprof command displays a profiling summary for the shared object (shared li-
brary) specified as its first command-line argument. The profiling summary is created
using previously generated profiling data in the (optional) second command-line argu-
ment. If the profiling data pathname is omitted, then sprof will attempt to deduce it
using the soname of the shared object, looking for a file with the name <son-
ame>.profile in the current directory.

OPTIONS
The following command-line options specify the profile output to be produced:

--call-pairs
-c Print a list of pairs of call paths for the interfaces exported by the shared ob-

ject, along with the number of times each path is used.

--flat-profile
-p Generate a flat profile of all of the functions in the monitored object, with

counts and ticks.

--graph
-q Generate a call graph.

If none of the above options is specified, then the default behavior is to display a flat
profile and a call graph.

The following additional command-line options are available:

--help
-? Display a summary of command-line options and arguments and exit.

--usage
Display a short usage message and exit.

--version
-V Display the program version and exit.

STANDARDS
GNU.

EXAMPLES
The following example demonstrates the use of sprof. The example consists of a
main program that calls two functions in a shared object. First, the code of the main
program:

$ cat prog.c
#include <stdlib.h>

void x1(void);
void x2(void);

int

Linux man-pages 6.13 2024-11-25 34

sprof (1) General Commands Manual sprof (1)

main(int argc, char *argv[])
{

x1();
x2();
exit(EXIT_SUCCESS);

}

The functions x1() and x2() are defined in the following source file that is used to con-
struct the shared object:

$ cat libdemo.c
#include <unistd.h>

void
consumeCpu1(int lim)
{

for (unsigned int j = 0; j < lim; j++)
getppid();

}

void
x1(void) {

for (unsigned int j = 0; j < 100; j++)
consumeCpu1(200000);

}

void
consumeCpu2(int lim)
{

for (unsigned int j = 0; j < lim; j++)
getppid();

}

void
x2(void)
{

for (unsigned int j = 0; j < 1000; j++)
consumeCpu2(10000);

}

Now we construct the shared object with the real name libdemo.so.1.0.1, and the son-
ame libdemo.so.1:

$ cc -g -fPIC -shared -Wl,-soname,libdemo.so.1 \
-o libdemo.so.1.0.1 libdemo.c

Then we construct symbolic links for the library soname and the library linker name:

$ ln -sf libdemo.so.1.0.1 libdemo.so.1
$ ln -sf libdemo.so.1 libdemo.so

Next, we compile the main program, linking it against the shared object, and then list
the dynamic dependencies of the program:

Linux man-pages 6.13 2024-11-25 35

sprof (1) General Commands Manual sprof (1)

$ cc -g -o prog prog.c -L. -ldemo
$ ldd prog

linux-vdso.so.1 => (0x00007fff86d66000)
libdemo.so.1 => not found
libc.so.6 => /lib64/libc.so.6 (0x00007fd4dc138000)
/lib64/ld-linux-x86-64.so.2 (0x00007fd4dc51f000)

In order to get profiling information for the shared object, we define the environment
variable LD_PROFILE with the soname of the library:

$ export LD_PROFILE=libdemo.so.1

We then define the environment variable LD_PROFILE_OUTPUT with the path-
name of the directory where profile output should be written, and create that directory
if it does not exist already:

$ export LD_PROFILE_OUTPUT=$(pwd)/prof_data
$ mkdir -p $LD_PROFILE_OUTPUT

LD_PROFILE causes profiling output to be appended to the output file if it already
exists, so we ensure that there is no preexisting profiling data:

$ rm -f $LD_PROFILE_OUTPUT/$LD_PROFILE.profile

We then run the program to produce the profiling output, which is written to a file in
the directory specified in LD_PROFILE_OUTPUT:

$ LD_LIBRARY_PATH=. ./prog
$ ls prof_data
libdemo.so.1.profile

We then use the sprof -p option to generate a flat profile with counts and ticks:

$ sprof -p libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
60.00 0.06 0.06 100 600.00 consumeCpu1
40.00 0.10 0.04 1000 40.00 consumeCpu2

0.00 0.10 0.00 1 0.00 x1
0.00 0.10 0.00 1 0.00 x2

The sprof -q option generates a call graph:

$ sprof -q libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile

index % time self children called name

0.00 0.00 100/100 x1 [1]
[0] 100.0 0.00 0.00 100 consumeCpu1 [0]

0.00 0.00 1/1 <UNKNOWN>
[1] 0.0 0.00 0.00 1 x1 [1]

0.00 0.00 100/100 consumeCpu1 [0]

Linux man-pages 6.13 2024-11-25 36

sprof (1) General Commands Manual sprof (1)

0.00 0.00 1000/1000 x2 [3]

[2] 0.0 0.00 0.00 1000 consumeCpu2 [2]

0.00 0.00 1/1 <UNKNOWN>
[3] 0.0 0.00 0.00 1 x2 [3]

0.00 0.00 1000/1000 consumeCpu2 [2]

Above and below, the "<UNKNOWN>" strings represent identifiers that are outside
of the profiled object (in this example, these are instances of main()).

The sprof -c option generates a list of call pairs and the number of their occurrences:

$ sprof -c libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile
<UNKNOWN> x1 1
x1 consumeCpu1 100
<UNKNOWN> x2 1
x2 consumeCpu2 1000

SEE ALSO
gprof (1), ldd(1), ld.so(8)

Linux man-pages 6.13 2024-11-25 37

time(1) General Commands Manual time(1)

NAME
time - time a simple command or give resource usage

SYNOPSIS
time [option . . .] command [argument . . .]

DESCRIPTION
The time command runs the specified program command with the given arguments.
When command finishes, time writes a message to standard error giving timing statis-
tics about this program run. These statistics consist of (i) the elapsed real time be-
tween invocation and termination, (ii) the user CPU time (the sum of the tms_utime
and tms_cutime values in a struct tms as returned by times(2)), and (iii) the system
CPU time (the sum of the tms_stime and tms_cstime values in a struct tms as returned
by times(2)).

Note: some shells (e.g., bash(1)) have a built-in time command that provides similar
information on the usage of time and possibly other resources. To access the real
command, you may need to specify its pathname (something like /usr/bin/time).

OPTIONS
-p When in the POSIX locale, use the precise traditional format

"real %f\nuser %f\nsys %f\n"

(with numbers in seconds) where the number of decimals in the output for %f
is unspecified but is sufficient to express the clock tick accuracy, and at least
one.

EXIT STATUS
If command was invoked, the exit status is that of command . Otherwise, it is 127 if
command could not be found, 126 if it could be found but could not be invoked, and
some other nonzero value (1–125) if something else went wrong.

ENVIRONMENT
The variables LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_NUMERIC,
and NLSPATH are used for the text and formatting of the output. PATH is used to
search for command .

GNU VERSION
Below a description of the GNU 1.7 version of time. Disregarding the name of the
utility, GNU makes it output lots of useful information, not only about time used, but
also on other resources like memory, I/O and IPC calls (where available). The output
is formatted using a format string that can be specified using the -f option or the
TIME environment variable.

The default format string is:

%Uuser %Ssystem %Eelapsed %PCPU (%Xtext+%Ddata %Mmax)k
%Iinputs+%Ooutputs (%Fmajor+%Rminor)pagefaults %Wswaps

When the -p option is given, the (portable) output format is used:

real %e
user %U
sys %S

Linux man-pages 6.13 2024-11-25 38

time(1) General Commands Manual time(1)

The format string
The format is interpreted in the usual printf(3)-like way. Ordinary characters are di-
rectly copied, tab, newline, and backslash are escaped using \t, \n, and \\, a percent
sign is represented by %%, and otherwise % indicates a conversion. The program
time will always add a trailing newline itself. The conversions follow. All of those
used by tcsh(1) are supported.

Time

%E Elapsed real time (in [hours:]minutes:seconds).

%e (Not in tcsh(1)Elapsed real time (in seconds).

%S Total number of CPU-seconds that the process spent in kernel mode.

%U Total number of CPU-seconds that the process spent in user mode.

%P Percentage of the CPU that this job got, computed as (%U + %S) / %E.

Memory

%M Maximum resident set size of the process during its lifetime, in Kbytes.

%t (Not in tcsh(1)Average resident set size of the process, in Kbytes.

%K Average total (data+stack+text) memory use of the process, in Kbytes.

%D Average size of the process’s unshared data area, in Kbytes.

%p (Not in tcsh(1)Average size of the process’s unshared stack space, in Kbytes.

%X Average size of the process’s shared text space, in Kbytes.

%Z (Not in tcsh(1)System’s page size, in bytes. This is a per-system constant, but
varies between systems.

%F Number of major page faults that occurred while the process was running.
These are faults where the page has to be read in from disk.

%R Number of minor, or recoverable, page faults. These are faults for pages that
are not valid but which have not yet been claimed by other virtual pages. Thus
the data in the page is still valid but the system tables must be updated.

%W Number of times the process was swapped out of main memory.

%c Number of times the process was context-switched involuntarily (because the
time slice expired).

%w Number of waits: times that the program was context-switched voluntarily, for
instance while waiting for an I/O operation to complete.

I/O

%I Number of filesystem inputs by the process.

%O Number of filesystem outputs by the process.

%r Number of socket messages received by the process.

%s Number of socket messages sent by the process.

%k Number of signals delivered to the process.

Linux man-pages 6.13 2024-11-25 39

time(1) General Commands Manual time(1)

%C (Not in tcsh(1)Name and command-line arguments of the command being
timed.

%x (Not in tcsh(1)Exit status of the command.

GNU options
-f format, --format= format

Specify output format, possibly overriding the format specified in the environ-
ment variable TIME.

-p, --portability
Use the portable output format.

-o file, --output= file
Do not send the results to stderr, but overwrite the specified file.

-a, --append
(Used together with -o.) Do not overwrite but append.

-v, --verbose
Give very verbose output about all the program knows about.

-q, --quiet
Don’t report abnormal program termination (where command is terminated by
a signal) or nonzero exit status.

GNU standard options
--help

Print a usage message on standard output and exit successfully.

-V, --version
Print version information on standard output, then exit successfully.

-- Terminate option list.

BUGS
Not all resources are measured by all versions of UNIX, so some of the values might
be reported as zero. The present selection was mostly inspired by the data provided
by 4.2 or 4.3BSD.

GNU time version 1.7 is not yet localized. Thus, it does not implement the POSIX
requirements.

The environment variable TIME was badly chosen. It is not unusual for systems like
autoconf (1) or make(1) to use environment variables with the name of a utility to
override the utility to be used. Uses like MORE or TIME for options to programs (in-
stead of program pathnames) tend to lead to difficulties.

It seems unfortunate that -o overwrites instead of appends. (That is, the -a option
should be the default.)

Mail suggestions and bug reports for GNU time to bug-time@gnu.org. Please include
the version of time, which you can get by running

time --version

and the operating system and C compiler you used.

Linux man-pages 6.13 2024-11-25 40

time(1) General Commands Manual time(1)

SEE ALSO
bash(1), tcsh(1), times(2), wait3(2)

Linux man-pages 6.13 2024-11-25 41

intro(2) System Calls Manual intro(2)

NAME
intro - introduction to system calls

DESCRIPTION
Section 2 of the manual describes the Linux system calls. A system call is an entry
point into the Linux kernel. Usually, system calls are not invoked directly: instead,
most system calls have corresponding C library wrapper functions which perform the
steps required (e.g., trapping to kernel mode) in order to invoke the system call. Thus,
making a system call looks the same as invoking a normal library function.

In many cases, the C library wrapper function does nothing more than:

• copying arguments and the unique system call number to the registers where the
kernel expects them;

• trapping to kernel mode, at which point the kernel does the real work of the sys-
tem call;

• setting errno if the system call returns an error number when the kernel returns the
CPU to user mode.

However, in a few cases, a wrapper function may do rather more than this, for exam-
ple, performing some preprocessing of the arguments before trapping to kernel mode,
or postprocessing of values returned by the system call. Where this is the case, the
manual pages in Section 2 generally try to note the details of both the (usually GNU)
C library API interface and the raw system call. Most commonly, the main DE-
SCRIPTION will focus on the C library interface, and differences for the system call
are covered in the NOTES section.

For a list of the Linux system calls, see syscalls(2).

RETURN VALUE
On error, most system calls return a negative error number (i.e., the negated value of
one of the constants described in errno(3)). The C library wrapper hides this detail
from the caller: when a system call returns a negative value, the wrapper copies the
absolute value into the errno variable, and returns -1 as the return value of the wrap-
per.

The value returned by a successful system call depends on the call. Many system
calls return 0 on success, but some can return nonzero values from a successful call.
The details are described in the individual manual pages.

In some cases, the programmer must define a feature test macro in order to obtain the
declaration of a system call from the header file specified in the man page SYNOPSIS
section. (Where required, these feature test macros must be defined before including
any header files.) In such cases, the required macro is described in the man page. For
further information on feature test macros, see feature_test_macros(7).

STANDARDS
Certain terms and abbreviations are used to indicate UNIX variants and standards to
which calls in this section conform. See standards(7).

NOTES
Calling directly

In most cases, it is unnecessary to invoke a system call directly, but there are times
when the Standard C library does not implement a nice wrapper function for you. In

Linux man-pages 6.13 2024-05-02 42

intro(2) System Calls Manual intro(2)

this case, the programmer must manually invoke the system call using syscall(2).
Historically, this was also possible using one of the _syscall macros described in
_syscall(2).

Authors and copyright conditions
Look at the header of the manual page source for the author(s) and copyright condi-
tions. Note that these can be different from page to page!

SEE ALSO
_syscall(2), syscall(2), syscalls(2), errno(3), intro(3), capabilities(7), credentials(7),
feature_test_macros(7), mq_overview(7), path_resolution(7), pipe(7), pty(7),
sem_overview(7), shm_overview(7), signal(7), socket(7), standards(7), symlink(7),
system_data_types(7), sysvipc(7), time(7)

Linux man-pages 6.13 2024-05-02 43

accept(2) System Calls Manual accept(2)

NAME
accept, accept4 - accept a connection on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int accept(int sockfd , struct sockaddr *_Nullable restrict addr,
socklen_t *_Nullable restrict addrlen);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/socket.h>

int accept4(int sockfd , struct sockaddr *_Nullable restrict addr,
socklen_t *_Nullable restrict addrlen, int flags);

DESCRIPTION
The accept() system call is used with connection-based socket types
(SOCK_STREAM, SOCK_SEQPACKET). It extracts the first connection request
on the queue of pending connections for the listening socket, sockfd , creates a new
connected socket, and returns a new file descriptor referring to that socket. The newly
created socket is not in the listening state. The original socket sockfd is unaffected by
this call.

The argument sockfd is a socket that has been created with socket(2), bound to a local
address with bind(2), and is listening for connections after a listen(2).

The argument addr is a pointer to a sockaddr structure. This structure is filled in with
the address of the peer socket, as known to the communications layer. The exact for-
mat of the address returned addr is determined by the socket’s address family (see
socket(2) and the respective protocol man pages). When addr is NULL, nothing is
filled in; in this case, addrlen is not used, and should also be NULL.

The addrlen argument is a value-result argument: the caller must initialize it to con-
tain the size (in bytes) of the structure pointed to by addr; on return it will contain the
actual size of the peer address.

The returned address is truncated if the buffer provided is too small; in this case, ad-
drlen will return a value greater than was supplied to the call.

If no pending connections are present on the queue, and the socket is not marked as
nonblocking, accept() blocks the caller until a connection is present. If the socket is
marked nonblocking and no pending connections are present on the queue, accept()
fails with the error EAGAIN or EWOULDBLOCK.

In order to be notified of incoming connections on a socket, you can use select(2),
poll(2), or epoll(7). A readable event will be delivered when a new connection is at-
tempted and you may then call accept() to get a socket for that connection. Alterna-
tively, you can set the socket to deliver SIGIO when activity occurs on a socket; see
socket(7) for details.

If flags is 0, then accept4() is the same as accept(). The following values can be bit-
wise ORed in flags to obtain different behavior:

Linux man-pages 6.13 2024-07-23 44

accept(2) System Calls Manual accept(2)

SOCK_NONBLOCK
Set the O_NONBLOCK file status flag on the open file descrip-
tion (see open(2)) referred to by the new file descriptor. Using
this flag saves extra calls to fcntl(2) to achieve the same result.

SOCK_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file de-
scriptor. See the description of the O_CLOEXEC flag in open(2)
for reasons why this may be useful.

RETURN VALUE
On success, these system calls return a file descriptor for the accepted socket (a non-
negative integer). On error, -1 is returned, errno is set to indicate the error, and ad-
drlen is left unchanged.

Error handling
Linux accept() (and accept4()) passes already-pending network errors on the new
socket as an error code from accept(). This behavior differs from other BSD socket
implementations. For reliable operation the application should detect the network er-
rors defined for the protocol after accept() and treat them like EAGAIN by retrying.
In the case of TCP/IP, these are ENETDOWN, EPROTO, ENOPROTOOPT,
EHOSTDOWN, ENONET, EHOSTUNREACH, EOPNOTSUPP, and ENETUN-
REACH.

ERRORS
EAGAIN or EWOULDBLOCK

The socket is marked nonblocking and no connections are present to be ac-
cepted. POSIX.1-2001 and POSIX.1-2008 allow either error to be returned
for this case, and do not require these constants to have the same value, so a
portable application should check for both possibilities.

EBADF
sockfd is not an open file descriptor.

ECONNABORTED
A connection has been aborted.

EFAULT
The addr argument is not in a writable part of the user address space.

EINTR
The system call was interrupted by a signal that was caught before a valid con-
nection arrived; see signal(7).

EINVAL
Socket is not listening for connections, or addrlen is invalid (e.g., is negative).

EINVAL
(accept4()) invalid value in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

Linux man-pages 6.13 2024-07-23 45

accept(2) System Calls Manual accept(2)

ENOBUFS
ENOMEM

Not enough free memory. This often means that the memory allocation is lim-
ited by the socket buffer limits, not by the system memory.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EOPNOTSUPP
The referenced socket is not of type SOCK_STREAM.

EPERM
Firewall rules forbid connection.

EPROTO
Protocol error.

In addition, network errors for the new socket and as defined for the protocol may be
returned. Various Linux kernels can return other errors such as ENOSR, ESOCKT-
NOSUPPORT, EPROTONOSUPPORT, ETIMEDOUT. The value ERESTART-
SYS may be seen during a trace.

VERSIONS
On Linux, the new socket returned by accept() does not inherit file status flags such as
O_NONBLOCK and O_ASYNC from the listening socket. This behavior differs
from the canonical BSD sockets implementation. Portable programs should not rely
on inheritance or noninheritance of file status flags and always explicitly set all re-
quired flags on the socket returned from accept().

STANDARDS
accept()

POSIX.1-2008.

accept4()
Linux.

HISTORY
accept()

POSIX.1-2001, SVr4, 4.4BSD (accept() first appeared in 4.2BSD).

accept4()
Linux 2.6.28, glibc 2.10.

NOTES
There may not always be a connection waiting after a SIGIO is delivered or select(2),
poll(2), or epoll(7) return a readability event because the connection might have been
removed by an asynchronous network error or another thread before accept() is
called. If this happens, then the call will block waiting for the next connection to ar-
rive. To ensure that accept() never blocks, the passed socket sockfd needs to have the
O_NONBLOCK flag set (see socket(7)).

For certain protocols which require an explicit confirmation, such as DECnet, ac-
cept() can be thought of as merely dequeuing the next connection request and not im-
plying confirmation. Confirmation can be implied by a normal read or write on the
new file descriptor, and rejection can be implied by closing the new socket. Currently,
only DECnet has these semantics on Linux.

Linux man-pages 6.13 2024-07-23 46

accept(2) System Calls Manual accept(2)

The socklen_t type
In the original BSD sockets implementation (and on other older systems) the third ar-
gument of accept() was declared as an int *. A POSIX.1g draft standard wanted to
change it into a size_t *C; later POSIX standards and glibc 2.x have socklen_t * .

EXAMPLES
See bind(2).

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2), socket(7)

Linux man-pages 6.13 2024-07-23 47

access(2) System Calls Manual access(2)

NAME
access, faccessat, faccessat2 - check user’s permissions for a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int access(const char *pathname, int mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int faccessat(int dirfd , const char *pathname, int mode, int flags);
/* But see C library/kernel differences, below */

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_faccessat2,
int dirfd , const char *pathname, int mode, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

faccessat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
access() checks whether the calling process can access the file pathname. If path-
name is a symbolic link, it is dereferenced.

The mode specifies the accessibility check(s) to be performed, and is either the value
F_OK, or a mask consisting of the bitwise OR of one or more of R_OK, W_OK, and
X_OK. F_OK tests for the existence of the file. R_OK, W_OK, and X_OK test
whether the file exists and grants read, write, and execute permissions, respectively.

The check is done using the calling process’s real UID and GID, rather than the effec-
tive IDs as is done when actually attempting an operation (e.g., open(2)) on the file.
Similarly, for the root user, the check uses the set of permitted capabilities rather than
the set of effective capabilities; and for non-root users, the check uses an empty set of
capabilities.

This allows set-user-ID programs and capability-endowed programs to easily deter-
mine the invoking user’s authority. In other words, access() does not answer the "can
I read/write/execute this file?" question. It answers a slightly different question: "(as-
suming I’m a setuid binary) can the user who invoked me read/write/execute this
file?", which gives set-user-ID programs the possibility to prevent malicious users
from causing them to read files which users shouldn’t be able to read.

If the calling process is privileged (i.e., its real UID is zero), then an X_OK check is
successful for a regular file if execute permission is enabled for any of the file owner,
group, or other.

Linux man-pages 6.13 2024-07-23 48

access(2) System Calls Manual access(2)

faccessat()
faccessat() operates in exactly the same way as access(), except for the differences
described here.

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by access() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like ac-
cess())

If pathname is absolute, then dirfd is ignored.

flags is constructed by ORing together zero or more of the following values:

AT_EACCESS
Perform access checks using the effective user and group IDs. By default, fac-
cessat() uses the real IDs (like access())

AT_EMPTY_PATH (since Linux 5.8)
If pathname is an empty string, operate on the file referred to by dirfd (which
may have been obtained using the open(2) O_PATH flag). In this case, dirfd
can refer to any type of file, not just a directory. If dirfd is AT_FDCWD, the
call operates on the current working directory. This flag is Linux-specific; de-
fine _GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead return informa-
tion about the link itself.

See openat(2) for an explanation of the need for faccessat().

faccessat2()
The description of faccessat() given above corresponds to POSIX.1 and to the imple-
mentation provided by glibc. However, the glibc implementation was an imperfect
emulation (see BUGS) that papered over the fact that the raw Linux faccessat() sys-
tem call does not have a flags argument. To allow for a proper implementation, Linux
5.8 added the faccessat2() system call, which supports the flags argument and allows
a correct implementation of the faccessat() wrapper function.

RETURN VALUE
On success (all requested permissions granted, or mode is F_OK and the file exists),
zero is returned. On error (at least one bit in mode asked for a permission that is de-
nied, or mode is F_OK and the file does not exist, or some other error occurred), -1 is
returned, and errno is set to indicate the error.

ERRORS
EACCES

The requested access would be denied to the file, or search permission is de-
nied for one of the directories in the path prefix of pathname. (See also
path_resolution(7).)

EBADF
(faccessat()) pathname is relative but dirfd is neither AT_FDCWD (facces-
sat()) nor a valid file descriptor.

Linux man-pages 6.13 2024-07-23 49

access(2) System Calls Manual access(2)

EFAULT
pathname points outside your accessible address space.

EINVAL
mode was incorrectly specified.

EINVAL
(faccessat()) Invalid flag specified in flags.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving pathname.

ENAMETOOLONG
pathname is too long.

ENOENT
A component of pathname does not exist or is a dangling symbolic link.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component used as a directory in pathname is not, in fact, a directory.

ENOTDIR
(faccessat()) pathname is relative and dirfd is a file descriptor referring to a
file other than a directory.

EPERM
Write permission was requested to a file that has the immutable flag set. See
also FS_IOC_SETFLAGS(2const).

EROFS
Write permission was requested for a file on a read-only filesystem.

ETXTBSY
Write access was requested to an executable which is being executed.

VERSIONS
If the calling process has appropriate privileges (i.e., is superuser), POSIX.1-2001 per-
mits an implementation to indicate success for an X_OK check even if none of the ex-
ecute file permission bits are set. Linux does not do this.

C library/kernel differences
The raw faccessat() system call takes only the first three arguments. The AT_EAC-
CESS and AT_SYMLINK_NOFOLLOW flags are actually implemented within the
glibc wrapper function for faccessat(). If either of these flags is specified, then the
wrapper function employs fstatat(2) to determine access permissions, but see BUGS.

glibc notes
On older kernels where faccessat() is unavailable (and when the AT_EACCESS and
AT_SYMLINK_NOFOLLOW flags are not specified), the glibc wrapper function
falls back to the use of access(). When pathname is a relative pathname, glibc con-
structs a pathname based on the symbolic link in /proc/self/fd that corresponds to the
dirfd argument.

Linux man-pages 6.13 2024-07-23 50

access(2) System Calls Manual access(2)

STANDARDS
access()
faccessat()

POSIX.1-2008.

faccessat2()
Linux.

HISTORY
access()

SVr4, 4.3BSD, POSIX.1-2001.

faccessat()
Linux 2.6.16, glibc 2.4.

faccessat2()
Linux 5.8.

NOTES
Warning: Using these calls to check if a user is authorized to, for example, open a file
before actually doing so using open(2) creates a security hole, because the user might
exploit the short time interval between checking and opening the file to manipulate it.
For this reason, the use of this system call should be avoided. (In the example just
described, a safer alternative would be to temporarily switch the process’s effective
user ID to the real ID and then call open(2).)

access() always dereferences symbolic links. If you need to check the permissions on
a symbolic link, use faccessat() with the flag AT_SYMLINK_NOFOLLOW.

These calls return an error if any of the access types in mode is denied, even if some
of the other access types in mode are permitted.

A file is accessible only if the permissions on each of the directories in the path prefix
of pathname grant search (i.e., execute) access. If any directory is inaccessible, then
the access() call fails, regardless of the permissions on the file itself.

Only access bits are checked, not the file type or contents. Therefore, if a directory is
found to be writable, it probably means that files can be created in the directory, and
not that the directory can be written as a file. Similarly, a DOS file may be reported as
executable, but the execve(2) call will still fail.

These calls may not work correctly on NFSv2 filesystems with UID mapping enabled,
because UID mapping is done on the server and hidden from the client, which checks
permissions. (NFS versions 3 and higher perform the check on the server.) Similar
problems can occur to FUSE mounts.

BUGS
Because the Linux kernel’s faccessat() system call does not support a flags argument,
the glibc faccessat() wrapper function provided in glibc 2.32 and earlier emulates the
required functionality using a combination of the faccessat() system call and fs-
tatat(2). However, this emulation does not take ACLs into account. Starting with
glibc 2.33, the wrapper function avoids this bug by making use of the faccessat2()
system call where it is provided by the underlying kernel.

In Linux 2.4 (and earlier) there is some strangeness in the handling of X_OK tests for
superuser. If all categories of execute permission are disabled for a nondirectory file,

Linux man-pages 6.13 2024-07-23 51

access(2) System Calls Manual access(2)

then the only access() test that returns -1 is when mode is specified as just X_OK; if
R_OK or W_OK is also specified in mode, then access() returns 0 for such files.
Early Linux 2.6 (up to and including Linux 2.6.3) also behaved in the same way as
Linux 2.4.

Before Linux 2.6.20, these calls ignored the effect of the MS_NOEXEC flag if it was
used to mount(2) the underlying filesystem. Since Linux 2.6.20, the MS_NOEXEC
flag is honored.

SEE ALSO
chmod(2), chown(2), open(2), setgid(2), setuid(2), stat(2), euidaccess(3), creden-
tials(7), path_resolution(7), symlink(7)

Linux man-pages 6.13 2024-07-23 52

acct(2) System Calls Manual acct(2)

NAME
acct - switch process accounting on or off

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int acct(const char *_Nullable filename);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

acct():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The acct() system call enables or disables process accounting. If called with the name
of an existing file as its argument, accounting is turned on, and records for each termi-
nating process are appended to filename as it terminates. An argument of NULL
causes accounting to be turned off.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

Write permission is denied for the specified file, or search permission is denied
for one of the directories in the path prefix of filename (see also path_resolu-
tion(7)), or filename is not a regular file.

EFAULT
filename points outside your accessible address space.

EIO Error writing to the file filename.

EISDIR
filename is a directory.

ELOOP
Too many symbolic links were encountered in resolving filename.

ENAMETOOLONG
filename was too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The specified file does not exist.

Linux man-pages 6.13 2024-07-23 53

acct(2) System Calls Manual acct(2)

ENOMEM
Out of memory.

ENOSYS
BSD process accounting has not been enabled when the operating system ker-
nel was compiled. The kernel configuration parameter controlling this feature
is CONFIG_BSD_PROCESS_ACCT.

ENOTDIR
A component used as a directory in filename is not in fact a directory.

EPERM
The calling process has insufficient privilege to enable process accounting. On
Linux, the CAP_SYS_PACCT capability is required.

EROFS
filename refers to a file on a read-only filesystem.

EUSERS
There are no more free file structures or we ran out of memory.

STANDARDS
None.

HISTORY
SVr4, 4.3BSD.

NOTES
No accounting is produced for programs running when a system crash occurs. In par-
ticular, nonterminating processes are never accounted for.

The structure of the records written to the accounting file is described in acct(5).

SEE ALSO
acct(5)

Linux man-pages 6.13 2024-07-23 54

add_key(2) System Calls Manual add_key(2)

NAME
add_key - add a key to the kernel’s key management facility

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <keyutils.h>

key_serial_t add_key(const char *type, const char *description,
const void payload[.size], size_t size,
key_serial_t keyring);

Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
add_key() creates or updates a key of the given type and description, instantiates it
with the payload of size size, attaches it to the nominated keyring, and returns the
key’s serial number.

The key may be rejected if the provided data is in the wrong format or it is invalid in
some other way.

If the destination keyring already contains a key that matches the specified type and
description, then, if the key type supports it, that key will be updated rather than a
new key being created; if not, a new key (with a different ID) will be created and it
will displace the link to the extant key from the keyring.

The destination keyring serial number may be that of a valid keyring for which the
caller has write permission. Alternatively, it may be one of the following special
keyring IDs:

KEY_SPEC_THREAD_KEYRING
This specifies the caller’s thread-specific keyring (thread-keyring(7)).

KEY_SPEC_PROCESS_KEYRING
This specifies the caller’s process-specific keyring (process-keyring(7)).

KEY_SPEC_SESSION_KEYRING
This specifies the caller’s session-specific keyring (session-keyring(7)).

KEY_SPEC_USER_KEYRING
This specifies the caller’s UID-specific keyring (user-keyring(7)).

KEY_SPEC_USER_SESSION_KEYRING
This specifies the caller’s UID-session keyring (user-session-keyring(7)).

Key types
The key type is a string that specifies the key’s type. Internally, the kernel defines a
number of key types that are available in the core key management code. Among the
types that are available for user-space use and can be specified as the type argument to
add_key() are the following:

"keyring"
Keyrings are special key types that may contain links to sequences of other
keys of any type. If this interface is used to create a keyring, then payload
should be NULL and size should be zero.

Linux man-pages 6.13 2024-11-17 55

add_key(2) System Calls Manual add_key(2)

"user"
This is a general purpose key type whose payload may be read and updated by
user-space applications. The key is kept entirely within kernel memory. The
payload for keys of this type is a blob of arbitrary data of up to 32,767 bytes.

"logon" (since Linux 3.3)
This key type is essentially the same as "user", but it does not permit the key
to read. This is suitable for storing payloads that you do not want to be read-
able from user space.

This key type vets the description to ensure that it is qualified by a "service" prefix, by
checking to ensure that the description contains a ’:’ that is preceded by other charac-
ters.

"big_key" (since Linux 3.13)
This key type is similar to "user", but may hold a payload of up to 1 MiB. If
the key payload is large enough, then it may be stored encrypted in tmpfs
(which can be swapped out) rather than kernel memory.

For further details on these key types, see keyrings(7).

RETURN VALUE
On success, add_key() returns the serial number of the key it created or updated. On
error, -1 is returned and errno is set to indicate the error.

ERRORS
EACCES

The keyring wasn’t available for modification by the user.

EDQUOT
The key quota for this user would be exceeded by creating this key or linking
it to the keyring.

EFAULT
One or more of type, description, and payload points outside process’s acces-
sible address space.

EINVAL
The size of the string (including the terminating null byte) specified in type or
description exceeded the limit (32 bytes and 4096 bytes respectively).

EINVAL
The payload data was invalid.

EINVAL
type was "logon" and the description was not qualified with a prefix string of
the form "service:".

EKEYEXPIRED
The keyring has expired.

EKEYREVOKED
The keyring has been revoked.

ENOKEY
The keyring doesn’t exist.

Linux man-pages 6.13 2024-11-17 56

add_key(2) System Calls Manual add_key(2)

ENOMEM
Insufficient memory to create a key.

EPERM
The type started with a period ('.'). Key types that begin with a period are re-
served to the implementation.

EPERM
type was "keyring" and the description started with a period ('.'). Keyrings
with descriptions (names) that begin with a period are reserved to the imple-
mentation.

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

NOTES
glibc does not provide a wrapper for this system call. A wrapper is provided in the
libkeyutils library. (The accompanying package provides the <keyutils.h> header
file.) When employing the wrapper in that library, link with -lkeyutils.

EXAMPLES
The program below creates a key with the type, description, and payload specified in
its command-line arguments, and links that key into the session keyring. The follow-
ing shell session demonstrates the use of the program:

$./a.out user mykey "Some payload"
Key ID is 64a4dca
$ grep '64a4dca' /proc/keys
064a4dca I--Q--- 1 perm 3f010000 1000 1000 user mykey: 12

Program source

#include <keyutils.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

key_serial_t key;

if (argc != 4) {
fprintf(stderr, "Usage: %s type description payload\n",

argv[0]);
exit(EXIT_FAILURE);

}

key = add_key(argv[1], argv[2], argv[3], strlen(argv[3]),

Linux man-pages 6.13 2024-11-17 57

add_key(2) System Calls Manual add_key(2)

KEY_SPEC_SESSION_KEYRING);
if (key == -1) {

perror("add_key");
exit(EXIT_FAILURE);

}

printf("Key ID is %jx\n", (uintmax_t) key);

exit(EXIT_SUCCESS);
}

SEE ALSO
keyctl(1), keyctl(2), request_key(2), keyctl(3), keyrings(7), keyutils(7), persistent-
keyring(7), process-keyring(7), session-keyring(7), thread-keyring(7), user-keyring(7),
user-session-keyring(7)

The kernel source files Documentation/security/keys/core.rst and
Documentation/keys/request-key.rst (or, before Linux 4.13, in the files
Documentation/security/keys.txt and Documentation/security/keys-request-key.txt).

Linux man-pages 6.13 2024-11-17 58

adjtimex(2) System Calls Manual adjtimex(2)

NAME
adjtimex, clock_adjtime, ntp_adjtime - tune kernel clock

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/timex.h>

int adjtimex(struct timex *buf);

int clock_adjtime(clockid_t clk_id, struct timex *buf);

int ntp_adjtime(struct timex *buf);

DESCRIPTION
Linux uses David L. Mills’ clock adjustment algorithm (see RFC 5905). The system
call adjtimex() reads and optionally sets adjustment parameters for this algorithm. It
takes a pointer to a timex structure, updates kernel parameters from (selected) field
values, and returns the same structure updated with the current kernel values. This
structure is declared as follows:

struct timex {
int modes; /* Mode selector */
long offset; /* Time offset; nanoseconds, if STA_NANO

status flag is set, otherwise
microseconds */

long freq; /* Frequency offset; see NOTES for units */
long maxerror; /* Maximum error (microseconds) */
long esterror; /* Estimated error (microseconds) */
int status; /* Clock command/status */
long constant; /* PLL (phase-locked loop) time constant */
long precision; /* Clock precision

(microseconds, read-only) */
long tolerance; /* Clock frequency tolerance (read-only);

see NOTES for units */
struct timeval time;

/* Current time (read-only, except for
ADJ_SETOFFSET); upon return, time.tv_usec
contains nanoseconds, if STA_NANO status
flag is set, otherwise microseconds */

long tick; /* Microseconds between clock ticks */
long ppsfreq; /* PPS (pulse per second) frequency

(read-only); see NOTES for units */
long jitter; /* PPS jitter (read-only); nanoseconds, if

STA_NANO status flag is set, otherwise
microseconds */

int shift; /* PPS interval duration
(seconds, read-only) */

long stabil; /* PPS stability (read-only);
see NOTES for units */

long jitcnt; /* PPS count of jitter limit exceeded
events (read-only) */

Linux man-pages 6.13 2024-07-23 59

adjtimex(2) System Calls Manual adjtimex(2)

long calcnt; /* PPS count of calibration intervals
(read-only) */

long errcnt; /* PPS count of calibration errors
(read-only) */

long stbcnt; /* PPS count of stability limit exceeded
events (read-only) */

int tai; /* TAI offset, as set by previous ADJ_TAI
operation (seconds, read-only,
since Linux 2.6.26) */

/* Further padding bytes to allow for future expansion */
};

The modes field determines which parameters, if any, to set. (As described later in
this page, the constants used for ntp_adjtime() are equivalent but differently named.)
It is a bit mask containing a bitwise OR combination of zero or more of the following
bits:

ADJ_OFFSET
Set time offset from buf.offset. Since Linux 2.6.26, the supplied value is
clamped to the range (-0.5s, +0.5s). In older kernels, an EINVAL error oc-
curs if the supplied value is out of range.

ADJ_FREQUENCY
Set frequency offset from buf.freq. Since Linux 2.6.26, the supplied value is
clamped to the range (-32768000, +32768000). In older kernels, an EINVAL
error occurs if the supplied value is out of range.

ADJ_MAXERROR
Set maximum time error from buf.maxerror.

ADJ_ESTERROR
Set estimated time error from buf.esterror.

ADJ_STATUS
Set clock status bits from buf.status. A description of these bits is provided
below.

ADJ_TIMECONST
Set PLL time constant from buf.constant. If the STA_NANO status flag (see
below) is clear, the kernel adds 4 to this value.

ADJ_SETOFFSET (since Linux 2.6.39)
Add buf.time to the current time. If buf.status includes the ADJ_NANO flag,
then buf.time.tv_usec is interpreted as a nanosecond value; otherwise it is in-
terpreted as microseconds.

The value of buf.time is the sum of its two fields, but the field buf.time.tv_usec
must always be nonnegative. The following example shows how to normalize
a timeval with nanosecond resolution.

while (buf.time.tv_usec < 0) {
buf.time.tv_sec -= 1;
buf.time.tv_usec += 1000000000;

}

Linux man-pages 6.13 2024-07-23 60

adjtimex(2) System Calls Manual adjtimex(2)

ADJ_MICRO (since Linux 2.6.26)
Select microsecond resolution.

ADJ_NANO (since Linux 2.6.26)
Select nanosecond resolution. Only one of ADJ_MICRO and ADJ_NANO
should be specified.

ADJ_TAI (since Linux 2.6.26)
Set TAI (Atomic International Time) offset from buf.constant.

ADJ_TAI should not be used in conjunction with ADJ_TIMECONST, since
the latter mode also employs the buf.constant field.

For a complete explanation of TAI and the difference between TAI and UTC,
see BIPM 〈http://www.bipm.org/en/bipm/tai/tai.html〉

ADJ_TICK
Set tick value from buf.tick.

Alternatively, modes can be specified as either of the following (multibit mask) val-
ues, in which case other bits should not be specified in modes:

ADJ_OFFSET_SINGLESHOT
Old-fashioned adjtime(3): (gradually) adjust time by value specified in buf.off-
set, which specifies an adjustment in microseconds.

ADJ_OFFSET_SS_READ (functional since Linux 2.6.28)
Return (in buf.offset) the remaining amount of time to be adjusted after an ear-
lier ADJ_OFFSET_SINGLESHOT operation. This feature was added in
Linux 2.6.24, but did not work correctly until Linux 2.6.28.

Ordinary users are restricted to a value of either 0 or ADJ_OFFSET_SS_READ for
modes. Only the superuser may set any parameters.

The buf.status field is a bit mask that is used to set and/or retrieve status bits associ-
ated with the NTP implementation. Some bits in the mask are both readable and set-
table, while others are read-only.

STA_PLL (read-write)
Enable phase-locked loop (PLL) updates via ADJ_OFFSET.

STA_PPSFREQ (read-write)
Enable PPS (pulse-per-second) frequency discipline.

STA_PPSTIME (read-write)
Enable PPS time discipline.

STA_FLL (read-write)
Select frequency-locked loop (FLL) mode.

STA_INS (read-write)
Insert a leap second after the last second of the UTC day, thus extending the
last minute of the day by one second. Leap-second insertion will occur each
day, so long as this flag remains set.

STA_DEL (read-write)
Delete a leap second at the last second of the UTC day. Leap second deletion
will occur each day, so long as this flag remains set.

Linux man-pages 6.13 2024-07-23 61

adjtimex(2) System Calls Manual adjtimex(2)

STA_UNSYNC (read-write)
Clock unsynchronized.

STA_FREQHOLD (read-write)
Hold frequency. Normally adjustments made via ADJ_OFFSET result in
dampened frequency adjustments also being made. So a single call corrects
the current offset, but as offsets in the same direction are made repeatedly, the
small frequency adjustments will accumulate to fix the long-term skew.

This flag prevents the small frequency adjustment from being made when cor-
recting for an ADJ_OFFSET value.

STA_PPSSIGNAL (read-only)
A valid PPS (pulse-per-second) signal is present.

STA_PPSJITTER (read-only)
PPS signal jitter exceeded.

STA_PPSWANDER (read-only)
PPS signal wander exceeded.

STA_PPSERROR (read-only)
PPS signal calibration error.

STA_CLOCKERR (read-only)
Clock hardware fault.

STA_NANO (read-only; since Linux 2.6.26)
Resolution (0 = microsecond, 1 = nanoseconds). Set via ADJ_NANO, cleared
via ADJ_MICRO.

STA_MODE (since Linux 2.6.26)
Mode (0 = Phase Locked Loop, 1 = Frequency Locked Loop).

STA_CLK (read-only; since Linux 2.6.26)
Clock source (0 = A, 1 = B); currently unused.

Attempts to set read-only status bits are silently ignored.

clock_adjtime ()
The clock_adjtime() system call (added in Linux 2.6.39) behaves like adjtimex() but
takes an additional clk_id argument to specify the particular clock on which to act.

ntp_adjtime ()
The ntp_adjtime() library function (described in the NTP "Kernel Application Pro-
gram API", KAPI) is a more portable interface for performing the same task as adj-
timex(). Other than the following points, it is identical to adjtimex():

• The constants used in modes are prefixed with "MOD_" rather than "ADJ_", and
have the same suffixes (thus, MOD_OFFSET, MOD_FREQUENCY, and so
on), other than the exceptions noted in the following points.

• MOD_CLKA is the synonym for ADJ_OFFSET_SINGLESHOT.

• MOD_CLKB is the synonym for ADJ_TICK.

• The is no synonym for ADJ_OFFSET_SS_READ, which is not described in the
KAPI.

Linux man-pages 6.13 2024-07-23 62

adjtimex(2) System Calls Manual adjtimex(2)

RETURN VALUE
On success, adjtimex() and ntp_adjtime() return the clock state; that is, one of the
following values:

TIME_OK Clock synchronized, no leap second adjustment pending.

TIME_INS Indicates that a leap second will be added at the end of the UTC day.

TIME_DEL Indicates that a leap second will be deleted at the end of the UTC day.

TIME_OOP Insertion of a leap second is in progress.

TIME_WAIT
A leap-second insertion or deletion has been completed. This value
will be returned until the next ADJ_STATUS operation clears the
STA_INS and STA_DEL flags.

TIME_ERROR
The system clock is not synchronized to a reliable server. This value is
returned when any of the following holds true:

• Either STA_UNSYNC or STA_CLOCKERR is set.

• STA_PPSSIGNAL is clear and either STA_PPSFREQ or
STA_PPSTIME is set.

• STA_PPSTIME and STA_PPSJITTER are both set.

• STA_PPSFREQ is set and either STA_PPSWANDER or
STA_PPSJITTER is set.

The symbolic name TIME_BAD is a synonym for TIME_ERROR,
provided for backward compatibility.

Note that starting with Linux 3.4, the call operates asynchronously and the return
value usually will not reflect a state change caused by the call itself.

On failure, these calls return -1 and set errno to indicate the error.

ERRORS
EFAULT

buf does not point to writable memory.

EINVAL (before Linux 2.6.26)
An attempt was made to set buf.freq to a value outside the range (-33554432,
+33554432).

EINVAL (before Linux 2.6.26)
An attempt was made to set buf.offset to a value outside the permitted range.
Before Linux 2.0, the permitted range was (-131072, +131072). From Linux
2.0 onwards, the permitted range was (-512000, +512000).

EINVAL
An attempt was made to set buf.status to a value other than those listed above.

EINVAL
The clk_id given to clock_adjtime() is invalid for one of two reasons. Either
the System-V style hard-coded positive clock ID value is out of range, or the
dynamic clk_id does not refer to a valid instance of a clock object. See

Linux man-pages 6.13 2024-07-23 63

adjtimex(2) System Calls Manual adjtimex(2)

clock_gettime(2) for a discussion of dynamic clocks.

EINVAL
An attempt was made to set buf.tick to a value outside the range 900000/HZ to
1100000/HZ, where HZ is the system timer interrupt frequency.

ENODEV
The hot-pluggable device (like USB for example) represented by a dynamic
clk_id has disappeared after its character device was opened. See clock_get-
time(2) for a discussion of dynamic clocks.

EOPNOTSUPP
The given clk_id does not support adjustment.

EPERM
buf.modes is neither 0 nor ADJ_OFFSET_SS_READ, and the caller does not
have sufficient privilege. Under Linux, the CAP_SYS_TIME capability is re-
quired.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safentp_adjtime()

STANDARDS
adjtimex()
clock_adjtime()

Linux.

The preferred API for the NTP daemon is ntp_adjtime().

NOTES
In struct timex, freq, ppsfreq, and stabil are ppm (parts per million) with a 16-bit
fractional part, which means that a value of 1 in one of those fields actually means
2^-16 ppm, and 2^16=65536 is 1 ppm. This is the case for both input values (in the
case of freq) and output values.

The leap-second processing triggered by STA_INS and STA_DEL is done by the ker-
nel in timer context. Thus, it will take one tick into the second for the leap second to
be inserted or deleted.

SEE ALSO
clock_gettime(2), clock_settime(2), settimeofday(2), adjtime(3), ntp_gettime(3), capa-
bilities(7), time(7), adjtimex(8), hwclock(8)

NTP "Kernel Application Program Interface"
〈http://www.slac.stanford.edu/comp/unix/package/rtems/src/ssrlApps/ntpNanoclock/
api.htm〉

Linux man-pages 6.13 2024-07-23 64

alarm(2) System Calls Manual alarm(2)

NAME
alarm - set an alarm clock for delivery of a signal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

unsigned int alarm(unsigned int seconds);

DESCRIPTION
alarm() arranges for a SIGALRM signal to be delivered to the calling process in sec-
onds seconds.

If seconds is zero, any pending alarm is canceled.

In any event any previously set alarm() is canceled.

RETURN VALUE
alarm() returns the number of seconds remaining until any previously scheduled
alarm was due to be delivered, or zero if there was no previously scheduled alarm.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
alarm() and setitimer(2) share the same timer; calls to one will interfere with use of
the other.

Alarms created by alarm() are preserved across execve(2) and are not inherited by
children created via fork(2).

sleep(3) may be implemented using SIGALRM; mixing calls to alarm() and sleep(3)
is a bad idea.

Scheduling delays can, as ever, cause the execution of the process to be delayed by an
arbitrary amount of time.

SEE ALSO
gettimeofday(2), pause(2), select(2), setitimer(2), sigaction(2), signal(2), timer_cre-
ate(2), timerfd_create(2), sleep(3), time(7)

Linux man-pages 6.13 2024-07-23 65

alloc_hugepages(2) System Calls Manual alloc_hugepages(2)

NAME
alloc_hugepages, free_hugepages - allocate or free huge pages

SYNOPSIS
void *syscall(SYS_alloc_hugepages, int key, void addr[.size], size_t size,

int prot, int flag);
int syscall(SYS_free_hugepages, void *addr);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
The system calls alloc_hugepages() and free_hugepages() were introduced in Linux
2.5.36 and removed again in Linux 2.5.54. They existed only on i386 and ia64 (when
built with CONFIG_HUGETLB_PAGE). In Linux 2.4.20, the syscall numbers ex-
ist, but the calls fail with the error ENOSYS.

On i386 the memory management hardware knows about ordinary pages (4 KiB) and
huge pages (2 or 4 MiB). Similarly ia64 knows about huge pages of several sizes.
These system calls serve to map huge pages into the process’s memory or to free them
again. Huge pages are locked into memory, and are not swapped.

The key argument is an identifier. When zero the pages are private, and not inherited
by children. When positive the pages are shared with other applications using the
same key, and inherited by child processes.

The addr argument of free_hugepages() tells which page is being freed: it was the re-
turn value of a call to alloc_hugepages(). (The memory is first actually freed when
all users have released it.) The addr argument of alloc_hugepages() is a hint, that the
kernel may or may not follow. Addresses must be properly aligned.

The size argument is the size of the required segment. It must be a multiple of the
huge page size.

The prot argument specifies the memory protection of the segment. It is one of
PROT_READ, PROT_WRITE, PROT_EXEC.

The flag argument is ignored, unless key is positive. In that case, if flag is
IPC_CREAT, then a new huge page segment is created when none with the given key
existed. If this flag is not set, then ENOENT is returned when no segment with the
given key exists.

RETURN VALUE
On success, alloc_hugepages() returns the allocated virtual address, and
free_hugepages() returns zero. On error, -1 is returned, and errno is set to indicate
the error.

ERRORS
ENOSYS

The system call is not supported on this kernel.

FILES
/proc/sys/vm/nr_hugepages

Number of configured hugetlb pages. This can be read and written.

Linux man-pages 6.13 2024-11-17 66

alloc_hugepages(2) System Calls Manual alloc_hugepages(2)

/proc/meminfo
Gives info on the number of configured hugetlb pages and on their size in the
three variables HugePages_Total, HugePages_Free, Hugepagesize.

STANDARDS
Linux on Intel processors.

HISTORY
These system calls are gone; they existed only in Linux 2.5.36 through to Linux
2.5.54.

NOTES
Now the hugetlbfs filesystem can be used instead. Memory backed by huge pages (if
the CPU supports them) is obtained by using mmap(2) to map files in this virtual
filesystem.

The maximal number of huge pages can be specified using the hugepages= boot para-
meter.

Linux man-pages 6.13 2024-11-17 67

arch_prctl(2) System Calls Manual arch_prctl(2)

NAME
arch_prctl - set architecture-specific thread state

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/prctl.h> /* Definition of ARCH_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_arch_prctl, int op, unsigned long addr);
int syscall(SYS_arch_prctl, int op, unsigned long *addr);

Note: glibc provides no wrapper for arch_prctl(), necessitating the use of syscall(2).

DESCRIPTION
arch_prctl() sets architecture-specific process or thread state. op selects an operation
and passes argument addr to it; addr is interpreted as either an unsigned long for the
"set" operations, or as an unsigned long *, for the "get" operations.

Subfunctions for both x86 and x86-64 are:

ARCH_SET_CPUID (since Linux 4.12)
Enable (addr != 0) or disable (addr == 0) the cpuid instruction for the calling
thread. The instruction is enabled by default. If disabled, any execution of a
cpuid instruction will instead generate a SIGSEGV signal. This feature can
be used to emulate cpuid results that differ from what the underlying hardware
would have produced (e.g., in a paravirtualization setting).

The ARCH_SET_CPUID setting is preserved across fork(2) and clone(2) but
reset to the default (i.e., cpuid enabled) on execve(2).

ARCH_GET_CPUID (since Linux 4.12)
Return the setting of the flag manipulated by ARCH_SET_CPUID as the re-
sult of the system call (1 for enabled, 0 for disabled). addr is ignored.

Subfunctions for x86-64 only are:

ARCH_SET_FS
Set the 64-bit base for the FS register to addr.

ARCH_GET_FS
Return the 64-bit base value for the FS register of the calling thread in the un-
signed long pointed to by addr.

ARCH_SET_GS
Set the 64-bit base for the GS register to addr.

ARCH_GET_GS
Return the 64-bit base value for the GS register of the calling thread in the un-
signed long pointed to by addr.

RETURN VALUE
On success, arch_prctl() returns 0; on error, -1 is returned, and errno is set to indi-
cate the error.

Linux man-pages 6.13 2024-07-23 68

arch_prctl(2) System Calls Manual arch_prctl(2)

ERRORS
EFAULT

addr points to an unmapped address or is outside the process address space.

EINVAL
op is not a valid operation.

ENODEV
ARCH_SET_CPUID was requested, but the underlying hardware does not
support CPUID faulting.

EPERM
addr is outside the process address space.

STANDARDS
Linux/x86-64.

NOTES
arch_prctl() is supported only on Linux/x86-64 for 64-bit programs currently.

The 64-bit base changes when a new 32-bit segment selector is loaded.

ARCH_SET_GS is disabled in some kernels.

Context switches for 64-bit segment bases are rather expensive. As an optimization, if
a 32-bit TLS base address is used, arch_prctl() may use a real TLS entry as if
set_thread_area(2) had been called, instead of manipulating the segment base register
directly. Memory in the first 2 GB of address space can be allocated by using
mmap(2) with the MAP_32BIT flag.

Because of the aforementioned optimization, using arch_prctl() and
set_thread_area(2) in the same thread is dangerous, as they may overwrite each
other’s TLS entries.

FS may be already used by the threading library. Programs that use ARCH_SET_FS
directly are very likely to crash.

SEE ALSO
mmap(2), modify_ldt(2), prctl(2), set_thread_area(2)

AMD X86-64 Programmer’s manual

Linux man-pages 6.13 2024-07-23 69

bdflush(2) System Calls Manual bdflush(2)

NAME
bdflush - start, flush, or tune buffer-dirty-flush daemon

SYNOPSIS
#include <sys/kdaemon.h>

int bdflush(int func, long data);

DESCRIPTION
This system call used to turn the calling process into the bdflush daemon, or tune it, or
flush the "old buffers". It then progressively lost all of that functionality.

See fs/buffer.c in the kernel version you’re interested in to see what it actually does
there.

ERRORS
ENOSYS (this system call is unimplemented)

STANDARDS
Linux.

HISTORY
This system call was introduced in Linux 1.1.3, became effectively obsolete in Linux
1.3.50, mostly useless in Linux 2.3.23, entirely useless in Linux 2.5.12, officially dep-
recated in Linux 2.5.52, and removed outright in Linux 5.15.

Sometimes, if func was even, data actually represented a pointer.

The header and prototype were removed in glibc 2.23.

SEE ALSO
sync(1), fsync(2), sync(2)

Linux man-pages 6.13 2024-08-21 70

bind(2) System Calls Manual bind(2)

NAME
bind - bind a name to a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int bind(int sockfd , const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
When a socket is created with socket(2), it exists in a name space (address family) but
has no address assigned to it. bind() assigns the address specified by addr to the
socket referred to by the file descriptor sockfd . addrlen specifies the size, in bytes, of
the address structure pointed to by addr. Traditionally, this operation is called “as-
signing a name to a socket”.

It is normally necessary to assign a local address using bind() before a
SOCK_STREAM socket may receive connections (see accept(2)).

The rules used in name binding vary between address families. Consult the manual
entries in Section 7 for detailed information. For AF_INET, see ip(7); for
AF_INET6, see ipv6(7); for AF_UNIX, see unix(7); for AF_APPLETALK, see
ddp(7); for AF_PACKET, see packet(7); for AF_X25, see x25(7); and for
AF_NETLINK, see netlink(7).

The actual structure passed for the addr argument will depend on the address family.
The sockaddr structure is defined as something like:

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];

}

The only purpose of this structure is to cast the structure pointer passed in addr in or-
der to avoid compiler warnings. See EXAMPLES below.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

The address is protected, and the user is not the superuser.

EADDRINUSE
The given address is already in use.

EADDRINUSE
(Internet domain sockets) The port number was specified as zero in the socket
address structure, but, upon attempting to bind to an ephemeral port, it was de-
termined that all port numbers in the ephemeral port range are currently in use.
See the discussion of /proc/sys/net/ipv4/ip_local_port_range ip(7).

Linux man-pages 6.13 2024-11-06 71

bind(2) System Calls Manual bind(2)

EBADF
sockfd is not a valid file descriptor.

EINVAL
The socket is already bound to an address.

EINVAL
addrlen is wrong, or addr is not a valid address for this socket’s domain.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EADDRNOTAVAIL
A nonexistent interface was requested or the requested address was not local.

The following errors are specific to UNIX domain (AF_UNIX) sockets:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EFAULT
addr points outside the user’s accessible address space.

ELOOP
Too many symbolic links were encountered in resolving addr.

ENAMETOOLONG
addr is too long.

ENOENT
A component in the directory prefix of the socket pathname does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

EROFS
The socket inode would reside on a read-only filesystem.

Other errors may be generated by the underlying protocol modules.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (bind() first appeared in 4.2BSD).

BUGS
The transparent proxy options are not described.

EXAMPLES
An example of the use of bind() with Internet domain sockets can be found in getad-
drinfo(3).

The following example shows how to bind a stream socket in the UNIX (AF_UNIX)
domain, and accept connections:

#include <stdio.h>

Linux man-pages 6.13 2024-11-06 72

bind(2) System Calls Manual bind(2)

#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

#define MY_SOCK_PATH "/somepath"
#define LISTEN_BACKLOG 50

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

int
main(void)
{

int sfd, cfd;
socklen_t peer_addr_size;
struct sockaddr_un my_addr, peer_addr;

sfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sfd == -1)

handle_error("socket");

memset(&my_addr, 0, sizeof(my_addr));
my_addr.sun_family = AF_UNIX;
strncpy(my_addr.sun_path, MY_SOCK_PATH,

sizeof(my_addr.sun_path) - 1);

if (bind(sfd, (struct sockaddr *) &my_addr,
sizeof(my_addr)) == -1)

handle_error("bind");

if (listen(sfd, LISTEN_BACKLOG) == -1)
handle_error("listen");

/* Now we can accept incoming connections one
at a time using accept(2). */

peer_addr_size = sizeof(peer_addr);
cfd = accept(sfd, (struct sockaddr *) &peer_addr,

&peer_addr_size);
if (cfd == -1)

handle_error("accept");

/* Code to deal with incoming connection(s)... */

if (close(sfd) == -1)
handle_error("close");

Linux man-pages 6.13 2024-11-06 73

bind(2) System Calls Manual bind(2)

if (unlink(MY_SOCK_PATH) == -1)
handle_error("unlink");

}

SEE ALSO
accept(2), connect(2), getsockname(2), listen(2), socket(2), getaddrinfo(3), getifad-
drs(3), ip(7), ipv6(7), path_resolution(7), socket(7), unix(7)

Linux man-pages 6.13 2024-11-06 74

bpf (2) System Calls Manual bpf (2)

NAME
bpf - perform a command on an extended BPF map or program

SYNOPSIS
#include <linux/bpf.h>

int bpf(int cmd , union bpf_attr *attr, unsigned int size);

DESCRIPTION
The bpf() system call performs a range of operations related to extended Berkeley
Packet Filters. Extended BPF (or eBPF) is similar to the original ("classic") BPF
(cBPF) used to filter network packets. For both cBPF and eBPF programs, the kernel
statically analyzes the programs before loading them, in order to ensure that they can-
not harm the running system.

eBPF extends cBPF in multiple ways, including the ability to call a fixed set of in-ker-
nel helper functions (via the BPF_CALL opcode extension provided by eBPF) and
access shared data structures such as eBPF maps.

Extended BPF Design/Architecture
eBPF maps are a generic data structure for storage of different data types. Data types
are generally treated as binary blobs, so a user just specifies the size of the key and the
size of the value at map-creation time. In other words, a key/value for a given map
can have an arbitrary structure.

A user process can create multiple maps (with key/value-pairs being opaque bytes of
data) and access them via file descriptors. Different eBPF programs can access the
same maps in parallel. It’s up to the user process and eBPF program to decide what
they store inside maps.

There’s one special map type, called a program array. This type of map stores file de-
scriptors referring to other eBPF programs. When a lookup in the map is performed,
the program flow is redirected in-place to the beginning of another eBPF program and
does not return back to the calling program. The level of nesting has a fixed limit of
32, so that infinite loops cannot be crafted. At run time, the program file descriptors
stored in the map can be modified, so program functionality can be altered based on
specific requirements. All programs referred to in a program-array map must have
been previously loaded into the kernel via bpf(). If a map lookup fails, the current
program continues its execution. See BPF_MAP_TYPE_PROG_ARRAY below for
further details.

Generally, eBPF programs are loaded by the user process and automatically unloaded
when the process exits. In some cases, for example, tc-bpf (8), the program will con-
tinue to stay alive inside the kernel even after the process that loaded the program ex-
its. In that case, the tc subsystem holds a reference to the eBPF program after the file
descriptor has been closed by the user-space program. Thus, whether a specific pro-
gram continues to live inside the kernel depends on how it is further attached to a
given kernel subsystem after it was loaded via bpf().

Each eBPF program is a set of instructions that is safe to run until its completion. An
in-kernel verifier statically determines that the eBPF program terminates and is safe to
execute. During verification, the kernel increments reference counts for each of the
maps that the eBPF program uses, so that the attached maps can’t be removed until
the program is unloaded.

Linux man-pages 6.13 2025-01-05 75

bpf (2) System Calls Manual bpf (2)

eBPF programs can be attached to different events. These events can be the arrival of
network packets, tracing events, classification events by network queueing disciplines
(for eBPF programs attached to a tc(8) classifier), and other types that may be added
in the future. A new event triggers execution of the eBPF program, which may store
information about the event in eBPF maps. Beyond storing data, eBPF programs may
call a fixed set of in-kernel helper functions.

The same eBPF program can be attached to multiple events and different eBPF pro-
grams can access the same map:

tracing tracing tracing packet packet packet
event A event B event C on eth0 on eth1 on eth2

| | | | | ^
| | | | v |
--> tracing <-- tracing socket tc ingress tc egress

prog_1 prog_2 prog_3 classifier action
| | | | prog_4 prog_5

|--- -----| |------| map_3 | |
map_1 map_2 --| map_4 |--

Arguments
The operation to be performed by the bpf() system call is determined by the cmd ar-
gument. Each operation takes an accompanying argument, provided via attr, which is
a pointer to a union of type bpf_attr (see below). The unused fields and padding must
be zeroed out before the call. The size argument is the size of the union pointed to by
attr.

The value provided in cmd is one of the following:

BPF_MAP_CREATE
Create a map and return a file descriptor that refers to the map. The close-on-
exec file descriptor flag (see fcntl(2)) is automatically enabled for the new file
descriptor.

BPF_MAP_LOOKUP_ELEM
Look up an element by key in a specified map and return its value.

BPF_MAP_UPDATE_ELEM
Create or update an element (key/value pair) in a specified map.

BPF_MAP_DELETE_ELEM
Look up and delete an element by key in a specified map.

BPF_MAP_GET_NEXT_KEY
Look up an element by key in a specified map and return the key of the next
element.

BPF_PROG_LOAD
Verify and load an eBPF program, returning a new file descriptor associated
with the program. The close-on-exec file descriptor flag (see fcntl(2)) is auto-
matically enabled for the new file descriptor.

The bpf_attr union consists of various anonymous structures that are used by
different bpf() commands:

union bpf_attr {

Linux man-pages 6.13 2025-01-05 76

bpf (2) System Calls Manual bpf (2)

struct { /* Used by BPF_MAP_CREATE */
__u32 map_type;
__u32 key_size; /* size of key in bytes */
__u32 value_size; /* size of value in bytes */
__u32 max_entries; /* maximum number of entries

in a map */
};

struct { /* Used by BPF_MAP_*_ELEM and BPF_MAP_GET_NEXT_KEY
commands */

__u32 map_fd;
__aligned_u64 key;
union {

__aligned_u64 value;
__aligned_u64 next_key;

};
__u64 flags;

};

struct { /* Used by BPF_PROG_LOAD */
__u32 prog_type;
__u32 insn_cnt;
__aligned_u64 insns; /* 'const struct bpf_insn *' */
__aligned_u64 license; /* 'const char *' */
__u32 log_level; /* verbosity level of verifier */
__u32 log_size; /* size of user buffer */
__aligned_u64 log_buf; /* user supplied 'char *'

buffer */
__u32 kern_version;

/* checked when prog_type=kprobe
(since Linux 4.1) */

};
} __attribute__((aligned(8)));

eBPF maps
Maps are a generic data structure for storage of different types of data. They allow
sharing of data between eBPF kernel programs, and also between kernel and user-
space applications.

Each map type has the following attributes:

• type

• maximum number of elements

• key size in bytes

• value size in bytes

The following wrapper functions demonstrate how various bpf() commands can be
used to access the maps. The functions use the cmd argument to invoke different op-
erations.

Linux man-pages 6.13 2025-01-05 77

bpf (2) System Calls Manual bpf (2)

BPF_MAP_CREATE
The BPF_MAP_CREATE command creates a new map, returning a new file
descriptor that refers to the map.

int
bpf_create_map(enum bpf_map_type map_type,

unsigned int key_size,
unsigned int value_size,
unsigned int max_entries)

{
union bpf_attr attr = {

.map_type = map_type,

.key_size = key_size,

.value_size = value_size,

.max_entries = max_entries
};

return bpf(BPF_MAP_CREATE, &attr, sizeof(attr));
}

The new map has the type specified by map_type, and attributes as specified in
key_size, value_size, and max_entries. On success, this operation returns a
file descriptor. On error, -1 is returned and errno is set to EINVAL, EPERM,
or ENOMEM.

The key_size and value_size attributes will be used by the verifier during pro-
gram loading to check that the program is calling bpf_map_*_elem() helper
functions with a correctly initialized key and to check that the program doesn’t
access the map element value beyond the specified value_size. For example,
when a map is created with a key_size of 8 and the eBPF program calls

bpf_map_lookup_elem(map_fd, fp - 4)

the program will be rejected, since the in-kernel helper function

bpf_map_lookup_elem(map_fd, void *key)

expects to read 8 bytes from the location pointed to by key, but the fp - 4
(where fp is the top of the stack) starting address will cause out-of-bounds
stack access.

Similarly, when a map is created with a value_size of 1 and the eBPF program
contains

value = bpf_map_lookup_elem(...);
*(u32 *) value = 1;

the program will be rejected, since it accesses the value pointer beyond the
specified 1 byte value_size limit.

Currently, the following values are supported for map_type:

enum bpf_map_type {
BPF_MAP_TYPE_UNSPEC, /* Reserve 0 as invalid map type */
BPF_MAP_TYPE_HASH,
BPF_MAP_TYPE_ARRAY,

Linux man-pages 6.13 2025-01-05 78

bpf (2) System Calls Manual bpf (2)

BPF_MAP_TYPE_PROG_ARRAY,
BPF_MAP_TYPE_PERF_EVENT_ARRAY,
BPF_MAP_TYPE_PERCPU_HASH,
BPF_MAP_TYPE_PERCPU_ARRAY,
BPF_MAP_TYPE_STACK_TRACE,
BPF_MAP_TYPE_CGROUP_ARRAY,
BPF_MAP_TYPE_LRU_HASH,
BPF_MAP_TYPE_LRU_PERCPU_HASH,
BPF_MAP_TYPE_LPM_TRIE,
BPF_MAP_TYPE_ARRAY_OF_MAPS,
BPF_MAP_TYPE_HASH_OF_MAPS,
BPF_MAP_TYPE_DEVMAP,
BPF_MAP_TYPE_SOCKMAP,
BPF_MAP_TYPE_CPUMAP,
BPF_MAP_TYPE_XSKMAP,
BPF_MAP_TYPE_SOCKHASH,
BPF_MAP_TYPE_CGROUP_STORAGE,
BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
BPF_MAP_TYPE_QUEUE,
BPF_MAP_TYPE_STACK,
/* See /usr/include/linux/bpf.h for the full list. */

};

map_type selects one of the available map implementations in the kernel. For
all map types, eBPF programs access maps with the same
bpf_map_lookup_elem() and bpf_map_update_elem() helper functions.
Further details of the various map types are given below.

BPF_MAP_LOOKUP_ELEM
The BPF_MAP_LOOKUP_ELEM command looks up an element with a
given key in the map referred to by the file descriptor fd .

int
bpf_lookup_elem(int fd, const void *key, void *value)
{

union bpf_attr attr = {
.map_fd = fd,
.key = ptr_to_u64(key),
.value = ptr_to_u64(value),

};

return bpf(BPF_MAP_LOOKUP_ELEM, &attr, sizeof(attr));
}

If an element is found, the operation returns zero and stores the element’s
value into value, which must point to a buffer of value_size bytes.

If no element is found, the operation returns -1 and sets errno to ENOENT.

Linux man-pages 6.13 2025-01-05 79

bpf (2) System Calls Manual bpf (2)

BPF_MAP_UPDATE_ELEM
The BPF_MAP_UPDATE_ELEM command creates or updates an element
with a given key/value in the map referred to by the file descriptor fd .

int
bpf_update_elem(int fd, const void *key, const void *value,

uint64_t flags)
{

union bpf_attr attr = {
.map_fd = fd,
.key = ptr_to_u64(key),
.value = ptr_to_u64(value),
.flags = flags,

};

return bpf(BPF_MAP_UPDATE_ELEM, &attr, sizeof(attr));
}

The flags argument should be specified as one of the following:

BPF_ANY
Create a new element or update an existing element.

BPF_NOEXIST
Create a new element only if it did not exist.

BPF_EXIST
Update an existing element.

On success, the operation returns zero. On error, -1 is returned and errno is
set to EINVAL, EPERM, ENOMEM, or E2BIG. E2BIG indicates that the
number of elements in the map reached the max_entries limit specified at map
creation time. EEXIST will be returned if flags specifies BPF_NOEXIST
and the element with key already exists in the map. ENOENT will be re-
turned if flags specifies BPF_EXIST and the element with key doesn’t exist
in the map.

BPF_MAP_DELETE_ELEM
The BPF_MAP_DELETE_ELEM command deletes the element whose key
is key from the map referred to by the file descriptor fd .

int
bpf_delete_elem(int fd, const void *key)
{

union bpf_attr attr = {
.map_fd = fd,
.key = ptr_to_u64(key),

};

return bpf(BPF_MAP_DELETE_ELEM, &attr, sizeof(attr));
}

On success, zero is returned. If the element is not found, -1 is returned and
errno is set to ENOENT.

Linux man-pages 6.13 2025-01-05 80

bpf (2) System Calls Manual bpf (2)

BPF_MAP_GET_NEXT_KEY
The BPF_MAP_GET_NEXT_KEY command looks up an element by key in
the map referred to by the file descriptor fd and sets the next_key pointer to
the key of the next element.

int
bpf_get_next_key(int fd, const void *key, void *next_key)
{

union bpf_attr attr = {
.map_fd = fd,
.key = ptr_to_u64(key),
.next_key = ptr_to_u64(next_key),

};

return bpf(BPF_MAP_GET_NEXT_KEY, &attr, sizeof(attr));
}

If key is found, the operation returns zero and sets the next_key pointer to the
key of the next element. If key is not found, the operation returns zero and sets
the next_key pointer to the key of the first element. If key is the last element,
-1 is returned and errno is set to ENOENT. Other possible errno values are
ENOMEM, EFAULT, EPERM, and EINVAL. This method can be used to
iterate over all elements in the map.

close(map_fd)
Delete the map referred to by the file descriptor map_fd . When the user-space
program that created a map exits, all maps will be deleted automatically (but
see NOTES).

eBPF map types
The following map types are supported:

BPF_MAP_TYPE_HASH
Hash-table maps have the following characteristics:

• Maps are created and destroyed by user-space programs. Both user-space
and eBPF programs can perform lookup, update, and delete operations.

• The kernel takes care of allocating and freeing key/value pairs.

• The map_update_elem() helper will fail to insert new element when the
max_entries limit is reached. (This ensures that eBPF programs cannot
exhaust memory.)

• map_update_elem() replaces existing elements atomically.

Hash-table maps are optimized for speed of lookup.

BPF_MAP_TYPE_ARRAY
Array maps have the following characteristics:

• Optimized for fastest possible lookup. In the future the verifier/JIT com-
piler may recognize lookup() operations that employ a constant key and
optimize it into constant pointer. It is possible to optimize a non-constant
key into direct pointer arithmetic as well, since pointers and value_size are
constant for the life of the eBPF program. In other words,

Linux man-pages 6.13 2025-01-05 81

bpf (2) System Calls Manual bpf (2)

array_map_lookup_elem() may be ’inlined’ by the verifier/JIT compiler
while preserving concurrent access to this map from user space.

• All array elements pre-allocated and zero initialized at init time

• The key is an array index, and must be exactly four bytes.

• map_delete_elem() fails with the error EINVAL, since elements cannot
be deleted.

• map_update_elem() replaces elements in a nonatomic fashion; for
atomic updates, a hash-table map should be used instead. There is how-
ever one special case that can also be used with arrays: the atomic built-in
__sync_fetch_and_add() can be used on 32 and 64 bit atomic counters.
For example, it can be applied on the whole value itself if it represents a
single counter, or in case of a structure containing multiple counters, it
could be used on individual counters. This is quite often useful for aggre-
gation and accounting of events.

Among the uses for array maps are the following:

• As "global" eBPF variables: an array of 1 element whose key is (index) 0
and where the value is a collection of ’global’ variables which eBPF pro-
grams can use to keep state between events.

• Aggregation of tracing events into a fixed set of buckets.

• Accounting of networking events, for example, number of packets and
packet sizes.

BPF_MAP_TYPE_PROG_ARRAY (since Linux 4.2)
A program array map is a special kind of array map whose map values contain
only file descriptors referring to other eBPF programs. Thus, both the key_size
and value_size must be exactly four bytes. This map is used in conjunction
with the bpf_tail_call() helper.

This means that an eBPF program with a program array map attached to it can
call from kernel side into

void bpf_tail_call(void *context, void *prog_map,
unsigned int index);

and therefore replace its own program flow with the one from the program at
the given program array slot, if present. This can be regarded as kind of a
jump table to a different eBPF program. The invoked program will then reuse
the same stack. When a jump into the new program has been performed, it
won’t return to the old program anymore.

If no eBPF program is found at the given index of the program array (because
the map slot doesn’t contain a valid program file descriptor, the specified
lookup index/key is out of bounds, or the limit of 32 nested calls has been ex-
ceed), execution continues with the current eBPF program. This can be used
as a fall-through for default cases.

A program array map is useful, for example, in tracing or networking, to han-
dle individual system calls or protocols in their own subprograms and use their
identifiers as an individual map index. This approach may result in

Linux man-pages 6.13 2025-01-05 82

bpf (2) System Calls Manual bpf (2)

performance benefits, and also makes it possible to overcome the maximum
instruction limit of a single eBPF program. In dynamic environments, a user-
space daemon might atomically replace individual subprograms at run-time
with newer versions to alter overall program behavior, for instance, if global
policies change.

eBPF programs
The BPF_PROG_LOAD command is used to load an eBPF program into the kernel.
The return value for this command is a new file descriptor associated with this eBPF
program.

char bpf_log_buf[LOG_BUF_SIZE];

int
bpf_prog_load(enum bpf_prog_type type,

const struct bpf_insn *insns, int insn_cnt,
const char *license)

{
union bpf_attr attr = {

.prog_type = type,

.insns = ptr_to_u64(insns),

.insn_cnt = insn_cnt,

.license = ptr_to_u64(license),

.log_buf = ptr_to_u64(bpf_log_buf),

.log_size = LOG_BUF_SIZE,

.log_level = 1,
};

return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));
}

prog_type is one of the available program types:

enum bpf_prog_type {
BPF_PROG_TYPE_UNSPEC, /* Reserve 0 as invalid

program type */
BPF_PROG_TYPE_SOCKET_FILTER,
BPF_PROG_TYPE_KPROBE,
BPF_PROG_TYPE_SCHED_CLS,
BPF_PROG_TYPE_SCHED_ACT,
BPF_PROG_TYPE_TRACEPOINT,
BPF_PROG_TYPE_XDP,
BPF_PROG_TYPE_PERF_EVENT,
BPF_PROG_TYPE_CGROUP_SKB,
BPF_PROG_TYPE_CGROUP_SOCK,
BPF_PROG_TYPE_LWT_IN,
BPF_PROG_TYPE_LWT_OUT,
BPF_PROG_TYPE_LWT_XMIT,
BPF_PROG_TYPE_SOCK_OPS,
BPF_PROG_TYPE_SK_SKB,
BPF_PROG_TYPE_CGROUP_DEVICE,

Linux man-pages 6.13 2025-01-05 83

bpf (2) System Calls Manual bpf (2)

BPF_PROG_TYPE_SK_MSG,
BPF_PROG_TYPE_RAW_TRACEPOINT,
BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
BPF_PROG_TYPE_LWT_SEG6LOCAL,
BPF_PROG_TYPE_LIRC_MODE2,
BPF_PROG_TYPE_SK_REUSEPORT,
BPF_PROG_TYPE_FLOW_DISSECTOR,
/* See /usr/include/linux/bpf.h for the full list. */

};

For further details of eBPF program types, see below.

The remaining fields of bpf_attr are set as follows:

• insns is an array of struct bpf_insn instructions.

• insn_cnt is the number of instructions in the program referred to by insns.

• license is a license string, which must be GPL compatible to call helper functions
marked gpl_only. (The licensing rules are the same as for kernel modules, so that
also dual licenses, such as "Dual BSD/GPL", may be used.)

• log_buf is a pointer to a caller-allocated buffer in which the in-kernel verifier can
store the verification log. This log is a multi-line string that can be checked by the
program author in order to understand how the verifier came to the conclusion that
the eBPF program is unsafe. The format of the output can change at any time as
the verifier evolves.

• log_size size of the buffer pointed to by log_buf . If the size of the buffer is not
large enough to store all verifier messages, -1 is returned and errno is set to
ENOSPC.

• log_level verbosity level of the verifier. A value of zero means that the verifier
will not provide a log; in this case, log_buf must be a null pointer, and log_size
must be zero.

Applying close(2) to the file descriptor returned by BPF_PROG_LOAD will unload
the eBPF program (but see NOTES).

Maps are accessible from eBPF programs and are used to exchange data between
eBPF programs and between eBPF programs and user-space programs. For example,
eBPF programs can process various events (like kprobe, packets) and store their data
into a map, and user-space programs can then fetch data from the map. Conversely,
user-space programs can use a map as a configuration mechanism, populating the map
with values checked by the eBPF program, which then modifies its behavior on the fly
according to those values.

eBPF program types
The eBPF program type (prog_type) determines the subset of kernel helper functions
that the program may call. The program type also determines the program input (con-
text)—the format of struct bpf_context (which is the data blob passed into the eBPF
program as the first argument).

For example, a tracing program does not have the exact same subset of helper func-
tions as a socket filter program (though they may have some helpers in common).
Similarly, the input (context) for a tracing program is a set of register values, while for

Linux man-pages 6.13 2025-01-05 84

bpf (2) System Calls Manual bpf (2)

a socket filter it is a network packet.

The set of functions available to eBPF programs of a given type may increase in the
future.

The following program types are supported:

BPF_PROG_TYPE_SOCKET_FILTER (since Linux 3.19)
Currently, the set of functions for BPF_PROG_TYPE_SOCKET_FILTER
is:

bpf_map_lookup_elem(map_fd, void *key)
/* look up key in a map_fd */

bpf_map_update_elem(map_fd, void *key, void *value)
/* update key/value */

bpf_map_delete_elem(map_fd, void *key)
/* delete key in a map_fd */

The bpf_context argument is a pointer to a struct __sk_buff .

BPF_PROG_TYPE_KPROBE (since Linux 4.1)
[To be documented]

BPF_PROG_TYPE_SCHED_CLS (since Linux 4.1)
[To be documented]

BPF_PROG_TYPE_SCHED_ACT (since Linux 4.1)
[To be documented]

Events
Once a program is loaded, it can be attached to an event. Various kernel subsystems
have different ways to do so.

Since Linux 3.19, the following call will attach the program prog_fd to the socket
sockfd , which was created by an earlier call to socket(2):

setsockopt(sockfd, SOL_SOCKET, SO_ATTACH_BPF,
&prog_fd, sizeof(prog_fd));

Since Linux 4.1, the following call may be used to attach the eBPF program referred
to by the file descriptor prog_fd to a perf event file descriptor, event_fd , that was cre-
ated by a previous call to perf_event_open(2):

ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);

RETURN VALUE
For a successful call, the return value depends on the operation:

BPF_MAP_CREATE
The new file descriptor associated with the eBPF map.

BPF_PROG_LOAD
The new file descriptor associated with the eBPF program.

All other commands
Zero.

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.13 2025-01-05 85

bpf (2) System Calls Manual bpf (2)

ERRORS
E2BIG

The eBPF program is too large or a map reached the max_entries limit (maxi-
mum number of elements).

EACCES
For BPF_PROG_LOAD, even though all program instructions are valid, the
program has been rejected because it was deemed unsafe. This may be be-
cause it may have accessed a disallowed memory region or an uninitialized
stack/register or because the function constraints don’t match the actual types
or because there was a misaligned memory access. In this case, it is recom-
mended to call bpf() again with log_level = 1 and examine log_buf for the
specific reason provided by the verifier.

EAGAIN
For BPF_PROG_LOAD, indicates that needed resources are blocked. This
happens when the verifier detects pending signals while it is checking the va-
lidity of the bpf program. In this case, just call bpf() again with the same pa-
rameters.

EBADF
fd is not an open file descriptor.

EFAULT
One of the pointers (key or value or log_buf or insns) is outside the accessible
address space.

EINVAL
The value specified in cmd is not recognized by this kernel.

EINVAL
For BPF_MAP_CREATE, either map_type or attributes are invalid.

EINVAL
For BPF_MAP_*_ELEM commands, some of the fields of union bpf_attr
that are not used by this command are not set to zero.

EINVAL
For BPF_PROG_LOAD, indicates an attempt to load an invalid program.
eBPF programs can be deemed invalid due to unrecognized instructions, the
use of reserved fields, jumps out of range, infinite loops or calls of unknown
functions.

ENOENT
For BPF_MAP_LOOKUP_ELEM or BPF_MAP_DELETE_ELEM, indi-
cates that the element with the given key was not found.

ENOMEM
Cannot allocate sufficient memory.

EPERM
The call was made without sufficient privilege (without the CAP_SYS_AD-
MIN capability).

Linux man-pages 6.13 2025-01-05 86

bpf (2) System Calls Manual bpf (2)

STANDARDS
Linux.

HISTORY
Linux 3.18.

NOTES
Prior to Linux 4.4, all bpf() commands require the caller to have the CAP_SYS_AD-
MIN capability. From Linux 4.4 onwards, an unprivileged user may create limited
programs of type BPF_PROG_TYPE_SOCKET_FILTER and associated maps.
However they may not store kernel pointers within the maps and are presently limited
to the following helper functions:

• get_random
• get_smp_processor_id
• tail_call
• ktime_get_ns

Unprivileged access may be blocked by writing the value 1 to the file /proc/sys/ker-
nel/unprivileged_bpf_disabled .

eBPF objects (maps and programs) can be shared between processes. For example,
after fork(2), the child inherits file descriptors referring to the same eBPF objects. In
addition, file descriptors referring to eBPF objects can be transferred over UNIX do-
main sockets. File descriptors referring to eBPF objects can be duplicated in the usual
way, using dup(2) and similar calls. An eBPF object is deallocated only after all file
descriptors referring to the object have been closed.

eBPF programs can be written in a restricted C that is compiled (using the clang com-
piler) into eBPF bytecode. Various features are omitted from this restricted C, such as
loops, global variables, variadic functions, floating-point numbers, and passing struc-
tures as function arguments. Some examples can be found in the sam-
ples/bpf/*_kern.c files in the kernel source tree.

The kernel contains a just-in-time (JIT) compiler that translates eBPF bytecode into
native machine code for better performance. Before Linux 4.15, the JIT compiler is
disabled by default, but its operation can be controlled by writing one of the following
integer strings to the file /proc/sys/net/core/bpf_jit_enable:

0 Disable JIT compilation (default).

1 Normal compilation.

2 Debugging mode. The generated opcodes are dumped in hexadecimal into the
kernel log. These opcodes can then be disassembled using the program
tools/net/bpf_jit_disasm.c provided in the kernel source tree.

Since Linux 4.15, the kernel may be configured with the CONFIG_BPF_JIT_AL-
WAYS_ON option. In this case, the JIT compiler is always enabled, and the
bpf_jit_enable is initialized to 1 and is immutable. (This kernel configuration option
was provided as a mitigation for one of the Spectre attacks against the BPF inter-
preter.)

The JIT compiler for eBPF is currently available for the following architectures:

Linux man-pages 6.13 2025-01-05 87

bpf (2) System Calls Manual bpf (2)

• x86-64 (since Linux 3.18; cBPF since Linux 3.0);
• ARM32 (since Linux 3.18; cBPF since Linux 3.4);
• SPARC 32 (since Linux 3.18; cBPF since Linux 3.5);
• ARM-64 (since Linux 3.18);
• s390 (since Linux 4.1; cBPF since Linux 3.7);
• PowerPC 64 (since Linux 4.8; cBPF since Linux 3.1);
• SPARC 64 (since Linux 4.12);
• x86-32 (since Linux 4.18);
• MIPS 64 (since Linux 4.18; cBPF since Linux 3.16);
• riscv (since Linux 5.1).

EXAMPLES
/* bpf+sockets example:

* 1. create array map of 256 elements
* 2. load program that counts number of packets received
* r0 = skb->data[ETH_HLEN + offsetof(struct iphdr, protocol)]
* map[r0]++
* 3. attach prog_fd to raw socket via setsockopt()
* 4. print number of received TCP/UDP packets every second
*/

int
main(int argc, char *argv[])
{

int sock, map_fd, prog_fd, key;
long long value = 0, tcp_cnt, udp_cnt;

map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(key),
sizeof(value), 256);

if (map_fd < 0) {
printf("failed to create map '%s'\n", strerror(errno));
/* likely not run as root */
return 1;

}

struct bpf_insn prog[] = {
BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), /* r6 = r1 */
BPF_LD_ABS(BPF_B, ETH_HLEN + offsetof(struct iphdr, protocol)),

/* r0 = ip->proto */
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4),

/* *(u32 *) (fp - 4) = r0 */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* r2 = fp */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), /* r2 = r2 - 4 */
BPF_LD_MAP_FD(BPF_REG_1, map_fd), /* r1 = map_fd */
BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem),

/* r0 = map_lookup(r1, r2) */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),

/* if (r0 == 0) goto pc+2 */
BPF_MOV64_IMM(BPF_REG_1, 1), /* r1 = 1 */
BPF_XADD(BPF_DW, BPF_REG_0, BPF_REG_1, 0, 0),

Linux man-pages 6.13 2025-01-05 88

bpf (2) System Calls Manual bpf (2)

/* lock *(u64 *) r0 += r1 */
BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */
BPF_EXIT_INSN(), /* return r0 */

};

prog_fd = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, prog,
sizeof(prog) / sizeof(prog[0]), "GPL");

sock = open_raw_sock("lo");

assert(setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd,
sizeof(prog_fd)) == 0);

for (;;) {
key = IPPROTO_TCP;
assert(bpf_lookup_elem(map_fd, &key, &tcp_cnt) == 0);
key = IPPROTO_UDP;
assert(bpf_lookup_elem(map_fd, &key, &udp_cnt) == 0);
printf("TCP %lld UDP %lld packets\n", tcp_cnt, udp_cnt);
sleep(1);

}

return 0;
}

Some complete working code can be found in the samples/bpf directory in the kernel
source tree.

SEE ALSO
seccomp(2), bpf-helpers(7), socket(7), tc(8), tc-bpf (8)

Both classic and extended BPF are explained in the kernel source file Documenta-
tion/networking/filter.txt.

Linux man-pages 6.13 2025-01-05 89

brk(2) System Calls Manual brk(2)

NAME
brk, sbrk - change data segment size

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int brk(void *addr);
void *sbrk(intptr_t increment);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

brk(), sbrk():
Since glibc 2.19:

_DEFAULT_SOURCE
|| ((_XOPEN_SOURCE >= 500) &&

! (_POSIX_C_SOURCE >= 200112L))
From glibc 2.12 to glibc 2.19:

_BSD_SOURCE || _SVID_SOURCE
|| ((_XOPEN_SOURCE >= 500) &&

! (_POSIX_C_SOURCE >= 200112L))
Before glibc 2.12:

_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
brk() and sbrk() change the location of the program break, which defines the end of
the process’s data segment (i.e., the program break is the first location after the end of
the uninitialized data segment). Increasing the program break has the effect of allo-
cating memory to the process; decreasing the break deallocates memory.

brk() sets the end of the data segment to the value specified by addr, when that value
is reasonable, the system has enough memory, and the process does not exceed its
maximum data size (see setrlimit(2)).

sbrk() increments the program’s data space by increment bytes. Calling sbrk() with
an increment of 0 can be used to find the current location of the program break.

RETURN VALUE
On success, brk() returns zero. On error, -1 is returned, and errno is set to
ENOMEM.

On success, sbrk() returns the previous program break. (If the break was increased,
then this value is a pointer to the start of the newly allocated memory). On error,
(void *) -1 is returned, and errno is set to ENOMEM.

STANDARDS
None.

HISTORY
4.3BSD; SUSv1, marked LEGACY in SUSv2, removed in POSIX.1-2001.

NOTES
Avoid using brk() and sbrk(): the malloc(3) memory allocation package is the
portable and comfortable way of allocating memory.

Linux man-pages 6.13 2024-07-23 90

brk(2) System Calls Manual brk(2)

Various systems use various types for the argument of sbrk(). Common are int,
ssize_t, ptrdiff_t, intptr_t.

C library/kernel differences
The return value described above for brk() is the behavior provided by the glibc
wrapper function for the Linux brk() system call. (On most other implementations,
the return value from brk() is the same; this return value was also specified in
SUSv2.) However, the actual Linux system call returns the new program break on
success. On failure, the system call returns the current break. The glibc wrapper
function does some work (i.e., checks whether the new break is less than addr) to pro-
vide the 0 and -1 return values described above.

On Linux, sbrk() is implemented as a library function that uses the brk() system call,
and does some internal bookkeeping so that it can return the old break value.

SEE ALSO
execve(2), getrlimit(2), end(3), malloc(3)

Linux man-pages 6.13 2024-07-23 91

cacheflush(2) System Calls Manual cacheflush(2)

NAME
cacheflush - flush contents of instruction and/or data cache

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/cachectl.h>

int cacheflush(void addr[.nbytes], int nbytes, int cache);

Note: On some architectures, there is no glibc wrapper for this system call; see VER-
SIONS.

DESCRIPTION
cacheflush() flushes the contents of the indicated cache(s) for the user addresses in
the range addr to (addr+nbytes-1). cache may be one of:

ICACHE
Flush the instruction cache.

DCACHE
Write back to memory and invalidate the affected valid cache lines.

BCACHE
Same as (ICACHE|DCACHE).

RETURN VALUE
cacheflush() returns 0 on success. On error, it returns -1 and sets errno to indicate
the error.

ERRORS
EFAULT

Some or all of the address range addr to (addr+nbytes-1) is not accessible.

EINVAL
cache is not one of ICACHE, DCACHE, or BCACHE (but see BUGS).

VERSIONS
cacheflush() should not be used in programs intended to be portable. On Linux, this
call first appeared on the MIPS architecture, but nowadays, Linux provides a
cacheflush() system call on some other architectures, but with different arguments.

Architecture-specific variants
glibc provides a wrapper for this system call, with the prototype shown in SYNOP-
SIS, for the following architectures: ARC, CSKY, MIPS, and NIOS2.

On some other architectures, Linux provides this system call, with different argu-
ments:

M68K:
int cacheflush(unsigned long addr, int scope, int cache,

unsigned long size);

SH:
int cacheflush(unsigned long addr, unsigned long size, int op);

Linux man-pages 6.13 2024-11-17 92

cacheflush(2) System Calls Manual cacheflush(2)

NDS32:
int cacheflush(unsigned int start, unsigned int end , int cache);

On the above architectures, glibc does not provide a wrapper for this system call; call
it using syscall(2).

GCC alternative
Unless you need the finer grained control that this system call provides, you probably
want to use the GCC built-in function __builtin___clear_cache(), which provides a
portable interface across platforms supported by GCC and compatible compilers:

void __builtin___clear_cache(void *begin, void *end);

On platforms that don’t require instruction cache flushes, __builtin___clear_cache()
has no effect.

Note: On some GCC-compatible compilers, the prototype for this built-in function
uses char * instead of void * for the parameters.

STANDARDS
Historically, this system call was available on all MIPS UNIX variants including
RISC/os, IRIX, Ultrix, NetBSD, OpenBSD, and FreeBSD (and also on some non-
UNIX MIPS operating systems), so that the existence of this call in MIPS operating
systems is a de-facto standard.

BUGS
Linux kernels older than Linux 2.6.11 ignore the addr and nbytes arguments, making
this function fairly expensive. Therefore, the whole cache is always flushed.

This function always behaves as if BCACHE has been passed for the cache argument
and does not do any error checking on the cache argument.

Linux man-pages 6.13 2024-11-17 93

capget(2) System Calls Manual capget(2)

NAME
capget, capset - set/get capabilities of thread(s)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/capability.h> /* Definition of CAP_* and

_LINUX_CAPABILITY_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_capget, cap_user_header_t hdrp,
cap_user_data_t datap);

int syscall(SYS_capset, cap_user_header_t hdrp,
const cap_user_data_t datap);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
These two system calls are the raw kernel interface for getting and setting thread ca-
pabilities. Not only are these system calls specific to Linux, but the kernel API is
likely to change and use of these system calls (in particular the format of the
cap_user_*_t types) is subject to extension with each kernel revision, but old pro-
grams will keep working.

The portable interfaces are cap_set_proc(3) and cap_get_proc(3); if possible, you
should use those interfaces in applications; see NOTES.

Current details
Now that you have been warned, some current kernel details. The structures are de-
fined as follows.

#define _LINUX_CAPABILITY_VERSION_1 0x19980330
#define _LINUX_CAPABILITY_U32S_1 1

/* V2 added in Linux 2.6.25; deprecated */
#define _LINUX_CAPABILITY_VERSION_2 0x20071026
#define _LINUX_CAPABILITY_U32S_2 2

/* V3 added in Linux 2.6.26 */
#define _LINUX_CAPABILITY_VERSION_3 0x20080522
#define _LINUX_CAPABILITY_U32S_3 2

typedef struct __user_cap_header_struct {
__u32 version;
int pid;

} *cap_user_header_t;

typedef struct __user_cap_data_struct {
__u32 effective;
__u32 permitted;

Linux man-pages 6.13 2024-07-23 94

capget(2) System Calls Manual capget(2)

__u32 inheritable;
} *cap_user_data_t;

The effective, permitted , and inheritable fields are bit masks of the capabilities de-
fined in capabilities(7). Note that the CAP_* values are bit indexes and need to be
bit-shifted before ORing into the bit fields. To define the structures for passing to the
system call, you have to use the struct __user_cap_header_struct and struct
__user_cap_data_struct names because the typedefs are only pointers.

Kernels prior to Linux 2.6.25 prefer 32-bit capabilities with version _LINUX_CAPA-
BILITY_VERSION_1. Linux 2.6.25 added 64-bit capability sets, with version
_LINUX_CAPABILITY_VERSION_2. There was, however, an API glitch, and
Linux 2.6.26 added _LINUX_CAPABILITY_VERSION_3 to fix the problem.

Note that 64-bit capabilities use datap[0] and datap[1], whereas 32-bit capabilities
use only datap[0].

On kernels that support file capabilities (VFS capabilities support), these system calls
behave slightly differently. This support was added as an option in Linux 2.6.24, and
became fixed (nonoptional) in Linux 2.6.33.

For capget() calls, one can probe the capabilities of any process by specifying its
process ID with the hdrp->pid field value.

For details on the data, see capabilities(7).

With VFS capabilities support
VFS capabilities employ a file extended attribute (see xattr(7)) to allow capabilities to
be attached to executables. This privilege model obsoletes kernel support for one
process asynchronously setting the capabilities of another. That is, on kernels that
have VFS capabilities support, when calling capset(), the only permitted values for
hdrp->pid are 0 or, equivalently, the value returned by gettid(2).

Without VFS capabilities support
On older kernels that do not provide VFS capabilities support capset() can, if the
caller has the CAP_SETPCAP capability, be used to change not only the caller’s own
capabilities, but also the capabilities of other threads. The call operates on the capa-
bilities of the thread specified by the pid field of hdrp when that is nonzero, or on the
capabilities of the calling thread if pid is 0. If pid refers to a single-threaded process,
then pid can be specified as a traditional process ID; operating on a thread of a multi-
threaded process requires a thread ID of the type returned by gettid(2). For capset(),
pid can also be: -1, meaning perform the change on all threads except the caller and
init(1); or a value less than -1, in which case the change is applied to all members of
the process group whose ID is -pid.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

The calls fail with the error EINVAL, and set the version field of hdrp to the kernel
preferred value of _LINUX_CAPABILITY_VERSION_? when an unsupported
version value is specified. In this way, one can probe what the current preferred capa-
bility revision is.

Linux man-pages 6.13 2024-07-23 95

capget(2) System Calls Manual capget(2)

ERRORS
EFAULT

Bad memory address. hdrp must not be NULL. datap may be NULL only
when the user is trying to determine the preferred capability version format
supported by the kernel.

EINVAL
One of the arguments was invalid.

EPERM
An attempt was made to add a capability to the permitted set, or to set a capa-
bility in the effective set that is not in the permitted set.

EPERM
An attempt was made to add a capability to the inheritable set, and either:

• that capability was not in the caller’s bounding set; or

• the capability was not in the caller’s permitted set and the caller lacked the
CAP_SETPCAP capability in its effective set.

EPERM
The caller attempted to use capset() to modify the capabilities of a thread
other than itself, but lacked sufficient privilege. For kernels supporting VFS
capabilities, this is never permitted. For kernels lacking VFS support, the
CAP_SETPCAP capability is required. (A bug in kernels before Linux
2.6.11 meant that this error could also occur if a thread without this capability
tried to change its own capabilities by specifying the pid field as a nonzero
value (i.e., the value returned by getpid(2)) instead of 0.)

ESRCH
No such thread.

STANDARDS
Linux.

NOTES
The portable interface to the capability querying and setting functions is provided by
the libcap library and is available here:
〈http://git.kernel.org/cgit/linux/kernel/git/morgan/libcap.git〉

SEE ALSO
clone(2), gettid(2), capabilities(7)

Linux man-pages 6.13 2024-07-23 96

chdir(2) System Calls Manual chdir(2)

NAME
chdir, fchdir - change working directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int chdir(const char *path);
int fchdir(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchdir():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc up to and including 2.19: */ _BSD_SOURCE

DESCRIPTION
chdir() changes the current working directory of the calling process to the directory
specified in path.

fchdir() is identical to chdir(); the only difference is that the directory is given as an
open file descriptor.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
Depending on the filesystem, other errors can be returned. The more general errors
for chdir() are listed below:

EACCES
Search permission is denied for one of the components of path. (See also
path_resolution(7).)

EFAULT
path points outside your accessible address space.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The directory specified in path does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of path is not a directory.

The general errors for fchdir() are listed below:

Linux man-pages 6.13 2024-07-23 97

chdir(2) System Calls Manual chdir(2)

EACCES
Search permission was denied on the directory open on fd .

EBADF
fd is not a valid file descriptor.

ENOTDIR
fd does not refer to a directory.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD.

NOTES
The current working directory is the starting point for interpreting relative pathnames
(those not starting with '/').

A child process created via fork(2) inherits its parent’s current working directory. The
current working directory is left unchanged by execve(2).

SEE ALSO
chroot(2), getcwd(3), path_resolution(7)

Linux man-pages 6.13 2024-07-23 98

chmod(2) System Calls Manual chmod(2)

NAME
chmod, fchmod, fchmodat - change permissions of a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

int chmod(const char *pathname, mode_t mode);
int fchmod(int fd , mode_t mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int fchmodat(int dirfd , const char *pathname, mode_t mode, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchmod():
Since glibc 2.24:

_POSIX_C_SOURCE >= 199309L
glibc 2.19 to glibc 2.23

_POSIX_C_SOURCE
glibc 2.16 to glibc 2.19:

_BSD_SOURCE || _POSIX_C_SOURCE
glibc 2.12 to glibc 2.16:

_BSD_SOURCE || _XOPEN_SOURCE >= 500
|| _POSIX_C_SOURCE >= 200809L

glibc 2.11 and earlier:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

fchmodat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
The chmod() and fchmod() system calls change a file’s mode bits. (The file mode
consists of the file permission bits plus the set-user-ID, set-group-ID, and sticky bits.)
These system calls differ only in how the file is specified:

• chmod() changes the mode of the file specified whose pathname is given in path-
name, which is dereferenced if it is a symbolic link.

• fchmod() changes the mode of the file referred to by the open file descriptor fd .

The new file mode is specified in mode, which is a bit mask created by ORing to-
gether zero or more of the following:

S_ISUID (04000) set-user-ID (set process effective user ID on execve(2))

S_ISGID (02000) set-group-ID (set process effective group ID on execve(2);
mandatory locking, as described in fcntl(2); take a new file’s
group from parent directory, as described in chown(2) and
mkdir(2))

Linux man-pages 6.13 2024-07-23 99

chmod(2) System Calls Manual chmod(2)

S_ISVTX (01000) sticky bit (restricted deletion flag, as described in unlink(2))

S_IRUSR (00400) read by owner

S_IWUSR (00200) write by owner

S_IXUSR (00100) execute/search by owner ("search" applies for directories, and
means that entries within the directory can be accessed)

S_IRGRP (00040) read by group

S_IWGRP (00020) write by group

S_IXGRP (00010) execute/search by group

S_IROTH (00004) read by others

S_IWOTH (00002) write by others

S_IXOTH (00001) execute/search by others

The effective UID of the calling process must match the owner of the file, or the
process must be privileged (Linux: it must have the CAP_FOWNER capability).

If the calling process is not privileged (Linux: does not have the CAP_FSETID capa-
bility), and the group of the file does not match the effective group ID of the process
or one of its supplementary group IDs, the S_ISGID bit will be turned off, but this
will not cause an error to be returned.

As a security measure, depending on the filesystem, the set-user-ID and set-group-ID
execution bits may be turned off if a file is written. (On Linux, this occurs if the writ-
ing process does not have the CAP_FSETID capability.) On some filesystems, only
the superuser can set the sticky bit, which may have a special meaning. For the sticky
bit, and for set-user-ID and set-group-ID bits on directories, see inode(7).

On NFS filesystems, restricting the permissions will immediately influence already
open files, because the access control is done on the server, but open files are main-
tained by the client. Widening the permissions may be delayed for other clients if at-
tribute caching is enabled on them.

fchmodat()
The fchmodat() system call operates in exactly the same way as chmod(), except for
the differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by chmod() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like
chmod())

If pathname is absolute, then dirfd is ignored.

flags can either be 0, or include the following flag:

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead operate on the
link itself. This flag is not currently implemented.

See openat(2) for an explanation of the need for fchmodat().

Linux man-pages 6.13 2024-07-23 100

chmod(2) System Calls Manual chmod(2)

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
Depending on the filesystem, errors other than those listed below can be returned.

The more general errors for chmod() are listed below:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EBADF
(fchmod()) The file descriptor fd is not valid.

EBADF
(fchmodat()) pathname is relative but dirfd is neither AT_FDCWD nor a
valid file descriptor.

EFAULT
pathname points outside your accessible address space.

EINVAL
(fchmodat()) Invalid flag specified in flags.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving pathname.

ENAMETOOLONG
pathname is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

ENOTDIR
(fchmodat()) pathname is relative and dirfd is a file descriptor referring to a
file other than a directory.

ENOTSUP
(fchmodat()) flags specified AT_SYMLINK_NOFOLLOW, which is not
supported.

EPERM
The effective UID does not match the owner of the file, and the process is not
privileged (Linux: it does not have the CAP_FOWNER capability).

EPERM
The file is marked immutable or append-only. (See FS_IOC_SET-
FLAGS(2const).)

Linux man-pages 6.13 2024-07-23 101

chmod(2) System Calls Manual chmod(2)

EROFS
The named file resides on a read-only filesystem.

VERSIONS
C library/kernel differences

The GNU C library fchmodat() wrapper function implements the POSIX-specified
interface described in this page. This interface differs from the underlying Linux sys-
tem call, which does not have a flags argument.

glibc notes
On older kernels where fchmodat() is unavailable, the glibc wrapper function falls
back to the use of chmod(). When pathname is a relative pathname, glibc constructs
a pathname based on the symbolic link in /proc/self/fd that corresponds to the dirfd
argument.

STANDARDS
POSIX.1-2008.

HISTORY
chmod()
fchmod()

4.4BSD, SVr4, POSIX.1-2001.

fchmodat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

SEE ALSO
chmod(1), chown(2), execve(2), open(2), stat(2), inode(7), path_resolution(7), sym-
link(7)

Linux man-pages 6.13 2024-07-23 102

chown(2) System Calls Manual chown(2)

NAME
chown, fchown, lchown, fchownat - change ownership of a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int chown(const char *pathname, uid_t owner, gid_t group);
int fchown(int fd , uid_t owner, gid_t group);
int lchown(const char *pathname, uid_t owner, gid_t group);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int fchownat(int dirfd , const char *pathname,
uid_t owner, gid_t group, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchown(), lchown():
/* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

|| _XOPEN_SOURCE >= 500
|| /* glibc <= 2.19: */ _BSD_SOURCE

fchownat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
These system calls change the owner and group of a file. The chown(), fchown(), and
lchown() system calls differ only in how the file is specified:

• chown() changes the ownership of the file specified by pathname, which is deref-
erenced if it is a symbolic link.

• fchown() changes the ownership of the file referred to by the open file descriptor
fd .

• lchown() is like chown(), but does not dereference symbolic links.

Only a privileged process (Linux: one with the CAP_CHOWN capability) may
change the owner of a file. The owner of a file may change the group of the file to any
group of which that owner is a member. A privileged process (Linux: with
CAP_CHOWN) may change the group arbitrarily.

If the owner or group is specified as -1, then that ID is not changed.

When the owner or group of an executable file is changed by an unprivileged user, the
S_ISUID and S_ISGID mode bits are cleared. POSIX does not specify whether this
also should happen when root does the chown(); the Linux behavior depends on the
kernel version, and since Linux 2.2.13, root is treated like other users. In case of a
non-group-executable file (i.e., one for which the S_IXGRP bit is not set) the S_IS-
GID bit indicates mandatory locking, and is not cleared by a chown().

Linux man-pages 6.13 2024-07-23 103

chown(2) System Calls Manual chown(2)

When the owner or group of an executable file is changed (by any user), all capability
sets for the file are cleared.

fchownat()
The fchownat() system call operates in exactly the same way as chown(), except for
the differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by chown() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like
chown())

If pathname is absolute, then dirfd is ignored.

The flags argument is a bit mask created by ORing together 0 or more of the follow-
ing values;

AT_EMPTY_PATH (since Linux 2.6.39)
If pathname is an empty string, operate on the file referred to by dirfd (which
may have been obtained using the open(2) O_PATH flag). In this case, dirfd
can refer to any type of file, not just a directory. If dirfd is AT_FDCWD, the
call operates on the current working directory. This flag is Linux-specific; de-
fine _GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead operate on the
link itself, like lchown(). (By default, fchownat() dereferences symbolic
links, like chown().)

See openat(2) for an explanation of the need for fchownat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
Depending on the filesystem, errors other than those listed below can be returned.

The more general errors for chown() are listed below.

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EBADF
(fchown()) fd is not a valid open file descriptor.

EBADF
(fchownat()) pathname is relative but dirfd is neither AT_FDCWD nor a
valid file descriptor.

EFAULT
pathname points outside your accessible address space.

Linux man-pages 6.13 2024-07-23 104

chown(2) System Calls Manual chown(2)

EINVAL
(fchownat()) Invalid flag specified in flags.

EIO (fchown()) A low-level I/O error occurred while modifying the inode.

ELOOP
Too many symbolic links were encountered in resolving pathname.

ENAMETOOLONG
pathname is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

ENOTDIR
(fchownat()) pathname is relative and dirfd is a file descriptor referring to a
file other than a directory.

EPERM
The calling process did not have the required permissions (see above) to
change owner and/or group.

EPERM
The file is marked immutable or append-only. (See FS_IOC_SET-
FLAGS(2const).)

EROFS
The named file resides on a read-only filesystem.

VERSIONS
The 4.4BSD version can be used only by the superuser (that is, ordinary users cannot
give away files).

STANDARDS
POSIX.1-2008.

HISTORY
chown()
fchown()
lchown()

4.4BSD, SVr4, POSIX.1-2001.

fchownat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

NOTES
Ownership of new files

When a new file is created (by, for example, open(2) or mkdir(2)), its owner is made
the same as the filesystem user ID of the creating process. The group of the file de-
pends on a range of factors, including the type of filesystem, the options used to
mount the filesystem, and whether or not the set-group-ID mode bit is enabled on the
parent directory. If the filesystem supports the -o grpid (or, synonymously

Linux man-pages 6.13 2024-07-23 105

chown(2) System Calls Manual chown(2)

-o bsdgroups) and -o nogrpid (or, synonymously -o sysvgroups) mount(8) options,
then the rules are as follows:

• If the filesystem is mounted with -o grpid, then the group of a new file is made the
same as that of the parent directory.

• If the filesystem is mounted with -o nogrpid and the set-group-ID bit is disabled
on the parent directory, then the group of a new file is made the same as the
process’s filesystem GID.

• If the filesystem is mounted with -o nogrpid and the set-group-ID bit is enabled
on the parent directory, then the group of a new file is made the same as that of the
parent directory.

As at Linux 4.12, the -o grpid and -o nogrpid mount options are supported by ext2,
ext3, ext4, and XFS. Filesystems that don’t support these mount options follow the
-o nogrpid rules.

glibc notes
On older kernels where fchownat() is unavailable, the glibc wrapper function falls
back to the use of chown() and lchown(). When pathname is a relative pathname,
glibc constructs a pathname based on the symbolic link in /proc/self/fd that corre-
sponds to the dirfd argument.

NFS
The chown() semantics are deliberately violated on NFS filesystems which have UID
mapping enabled. Additionally, the semantics of all system calls which access the file
contents are violated, because chown() may cause immediate access revocation on al-
ready open files. Client side caching may lead to a delay between the time where
ownership have been changed to allow access for a user and the time where the file
can actually be accessed by the user on other clients.

Historical details
The original Linux chown(), fchown(), and lchown() system calls supported only
16-bit user and group IDs. Subsequently, Linux 2.4 added chown32(), fchown32(),
and lchown32(), supporting 32-bit IDs. The glibc chown(), fchown(), and lchown()
wrapper functions transparently deal with the variations across kernel versions.

Before Linux 2.1.81 (except 2.1.46), chown() did not follow symbolic links. Since
Linux 2.1.81, chown() does follow symbolic links, and there is a new system call
lchown() that does not follow symbolic links. Since Linux 2.1.86, this new call (that
has the same semantics as the old chown()) has got the same syscall number, and
chown() got the newly introduced number.

EXAMPLES
The following program changes the ownership of the file named in its second com-
mand-line argument to the value specified in its first command-line argument. The
new owner can be specified either as a numeric user ID, or as a username (which is
converted to a user ID by using getpwnam(3) to perform a lookup in the system pass-
word file).

Program source
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.13 2024-07-23 106

chown(2) System Calls Manual chown(2)

#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

char *endptr;
uid_t uid;
struct passwd *pwd;

if (argc != 3 || argv[1][0] == '\0') {
fprintf(stderr, "%s <owner> <file>\n", argv[0]);
exit(EXIT_FAILURE);

}

uid = strtol(argv[1], &endptr, 10); /* Allow a numeric string */

if (*endptr != '\0') { /* Was not pure numeric string */
pwd = getpwnam(argv[1]); /* Try getting UID for username */
if (pwd == NULL) {

perror("getpwnam");
exit(EXIT_FAILURE);

}

uid = pwd->pw_uid;
}

if (chown(argv[2], uid, -1) == -1) {
perror("chown");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
chgrp(1), chown(1), chmod(2), flock(2), path_resolution(7), symlink(7)

Linux man-pages 6.13 2024-07-23 107

chroot(2) System Calls Manual chroot(2)

NAME
chroot - change root directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int chroot(const char *path);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

chroot():
Since glibc 2.2.2:

_XOPEN_SOURCE && ! (_POSIX_C_SOURCE >= 200112L)
|| /* Since glibc 2.20: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.2.2:
none

DESCRIPTION
chroot() changes the root directory of the calling process to that specified in path.
This directory will be used for pathnames beginning with /. The root directory is in-
herited by all children of the calling process.

Only a privileged process (Linux: one with the CAP_SYS_CHROOT capability in its
user namespace) may call chroot().

This call changes an ingredient in the pathname resolution process and does nothing
else. In particular, it is not intended to be used for any kind of security purpose, nei-
ther to fully sandbox a process nor to restrict filesystem system calls. In the past, ch-
root() has been used by daemons to restrict themselves prior to passing paths supplied
by untrusted users to system calls such as open(2). However, if a folder is moved out
of the chroot directory, an attacker can exploit that to get out of the chroot directory as
well. The easiest way to do that is to chdir(2) to the to-be-moved directory, wait for it
to be moved out, then open a path like ../../../etc/passwd.

A slightly trickier variation also works under some circumstances if chdir(2) is not
permitted. If a daemon allows a "chroot directory" to be specified, that usually means
that if you want to prevent remote users from accessing files outside the chroot direc-
tory, you must ensure that folders are never moved out of it.

This call does not change the current working directory, so that after the call '.' can be
outside the tree rooted at '/'. In particular, the superuser can escape from a "chroot
jail" by doing:

mkdir foo; chroot foo; cd ..

This call does not close open file descriptors, and such file descriptors may allow ac-
cess to files outside the chroot tree.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

Linux man-pages 6.13 2024-07-23 108

chroot(2) System Calls Manual chroot(2)

ERRORS
Depending on the filesystem, other errors can be returned. The more general errors
are listed below:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EFAULT
path points outside your accessible address space.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of path is not a directory.

EPERM
The caller has insufficient privilege.

STANDARDS
None.

HISTORY
SVr4, 4.4BSD, SUSv2 (marked LEGACY). This function is not part of
POSIX.1-2001.

NOTES
A child process created via fork(2) inherits its parent’s root directory. The root direc-
tory is left unchanged by execve(2).

The magic symbolic link, /proc/ pid /root, can be used to discover a process’s root di-
rectory; see proc(5) for details.

FreeBSD has a stronger jail() system call.

SEE ALSO
chroot(1), chdir(2), pivot_root(2), path_resolution(7), switch_root(8)

Linux man-pages 6.13 2024-07-23 109

clock_getres(2) System Calls Manual clock_getres(2)

NAME
clock_getres, clock_gettime, clock_settime - clock and time functions

LIBRARY
Standard C library (libc, -lc), since glibc 2.17

Before glibc 2.17, Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int clock_getres(clockid_t clockid , struct timespec *_Nullable res);

int clock_gettime(clockid_t clockid , struct timespec *tp);
int clock_settime(clockid_t clockid , const struct timespec *tp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_getres(), clock_gettime(), clock_settime():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
The function clock_getres() finds the resolution (precision) of the specified clock
clockid , and, if res is non-NULL, stores it in the struct timespec pointed to by res.
The resolution of clocks depends on the implementation and cannot be configured by
a particular process. If the time value pointed to by the argument tp of clock_set-
time() is not a multiple of res, then it is truncated to a multiple of res.

The functions clock_gettime() and clock_settime() retrieve and set the time of the
specified clock clockid .

The res and tp arguments are timespec(3) structures.

The clockid argument is the identifier of the particular clock on which to act. A clock
may be system-wide and hence visible for all processes, or per-process if it measures
time only within a single process.

All implementations support the system-wide real-time clock, which is identified by
CLOCK_REALTIME. Its time represents seconds and nanoseconds since the
Epoch. When its time is changed, timers for a relative interval are unaffected, but
timers for an absolute point in time are affected.

More clocks may be implemented. The interpretation of the corresponding time val-
ues and the effect on timers is unspecified.

Sufficiently recent versions of glibc and the Linux kernel support the following
clocks:

CLOCK_REALTIME
A settable system-wide clock that measures real (i.e., wall-clock) time. Set-
ting this clock requires appropriate privileges. This clock is affected by dis-
continuous jumps in the system time (e.g., if the system administrator manu-
ally changes the clock), and by frequency adjustments performed by NTP and
similar applications via adjtime(3), adjtimex(2), clock_adjtime(2), and ntp_ad-
jtime(3). This clock normally counts the number of seconds since 1970-01-01
00:00:00 Coordinated Universal Time (UTC) except that it ignores leap sec-
onds; near a leap second it is typically adjusted by NTP to stay roughly in sync
with UTC.

Linux man-pages 6.13 2024-11-03 110

clock_getres(2) System Calls Manual clock_getres(2)

CLOCK_REALTIME_ALARM (since Linux 3.0; Linux-specific)
Like CLOCK_REALTIME, but not settable. See timer_create(2) for further
details.

CLOCK_REALTIME_COARSE (since Linux 2.6.32; Linux-specific)
A faster but less precise version of CLOCK_REALTIME. This clock is not
settable. Use when you need very fast, but not fine-grained timestamps. Re-
quires per-architecture support, and probably also architecture support for this
flag in the vdso(7).

CLOCK_TAI (since Linux 3.10; Linux-specific)
A nonsettable system-wide clock derived from wall-clock time but counting
leap seconds. This clock does not experience discontinuities or frequency ad-
justments caused by inserting leap seconds as CLOCK_REALTIME does.

The acronym TAI refers to International Atomic Time.

CLOCK_MONOTONIC
A nonsettable system-wide clock that represents monotonic time since—as de-
scribed by POSIX—"some unspecified point in the past". On Linux, that point
corresponds to the number of seconds that the system has been running since it
was booted.

The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in
the system time (e.g., if the system administrator manually changes the clock),
but is affected by frequency adjustments. This clock does not count time that
the system is suspended. All CLOCK_MONOTONIC variants guarantee
that the time returned by consecutive calls will not go backwards, but succes-
sive calls may—depending on the architecture—return identical (not-in-
creased) time values.

CLOCK_MONOTONIC_COARSE (since Linux 2.6.32; Linux-specific)
A faster but less precise version of CLOCK_MONOTONIC. Use when you
need very fast, but not fine-grained timestamps. Requires per-architecture sup-
port, and probably also architecture support for this flag in the vdso(7).

CLOCK_MONOTONIC_RAW (since Linux 2.6.28; Linux-specific)
Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-
based time that is not subject to frequency adjustments. This clock does not
count time that the system is suspended.

CLOCK_BOOTTIME (since Linux 2.6.39; Linux-specific)
A nonsettable system-wide clock that is identical to CLOCK_MONOTO-
NIC, except that it also includes any time that the system is suspended. This
allows applications to get a suspend-aware monotonic clock without having to
deal with the complications of CLOCK_REALTIME, which may have dis-
continuities if the time is changed using settimeofday(2) or similar.

CLOCK_BOOTTIME_ALARM (since Linux 3.0; Linux-specific)
Like CLOCK_BOOTTIME. See timer_create(2) for further details.

CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)
This is a clock that measures CPU time consumed by this process (i.e., CPU
time consumed by all threads in the process). On Linux, this clock is not set-
table.

Linux man-pages 6.13 2024-11-03 111

clock_getres(2) System Calls Manual clock_getres(2)

CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)
This is a clock that measures CPU time consumed by this thread. On Linux,
this clock is not settable.

Linux also implements dynamic clock instances as described below.

Dynamic clocks
In addition to the hard-coded System-V style clock IDs described above, Linux also
supports POSIX clock operations on certain character devices. Such devices are
called "dynamic" clocks, and are supported since Linux 2.6.39.

Using the appropriate macros, open file descriptors may be converted into clock IDs
and passed to clock_gettime(), clock_settime(), and clock_adjtime(2). The following
example shows how to convert a file descriptor into a dynamic clock ID.

#define CLOCKFD 3
#define FD_TO_CLOCKID(fd) ((~(clockid_t) (fd) << 3) | CLOCKFD)
#define CLOCKID_TO_FD(clk) ((unsigned int) ~((clk) >> 3))

struct timespec ts;
clockid_t clkid;
int fd;

fd = open("/dev/ptp0", O_RDWR);
clkid = FD_TO_CLOCKID(fd);
clock_gettime(clkid, &ts);

RETURN VALUE
clock_gettime(), clock_settime(), and clock_getres() return 0 for success. On error,
-1 is returned and errno is set to indicate the error.

ERRORS
EACCES

clock_settime() does not have write permission for the dynamic POSIX clock
device indicated.

EFAULT
tp points outside the accessible address space.

EINVAL
The clockid specified is invalid for one of two reasons. Either the System-V
style hard coded positive value is out of range, or the dynamic clock ID does
not refer to a valid instance of a clock object.

EINVAL
(clock_settime()): tp.tv_sec is negative or tp.tv_nsec is outside the range [0,
999,999,999].

EINVAL
The clockid specified in a call to clock_settime() is not a settable clock.

EINVAL (since Linux 4.3)
A call to clock_settime() with a clockid of CLOCK_REALTIME attempted
to set the time to a value less than the current value of the CLOCK_MONOT-
ONIC clock.

Linux man-pages 6.13 2024-11-03 112

clock_getres(2) System Calls Manual clock_getres(2)

ENODEV
The hot-pluggable device (like USB for example) represented by a dynamic
clk_id has disappeared after its character device was opened.

ENOTSUP
The operation is not supported by the dynamic POSIX clock device specified.

EOVERFLOW
The timestamp would not fit in time_t range. This can happen if an executable
with 32-bit time_t is run on a 64-bit kernel when the time is 2038-01-19
03:14:08 UTC or later. However, when the system time is out of time_t range
in other situations, the behavior is undefined.

EPERM
clock_settime() does not have permission to set the clock indicated.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclock_getres(), clock_gettime(), clock_settime()

VERSIONS
POSIX.1 specifies the following:

Setting the value of the CLOCK_REALTIME clock via clock_settime()
shall have no effect on threads that are blocked waiting for a relative time ser-
vice based upon this clock, including the nanosleep() function; nor on the ex-
piration of relative timers based upon this clock. Consequently, these time ser-
vices shall expire when the requested relative interval elapses, independently
of the new or old value of the clock.

According to POSIX.1-2001, a process with "appropriate privileges" may set the
CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID
clocks using clock_settime(). On Linux, these clocks are not settable (i.e., no process
has "appropriate privileges").

C library/kernel differences
On some architectures, an implementation of clock_gettime() is provided in the
vdso(7).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SUSv2. Linux 2.6.

On POSIX systems on which these functions are available, the symbol
_POSIX_TIMERS is defined in <unistd.h> to a value greater than 0. POSIX.1-2008
makes these functions mandatory.

The symbols _POSIX_MONOTONIC_CLOCK, _POSIX_CPUTIME,
_POSIX_THREAD_CPUTIME indicate that CLOCK_MONOTONIC,
CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID are
available. (See also sysconf(3).)

Linux man-pages 6.13 2024-11-03 113

clock_getres(2) System Calls Manual clock_getres(2)

Historical note for SMP systems
Before Linux added kernel support for CLOCK_PROCESS_CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID, glibc implemented these clocks on many plat-
forms using timer registers from the CPUs (TSC on i386, AR.ITC on Itanium). These
registers may differ between CPUs and as a consequence these clocks may return bo-
gus results if a process is migrated to another CPU.

If the CPUs in an SMP system have different clock sources, then there is no way to
maintain a correlation between the timer registers since each CPU will run at a
slightly different frequency. If that is the case, then clock_getcpuclockid(0) will return
ENOENT to signify this condition. The two clocks will then be useful only if it can
be ensured that a process stays on a certain CPU.

The processors in an SMP system do not start all at exactly the same time and there-
fore the timer registers are typically running at an offset. Some architectures include
code that attempts to limit these offsets on bootup. However, the code cannot guaran-
tee to accurately tune the offsets. glibc contains no provisions to deal with these off-
sets (unlike the Linux Kernel). Typically these offsets are small and therefore the ef-
fects may be negligible in most cases.

Since glibc 2.4, the wrapper functions for the system calls described in this page avoid
the abovementioned problems by employing the kernel implementation of
CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID, on
systems that provide such an implementation (i.e., Linux 2.6.12 and later).

EXAMPLES
The program below demonstrates the use of clock_gettime() and clock_getres() with
various clocks. This is an example of what we might see when running the program:

$./clock_times x
CLOCK_REALTIME : 1585985459.446 (18356 days + 7h 30m 59s)

resolution: 0.000000001
CLOCK_TAI : 1585985496.447 (18356 days + 7h 31m 36s)

resolution: 0.000000001
CLOCK_MONOTONIC: 52395.722 (14h 33m 15s)

resolution: 0.000000001
CLOCK_BOOTTIME : 72691.019 (20h 11m 31s)

resolution: 0.000000001

Program source

/* clock_times.c

Licensed under GNU General Public License v2 or later.
*/
#define _XOPEN_SOURCE 600
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>

Linux man-pages 6.13 2024-11-03 114

clock_getres(2) System Calls Manual clock_getres(2)

#define SECS_IN_DAY (24 * 60 * 60)

static void
displayClock(clockid_t clock, const char *name, bool showRes)
{

long days;
struct timespec ts;

if (clock_gettime(clock, &ts) == -1) {
perror("clock_gettime");
exit(EXIT_FAILURE);

}

printf("%-15s: %10jd.%03ld (", name,
(intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);

days = ts.tv_sec / SECS_IN_DAY;
if (days > 0)

printf("%ld days + ", days);

printf("%2dh %2dm %2ds",
(int) (ts.tv_sec % SECS_IN_DAY) / 3600,
(int) (ts.tv_sec % 3600) / 60,
(int) ts.tv_sec % 60);

printf(")\n");

if (clock_getres(clock, &ts) == -1) {
perror("clock_getres");
exit(EXIT_FAILURE);

}

if (showRes)
printf(" resolution: %10jd.%09ld\n",

(intmax_t) ts.tv_sec, ts.tv_nsec);
}

int
main(int argc, char *argv[])
{

bool showRes = argc > 1;

displayClock(CLOCK_REALTIME, "CLOCK_REALTIME", showRes);
#ifdef CLOCK_TAI

displayClock(CLOCK_TAI, "CLOCK_TAI", showRes);
#endif

displayClock(CLOCK_MONOTONIC, "CLOCK_MONOTONIC", showRes);
#ifdef CLOCK_BOOTTIME

displayClock(CLOCK_BOOTTIME, "CLOCK_BOOTTIME", showRes);

Linux man-pages 6.13 2024-11-03 115

clock_getres(2) System Calls Manual clock_getres(2)

#endif
exit(EXIT_SUCCESS);

}

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), time(2), adjtime(3), clock_getcpuclockid(3),
ctime(3), ftime(3), pthread_getcpuclockid(3), sysconf(3), timespec(3), time(7),
time_namespaces(7), vdso(7), hwclock(8)

Linux man-pages 6.13 2024-11-03 116

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

NAME
clock_nanosleep - high-resolution sleep with specifiable clock

LIBRARY
Standard C library (libc, -lc), since glibc 2.17

Before glibc 2.17, Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int clock_nanosleep(clockid_t clockid , int flags,
const struct timespec *t,
struct timespec *_Nullable remain);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_nanosleep():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
Like nanosleep(2), clock_nanosleep() allows the calling thread to sleep for an inter-
val specified with nanosecond precision. It differs in allowing the caller to select the
clock against which the sleep interval is to be measured, and in allowing the sleep in-
terval to be specified as either an absolute or a relative value.

The time values passed to and returned by this call are specified using timespec(3)
structures.

The clockid argument specifies the clock against which the sleep interval is to be mea-
sured. This argument can have one of the following values:

CLOCK_REALTIME
A settable system-wide real-time clock.

CLOCK_TAI (since Linux 3.10)
A system-wide clock derived from wall-clock time but counting leap seconds.

CLOCK_MONOTONIC
A nonsettable, monotonically increasing clock that measures time since some
unspecified point in the past that does not change after system startup.

CLOCK_BOOTTIME (since Linux 2.6.39)
Identical to CLOCK_MONOTONIC, except that it also includes any time
that the system is suspended.

CLOCK_PROCESS_CPUTIME_ID
A settable per-process clock that measures CPU time consumed by all threads
in the process.

See clock_getres(2) for further details on these clocks. In addition, the CPU clock IDs
returned by clock_getcpuclockid(3) and pthread_getcpuclockid(3) can also be passed
in clockid .

If flags is 0, then the value specified in t is interpreted as an interval relative to the
current value of the clock specified by clockid .

If flags is TIMER_ABSTIME, then t is interpreted as an absolute time as measured
by the clock, clockid . If t is less than or equal to the current value of the clock, then

Linux man-pages 6.13 2024-07-23 117

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

clock_nanosleep() returns immediately without suspending the calling thread.

clock_nanosleep() suspends the execution of the calling thread until either at least the
time specified by t has elapsed, or a signal is delivered that causes a signal handler to
be called or that terminates the process.

If the call is interrupted by a signal handler, clock_nanosleep() fails with the error
EINTR. In addition, if remain is not NULL, and flags was not TIMER_ABSTIME,
it returns the remaining unslept time in remain. This value can then be used to call
clock_nanosleep() again and complete a (relative) sleep.

RETURN VALUE
On successfully sleeping for the requested interval, clock_nanosleep() returns 0. If
the call is interrupted by a signal handler or encounters an error, then it returns one of
the positive error number listed in ERRORS.

ERRORS
EFAULT

t or remain specified an invalid address.

EINTR
The sleep was interrupted by a signal handler; see signal(7).

EINVAL
The value in the tv_nsec field was not in the range [0, 999999999] or tv_sec
was negative.

EINVAL
clockid was invalid. (CLOCK_THREAD_CPUTIME_ID is not a permitted
value for clockid .)

ENOTSUP
The kernel does not support sleeping against this clockid .

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. Linux 2.6, glibc 2.1.

NOTES
If the interval specified in t is not an exact multiple of the granularity underlying
clock (see time(7)), then the interval will be rounded up to the next multiple. Further-
more, after the sleep completes, there may still be a delay before the CPU becomes
free to once again execute the calling thread.

Using an absolute timer is useful for preventing timer drift problems of the type de-
scribed in nanosleep(2). (Such problems are exacerbated in programs that try to
restart a relative sleep that is repeatedly interrupted by signals.) To perform a relative
sleep that avoids these problems, call clock_gettime(2) for the desired clock, add the
desired interval to the returned time value, and then call clock_nanosleep() with the
TIMER_ABSTIME flag.

clock_nanosleep() is never restarted after being interrupted by a signal handler, re-
gardless of the use of the sigaction(2) SA_RESTART flag.

The remain argument is unused, and unnecessary, when flags is TIMER_ABSTIME.

Linux man-pages 6.13 2024-07-23 118

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

(An absolute sleep can be restarted using the same t argument.)

POSIX.1 specifies that clock_nanosleep() has no effect on signals dispositions or the
signal mask.

POSIX.1 specifies that after changing the value of the CLOCK_REALTIME clock
via clock_settime(2), the new clock value shall be used to determine the time at which
a thread blocked on an absolute clock_nanosleep() will wake up; if the new clock
value falls past the end of the sleep interval, then the clock_nanosleep() call will re-
turn immediately.

POSIX.1 specifies that changing the value of the CLOCK_REALTIME clock via
clock_settime(2) shall have no effect on a thread that is blocked on a relative
clock_nanosleep().

SEE ALSO
clock_getres(2), nanosleep(2), restart_syscall(2), timer_create(2), sleep(3), time-
spec(3), usleep(3), time(7)

Linux man-pages 6.13 2024-07-23 119

clone(2) System Calls Manual clone(2)

NAME
clone, __clone2, clone3 - create a child process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
/* Prototype for the glibc wrapper function */

#define _GNU_SOURCE
#include <sched.h>

int clone(typeof(int (void *_Nullable)) * fn,
void *stack,
int flags,
void *_Nullable arg, ...
/* pid_t *_Nullable parent_tid ,

void *_Nullable tls,
pid_t *_Nullable child_tid */);

/* For the prototype of the raw clone() system call, see VERSIONS. */

#include <linux/sched.h> /* Definition of struct clone_args */
#include <sched.h> /* Definition of CLONE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_clone3, struct clone_args *cl_args, size_t size);

Note: glibc provides no wrapper for clone3(), necessitating the use of syscall(2).

DESCRIPTION
These system calls create a new ("child") process, in a manner similar to fork(2).

By contrast with fork(2), these system calls provide more precise control over what
pieces of execution context are shared between the calling process and the child
process. For example, using these system calls, the caller can control whether or not
the two processes share the virtual address space, the table of file descriptors, and the
table of signal handlers. These system calls also allow the new child process to be
placed in separate namespaces(7).

Note that in this manual page, "calling process" normally corresponds to "parent
process". But see the descriptions of CLONE_PARENT and CLONE_THREAD
below.

This page describes the following interfaces:

• The glibc clone() wrapper function and the underlying system call on which it is
based. The main text describes the wrapper function; the differences for the raw
system call are described toward the end of this page.

• The newer clone3() system call.

In the remainder of this page, the terminology "the clone call" is used when noting de-
tails that apply to all of these interfaces.

Linux man-pages 6.13 2025-02-10 120

clone(2) System Calls Manual clone(2)

The clone() wrapper function
When the child process is created with the clone() wrapper function, it commences
execution by calling the function pointed to by the argument fn. (This differs from
fork(2), where execution continues in the child from the point of the fork(2) call.) The
arg argument is passed as the argument of the function fn.

When the fn(arg) function returns, the child process terminates. The integer returned
by fn is the exit status for the child process. The child process may also terminate ex-
plicitly by calling exit(2) or after receiving a fatal signal.

The stack argument specifies the location of the stack used by the child process.
Since the child and calling process may share memory, it is not possible for the child
process to execute in the same stack as the calling process. The calling process must
therefore set up memory space for the child stack and pass a pointer to this space to
clone(). Stacks grow downward on all processors that run Linux (except the HP PA
processors), so stack usually points to the topmost address of the memory space set up
for the child stack. Note that clone() does not provide a means whereby the caller can
inform the kernel of the size of the stack area.

The remaining arguments to clone() are discussed below.

clone3()
The clone3() system call provides a superset of the functionality of the older clone()
interface. It also provides a number of API improvements, including: space for addi-
tional flags bits; cleaner separation in the use of various arguments; and the ability to
specify the size of the child’s stack area.

As with fork(2), clone3() returns in both the parent and the child. It returns 0 in the
child process and returns the PID of the child in the parent.

The cl_args argument of clone3() is a structure of the following form:

struct clone_args {
u64 flags; /* Flags bit mask */
u64 pidfd; /* Where to store PID file descriptor

(int *) */
u64 child_tid; /* Where to store child TID,

in child's memory (pid_t *) */
u64 parent_tid; /* Where to store child TID,

in parent's memory (pid_t *) */
u64 exit_signal; /* Signal to deliver to parent on

child termination */
u64 stack; /* Pointer to lowest byte of stack */
u64 stack_size; /* Size of stack */
u64 tls; /* Location of new TLS */
u64 set_tid; /* Pointer to a pid_t array

(since Linux 5.5) */
u64 set_tid_size; /* Number of elements in set_tid

(since Linux 5.5) */
u64 cgroup; /* File descriptor for target cgroup

of child (since Linux 5.7) */
};

Linux man-pages 6.13 2025-02-10 121

clone(2) System Calls Manual clone(2)

The size argument that is supplied to clone3() should be initialized to the size of this
structure. (The existence of the size argument permits future extensions to the
clone_args structure.)

The stack for the child process is specified via cl_args.stack, which points to the low-
est byte of the stack area, and cl_args.stack_size, which specifies the size of the stack
in bytes. In the case where the CLONE_VM flag (see below) is specified, a stack
must be explicitly allocated and specified. Otherwise, these two fields can be speci-
fied as NULL and 0, which causes the child to use the same stack area as the parent
(in the child’s own virtual address space).

The remaining fields in the cl_args argument are discussed below.

Equivalence between clone() and clone3() arguments
Unlike the older clone() interface, where arguments are passed individually, in the
newer clone3() interface the arguments are packaged into the clone_args structure
shown above. This structure allows for a superset of the information passed via the
clone() arguments.

The following table shows the equivalence between the arguments of clone() and the
fields in the clone_args argument supplied to clone3():

clone() clone3() Notes
cl_args field

flags & ~0xff flags For most flags; details below
parent_tid pidfd See CLONE_PIDFD
child_tid child_tid See CLONE_CHILD_SETTID
parent_tid parent_tid See CLONE_PARENT_SETTID
flags & 0xff exit_signal
stack stack
--- stack_size
tls tls See CLONE_SETTLS
--- set_tid See below for details
--- set_tid_size
--- cgroup See CLONE_INTO_CGROUP

The child termination signal
When the child process terminates, a signal may be sent to the parent. The termina-
tion signal is specified in the low byte of flags (clone()) or in cl_args.exit_signal
(clone3()). If this signal is specified as anything other than SIGCHLD, then the par-
ent process must specify the __WALL or __WCLONE options when waiting for the
child with wait(2). If no signal (i.e., zero) is specified, then the parent process is not
signaled when the child terminates.

The set_tid array
By default, the kernel chooses the next sequential PID for the new process in each of
the PID namespaces where it is present. When creating a process with clone3(), the
set_tid array (available since Linux 5.5) can be used to select specific PIDs for the
process in some or all of the PID namespaces where it is present. If the PID of the
newly created process should be set only for the current PID namespace or in the
newly created PID namespace (if flags contains CLONE_NEWPID) then the first el-
ement in the set_tid array has to be the desired PID and set_tid_size needs to be 1.

If the PID of the newly created process should have a certain value in multiple PID

Linux man-pages 6.13 2025-02-10 122

clone(2) System Calls Manual clone(2)

namespaces, then the set_tid array can have multiple entries. The first entry defines
the PID in the most deeply nested PID namespace and each of the following entries
contains the PID in the corresponding ancestor PID namespace. The number of PID
namespaces in which a PID should be set is defined by set_tid_size which cannot be
larger than the number of currently nested PID namespaces.

To create a process with the following PIDs in a PID namespace hierarchy:
PID NS level Requested PID Notes
0 31496 Outermost PID namespace
1 42
2 7 Innermost PID namespace

Set the array to:

set_tid[0] = 7;
set_tid[1] = 42;
set_tid[2] = 31496;
set_tid_size = 3;

If only the PIDs in the two innermost PID namespaces need to be specified, set the ar-
ray to:

set_tid[0] = 7;
set_tid[1] = 42;
set_tid_size = 2;

The PID in the PID namespaces outside the two innermost PID namespaces is se-
lected the same way as any other PID is selected.

The set_tid feature requires CAP_SYS_ADMIN or (since Linux 5.9)
CAP_CHECKPOINT_RESTORE in all owning user namespaces of the target PID
namespaces.

Callers may only choose a PID greater than 1 in a given PID namespace if an init
process (i.e., a process with PID 1) already exists in that namespace. Otherwise the
PID entry for this PID namespace must be 1.

The flags mask
Both clone() and clone3() allow a flags bit mask that modifies their behavior and al-
lows the caller to specify what is shared between the calling process and the child
process. This bit mask—the flags argument of clone() or the cl_args.flags field
passed to clone3()—is referred to as the flags mask in the remainder of this page.

The flags mask is specified as a bitwise OR of zero or more of the constants listed be-
low. Except as noted below, these flags are available (and have the same effect) in
both clone() and clone3().

CLONE_CHILD_CLEARTID (since Linux 2.5.49)
Clear (zero) the child thread ID at the location pointed to by child_tid
(clone()) or cl_args.child_tid (clone3()) in child memory when the child exits,
and do a wakeup on the futex at that address. The address involved may be
changed by the set_tid_address(2) system call. This is used by threading li-
braries.

Linux man-pages 6.13 2025-02-10 123

clone(2) System Calls Manual clone(2)

CLONE_CHILD_SETTID (since Linux 2.5.49)
Store the child thread ID at the location pointed to by child_tid (clone()) or
cl_args.child_tid (clone3()) in the child’s memory. The store operation com-
pletes before the clone call returns control to user space in the child process.
(Note that the store operation may not have completed before the clone call re-
turns in the parent process, which is relevant if the CLONE_VM flag is also
employed.)

CLONE_CLEAR_SIGHAND (since Linux 5.5)
By default, signal dispositions in the child thread are the same as in the parent.
If this flag is specified, then all signals that are handled in the parent (and not
set to SIG_IGN) are reset to their default dispositions (SIG_DFL) in the
child.

Specifying this flag together with CLONE_SIGHAND is nonsensical and dis-
allowed.

CLONE_DETACHED (historical)
For a while (during the Linux 2.5 development series) there was a
CLONE_DETACHED flag, which caused the parent not to receive a signal
when the child terminated. Ultimately, the effect of this flag was subsumed
under the CLONE_THREAD flag and by the time Linux 2.6.0 was released,
this flag had no effect. Since Linux 2.6.2, the need to give this flag together
with CLONE_THREAD disappeared.

This flag is still defined, but it is usually ignored when calling clone(). How-
ever, see the description of CLONE_PIDFD for some exceptions.

CLONE_FILES (since Linux 2.0)
If CLONE_FILES is set, the calling process and the child process share the
same file descriptor table. Any file descriptor created by the calling process or
by the child process is also valid in the other process. Similarly, if one of the
processes closes a file descriptor, or changes its associated flags (using the fc-
ntl(2) F_SETFD operation), the other process is also affected. If a process
sharing a file descriptor table calls execve(2), its file descriptor table is dupli-
cated (unshared).

If CLONE_FILES is not set, the child process inherits a copy of all file de-
scriptors opened in the calling process at the time of the clone call. Subse-
quent operations that open or close file descriptors, or change file descriptor
flags, performed by either the calling process or the child process do not affect
the other process. Note, however, that the duplicated file descriptors in the
child refer to the same open file descriptions as the corresponding file descrip-
tors in the calling process, and thus share file offsets and file status flags (see
open(2)).

CLONE_FS (since Linux 2.0)
If CLONE_FS is set, the caller and the child process share the same filesys-
tem information. This includes the root of the filesystem, the current working
directory, and the umask. Any call to chroot(2), chdir(2), or umask(2) per-
formed by the calling process or the child process also affects the other
process.

Linux man-pages 6.13 2025-02-10 124

clone(2) System Calls Manual clone(2)

If CLONE_FS is not set, the child process works on a copy of the filesystem
information of the calling process at the time of the clone call. Calls to ch-
root(2), chdir(2), or umask(2) performed later by one of the processes do not
affect the other process.

CLONE_INTO_CGROUP (since Linux 5.7)
By default, a child process is placed in the same version 2 cgroup as its parent.
The CLONE_INTO_CGROUP flag allows the child process to be created in
a different version 2 cgroup. (Note that CLONE_INTO_CGROUP has effect
only for version 2 cgroups.)

In order to place the child process in a different cgroup, the caller specifies
CLONE_INTO_CGROUP in cl_args.flags and passes a file descriptor that
refers to a version 2 cgroup in the cl_args.cgroup field. (This file descriptor
can be obtained by opening a cgroup v2 directory using either the
O_RDONLY or the O_PATH flag.) Note that all of the usual restrictions (de-
scribed in cgroups(7)) on placing a process into a version 2 cgroup apply.

Among the possible use cases for CLONE_INTO_CGROUP are the follow-
ing:

• Spawning a process into a cgroup different from the parent’s cgroup makes
it possible for a service manager to directly spawn new services into dedi-
cated cgroups. This eliminates the accounting jitter that would be caused
if the child process was first created in the same cgroup as the parent and
then moved into the target cgroup. Furthermore, spawning the child
process directly into a target cgroup is significantly cheaper than moving
the child process into the target cgroup after it has been created.

• The CLONE_INTO_CGROUP flag also allows the creation of frozen
child processes by spawning them into a frozen cgroup. (See cgroups(7)
for a description of the freezer controller.)

• For threaded applications (or even thread implementations which make use
of cgroups to limit individual threads), it is possible to establish a fixed
cgroup layout before spawning each thread directly into its target cgroup.

CLONE_IO (since Linux 2.6.25)
If CLONE_IO is set, then the new process shares an I/O context with the call-
ing process. If this flag is not set, then (as with fork(2)) the new process has
its own I/O context.

The I/O context is the I/O scope of the disk scheduler (i.e., what the I/O sched-
uler uses to model scheduling of a process’s I/O). If processes share the same
I/O context, they are treated as one by the I/O scheduler. As a consequence,
they get to share disk time. For some I/O schedulers, if two processes share an
I/O context, they will be allowed to interleave their disk access. If several
threads are doing I/O on behalf of the same process (aio_read(3), for in-
stance), they should employ CLONE_IO to get better I/O performance.

If the kernel is not configured with the CONFIG_BLOCK option, this flag is
a no-op.

Linux man-pages 6.13 2025-02-10 125

clone(2) System Calls Manual clone(2)

CLONE_NEWCGROUP (since Linux 4.6)
Create the process in a new cgroup namespace. If this flag is not set, then (as
with fork(2)) the process is created in the same cgroup namespaces as the call-
ing process.

For further information on cgroup namespaces, see cgroup_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEW-
CGROUP.

CLONE_NEWIPC (since Linux 2.6.19)
If CLONE_NEWIPC is set, then create the process in a new IPC namespace.
If this flag is not set, then (as with fork(2)), the process is created in the same
IPC namespace as the calling process.

For further information on IPC namespaces, see ipc_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWIPC. This flag can’t be specified in conjunction with
CLONE_SYSVSEM.

CLONE_NEWNET (since Linux 2.6.24)
(The implementation of this flag was completed only by about Linux 2.6.29.)

If CLONE_NEWNET is set, then create the process in a new network name-
space. If this flag is not set, then (as with fork(2)) the process is created in the
same network namespace as the calling process.

For further information on network namespaces, see network_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWNET.

CLONE_NEWNS (since Linux 2.4.19)
If CLONE_NEWNS is set, the cloned child is started in a new mount name-
space, initialized with a copy of the namespace of the parent. If
CLONE_NEWNS is not set, the child lives in the same mount namespace as
the parent.

For further information on mount namespaces, see namespaces(7) and
mount_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWNS. It is not permitted to specify both CLONE_NEWNS and
CLONE_FS in the same clone call.

CLONE_NEWPID (since Linux 2.6.24)
If CLONE_NEWPID is set, then create the process in a new PID namespace.
If this flag is not set, then (as with fork(2)) the process is created in the same
PID namespace as the calling process.

For further information on PID namespaces, see namespaces(7) and
pid_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEW-
PID. This flag can’t be specified in conjunction with CLONE_THREAD.

Linux man-pages 6.13 2025-02-10 126

clone(2) System Calls Manual clone(2)

CLONE_NEWUSER
(This flag first became meaningful for clone() in Linux 2.6.23, the current
clone() semantics were merged in Linux 3.5, and the final pieces to make the
user namespaces completely usable were merged in Linux 3.8.)

If CLONE_NEWUSER is set, then create the process in a new user name-
space. If this flag is not set, then (as with fork(2)) the process is created in the
same user namespace as the calling process.

For further information on user namespaces, see namespaces(7) and
user_namespaces(7).

Before Linux 3.8, use of CLONE_NEWUSER required that the caller have
three capabilities: CAP_SYS_ADMIN, CAP_SETUID, and CAP_SETGID.
Starting with Linux 3.8, no privileges are needed to create a user namespace.

This flag can’t be specified in conjunction with CLONE_THREAD or
CLONE_PARENT. For security reasons, CLONE_NEWUSER cannot be
specified in conjunction with CLONE_FS.

CLONE_NEWUTS (since Linux 2.6.19)
If CLONE_NEWUTS is set, then create the process in a new UTS name-
space, whose identifiers are initialized by duplicating the identifiers from the
UTS namespace of the calling process. If this flag is not set, then (as with
fork(2)) the process is created in the same UTS namespace as the calling
process.

For further information on UTS namespaces, see uts_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWUTS.

CLONE_PARENT (since Linux 2.3.12)
If CLONE_PARENT is set, then the parent of the new child (as returned by
getppid(2)) will be the same as that of the calling process.

If CLONE_PARENT is not set, then (as with fork(2)) the child’s parent is the
calling process.

Note that it is the parent process, as returned by getppid(2), which is signaled
when the child terminates, so that if CLONE_PARENT is set, then the parent
of the calling process, rather than the calling process itself, is signaled.

The CLONE_PARENT flag can’t be used in clone calls by the global init
process (PID 1 in the initial PID namespace) and init processes in other PID
namespaces. This restriction prevents the creation of multi-rooted process
trees as well as the creation of unreapable zombies in the initial PID name-
space.

CLONE_PARENT_SETTID (since Linux 2.5.49)
Store the child thread ID at the location pointed to by parent_tid (clone()) or
cl_args.parent_tid (clone3()) in the parent’s memory. (In Linux 2.5.32-2.5.48
there was a flag CLONE_SETTID that did this.) The store operation com-
pletes before the clone call returns control to user space.

Linux man-pages 6.13 2025-02-10 127

clone(2) System Calls Manual clone(2)

CLONE_PID (Linux 2.0 to Linux 2.5.15)
If CLONE_PID is set, the child process is created with the same process ID
as the calling process. This is good for hacking the system, but otherwise of
not much use. From Linux 2.3.21 onward, this flag could be specified only by
the system boot process (PID 0). The flag disappeared completely from the
kernel sources in Linux 2.5.16. Subsequently, the kernel silently ignored this
bit if it was specified in the flags mask. Much later, the same bit was recycled
for use as the CLONE_PIDFD flag.

CLONE_PIDFD (since Linux 5.2)
If this flag is specified, a PID file descriptor referring to the child process is al-
located and placed at a specified location in the parent’s memory. The close-
on-exec flag is set on this new file descriptor. PID file descriptors can be used
for the purposes described in pidfd_open(2).

• When using clone3(), the PID file descriptor is placed at the location
pointed to by cl_args.pidfd .

• When using clone(), the PID file descriptor is placed at the location
pointed to by parent_tid . Since the parent_tid argument is used to return
the PID file descriptor, CLONE_PIDFD cannot be used with
CLONE_PARENT_SETTID when calling clone().

It is currently not possible to use this flag together with CLONE_THREAD.
This means that the process identified by the PID file descriptor will always be
a thread group leader.

If the obsolete CLONE_DETACHED flag is specified alongside
CLONE_PIDFD when calling clone(), an error is returned. An error also re-
sults if CLONE_DETACHED is specified when calling clone3(). This error
behavior ensures that the bit corresponding to CLONE_DETACHED can be
reused for further PID file descriptor features in the future.

CLONE_PTRACE (since Linux 2.2)
If CLONE_PTRACE is specified, and the calling process is being traced,
then trace the child also (see ptrace(2)).

CLONE_SETTLS (since Linux 2.5.32)
The TLS (Thread Local Storage) descriptor is set to tls.

The interpretation of tls and the resulting effect is architecture dependent. On
x86, tls is interpreted as a struct user_desc * (see set_thread_area(2)). On
x86-64 it is the new value to be set for the %fs base register (see the
ARCH_SET_FS argument to arch_prctl(2)). On architectures with a dedi-
cated TLS register, it is the new value of that register.

Use of this flag requires detailed knowledge and generally it should not be
used except in libraries implementing threading.

CLONE_SIGHAND (since Linux 2.0)
If CLONE_SIGHAND is set, the calling process and the child process share
the same table of signal handlers. If the calling process or child process calls
sigaction(2) to change the behavior associated with a signal, the behavior is
changed in the other process as well. However, the calling process and child
processes still have distinct signal masks and sets of pending signals. So, one

Linux man-pages 6.13 2025-02-10 128

clone(2) System Calls Manual clone(2)

of them may block or unblock signals using sigprocmask(2) without affecting
the other process.

If CLONE_SIGHAND is not set, the child process inherits a copy of the sig-
nal handlers of the calling process at the time of the clone call. Calls to sigac-
tion(2) performed later by one of the processes have no effect on the other
process.

Since Linux 2.6.0, the flags mask must also include CLONE_VM if
CLONE_SIGHAND is specified.

CLONE_STOPPED (since Linux 2.6.0)
If CLONE_STOPPED is set, then the child is initially stopped (as though it
was sent a SIGSTOP signal), and must be resumed by sending it a SIGCONT
signal.

This flag was deprecated from Linux 2.6.25 onward, and was removed alto-
gether in Linux 2.6.38. Since then, the kernel silently ignores it without error.
Starting with Linux 4.6, the same bit was reused for the CLONE_NEWC-
GROUP flag.

CLONE_SYSVSEM (since Linux 2.5.10)
If CLONE_SYSVSEM is set, then the child and the calling process share a
single list of System V semaphore adjustment (semadj) values (see semop(2)).
In this case, the shared list accumulates semadj values across all processes
sharing the list, and semaphore adjustments are performed only when the last
process that is sharing the list terminates (or ceases sharing the list using un-
share(2)). If this flag is not set, then the child has a separate semadj list that is
initially empty.

CLONE_THREAD (since Linux 2.4.0)
If CLONE_THREAD is set, the child is placed in the same thread group as
the calling process. To make the remainder of the discussion of
CLONE_THREAD more readable, the term "thread" is used to refer to the
processes within a thread group.

Thread groups were a feature added in Linux 2.4 to support the POSIX threads
notion of a set of threads that share a single PID. Internally, this shared PID is
the so-called thread group identifier (TGID) for the thread group. Since Linux
2.4, calls to getpid(2) return the TGID of the caller.

The threads within a group can be distinguished by their (system-wide) unique
thread IDs (TID). A new thread’s TID is available as the function result re-
turned to the caller, and a thread can obtain its own TID using gettid(2).

When a clone call is made without specifying CLONE_THREAD, then the
resulting thread is placed in a new thread group whose TGID is the same as
the thread’s TID. This thread is the leader of the new thread group.

A new thread created with CLONE_THREAD has the same parent process as
the process that made the clone call (i.e., like CLONE_PARENT), so that
calls to getppid(2) return the same value for all of the threads in a thread
group. When a CLONE_THREAD thread terminates, the thread that created
it is not sent a SIGCHLD (or other termination) signal; nor can the status of
such a thread be obtained using wait(2). (The thread is said to be detached .)

Linux man-pages 6.13 2025-02-10 129

clone(2) System Calls Manual clone(2)

After all of the threads in a thread group terminate the parent process of the
thread group is sent a SIGCHLD (or other termination) signal.

If any of the threads in a thread group performs an execve(2), then all threads
other than the thread group leader are terminated, and the new program is exe-
cuted in the thread group leader.

If one of the threads in a thread group creates a child using fork(2), then any
thread in the group can wait(2) for that child.

Since Linux 2.5.35, the flags mask must also include CLONE_SIGHAND if
CLONE_THREAD is specified (and note that, since Linux 2.6.0,
CLONE_SIGHAND also requires CLONE_VM to be included).

Signal dispositions and actions are process-wide: if an unhandled signal is de-
livered to a thread, then it will affect (terminate, stop, continue, be ignored in)
all members of the thread group.

Each thread has its own signal mask, as set by sigprocmask(2).

A signal may be process-directed or thread-directed. A process-directed sig-
nal is targeted at a thread group (i.e., a TGID), and is delivered to an arbitrarily
selected thread from among those that are not blocking the signal. A signal
may be process-directed because it was generated by the kernel for reasons
other than a hardware exception, or because it was sent using kill(2) or
sigqueue(3). A thread-directed signal is targeted at (i.e., delivered to) a spe-
cific thread. A signal may be thread directed because it was sent using
tgkill(2) or pthread_sigqueue(3), or because the thread executed a machine
language instruction that triggered a hardware exception (e.g., invalid memory
access triggering SIGSEGV or a floating-point exception triggering
SIGFPE).

A call to sigpending(2) returns a signal set that is the union of the pending
process-directed signals and the signals that are pending for the calling thread.

If a process-directed signal is delivered to a thread group, and the thread group
has installed a handler for the signal, then the handler is invoked in exactly
one, arbitrarily selected member of the thread group that has not blocked the
signal. If multiple threads in a group are waiting to accept the same signal us-
ing sigwaitinfo(2), the kernel will arbitrarily select one of these threads to re-
ceive the signal.

CLONE_UNTRACED (since Linux 2.5.46)
If CLONE_UNTRACED is specified, then a tracing process cannot force
CLONE_PTRACE on this child process.

CLONE_VFORK (since Linux 2.2)
If CLONE_VFORK is set, the execution of the calling process is suspended
until the child releases its virtual memory resources via a call to execve(2) or
_exit(2) (as with vfork(2)).

If CLONE_VFORK is not set, then both the calling process and the child are
schedulable after the call, and an application should not rely on execution oc-
curring in any particular order.

Linux man-pages 6.13 2025-02-10 130

clone(2) System Calls Manual clone(2)

CLONE_VM (since Linux 2.0)
If CLONE_VM is set, the calling process and the child process run in the
same memory space. In particular, memory writes performed by the calling
process or by the child process are also visible in the other process. Moreover,
any memory mapping or unmapping performed with mmap(2) or munmap(2)
by the child or calling process also affects the other process.

If CLONE_VM is not set, the child process runs in a separate copy of the
memory space of the calling process at the time of the clone call. Memory
writes or file mappings/unmappings performed by one of the processes do not
affect the other, as with fork(2).

If the CLONE_VM flag is specified and the CLONE_VFORK flag is not
specified, then any alternate signal stack that was established by sigaltstack(2)
is cleared in the child process.

RETURN VALUE
On success, the thread ID of the child process is returned in the caller’s thread of exe-
cution. On failure, -1 is returned in the caller’s context, no child process is created,
and errno is set to indicate the error.

ERRORS
EACCES (clone3() only)

CLONE_INTO_CGROUP was specified in cl_args.flags, but the restrictions
(described in cgroups(7)) on placing the child process into the version 2
cgroup referred to by cl_args.cgroup are not met.

EAGAIN
Too many processes are already running; see fork(2).

EBUSY (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the file de-
scriptor specified in cl_args.cgroup refers to a version 2 cgroup in which a do-
main controller is enabled.

EEXIST (clone3() only)
One (or more) of the PIDs specified in set_tid already exists in the corre-
sponding PID namespace.

EINVAL
Both CLONE_SIGHAND and CLONE_CLEAR_SIGHAND were specified
in the flags mask.

EINVAL
CLONE_SIGHAND was specified in the flags mask, but CLONE_VM was
not. (Since Linux 2.6.0.)

EINVAL
CLONE_THREAD was specified in the flags mask, but CLONE_SIG-
HAND was not. (Since Linux 2.5.35.)

EINVAL
CLONE_THREAD was specified in the flags mask, but the current process
previously called unshare(2) with the CLONE_NEWPID flag or used
setns(2) to reassociate itself with a PID namespace.

Linux man-pages 6.13 2025-02-10 131

clone(2) System Calls Manual clone(2)

EINVAL
Both CLONE_FS and CLONE_NEWNS were specified in the flags mask.

EINVAL (since Linux 3.9)
Both CLONE_NEWUSER and CLONE_FS were specified in the flags
mask.

EINVAL
Both CLONE_NEWIPC and CLONE_SYSVSEM were specified in the
flags mask.

EINVAL
CLONE_NEWPID and one (or both) of CLONE_THREAD or
CLONE_PARENT were specified in the flags mask.

EINVAL
CLONE_NEWUSER and CLONE_THREAD were specified in the flags
mask.

EINVAL (since Linux 2.6.32)
CLONE_PARENT was specified, and the caller is an init process.

EINVAL
Returned by the glibc clone() wrapper function when fn or stack is specified
as NULL.

EINVAL
CLONE_NEWIPC was specified in the flags mask, but the kernel was not
configured with the CONFIG_SYSVIPC and CONFIG_IPC_NS options.

EINVAL
CLONE_NEWNET was specified in the flags mask, but the kernel was not
configured with the CONFIG_NET_NS option.

EINVAL
CLONE_NEWPID was specified in the flags mask, but the kernel was not
configured with the CONFIG_PID_NS option.

EINVAL
CLONE_NEWUSER was specified in the flags mask, but the kernel was not
configured with the CONFIG_USER_NS option.

EINVAL
CLONE_NEWUTS was specified in the flags mask, but the kernel was not
configured with the CONFIG_UTS_NS option.

EINVAL
stack is not aligned to a suitable boundary for this architecture. For example,
on aarch64, stack must be a multiple of 16.

EINVAL (clone3() only)
CLONE_DETACHED was specified in the flags mask.

EINVAL (clone() only)
CLONE_PIDFD was specified together with CLONE_DETACHED in the
flags mask.

Linux man-pages 6.13 2025-02-10 132

clone(2) System Calls Manual clone(2)

EINVAL
CLONE_PIDFD was specified together with CLONE_THREAD in the
flags mask.

EINVAL (clone() only)
CLONE_PIDFD was specified together with CLONE_PARENT_SETTID
in the flags mask.

EINVAL (clone3() only)
set_tid_size is greater than the number of nested PID namespaces.

EINVAL (clone3() only)
One of the PIDs specified in set_tid was an invalid.

EINVAL (clone3() only)
CLONE_THREAD or CLONE_PARENT was specified in the flags mask,
but a signal was specified in exit_signal.

EINVAL (AArch64 only, Linux 4.6 and earlier)
stack was not aligned to a 128-bit boundary.

ENOMEM
Cannot allocate sufficient memory to allocate a task structure for the child, or
to copy those parts of the caller’s context that need to be copied.

ENOSPC (since Linux 3.7)
CLONE_NEWPID was specified in the flags mask, but the limit on the nest-
ing depth of PID namespaces would have been exceeded; see pid_name-
spaces(7).

ENOSPC (since Linux 4.9; beforehand EUSERS)
CLONE_NEWUSER was specified in the flags mask, and the call would
cause the limit on the number of nested user namespaces to be exceeded. See
user_namespaces(7).

From Linux 3.11 to Linux 4.8, the error diagnosed in this case was EUSERS.

ENOSPC (since Linux 4.9)
One of the values in the flags mask specified the creation of a new user name-
space, but doing so would have caused the limit defined by the corresponding
file in /proc/sys/user to be exceeded. For further details, see namespaces(7).

EOPNOTSUPP (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the file de-
scriptor specified in cl_args.cgroup refers to a version 2 cgroup that is in the
domain invalid state.

EPERM
CLONE_NEWCGROUP, CLONE_NEWIPC, CLONE_NEWNET,
CLONE_NEWNS, CLONE_NEWPID, or CLONE_NEWUTS was speci-
fied by an unprivileged process (process without CAP_SYS_ADMIN).

EPERM
CLONE_PID was specified by a process other than process 0. (This error oc-
curs only on Linux 2.5.15 and earlier.)

Linux man-pages 6.13 2025-02-10 133

clone(2) System Calls Manual clone(2)

EPERM
CLONE_NEWUSER was specified in the flags mask, but either the effective
user ID or the effective group ID of the caller does not have a mapping in the
parent namespace (see user_namespaces(7)).

EPERM (since Linux 3.9)
CLONE_NEWUSER was specified in the flags mask and the caller is in a
chroot environment (i.e., the caller’s root directory does not match the root di-
rectory of the mount namespace in which it resides).

EPERM (clone3() only)
set_tid_size was greater than zero, and the caller lacks the CAP_SYS_AD-
MIN capability in one or more of the user namespaces that own the corre-
sponding PID namespaces.

ERESTARTNOINTR (since Linux 2.6.17)
System call was interrupted by a signal and will be restarted. (This can be
seen only during a trace.)

EUSERS (Linux 3.11 to Linux 4.8)
CLONE_NEWUSER was specified in the flags mask, and the limit on the
number of nested user namespaces would be exceeded. See the discussion of
the ENOSPC error above.

VERSIONS
The glibc clone() wrapper function makes some changes in the memory pointed to by
stack (changes required to set the stack up correctly for the child) before invoking the
clone() system call. So, in cases where clone() is used to recursively create children,
do not use the buffer employed for the parent’s stack as the stack of the child.

On i386, clone() should not be called through vsyscall, but directly through int $0x80.

C library/kernel differences
The raw clone() system call corresponds more closely to fork(2) in that execution in
the child continues from the point of the call. As such, the fn and arg arguments of
the clone() wrapper function are omitted.

In contrast to the glibc wrapper, the raw clone() system call accepts NULL as a stack
argument (and clone3() likewise allows cl_args.stack to be NULL). In this case, the
child uses a duplicate of the parent’s stack. (Copy-on-write semantics ensure that the
child gets separate copies of stack pages when either process modifies the stack.) In
this case, for correct operation, the CLONE_VM option should not be specified. (If
the child shares the parent’s memory because of the use of the CLONE_VM flag,
then no copy-on-write duplication occurs and chaos is likely to result.)

The order of the arguments also differs in the raw system call, and there are variations
in the arguments across architectures, as detailed in the following paragraphs.

The raw system call interface on x86-64 and some other architectures (including sh,
tile, and alpha) is:

long clone(unsigned long flags, void *stack,
int *parent_tid, int *child_tid,
unsigned long tls);

On x86-32, and several other common architectures (including score, ARM, ARM 64,

Linux man-pages 6.13 2025-02-10 134

clone(2) System Calls Manual clone(2)

PA-RISC, arc, Power PC, xtensa, and MIPS), the order of the last two arguments is re-
versed:

long clone(unsigned long flags, void *stack,
int *parent_tid, unsigned long tls,
int *child_tid);

On the cris and s390 architectures, the order of the first two arguments is reversed:

long clone(void *stack, unsigned long flags,
int *parent_tid, int *child_tid,
unsigned long tls);

On the microblaze architecture, an additional argument is supplied:

long clone(unsigned long flags, void *stack,
int stack_size, /* Size of stack */
int *parent_tid, int *child_tid,
unsigned long tls);

blackfin, m68k, and sparc
The argument-passing conventions on blackfin, m68k, and sparc are different from the
descriptions above. For details, see the kernel (and glibc) source.

ia64
On ia64, a different interface is used:

int __clone2(typeof(int (void *)) *fn,
void *stack_base, size_t stack_size,
int flags, void *arg, ...

/* pid_t *parent_tid, struct user_desc *tls,
pid_t *child_tid */);

The prototype shown above is for the glibc wrapper function; for the system call it-
self, the prototype can be described as follows (it is identical to the clone() prototype
on microblaze):

long clone2(unsigned long flags, void *stack_base,
int stack_size, /* Size of stack */
int *parent_tid, int *child_tid,
unsigned long tls);

__clone2() operates in the same way as clone(), except that stack_base points to the
lowest address of the child’s stack area, and stack_size specifies the size of the stack
pointed to by stack_base.

STANDARDS
Linux.

HISTORY
clone3()

Linux 5.3.

Linux 2.4 and earlier
In the Linux 2.4.x series, CLONE_THREAD generally does not make the parent of
the new thread the same as the parent of the calling process. However, from Linux
2.4.7 to Linux 2.4.18 the CLONE_THREAD flag implied the CLONE_PARENT

Linux man-pages 6.13 2025-02-10 135

clone(2) System Calls Manual clone(2)

flag (as in Linux 2.6.0 and later).

In Linux 2.4 and earlier, clone() does not take arguments parent_tid , tls, and
child_tid .

NOTES
One use of these system calls is to implement threads: multiple flows of control in a
program that run concurrently in a shared address space.

The kcmp(2) system call can be used to test whether two processes share various re-
sources such as a file descriptor table, System V semaphore undo operations, or a vir-
tual address space.

Handlers registered using pthread_atfork(3) are not executed during a clone call.

BUGS
GNU C library versions 2.3.4 up to and including 2.24 contained a wrapper function
for getpid(2) that performed caching of PIDs. This caching relied on support in the
glibc wrapper for clone(), but limitations in the implementation meant that the cache
was not up to date in some circumstances. In particular, if a signal was delivered to
the child immediately after the clone() call, then a call to getpid(2) in a handler for the
signal could return the PID of the calling process ("the parent"), if the clone wrapper
had not yet had a chance to update the PID cache in the child. (This discussion ig-
nores the case where the child was created using CLONE_THREAD, when getpid(2)
should return the same value in the child and in the process that called clone(), since
the caller and the child are in the same thread group. The stale-cache problem also
does not occur if the flags argument includes CLONE_VM.) To get the truth, it was
sometimes necessary to use code such as the following:

#include <syscall.h>

pid_t mypid;

mypid = syscall(SYS_getpid);

Because of the stale-cache problem, as well as other problems noted in getpid(2), the
PID caching feature was removed in glibc 2.25.

EXAMPLES
The following program demonstrates the use of clone() to create a child process that
executes in a separate UTS namespace. The child changes the hostname in its UTS
namespace. Both parent and child then display the system hostname, making it possi-
ble to see that the hostname differs in the UTS namespaces of the parent and child.
For an example of the use of this program, see setns(2).

Within the sample program, we allocate the memory that is to be used for the child’s
stack using mmap(2) rather than malloc(3) for the following reasons:

• mmap(2) allocates a block of memory that starts on a page boundary and is a mul-
tiple of the page size. This is useful if we want to establish a guard page (a page
with protection PROT_NONE) at the end of the stack using mprotect(2).

• We can specify the MAP_STACK flag to request a mapping that is suitable for a
stack. For the moment, this flag is a no-op on Linux, but it exists and has effect on
some other systems, so we should include it for portability.

Linux man-pages 6.13 2025-02-10 136

clone(2) System Calls Manual clone(2)

Program source
#define _GNU_SOURCE
#include <err.h>
#include <sched.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <unistd.h>

static int /* Start function for cloned child */
childFunc(void *arg)
{

struct utsname uts;

/* Change hostname in UTS namespace of child. */

if (sethostname(arg, strlen(arg)) == -1)
err(EXIT_FAILURE, "sethostname");

/* Retrieve and display hostname. */

if (uname(&uts) == -1)
err(EXIT_FAILURE, "uname");

printf("uts.nodename in child: %s\n", uts.nodename);

/* Keep the namespace open for a while, by sleeping.
This allows some experimentation--for example, another
process might join the namespace. */

sleep(200);

return 0; /* Child terminates now */
}

#define STACK_SIZE (1024 * 1024) /* Stack size for cloned child */

int
main(int argc, char *argv[])
{

char *stack; /* Start of stack buffer */
char *stackTop; /* End of stack buffer */
pid_t pid;
struct utsname uts;

Linux man-pages 6.13 2025-02-10 137

clone(2) System Calls Manual clone(2)

if (argc < 2) {
fprintf(stderr, "Usage: %s <child-hostname>\n", argv[0]);
exit(EXIT_SUCCESS);

}

/* Allocate memory to be used for the stack of the child. */

stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);

if (stack == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

stackTop = stack + STACK_SIZE; /* Assume stack grows downward */

/* Create child that has its own UTS namespace;
child commences execution in childFunc(). */

pid = clone(childFunc, stackTop, CLONE_NEWUTS | SIGCHLD, argv[1]);
if (pid == -1)

err(EXIT_FAILURE, "clone");
if (munmap(stack, STACK_SIZE))

err(EXIT_FAILURE, "munmap");
printf("clone() returned %jd\n", (intmax_t) pid);

/* Parent falls through to here */

sleep(1); /* Give child time to change its hostname */

/* Display hostname in parent's UTS namespace. This will be
different from hostname in child's UTS namespace. */

if (uname(&uts) == -1)
err(EXIT_FAILURE, "uname");

printf("uts.nodename in parent: %s\n", uts.nodename);

if (waitpid(pid, NULL, 0) == -1) /* Wait for child */
err(EXIT_FAILURE, "waitpid");

printf("child has terminated\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
fork(2), futex(2), getpid(2), gettid(2), kcmp(2), mmap(2), pidfd_open(2),
set_thread_area(2), set_tid_address(2), setns(2), tkill(2), unshare(2), wait(2), capabil-
ities(7), namespaces(7), pthreads(7)

Linux man-pages 6.13 2025-02-10 138

clone(2) System Calls Manual clone(2)

Linux man-pages 6.13 2025-02-10 139

close(2) System Calls Manual close(2)

NAME
close - close a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int close(int fd);

DESCRIPTION
close() closes a file descriptor, so that it no longer refers to any file and may be reused.
Any record locks (see fcntl(2)) held on the file it was associated with, and owned by
the process, are removed regardless of the file descriptor that was used to obtain the
lock. This has some unfortunate consequences and one should be extra careful when
using advisory record locking. See fcntl(2) for discussion of the risks and conse-
quences as well as for the (probably preferred) open file description locks.

If fd is the last file descriptor referring to the underlying open file description (see
open(2)), the resources associated with the open file description are freed; if the file
descriptor was the last reference to a file which has been removed using unlink(2), the
file is deleted.

RETURN VALUE
close() returns zero on success. On error, -1 is returned, and errno is set to indicate
the error.

ERRORS
EBADF

fd isn’t a valid open file descriptor.

EINTR
The close() call was interrupted by a signal; see signal(7).

EIO An I/O error occurred.

ENOSPC
EDQUOT

On NFS, these errors are not normally reported against the first write which
exceeds the available storage space, but instead against a subsequent write(2),
fsync(2), or close().

See NOTES for a discussion of why close() should not be retried after an error.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
A successful close does not guarantee that the data has been successfully saved to
disk, as the kernel uses the buffer cache to defer writes. Typically, filesystems do not
flush buffers when a file is closed. If you need to be sure that the data is physically
stored on the underlying disk, use fsync(2). (It will depend on the disk hardware at
this point.)

Linux man-pages 6.13 2024-07-23 140

close(2) System Calls Manual close(2)

The close-on-exec file descriptor flag can be used to ensure that a file descriptor is au-
tomatically closed upon a successful execve(2); see fcntl(2) for details.

Multithreaded processes and close()
It is probably unwise to close file descriptors while they may be in use by system calls
in other threads in the same process. Since a file descriptor may be reused, there are
some obscure race conditions that may cause unintended side effects.

Furthermore, consider the following scenario where two threads are performing oper-
ations on the same file descriptor:

(1) One thread is blocked in an I/O system call on the file descriptor. For example,
it is trying to write(2) to a pipe that is already full, or trying to read(2) from a
stream socket which currently has no available data.

(2) Another thread closes the file descriptor.

The behavior in this situation varies across systems. On some systems, when the file
descriptor is closed, the blocking system call returns immediately with an error.

On Linux (and possibly some other systems), the behavior is different: the blocking
I/O system call holds a reference to the underlying open file description, and this ref-
erence keeps the description open until the I/O system call completes. (See open(2)
for a discussion of open file descriptions.) Thus, the blocking system call in the first
thread may successfully complete after the close() in the second thread.

Dealing with error returns from close()
A careful programmer will check the return value of close(), since it is quite possible
that errors on a previous write(2) operation are reported only on the final close() that
releases the open file description. Failing to check the return value when closing a file
may lead to silent loss of data. This can especially be observed with NFS and with
disk quota.

Note, however, that a failure return should be used only for diagnostic purposes (i.e., a
warning to the application that there may still be I/O pending or there may have been
failed I/O) or remedial purposes (e.g., writing the file once more or creating a
backup).

Retrying the close() after a failure return is the wrong thing to do, since this may
cause a reused file descriptor from another thread to be closed. This can occur be-
cause the Linux kernel always releases the file descriptor early in the close operation,
freeing it for reuse; the steps that may return an error, such as flushing data to the
filesystem or device, occur only later in the close operation.

Many other implementations similarly always close the file descriptor (except in the
case of EBADF, meaning that the file descriptor was invalid) even if they subse-
quently report an error on return from close(). POSIX.1 is currently silent on this
point, but there are plans to mandate this behavior in the next major release of the
standard.

A careful programmer who wants to know about I/O errors may precede close() with
a call to fsync(2).

The EINTR error is a somewhat special case. Regarding the EINTR error,
POSIX.1-2008 says:

Linux man-pages 6.13 2024-07-23 141

close(2) System Calls Manual close(2)

If close() is interrupted by a signal that is to be caught, it shall return -1 with
errno set to EINTR and the state of fildes is unspecified.

This permits the behavior that occurs on Linux and many other implementations,
where, as with other errors that may be reported by close(), the file descriptor is guar-
anteed to be closed. However, it also permits another possibility: that the implementa-
tion returns an EINTR error and keeps the file descriptor open. (According to its doc-
umentation, HP-UX’s close() does this.) The caller must then once more use close()
to close the file descriptor, to avoid file descriptor leaks. This divergence in imple-
mentation behaviors provides a difficult hurdle for portable applications, since on
many implementations, close() must not be called again after an EINTR error, and on
at least one, close() must be called again. There are plans to address this conundrum
for the next major release of the POSIX.1 standard.

SEE ALSO
close_range(2), fcntl(2), fsync(2), open(2), shutdown(2), unlink(2), fclose(3)

Linux man-pages 6.13 2024-07-23 142

close_range(2) System Calls Manual close_range(2)

NAME
close_range - close all file descriptors in a given range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

#include <linux/close_range.h> /* Definition of CLOSE_RANGE_*
constants */

int close_range(unsigned int first, unsigned int last, int flags);

DESCRIPTION
The close_range() system call closes all open file descriptors from first to last (in-
cluded).

Errors closing a given file descriptor are currently ignored.

flags is a bit mask containing 0 or more of the following:

CLOSE_RANGE_CLOEXEC (since Linux 5.11)
Set the close-on-exec flag on the specified file descriptors, rather than immedi-
ately closing them.

CLOSE_RANGE_UNSHARE
Unshare the specified file descriptors from any other processes before closing
them, avoiding races with other threads sharing the file descriptor table.

RETURN VALUE
On success, close_range() returns 0. On error, -1 is returned and errno is set to indi-
cate the error.

ERRORS
EINVAL

flags is not valid, or first is greater than last.

The following can occur with CLOSE_RANGE_UNSHARE (when constructing the
new descriptor table):

EMFILE
The number of open file descriptors exceeds the limit specified in
/proc/sys/fs/nr_open (see proc(5)). This error can occur in situations where
that limit was lowered before a call to close_range() where the
CLOSE_RANGE_UNSHARE flag is specified.

ENOMEM
Insufficient kernel memory was available.

STANDARDS
None.

HISTORY
FreeBSD. Linux 5.9, glibc 2.34.

Linux man-pages 6.13 2024-07-23 143

close_range(2) System Calls Manual close_range(2)

NOTES
Closing all open file descriptors

To avoid blindly closing file descriptors in the range of possible file descriptors, this is
sometimes implemented (on Linux) by listing open file descriptors in /proc/self/fd/
and calling close(2) on each one. close_range() can take care of this without requir-
ing /proc and within a single system call, which provides significant performance
benefits.

Closing file descriptors before exec
File descriptors can be closed safely using

/* we don’t want anything past stderr here */
close_range(3, ~0U, CLOSE_RANGE_UNSHARE);
execve(....);

CLOSE_RANGE_UNSHARE is conceptually equivalent to

unshare(CLONE_FILES);
close_range(first, last, 0);

but can be more efficient: if the unshared range extends past the current maximum
number of file descriptors allocated in the caller’s file descriptor table (the common
case when last is ~0U), the kernel will unshare a new file descriptor table for the
caller up to first, copying as few file descriptors as possible. This avoids subsequent
close(2) calls entirely; the whole operation is complete once the table is unshared.

Closing files on exec
This is particularly useful in cases where multiple pre-exec setup steps risk conflicting
with each other. For example, setting up a seccomp(2) profile can conflict with a
close_range() call: if the file descriptors are closed before the seccomp(2) profile is
set up, the profile setup can’t use them itself, or control their closure; if the file de-
scriptors are closed afterwards, the seccomp profile can’t block the close_range() call
or any fallbacks. Using CLOSE_RANGE_CLOEXEC avoids this: the descriptors
can be marked before the seccomp(2) profile is set up, and the profile can control ac-
cess to close_range() without affecting the calling process.

EXAMPLES
The program shown below opens the files named in its command-line arguments, dis-
plays the list of files that it has opened (by iterating through the entries in
/proc/PID/fd), uses close_range() to close all file descriptors greater than or equal to
3, and then once more displays the process’s list of open files. The following example
demonstrates the use of the program:

$ touch /tmp/a /tmp/b /tmp/c
$./a.out /tmp/a /tmp/b /tmp/c
/tmp/a opened as FD 3
/tmp/b opened as FD 4
/tmp/c opened as FD 5
/proc/self/fd/0 ==> /dev/pts/1
/proc/self/fd/1 ==> /dev/pts/1
/proc/self/fd/2 ==> /dev/pts/1
/proc/self/fd/3 ==> /tmp/a
/proc/self/fd/4 ==> /tmp/b

Linux man-pages 6.13 2024-07-23 144

close_range(2) System Calls Manual close_range(2)

/proc/self/fd/5 ==> /tmp/b
/proc/self/fd/6 ==> /proc/9005/fd
========= About to call close_range() =======
/proc/self/fd/0 ==> /dev/pts/1
/proc/self/fd/1 ==> /dev/pts/1
/proc/self/fd/2 ==> /dev/pts/1
/proc/self/fd/3 ==> /proc/9005/fd

Note that the lines showing the pathname /proc/9005/fd result from the calls to
opendir(3).

Program source

#define _GNU_SOURCE
#include <dirent.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

/* Show the contents of the symbolic links in /proc/self/fd */

static void
show_fds(void)
{

DIR *dirp;
char path[PATH_MAX], target[PATH_MAX];
ssize_t len;
struct dirent *dp;

dirp = opendir("/proc/self/fd");
if (dirp == NULL) {

perror("opendir");
exit(EXIT_FAILURE);

}

for (;;) {
dp = readdir(dirp);
if (dp == NULL)

break;

if (dp->d_type == DT_LNK) {
snprintf(path, sizeof(path), "/proc/self/fd/%s",

dp->d_name);

len = readlink(path, target, sizeof(target));
printf("%s ==> %.*s\n", path, (int) len, target);

}

Linux man-pages 6.13 2024-07-23 145

close_range(2) System Calls Manual close_range(2)

}

closedir(dirp);
}

int
main(int argc, char *argv[])
{

int fd;

for (size_t j = 1; j < argc; j++) {
fd = open(argv[j], O_RDONLY);
if (fd == -1) {

perror(argv[j]);
exit(EXIT_FAILURE);

}
printf("%s opened as FD %d\n", argv[j], fd);

}

show_fds();

printf("========= About to call close_range() =======\n");

if (close_range(3, ~0U, 0) == -1) {
perror("close_range");
exit(EXIT_FAILURE);

}

show_fds();
exit(EXIT_FAILURE);

}

SEE ALSO
close(2)

Linux man-pages 6.13 2024-07-23 146

connect(2) System Calls Manual connect(2)

NAME
connect - initiate a connection on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int connect(int sockfd , const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
The connect() system call connects the socket referred to by the file descriptor sockfd
to the address specified by addr. The addrlen argument specifies the size of addr.
The format of the address in addr is determined by the address space of the socket
sockfd; see socket(2) for further details.

If the socket sockfd is of type SOCK_DGRAM, then addr is the address to which
datagrams are sent by default, and the only address from which datagrams are re-
ceived. If the socket is of type SOCK_STREAM or SOCK_SEQPACKET, this call
attempts to make a connection to the socket that is bound to the address specified by
addr.

Some protocol sockets (e.g., UNIX domain stream sockets) may successfully con-
nect() only once.

Some protocol sockets (e.g., datagram sockets in the UNIX and Internet domains)
may use connect() multiple times to change their association.

Some protocol sockets (e.g., TCP sockets as well as datagram sockets in the UNIX
and Internet domains) may dissolve the association by connecting to an address with
the sa_family member of sockaddr set to AF_UNSPEC; thereafter, the socket can be
connected to another address. (AF_UNSPEC is supported since Linux 2.2.)

RETURN VALUE
If the connection or binding succeeds, zero is returned. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
The following are general socket errors only. There may be other domain-specific er-
ror codes.

EACCES
For UNIX domain sockets, which are identified by pathname: Write permis-
sion is denied on the socket file, or search permission is denied for one of the
directories in the path prefix. (See also path_resolution(7).)

EACCES
EPERM

The user tried to connect to a broadcast address without having the socket
broadcast flag enabled or the connection request failed because of a local fire-
wall rule.

Linux man-pages 6.13 2024-07-23 147

connect(2) System Calls Manual connect(2)

EACCES
It can also be returned if an SELinux policy denied a connection (for example,
if there is a policy saying that an HTTP proxy can only connect to ports asso-
ciated with HTTP servers, and the proxy tries to connect to a different port).

EADDRINUSE
Local address is already in use.

EADDRNOTAVAIL
(Internet domain sockets) The socket referred to by sockfd had not previously
been bound to an address and, upon attempting to bind it to an ephemeral port,
it was determined that all port numbers in the ephemeral port range are cur-
rently in use. See the discussion of /proc/sys/net/ipv4/ip_local_port_range in
ip(7).

EAFNOSUPPORT
The passed address didn’t have the correct address family in its sa_family
field.

EAGAIN
For nonblocking UNIX domain sockets, the socket is nonblocking, and the
connection cannot be completed immediately. For other socket families, there
are insufficient entries in the routing cache.

EALREADY
The socket is nonblocking and a previous connection attempt has not yet been
completed.

EBADF
sockfd is not a valid open file descriptor.

ECONNREFUSED
A connect() on a stream socket found no one listening on the remote address.

EFAULT
The socket structure address is outside the user’s address space.

EINPROGRESS
The socket is nonblocking and the connection cannot be completed immedi-
ately. (UNIX domain sockets failed with EAGAIN instead.) It is possible to
select(2) or poll(2) for completion by selecting the socket for writing. After
select(2) indicates writability, use getsockopt(2) to read the SO_ERROR op-
tion at level SOL_SOCKET to determine whether connect() completed suc-
cessfully (SO_ERROR is zero) or unsuccessfully (SO_ERROR is one of the
usual error codes listed here, explaining the reason for the failure).

EINTR
The system call was interrupted by a signal that was caught; see signal(7).

EISCONN
The socket is already connected.

ENETUNREACH
Network is unreachable.

Linux man-pages 6.13 2024-07-23 148

connect(2) System Calls Manual connect(2)

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EPROTOTYPE
The socket type does not support the requested communications protocol.
This error can occur, for example, on an attempt to connect a UNIX domain
datagram socket to a stream socket.

ETIMEDOUT
Timeout while attempting connection. The server may be too busy to accept
new connections. Note that for IP sockets the timeout may be very long when
syncookies are enabled on the server.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD, (connect() first appeared in 4.2BSD).

NOTES
If connect() fails, consider the state of the socket as unspecified. Portable applica-
tions should close the socket and create a new one for reconnecting.

EXAMPLES
An example of the use of connect() is shown in getaddrinfo(3).

SEE ALSO
accept(2), bind(2), getsockname(2), listen(2), socket(2), path_resolution(7), selinux(8)

Linux man-pages 6.13 2024-07-23 149

copy_file_range(2) System Calls Manual copy_file_range(2)

NAME
copy_file_range - Copy a range of data from one file to another

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <unistd.h>

ssize_t copy_file_range(int fd_in, off_t *_Nullable off_in,
int fd_out, off_t *_Nullable off_out,
size_t size, unsigned int flags);

DESCRIPTION
The copy_file_range() system call performs an in-kernel copy between two file de-
scriptors without the additional cost of transferring data from the kernel to user space
and then back into the kernel. It copies up to size bytes of data from the source file
descriptor fd_in to the target file descriptor fd_out, overwriting any data that exists
within the requested range of the target file.

The following semantics apply for off_in, and similar statements apply to off_out:

• If off_in is NULL, then bytes are read from fd_in starting from the file offset, and
the file offset is adjusted by the number of bytes copied.

• If off_in is not NULL, then off_in must point to a buffer that specifies the starting
offset where bytes from fd_in will be read. The file offset of fd_in is not
changed, but off_in is adjusted appropriately.

fd_in and fd_out can refer to the same file. If they refer to the same file, then the
source and target ranges are not allowed to overlap.

The flags argument is provided to allow for future extensions and currently must be
set to 0.

RETURN VALUE
Upon successful completion, copy_file_range() will return the number of bytes
copied between files. This could be less than the size originally requested. If the file
offset of fd_in is at or past the end of file, no bytes are copied, and copy_file_range()
returns zero.

On error, copy_file_range() returns -1 and errno is set to indicate the error.

ERRORS
EBADF

One or more file descriptors are not valid.

EBADF
fd_in is not open for reading; or fd_out is not open for writing.

EBADF
The O_APPEND flag is set for the open file description (see open(2)) referred
to by the file descriptor fd_out.

Linux man-pages 6.13 2024-11-17 150

copy_file_range(2) System Calls Manual copy_file_range(2)

EFBIG
An attempt was made to write at a position past the maximum file offset the
kernel supports.

EFBIG
An attempt was made to write a range that exceeds the allowed maximum file
size. The maximum file size differs between filesystem implementations and
can be different from the maximum allowed file offset.

EFBIG
An attempt was made to write beyond the process’s file size resource limit.
This may also result in the process receiving a SIGXFSZ signal.

EINVAL
The flags argument is not 0.

EINVAL
fd_in and fd_out refer to the same file and the source and target ranges over-
lap.

EINVAL
Either fd_in or fd_out is not a regular file.

EIO A low-level I/O error occurred while copying.

EISDIR
Either fd_in or fd_out refers to a directory.

ENOMEM
Out of memory.

ENOSPC
There is not enough space on the target filesystem to complete the copy.

EOPNOTSUPP (since Linux 5.19)
The filesystem does not support this operation.

EOVERFLOW
The requested source or destination range is too large to represent in the speci-
fied data types.

EPERM
fd_out refers to an immutable file.

ETXTBSY
Either fd_in or fd_out refers to an active swap file.

EXDEV (before Linux 5.3)
The files referred to by fd_in and fd_out are not on the same filesystem.

EXDEV (since Linux 5.19)
The files referred to by fd_in and fd_out are not on the same filesystem, and
the source and target filesystems are not of the same type, or do not support
cross-filesystem copy.

VERSIONS
A major rework of the kernel implementation occurred in Linux 5.3. Areas of the API
that weren’t clearly defined were clarified and the API bounds are much more strictly

Linux man-pages 6.13 2024-11-17 151

copy_file_range(2) System Calls Manual copy_file_range(2)

checked than on earlier kernels.

Since Linux 5.19, cross-filesystem copies can be achieved when both filesystems are
of the same type, and that filesystem implements support for it. See BUGS for behav-
ior prior to Linux 5.19.

Applications should target the behaviour and requirements of Linux 5.19, that was
also backported to earlier stable kernels.

STANDARDS
Linux, GNU.

HISTORY
Linux 4.5, but glibc 2.27 provides a user-space emulation when it is not available.

NOTES
If fd_in is a sparse file, then copy_file_range() may expand any holes existing in the
requested range. Users may benefit from calling copy_file_range() in a loop, and us-
ing the lseek(2) SEEK_DATA and SEEK_HOLE operations to find the locations of
data segments.

copy_file_range() gives filesystems an opportunity to implement "copy acceleration"
techniques, such as the use of reflinks (i.e., two or more inodes that share pointers to
the same copy-on-write disk blocks) or server-side-copy (in the case of NFS).

_FILE_OFFSET_BITS should be defined to be 64 in code that uses non-null off_in
or off_out or that takes the address of copy_file_range, if the code is intended to be
portable to traditional 32-bit x86 and ARM platforms where off_t’s width defaults to
32 bits.

BUGS
In Linux 5.3 to Linux 5.18, cross-filesystem copies were implemented by the kernel,
if the operation was not supported by individual filesystems. However, on some vir-
tual filesystems, the call failed to copy, while still reporting success.

EXAMPLES
#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd_in, fd_out;
off_t size, ret;
struct stat stat;

if (argc != 3) {
fprintf(stderr, "Usage: %s <source> <destination>\n", argv[0]);

Linux man-pages 6.13 2024-11-17 152

copy_file_range(2) System Calls Manual copy_file_range(2)

exit(EXIT_FAILURE);
}

fd_in = open(argv[1], O_RDONLY);
if (fd_in == -1) {

perror("open (argv[1])");
exit(EXIT_FAILURE);

}

if (fstat(fd_in, &stat) == -1) {
perror("fstat");
exit(EXIT_FAILURE);

}

size = stat.st_size;

fd_out = open(argv[2], O_CREAT | O_WRONLY | O_TRUNC, 0644);
if (fd_out == -1) {

perror("open (argv[2])");
exit(EXIT_FAILURE);

}

do {
ret = copy_file_range(fd_in, NULL, fd_out, NULL, size, 0);
if (ret == -1) {

perror("copy_file_range");
exit(EXIT_FAILURE);

}

size -= ret;
} while (size > 0 && ret > 0);

close(fd_in);
close(fd_out);
exit(EXIT_SUCCESS);

}

SEE ALSO
lseek(2), sendfile(2), splice(2)

Linux man-pages 6.13 2024-11-17 153

create_module(2) System Calls Manual create_module(2)

NAME
create_module - create a loadable module entry

SYNOPSIS
#include <linux/module.h>

[[deprecated]] caddr_t create_module(const char *name, size_t size);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

create_module() attempts to create a loadable module entry and reserve the kernel
memory that will be needed to hold the module. This system call requires privilege.

RETURN VALUE
On success, returns the kernel address at which the module will reside. On error, -1
is returned and errno is set to indicate the error.

ERRORS
EEXIST

A module by that name already exists.

EFAULT
name is outside the program’s accessible address space.

EINVAL
The requested size is too small even for the module header information.

ENOMEM
The kernel could not allocate a contiguous block of memory large enough for
the module.

ENOSYS
create_module() is not supported in this version of the kernel (e.g., Linux 2.6
or later).

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capa-
bility).

STANDARDS
Linux.

HISTORY
Removed in Linux 2.6.

This obsolete system call is not supported by glibc. No declaration is provided in
glibc headers, but, through a quirk of history, glibc versions before glibc 2.23 did ex-
port an ABI for this system call. Therefore, in order to employ this system call, it was
sufficient to manually declare the interface in your code; alternatively, you could in-
voke the system call using syscall(2).

SEE ALSO
delete_module(2), init_module(2), query_module(2)

Linux man-pages 6.13 2024-05-02 154

delete_module(2) System Calls Manual delete_module(2)

NAME
delete_module - unload a kernel module

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of O_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_delete_module, const char *name, unsigned int flags);

Note: glibc provides no wrapper for delete_module(), necessitating the use of
syscall(2).

DESCRIPTION
The delete_module() system call attempts to remove the unused loadable module en-
try identified by name. If the module has an exit function, then that function is exe-
cuted before unloading the module. The flags argument is used to modify the behav-
ior of the system call, as described below. This system call requires privilege.

Module removal is attempted according to the following rules:

(1) If there are other loaded modules that depend on (i.e., refer to symbols defined
in) this module, then the call fails.

(2) Otherwise, if the reference count for the module (i.e., the number of processes
currently using the module) is zero, then the module is immediately unloaded.

(3) If a module has a nonzero reference count, then the behavior depends on the
bits set in flags. In normal usage (see NOTES), the O_NONBLOCK flag is al-
ways specified, and the O_TRUNC flag may additionally be specified.

The various combinations for flags have the following effect:

flags == O_NONBLOCK
The call returns immediately, with an error.

flags == (O_NONBLOCK | O_TRUNC)
The module is unloaded immediately, regardless of whether it has a
nonzero reference count.

(flags & O_NONBLOCK) == 0
If flags does not specify O_NONBLOCK, the following steps occur:

• The module is marked so that no new references are permitted.

• If the module’s reference count is nonzero, the caller is placed in an
uninterruptible sleep state (TASK_UNINTERRUPTIBLE) until
the reference count is zero, at which point the call unblocks.

• The module is unloaded in the usual way.

The O_TRUNC flag has one further effect on the rules described above. By default,
if a module has an init function but no exit function, then an attempt to remove the
module fails. However, if O_TRUNC was specified, this requirement is bypassed.

Using the O_TRUNC flag is dangerous! If the kernel was not built with

Linux man-pages 6.13 2024-07-23 155

delete_module(2) System Calls Manual delete_module(2)

CONFIG_MODULE_FORCE_UNLOAD, this flag is silently ignored. (Normally,
CONFIG_MODULE_FORCE_UNLOAD is enabled.) Using this flag taints the
kernel (TAINT_FORCED_RMMOD).

RETURN VALUE
On success, zero is returned. On error, -1 is returned and errno is set to indicate the
error.

ERRORS
EBUSY

The module is not "live" (i.e., it is still being initialized or is already marked
for removal); or, the module has an init function but has no exit function, and
O_TRUNC was not specified in flags.

EFAULT
name refers to a location outside the process’s accessible address space.

ENOENT
No module by that name exists.

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capa-
bility), or module unloading is disabled (see /proc/sys/kernel/modules_dis-
abled in proc(5)).

EWOULDBLOCK
Other modules depend on this module; or, O_NONBLOCK was specified in
flags, but the reference count of this module is nonzero and O_TRUNC was
not specified in flags.

STANDARDS
Linux.

HISTORY
The delete_module() system call is not supported by glibc. No declaration is pro-
vided in glibc headers, but, through a quirk of history, glibc versions before glibc 2.23
did export an ABI for this system call. Therefore, in order to employ this system call,
it is (before glibc 2.23) sufficient to manually declare the interface in your code; alter-
natively, you can invoke the system call using syscall(2).

Linux 2.4 and earlier
In Linux 2.4 and earlier, the system call took only one argument:

int delete_module(const char *name);

If name is NULL, all unused modules marked auto-clean are removed.

Some further details of differences in the behavior of delete_module() in Linux 2.4
and earlier are not currently explained in this manual page.

NOTES
The uninterruptible sleep that may occur if O_NONBLOCK is omitted from flags is
considered undesirable, because the sleeping process is left in an unkillable state. As
at Linux 3.7, specifying O_NONBLOCK is optional, but in future kernels it is likely
to become mandatory.

Linux man-pages 6.13 2024-07-23 156

delete_module(2) System Calls Manual delete_module(2)

SEE ALSO
create_module(2), init_module(2), query_module(2), lsmod(8), modprobe(8), rm-
mod(8)

Linux man-pages 6.13 2024-07-23 157

dup(2) System Calls Manual dup(2)

NAME
dup, dup2, dup3 - duplicate a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd , int newfd);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h> /* Definition of O_* constants */
#include <unistd.h>

int dup3(int oldfd , int newfd , int flags);

DESCRIPTION
The dup() system call allocates a new file descriptor that refers to the same open file
description as the descriptor oldfd . (For an explanation of open file descriptions, see
open(2).) The new file descriptor number is guaranteed to be the lowest-numbered
file descriptor that was unused in the calling process.

After a successful return, the old and new file descriptors may be used interchange-
ably. Since the two file descriptors refer to the same open file description, they share
file offset and file status flags; for example, if the file offset is modified by using
lseek(2) on one of the file descriptors, the offset is also changed for the other file de-
scriptor.

The two file descriptors do not share file descriptor flags (the close-on-exec flag). The
close-on-exec flag (FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

dup2()
The dup2() system call performs the same task as dup(), but instead of using the low-
est-numbered unused file descriptor, it uses the file descriptor number specified in
newfd . In other words, the file descriptor newfd is adjusted so that it now refers to the
same open file description as oldfd .

If the file descriptor newfd was previously open, it is closed before being reused; the
close is performed silently (i.e., any errors during the close are not reported by
dup2())

The steps of closing and reusing the file descriptor newfd are performed atomically.
This is important, because trying to implement equivalent functionality using close(2)
and dup() would be subject to race conditions, whereby newfd might be reused be-
tween the two steps. Such reuse could happen because the main program is inter-
rupted by a signal handler that allocates a file descriptor, or because a parallel thread
allocates a file descriptor.

Note the following points:

• If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.

• If oldfd is a valid file descriptor, and newfd has the same value as oldfd , then
dup2() does nothing, and returns newfd .

Linux man-pages 6.13 2024-11-01 158

dup(2) System Calls Manual dup(2)

dup3()
dup3() is the same as dup2(), except that:

• The caller can force the close-on-exec flag to be set for the new file descriptor by
specifying O_CLOEXEC in flags. See the description of the same flag in
open(2) for reasons why this may be useful.

• If oldfd equals newfd , then dup3() fails with the error EINVAL.

RETURN VALUE
On success, these system calls return the new file descriptor. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
EBADF

oldfd isn’t an open file descriptor.

EBADF
newfd is out of the allowed range for file descriptors (see the discussion of
RLIMIT_NOFILE in getrlimit(2)).

EBUSY
(Linux only) This may be returned by dup2() or dup3() during a race condi-
tion with open(2) and dup().

EINTR
The dup2() or dup3() call was interrupted by a signal; see signal(7).

EINVAL
(dup3()) flags contain an invalid value.

EINVAL
(dup3()) oldfd was equal to newfd .

EMFILE
The per-process limit on the number of open file descriptors has been reached
(see the discussion of RLIMIT_NOFILE in getrlimit(2)).

ENOMEM
Insufficient kernel memory was available.

STANDARDS
dup()
dup2()

POSIX.1-2008.

dup3()
Linux.

HISTORY
dup()
dup2()

POSIX.1-2001, SVr4, 4.3BSD.

dup3()
Linux 2.6.27, glibc 2.9.

Linux man-pages 6.13 2024-11-01 159

dup(2) System Calls Manual dup(2)

NOTES
The error returned by dup2() is different from that returned by fcntl(..., F_DUPFD,
...) when newfd is out of range. On some systems, dup2() also sometimes returns
EINVAL like F_DUPFD.

If newfd was open, any errors that would have been reported at close(2) time are lost.
If this is of concern, then—unless the program is single-threaded and does not allocate
file descriptors in signal handlers—the correct approach is not to close newfd before
calling dup2(), because of the race condition described above. Instead, code some-
thing like the following could be used:

/* Obtain a duplicate of 'newfd' that can subsequently
be used to check for close() errors; an EBADF error
means that 'newfd' was not open. */

tmpfd = dup(newfd);
if (tmpfd == -1 && errno != EBADF) {

/* Handle unexpected dup() error. */
}

/* Atomically duplicate 'oldfd' on 'newfd'. */

if (dup2(oldfd, newfd) == -1) {
/* Handle dup2() error. */

}

/* Now check for close() errors on the file originally
referred to by 'newfd'. */

if (tmpfd != -1) {
if (close(tmpfd) == -1) {

/* Handle errors from close. */
}

}

SEE ALSO
close(2), fcntl(2), open(2), pidfd_getfd(2)

Linux man-pages 6.13 2024-11-01 160

epoll_create(2) System Calls Manual epoll_create(2)

NAME
epoll_create, epoll_create1 - open an epoll file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/epoll.h>

int epoll_create(int size);
int epoll_create1(int flags);

DESCRIPTION
epoll_create() creates a new epoll(7) instance. Since Linux 2.6.8, the size argument
is ignored, but must be greater than zero; see HISTORY.

epoll_create() returns a file descriptor referring to the new epoll instance. This file
descriptor is used for all the subsequent calls to the epoll interface. When no longer
required, the file descriptor returned by epoll_create() should be closed by using
close(2). When all file descriptors referring to an epoll instance have been closed, the
kernel destroys the instance and releases the associated resources for reuse.

epoll_create1()
If flags is 0, then, other than the fact that the obsolete size argument is dropped,
epoll_create1() is the same as epoll_create(). The following value can be included in
flags to obtain different behavior:

EPOLL_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See
the description of the O_CLOEXEC flag in open(2) for reasons why this may
be useful.

RETURN VALUE
On success, these system calls return a file descriptor (a nonnegative integer). On er-
ror, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

size is not positive.

EINVAL
(epoll_create1()) Invalid value specified in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
There was insufficient memory to create the kernel object.

STANDARDS
Linux.

HISTORY

Linux man-pages 6.13 2024-07-23 161

epoll_create(2) System Calls Manual epoll_create(2)

epoll_create()
Linux 2.6, glibc 2.3.2.

epoll_create1()
Linux 2.6.27, glibc 2.9.

In the initial epoll_create() implementation, the size argument informed the kernel of
the number of file descriptors that the caller expected to add to the epoll instance.
The kernel used this information as a hint for the amount of space to initially allocate
in internal data structures describing events. (If necessary, the kernel would allocate
more space if the caller’s usage exceeded the hint given in size.) Nowadays, this hint
is no longer required (the kernel dynamically sizes the required data structures with-
out needing the hint), but size must still be greater than zero, in order to ensure back-
ward compatibility when new epoll applications are run on older kernels.

Prior to Linux 2.6.29, a /proc/sys/fs/epoll/max_user_instances kernel parameter lim-
ited live epolls for each real user ID, and caused epoll_create() to fail with EMFILE
on overrun.

SEE ALSO
close(2), epoll_ctl(2), epoll_wait(2), ioctl_eventpoll(2), epoll(7)

Linux man-pages 6.13 2024-07-23 162

epoll_ctl(2) System Calls Manual epoll_ctl(2)

NAME
epoll_ctl - control interface for an epoll file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/epoll.h>

int epoll_ctl(int epfd , int op, int fd ,
struct epoll_event *_Nullable event);

DESCRIPTION
This system call is used to add, modify, or remove entries in the interest list of the
epoll(7) instance referred to by the file descriptor epfd . It requests that the operation
op be performed for the target file descriptor, fd .

Valid values for the op argument are:

EPOLL_CTL_ADD
Add an entry to the interest list of the epoll file descriptor, epfd . The entry in-
cludes the file descriptor, fd , a reference to the corresponding open file de-
scription (see epoll(7) and open(2)), and the settings specified in event.

EPOLL_CTL_MOD
Change the settings associated with fd in the interest list to the new settings
specified in event.

EPOLL_CTL_DEL
Remove (deregister) the target file descriptor fd from the interest list. The
event argument is ignored and can be NULL (but see BUGS below).

The event argument describes the object linked to the file descriptor fd . The struct
epoll_event is described in epoll_event(3type).

The data member of the epoll_event structure specifies data that the kernel should
save and then return (via epoll_wait(2)) when this file descriptor becomes ready.

The events member of the epoll_event structure is a bit mask composed by ORing to-
gether zero or more event types, returned by epoll_wait(2), and input flags, which af-
fect its behaviour, but aren’t returned. The available event types are:

EPOLLIN
The associated file is available for read(2) operations.

EPOLLOUT
The associated file is available for write(2) operations.

EPOLLRDHUP (since Linux 2.6.17)
Stream socket peer closed connection, or shut down writing half of connec-
tion. (This flag is especially useful for writing simple code to detect peer shut-
down when using edge-triggered monitoring.)

EPOLLPRI
There is an exceptional condition on the file descriptor. See the discussion of
POLLPRI in poll(2).

Linux man-pages 6.13 2024-07-23 163

epoll_ctl(2) System Calls Manual epoll_ctl(2)

EPOLLERR
Error condition happened on the associated file descriptor. This event is also
reported for the write end of a pipe when the read end has been closed.

epoll_wait(2) will always report for this event; it is not necessary to set it in
events when calling epoll_ctl().

EPOLLHUP
Hang up happened on the associated file descriptor.

epoll_wait(2) will always wait for this event; it is not necessary to set it in
events when calling epoll_ctl().

Note that when reading from a channel such as a pipe or a stream socket, this
event merely indicates that the peer closed its end of the channel. Subsequent
reads from the channel will return 0 (end of file) only after all outstanding data
in the channel has been consumed.

And the available input flags are:

EPOLLET
Requests edge-triggered notification for the associated file descriptor. The de-
fault behavior for epoll is level-triggered. See epoll(7) for more detailed infor-
mation about edge-triggered and level-triggered notification.

EPOLLONESHOT (since Linux 2.6.2)
Requests one-shot notification for the associated file descriptor. This means
that after an event notified for the file descriptor by epoll_wait(2), the file de-
scriptor is disabled in the interest list and no other events will be reported by
the epoll interface. The user must call epoll_ctl() with EPOLL_CTL_MOD
to rearm the file descriptor with a new event mask.

EPOLLWAKEUP (since Linux 3.5)
If EPOLLONESHOT and EPOLLET are clear and the process has the
CAP_BLOCK_SUSPEND capability, ensure that the system does not enter
"suspend" or "hibernate" while this event is pending or being processed. The
event is considered as being "processed" from the time when it is returned by a
call to epoll_wait(2) until the next call to epoll_wait(2) on the same epoll(7)
file descriptor, the closure of that file descriptor, the removal of the event file
descriptor with EPOLL_CTL_DEL, or the clearing of EPOLLWAKEUP for
the event file descriptor with EPOLL_CTL_MOD. See also BUGS.

EPOLLEXCLUSIVE (since Linux 4.5)
Sets an exclusive wakeup mode for the epoll file descriptor that is being at-
tached to the target file descriptor, fd . When a wakeup event occurs and mul-
tiple epoll file descriptors are attached to the same target file using
EPOLLEXCLUSIVE, one or more of the epoll file descriptors will receive
an event with epoll_wait(2). The default in this scenario (when EPOLLEX-
CLUSIVE is not set) is for all epoll file descriptors to receive an event.
EPOLLEXCLUSIVE is thus useful for avoiding thundering herd problems in
certain scenarios.

If the same file descriptor is in multiple epoll instances, some with the
EPOLLEXCLUSIVE flag, and others without, then events will be provided
to all epoll instances that did not specify EPOLLEXCLUSIVE, and at least

Linux man-pages 6.13 2024-07-23 164

epoll_ctl(2) System Calls Manual epoll_ctl(2)

one of the epoll instances that did specify EPOLLEXCLUSIVE.

The following values may be specified in conjunction with EPOLLEXCLU-
SIVE: EPOLLIN, EPOLLOUT, EPOLLWAKEUP, and EPOLLET.
EPOLLHUP and EPOLLERR can also be specified, but this is not required:
as usual, these events are always reported if they occur, regardless of whether
they are specified in events. Attempts to specify other values in events yield
the error EINVAL.

EPOLLEXCLUSIVE may be used only in an EPOLL_CTL_ADD opera-
tion; attempts to employ it with EPOLL_CTL_MOD yield an error. If
EPOLLEXCLUSIVE has been set using epoll_ctl(), then a subsequent
EPOLL_CTL_MOD on the same epfd , fd pair yields an error. A call to
epoll_ctl() that specifies EPOLLEXCLUSIVE in events and specifies the tar-
get file descriptor fd as an epoll instance will likewise fail. The error in all of
these cases is EINVAL.

RETURN VALUE
When successful, epoll_ctl() returns zero. When an error occurs, epoll_ctl() returns
-1 and errno is set to indicate the error.

ERRORS
EBADF

epfd or fd is not a valid file descriptor.

EEXIST
op was EPOLL_CTL_ADD, and the supplied file descriptor fd is already
registered with this epoll instance.

EINVAL
epfd is not an epoll file descriptor, or fd is the same as epfd , or the requested
operation op is not supported by this interface.

EINVAL
An invalid event type was specified along with EPOLLEXCLUSIVE in
events.

EINVAL
op was EPOLL_CTL_MOD and events included EPOLLEXCLUSIVE.

EINVAL
op was EPOLL_CTL_MOD and the EPOLLEXCLUSIVE flag has previ-
ously been applied to this epfd , fd pair.

EINVAL
EPOLLEXCLUSIVE was specified in event and fd refers to an epoll in-
stance.

ELOOP
fd refers to an epoll instance and this EPOLL_CTL_ADD operation would
result in a circular loop of epoll instances monitoring one another or a nesting
depth of epoll instances greater than 5.

ENOENT
op was EPOLL_CTL_MOD or EPOLL_CTL_DEL, and fd is not regis-
tered with this epoll instance.

Linux man-pages 6.13 2024-07-23 165

epoll_ctl(2) System Calls Manual epoll_ctl(2)

ENOMEM
There was insufficient memory to handle the requested op control operation.

ENOSPC
The limit imposed by /proc/sys/fs/epoll/max_user_watches was encountered
while trying to register (EPOLL_CTL_ADD) a new file descriptor on an
epoll instance. See epoll(7) for further details.

EPERM
The target file fd does not support epoll. This error can occur if fd refers to,
for example, a regular file or a directory.

STANDARDS
Linux.

HISTORY
Linux 2.6, glibc 2.3.2.

NOTES
The epoll interface supports all file descriptors that support poll(2).

BUGS
Before Linux 2.6.9, the EPOLL_CTL_DEL operation required a non-null pointer in
event, even though this argument is ignored. Since Linux 2.6.9, event can be speci-
fied as NULL when using EPOLL_CTL_DEL. Applications that need to be portable
to kernels before Linux 2.6.9 should specify a non-null pointer in event.

If EPOLLWAKEUP is specified in flags, but the caller does not have the
CAP_BLOCK_SUSPEND capability, then the EPOLLWAKEUP flag is silently ig-
nored . This unfortunate behavior is necessary because no validity checks were per-
formed on the flags argument in the original implementation, and the addition of the
EPOLLWAKEUP with a check that caused the call to fail if the caller did not have
the CAP_BLOCK_SUSPEND capability caused a breakage in at least one existing
user-space application that happened to randomly (and uselessly) specify this bit. A
robust application should therefore double check that it has the CAP_BLOCK_SUS-
PEND capability if attempting to use the EPOLLWAKEUP flag.

SEE ALSO
epoll_create(2), epoll_wait(2), ioctl_eventpoll(2), poll(2), epoll(7)

Linux man-pages 6.13 2024-07-23 166

epoll_wait(2) System Calls Manual epoll_wait(2)

NAME
epoll_wait, epoll_pwait, epoll_pwait2 - wait for an I/O event on an epoll file descrip-
tor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/epoll.h>

int epoll_wait(int epfd , struct epoll_event events[.maxevents],
int maxevents, int timeout);

int epoll_pwait(int epfd , struct epoll_event events[.maxevents],
int maxevents, int timeout,
const sigset_t *_Nullable sigmask);

int epoll_pwait2(int epfd , struct epoll_event events[.maxevents],
int maxevents, const struct timespec *_Nullable timeout,
const sigset_t *_Nullable sigmask);

DESCRIPTION
The epoll_wait() system call waits for events on the epoll(7) instance referred to by
the file descriptor epfd . The buffer pointed to by events is used to return information
from the ready list about file descriptors in the interest list that have some events
available. Up to maxevents are returned by epoll_wait(). The maxevents argument
must be greater than zero.

The timeout argument specifies the number of milliseconds that epoll_wait() will
block. Time is measured against the CLOCK_MONOTONIC clock.

A call to epoll_wait() will block until either:

• a file descriptor delivers an event;

• the call is interrupted by a signal handler; or

• the timeout expires.

Note that the timeout interval will be rounded up to the system clock granularity, and
kernel scheduling delays mean that the blocking interval may overrun by a small
amount. Specifying a timeout of -1 causes epoll_wait() to block indefinitely, while
specifying a timeout equal to zero causes epoll_wait() to return immediately, even if
no events are available.

The struct epoll_event is described in epoll_event(3type).

The data field of each returned epoll_event structure contains the same data as was
specified in the most recent call to epoll_ctl(2) (EPOLL_CTL_ADD,
EPOLL_CTL_MOD) for the corresponding open file descriptor.

The events field is a bit mask that indicates the events that have occurred for the corre-
sponding open file description. See epoll_ctl(2) for a list of the bits that may appear
in this mask.

epoll_pwait()
The relationship between epoll_wait() and epoll_pwait() is analogous to the relation-
ship between select(2) and pselect(2): like pselect(2), epoll_pwait() allows an appli-
cation to safely wait until either a file descriptor becomes ready or until a signal is

Linux man-pages 6.13 2024-12-14 167

epoll_wait(2) System Calls Manual epoll_wait(2)

caught.

The following epoll_pwait() call:

ready = epoll_pwait(epfd, &events, maxevents, timeout, &sigmask);

is equivalent to atomically executing the following calls:

sigset_t origmask;

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = epoll_wait(epfd, &events, maxevents, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The sigmask argument may be specified as NULL, in which case epoll_pwait() is
equivalent to epoll_wait().

epoll_pwait2()
The epoll_pwait2() system call is equivalent to epoll_pwait() except for the timeout
argument. It takes an argument of type timespec to be able to specify nanosecond res-
olution timeout. This argument functions the same as in pselect(2) and ppoll(2). If
timeout is NULL, then epoll_pwait2() can block indefinitely.

RETURN VALUE
On success, epoll_wait() returns the number of file descriptors ready for the requested
I/O operation, or zero if no file descriptor became ready during the requested timeout
milliseconds. On failure, epoll_wait() returns -1 and errno is set to indicate the error.

ERRORS
EBADF

epfd is not a valid file descriptor.

EFAULT
The memory area pointed to by events is not accessible with write permis-
sions.

EINTR
The call was interrupted by a signal handler before either (1) any of the re-
quested events occurred or (2) the timeout expired; see signal(7).

EINVAL
epfd is not an epoll file descriptor, or maxevents is less than or equal to zero.

STANDARDS
Linux.

HISTORY
epoll_wait()

Linux 2.6, glibc 2.3.2.

epoll_pwait()
Linux 2.6.19, glibc 2.6.

epoll_pwait2()
Linux 5.11.

Linux man-pages 6.13 2024-12-14 168

epoll_wait(2) System Calls Manual epoll_wait(2)

NOTES
While one thread is blocked in a call to epoll_wait(), it is possible for another thread
to add a file descriptor to the waited-upon epoll instance. If the new file descriptor be-
comes ready, it will cause the epoll_wait() call to unblock.

If more than maxevents file descriptors are ready when epoll_wait() is called, then
successive epoll_wait() calls will round robin through the set of ready file descriptors.
This behavior helps avoid starvation scenarios, where a process fails to notice that ad-
ditional file descriptors are ready because it focuses on a set of file descriptors that are
already known to be ready.

Note that it is possible to call epoll_wait() on an epoll instance whose interest list is
currently empty (or whose interest list becomes empty because file descriptors are
closed or removed from the interest in another thread). The call will block until some
file descriptor is later added to the interest list (in another thread) and that file descrip-
tor becomes ready.

C library/kernel differences
The raw epoll_pwait() and epoll_pwait2() system calls have a sixth argument, size_t
sigsetsize, which specifies the size in bytes of the sigmask argument. The glibc
epoll_pwait() wrapper function specifies this argument as a fixed value (equal to
sizeof(sigset_t)).

BUGS
Before Linux 2.6.37, a timeout value larger than approximately LONG_MAX / HZ
milliseconds is treated as -1 (i.e., infinity). Thus, for example, on a system where
sizeof(long) is 4 and the kernel HZ value is 1000, this means that timeouts greater
than 35.79 minutes are treated as infinity.

SEE ALSO
epoll_create(2), epoll_ctl(2), epoll(7)

Linux man-pages 6.13 2024-12-14 169

eventfd(2) System Calls Manual eventfd(2)

NAME
eventfd - create a file descriptor for event notification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/eventfd.h>

int eventfd(unsigned int initval, int flags);

DESCRIPTION
eventfd() creates an "eventfd object" that can be used as an event wait/notify mecha-
nism by user-space applications, and by the kernel to notify user-space applications of
events. The object contains an unsigned 64-bit integer (uint64_t) counter that is
maintained by the kernel. This counter is initialized with the value specified in the ar-
gument initval.

As its return value, eventfd() returns a new file descriptor that can be used to refer to
the eventfd object.

The following values may be bitwise ORed in flags to change the behavior of
eventfd():

EFD_CLOEXEC (since Linux 2.6.27)
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See
the description of the O_CLOEXEC flag in open(2) for reasons why this may
be useful.

EFD_NONBLOCK (since Linux 2.6.27)
Set the O_NONBLOCK file status flag on the open file description (see
open(2)) referred to by the new file descriptor. Using this flag saves extra calls
to fcntl(2) to achieve the same result.

EFD_SEMAPHORE (since Linux 2.6.30)
Provide semaphore-like semantics for reads from the new file descriptor. See
below.

Up to Linux 2.6.26, the flags argument is unused, and must be specified as zero.

The following operations can be performed on the file descriptor returned by
eventfd():

read(2)
Each successful read(2) returns an 8-byte integer. A read(2) fails with the er-
ror EINVAL if the size of the supplied buffer is less than 8 bytes.

The value returned by read(2) is in host byte order—that is, the native byte or-
der for integers on the host machine.

The semantics of read(2) depend on whether the eventfd counter currently has
a nonzero value and whether the EFD_SEMAPHORE flag was specified
when creating the eventfd file descriptor:

• If EFD_SEMAPHORE was not specified and the eventfd counter has a
nonzero value, then a read(2) returns 8 bytes containing that value, and the
counter’s value is reset to zero.

Linux man-pages 6.13 2024-07-23 170

eventfd(2) System Calls Manual eventfd(2)

• If EFD_SEMAPHORE was specified and the eventfd counter has a
nonzero value, then a read(2) returns 8 bytes containing the value 1, and
the counter’s value is decremented by 1.

• If the eventfd counter is zero at the time of the call to read(2), then the call
either blocks until the counter becomes nonzero (at which time, the
read(2) proceeds as described above) or fails with the error EAGAIN if
the file descriptor has been made nonblocking.

write(2)
A write(2) call adds the 8-byte integer value supplied in its buffer to the
counter. The maximum value that may be stored in the counter is the largest
unsigned 64-bit value minus 1 (i.e., 0xfffffffffffffffe). If the addition would
cause the counter’s value to exceed the maximum, then the write(2) either
blocks until a read(2) is performed on the file descriptor, or fails with the error
EAGAIN if the file descriptor has been made nonblocking.

A write(2) fails with the error EINVAL if the size of the supplied buffer is less
than 8 bytes, or if an attempt is made to write the value 0xffffffffffffffff.

poll(2)
select(2)
(and similar)

The returned file descriptor supports poll(2) (and analogously epoll(7)) and se-
lect(2), as follows:

• The file descriptor is readable (the select(2) readfds argument; the poll(2)
POLLIN flag) if the counter has a value greater than 0.

• The file descriptor is writable (the select(2) writefds argument; the poll(2)
POLLOUT flag) if it is possible to write a value of at least "1" without
blocking.

• If an overflow of the counter value was detected, then select(2) indicates
the file descriptor as being both readable and writable, and poll(2) returns a
POLLERR event. As noted above, write(2) can never overflow the
counter. However an overflow can occur if 2^64 eventfd "signal posts"
were performed by the KAIO subsystem (theoretically possible, but practi-
cally unlikely). If an overflow has occurred, then read(2) will return that
maximum uint64_t value (i.e., 0xffffffffffffffff).

The eventfd file descriptor also supports the other file-descriptor multiplexing
APIs: pselect(2) and ppoll(2).

close(2)
When the file descriptor is no longer required it should be closed. When all
file descriptors associated with the same eventfd object have been closed, the
resources for object are freed by the kernel.

A copy of the file descriptor created by eventfd() is inherited by the child produced by
fork(2). The duplicate file descriptor is associated with the same eventfd object. File
descriptors created by eventfd() are preserved across execve(2), unless the close-on-
exec flag has been set.

Linux man-pages 6.13 2024-07-23 171

eventfd(2) System Calls Manual eventfd(2)

RETURN VALUE
On success, eventfd() returns a new eventfd file descriptor. On error, -1 is returned
and errno is set to indicate the error.

ERRORS
EINVAL

An unsupported value was specified in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
Could not mount (internal) anonymous inode device.

ENOMEM
There was insufficient memory to create a new eventfd file descriptor.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeeventfd()

VERSIONS
C library/kernel differences

There are two underlying Linux system calls: eventfd() and the more recent
eventfd2(). The former system call does not implement a flags argument. The latter
system call implements the flags values described above. The glibc wrapper function
will use eventfd2() where it is available.

Additional glibc features
The GNU C library defines an additional type, and two functions that attempt to ab-
stract some of the details of reading and writing on an eventfd file descriptor:

typedef uint64_t eventfd_t;

int eventfd_read(int fd, eventfd_t *value);
int eventfd_write(int fd, eventfd_t value);

The functions perform the read and write operations on an eventfd file descriptor, re-
turning 0 if the correct number of bytes was transferred, or -1 otherwise.

STANDARDS
Linux, GNU.

HISTORY
eventfd()

Linux 2.6.22, glibc 2.8.

eventfd2()
Linux 2.6.27 (see VERSIONS). Since glibc 2.9, the eventfd() wrapper will
employ the eventfd2() system call, if it is supported by the kernel.

Linux man-pages 6.13 2024-07-23 172

eventfd(2) System Calls Manual eventfd(2)

NOTES
Applications can use an eventfd file descriptor instead of a pipe (see pipe(2)) in all
cases where a pipe is used simply to signal events. The kernel overhead of an eventfd
file descriptor is much lower than that of a pipe, and only one file descriptor is re-
quired (versus the two required for a pipe).

When used in the kernel, an eventfd file descriptor can provide a bridge from kernel to
user space, allowing, for example, functionalities like KAIO (kernel AIO) to signal to
a file descriptor that some operation is complete.

A key point about an eventfd file descriptor is that it can be monitored just like any
other file descriptor using select(2), poll(2), or epoll(7). This means that an applica-
tion can simultaneously monitor the readiness of "traditional" files and the readiness
of other kernel mechanisms that support the eventfd interface. (Without the eventfd()
interface, these mechanisms could not be multiplexed via select(2), poll(2), or
epoll(7).)

The current value of an eventfd counter can be viewed via the entry for the corre-
sponding file descriptor in the process’s /proc/ pid /fdinfo directory. See proc(5) for
further details.

EXAMPLES
The following program creates an eventfd file descriptor and then forks to create a
child process. While the parent briefly sleeps, the child writes each of the integers
supplied in the program’s command-line arguments to the eventfd file descriptor.
When the parent has finished sleeping, it reads from the eventfd file descriptor.

The following shell session shows a sample run of the program:

$./a.out 1 2 4 7 14
Child writing 1 to efd
Child writing 2 to efd
Child writing 4 to efd
Child writing 7 to efd
Child writing 14 to efd
Child completed write loop
Parent about to read
Parent read 28 (0x1c) from efd

Program source

#include <err.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/eventfd.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int efd;

Linux man-pages 6.13 2024-07-23 173

eventfd(2) System Calls Manual eventfd(2)

uint64_t u;
ssize_t s;

if (argc < 2) {
fprintf(stderr, "Usage: %s <num>...\n", argv[0]);
exit(EXIT_FAILURE);

}

efd = eventfd(0, 0);
if (efd == -1)

err(EXIT_FAILURE, "eventfd");

switch (fork()) {
case 0:

for (size_t j = 1; j < argc; j++) {
printf("Child writing %s to efd\n", argv[j]);
u = strtoull(argv[j], NULL, 0);

/* strtoull() allows various bases */
s = write(efd, &u, sizeof(uint64_t));
if (s != sizeof(uint64_t))

err(EXIT_FAILURE, "write");
}
printf("Child completed write loop\n");

exit(EXIT_SUCCESS);

default:
sleep(2);

printf("Parent about to read\n");
s = read(efd, &u, sizeof(uint64_t));
if (s != sizeof(uint64_t))

err(EXIT_FAILURE, "read");
printf("Parent read %"PRIu64" (%#"PRIx64") from efd\n", u, u);
exit(EXIT_SUCCESS);

case -1:
err(EXIT_FAILURE, "fork");

}
}

SEE ALSO
futex(2), pipe(2), poll(2), read(2), select(2), signalfd(2), timerfd_create(2), write(2),
epoll(7), sem_overview(7)

Linux man-pages 6.13 2024-07-23 174

execve(2) System Calls Manual execve(2)

NAME
execve - execute program

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int execve(const char *pathname, char *const _Nullable argv[],
char *const _Nullable envp[]);

DESCRIPTION
execve() executes the program referred to by pathname. This causes the program that
is currently being run by the calling process to be replaced with a new program, with
newly initialized stack, heap, and (initialized and uninitialized) data segments.

pathname must be either a binary executable, or a script starting with a line of the
form:

#!interpreter [optional-arg]

For details of the latter case, see "Interpreter scripts" below.

argv is an array of pointers to strings passed to the new program as its command-line
arguments. By convention, the first of these strings (i.e., argv[0]) should contain the
filename associated with the file being executed. The argv array must be terminated
by a null pointer. (Thus, in the new program, argv[argc] will be a null pointer.)

envp is an array of pointers to strings, conventionally of the form key=value, which
are passed as the environment of the new program. The envp array must be termi-
nated by a null pointer.

This manual page describes the Linux system call in detail; for an overview of the
nomenclature and the many, often preferable, standardised variants of this function
provided by libc, including ones that search the PATH environment variable, see
exec(3).

The argument vector and environment can be accessed by the new program’s main
function, when it is defined as:

int main(int argc, char *argv[], char *envp[])

Note, however, that the use of a third argument to the main function is not specified in
POSIX.1; according to POSIX.1, the environment should be accessed via the external
variable environ(7).

execve() does not return on success, and the text, initialized data, uninitialized data
(bss), and stack of the calling process are overwritten according to the contents of the
newly loaded program.

If the current program is being ptraced, a SIGTRAP signal is sent to it after a suc-
cessful execve().

If the set-user-ID bit is set on the program file referred to by pathname, then the effec-
tive user ID of the calling process is changed to that of the owner of the program file.
Similarly, if the set-group-ID bit is set on the program file, then the effective group ID
of the calling process is set to the group of the program file.

Linux man-pages 6.13 2024-07-23 175

execve(2) System Calls Manual execve(2)

The aforementioned transformations of the effective IDs are not performed (i.e., the
set-user-ID and set-group-ID bits are ignored) if any of the following is true:

• the no_new_privs attribute is set for the calling thread (see prctl(2));

• the underlying filesystem is mounted nosuid (the MS_NOSUID flag for
mount(2)); or

• the calling process is being ptraced.

The capabilities of the program file (see capabilities(7)) are also ignored if any of the
above are true.

The effective user ID of the process is copied to the saved set-user-ID; similarly, the
effective group ID is copied to the saved set-group-ID. This copying takes place after
any effective ID changes that occur because of the set-user-ID and set-group-ID mode
bits.

The process’s real UID and real GID, as well as its supplementary group IDs, are un-
changed by a call to execve().

If the executable is an a.out dynamically linked binary executable containing shared-
library stubs, the Linux dynamic linker ld.so(8) is called at the start of execution to
bring needed shared objects into memory and link the executable with them.

If the executable is a dynamically linked ELF executable, the interpreter named in the
PT_INTERP segment is used to load the needed shared objects. This interpreter is
typically /lib/ld-linux.so.2 for binaries linked with glibc (see ld-linux.so(8)).

Effect on process attributes
All process attributes are preserved during an execve(), except the following:

• The dispositions of any signals that are being caught are reset to the default (sig-
nal(7)).

• Any alternate signal stack is not preserved (sigaltstack(2)).

• Memory mappings are not preserved (mmap(2)).

• Attached System V shared memory segments are detached (shmat(2)).

• POSIX shared memory regions are unmapped (shm_open(3)).

• Open POSIX message queue descriptors are closed (mq_overview(7)).

• Any open POSIX named semaphores are closed (sem_overview(7)).

• POSIX timers are not preserved (timer_create(2)).

• Any open directory streams are closed (opendir(3)).

• Memory locks are not preserved (mlock(2), mlockall(2)).

• Exit handlers are not preserved (atexit(3), on_exit(3)).

• The floating-point environment is reset to the default (see fenv(3)).

The process attributes in the preceding list are all specified in POSIX.1. The follow-
ing Linux-specific process attributes are also not preserved during an execve():

Linux man-pages 6.13 2024-07-23 176

execve(2) System Calls Manual execve(2)

• The process’s "dumpable" attribute is set to the value 1, unless a set-user-ID pro-
gram, a set-group-ID program, or a program with capabilities is being executed, in
which case the dumpable flag may instead be reset to the value in
/proc/sys/fs/suid_dumpable, in the circumstances described under
PR_SET_DUMPABLE in prctl(2). Note that changes to the "dumpable" at-
tribute may cause ownership of files in the process’s /proc/ pid directory to change
to root:root, as described in proc(5).

• The prctl(2) PR_SET_KEEPCAPS flag is cleared.

• (Since Linux 2.4.36 / 2.6.23) If a set-user-ID or set-group-ID program is being ex-
ecuted, then the parent death signal set by prctl(2) PR_SET_PDEATHSIG flag is
cleared.

• The process name, as set by prctl(2) PR_SET_NAME (and displayed by ps -o
comm), is reset to the name of the new executable file.

• The SECBIT_KEEP_CAPS securebits flag is cleared. See capabilities(7).

• The termination signal is reset to SIGCHLD (see clone(2)).

• The file descriptor table is unshared, undoing the effect of the CLONE_FILES
flag of clone(2).

Note the following further points:

• All threads other than the calling thread are destroyed during an execve(). Mu-
texes, condition variables, and other pthreads objects are not preserved.

• The equivalent of setlocale(LC_ALL, "C") is executed at program start-up.

• POSIX.1 specifies that the dispositions of any signals that are ignored or set to the
default are left unchanged. POSIX.1 specifies one exception: if SIGCHLD is be-
ing ignored, then an implementation may leave the disposition unchanged or reset
it to the default; Linux does the former.

• Any outstanding asynchronous I/O operations are canceled (aio_read(3),
aio_write(3)).

• For the handling of capabilities during execve(), see capabilities(7).

• By default, file descriptors remain open across an execve(). File descriptors that
are marked close-on-exec are closed; see the description of FD_CLOEXEC in fc-
ntl(2). (If a file descriptor is closed, this will cause the release of all record locks
obtained on the underlying file by this process. See fcntl(2) for details.) POSIX.1
says that if file descriptors 0, 1, and 2 would otherwise be closed after a successful
execve(), and the process would gain privilege because the set-user-ID or set-
group-ID mode bit was set on the executed file, then the system may open an un-
specified file for each of these file descriptors. As a general principle, no portable
program, whether privileged or not, can assume that these three file descriptors
will remain closed across an execve().

Interpreter scripts
An interpreter script is a text file that has execute permission enabled and whose first
line is of the form:

#!interpreter [optional-arg]

Linux man-pages 6.13 2024-07-23 177

execve(2) System Calls Manual execve(2)

The interpreter must be a valid pathname for an executable file.

If the pathname argument of execve() specifies an interpreter script, then interpreter
will be invoked with the following arguments:

interpreter [optional-arg] pathname arg...

where pathname is the pathname of the file specified as the first argument of execve(),
and arg... is the series of words pointed to by the argv argument of execve(), starting
at argv[1]. Note that there is no way to get the argv[0] that was passed to the ex-
ecve() call.

For portable use, optional-arg should either be absent, or be specified as a single word
(i.e., it should not contain white space); see VERSIONS below.

Since Linux 2.6.28, the kernel permits the interpreter of a script to itself be a script.
This permission is recursive, up to a limit of four recursions, so that the interpreter
may be a script which is interpreted by a script, and so on.

Limits on size of arguments and environment
Most UNIX implementations impose some limit on the total size of the command-line
argument (argv) and environment (envp) strings that may be passed to a new program.
POSIX.1 allows an implementation to advertise this limit using the ARG_MAX con-
stant (either defined in <limits.h> or available at run time using the call
sysconf(_SC_ARG_MAX)).

Before Linux 2.6.23, the memory used to store the environment and argument strings
was limited to 32 pages (defined by the kernel constant MAX_ARG_PAGES). On
architectures with a 4-kB page size, this yields a maximum size of 128 kB.

On Linux 2.6.23 and later, most architectures support a size limit derived from the
soft RLIMIT_STACK resource limit (see getrlimit(2)) that is in force at the time of
the execve() call. (Architectures with no memory management unit are excepted: they
maintain the limit that was in effect before Linux 2.6.23.) This change allows pro-
grams to have a much larger argument and/or environment list. For these architec-
tures, the total size is limited to 1/4 of the allowed stack size. (Imposing the 1/4-limit
ensures that the new program always has some stack space.) Additionally, the total
size is limited to 3/4 of the value of the kernel constant _STK_LIM (8 MiB). Since
Linux 2.6.25, the kernel also places a floor of 32 pages on this size limit, so that, even
when RLIMIT_STACK is set very low, applications are guaranteed to have at least
as much argument and environment space as was provided by Linux 2.6.22 and ear-
lier. (This guarantee was not provided in Linux 2.6.23 and 2.6.24.) Additionally, the
limit per string is 32 pages (the kernel constant MAX_ARG_STRLEN), and the
maximum number of strings is 0x7FFFFFFF.

RETURN VALUE
On success, execve() does not return, on error -1 is returned, and errno is set to indi-
cate the error.

ERRORS
E2BIG

The total number of bytes in the environment (envp) and argument list (argv)
is too large, an argument or environment string is too long, or the full path-
name of the executable is too long. The terminating null byte is counted as
part of the string length.

Linux man-pages 6.13 2024-07-23 178

execve(2) System Calls Manual execve(2)

EACCES
Search permission is denied on a component of the path prefix of pathname or
the name of a script interpreter. (See also path_resolution(7).)

EACCES
The file or a script interpreter is not a regular file.

EACCES
Execute permission is denied for the file or a script or ELF interpreter.

EACCES
The filesystem is mounted noexec.

EAGAIN (since Linux 3.1)
Having changed its real UID using one of the set*uid() calls, the caller was—
and is now still—above its RLIMIT_NPROC resource limit (see
setrlimit(2)). For a more detailed explanation of this error, see NOTES.

EFAULT
pathname or one of the pointers in the vectors argv or envp points outside
your accessible address space.

EINVAL
An ELF executable had more than one PT_INTERP segment (i.e., tried to
name more than one interpreter).

EIO An I/O error occurred.

EISDIR
An ELF interpreter was a directory.

ELIBBAD
An ELF interpreter was not in a recognized format.

ELOOP
Too many symbolic links were encountered in resolving pathname or the
name of a script or ELF interpreter.

ELOOP
The maximum recursion limit was reached during recursive script interpreta-
tion (see "Interpreter scripts", above). Before Linux 3.8, the error produced
for this case was ENOEXEC.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG
pathname is too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The file pathname or a script or ELF interpreter does not exist.

ENOEXEC
An executable is not in a recognized format, is for the wrong architecture, or
has some other format error that means it cannot be executed.

Linux man-pages 6.13 2024-07-23 179

execve(2) System Calls Manual execve(2)

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix of pathname or a script or ELF interpreter is
not a directory.

EPERM
The filesystem is mounted nosuid , the user is not the superuser, and the file
has the set-user-ID or set-group-ID bit set.

EPERM
The process is being traced, the user is not the superuser and the file has the
set-user-ID or set-group-ID bit set.

EPERM
A "capability-dumb" applications would not obtain the full set of permitted ca-
pabilities granted by the executable file. See capabilities(7).

ETXTBSY
The specified executable was open for writing by one or more processes.

VERSIONS
POSIX does not document the #! behavior, but it exists (with some variations) on
other UNIX systems.

On Linux, argv and envp can be specified as NULL. In both cases, this has the same
effect as specifying the argument as a pointer to a list containing a single null pointer.
Do not take advantage of this nonstandard and nonportable misfeature! On
many other UNIX systems, specifying argv as NULL will result in an error
(EFAULT). Some other UNIX systems treat the envp==NULL case the same as
Linux.

POSIX.1 says that values returned by sysconf(3) should be invariant over the lifetime
of a process. However, since Linux 2.6.23, if the RLIMIT_STACK resource limit
changes, then the value reported by _SC_ARG_MAX will also change, to reflect the
fact that the limit on space for holding command-line arguments and environment
variables has changed.

Interpreter scripts
The kernel imposes a maximum length on the text that follows the "#!" characters at
the start of a script; characters beyond the limit are ignored. Before Linux 5.1, the
limit is 127 characters. Since Linux 5.1, the limit is 255 characters.

The semantics of the optional-arg argument of an interpreter script vary across imple-
mentations. On Linux, the entire string following the interpreter name is passed as a
single argument to the interpreter, and this string can include white space. However,
behavior differs on some other systems. Some systems use the first white space to ter-
minate optional-arg. On some systems, an interpreter script can have multiple argu-
ments, and white spaces in optional-arg are used to delimit the arguments.

Linux (like most other modern UNIX systems) ignores the set-user-ID and set-group-
ID bits on scripts.

Linux man-pages 6.13 2024-07-23 180

execve(2) System Calls Manual execve(2)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

With UNIX V6, the argument list of an exec() call was ended by 0, while the argu-
ment list of main was ended by -1. Thus, this argument list was not directly usable in
a further exec() call. Since UNIX V7, both are NULL.

NOTES
One sometimes sees execve() (and the related functions described in exec(3)) de-
scribed as "executing a new process" (or similar). This is a highly misleading descrip-
tion: there is no new process; many attributes of the calling process remain unchanged
(in particular, its PID). All that execve() does is arrange for an existing process (the
calling process) to execute a new program.

Set-user-ID and set-group-ID processes can not be ptrace(2)d.

The result of mounting a filesystem nosuid varies across Linux kernel versions: some
will refuse execution of set-user-ID and set-group-ID executables when this would
give the user powers they did not have already (and return EPERM), some will just
ignore the set-user-ID and set-group-ID bits and exec() successfully.

In most cases where execve() fails, control returns to the original executable image,
and the caller of execve() can then handle the error. However, in (rare) cases (typi-
cally caused by resource exhaustion), failure may occur past the point of no return: the
original executable image has been torn down, but the new image could not be com-
pletely built. In such cases, the kernel kills the process with a SIGSEGV (SIGKILL
until Linux 3.17) signal.

execve() and EAGAIN
A more detailed explanation of the EAGAIN error that can occur (since Linux 3.1)
when calling execve() is as follows.

The EAGAIN error can occur when a preceding call to setuid(2), setreuid(2), or se-
tresuid(2) caused the real user ID of the process to change, and that change caused the
process to exceed its RLIMIT_NPROC resource limit (i.e., the number of processes
belonging to the new real UID exceeds the resource limit). From Linux 2.6.0 to
Linux 3.0, this caused the set*uid() call to fail. (Before Linux 2.6, the resource limit
was not imposed on processes that changed their user IDs.)

Since Linux 3.1, the scenario just described no longer causes the set*uid() call to fail,
because it too often led to security holes where buggy applications didn’t check the
return status and assumed that—if the caller had root privileges—the call would al-
ways succeed. Instead, the set*uid() calls now successfully change the real UID, but
the kernel sets an internal flag, named PF_NPROC_EXCEEDED, to note that the
RLIMIT_NPROC resource limit has been exceeded. If the PF_NPROC_EX-
CEEDED flag is set and the resource limit is still exceeded at the time of a subse-
quent execve() call, that call fails with the error EAGAIN. This kernel logic ensures
that the RLIMIT_NPROC resource limit is still enforced for the common privileged
daemon workflow—namely, fork(2) + set*uid() + execve().

If the resource limit was not still exceeded at the time of the execve() call (because
other processes belonging to this real UID terminated between the set*uid() call and

Linux man-pages 6.13 2024-07-23 181

execve(2) System Calls Manual execve(2)

the execve() call), then the execve() call succeeds and the kernel clears the
PF_NPROC_EXCEEDED process flag. The flag is also cleared if a subsequent call
to fork(2) by this process succeeds.

EXAMPLES
The following program is designed to be execed by the second program below. It just
echoes its command-line arguments, one per line.

/* myecho.c */

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

for (size_t j = 0; j < argc; j++)
printf("argv[%zu]: %s\n", j, argv[j]);

exit(EXIT_SUCCESS);
}

This program can be used to exec the program named in its command-line argument:

/* execve.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

static char *newargv[] = { NULL, "hello", "world", NULL };
static char *newenviron[] = { NULL };

if (argc != 2) {
fprintf(stderr, "Usage: %s <file-to-exec>\n", argv[0]);
exit(EXIT_FAILURE);

}

newargv[0] = argv[1];

execve(argv[1], newargv, newenviron);
perror("execve"); /* execve() returns only on error */
exit(EXIT_FAILURE);

}

We can use the second program to exec the first as follows:

$ cc myecho.c -o myecho
$ cc execve.c -o execve

Linux man-pages 6.13 2024-07-23 182

execve(2) System Calls Manual execve(2)

$./execve ./myecho
argv[0]: ./myecho
argv[1]: hello
argv[2]: world

We can also use these programs to demonstrate the use of a script interpreter. To do
this we create a script whose "interpreter" is our myecho program:

$ cat > script
#!./myecho script-arg
^D
$ chmod +x script

We can then use our program to exec the script:

$./execve ./script
argv[0]: ./myecho
argv[1]: script-arg
argv[2]: ./script
argv[3]: hello
argv[4]: world

SEE ALSO
chmod(2), execveat(2), fork(2), get_robust_list(2), ptrace(2), exec(3), fexecve(3),
getauxval(3), getopt(3), system(3), capabilities(7), credentials(7), environ(7),
path_resolution(7), ld.so(8)

Linux man-pages 6.13 2024-07-23 183

execveat(2) System Calls Manual execveat(2)

NAME
execveat - execute program relative to a directory file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int execveat(int dirfd , const char *pathname,
char *const _Nullable argv[],
char *const _Nullable envp[],
int flags);

DESCRIPTION
The execveat() system call executes the program referred to by the combination of
dirfd and pathname. It operates in exactly the same way as execve(2), except for the
differences described in this manual page.

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by execve(2) for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like ex-
ecve(2)).

If pathname is absolute, then dirfd is ignored.

If pathname is an empty string and the AT_EMPTY_PATH flag is specified, then the
file descriptor dirfd specifies the file to be executed (i.e., dirfd refers to an executable
file, rather than a directory).

The flags argument is a bit mask that can include zero or more of the following flags:

AT_EMPTY_PATH
If pathname is an empty string, operate on the file referred to by dirfd (which
may have been obtained using the open(2) O_PATH flag).

AT_SYMLINK_NOFOLLOW
If the file identified by dirfd and a non-NULL pathname is a symbolic link,
then the call fails with the error ELOOP.

RETURN VALUE
On success, execveat() does not return. On error, -1 is returned, and errno is set to
indicate the error.

ERRORS
The same errors that occur for execve(2) can also occur for execveat(). The following
additional errors can occur for execveat():

pathname
is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EINVAL
Invalid flag specified in flags.

Linux man-pages 6.13 2024-07-23 184

execveat(2) System Calls Manual execveat(2)

ELOOP
flags includes AT_SYMLINK_NOFOLLOW and the file identified by dirfd
and a non-NULL pathname is a symbolic link.

ENOENT
The program identified by dirfd and pathname requires the use of an inter-
preter program (such as a script starting with "#!"), but the file descriptor dirfd
was opened with the O_CLOEXEC flag, with the result that the program file
is inaccessible to the launched interpreter. See BUGS.

ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than a
directory.

STANDARDS
Linux.

HISTORY
Linux 3.19, glibc 2.34.

NOTES
In addition to the reasons explained in openat(2), the execveat() system call is also
needed to allow fexecve(3) to be implemented on systems that do not have the /proc
filesystem mounted.

When asked to execute a script file, the argv[0] that is passed to the script interpreter
is a string of the form /dev/fd/N or /dev/fd/N/P, where N is the number of the file de-
scriptor passed via the dirfd argument. A string of the first form occurs when
AT_EMPTY_PATH is employed. A string of the second form occurs when the
script is specified via both dirfd and pathname; in this case, P is the value given in
pathname.

For the same reasons described in fexecve(3), the natural idiom when using execveat()
is to set the close-on-exec flag on dirfd . (But see BUGS.)

BUGS
The ENOENT error described above means that it is not possible to set the close-on-
exec flag on the file descriptor given to a call of the form:

execveat(fd, "", argv, envp, AT_EMPTY_PATH);

However, the inability to set the close-on-exec flag means that a file descriptor refer-
ring to the script leaks through to the script itself. As well as wasting a file descriptor,
this leakage can lead to file-descriptor exhaustion in scenarios where scripts recur-
sively employ execveat().

SEE ALSO
execve(2), openat(2), fexecve(3)

Linux man-pages 6.13 2024-07-23 185

_exit(2) System Calls Manual _exit(2)

NAME
_exit, _Exit - terminate the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

[[noreturn]] void _exit(int status);

#include <stdlib.h>

[[noreturn]] void _Exit(int status);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

_Exit():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
_exit() terminates the calling process "immediately". Any open file descriptors be-
longing to the process are closed. Any children of the process are inherited by init(1)
(or by the nearest "subreaper" process as defined through the use of the prctl(2)
PR_SET_CHILD_SUBREAPER operation). The process’s parent is sent a
SIGCHLD signal.

The value status & 0xFF is returned to the parent process as the process’s exit status,
and can be collected by the parent using one of the wait(2) family of calls.

The function _Exit() is equivalent to _exit().

RETURN VALUE
These functions do not return.

STANDARDS
_exit()

POSIX.1-2008.

_Exit()
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

_Exit() was introduced by C99.

NOTES
For a discussion on the effects of an exit, the transmission of exit status, zombie
processes, signals sent, and so on, see exit(3).

The function _exit() is like exit(3), but does not call any functions registered with
atexit(3) or on_exit(3). Open stdio(3) streams are not flushed. On the other hand,
_exit() does close open file descriptors, and this may cause an unknown delay, waiting
for pending output to finish. If the delay is undesired, it may be useful to call func-
tions like tcflush(3) before calling _exit(). Whether any pending I/O is canceled, and
which pending I/O may be canceled upon _exit(), is implementation-dependent.

Linux man-pages 6.13 2024-07-23 186

_exit(2) System Calls Manual _exit(2)

C library/kernel differences
The text above in DESCRIPTION describes the traditional effect of _exit(), which is
to terminate a process, and these are the semantics specified by POSIX.1 and imple-
mented by the C library wrapper function. On modern systems, this means termina-
tion of all threads in the process.

By contrast with the C library wrapper function, the raw Linux _exit() system call ter-
minates only the calling thread, and actions such as reparenting child processes or
sending SIGCHLD to the parent process are performed only if this is the last thread
in the thread group.

Up to glibc 2.3, the _exit() wrapper function invoked the kernel system call of the
same name. Since glibc 2.3, the wrapper function invokes exit_group(2), in order to
terminate all of the threads in a process.

SEE ALSO
execve(2), exit_group(2), fork(2), kill(2), wait(2), wait4(2), waitpid(2), atexit(3),
exit(3), on_exit(3), termios(3)

Linux man-pages 6.13 2024-07-23 187

exit_group(2) System Calls Manual exit_group(2)

NAME
exit_group - exit all threads in a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[noreturn]] void syscall(SYS_exit_group, int status);

Note: glibc provides no wrapper for exit_group(), necessitating the use of syscall(2).

DESCRIPTION
This system call terminates all threads in the calling process’s thread group.

RETURN VALUE
This system call does not return.

STANDARDS
Linux.

HISTORY
Linux 2.5.35.

NOTES
Since glibc 2.3, this is the system call invoked when the _exit(2) wrapper function is
called.

SEE ALSO
_exit(2)

Linux man-pages 6.13 2024-07-23 188

fallocate(2) System Calls Manual fallocate(2)

NAME
fallocate - manipulate file space

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h>

int fallocate(int fd , int mode, off_t offset, off_t size);

DESCRIPTION
This is a nonportable, Linux-specific system call. For the portable, POSIX.1-specified
method of ensuring that space is allocated for a file, see posix_fallocate(3).

fallocate() allows the caller to directly manipulate the allocated disk space for the file
referred to by fd for the byte range starting at offset and continuing for size bytes.

The mode argument determines the operation to be performed on the given range.
Details of the supported operations are given in the subsections below.

Allocating disk space
The default operation (i.e., mode is zero) of fallocate() allocates the disk space within
the range specified by offset and size. The file size (as reported by stat(2)) will be
changed if offset+size is greater than the file size. Any subregion within the range
specified by offset and size that did not contain data before the call will be initialized
to zero. This default behavior closely resembles the behavior of the posix_fallo-
cate(3) library function, and is intended as a method of optimally implementing that
function.

After a successful call, subsequent writes into the range specified by offset and size
are guaranteed not to fail because of lack of disk space.

If the FALLOC_FL_KEEP_SIZE flag is specified in mode, the behavior of the call
is similar, but the file size will not be changed even if offset+size is greater than the
file size. Preallocating zeroed blocks beyond the end of the file in this manner is use-
ful for optimizing append workloads.

If the FALLOC_FL_UNSHARE_RANGE flag is specified in mode, shared file data
extents will be made private to the file to guarantee that a subsequent write will not
fail due to lack of space. Typically, this will be done by performing a copy-on-write
operation on all shared data in the file. This flag may not be supported by all filesys-
tems.

Because allocation is done in block size chunks, fallocate() may allocate a larger
range of disk space than was specified.

Deallocating file space
Specifying the FALLOC_FL_PUNCH_HOLE flag (available since Linux 2.6.38) in
mode deallocates space (i.e., creates a hole) in the byte range starting at offset and
continuing for size bytes. Within the specified range, partial filesystem blocks are ze-
roed, and whole filesystem blocks are removed from the file. After a successful call,
subsequent reads from this range will return zeros.

The FALLOC_FL_PUNCH_HOLE flag must be ORed with

Linux man-pages 6.13 2024-11-17 189

fallocate(2) System Calls Manual fallocate(2)

FALLOC_FL_KEEP_SIZE in mode; in other words, even when punching off the
end of the file, the file size (as reported by stat(2)) does not change.

Not all filesystems support FALLOC_FL_PUNCH_HOLE; if a filesystem doesn’t
support the operation, an error is returned. The operation is supported on at least the
following filesystems:

• XFS (since Linux 2.6.38)

• ext4 (since Linux 3.0)

• Btrfs (since Linux 3.7)

• tmpfs(5) (since Linux 3.5)

• gfs2(5) (since Linux 4.16)

Collapsing file space
Specifying the FALLOC_FL_COLLAPSE_RANGE flag (available since Linux
3.15) in mode removes a byte range from a file, without leaving a hole. The byte
range to be collapsed starts at offset and continues for size bytes. At the completion
of the operation, the contents of the file starting at the location offset+size will be ap-
pended at the location offset, and the file will be size bytes smaller.

A filesystem may place limitations on the granularity of the operation, in order to en-
sure efficient implementation. Typically, offset and size must be a multiple of the
filesystem logical block size, which varies according to the filesystem type and con-
figuration. If a filesystem has such a requirement, fallocate() fails with the error EIN-
VAL if this requirement is violated.

If the region specified by offset plus size reaches or passes the end of file, an error is
returned; instead, use ftruncate(2) to truncate a file.

No other flags may be specified in mode in conjunction with FALLOC_FL_COL-
LAPSE_RANGE.

As at Linux 3.15, FALLOC_FL_COLLAPSE_RANGE is supported by ext4 (only
for extent-based files) and XFS.

Zeroing file space
Specifying the FALLOC_FL_ZERO_RANGE flag (available since Linux 3.15) in
mode zeros space in the byte range starting at offset and continuing for size bytes.
Within the specified range, blocks are preallocated for the regions that span the holes
in the file. After a successful call, subsequent reads from this range will return zeros.

Zeroing is done within the filesystem preferably by converting the range into unwrit-
ten extents. This approach means that the specified range will not be physically ze-
roed out on the device (except for partial blocks at the either end of the range), and
I/O is (otherwise) required only to update metadata.

If the FALLOC_FL_KEEP_SIZE flag is additionally specified in mode, the behav-
ior of the call is similar, but the file size will not be changed even if offset+size is
greater than the file size. This behavior is the same as when preallocating space with
FALLOC_FL_KEEP_SIZE specified.

Not all filesystems support FALLOC_FL_ZERO_RANGE; if a filesystem doesn’t
support the operation, an error is returned. The operation is supported on at least the
following filesystems:

Linux man-pages 6.13 2024-11-17 190

fallocate(2) System Calls Manual fallocate(2)

• XFS (since Linux 3.15)

• ext4, for extent-based files (since Linux 3.15)

• SMB3 (since Linux 3.17)

• Btrfs (since Linux 4.16)

Increasing file space
Specifying the FALLOC_FL_INSERT_RANGE flag (available since Linux 4.1) in
mode increases the file space by inserting a hole within the file size without overwrit-
ing any existing data. The hole will start at offset and continue for size bytes. When
inserting the hole inside file, the contents of the file starting at offset will be shifted
upward (i.e., to a higher file offset) by size bytes. Inserting a hole inside a file in-
creases the file size by size bytes.

This mode has the same limitations as FALLOC_FL_COLLAPSE_RANGE regard-
ing the granularity of the operation. If the granularity requirements are not met, fallo-
cate() fails with the error EINVAL. If the offset is equal to or greater than the end of
file, an error is returned. For such operations (i.e., inserting a hole at the end of file),
ftruncate(2) should be used.

No other flags may be specified in mode in conjunction with FALLOC_FL_IN-
SERT_RANGE.

FALLOC_FL_INSERT_RANGE requires filesystem support. Filesystems that sup-
port this operation include XFS (since Linux 4.1) and ext4 (since Linux 4.2).

RETURN VALUE
On success, fallocate() returns zero. On error, -1 is returned and errno is set to indi-
cate the error.

ERRORS
EBADF

fd is not a valid file descriptor, or is not opened for writing.

EFBIG
offset+size exceeds the maximum file size.

EFBIG
mode is FALLOC_FL_INSERT_RANGE, and the current file size+len ex-
ceeds the maximum file size.

EINTR
A signal was caught during execution; see signal(7).

EINVAL
offset was less than 0, or size was less than or equal to 0.

EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE and the range specified by off-
set plus size reaches or passes the end of the file.

EINVAL
mode is FALLOC_FL_INSERT_RANGE and the range specified by offset
reaches or passes the end of the file.

Linux man-pages 6.13 2024-11-17 191

fallocate(2) System Calls Manual fallocate(2)

EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN-
SERT_RANGE, but either offset or size is not a multiple of the filesystem
block size.

EINVAL
mode contains one of FALLOC_FL_COLLAPSE_RANGE or FAL-
LOC_FL_INSERT_RANGE and also other flags; no other flags are permit-
ted with FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN-
SERT_RANGE.

EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE, FAL-
LOC_FL_ZERO_RANGE, or FALLOC_FL_INSERT_RANGE, but the
file referred to by fd is not a regular file.

EIO An I/O error occurred while reading from or writing to a filesystem.

ENODEV
fd does not refer to a regular file or a directory. (If fd is a pipe or FIFO, a dif-
ferent error results.)

ENOSPC
There is not enough space left on the device containing the file referred to by
fd .

ENOSYS
This kernel does not implement fallocate().

EOPNOTSUPP
The filesystem containing the file referred to by fd does not support this oper-
ation; or the mode is not supported by the filesystem containing the file re-
ferred to by fd .

EPERM
The file referred to by fd is marked immutable (see chattr(1)).

EPERM
mode specifies FALLOC_FL_PUNCH_HOLE, FALLOC_FL_COL-
LAPSE_RANGE, or FALLOC_FL_INSERT_RANGE and the file referred
to by fd is marked append-only (see chattr(1)).

EPERM
The operation was prevented by a file seal; see fcntl(2).

ESPIPE
fd refers to a pipe or FIFO.

ETXTBSY
mode specifies FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN-
SERT_RANGE, but the file referred to by fd is currently being executed.

STANDARDS
Linux.

Linux man-pages 6.13 2024-11-17 192

fallocate(2) System Calls Manual fallocate(2)

HISTORY
fallocate()

Linux 2.6.23, glibc 2.10.

FALLOC_FL_*
glibc 2.18.

SEE ALSO
fallocate(1), ftruncate(2), posix_fadvise(3), posix_fallocate(3)

Linux man-pages 6.13 2024-11-17 193

fanotify_init(2) System Calls Manual fanotify_init(2)

NAME
fanotify_init - create and initialize fanotify group

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of O_* constants */
#include <sys/fanotify.h>

int fanotify_init(unsigned int flags, unsigned int event_f_flags);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_init() initializes a new fanotify group and returns a file descriptor for the
event queue associated with the group.

The file descriptor is used in calls to fanotify_mark(2) to specify the files, directories,
mounts, or filesystems for which fanotify events shall be created. These events are re-
ceived by reading from the file descriptor. Some events are only informative, indicat-
ing that a file has been accessed. Other events can be used to determine whether an-
other application is permitted to access a file or directory. Permission to access
filesystem objects is granted by writing to the file descriptor.

Multiple programs may be using the fanotify interface at the same time to monitor the
same files.

The number of fanotify groups per user is limited. See fanotify(7) for details about
this limit.

The flags argument contains a multi-bit field defining the notification class of the lis-
tening application and further single bit fields specifying the behavior of the file de-
scriptor.

If multiple listeners for permission events exist, the notification class is used to estab-
lish the sequence in which the listeners receive the events.

Only one of the following notification classes may be specified in flags:

FAN_CLASS_PRE_CONTENT
This value allows the receipt of events notifying that a file has been accessed
and events for permission decisions if a file may be accessed. It is intended
for event listeners that need to access files before they contain their final data.
This notification class might be used by hierarchical storage managers, for ex-
ample. Use of this flag requires the CAP_SYS_ADMIN capability.

FAN_CLASS_CONTENT
This value allows the receipt of events notifying that a file has been accessed
and events for permission decisions if a file may be accessed. It is intended
for event listeners that need to access files when they already contain their fi-
nal content. This notification class might be used by malware detection pro-
grams, for example. Use of this flag requires the CAP_SYS_ADMIN capa-
bility.

Linux man-pages 6.13 2024-07-23 194

fanotify_init(2) System Calls Manual fanotify_init(2)

FAN_CLASS_NOTIF
This is the default value. It does not need to be specified. This value only al-
lows the receipt of events notifying that a file has been accessed. Permission
decisions before the file is accessed are not possible.

Listeners with different notification classes will receive events in the order
FAN_CLASS_PRE_CONTENT, FAN_CLASS_CONTENT, FAN_CLASS_NO-
TIF. The order of notification for listeners in the same notification class is undefined.

The following bits can additionally be set in flags:

FAN_CLOEXEC
Set the close-on-exec flag (FD_CLOEXEC) on the new file descriptor. See
the description of the O_CLOEXEC flag in open(2).

FAN_NONBLOCK
Enable the nonblocking flag (O_NONBLOCK) for the file descriptor. Read-
ing from the file descriptor will not block. Instead, if no data is available,
read(2) fails with the error EAGAIN.

FAN_UNLIMITED_QUEUE
Remove the limit on the number of events in the event queue. See fanotify(7)
for details about this limit. Use of this flag requires the CAP_SYS_ADMIN
capability.

FAN_UNLIMITED_MARKS
Remove the limit on the number of fanotify marks per user. See fanotify(7) for
details about this limit. Use of this flag requires the CAP_SYS_ADMIN ca-
pability.

FAN_REPORT_TID (since Linux 4.20)
Report thread ID (TID) instead of process ID (PID) in the pid field of the
struct fanotify_event_metadata supplied to read(2) (see fanotify(7)). Use of
this flag requires the CAP_SYS_ADMIN capability.

FAN_ENABLE_AUDIT (since Linux 4.15)
Enable generation of audit log records about access mediation performed by
permission events. The permission event response has to be marked with the
FAN_AUDIT flag for an audit log record to be generated. Use of this flag re-
quires the CAP_AUDIT_WRITE capability.

FAN_REPORT_FID (since Linux 5.1)
This value allows the receipt of events which contain additional information
about the underlying filesystem object correlated to an event. An additional
record of type FAN_EVENT_INFO_TYPE_FID encapsulates the informa-
tion about the object and is included alongside the generic event metadata
structure. The file descriptor that is used to represent the object correlated to
an event is instead substituted with a file handle. It is intended for applications
that may find the use of a file handle to identify an object more suitable than a
file descriptor. Additionally, it may be used for applications monitoring a di-
rectory or a filesystem that are interested in the directory entry modification
events FAN_CREATE, FAN_DELETE, FAN_MOVE, and FAN_RE-
NAME, or in events such as FAN_ATTRIB, FAN_DELETE_SELF, and
FAN_MOVE_SELF. All the events above require an fanotify group that

Linux man-pages 6.13 2024-07-23 195

fanotify_init(2) System Calls Manual fanotify_init(2)

identifies filesystem objects by file handles. Note that without the flag
FAN_REPORT_TARGET_FID, for the directory entry modification events,
there is an information record that identifies the modified directory and not the
created/deleted/moved child object. The use of FAN_CLASS_CONTENT or
FAN_CLASS_PRE_CONTENT is not permitted with this flag and will result
in the error EINVAL. See fanotify(7) for additional details.

FAN_REPORT_DIR_FID (since Linux 5.9)
Events for fanotify groups initialized with this flag will contain (see exceptions
below) additional information about a directory object correlated to an event.
An additional record of type FAN_EVENT_INFO_TYPE_DFID encapsu-
lates the information about the directory object and is included alongside the
generic event metadata structure. For events that occur on a non-directory ob-
ject, the additional structure includes a file handle that identifies the parent di-
rectory filesystem object. Note that there is no guarantee that the directory
filesystem object will be found at the location described by the file handle in-
formation at the time the event is received. When combined with the flag
FAN_REPORT_FID, two records may be reported with events that occur on
a non-directory object, one to identify the non-directory object itself and one
to identify the parent directory object. Note that in some cases, a filesystem
object does not have a parent, for example, when an event occurs on an un-
linked but open file. In that case, with the FAN_REPORT_FID flag, the
event will be reported with only one record to identify the non-directory object
itself, because there is no directory associated with the event. Without the
FAN_REPORT_FID flag, no event will be reported. See fanotify(7) for addi-
tional details.

FAN_REPORT_NAME (since Linux 5.9)
Events for fanotify groups initialized with this flag will contain additional in-
formation about the name of the directory entry correlated to an event. This
flag must be provided in conjunction with the flag FAN_REPORT_DIR_FID.
Providing this flag value without FAN_REPORT_DIR_FID will result in the
error EINVAL. This flag may be combined with the flag FAN_RE-
PORT_FID. An additional record of type
FAN_EVENT_INFO_TYPE_DFID_NAME, which encapsulates the infor-
mation about the directory entry, is included alongside the generic event meta-
data structure and substitutes the additional information record of type
FAN_EVENT_INFO_TYPE_DFID. The additional record includes a file
handle that identifies a directory filesystem object followed by a name that
identifies an entry in that directory. For the directory entry modification events
FAN_CREATE, FAN_DELETE, and FAN_MOVE, the reported name is
that of the created/deleted/moved directory entry. The event FAN_RENAME
may contain two information records. One of type
FAN_EVENT_INFO_TYPE_OLD_DFID_NAME identifying the old direc-
tory entry, and another of type
FAN_EVENT_INFO_TYPE_NEW_DFID_NAME identifying the new di-
rectory entry. For other events that occur on a directory object, the reported
file handle is that of the directory object itself and the reported name is ’.’. For
other events that occur on a non-directory object, the reported file handle is
that of the parent directory object and the reported name is the name of a

Linux man-pages 6.13 2024-07-23 196

fanotify_init(2) System Calls Manual fanotify_init(2)

directory entry where the object was located at the time of the event. The ra-
tionale behind this logic is that the reported directory file handle can be passed
to open_by_handle_at(2) to get an open directory file descriptor and that file
descriptor along with the reported name can be used to call fstatat(2). The
same rule that applies to record type FAN_EVENT_INFO_TYPE_DFID
also applies to record type FAN_EVENT_INFO_TYPE_DFID_NAME: if a
non-directory object has no parent, either the event will not be reported or it
will be reported without the directory entry information. Note that there is no
guarantee that the filesystem object will be found at the location described by
the directory entry information at the time the event is received. See fan-
otify(7) for additional details.

FAN_REPORT_DFID_NAME
This is a synonym for (FAN_REPORT_DIR_FID|FAN_REPORT_NAME).

FAN_REPORT_TARGET_FID (since Linux 5.17, 5.15.154, and 5.10.220)
Events for fanotify groups initialized with this flag will contain additional in-
formation about the child correlated with directory entry modification events.
This flag must be provided in conjunction with the flags FAN_RE-
PORT_FID, FAN_REPORT_DIR_FID and FAN_REPORT_NAME. or
else the error EINVAL will be returned. For the directory entry modification
events FAN_CREATE, FAN_DELETE, FAN_MOVE, and FAN_RE-
NAME, an additional record of type FAN_EVENT_INFO_TYPE_FID, is
reported in addition to the information records of type
FAN_EVENT_INFO_TYPE_DFID,
FAN_EVENT_INFO_TYPE_DFID_NAME,
FAN_EVENT_INFO_TYPE_OLD_DFID_NAME, and
FAN_EVENT_INFO_TYPE_NEW_DFID_NAME. The additional record
includes a file handle that identifies the filesystem child object that the direc-
tory entry is referring to.

FAN_REPORT_DFID_NAME_TARGET
This is a synonym for (FAN_REPORT_DFID_NAME|FAN_RE-
PORT_FID|FAN_REPORT_TARGET_FID).

FAN_REPORT_PIDFD (since Linux 5.15 and 5.10.220)
Events for fanotify groups initialized with this flag will contain an additional
information record alongside the generic fanotify_event_metadata structure.
This information record will be of type FAN_EVENT_INFO_TYPE_PIDFD
and will contain a pidfd for the process that was responsible for generating an
event. A pidfd returned in this information record object is no different to the
pidfd that is returned when calling pidfd_open(2). Usage of this information
record are for applications that may be interested in reliably determining
whether the process responsible for generating an event has been recycled or
terminated. The use of the FAN_REPORT_TID flag along with FAN_RE-
PORT_PIDFD is currently not supported and attempting to do so will result
in the error EINVAL being returned. This limitation is currently imposed by
the pidfd API as it currently only supports the creation of pidfds for thread-
group leaders. Creating pidfds for non-thread-group leaders may be supported
at some point in the future, so this restriction may eventually be lifted. For
more details on information records, see fanotify(7).

Linux man-pages 6.13 2024-07-23 197

fanotify_init(2) System Calls Manual fanotify_init(2)

The event_f_flags argument defines the file status flags that will be set on the open file
descriptions that are created for fanotify events. For details of these flags, see the de-
scription of the flags values in open(2). event_f_flags includes a multi-bit field for the
access mode. This field can take the following values:

O_RDONLY
This value allows only read access.

O_WRONLY
This value allows only write access.

O_RDWR
This value allows read and write access.

Additional bits can be set in event_f_flags. The most useful values are:

O_LARGEFILE
Enable support for files exceeding 2 GB. Failing to set this flag will result in
an EOVERFLOW error when trying to open a large file which is monitored
by an fanotify group on a 32-bit system.

O_CLOEXEC (since Linux 3.18)
Enable the close-on-exec flag for the file descriptor. See the description of the
O_CLOEXEC flag in open(2) for reasons why this may be useful.

The following are also allowable: O_APPEND, O_DSYNC, O_NOATIME,
O_NONBLOCK, and O_SYNC. Specifying any other flag in event_f_flags yields
the error EINVAL (but see BUGS).

RETURN VALUE
On success, fanotify_init() returns a new file descriptor. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
EINVAL

An invalid value was passed in flags or event_f_flags.
FAN_ALL_INIT_FLAGS (deprecated since Linux 4.20) defines all allowable
bits for flags.

EMFILE
The number of fanotify groups for this user exceeds the limit. See fanotify(7)
for details about this limit.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENOMEM
The allocation of memory for the notification group failed.

ENOSYS
This kernel does not implement fanotify_init(). The fanotify API is available
only if the kernel was configured with CONFIG_FANOTIFY.

EPERM
The operation is not permitted because the caller lacks a required capability.

Linux man-pages 6.13 2024-07-23 198

fanotify_init(2) System Calls Manual fanotify_init(2)

VERSIONS
Prior to Linux 5.13 (and 5.10.220), calling fanotify_init() required the
CAP_SYS_ADMIN capability. Since Linux 5.13 (and 5.10.220), users may call fan-
otify_init() without the CAP_SYS_ADMIN capability to create and initialize an fan-
otify group with limited functionality.

The limitations imposed on an event listener created by a user without the
CAP_SYS_ADMIN capability are as follows:

• The user cannot request for an unlimited event queue by using FAN_UN-
LIMITED_QUEUE.

• The user cannot request for an unlimited number of marks by using
FAN_UNLIMITED_MARKS.

• The user cannot request to use either notification classes
FAN_CLASS_CONTENT or FAN_CLASS_PRE_CONTENT. This
means that user cannot request permission events.

• The user is required to create a group that identifies filesystem objects by
file handles, for example, by providing the FAN_REPORT_FID flag.

• The user is limited to only mark inodes. The ability to mark a mount or
filesystem via fanotify_mark() through the use of
FAN_MARK_MOUNT or FAN_MARK_FILESYSTEM is not permit-
ted.

• The event object in the event queue is limited in terms of the information
that is made available to the unprivileged user. A user will also not receive
the pid that generated the event, unless the listening process itself gener-
ated the event.

STANDARDS
Linux.

HISTORY
Linux 2.6.37.

BUGS
The following bug was present before Linux 3.18:

• The O_CLOEXEC is ignored when passed in event_f_flags.

The following bug was present before Linux 3.14:

• The event_f_flags argument is not checked for invalid flags. Flags that are in-
tended only for internal use, such as FMODE_EXEC, can be set, and will conse-
quently be set for the file descriptors returned when reading from the fanotify file
descriptor.

SEE ALSO
fanotify_mark(2), fanotify(7)

Linux man-pages 6.13 2024-07-23 199

fanotify_mark(2) System Calls Manual fanotify_mark(2)

NAME
fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/fanotify.h>

int fanotify_mark(int fanotify_fd , unsigned int flags,
uint64_t mask, int dirfd ,
const char *_Nullable pathname);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_mark() adds, removes, or modifies an fanotify mark on a filesystem object.
The caller must have read permission on the filesystem object that is to be marked.

The fanotify_fd argument is a file descriptor returned by fanotify_init(2).

flags is a bit mask describing the modification to perform. It must include exactly
one of the following values:

FAN_MARK_ADD
The events in mask will be added to the mark mask (or to the ignore mask).
mask must be nonempty or the error EINVAL will occur.

FAN_MARK_REMOVE
The events in argument mask will be removed from the mark mask (or from
the ignore mask). mask must be nonempty or the error EINVAL will occur.

FAN_MARK_FLUSH
Remove either all marks for filesystems, all marks for mounts, or all marks for
directories and files from the fanotify group. If flags contains
FAN_MARK_MOUNT, all marks for mounts are removed from the group.
If flags contains FAN_MARK_FILESYSTEM, all marks for filesystems are
removed from the group. Otherwise, all marks for directories and files are re-
moved. No flag other than, and at most one of, the flags
FAN_MARK_MOUNT or FAN_MARK_FILESYSTEM can be used in
conjunction with FAN_MARK_FLUSH. mask is ignored.

If none of the values above is specified, or more than one is specified, the call fails
with the error EINVAL.

In addition, zero or more of the following values may be ORed into flags:

FAN_MARK_DONT_FOLLOW
If pathname is a symbolic link, mark the link itself, rather than the file to
which it refers. (By default, fanotify_mark() dereferences pathname if it is a
symbolic link.)

FAN_MARK_ONLYDIR
If the filesystem object to be marked is not a directory, the error ENOTDIR
shall be raised.

Linux man-pages 6.13 2024-11-05 200

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_MARK_MOUNT
Mark the mount specified by pathname. If pathname is not itself a mount
point, the mount containing pathname will be marked. All directories, subdi-
rectories, and the contained files of the mount will be monitored. The events
which require that filesystem objects are identified by file handles, such as
FAN_CREATE, FAN_ATTRIB, FAN_MOVE, and FAN_DELETE_SELF,
cannot be provided as a mask when flags contains FAN_MARK_MOUNT.
Attempting to do so will result in the error EINVAL being returned. Use of
this flag requires the CAP_SYS_ADMIN capability.

FAN_MARK_FILESYSTEM (since Linux 4.20)
Mark the filesystem specified by pathname. The filesystem containing path-
name will be marked. All the contained files and directories of the filesystem
from any mount point will be monitored. Use of this flag requires the
CAP_SYS_ADMIN capability.

FAN_MARK_IGNORED_MASK
The events in mask shall be added to or removed from the ignore mask. Note
that the flags FAN_ONDIR, and FAN_EVENT_ON_CHILD have no effect
when provided with this flag. The effect of setting the flags FAN_ONDIR,
and FAN_EVENT_ON_CHILD in the mark mask on the events that are set
in the ignore mask is undefined and depends on the Linux kernel version.
Specifically, prior to Linux 5.9, setting a mark mask on a file and a mark with
ignore mask on its parent directory would not result in ignoring events on the
file, regardless of the FAN_EVENT_ON_CHILD flag in the parent direc-
tory’s mark mask. When the ignore mask is updated with the
FAN_MARK_IGNORED_MASK flag on a mark that was previously up-
dated with the FAN_MARK_IGNORE flag, the update fails with EEXIST
error.

FAN_MARK_IGNORE (since Linux 6.0, 5.15.154, and 5.10.220)
This flag has a similar effect as setting the FAN_MARK_IGNORED_MASK
flag. The events in mask shall be added to or removed from the ignore mask.
Unlike the FAN_MARK_IGNORED_MASK flag, this flag also has the ef-
fect that the FAN_ONDIR, and FAN_EVENT_ON_CHILD flags take effect
on the ignore mask. Specifically, unless the FAN_ONDIR flag is set with
FAN_MARK_IGNORE, events on directories will not be ignored. If the flag
FAN_EVENT_ON_CHILD is set with FAN_MARK_IGNORE, events on
children will be ignored. For example, a mark on a directory with combina-
tion of a mask with FAN_CREATE event and FAN_ONDIR flag and an ig-
nore mask with FAN_CREATE event and without FAN_ONDIR flag, will re-
sult in getting only the events for creation of sub-directories. When using the
FAN_MARK_IGNORE flag to add to an ignore mask of a mount, filesystem,
or directory inode mark, the FAN_MARK_IGNORED_SURV_MODIFY
flag must be specified. Failure to do so will results with EINVAL or EISDIR
error.

FAN_MARK_IGNORED_SURV_MODIFY
The ignore mask shall survive modify events. If this flag is not set, the ignore
mask is cleared when a modify event occurs on the marked object. Omitting
this flag is typically used to suppress events (e.g., FAN_OPEN) for a specific

Linux man-pages 6.13 2024-11-05 201

fanotify_mark(2) System Calls Manual fanotify_mark(2)

file, until that specific file’s content has been modified. It is far less useful to
suppress events on an entire filesystem, or mount, or on all files inside a direc-
tory, until some file’s content has been modified. For this reason, the
FAN_MARK_IGNORE flag requires the FAN_MARK_IG-
NORED_SURV_MODIFY flag on a mount, filesystem, or directory inode
mark. This flag cannot be removed from a mark once set. When the ignore
mask is updated without this flag on a mark that was previously updated with
the FAN_MARK_IGNORE and FAN_MARK_IGNORED_SURV_MOD-
IFY flags, the update fails with EEXIST error.

FAN_MARK_IGNORE_SURV
This is a synonym for (FAN_MARK_IGNORE|FAN_MARK_IG-
NORED_SURV_MODIFY).

FAN_MARK_EVICTABLE (since Linux 5.19, 5.15.154, and 5.10.220)
When an inode mark is created with this flag, the inode object will not be
pinned to the inode cache, therefore, allowing the inode object to be evicted
from the inode cache when the memory pressure on the system is high. The
eviction of the inode object results in the evictable mark also being lost. When
the mask of an evictable inode mark is updated without using the
FAN_MARK_EVICATBLE flag, the marked inode is pinned to inode cache
and the mark is no longer evictable. When the mask of a non-evictable inode
mark is updated with the FAN_MARK_EVICTABLE flag, the inode mark
remains non-evictable and the update fails with EEXIST error. Mounts and
filesystems are not evictable objects, therefore, an attempt to create a mount
mark or a filesystem mark with the FAN_MARK_EVICTABLE flag, will re-
sult in the error EINVAL. For example, inode marks can be used in combina-
tion with mount marks to reduce the amount of events from noninteresting
paths. The event listener reads events, checks if the path reported in the event
is of interest, and if it is not, the listener sets a mark with an ignore mask on
the directory. Evictable inode marks allow using this method for a large num-
ber of directories without the concern of pinning all inodes and exhausting the
system’s memory.

mask defines which events shall be listened for (or which shall be ignored). It is a bit
mask composed of the following values:

FAN_ACCESS
Create an event when a file or directory (but see BUGS) is accessed (read).

FAN_MODIFY
Create an event when a file is modified (write).

FAN_CLOSE_WRITE
Create an event when a writable file is closed.

FAN_CLOSE_NOWRITE
Create an event when a read-only file or directory is closed.

FAN_OPEN
Create an event when a file or directory is opened.

Linux man-pages 6.13 2024-11-05 202

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_OPEN_EXEC (since Linux 5.0)
Create an event when a file is opened with the intent to be executed. See
NOTES for additional details.

FAN_ATTRIB (since Linux 5.1)
Create an event when the metadata for a file or directory has changed. An fan-
otify group that identifies filesystem objects by file handles is required.

FAN_CREATE (since Linux 5.1)
Create an event when a file or directory has been created in a marked parent
directory. An fanotify group that identifies filesystem objects by file handles is
required.

FAN_DELETE (since Linux 5.1)
Create an event when a file or directory has been deleted in a marked parent
directory. An fanotify group that identifies filesystem objects by file handles is
required.

FAN_DELETE_SELF (since Linux 5.1)
Create an event when a marked file or directory itself is deleted. An fanotify
group that identifies filesystem objects by file handles is required.

FAN_FS_ERROR (since Linux 5.16, 5.15.154, and 5.10.220)
Create an event when a filesystem error leading to inconsistent filesystem
metadata is detected. An additional information record of type
FAN_EVENT_INFO_TYPE_ERROR is returned for each event in the read
buffer. An fanotify group that identifies filesystem objects by file handles is
required.

Events of such type are dependent on support from the underlying filesystem.
At the time of writing, only the ext4 filesystem reports FAN_FS_ERROR
events.

See fanotify(7) for additional details.

FAN_MOVED_FROM (since Linux 5.1)
Create an event when a file or directory has been moved from a marked parent
directory. An fanotify group that identifies filesystem objects by file handles is
required.

FAN_MOVED_TO (since Linux 5.1)
Create an event when a file or directory has been moved to a marked parent di-
rectory. An fanotify group that identifies filesystem objects by file handles is
required.

FAN_RENAME (since Linux 5.17, 5.15.154, and 5.10.220)
This event contains the same information provided by events
FAN_MOVED_FROM and FAN_MOVED_TO, however is represented by a
single event with up to two information records. An fanotify group that identi-
fies filesystem objects by file handles is required. If the filesystem object to be
marked is not a directory, the error ENOTDIR shall be raised.

FAN_MOVE_SELF (since Linux 5.1)
Create an event when a marked file or directory itself has been moved. An
fanotify group that identifies filesystem objects by file handles is required.

Linux man-pages 6.13 2024-11-05 203

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_OPEN_PERM
Create an event when a permission to open a file or directory is requested. An
fanotify file descriptor created with FAN_CLASS_PRE_CONTENT or
FAN_CLASS_CONTENT is required.

FAN_OPEN_EXEC_PERM (since Linux 5.0)
Create an event when a permission to open a file for execution is requested.
An fanotify file descriptor created with FAN_CLASS_PRE_CONTENT or
FAN_CLASS_CONTENT is required. See NOTES for additional details.

FAN_ACCESS_PERM
Create an event when a permission to read a file or directory is requested. An
fanotify file descriptor created with FAN_CLASS_PRE_CONTENT or
FAN_CLASS_CONTENT is required.

FAN_ONDIR
Create events for directories—for example, when opendir(3), readdir(3) (but
see BUGS), and closedir(3) are called. Without this flag, events are created
only for files. In the context of directory entry events, such as FAN_CRE-
ATE, FAN_DELETE, FAN_MOVED_FROM, and FAN_MOVED_TO,
specifying the flag FAN_ONDIR is required in order to create events when
subdirectory entries are modified (i.e., mkdir(2)/ rmdir(2)).

FAN_EVENT_ON_CHILD
Events for the immediate children of marked directories shall be created. The
flag has no effect when marking mounts and filesystems. Note that events are
not generated for children of the subdirectories of marked directories. More
specifically, the directory entry modification events FAN_CREATE,
FAN_DELETE, FAN_MOVED_FROM, and FAN_MOVED_TO are not
generated for any entry modifications performed inside subdirectories of
marked directories. Note that the events FAN_DELETE_SELF and
FAN_MOVE_SELF are not generated for children of marked directories. To
monitor complete directory trees it is necessary to mark the relevant mount or
filesystem.

The following composed values are defined:

FAN_CLOSE
A file is closed (FAN_CLOSE_WRITE|FAN_CLOSE_NOWRITE).

FAN_MOVE
A file or directory has been moved
(FAN_MOVED_FROM|FAN_MOVED_TO).

The filesystem object to be marked is determined by the file descriptor dirfd and the
pathname specified in pathname:

• If pathname is NULL, dirfd defines the filesystem object to be marked.

• If pathname is NULL, and dirfd takes the special value AT_FDCWD, the current
working directory is to be marked.

• If pathname is absolute, it defines the filesystem object to be marked, and dirfd is
ignored.

Linux man-pages 6.13 2024-11-05 204

fanotify_mark(2) System Calls Manual fanotify_mark(2)

• If pathname is relative, and dirfd does not have the value AT_FDCWD, then the
filesystem object to be marked is determined by interpreting pathname relative the
directory referred to by dirfd .

• If pathname is relative, and dirfd has the value AT_FDCWD, then the filesystem
object to be marked is determined by interpreting pathname relative to the current
working directory. (See openat(2) for an explanation of why the dirfd argument is
useful.)

RETURN VALUE
On success, fanotify_mark() returns 0. On error, -1 is returned, and errno is set to
indicate the error.

ERRORS
EBADF

An invalid file descriptor was passed in fanotify_fd .

EBADF
pathname is relative but dirfd is neither AT_FDCWD nor a valid file descrip-
tor.

EEXIST
The filesystem object indicated by dirfd and pathname has a mark that was
updated without the FAN_MARK_EVICTABLE flag, and the user attempted
to update the mark with FAN_MARK_EVICTABLE flag.

EEXIST
The filesystem object indicated by dirfd and pathname has a mark that was
updated with the FAN_MARK_IGNORE flag, and the user attempted to up-
date the mark with FAN_MARK_IGNORED_MASK flag.

EEXIST
The filesystem object indicated by dirfd and pathname has a mark that was
updated with the FAN_MARK_IGNORE and FAN_MARK_IG-
NORED_SURV_MODIFY flags, and the user attempted to update the mark
only with FAN_MARK_IGNORE flag.

EINVAL
An invalid value was passed in flags or mask, or fanotify_fd was not an fan-
otify file descriptor.

EINVAL
The fanotify file descriptor was opened with FAN_CLASS_NOTIF or the
fanotify group identifies filesystem objects by file handles and mask contains a
flag for permission events (FAN_OPEN_PERM or FAN_ACCESS_PERM).

EINVAL
The group was initialized without FAN_REPORT_FID but one or more event
types specified in the mask require it.

EINVAL
flags contains FAN_MARK_IGNORE, and either FAN_MARK_MOUNT
or FAN_MARK_FILESYSTEM, but does not contain FAN_MARK_IG-
NORED_SURV_MODIFY.

Linux man-pages 6.13 2024-11-05 205

fanotify_mark(2) System Calls Manual fanotify_mark(2)

EISDIR
flags contains FAN_MARK_IGNORE, but does not contain
FAN_MARK_IGNORED_SURV_MODIFY, and dirfd and pathname spec-
ify a directory.

ENODEV
The filesystem object indicated by dirfd and pathname is associated with a
filesystem that reports zero fsid (e.g., fuse(4)). This error can be returned only
with an fanotify group that identifies filesystem objects by file handles. Since
Linux 6.8, this error can be returned when trying to add a mount or filesystem
mark.

ENOENT
The filesystem object indicated by dirfd and pathname does not exist. This
error also occurs when trying to remove a mark from an object which is not
marked.

ENOMEM
The necessary memory could not be allocated.

ENOSPC
The number of marks for this user exceeds the limit and the FAN_UNLIM-
ITED_MARKS flag was not specified when the fanotify file descriptor was
created with fanotify_init(2). See fanotify(7) for details about this limit.

ENOSYS
This kernel does not implement fanotify_mark(). The fanotify API is avail-
able only if the kernel was configured with CONFIG_FANOTIFY.

ENOTDIR
flags contains FAN_MARK_ONLYDIR, and dirfd and pathname do not
specify a directory.

ENOTDIR
mask contains FAN_RENAME, and dirfd and pathname do not specify a di-
rectory.

ENOTDIR
flags contains FAN_MARK_IGNORE, or the fanotify group was initialized
with flag FAN_REPORT_TARGET_FID, and mask contains directory entry
modification events (e.g., FAN_CREATE, FAN_DELETE), or directory
event flags (e.g., FAN_ONDIR, FAN_EVENT_ON_CHILD), and dirfd and
pathname do not specify a directory.

EOPNOTSUPP
The object indicated by pathname is associated with a filesystem that does not
support the encoding of file handles. This error can be returned only with an
fanotify group that identifies filesystem objects by file handles. Calling
name_to_handle_at(2) with the flag AT_HANDLE_FID (since Linux 6.5)
can be used as a test to check if a filesystem supports reporting events with file
handles.

EPERM
The operation is not permitted because the caller lacks a required capability.

Linux man-pages 6.13 2024-11-05 206

fanotify_mark(2) System Calls Manual fanotify_mark(2)

EXDEV
The filesystem object indicated by pathname resides within a filesystem sub-
volume (e.g., btrfs(5)) which uses a different fsid than its root superblock.
This error can be returned only with an fanotify group that identifies filesystem
objects by file handles. Since Linux 6.8, this error will be returned when try-
ing to add a mount or filesystem mark on a subvolume, when trying to add in-
ode marks in different subvolumes, or when trying to add inode marks in a
btrfs(5) subvolume and in another filesystem. Since Linux 6.8, this error will
also be returned when trying to add marks in different filesystems, where one
of the filesystems reports zero fsid (e.g., fuse(4)).

STANDARDS
Linux.

HISTORY
Linux 2.6.37.

NOTES
FAN_OPEN_EXEC and FAN_OPEN_EXEC_PERM

When using either FAN_OPEN_EXEC or FAN_OPEN_EXEC_PERM within the
mask, events of these types will be returned only when the direct execution of a pro-
gram occurs. More specifically, this means that events of these types will be gener-
ated for files that are opened using execve(2), execveat(2), or uselib(2). Events of
these types will not be raised in the situation where an interpreter is passed (or reads)
a file for interpretation.

Additionally, if a mark has also been placed on the Linux dynamic linker, a user
should also expect to receive an event for it when an ELF object has been successfully
opened using execve(2) or execveat(2).

For example, if the following ELF binary were to be invoked and a
FAN_OPEN_EXEC mark has been placed on /:

$ /bin/echo foo

The listening application in this case would receive FAN_OPEN_EXEC events for
both the ELF binary and interpreter, respectively:

/bin/echo
/lib64/ld-linux-x86-64.so.2

BUGS
The following bugs were present in before Linux 3.16:

• If flags contains FAN_MARK_FLUSH, dirfd , and pathname must specify a
valid filesystem object, even though this object is not used.

• readdir(2) does not generate a FAN_ACCESS event.

• If fanotify_mark() is called with FAN_MARK_FLUSH, flags is not checked for
invalid values.

SEE ALSO
fanotify_init(2), fanotify(7)

Linux man-pages 6.13 2024-11-05 207

fanotify_mark(2) System Calls Manual fanotify_mark(2)

Linux man-pages 6.13 2024-11-05 208

fcntl(2) System Calls Manual fcntl(2)

NAME
fcntl - manipulate file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int fcntl(int fd , int op, ... /* arg */);

DESCRIPTION
fcntl() performs one of the operations described below on the open file descriptor fd .
The operation is determined by op.

fcntl() can take an optional third argument. Whether or not this argument is required
is determined by op. The required argument type is indicated in parentheses after
each op name (in most cases, the required type is int, and we identify the argument
using the name arg), or void is specified if the argument is not required.

Certain of the operations below are supported only since a particular Linux kernel ver-
sion. The preferred method of checking whether the host kernel supports a particular
operation is to invoke fcntl() with the desired op value and then test whether the call
failed with EINVAL, indicating that the kernel does not recognize this value.

Duplicating a file descriptor
F_DUPFD (int)

Duplicate the file descriptor fd using the lowest-numbered available file de-
scriptor greater than or equal to arg. This is different from dup2(2), which
uses exactly the file descriptor specified.

On success, the new file descriptor is returned.

See dup(2) for further details.

F_DUPFD_CLOEXEC (int; since Linux 2.6.24)
As for F_DUPFD, but additionally set the close-on-exec flag for the duplicate
file descriptor. Specifying this flag permits a program to avoid an additional
fcntl() F_SETFD operation to set the FD_CLOEXEC flag. For an explana-
tion of why this flag is useful, see the description of O_CLOEXEC in
open(2).

File descriptor flags
The following operations manipulate the flags associated with a file descriptor. Cur-
rently, only one such flag is defined: FD_CLOEXEC, the close-on-exec flag. If the
FD_CLOEXEC bit is set, the file descriptor will automatically be closed during a
successful execve(2). (If the execve(2) fails, the file descriptor is left open.) If the
FD_CLOEXEC bit is not set, the file descriptor will remain open across an
execve(2).

F_GETFD (void)
Return (as the function result) the file descriptor flags; arg is ignored.

F_SETFD (int)
Set the file descriptor flags to the value specified by arg.

In multithreaded programs, using fcntl() F_SETFD to set the close-on-exec flag at the

Linux man-pages 6.13 2024-07-23 209

fcntl(2) System Calls Manual fcntl(2)

same time as another thread performs a fork(2) plus execve(2) is vulnerable to a race
condition that may unintentionally leak the file descriptor to the program executed in
the child process. See the discussion of the O_CLOEXEC flag in open(2) for details
and a remedy to the problem.

File status flags
Each open file description has certain associated status flags, initialized by open(2)
and possibly modified by fcntl(). Duplicated file descriptors (made with dup(2), fc-
ntl(F_DUPFD), fork(2), etc.) refer to the same open file description, and thus share
the same file status flags.

The file status flags and their semantics are described in open(2).

F_GETFL (void)
Return (as the function result) the file access mode and the file status flags; arg
is ignored.

F_SETFL (int)
Set the file status flags to the value specified by arg. File access mode
(O_RDONLY, O_WRONLY, O_RDWR) and file creation flags (i.e.,
O_CREAT, O_EXCL, O_NOCTTY, O_TRUNC) in arg are ignored. On
Linux, this operation can change only the O_APPEND, O_ASYNC, O_DI-
RECT, O_NOATIME, and O_NONBLOCK flags. It is not possible to
change the O_DSYNC and O_SYNC flags; see BUGS, below.

Advisory record locking
Linux implements traditional ("process-associated") UNIX record locks, as standard-
ized by POSIX. For a Linux-specific alternative with better semantics, see the discus-
sion of open file description locks below.

F_SETLK, F_SETLKW, and F_GETLK are used to acquire, release, and test for
the existence of record locks (also known as byte-range, file-segment, or file-region
locks). The third argument, lock, is a pointer to a structure that has at least the follow-
ing fields (in unspecified order).

struct flock {
...
short l_type; /* Type of lock: F_RDLCK,

F_WRLCK, F_UNLCK */
short l_whence; /* How to interpret l_start:

SEEK_SET, SEEK_CUR, SEEK_END */
off_t l_start; /* Starting offset for lock */
off_t l_len; /* Number of bytes to lock */
pid_t l_pid; /* PID of process blocking our lock

(set by F_GETLK and F_OFD_GETLK) */
...

};

The l_whence, l_start, and l_len fields of this structure specify the range of bytes we
wish to lock. Bytes past the end of the file may be locked, but not bytes before the
start of the file.

l_start is the starting offset for the lock, and is interpreted relative to either: the start
of the file (if l_whence is SEEK_SET); the current file offset (if l_whence is

Linux man-pages 6.13 2024-07-23 210

fcntl(2) System Calls Manual fcntl(2)

SEEK_CUR); or the end of the file (if l_whence is SEEK_END). In the final two
cases, l_start can be a negative number provided the offset does not lie before the start
of the file.

l_len specifies the number of bytes to be locked. If l_len is positive, then the range to
be locked covers bytes l_start up to and including l_start+l_len-1. Specifying 0 for
l_len has the special meaning: lock all bytes starting at the location specified by
l_whence and l_start through to the end of file, no matter how large the file grows.

POSIX.1-2001 allows (but does not require) an implementation to support a negative
l_len value; if l_len is negative, the interval described by lock covers bytes
l_start+l_len up to and including l_start-1. This is supported since Linux 2.4.21 and
Linux 2.5.49.

The l_type field can be used to place a read (F_RDLCK) or a write (F_WRLCK)
lock on a file. Any number of processes may hold a read lock (shared lock) on a file
region, but only one process may hold a write lock (exclusive lock). An exclusive
lock excludes all other locks, both shared and exclusive. A single process can hold
only one type of lock on a file region; if a new lock is applied to an already-locked re-
gion, then the existing lock is converted to the new lock type. (Such conversions may
involve splitting, shrinking, or coalescing with an existing lock if the byte range speci-
fied by the new lock does not precisely coincide with the range of the existing lock.)

F_SETLK (struct flock *)
Acquire a lock (when l_type is F_RDLCK or F_WRLCK) or release a lock
(when l_type is F_UNLCK) on the bytes specified by the l_whence, l_start,
and l_len fields of lock. If a conflicting lock is held by another process, this
call returns -1 and sets errno to EACCES or EAGAIN. (The error returned
in this case differs across implementations, so POSIX requires a portable ap-
plication to check for both errors.)

F_SETLKW (struct flock *)
As for F_SETLK, but if a conflicting lock is held on the file, then wait for that
lock to be released. If a signal is caught while waiting, then the call is inter-
rupted and (after the signal handler has returned) returns immediately (with re-
turn value -1 and errno set to EINTR; see signal(7)).

F_GETLK (struct flock *)
On input to this call, lock describes a lock we would like to place on the file.
If the lock could be placed, fcntl() does not actually place it, but returns
F_UNLCK in the l_type field of lock and leaves the other fields of the struc-
ture unchanged.

If one or more incompatible locks would prevent this lock being placed, then
fcntl() returns details about one of those locks in the l_type, l_whence, l_start,
and l_len fields of lock. If the conflicting lock is a traditional (process-associ-
ated) record lock, then the l_pid field is set to the PID of the process holding
that lock. If the conflicting lock is an open file description lock, then l_pid is
set to -1. Note that the returned information may already be out of date by the
time the caller inspects it.

In order to place a read lock, fd must be open for reading. In order to place a write
lock, fd must be open for writing. To place both types of lock, open a file read-write.

Linux man-pages 6.13 2024-07-23 211

fcntl(2) System Calls Manual fcntl(2)

When placing locks with F_SETLKW, the kernel detects deadlocks, whereby two or
more processes have their lock requests mutually blocked by locks held by the other
processes. For example, suppose process A holds a write lock on byte 100 of a file,
and process B holds a write lock on byte 200. If each process then attempts to lock
the byte already locked by the other process using F_SETLKW, then, without dead-
lock detection, both processes would remain blocked indefinitely. When the kernel
detects such deadlocks, it causes one of the blocking lock requests to immediately fail
with the error EDEADLK; an application that encounters such an error should release
some of its locks to allow other applications to proceed before attempting regain the
locks that it requires. Circular deadlocks involving more than two processes are also
detected. Note, however, that there are limitations to the kernel’s deadlock-detection
algorithm; see BUGS.

As well as being removed by an explicit F_UNLCK, record locks are automatically
released when the process terminates.

Record locks are not inherited by a child created via fork(2), but are preserved across
an execve(2).

Because of the buffering performed by the stdio(3) library, the use of record locking
with routines in that package should be avoided; use read(2) and write(2) instead.

The record locks described above are associated with the process (unlike the open file
description locks described below). This has some unfortunate consequences:

• If a process closes any file descriptor referring to a file, then all of the process’s
locks on that file are released, regardless of the file descriptor(s) on which the
locks were obtained. This is bad: it means that a process can lose its locks on a
file such as /etc/passwd or /etc/mtab when for some reason a library function de-
cides to open, read, and close the same file.

• The threads in a process share locks. In other words, a multithreaded program
can’t use record locking to ensure that threads don’t simultaneously access the
same region of a file.

Open file description locks solve both of these problems.

Open file description locks (non-POSIX)
Open file description locks are advisory byte-range locks whose operation is in most
respects identical to the traditional record locks described above. This lock type is
Linux-specific, and available since Linux 3.15. (There is a proposal with the Austin
Group to include this lock type in the next revision of POSIX.1.) For an explanation
of open file descriptions, see open(2).

The principal difference between the two lock types is that whereas traditional record
locks are associated with a process, open file description locks are associated with the
open file description on which they are acquired, much like locks acquired with
flock(2). Consequently (and unlike traditional advisory record locks), open file de-
scription locks are inherited across fork(2) (and clone(2) with CLONE_FILES), and
are only automatically released on the last close of the open file description, instead of
being released on any close of the file.

Conflicting lock combinations (i.e., a read lock and a write lock or two write locks)
where one lock is an open file description lock and the other is a traditional record
lock conflict even when they are acquired by the same process on the same file

Linux man-pages 6.13 2024-07-23 212

fcntl(2) System Calls Manual fcntl(2)

descriptor.

Open file description locks placed via the same open file description (i.e., via the same
file descriptor, or via a duplicate of the file descriptor created by fork(2), dup(2), fc-
ntl() F_DUPFD, and so on) are always compatible: if a new lock is placed on an al-
ready locked region, then the existing lock is converted to the new lock type. (Such
conversions may result in splitting, shrinking, or coalescing with an existing lock as
discussed above.)

On the other hand, open file description locks may conflict with each other when they
are acquired via different open file descriptions. Thus, the threads in a multithreaded
program can use open file description locks to synchronize access to a file region by
having each thread perform its own open(2) on the file and applying locks via the re-
sulting file descriptor.

As with traditional advisory locks, the third argument to fcntl(), lock, is a pointer to
an flock structure. By contrast with traditional record locks, the l_pid field of that
structure must be set to zero when using the operations described below.

The operations for working with open file description locks are analogous to those
used with traditional locks:

F_OFD_SETLK (struct flock *)
Acquire an open file description lock (when l_type is F_RDLCK or
F_WRLCK) or release an open file description lock (when l_type is
F_UNLCK) on the bytes specified by the l_whence, l_start, and l_len fields
of lock. If a conflicting lock is held by another process, this call returns -1
and sets errno to EAGAIN.

F_OFD_SETLKW (struct flock *)
As for F_OFD_SETLK, but if a conflicting lock is held on the file, then wait
for that lock to be released. If a signal is caught while waiting, then the call is
interrupted and (after the signal handler has returned) returns immediately
(with return value -1 and errno set to EINTR; see signal(7)).

F_OFD_GETLK (struct flock *)
On input to this call, lock describes an open file description lock we would
like to place on the file. If the lock could be placed, fcntl() does not actually
place it, but returns F_UNLCK in the l_type field of lock and leaves the other
fields of the structure unchanged. If one or more incompatible locks would
prevent this lock being placed, then details about one of these locks are re-
turned via lock, as described above for F_GETLK.

In the current implementation, no deadlock detection is performed for open file de-
scription locks. (This contrasts with process-associated record locks, for which the
kernel does perform deadlock detection.)

Mandatory locking
Warning: the Linux implementation of mandatory locking is unreliable. See BUGS
below. Because of these bugs, and the fact that the feature is believed to be little used,
since Linux 4.5, mandatory locking has been made an optional feature, governed by a
configuration option (CONFIG_MANDATORY_FILE_LOCKING). This feature
is no longer supported at all in Linux 5.15 and above.

By default, both traditional (process-associated) and open file description record locks

Linux man-pages 6.13 2024-07-23 213

fcntl(2) System Calls Manual fcntl(2)

are advisory. Advisory locks are not enforced and are useful only between cooperat-
ing processes.

Both lock types can also be mandatory. Mandatory locks are enforced for all
processes. If a process tries to perform an incompatible access (e.g., read(2) or
write(2)) on a file region that has an incompatible mandatory lock, then the result de-
pends upon whether the O_NONBLOCK flag is enabled for its open file description.
If the O_NONBLOCK flag is not enabled, then the system call is blocked until the
lock is removed or converted to a mode that is compatible with the access. If the
O_NONBLOCK flag is enabled, then the system call fails with the error EAGAIN.

To make use of mandatory locks, mandatory locking must be enabled both on the
filesystem that contains the file to be locked, and on the file itself. Mandatory locking
is enabled on a filesystem using the "-o mand" option to mount(8), or the
MS_MANDLOCK flag for mount(2). Mandatory locking is enabled on a file by dis-
abling group execute permission on the file and enabling the set-group-ID permission
bit (see chmod(1) and chmod(2)).

Mandatory locking is not specified by POSIX. Some other systems also support
mandatory locking, although the details of how to enable it vary across systems.

Lost locks
When an advisory lock is obtained on a networked filesystem such as NFS it is possi-
ble that the lock might get lost. This may happen due to administrative action on the
server, or due to a network partition (i.e., loss of network connectivity with the server)
which lasts long enough for the server to assume that the client is no longer function-
ing.

When the filesystem determines that a lock has been lost, future read(2) or write(2)
requests may fail with the error EIO. This error will persist until the lock is removed
or the file descriptor is closed. Since Linux 3.12, this happens at least for NFSv4 (in-
cluding all minor versions).

Some versions of UNIX send a signal (SIGLOST) in this circumstance. Linux does
not define this signal, and does not provide any asynchronous notification of lost
locks.

Managing signals
F_GETOWN, F_SETOWN, F_GETOWN_EX, F_SETOWN_EX, F_GETSIG,
and F_SETSIG are used to manage I/O availability signals:

F_GETOWN (void)
Return (as the function result) the process ID or process group ID currently re-
ceiving SIGIO and SIGURG signals for events on file descriptor fd . Process
IDs are returned as positive values; process group IDs are returned as negative
values (but see BUGS below). arg is ignored.

F_SETOWN (int)
Set the process ID or process group ID that will receive SIGIO and SIGURG
signals for events on the file descriptor fd . The target process or process
group ID is specified in arg. A process ID is specified as a positive value; a
process group ID is specified as a negative value. Most commonly, the calling
process specifies itself as the owner (that is, arg is specified as getpid(2)).

Linux man-pages 6.13 2024-07-23 214

fcntl(2) System Calls Manual fcntl(2)

As well as setting the file descriptor owner, one must also enable generation of
signals on the file descriptor. This is done by using the fcntl() F_SETFL op-
eration to set the O_ASYNC file status flag on the file descriptor. Subse-
quently, a SIGIO signal is sent whenever input or output becomes possible on
the file descriptor. The fcntl() F_SETSIG operation can be used to obtain de-
livery of a signal other than SIGIO.

Sending a signal to the owner process (group) specified by F_SETOWN is
subject to the same permissions checks as are described for kill(2), where the
sending process is the one that employs F_SETOWN (but see BUGS below).
If this permission check fails, then the signal is silently discarded. Note: The
F_SETOWN operation records the caller’s credentials at the time of the fc-
ntl() call, and it is these saved credentials that are used for the permission
checks.

If the file descriptor fd refers to a socket, F_SETOWN also selects the recipi-
ent of SIGURG signals that are delivered when out-of-band data arrives on
that socket. (SIGURG is sent in any situation where select(2) would report
the socket as having an "exceptional condition".)

The following was true in Linux 2.6.x up to and including Linux 2.6.11:

If a nonzero value is given to F_SETSIG in a multithreaded process
running with a threading library that supports thread groups (e.g.,
NPTL), then a positive value given to F_SETOWN has a different
meaning: instead of being a process ID identifying a whole process, it
is a thread ID identifying a specific thread within a process. Conse-
quently, it may be necessary to pass F_SETOWN the result of get-
tid(2) instead of getpid(2) to get sensible results when F_SETSIG is
used. (In current Linux threading implementations, a main thread’s
thread ID is the same as its process ID. This means that a single-
threaded program can equally use gettid(2) or getpid(2) in this sce-
nario.) Note, however, that the statements in this paragraph do not ap-
ply to the SIGURG signal generated for out-of-band data on a socket:
this signal is always sent to either a process or a process group, de-
pending on the value given to F_SETOWN.

The above behavior was accidentally dropped in Linux 2.6.12, and won’t be
restored. From Linux 2.6.32 onward, use F_SETOWN_EX to target SIGIO
and SIGURG signals at a particular thread.

F_GETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)
Return the current file descriptor owner settings as defined by a previous
F_SETOWN_EX operation. The information is returned in the structure
pointed to by arg, which has the following form:

struct f_owner_ex {
int type;
pid_t pid;

};

The type field will have one of the values F_OWNER_TID,
F_OWNER_PID, or F_OWNER_PGRP. The pid field is a positive integer

Linux man-pages 6.13 2024-07-23 215

fcntl(2) System Calls Manual fcntl(2)

representing a thread ID, process ID, or process group ID. See F_SE-
TOWN_EX for more details.

F_SETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)
This operation performs a similar task to F_SETOWN. It allows the caller to
direct I/O availability signals to a specific thread, process, or process group.
The caller specifies the target of signals via arg, which is a pointer to a
f_owner_ex structure. The type field has one of the following values, which
define how pid is interpreted:

F_OWNER_TID
Send the signal to the thread whose thread ID (the value returned by a
call to clone(2) or gettid(2)) is specified in pid .

F_OWNER_PID
Send the signal to the process whose ID is specified in pid .

F_OWNER_PGRP
Send the signal to the process group whose ID is specified in pid .
(Note that, unlike with F_SETOWN, a process group ID is specified
as a positive value here.)

F_GETSIG (void)
Return (as the function result) the signal sent when input or output becomes
possible. A value of zero means SIGIO is sent. Any other value (including
SIGIO) is the signal sent instead, and in this case additional info is available
to the signal handler if installed with SA_SIGINFO. arg is ignored.

F_SETSIG (int)
Set the signal sent when input or output becomes possible to the value given in
arg. A value of zero means to send the default SIGIO signal. Any other
value (including SIGIO) is the signal to send instead, and in this case addi-
tional info is available to the signal handler if installed with SA_SIGINFO.

By using F_SETSIG with a nonzero value, and setting SA_SIGINFO for the
signal handler (see sigaction(2)), extra information about I/O events is passed
to the handler in a siginfo_t structure. If the si_code field indicates the source
is SI_SIGIO, the si_fd field gives the file descriptor associated with the event.
Otherwise, there is no indication which file descriptors are pending, and you
should use the usual mechanisms (select(2), poll(2), read(2) with O_NON-
BLOCK set etc.) to determine which file descriptors are available for I/O.

Note that the file descriptor provided in si_fd is the one that was specified dur-
ing the F_SETSIG operation. This can lead to an unusual corner case. If the
file descriptor is duplicated (dup(2) or similar), and the original file descriptor
is closed, then I/O events will continue to be generated, but the si_fd field will
contain the number of the now closed file descriptor.

By selecting a real time signal (value >= SIGRTMIN), multiple I/O events
may be queued using the same signal numbers. (Queuing is dependent on
available memory.) Extra information is available if SA_SIGINFO is set for
the signal handler, as above.

Note that Linux imposes a limit on the number of real-time signals that may
be queued to a process (see getrlimit(2) and signal(7)) and if this limit is

Linux man-pages 6.13 2024-07-23 216

fcntl(2) System Calls Manual fcntl(2)

reached, then the kernel reverts to delivering SIGIO, and this signal is deliv-
ered to the entire process rather than to a specific thread.

Using these mechanisms, a program can implement fully asynchronous I/O without
using select(2) or poll(2) most of the time.

The use of O_ASYNC is specific to BSD and Linux. The only use of F_GETOWN
and F_SETOWN specified in POSIX.1 is in conjunction with the use of the SIGURG
signal on sockets. (POSIX does not specify the SIGIO signal.) F_GETOWN_EX,
F_SETOWN_EX, F_GETSIG, and F_SETSIG are Linux-specific. POSIX has
asynchronous I/O and the aio_sigevent structure to achieve similar things; these are
also available in Linux as part of the GNU C Library (glibc).

Leases
F_SETLEASE and F_GETLEASE (Linux 2.4 onward) are used to establish a new
lease, and retrieve the current lease, on the open file description referred to by the file
descriptor fd . A file lease provides a mechanism whereby the process holding the
lease (the "lease holder") is notified (via delivery of a signal) when a process (the
"lease breaker") tries to open(2) or truncate(2) the file referred to by that file descrip-
tor.

F_SETLEASE (int)
Set or remove a file lease according to which of the following values is speci-
fied in the integer arg:

F_RDLCK
Take out a read lease. This will cause the calling process to be notified
when the file is opened for writing or is truncated. A read lease can be
placed only on a file descriptor that is opened read-only.

F_WRLCK
Take out a write lease. This will cause the caller to be notified when
the file is opened for reading or writing or is truncated. A write lease
may be placed on a file only if there are no other open file descriptors
for the file.

F_UNLCK
Remove our lease from the file.

Leases are associated with an open file description (see open(2)). This means that du-
plicate file descriptors (created by, for example, fork(2) or dup(2)) refer to the same
lease, and this lease may be modified or released using any of these descriptors. Fur-
thermore, the lease is released by either an explicit F_UNLCK operation on any of
these duplicate file descriptors, or when all such file descriptors have been closed.

Leases may be taken out only on regular files. An unprivileged process may take out
a lease only on a file whose UID (owner) matches the filesystem UID of the process.
A process with the CAP_LEASE capability may take out leases on arbitrary files.

F_GETLEASE (void)
Indicates what type of lease is associated with the file descriptor fd by return-
ing either F_RDLCK, F_WRLCK, or F_UNLCK, indicating, respectively, a
read lease , a write lease, or no lease. arg is ignored.

When a process (the "lease breaker") performs an open(2) or truncate(2) that conflicts

Linux man-pages 6.13 2024-07-23 217

fcntl(2) System Calls Manual fcntl(2)

with a lease established via F_SETLEASE, the system call is blocked by the kernel
and the kernel notifies the lease holder by sending it a signal (SIGIO by default). The
lease holder should respond to receipt of this signal by doing whatever cleanup is re-
quired in preparation for the file to be accessed by another process (e.g., flushing
cached buffers) and then either remove or downgrade its lease. A lease is removed by
performing an F_SETLEASE operation specifying arg as F_UNLCK. If the lease
holder currently holds a write lease on the file, and the lease breaker is opening the
file for reading, then it is sufficient for the lease holder to downgrade the lease to a
read lease. This is done by performing an F_SETLEASE operation specifying arg as
F_RDLCK.

If the lease holder fails to downgrade or remove the lease within the number of sec-
onds specified in /proc/sys/fs/lease-break-time, then the kernel forcibly removes or
downgrades the lease holder’s lease.

Once a lease break has been initiated, F_GETLEASE returns the target lease type
(either F_RDLCK or F_UNLCK, depending on what would be compatible with the
lease breaker) until the lease holder voluntarily downgrades or removes the lease or
the kernel forcibly does so after the lease break timer expires.

Once the lease has been voluntarily or forcibly removed or downgraded, and assum-
ing the lease breaker has not unblocked its system call, the kernel permits the lease
breaker’s system call to proceed.

If the lease breaker’s blocked open(2) or truncate(2) is interrupted by a signal handler,
then the system call fails with the error EINTR, but the other steps still occur as de-
scribed above. If the lease breaker is killed by a signal while blocked in open(2) or
truncate(2), then the other steps still occur as described above. If the lease breaker
specifies the O_NONBLOCK flag when calling open(2), then the call immediately
fails with the error EWOULDBLOCK, but the other steps still occur as described
above.

The default signal used to notify the lease holder is SIGIO, but this can be changed
using the F_SETSIG operation to fcntl(). If a F_SETSIG operation is performed
(even one specifying SIGIO), and the signal handler is established using SA_SIG-
INFO, then the handler will receive a siginfo_t structure as its second argument, and
the si_fd field of this argument will hold the file descriptor of the leased file that has
been accessed by another process. (This is useful if the caller holds leases against
multiple files.)

File and directory change notification (dnotify)
F_NOTIFY (int)

(Linux 2.4 onward) Provide notification when the directory referred to by fd
or any of the files that it contains is changed. The events to be notified are
specified in arg, which is a bit mask specified by ORing together zero or more
of the following bits:

DN_ACCESS
A file was accessed (read(2), pread(2), readv(2), and similar)

DN_MODIFY
A file was modified (write(2), pwrite(2), writev(2), truncate(2), ftrun-
cate(2), and similar).

Linux man-pages 6.13 2024-07-23 218

fcntl(2) System Calls Manual fcntl(2)

DN_CREATE
A file was created (open(2), creat(2), mknod(2), mkdir(2), link(2), sym-
link(2), rename(2) into this directory).

DN_DELETE
A file was unlinked (unlink(2), rename(2) to another directory,
rmdir(2)).

DN_RENAME
A file was renamed within this directory (rename(2)).

DN_ATTRIB
The attributes of a file were changed (chown(2), chmod(2), utime(2),
utimensat(2), and similar).

(In order to obtain these definitions, the _GNU_SOURCE feature test macro
must be defined before including any header files.)

Directory notifications are normally "one-shot", and the application must
reregister to receive further notifications. Alternatively, if DN_MULTISHOT
is included in arg, then notification will remain in effect until explicitly re-
moved.

A series of F_NOTIFY requests is cumulative, with the events in arg being
added to the set already monitored. To disable notification of all events, make
an F_NOTIFY call specifying arg as 0.

Notification occurs via delivery of a signal. The default signal is SIGIO, but
this can be changed using the F_SETSIG operation to fcntl(). (Note that SI-
GIO is one of the nonqueuing standard signals; switching to the use of a real-
time signal means that multiple notifications can be queued to the process.) In
the latter case, the signal handler receives a siginfo_t structure as its second ar-
gument (if the handler was established using SA_SIGINFO) and the si_fd
field of this structure contains the file descriptor which generated the notifica-
tion (useful when establishing notification on multiple directories).

Especially when using DN_MULTISHOT, a real time signal should be used
for notification, so that multiple notifications can be queued.

NOTE: New applications should use the inotify interface (available since
Linux 2.6.13), which provides a much superior interface for obtaining notifica-
tions of filesystem events. See inotify(7).

Changing the capacity of a pipe
F_SETPIPE_SZ (int; since Linux 2.6.35)

Change the capacity of the pipe referred to by fd to be at least arg bytes. An
unprivileged process can adjust the pipe capacity to any value between the sys-
tem page size and the limit defined in /proc/sys/fs/pipe-max-size (see
proc(5)). Attempts to set the pipe capacity below the page size are silently
rounded up to the page size. Attempts by an unprivileged process to set the
pipe capacity above the limit in /proc/sys/fs/pipe-max-size yield the error
EPERM; a privileged process (CAP_SYS_RESOURCE) can override the
limit.

When allocating the buffer for the pipe, the kernel may use a capacity larger
than arg, if that is convenient for the implementation. (In the current

Linux man-pages 6.13 2024-07-23 219

fcntl(2) System Calls Manual fcntl(2)

implementation, the allocation is the next higher power-of-two page-size mul-
tiple of the requested size.) The actual capacity (in bytes) that is set is re-
turned as the function result.

Attempting to set the pipe capacity smaller than the amount of buffer space
currently used to store data produces the error EBUSY.

Note that because of the way the pages of the pipe buffer are employed when
data is written to the pipe, the number of bytes that can be written may be less
than the nominal size, depending on the size of the writes.

F_GETPIPE_SZ (void; since Linux 2.6.35)
Return (as the function result) the capacity of the pipe referred to by fd .

File Sealing
File seals limit the set of allowed operations on a given file. For each seal that is set
on a file, a specific set of operations will fail with EPERM on this file from now on.
The file is said to be sealed. The default set of seals depends on the type of the under-
lying file and filesystem. For an overview of file sealing, a discussion of its purpose,
and some code examples, see memfd_create(2).

Currently, file seals can be applied only to a file descriptor returned by memfd_cre-
ate(2) (if the MFD_ALLOW_SEALING was employed). On other filesystems, all
fcntl() operations that operate on seals will return EINVAL.

Seals are a property of an inode. Thus, all open file descriptors referring to the same
inode share the same set of seals. Furthermore, seals can never be removed, only
added.

F_ADD_SEALS (int; since Linux 3.17)
Add the seals given in the bit-mask argument arg to the set of seals of the in-
ode referred to by the file descriptor fd . Seals cannot be removed again.
Once this call succeeds, the seals are enforced by the kernel immediately. If
the current set of seals includes F_SEAL_SEAL (see below), then this call
will be rejected with EPERM. Adding a seal that is already set is a no-op, in
case F_SEAL_SEAL is not set already. In order to place a seal, the file de-
scriptor fd must be writable.

F_GET_SEALS (void; since Linux 3.17)
Return (as the function result) the current set of seals of the inode referred to
by fd . If no seals are set, 0 is returned. If the file does not support sealing, -1
is returned and errno is set to EINVAL.

The following seals are available:

F_SEAL_SEAL
If this seal is set, any further call to fcntl() with F_ADD_SEALS fails with
the error EPERM. Therefore, this seal prevents any modifications to the set
of seals itself. If the initial set of seals of a file includes F_SEAL_SEAL, then
this effectively causes the set of seals to be constant and locked.

F_SEAL_SHRINK
If this seal is set, the file in question cannot be reduced in size. This affects
open(2) with the O_TRUNC flag as well as truncate(2) and ftruncate(2).
Those calls fail with EPERM if you try to shrink the file in question.

Linux man-pages 6.13 2024-07-23 220

fcntl(2) System Calls Manual fcntl(2)

Increasing the file size is still possible.

F_SEAL_GROW
If this seal is set, the size of the file in question cannot be increased. This af-
fects write(2) beyond the end of the file, truncate(2), ftruncate(2), and fallo-
cate(2). These calls fail with EPERM if you use them to increase the file size.
If you keep the size or shrink it, those calls still work as expected.

F_SEAL_WRITE
If this seal is set, you cannot modify the contents of the file. Note that shrink-
ing or growing the size of the file is still possible and allowed. Thus, this seal
is normally used in combination with one of the other seals. This seal affects
write(2) and fallocate(2) (only in combination with the FAL-
LOC_FL_PUNCH_HOLE flag). Those calls fail with EPERM if this seal is
set. Furthermore, trying to create new shared, writable memory-mappings via
mmap(2) will also fail with EPERM.

Using the F_ADD_SEALS operation to set the F_SEAL_WRITE seal fails
with EBUSY if any writable, shared mapping exists. Such mappings must be
unmapped before you can add this seal. Furthermore, if there are any asyn-
chronous I/O operations (io_submit(2)) pending on the file, all outstanding
writes will be discarded.

F_SEAL_FUTURE_WRITE (since Linux 5.1)
The effect of this seal is similar to F_SEAL_WRITE, but the contents of the
file can still be modified via shared writable mappings that were created prior
to the seal being set. Any attempt to create a new writable mapping on the file
via mmap(2) will fail with EPERM. Likewise, an attempt to write to the file
via write(2) will fail with EPERM.

Using this seal, one process can create a memory buffer that it can continue to
modify while sharing that buffer on a "read-only" basis with other processes.

File read/write hints
Write lifetime hints can be used to inform the kernel about the relative expected life-
time of writes on a given inode or via a particular open file description. (See open(2)
for an explanation of open file descriptions.) In this context, the term "write lifetime"
means the expected time the data will live on media, before being overwritten or
erased.

An application may use the different hint values specified below to separate writes
into different write classes, so that multiple users or applications running on a single
storage back-end can aggregate their I/O patterns in a consistent manner. However,
there are no functional semantics implied by these flags, and different I/O classes can
use the write lifetime hints in arbitrary ways, so long as the hints are used consis-
tently.

The following operations can be applied to the file descriptor, fd:

F_GET_RW_HINT (uint64_t *; since Linux 4.13)
Returns the value of the read/write hint associated with the underlying inode
referred to by fd .

Linux man-pages 6.13 2024-07-23 221

fcntl(2) System Calls Manual fcntl(2)

F_SET_RW_HINT (uint64_t *; since Linux 4.13)
Sets the read/write hint value associated with the underlying inode referred to
by fd . This hint persists until either it is explicitly modified or the underlying
filesystem is unmounted.

F_GET_FILE_RW_HINT (uint64_t *; since Linux 4.13)
Returns the value of the read/write hint associated with the open file descrip-
tion referred to by fd .

F_SET_FILE_RW_HINT (uint64_t *; since Linux 4.13)
Sets the read/write hint value associated with the open file description referred
to by fd .

If an open file description has not been assigned a read/write hint, then it shall use the
value assigned to the inode, if any.

The following read/write hints are valid since Linux 4.13:

RWH_WRITE_LIFE_NOT_SET
No specific hint has been set. This is the default value.

RWH_WRITE_LIFE_NONE
No specific write lifetime is associated with this file or inode.

RWH_WRITE_LIFE_SHORT
Data written to this inode or via this open file description is expected to have a
short lifetime.

RWH_WRITE_LIFE_MEDIUM
Data written to this inode or via this open file description is expected to have a
lifetime longer than data written with RWH_WRITE_LIFE_SHORT.

RWH_WRITE_LIFE_LONG
Data written to this inode or via this open file description is expected to have a
lifetime longer than data written with RWH_WRITE_LIFE_MEDIUM.

RWH_WRITE_LIFE_EXTREME
Data written to this inode or via this open file description is expected to have a
lifetime longer than data written with RWH_WRITE_LIFE_LONG.

All the write-specific hints are relative to each other, and no individual absolute mean-
ing should be attributed to them.

RETURN VALUE
For a successful call, the return value depends on the operation:

F_DUPFD
The new file descriptor.

F_GETFD
Value of file descriptor flags.

F_GETFL
Value of file status flags.

F_GETLEASE
Type of lease held on file descriptor.

Linux man-pages 6.13 2024-07-23 222

fcntl(2) System Calls Manual fcntl(2)

F_GETOWN
Value of file descriptor owner.

F_GETSIG
Value of signal sent when read or write becomes possible, or zero for tradi-
tional SIGIO behavior.

F_GETPIPE_SZ
F_SETPIPE_SZ

The pipe capacity.

F_GET_SEALS
A bit mask identifying the seals that have been set for the inode referred to by
fd .

All other operations
Zero.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EACCES or EAGAIN

Operation is prohibited by locks held by other processes.

EAGAIN
The operation is prohibited because the file has been memory-mapped by an-
other process.

EBADF
fd is not an open file descriptor

EBADF
op is F_SETLK or F_SETLKW and the file descriptor open mode doesn’t
match with the type of lock requested.

EBUSY
op is F_SETPIPE_SZ and the new pipe capacity specified in arg is smaller
than the amount of buffer space currently used to store data in the pipe.

EBUSY
op is F_ADD_SEALS, arg includes F_SEAL_WRITE, and there exists a
writable, shared mapping on the file referred to by fd .

EDEADLK
It was detected that the specified F_SETLKW operation would cause a dead-
lock.

EFAULT
lock is outside your accessible address space.

EINTR
op is F_SETLKW or F_OFD_SETLKW and the operation was interrupted
by a signal; see signal(7).

EINTR
op is F_GETLK, F_SETLK, F_OFD_GETLK, or F_OFD_SETLK, and
the operation was interrupted by a signal before the lock was checked or ac-
quired. Most likely when locking a remote file (e.g., locking over NFS), but

Linux man-pages 6.13 2024-07-23 223

fcntl(2) System Calls Manual fcntl(2)

can sometimes happen locally.

EINVAL
The value specified in op is not recognized by this kernel.

EINVAL
op is F_ADD_SEALS and arg includes an unrecognized sealing bit.

EINVAL
op is F_ADD_SEALS or F_GET_SEALS and the filesystem containing the
inode referred to by fd does not support sealing.

EINVAL
op is F_DUPFD and arg is negative or is greater than the maximum allowable
value (see the discussion of RLIMIT_NOFILE in getrlimit(2)).

EINVAL
op is F_SETSIG and arg is not an allowable signal number.

EINVAL
op is F_OFD_SETLK, F_OFD_SETLKW, or F_OFD_GETLK, and l_pid
was not specified as zero.

EMFILE
op is F_DUPFD and the per-process limit on the number of open file descrip-
tors has been reached.

ENOLCK
Too many segment locks open, lock table is full, or a remote locking protocol
failed (e.g., locking over NFS).

ENOTDIR
F_NOTIFY was specified in op, but fd does not refer to a directory.

EPERM
op is F_SETPIPE_SZ and the soft or hard user pipe limit has been reached;
see pipe(7).

EPERM
Attempted to clear the O_APPEND flag on a file that has the append-only at-
tribute set.

EPERM
op was F_ADD_SEALS, but fd was not open for writing or the current set of
seals on the file already includes F_SEAL_SEAL.

STANDARDS
POSIX.1-2008.

F_GETOWN_EX, F_SETOWN_EX, F_SETPIPE_SZ, F_GETPIPE_SZ, F_GET-
SIG, F_SETSIG, F_NOTIFY, F_GETLEASE, and F_SETLEASE are Linux-spe-
cific. (Define the _GNU_SOURCE macro to obtain these definitions.)

F_OFD_SETLK, F_OFD_SETLKW, and F_OFD_GETLK are Linux-specific
(and one must define _GNU_SOURCE to obtain their definitions), but work is being
done to have them included in the next version of POSIX.1.

F_ADD_SEALS and F_GET_SEALS are Linux-specific.

Linux man-pages 6.13 2024-07-23 224

fcntl(2) System Calls Manual fcntl(2)

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

Only the operations F_DUPFD, F_GETFD, F_SETFD, F_GETFL, F_SETFL,
F_GETLK, F_SETLK, and F_SETLKW are specified in POSIX.1-2001.

F_GETOWN and F_SETOWN are specified in POSIX.1-2001. (To get their defini-
tions, define either _XOPEN_SOURCE with the value 500 or greater, or
_POSIX_C_SOURCE with the value 200809L or greater.)

F_DUPFD_CLOEXEC is specified in POSIX.1-2008. (To get this definition, define
_POSIX_C_SOURCE with the value 200809L or greater, or _XOPEN_SOURCE
with the value 700 or greater.)

NOTES
The errors returned by dup2(2) are different from those returned by F_DUPFD.

File locking
The original Linux fcntl() system call was not designed to handle large file offsets (in
the flock structure). Consequently, an fcntl64() system call was added in Linux 2.4.
The newer system call employs a different structure for file locking, flock64, and cor-
responding operations, F_GETLK64, F_SETLK64, and F_SETLKW64. However,
these details can be ignored by applications using glibc, whose fcntl() wrapper func-
tion transparently employs the more recent system call where it is available.

Record locks
Since Linux 2.0, there is no interaction between the types of lock placed by flock(2)
and fcntl().

Several systems have more fields in struct flock such as, for example, l_sysid (to iden-
tify the machine where the lock is held). Clearly, l_pid alone is not going to be very
useful if the process holding the lock may live on a different machine; on Linux, while
present on some architectures (such as MIPS32), this field is not used.

The original Linux fcntl() system call was not designed to handle large file offsets (in
the flock structure). Consequently, an fcntl64() system call was added in Linux 2.4.
The newer system call employs a different structure for file locking, flock64, and cor-
responding operations, F_GETLK64, F_SETLK64, and F_SETLKW64. However,
these details can be ignored by applications using glibc, whose fcntl() wrapper func-
tion transparently employs the more recent system call where it is available.

Record locking and NFS
Before Linux 3.12, if an NFSv4 client loses contact with the server for a period of
time (defined as more than 90 seconds with no communication), it might lose and re-
gain a lock without ever being aware of the fact. (The period of time after which con-
tact is assumed lost is known as the NFSv4 leasetime. On a Linux NFS server, this
can be determined by looking at /proc/fs/nfsd/nfsv4leasetime, which expresses the pe-
riod in seconds. The default value for this file is 90.) This scenario potentially risks
data corruption, since another process might acquire a lock in the intervening period
and perform file I/O.

Since Linux 3.12, if an NFSv4 client loses contact with the server, any I/O to the file
by a process which "thinks" it holds a lock will fail until that process closes and re-
opens the file. A kernel parameter, nfs.recover_lost_locks, can be set to 1 to obtain
the pre-3.12 behavior, whereby the client will attempt to recover lost locks when

Linux man-pages 6.13 2024-07-23 225

fcntl(2) System Calls Manual fcntl(2)

contact is reestablished with the server. Because of the attendant risk of data corrup-
tion, this parameter defaults to 0 (disabled).

BUGS
F_SETFL

It is not possible to use F_SETFL to change the state of the O_DSYNC and
O_SYNC flags. Attempts to change the state of these flags are silently ignored.

F_GETOWN
A limitation of the Linux system call conventions on some architectures (notably
i386) means that if a (negative) process group ID to be returned by F_GETOWN falls
in the range -1 to -4095, then the return value is wrongly interpreted by glibc as an
error in the system call; that is, the return value of fcntl() will be -1, and errno will
contain the (positive) process group ID. The Linux-specific F_GETOWN_EX opera-
tion avoids this problem. Since glibc 2.11, glibc makes the kernel F_GETOWN
problem invisible by implementing F_GETOWN using F_GETOWN_EX.

F_SETOWN
In Linux 2.4 and earlier, there is bug that can occur when an unprivileged process uses
F_SETOWN to specify the owner of a socket file descriptor as a process (group)
other than the caller. In this case, fcntl() can return -1 with errno set to EPERM,
even when the owner process (group) is one that the caller has permission to send sig-
nals to. Despite this error return, the file descriptor owner is set, and signals will be
sent to the owner.

Deadlock detection
The deadlock-detection algorithm employed by the kernel when dealing with
F_SETLKW requests can yield both false negatives (failures to detect deadlocks,
leaving a set of deadlocked processes blocked indefinitely) and false positives
(EDEADLK errors when there is no deadlock). For example, the kernel limits the
lock depth of its dependency search to 10 steps, meaning that circular deadlock chains
that exceed that size will not be detected. In addition, the kernel may falsely indicate
a deadlock when two or more processes created using the clone(2) CLONE_FILES
flag place locks that appear (to the kernel) to conflict.

Mandatory locking
The Linux implementation of mandatory locking is subject to race conditions which
render it unreliable: a write(2) call that overlaps with a lock may modify data after the
mandatory lock is acquired; a read(2) call that overlaps with a lock may detect
changes to data that were made only after a write lock was acquired. Similar races ex-
ist between mandatory locks and mmap(2). It is therefore inadvisable to rely on
mandatory locking.

SEE ALSO
dup2(2), flock(2), open(2), socket(2), lockf(3), capabilities(7), feature_test_macros(7),
lslocks(8)

locks.txt, mandatory-locking.txt, and dnotify.txt in the Linux kernel source directory
Documentation/filesystems/ (on older kernels, these files are directly under the Docu-
mentation/ directory, and mandatory-locking.txt is called mandatory.txt)

Linux man-pages 6.13 2024-07-23 226

fcntl(2) System Calls Manual fcntl(2)

Linux man-pages 6.13 2024-07-23 227

flock(2) System Calls Manual flock(2)

NAME
flock - apply or remove an advisory lock on an open file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/file.h>

int flock(int fd , int op);

DESCRIPTION
Apply or remove an advisory lock on the open file specified by fd . The argument op
is one of the following:

LOCK_SH
Place a shared lock. More than one process may hold a shared lock
for a given file at a given time.

LOCK_EX
Place an exclusive lock. Only one process may hold an exclusive
lock for a given file at a given time.

LOCK_UN
Remove an existing lock held by this process.

A call to flock() may block if an incompatible lock is held by another process. To
make a nonblocking request, include LOCK_NB (by ORing) with any of the above
operations.

A single file may not simultaneously have both shared and exclusive locks.

Locks created by flock() are associated with an open file description (see open(2)).
This means that duplicate file descriptors (created by, for example, fork(2) or dup(2))
refer to the same lock, and this lock may be modified or released using any of these
file descriptors. Furthermore, the lock is released either by an explicit LOCK_UN
operation on any of these duplicate file descriptors, or when all such file descriptors
have been closed.

If a process uses open(2) (or similar) to obtain more than one file descriptor for the
same file, these file descriptors are treated independently by flock(). An attempt to
lock the file using one of these file descriptors may be denied by a lock that the calling
process has already placed via another file descriptor.

A process may hold only one type of lock (shared or exclusive) on a file. Subsequent
flock() calls on an already locked file will convert an existing lock to the new lock
mode.

Locks created by flock() are preserved across an execve(2).

A shared or exclusive lock can be placed on a file regardless of the mode in which the
file was opened.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

Linux man-pages 6.13 2024-07-23 228

flock(2) System Calls Manual flock(2)

ERRORS
EBADF

fd is not an open file descriptor.

EINTR
While waiting to acquire a lock, the call was interrupted by delivery of a signal
caught by a handler; see signal(7).

EINVAL
op is invalid.

ENOLCK
The kernel ran out of memory for allocating lock records.

EWOULDBLOCK
The file is locked and the LOCK_NB flag was selected.

VERSIONS
Since Linux 2.0, flock() is implemented as a system call in its own right rather than
being emulated in the GNU C library as a call to fcntl(2). With this implementation,
there is no interaction between the types of lock placed by flock() and fcntl(2), and
flock() does not detect deadlock. (Note, however, that on some systems, such as the
modern BSDs, flock() and fcntl(2) locks do interact with one another.)

CIFS details
Up to Linux 5.4, flock() is not propagated over SMB. A file with such locks will not
appear locked for remote clients.

Since Linux 5.5, flock() locks are emulated with SMB byte-range locks on the entire
file. Similarly to NFS, this means that fcntl(2) and flock() locks interact with one an-
other. Another important side-effect is that the locks are not advisory anymore: any
IO on a locked file will always fail with EACCES when done from a separate file de-
scriptor. This difference originates from the design of locks in the SMB protocol,
which provides mandatory locking semantics.

Remote and mandatory locking semantics may vary with SMB protocol, mount op-
tions and server type. See mount.cifs(8) for additional information.

STANDARDS
BSD.

HISTORY
4.4BSD (the flock() call first appeared in 4.2BSD). A version of flock(), possibly im-
plemented in terms of fcntl(2), appears on most UNIX systems.

NFS details
Up to Linux 2.6.11, flock() does not lock files over NFS (i.e., the scope of locks was
limited to the local system). Instead, one could use fcntl(2) byte-range locking, which
does work over NFS, given a sufficiently recent version of Linux and a server which
supports locking.

Since Linux 2.6.12, NFS clients support flock() locks by emulating them as fcntl(2)
byte-range locks on the entire file. This means that fcntl(2) and flock() locks do inter-
act with one another over NFS. It also means that in order to place an exclusive lock,
the file must be opened for writing.

Linux man-pages 6.13 2024-07-23 229

flock(2) System Calls Manual flock(2)

Since Linux 2.6.37, the kernel supports a compatibility mode that allows flock() locks
(and also fcntl(2) byte region locks) to be treated as local; see the discussion of the lo-
cal_lock option in nfs(5)

NOTES
flock() places advisory locks only; given suitable permissions on a file, a process is
free to ignore the use of flock() and perform I/O on the file.

flock() and fcntl(2) locks have different semantics with respect to forked processes
and dup(2). On systems that implement flock() using fcntl(2), the semantics of flock()
will be different from those described in this manual page.

Converting a lock (shared to exclusive, or vice versa) is not guaranteed to be atomic:
the existing lock is first removed, and then a new lock is established. Between these
two steps, a pending lock request by another process may be granted, with the result
that the conversion either blocks, or fails if LOCK_NB was specified. (This is the
original BSD behavior, and occurs on many other implementations.)

SEE ALSO
flock(1), close(2), dup(2), execve(2), fcntl(2), fork(2), open(2), lockf(3), lslocks(8)

Documentation/filesystems/locks.txt in the Linux kernel source tree (Documenta-
tion/locks.txt in older kernels)

Linux man-pages 6.13 2024-07-23 230

fork(2) System Calls Manual fork(2)

NAME
fork - create a child process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
fork() creates a new process by duplicating the calling process. The new process is
referred to as the child process. The calling process is referred to as the parent
process.

The child process and the parent process run in separate memory spaces. At the time
of fork() both memory spaces have the same content. Memory writes, file mappings
(mmap(2)), and unmappings (munmap(2)) performed by one of the processes do not
affect the other.

The child process is an exact duplicate of the parent process except for the following
points:

• The child has its own unique process ID, and this PID does not match the ID of
any existing process group (setpgid(2)) or session.

• The child’s parent process ID is the same as the parent’s process ID.

• The child does not inherit its parent’s memory locks (mlock(2), mlockall(2)).

• Process resource utilizations (getrusage(2)) and CPU time counters (times(2)) are
reset to zero in the child.

• The child’s set of pending signals is initially empty (sigpending(2)).

• The child does not inherit semaphore adjustments from its parent (semop(2)).

• The child does not inherit process-associated record locks from its parent (fc-
ntl(2)). (On the other hand, it does inherit fcntl(2) open file description locks and
flock(2) locks from its parent.)

• The child does not inherit timers from its parent (setitimer(2), alarm(2),
timer_create(2)).

• The child does not inherit outstanding asynchronous I/O operations from its parent
(aio_read(3), aio_write(3)), nor does it inherit any asynchronous I/O contexts
from its parent (see io_setup(2)).

The process attributes in the preceding list are all specified in POSIX.1. The parent
and child also differ with respect to the following Linux-specific process attributes:

• The child does not inherit directory change notifications (dnotify) from its parent
(see the description of F_NOTIFY in fcntl(2)).

• The prctl(2) PR_SET_PDEATHSIG setting is reset so that the child does not re-
ceive a signal when its parent terminates.

Linux man-pages 6.13 2025-01-14 231

fork(2) System Calls Manual fork(2)

• The default timer slack value is set to the parent’s current timer slack value. See
the description of PR_SET_TIMERSLACK in prctl(2).

• Memory mappings that have been marked with the madvise(2) MADV_DONT-
FORK flag are not inherited across a fork().

• Memory in address ranges that have been marked with the madvise(2)
MADV_WIPEONFORK flag is zeroed in the child after a fork(). (The
MADV_WIPEONFORK setting remains in place for those address ranges in the
child.)

• The termination signal of the child is always SIGCHLD (see clone(2)).

• The port access permission bits set by ioperm(2) are not inherited by the child; the
child must turn on any bits that it requires using ioperm(2).

Note the following further points:

• The child process is created with a single thread—the one that called fork(). The
entire virtual address space of the parent is replicated in the child, including the
states of mutexes, condition variables, and other pthreads objects; the use of
pthread_atfork(3) may be helpful for dealing with problems that this can cause.

• After a fork() in a multithreaded program, the child can safely call only async-sig-
nal-safe functions (see signal-safety(7)) until such time as it calls execve(2).

• The child inherits copies of the parent’s set of open file descriptors. Each file de-
scriptor in the child refers to the same open file description (see open(2)) as the
corresponding file descriptor in the parent. This means that the two file descrip-
tors share open file status flags, file offset, and signal-driven I/O attributes (see the
description of F_SETOWN and F_SETSIG in fcntl(2)).

• The child inherits copies of the parent’s set of open message queue descriptors
(see mq_overview(7)). Each file descriptor in the child refers to the same open
message queue description as the corresponding file descriptor in the parent. This
means that the two file descriptors share the same flags (mq_flags).

• The child inherits copies of the parent’s set of open directory streams (see
opendir(3)). POSIX.1 says that the corresponding directory streams in the parent
and child may share the directory stream positioning; on Linux/glibc they do not.

RETURN VALUE
On success, the PID of the child process is returned in the parent, and 0 is returned in
the child. On failure, -1 is returned in the parent, no child process is created, and er-
rno is set to indicate the error.

ERRORS
EAGAIN

A system-imposed limit on the number of threads was encountered. There are
a number of limits that may trigger this error:

• the RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which lim-
its the number of processes and threads for a real user ID, was reached;

• the kernel’s system-wide limit on the number of processes and threads,
/proc/sys/kernel/threads-max, was reached (see proc(5));

Linux man-pages 6.13 2025-01-14 232

fork(2) System Calls Manual fork(2)

• the maximum number of PIDs, /proc/sys/kernel/pid_max, was reached
(see proc(5)); or

• the PID limit (pids.max) imposed by the cgroup "process number" (PIDs)
controller was reached.

EAGAIN
The caller is operating under the SCHED_DEADLINE scheduling policy and
does not have the reset-on-fork flag set. See sched(7).

ENOMEM
fork() failed to allocate the necessary kernel structures because memory is
tight.

ENOMEM
An attempt was made to create a child process in a PID namespace whose
"init" process has terminated. See pid_namespaces(7).

ENOSYS
fork() is not supported on this platform (for example, hardware without a
Memory-Management Unit).

ERESTARTNOINTR (since Linux 2.6.17)
System call was interrupted by a signal and will be restarted. (This can be
seen only during a trace.)

VERSIONS
C library/kernel differences

Since glibc 2.3.3, rather than invoking the kernel’s fork() system call, the glibc fork()
wrapper that is provided as part of the NPTL threading implementation invokes
clone(2) with flags that provide the same effect as the traditional system call. (A call
to fork() is equivalent to a call to clone(2) specifying flags as just SIGCHLD.) The
glibc wrapper invokes any fork handlers that have been established using pthread_at-
fork(3).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
Under Linux, fork() is implemented using copy-on-write pages, so the only penalty
that it incurs is the time and memory required to duplicate the parent’s page tables,
and to create a unique task structure for the child.

EXAMPLES
See pipe(2) and wait(2) for more examples.

#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

Linux man-pages 6.13 2025-01-14 233

fork(2) System Calls Manual fork(2)

int
main(void)
{

pid_t pid;

if (signal(SIGCHLD, SIG_IGN) == SIG_ERR) {
perror("signal");
exit(EXIT_FAILURE);

}
pid = fork();
switch (pid) {
case -1:

perror("fork");
exit(EXIT_FAILURE);

case 0:
puts("Child exiting.");
fflush(stdout);
_exit(EXIT_SUCCESS);

default:
printf("Child is PID %jd\n", (intmax_t) pid);
puts("Parent exiting.");
exit(EXIT_SUCCESS);

}
}

SEE ALSO
clone(2), execve(2), exit(2), _exit(2), setrlimit(2), unshare(2), vfork(2), wait(2), dae-
mon(3), pthread_atfork(3), capabilities(7), credentials(7)

Linux man-pages 6.13 2025-01-14 234

fsync(2) System Calls Manual fsync(2)

NAME
fsync, fdatasync - synchronize a file’s in-core state with storage device

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int fsync(int fd);

int fdatasync(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fsync():
glibc 2.16 and later:

No feature test macros need be defined
glibc up to and including 2.15:

_BSD_SOURCE || _XOPEN_SOURCE
|| /* Since glibc 2.8: */ _POSIX_C_SOURCE >= 200112L

fdatasync():
_POSIX_C_SOURCE >= 199309L || _XOPEN_SOURCE >= 500

DESCRIPTION
fsync() transfers ("flushes") all modified in-core data of (i.e., modified buffer cache
pages for) the file referred to by the file descriptor fd to the disk device (or other per-
manent storage device) so that all changed information can be retrieved even if the
system crashes or is rebooted. This includes writing through or flushing a disk cache
if present. The call blocks until the device reports that the transfer has completed.

As well as flushing the file data, fsync() also flushes the metadata information associ-
ated with the file (see inode(7)).

Calling fsync() does not necessarily ensure that the entry in the directory containing
the file has also reached disk. For that an explicit fsync() on a file descriptor for the
directory is also needed.

fdatasync() is similar to fsync(), but does not flush modified metadata unless that
metadata is needed in order to allow a subsequent data retrieval to be correctly han-
dled. For example, changes to st_atime or st_mtime (respectively, time of last access
and time of last modification; see inode(7)) do not require flushing because they are
not necessary for a subsequent data read to be handled correctly. On the other hand, a
change to the file size (st_size, as made by say ftruncate(2)), would require a metadata
flush.

The aim of fdatasync() is to reduce disk activity for applications that do not require
all metadata to be synchronized with the disk.

RETURN VALUE
On success, these system calls return zero. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS

Linux man-pages 6.13 2024-07-23 235

fsync(2) System Calls Manual fsync(2)

EBADF
fd is not a valid open file descriptor.

EINTR
The function was interrupted by a signal; see signal(7).

EIO An error occurred during synchronization. This error may relate to data writ-
ten to some other file descriptor on the same file. Since Linux 4.13, errors
from write-back will be reported to all file descriptors that might have written
the data which triggered the error. Some filesystems (e.g., NFS) keep close
track of which data came through which file descriptor, and give more precise
reporting. Other filesystems (e.g., most local filesystems) will report errors to
all file descriptors that were open on the file when the error was recorded.

ENOSPC
Disk space was exhausted while synchronizing.

EROFS
EINVAL

fd is bound to a special file (e.g., a pipe, FIFO, or socket) which does not sup-
port synchronization.

ENOSPC
EDQUOT

fd is bound to a file on NFS or another filesystem which does not allocate
space at the time of a write(2) system call, and some previous write failed due
to insufficient storage space.

VERSIONS
On POSIX systems on which fdatasync() is available, _POSIX_SYNCHRO-
NIZED_IO is defined in <unistd.h> to a value greater than 0. (See also sysconf(3).)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.2BSD.

In Linux 2.2 and earlier, fdatasync() is equivalent to fsync(), and so has no perfor-
mance advantage.

The fsync() implementations in older kernels and lesser used filesystems do not know
how to flush disk caches. In these cases disk caches need to be disabled using hd-
parm(8) or sdparm(8) to guarantee safe operation.

Under AT&T UNIX System V Release 4 fd needs to be opened for writing. This is
by itself incompatible with the original BSD interface and forbidden by POSIX, but
nevertheless survives in HP-UX and AIX.

SEE ALSO
sync(1), bdflush(2), open(2), posix_fadvise(2), pwritev(2), sync(2), sync_file_range(2),
fflush(3), fileno(3), hdparm(8), mount(8)

Linux man-pages 6.13 2024-07-23 236

futex(2) System Calls Manual futex(2)

NAME
futex - fast user-space locking

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, int futex_op, uint32_t val,
const struct timespec *timeout, /* or: uint32_t val2 */
uint32_t *uaddr2, uint32_t val3);

Note: glibc provides no wrapper for futex(), necessitating the use of syscall(2).

DESCRIPTION
The futex() system call provides a method for waiting until a certain condition be-
comes true. It is typically used as a blocking construct in the context of shared-mem-
ory synchronization. When using futexes, the majority of the synchronization opera-
tions are performed in user space. A user-space program employs the futex() system
call only when it is likely that the program has to block for a longer time until the con-
dition becomes true. Other futex() operations can be used to wake any processes or
threads waiting for a particular condition.

A futex is a 32-bit value—referred to below as a futex word—whose address is sup-
plied to the futex() system call. (Futexes are 32 bits in size on all platforms, including
64-bit systems.) All futex operations are governed by this value. In order to share a
futex between processes, the futex is placed in a region of shared memory, created us-
ing (for example) mmap(2) or shmat(2). (Thus, the futex word may have different vir-
tual addresses in different processes, but these addresses all refer to the same location
in physical memory.) In a multithreaded program, it is sufficient to place the futex
word in a global variable shared by all threads.

When executing a futex operation that requests to block a thread, the kernel will block
only if the futex word has the value that the calling thread supplied (as one of the ar-
guments of the futex() call) as the expected value of the futex word. The loading of
the futex word’s value, the comparison of that value with the expected value, and the
actual blocking will happen atomically and will be totally ordered with respect to con-
current operations performed by other threads on the same futex word. Thus, the fu-
tex word is used to connect the synchronization in user space with the implementation
of blocking by the kernel. Analogously to an atomic compare-and-exchange opera-
tion that potentially changes shared memory, blocking via a futex is an atomic com-
pare-and-block operation.

One use of futexes is for implementing locks. The state of the lock (i.e., acquired or
not acquired) can be represented as an atomically accessed flag in shared memory. In
the uncontended case, a thread can access or modify the lock state with atomic in-
structions, for example atomically changing it from not acquired to acquired using an
atomic compare-and-exchange instruction. (Such instructions are performed entirely
in user mode, and the kernel maintains no information about the lock state.) On the
other hand, a thread may be unable to acquire a lock because it is already acquired by

Linux man-pages 6.13 2024-07-23 237

futex(2) System Calls Manual futex(2)

another thread. It then may pass the lock’s flag as a futex word and the value repre-
senting the acquired state as the expected value to a futex() wait operation. This fu-
tex() operation will block if and only if the lock is still acquired (i.e., the value in the
futex word still matches the "acquired state"). When releasing the lock, a thread has
to first reset the lock state to not acquired and then execute a futex operation that
wakes threads blocked on the lock flag used as a futex word (this can be further opti-
mized to avoid unnecessary wake-ups). See futex(7) for more detail on how to use fu-
texes.

Besides the basic wait and wake-up futex functionality, there are further futex opera-
tions aimed at supporting more complex use cases.

Note that no explicit initialization or destruction is necessary to use futexes; the kernel
maintains a futex (i.e., the kernel-internal implementation artifact) only while opera-
tions such as FUTEX_WAIT, described below, are being performed on a particular
futex word.

Arguments
The uaddr argument points to the futex word. On all platforms, futexes are four-byte
integers that must be aligned on a four-byte boundary. The operation to perform on
the futex is specified in the futex_op argument; val is a value whose meaning and pur-
pose depends on futex_op.

The remaining arguments (timeout, uaddr2, and val3) are required only for certain of
the futex operations described below. Where one of these arguments is not required, it
is ignored.

For several blocking operations, the timeout argument is a pointer to a timespec struc-
ture that specifies a timeout for the operation. However, notwithstanding the proto-
type shown above, for some operations, the least significant four bytes of this argu-
ment are instead used as an integer whose meaning is determined by the operation.
For these operations, the kernel casts the timeout value first to unsigned long, then to
uint32_t, and in the remainder of this page, this argument is referred to as val2 when
interpreted in this fashion.

Where it is required, the uaddr2 argument is a pointer to a second futex word that is
employed by the operation.

The interpretation of the final integer argument, val3, depends on the operation.

Futex operations
The futex_op argument consists of two parts: a command that specifies the operation
to be performed, bitwise ORed with zero or more options that modify the behaviour
of the operation. The options that may be included in futex_op are as follows:

FUTEX_PRIVATE_FLAG (since Linux 2.6.22)
This option bit can be employed with all futex operations. It tells the kernel
that the futex is process-private and not shared with another process (i.e., it is
being used for synchronization only between threads of the same process).
This allows the kernel to make some additional performance optimizations.

As a convenience, <linux/futex.h> defines a set of constants with the suffix
_PRIVATE that are equivalents of all of the operations listed below, but with
the FUTEX_PRIVATE_FLAG ORed into the constant value. Thus, there are
FUTEX_WAIT_PRIVATE, FUTEX_WAKE_PRIVATE, and so on.

Linux man-pages 6.13 2024-07-23 238

futex(2) System Calls Manual futex(2)

FUTEX_CLOCK_REALTIME (since Linux 2.6.28)
This option bit can be employed only with the FUTEX_WAIT_BITSET, FU-
TEX_WAIT_REQUEUE_PI, (since Linux 4.5) FUTEX_WAIT, and (since
Linux 5.14) FUTEX_LOCK_PI2 operations.

If this option is set, the kernel measures the timeout against the CLOCK_RE-
ALTIME clock.

If this option is not set, the kernel measures the timeout against the
CLOCK_MONOTONIC clock.

The operation specified in futex_op is one of the following:

FUTEX_WAIT (since Linux 2.6.0)
This operation tests that the value at the futex word pointed to by the address
uaddr still contains the expected value val, and if so, then sleeps waiting for a
FUTEX_WAKE operation on the futex word. The load of the value of the fu-
tex word is an atomic memory access (i.e., using atomic machine instructions
of the respective architecture). This load, the comparison with the expected
value, and starting to sleep are performed atomically and totally ordered with
respect to other futex operations on the same futex word. If the thread starts to
sleep, it is considered a waiter on this futex word. If the futex value does not
match val, then the call fails immediately with the error EAGAIN.

The purpose of the comparison with the expected value is to prevent lost
wake-ups. If another thread changed the value of the futex word after the call-
ing thread decided to block based on the prior value, and if the other thread ex-
ecuted a FUTEX_WAKE operation (or similar wake-up) after the value
change and before this FUTEX_WAIT operation, then the calling thread will
observe the value change and will not start to sleep.

If the timeout is not NULL, the structure it points to specifies a timeout for the
wait. (This interval will be rounded up to the system clock granularity, and is
guaranteed not to expire early.) The timeout is by default measured according
to the CLOCK_MONOTONIC clock, but, since Linux 4.5, the
CLOCK_REALTIME clock can be selected by specifying FU-
TEX_CLOCK_REALTIME in futex_op. If timeout is NULL, the call
blocks indefinitely.

Note: for FUTEX_WAIT, timeout is interpreted as a relative value. This dif-
fers from other futex operations, where timeout is interpreted as an absolute
value. To obtain the equivalent of FUTEX_WAIT with an absolute timeout,
employ FUTEX_WAIT_BITSET with val3 specified as FUTEX_BIT-
SET_MATCH_ANY.

The arguments uaddr2 and val3 are ignored.

FUTEX_WAKE (since Linux 2.6.0)
This operation wakes at most val of the waiters that are waiting (e.g., inside
FUTEX_WAIT) on the futex word at the address uaddr. Most commonly,
val is specified as either 1 (wake up a single waiter) or INT_MAX (wake up
all waiters). No guarantee is provided about which waiters are awoken (e.g., a
waiter with a higher scheduling priority is not guaranteed to be awoken in
preference to a waiter with a lower priority).

Linux man-pages 6.13 2024-07-23 239

futex(2) System Calls Manual futex(2)

The arguments timeout, uaddr2, and val3 are ignored.

FUTEX_FD (from Linux 2.6.0 up to and including Linux 2.6.25)
This operation creates a file descriptor that is associated with the futex at
uaddr. The caller must close the returned file descriptor after use. When an-
other process or thread performs a FUTEX_WAKE on the futex word, the file
descriptor indicates as being readable with select(2), poll(2), and epoll(7)

The file descriptor can be used to obtain asynchronous notifications: if val is
nonzero, then, when another process or thread executes a FUTEX_WAKE,
the caller will receive the signal number that was passed in val.

The arguments timeout, uaddr2, and val3 are ignored.

Because it was inherently racy, FUTEX_FD has been removed from Linux
2.6.26 onward.

FUTEX_REQUEUE (since Linux 2.6.0)
This operation performs the same task as FUTEX_CMP_REQUEUE (see
below), except that no check is made using the value in val3. (The argument
val3 is ignored.)

FUTEX_CMP_REQUEUE (since Linux 2.6.7)
This operation first checks whether the location uaddr still contains the value
val3. If not, the operation fails with the error EAGAIN. Otherwise, the oper-
ation wakes up a maximum of val waiters that are waiting on the futex at
uaddr. If there are more than val waiters, then the remaining waiters are re-
moved from the wait queue of the source futex at uaddr and added to the wait
queue of the target futex at uaddr2. The val2 argument specifies an upper
limit on the number of waiters that are requeued to the futex at uaddr2.

The load from uaddr is an atomic memory access (i.e., using atomic machine
instructions of the respective architecture). This load, the comparison with
val3, and the requeueing of any waiters are performed atomically and totally
ordered with respect to other operations on the same futex word.

Typical values to specify for val are 0 or 1. (Specifying INT_MAX is not
useful, because it would make the FUTEX_CMP_REQUEUE operation
equivalent to FUTEX_WAKE.) The limit value specified via val2 is typically
either 1 or INT_MAX. (Specifying the argument as 0 is not useful, because it
would make the FUTEX_CMP_REQUEUE operation equivalent to FU-
TEX_WAIT.)

The FUTEX_CMP_REQUEUE operation was added as a replacement for
the earlier FUTEX_REQUEUE. The difference is that the check of the value
at uaddr can be used to ensure that requeueing happens only under certain
conditions, which allows race conditions to be avoided in certain use cases.

Both FUTEX_REQUEUE and FUTEX_CMP_REQUEUE can be used to
avoid "thundering herd" wake-ups that could occur when using FU-
TEX_WAKE in cases where all of the waiters that are woken need to acquire
another futex. Consider the following scenario, where multiple waiter threads
are waiting on B, a wait queue implemented using a futex:

Linux man-pages 6.13 2024-07-23 240

futex(2) System Calls Manual futex(2)

lock(A)
while (!check_value(V)) {

unlock(A);
block_on(B);
lock(A);

};
unlock(A);

If a waker thread used FUTEX_WAKE, then all waiters waiting on B would
be woken up, and they would all try to acquire lock A. However, waking all of
the threads in this manner would be pointless because all except one of the
threads would immediately block on lock A again. By contrast, a requeue op-
eration wakes just one waiter and moves the other waiters to lock A, and when
the woken waiter unlocks A then the next waiter can proceed.

FUTEX_WAKE_OP (since Linux 2.6.14)
This operation was added to support some user-space use cases where more
than one futex must be handled at the same time. The most notable example is
the implementation of pthread_cond_signal(3), which requires operations on
two futexes, the one used to implement the mutex and the one used in the im-
plementation of the wait queue associated with the condition variable. FU-
TEX_WAKE_OP allows such cases to be implemented without leading to
high rates of contention and context switching.

The FUTEX_WAKE_OP operation is equivalent to executing the following
code atomically and totally ordered with respect to other futex operations on
any of the two supplied futex words:

uint32_t oldval = *(uint32_t *) uaddr2;
*(uint32_t *) uaddr2 = oldval op oparg;
futex(uaddr, FUTEX_WAKE, val, 0, 0, 0);
if (oldval cmp cmparg)

futex(uaddr2, FUTEX_WAKE, val2, 0, 0, 0);

In other words, FUTEX_WAKE_OP does the following:

• saves the original value of the futex word at uaddr2 and performs an oper-
ation to modify the value of the futex at uaddr2; this is an atomic read-
modify-write memory access (i.e., using atomic machine instructions of
the respective architecture)

• wakes up a maximum of val waiters on the futex for the futex word at
uaddr; and

• dependent on the results of a test of the original value of the futex word at
uaddr2, wakes up a maximum of val2 waiters on the futex for the futex
word at uaddr2.

The operation and comparison that are to be performed are encoded in the bits
of the argument val3. Pictorially, the encoding is:

+---+---+-----------+-----------+
|op |cmp| oparg | cmparg |
+---+---+-----------+-----------+

4 4 12 12 <== # of bits

Linux man-pages 6.13 2024-07-23 241

futex(2) System Calls Manual futex(2)

Expressed in code, the encoding is:

#define FUTEX_OP(op, oparg, cmp, cmparg) \
(((op & 0xf) << 28) | \
((cmp & 0xf) << 24) | \
((oparg & 0xfff) << 12) | \
(cmparg & 0xfff))

In the above, op and cmp are each one of the codes listed below. The oparg
and cmparg components are literal numeric values, except as noted below.

The op component has one of the following values:

FUTEX_OP_SET 0 /* uaddr2 = oparg; */
FUTEX_OP_ADD 1 /* uaddr2 += oparg; */
FUTEX_OP_OR 2 /* uaddr2 |= oparg; */
FUTEX_OP_ANDN 3 /* uaddr2 &= ~oparg; */
FUTEX_OP_XOR 4 /* uaddr2 ^= oparg; */

In addition, bitwise ORing the following value into op causes (1 << oparg) to
be used as the operand:

FUTEX_OP_ARG_SHIFT 8 /* Use (1 << oparg) as operand */

The cmp field is one of the following:

FUTEX_OP_CMP_EQ 0 /* if (oldval == cmparg) wake */
FUTEX_OP_CMP_NE 1 /* if (oldval != cmparg) wake */
FUTEX_OP_CMP_LT 2 /* if (oldval < cmparg) wake */
FUTEX_OP_CMP_LE 3 /* if (oldval <= cmparg) wake */
FUTEX_OP_CMP_GT 4 /* if (oldval > cmparg) wake */
FUTEX_OP_CMP_GE 5 /* if (oldval >= cmparg) wake */

The return value of FUTEX_WAKE_OP is the sum of the number of waiters
woken on the futex uaddr plus the number of waiters woken on the futex
uaddr2.

FUTEX_WAIT_BITSET (since Linux 2.6.25)
This operation is like FUTEX_WAIT except that val3 is used to provide a
32-bit bit mask to the kernel. This bit mask, in which at least one bit must be
set, is stored in the kernel-internal state of the waiter. See the description of
FUTEX_WAKE_BITSET for further details.

If timeout is not NULL, the structure it points to specifies an absolute timeout
for the wait operation. If timeout is NULL, the operation can block indefi-
nitely.

The uaddr2 argument is ignored.

FUTEX_WAKE_BITSET (since Linux 2.6.25)
This operation is the same as FUTEX_WAKE except that the val3 argument
is used to provide a 32-bit bit mask to the kernel. This bit mask, in which at
least one bit must be set, is used to select which waiters should be woken up.
The selection is done by a bitwise AND of the "wake" bit mask (i.e., the value
in val3) and the bit mask which is stored in the kernel-internal state of the
waiter (the "wait" bit mask that is set using FUTEX_WAIT_BITSET). All of

Linux man-pages 6.13 2024-07-23 242

futex(2) System Calls Manual futex(2)

the waiters for which the result of the AND is nonzero are woken up; the re-
maining waiters are left sleeping.

The effect of FUTEX_WAIT_BITSET and FUTEX_WAKE_BITSET is to
allow selective wake-ups among multiple waiters that are blocked on the same
futex. However, note that, depending on the use case, employing this bit-mask
multiplexing feature on a futex can be less efficient than simply using multiple
futexes, because employing bit-mask multiplexing requires the kernel to check
all waiters on a futex, including those that are not interested in being woken up
(i.e., they do not have the relevant bit set in their "wait" bit mask).

The constant FUTEX_BITSET_MATCH_ANY, which corresponds to all 32
bits set in the bit mask, can be used as the val3 argument for FU-
TEX_WAIT_BITSET and FUTEX_WAKE_BITSET. Other than differ-
ences in the handling of the timeout argument, the FUTEX_WAIT operation
is equivalent to FUTEX_WAIT_BITSET with val3 specified as FU-
TEX_BITSET_MATCH_ANY; that is, allow a wake-up by any waker. The
FUTEX_WAKE operation is equivalent to FUTEX_WAKE_BITSET with
val3 specified as FUTEX_BITSET_MATCH_ANY; that is, wake up any
waiter(s).

The uaddr2 and timeout arguments are ignored.

Priority-inheritance futexes
Linux supports priority-inheritance (PI) futexes in order to handle priority-inversion
problems that can be encountered with normal futex locks. Priority inversion is the
problem that occurs when a high-priority task is blocked waiting to acquire a lock
held by a low-priority task, while tasks at an intermediate priority continuously pre-
empt the low-priority task from the CPU. Consequently, the low-priority task makes
no progress toward releasing the lock, and the high-priority task remains blocked.

Priority inheritance is a mechanism for dealing with the priority-inversion problem.
With this mechanism, when a high-priority task becomes blocked by a lock held by a
low-priority task, the priority of the low-priority task is temporarily raised to that of
the high-priority task, so that it is not preempted by any intermediate level tasks, and
can thus make progress toward releasing the lock. To be effective, priority inheritance
must be transitive, meaning that if a high-priority task blocks on a lock held by a
lower-priority task that is itself blocked by a lock held by another intermediate-prior-
ity task (and so on, for chains of arbitrary length), then both of those tasks (or more
generally, all of the tasks in a lock chain) have their priorities raised to be the same as
the high-priority task.

From a user-space perspective, what makes a futex PI-aware is a policy agreement
(described below) between user space and the kernel about the value of the futex
word, coupled with the use of the PI-futex operations described below. (Unlike the
other futex operations described above, the PI-futex operations are designed for the
implementation of very specific IPC mechanisms.)

The PI-futex operations described below differ from the other futex operations in that
they impose policy on the use of the value of the futex word:

Linux man-pages 6.13 2024-07-23 243

futex(2) System Calls Manual futex(2)

• If the lock is not acquired, the futex word’s value shall be 0.

• If the lock is acquired, the futex word’s value shall be the thread ID (TID; see get-
tid(2)) of the owning thread.

• If the lock is owned and there are threads contending for the lock, then the FU-
TEX_WAITERS bit shall be set in the futex word’s value; in other words, this
value is:

FUTEX_WAITERS | TID

(Note that is invalid for a PI futex word to have no owner and FUTEX_WAIT-
ERS set.)

With this policy in place, a user-space application can acquire an unacquired lock or
release a lock using atomic instructions executed in user mode (e.g., a compare-and-
swap operation such as cmpxchg on the x86 architecture). Acquiring a lock simply
consists of using compare-and-swap to atomically set the futex word’s value to the
caller’s TID if its previous value was 0. Releasing a lock requires using compare-and-
swap to set the futex word’s value to 0 if the previous value was the expected TID.

If a futex is already acquired (i.e., has a nonzero value), waiters must employ the FU-
TEX_LOCK_PI or FUTEX_LOCK_PI2 operations to acquire the lock. If other
threads are waiting for the lock, then the FUTEX_WAITERS bit is set in the futex
value; in this case, the lock owner must employ the FUTEX_UNLOCK_PI operation
to release the lock.

In the cases where callers are forced into the kernel (i.e., required to perform a futex()
call), they then deal directly with a so-called RT-mutex, a kernel locking mechanism
which implements the required priority-inheritance semantics. After the RT-mutex is
acquired, the futex value is updated accordingly, before the calling thread returns to
user space.

It is important to note that the kernel will update the futex word’s value prior to re-
turning to user space. (This prevents the possibility of the futex word’s value ending
up in an invalid state, such as having an owner but the value being 0, or having waiters
but not having the FUTEX_WAITERS bit set.)

If a futex has an associated RT-mutex in the kernel (i.e., there are blocked waiters) and
the owner of the futex/RT-mutex dies unexpectedly, then the kernel cleans up the
RT-mutex and hands it over to the next waiter. This in turn requires that the user-
space value is updated accordingly. To indicate that this is required, the kernel sets
the FUTEX_OWNER_DIED bit in the futex word along with the thread ID of the
new owner. User space can detect this situation via the presence of the FU-
TEX_OWNER_DIED bit and is then responsible for cleaning up the stale state left
over by the dead owner.

PI futexes are operated on by specifying one of the values listed below in futex_op.
Note that the PI futex operations must be used as paired operations and are subject to
some additional requirements:

• FUTEX_LOCK_PI, FUTEX_LOCK_PI2, and FUTEX_TRYLOCK_PI pair
with FUTEX_UNLOCK_PI. FUTEX_UNLOCK_PI must be called only on a
futex owned by the calling thread, as defined by the value policy, otherwise the er-
ror EPERM results.

Linux man-pages 6.13 2024-07-23 244

futex(2) System Calls Manual futex(2)

• FUTEX_WAIT_REQUEUE_PI pairs with FUTEX_CMP_REQUEUE_PI.
This must be performed from a non-PI futex to a distinct PI futex (or the error
EINVAL results). Additionally, val (the number of waiters to be woken) must be
1 (or the error EINVAL results).

The PI futex operations are as follows:

FUTEX_LOCK_PI (since Linux 2.6.18)
This operation is used after an attempt to acquire the lock via an atomic user-
mode instruction failed because the futex word has a nonzero value—specifi-
cally, because it contained the (PID-namespace-specific) TID of the lock
owner.

The operation checks the value of the futex word at the address uaddr. If the
value is 0, then the kernel tries to atomically set the futex value to the caller’s
TID. If the futex word’s value is nonzero, the kernel atomically sets the FU-
TEX_WAITERS bit, which signals the futex owner that it cannot unlock the
futex in user space atomically by setting the futex value to 0. After that, the
kernel:

(1) Tries to find the thread which is associated with the owner TID.

(2) Creates or reuses kernel state on behalf of the owner. (If this is the first
waiter, there is no kernel state for this futex, so kernel state is created by
locking the RT-mutex and the futex owner is made the owner of the
RT-mutex. If there are existing waiters, then the existing state is
reused.)

(3) Attaches the waiter to the futex (i.e., the waiter is enqueued on the
RT-mutex waiter list).

If more than one waiter exists, the enqueueing of the waiter is in descending
priority order. (For information on priority ordering, see the discussion of the
SCHED_DEADLINE, SCHED_FIFO, and SCHED_RR scheduling policies
in sched(7).) The owner inherits either the waiter’s CPU bandwidth (if the
waiter is scheduled under the SCHED_DEADLINE policy) or the waiter’s
priority (if the waiter is scheduled under the SCHED_RR or SCHED_FIFO
policy). This inheritance follows the lock chain in the case of nested locking
and performs deadlock detection.

The timeout argument provides a timeout for the lock attempt. If timeout is
not NULL, the structure it points to specifies an absolute timeout, measured
against the CLOCK_REALTIME clock. If timeout is NULL, the operation
will block indefinitely.

The uaddr2, val, and val3 arguments are ignored.

FUTEX_LOCK_PI2 (since Linux 5.14)
This operation is the same as FUTEX_LOCK_PI, except that the clock
against which timeout is measured is selectable. By default, the (absolute)
timeout specified in timeout is measured against the CLOCK_MONOTO-
NIC clock, but if the FUTEX_CLOCK_REALTIME flag is specified in fu-
tex_op, then the timeout is measured against the CLOCK_REALTIME
clock.

Linux man-pages 6.13 2024-07-23 245

futex(2) System Calls Manual futex(2)

FUTEX_TRYLOCK_PI (since Linux 2.6.18)
This operation tries to acquire the lock at uaddr. It is invoked when a user-
space atomic acquire did not succeed because the futex word was not 0.

Because the kernel has access to more state information than user space, ac-
quisition of the lock might succeed if performed by the kernel in cases where
the futex word (i.e., the state information accessible to use-space) contains
stale state (FUTEX_WAITERS and/or FUTEX_OWNER_DIED). This can
happen when the owner of the futex died. User space cannot handle this con-
dition in a race-free manner, but the kernel can fix this up and acquire the fu-
tex.

The uaddr2, val, timeout, and val3 arguments are ignored.

FUTEX_UNLOCK_PI (since Linux 2.6.18)
This operation wakes the top priority waiter that is waiting in FU-
TEX_LOCK_PI or FUTEX_LOCK_PI2 on the futex address provided by
the uaddr argument.

This is called when the user-space value at uaddr cannot be changed atomi-
cally from a TID (of the owner) to 0.

The uaddr2, val, timeout, and val3 arguments are ignored.

FUTEX_CMP_REQUEUE_PI (since Linux 2.6.31)
This operation is a PI-aware variant of FUTEX_CMP_REQUEUE. It re-
queues waiters that are blocked via FUTEX_WAIT_REQUEUE_PI on
uaddr from a non-PI source futex (uaddr) to a PI target futex (uaddr2).

As with FUTEX_CMP_REQUEUE, this operation wakes up a maximum of
val waiters that are waiting on the futex at uaddr. However, for FU-
TEX_CMP_REQUEUE_PI, val is required to be 1 (since the main point is
to avoid a thundering herd). The remaining waiters are removed from the wait
queue of the source futex at uaddr and added to the wait queue of the target
futex at uaddr2.

The val2 and val3 arguments serve the same purposes as for FU-
TEX_CMP_REQUEUE.

FUTEX_WAIT_REQUEUE_PI (since Linux 2.6.31)
Wait on a non-PI futex at uaddr and potentially be requeued (via a FU-
TEX_CMP_REQUEUE_PI operation in another task) onto a PI futex at
uaddr2. The wait operation on uaddr is the same as for FUTEX_WAIT.

The waiter can be removed from the wait on uaddr without requeueing on
uaddr2 via a FUTEX_WAKE operation in another task. In this case, the FU-
TEX_WAIT_REQUEUE_PI operation fails with the error EAGAIN.

If timeout is not NULL, the structure it points to specifies an absolute timeout
for the wait operation. If timeout is NULL, the operation can block indefi-
nitely.

The val3 argument is ignored.

The FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI
were added to support a fairly specific use case: support for priority-

Linux man-pages 6.13 2024-07-23 246

futex(2) System Calls Manual futex(2)

inheritance-aware POSIX threads condition variables. The idea is that these
operations should always be paired, in order to ensure that user space and the
kernel remain in sync. Thus, in the FUTEX_WAIT_REQUEUE_PI opera-
tion, the user-space application pre-specifies the target of the requeue that
takes place in the FUTEX_CMP_REQUEUE_PI operation.

RETURN VALUE
In the event of an error (and assuming that futex() was invoked via syscall(2)), all op-
erations return -1 and set errno to indicate the error.

The return value on success depends on the operation, as described in the following
list:

FUTEX_WAIT
Returns 0 if the caller was woken up. Note that a wake-up can also be caused
by common futex usage patterns in unrelated code that happened to have pre-
viously used the futex word’s memory location (e.g., typical futex-based im-
plementations of Pthreads mutexes can cause this under some conditions).
Therefore, callers should always conservatively assume that a return value of 0
can mean a spurious wake-up, and use the futex word’s value (i.e., the user-
space synchronization scheme) to decide whether to continue to block or not.

FUTEX_WAKE
Returns the number of waiters that were woken up.

FUTEX_FD
Returns the new file descriptor associated with the futex.

FUTEX_REQUEUE
Returns the number of waiters that were woken up.

FUTEX_CMP_REQUEUE
Returns the total number of waiters that were woken up or requeued to the fu-
tex for the futex word at uaddr2. If this value is greater than val, then the dif-
ference is the number of waiters requeued to the futex for the futex word at
uaddr2.

FUTEX_WAKE_OP
Returns the total number of waiters that were woken up. This is the sum of the
woken waiters on the two futexes for the futex words at uaddr and uaddr2.

FUTEX_WAIT_BITSET
Returns 0 if the caller was woken up. See FUTEX_WAIT for how to inter-
pret this correctly in practice.

FUTEX_WAKE_BITSET
Returns the number of waiters that were woken up.

FUTEX_LOCK_PI
Returns 0 if the futex was successfully locked.

FUTEX_LOCK_PI2
Returns 0 if the futex was successfully locked.

Linux man-pages 6.13 2024-07-23 247

futex(2) System Calls Manual futex(2)

FUTEX_TRYLOCK_PI
Returns 0 if the futex was successfully locked.

FUTEX_UNLOCK_PI
Returns 0 if the futex was successfully unlocked.

FUTEX_CMP_REQUEUE_PI
Returns the total number of waiters that were woken up or requeued to the fu-
tex for the futex word at uaddr2. If this value is greater than val, then differ-
ence is the number of waiters requeued to the futex for the futex word at
uaddr2.

FUTEX_WAIT_REQUEUE_PI
Returns 0 if the caller was successfully requeued to the futex for the futex
word at uaddr2.

ERRORS
EACCES

No read access to the memory of a futex word.

EAGAIN
(FUTEX_WAIT, FUTEX_WAIT_BITSET, FUTEX_WAIT_RE-
QUEUE_PI) The value pointed to by uaddr was not equal to the expected
value val at the time of the call.

Note: on Linux, the symbolic names EAGAIN and EWOULDBLOCK (both
of which appear in different parts of the kernel futex code) have the same
value.

EAGAIN
(FUTEX_CMP_REQUEUE, FUTEX_CMP_REQUEUE_PI) The value
pointed to by uaddr is not equal to the expected value val3.

EAGAIN
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FU-
TEX_CMP_REQUEUE_PI) The futex owner thread ID of uaddr (for FU-
TEX_CMP_REQUEUE_PI: uaddr2) is about to exit, but has not yet handled
the internal state cleanup. Try again.

EDEADLK
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FU-
TEX_CMP_REQUEUE_PI) The futex word at uaddr is already locked by
the caller.

EDEADLK
(FUTEX_CMP_REQUEUE_PI) While requeueing a waiter to the PI futex
for the futex word at uaddr2, the kernel detected a deadlock.

EFAULT
A required pointer argument (i.e., uaddr, uaddr2, or timeout) did not point to
a valid user-space address.

EINTR
A FUTEX_WAIT or FUTEX_WAIT_BITSET operation was interrupted by
a signal (see signal(7)). Before Linux 2.6.22, this error could also be returned
for a spurious wakeup; since Linux 2.6.22, this no longer happens.

Linux man-pages 6.13 2024-07-23 248

futex(2) System Calls Manual futex(2)

EINVAL
The operation in futex_op is one of those that employs a timeout, but the sup-
plied timeout argument was invalid (tv_sec was less than zero, or tv_nsec was
not less than 1,000,000,000).

EINVAL
The operation specified in futex_op employs one or both of the pointers uaddr
and uaddr2, but one of these does not point to a valid object—that is, the ad-
dress is not four-byte-aligned.

EINVAL
(FUTEX_WAIT_BITSET, FUTEX_WAKE_BITSET) The bit mask sup-
plied in val3 is zero.

EINVAL
(FUTEX_CMP_REQUEUE_PI) uaddr equals uaddr2 (i.e., an attempt was
made to requeue to the same futex).

EINVAL
(FUTEX_FD) The signal number supplied in val is invalid.

EINVAL
(FUTEX_WAKE, FUTEX_WAKE_OP, FUTEX_WAKE_BITSET, FU-
TEX_REQUEUE, FUTEX_CMP_REQUEUE) The kernel detected an in-
consistency between the user-space state at uaddr and the kernel state—that is,
it detected a waiter which waits in FUTEX_LOCK_PI or FU-
TEX_LOCK_PI2 on uaddr.

EINVAL
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FU-
TEX_UNLOCK_PI) The kernel detected an inconsistency between the user-
space state at uaddr and the kernel state. This indicates either state corruption
or that the kernel found a waiter on uaddr which is waiting via FU-
TEX_WAIT or FUTEX_WAIT_BITSET.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency be-
tween the user-space state at uaddr2 and the kernel state; that is, the kernel de-
tected a waiter which waits via FUTEX_WAIT or FUTEX_WAIT_BITSET
on uaddr2.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency be-
tween the user-space state at uaddr and the kernel state; that is, the kernel de-
tected a waiter which waits via FUTEX_WAIT or FUTEX_WAIT_BITSET
on uaddr.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The kernel detected an inconsistency be-
tween the user-space state at uaddr and the kernel state; that is, the kernel de-
tected a waiter which waits on uaddr via FUTEX_LOCK_PI or FU-
TEX_LOCK_PI2 (instead of FUTEX_WAIT_REQUEUE_PI).

Linux man-pages 6.13 2024-07-23 249

futex(2) System Calls Manual futex(2)

EINVAL
(FUTEX_CMP_REQUEUE_PI) An attempt was made to requeue a waiter to
a futex other than that specified by the matching FUTEX_WAIT_RE-
QUEUE_PI call for that waiter.

EINVAL
(FUTEX_CMP_REQUEUE_PI) The val argument is not 1.

EINVAL
Invalid argument.

ENFILE
(FUTEX_FD) The system-wide limit on the total number of open files has
been reached.

ENOMEM
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FU-
TEX_CMP_REQUEUE_PI) The kernel could not allocate memory to hold
state information.

ENOSYS
Invalid operation specified in futex_op.

ENOSYS
The FUTEX_CLOCK_REALTIME option was specified in futex_op, but
the accompanying operation was neither FUTEX_WAIT, FU-
TEX_WAIT_BITSET, FUTEX_WAIT_REQUEUE_PI, nor FU-
TEX_LOCK_PI2.

ENOSYS
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FU-
TEX_UNLOCK_PI, FUTEX_CMP_REQUEUE_PI, FUTEX_WAIT_RE-
QUEUE_PI) A run-time check determined that the operation is not available.
The PI-futex operations are not implemented on all architectures and are not
supported on some CPU variants.

EPERM
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FU-
TEX_CMP_REQUEUE_PI) The caller is not allowed to attach itself to the
futex at uaddr (for FUTEX_CMP_REQUEUE_PI: the futex at uaddr2).
(This may be caused by a state corruption in user space.)

EPERM
(FUTEX_UNLOCK_PI) The caller does not own the lock represented by the
futex word.

ESRCH
(FUTEX_LOCK_PI, FUTEX_LOCK_PI2, FUTEX_TRYLOCK_PI, FU-
TEX_CMP_REQUEUE_PI) The thread ID in the futex word at uaddr does
not exist.

ESRCH
(FUTEX_CMP_REQUEUE_PI) The thread ID in the futex word at uaddr2
does not exist.

Linux man-pages 6.13 2024-07-23 250

futex(2) System Calls Manual futex(2)

ETIMEDOUT
The operation in futex_op employed the timeout specified in timeout, and the
timeout expired before the operation completed.

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

Initial futex support was merged in Linux 2.5.7 but with different semantics from
what was described above. A four-argument system call with the semantics described
in this page was introduced in Linux 2.5.40. A fifth argument was added in Linux
2.5.70, and a sixth argument was added in Linux 2.6.7.

EXAMPLES
The program below demonstrates use of futexes in a program where a parent process
and a child process use a pair of futexes located inside a shared anonymous mapping
to synchronize access to a shared resource: the terminal. The two processes each
write nloops (a command-line argument that defaults to 5 if omitted) messages to the
terminal and employ a synchronization protocol that ensures that they alternate in
writing messages. Upon running this program we see output such as the following:

$./futex_demo
Parent (18534) 0
Child (18535) 0
Parent (18534) 1
Child (18535) 1
Parent (18534) 2
Child (18535) 2
Parent (18534) 3
Child (18535) 3
Parent (18534) 4
Child (18535) 4

Program source

/* futex_demo.c

Usage: futex_demo [nloops]
(Default: 5)

Demonstrate the use of futexes in a program where parent and child
use a pair of futexes located inside a shared anonymous mapping to
synchronize access to a shared resource: the terminal. The two
processes each write 'num-loops' messages to the terminal and employ
a synchronization protocol that ensures that they alternate in
writing messages.

*/
#define _GNU_SOURCE
#include <err.h>
#include <errno.h>

Linux man-pages 6.13 2024-07-23 251

futex(2) System Calls Manual futex(2)

#include <linux/futex.h>
#include <stdatomic.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <unistd.h>

static uint32_t *futex1, *futex2, *iaddr;

static int
futex(uint32_t *uaddr, int futex_op, uint32_t val,

const struct timespec *timeout, uint32_t *uaddr2, uint32_t val3)
{

return syscall(SYS_futex, uaddr, futex_op, val,
timeout, uaddr2, val3);

}

/* Acquire the futex pointed to by 'futexp': wait for its value to
become 1, and then set the value to 0. */

static void
fwait(uint32_t *futexp)
{

long s;
const uint32_t one = 1;

/* atomic_compare_exchange_strong(ptr, oldval, newval)
atomically performs the equivalent of:

if (*ptr == *oldval)
*ptr = newval;

It returns true if the test yielded true and *ptr was updated. */

while (1) {

/* Is the futex available? */
if (atomic_compare_exchange_strong(futexp, &one, 0))

break; /* Yes */

/* Futex is not available; wait. */

s = futex(futexp, FUTEX_WAIT, 0, NULL, NULL, 0);
if (s == -1 && errno != EAGAIN)

err(EXIT_FAILURE, "futex-FUTEX_WAIT");

Linux man-pages 6.13 2024-07-23 252

futex(2) System Calls Manual futex(2)

}
}

/* Release the futex pointed to by 'futexp': if the futex currently
has the value 0, set its value to 1 and then wake any futex waiters,
so that if the peer is blocked in fwait(), it can proceed. */

static void
fpost(uint32_t *futexp)
{

long s;
const uint32_t zero = 0;

/* atomic_compare_exchange_strong() was described
in comments above. */

if (atomic_compare_exchange_strong(futexp, &zero, 1)) {
s = futex(futexp, FUTEX_WAKE, 1, NULL, NULL, 0);
if (s == -1)

err(EXIT_FAILURE, "futex-FUTEX_WAKE");
}

}

int
main(int argc, char *argv[])
{

pid_t childPid;
unsigned int nloops;

setbuf(stdout, NULL);

nloops = (argc > 1) ? atoi(argv[1]) : 5;

/* Create a shared anonymous mapping that will hold the futexes.
Since the futexes are being shared between processes, we
subsequently use the "shared" futex operations (i.e., not the
ones suffixed "_PRIVATE"). */

iaddr = mmap(NULL, sizeof(*iaddr) * 2, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED, -1, 0);

if (iaddr == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

futex1 = &iaddr[0];
futex2 = &iaddr[1];

futex1 = 0; / State: unavailable */
futex2 = 1; / State: available */

Linux man-pages 6.13 2024-07-23 253

futex(2) System Calls Manual futex(2)

/* Create a child process that inherits the shared anonymous
mapping. */

childPid = fork();
if (childPid == -1)

err(EXIT_FAILURE, "fork");

if (childPid == 0) { /* Child */
for (unsigned int j = 0; j < nloops; j++) {

fwait(futex1);
printf("Child (%jd) %u\n", (intmax_t) getpid(), j);
fpost(futex2);

}

exit(EXIT_SUCCESS);
}

/* Parent falls through to here. */

for (unsigned int j = 0; j < nloops; j++) {
fwait(futex2);
printf("Parent (%jd) %u\n", (intmax_t) getpid(), j);
fpost(futex1);

}

wait(NULL);

exit(EXIT_SUCCESS);
}

SEE ALSO
get_robust_list(2), restart_syscall(2), pthread_mutexattr_getprotocol(3), futex(7),
sched(7)

The following kernel source files:

• Documentation/pi-futex.txt

• Documentation/futex-requeue-pi.txt

• Documentation/locking/rt-mutex.txt

• Documentation/locking/rt-mutex-design.txt

• Documentation/robust-futex-ABI.txt

Franke, H., Russell, R., and Kirwood, M., 2002. Fuss, Futexes and Furwocks: Fast
Userlevel Locking in Linux (from proceedings of the Ottawa Linux Symposium 2002),
〈http://kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf〉

Hart, D., 2009. A futex overview and update, 〈http://lwn.net/Articles/360699/〉

Hart, D. and Guniguntala, D., 2009. Requeue-PI: Making glibc Condvars PI-Aware
(from proceedings of the 2009 Real-Time Linux Workshop),
〈http://lwn.net/images/conf/rtlws11/papers/proc/p10.pdf〉

Linux man-pages 6.13 2024-07-23 254

futex(2) System Calls Manual futex(2)

Drepper, U., 2011. Futexes Are Tricky, 〈http://www.akkadia.org/drepper/futex.pdf〉

Futex example library, futex-*.tar.bz2 at
〈https://mirrors.kernel.org/pub/linux/kernel/people/rusty/〉

Linux man-pages 6.13 2024-07-23 255

futimesat(2) System Calls Manual futimesat(2)

NAME
futimesat - change timestamps of a file relative to a directory file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/time.h>

[[deprecated]] int futimesat(int dirfd , const char *pathname,
const struct timeval times[2]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

futimesat():
_GNU_SOURCE

DESCRIPTION
This system call is obsolete. Use utimensat(2) instead.

The futimesat() system call operates in exactly the same way as utimes(2), except for
the differences described in this manual page.

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by utimes(2) for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like
utimes(2)).

If pathname is absolute, then dirfd is ignored. (See openat(2) for an explanation of
why the dirfd argument is useful.)

RETURN VALUE
On success, futimesat() returns a 0. On error, -1 is returned and errno is set to indi-
cate the error.

ERRORS
The same errors that occur for utimes(2) can also occur for futimesat(). The follow-
ing additional errors can occur for futimesat():

EBADF
pathname is relative but dirfd is neither AT_FDCWD nor a valid file descrip-
tor.

ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than a
directory.

VERSIONS
glibc

If pathname is NULL, then the glibc futimesat() wrapper function updates the times
for the file referred to by dirfd .

Linux man-pages 6.13 2024-07-23 256

futimesat(2) System Calls Manual futimesat(2)

STANDARDS
None.

HISTORY
Linux 2.6.16, glibc 2.4.

It was implemented from a specification that was proposed for POSIX.1, but that
specification was replaced by the one for utimensat(2).

A similar system call exists on Solaris.

NOTES
SEE ALSO

stat(2), utimensat(2), utimes(2), futimes(3), path_resolution(7)

Linux man-pages 6.13 2024-07-23 257

get_kernel_syms(2) System Calls Manual get_kernel_syms(2)

NAME
get_kernel_syms - retrieve exported kernel and module symbols

SYNOPSIS
#include <linux/module.h>

[[deprecated]] int get_kernel_syms(struct kernel_sym *table);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

If table is NULL, get_kernel_syms() returns the number of symbols available for
query. Otherwise, it fills in a table of structures:

struct kernel_sym {
unsigned long value;
char name[60];

};

The symbols are interspersed with magic symbols of the form #module-name with the
kernel having an empty name. The value associated with a symbol of this form is the
address at which the module is loaded.

The symbols exported from each module follow their magic module tag and the mod-
ules are returned in the reverse of the order in which they were loaded.

RETURN VALUE
On success, returns the number of symbols copied to table. On error, -1 is returned
and errno is set to indicate the error.

ERRORS
There is only one possible error return:

ENOSYS
get_kernel_syms() is not supported in this version of the kernel.

STANDARDS
Linux.

HISTORY
Removed in Linux 2.6.

This obsolete system call is not supported by glibc. No declaration is provided in
glibc headers, but, through a quirk of history, glibc versions before glibc 2.23 did ex-
port an ABI for this system call. Therefore, in order to employ this system call, it was
sufficient to manually declare the interface in your code; alternatively, you could in-
voke the system call using syscall(2).

BUGS
There is no way to indicate the size of the buffer allocated for table. If symbols have
been added to the kernel since the program queried for the symbol table size, memory
will be corrupted.

The length of exported symbol names is limited to 59 characters.

Because of these limitations, this system call is deprecated in favor of query_mod-
ule(2) (which is itself nowadays deprecated in favor of other interfaces described on
its manual page).

Linux man-pages 6.13 2024-05-02 258

get_kernel_syms(2) System Calls Manual get_kernel_syms(2)

SEE ALSO
create_module(2), delete_module(2), init_module(2), query_module(2)

Linux man-pages 6.13 2024-05-02 259

get_mempolicy(2) System Calls Manual get_mempolicy(2)

NAME
get_mempolicy - retrieve NUMA memory policy for a thread

LIBRARY
NUMA (Non-Uniform Memory Access) policy library (libnuma, -lnuma)

SYNOPSIS
#include <numaif.h>

long get_mempolicy(int *mode,
unsigned long nodemask[(.maxnode + ULONG_WIDTH - 1)

/ ULONG_WIDTH],
unsigned long maxnode, void *addr,
unsigned long flags);

DESCRIPTION
get_mempolicy() retrieves the NUMA policy of the calling thread or of a memory ad-
dress, depending on the setting of flags.

A NUMA machine has different memory controllers with different distances to spe-
cific CPUs. The memory policy defines from which node memory is allocated for the
thread.

If flags is specified as 0, then information about the calling thread’s default policy (as
set by set_mempolicy(2)) is returned, in the buffers pointed to by mode and node-
mask. The value returned in these arguments may be used to restore the thread’s pol-
icy to its state at the time of the call to get_mempolicy() using set_mempolicy(2).
When flags is 0, addr must be specified as NULL.

If flags specifies MPOL_F_MEMS_ALLOWED (available since Linux 2.6.24), the
mode argument is ignored and the set of nodes (memories) that the thread is allowed
to specify in subsequent calls to mbind(2) or set_mempolicy(2) (in the absence of any
mode flags) is returned in nodemask. It is not permitted to combine
MPOL_F_MEMS_ALLOWED with either MPOL_F_ADDR or
MPOL_F_NODE.

If flags specifies MPOL_F_ADDR, then information is returned about the policy
governing the memory address given in addr. This policy may be different from the
thread’s default policy if mbind(2) or one of the helper functions described in numa(3)
has been used to establish a policy for the memory range containing addr.

If the mode argument is not NULL, then get_mempolicy() will store the policy mode
and any optional mode flags of the requested NUMA policy in the location pointed to
by this argument. If nodemask is not NULL, then the nodemask associated with the
policy will be stored in the location pointed to by this argument. maxnode specifies
the number of node IDs that can be stored into nodemask—that is, the maximum node
ID plus one. The value specified by maxnode is always rounded to a multiple of
sizeof(unsigned long)*8.

If flags specifies both MPOL_F_NODE and MPOL_F_ADDR, get_mempolicy()
will return the node ID of the node on which the address addr is allocated into the lo-
cation pointed to by mode. If no page has yet been allocated for the specified address,
get_mempolicy() will allocate a page as if the thread had performed a read (load) ac-
cess to that address, and return the ID of the node where that page was allocated.

Linux man-pages 6.13 2024-12-14 260

get_mempolicy(2) System Calls Manual get_mempolicy(2)

If flags specifies MPOL_F_NODE, but not MPOL_F_ADDR, and the thread’s cur-
rent policy is MPOL_INTERLEAVE or MPOL_WEIGHTED_INTERLEAVE,
then get_mempolicy() will return in the location pointed to by a non-NULL mode ar-
gument, the node ID of the next node that will be used for interleaving of internal ker-
nel pages allocated on behalf of the thread. These allocations include pages for mem-
ory-mapped files in process memory ranges mapped using the mmap(2) call with the
MAP_PRIVATE flag for read accesses, and in memory ranges mapped with the
MAP_SHARED flag for all accesses.

Other flag values are reserved.

For an overview of the possible policies see set_mempolicy(2).

RETURN VALUE
On success, get_mempolicy() returns 0; on error, -1 is returned and errno is set to in-
dicate the error.

ERRORS
EFAULT

Part of all of the memory range specified by nodemask and maxnode points
outside your accessible address space.

EINVAL
The value specified by maxnode is less than the number of node IDs supported
by the system. Or flags specified values other than MPOL_F_NODE or
MPOL_F_ADDR; or flags specified MPOL_F_ADDR and addr is NULL,
or flags did not specify MPOL_F_ADDR and addr is not NULL. Or, flags
specified MPOL_F_NODE but not MPOL_F_ADDR and the current thread
policy is neither MPOL_INTERLEAVE nor MPOL_WEIGHTED_IN-
TERLEAVE. Or, flags specified MPOL_F_MEMS_ALLOWED with ei-
ther MPOL_F_ADDR or MPOL_F_NODE. (And there are other EINVAL
cases.)

STANDARDS
Linux.

HISTORY
Linux 2.6.7.

NOTES
For information on library support, see numa(7).

SEE ALSO
getcpu(2), mbind(2), mmap(2), set_mempolicy(2), numa(3), numa(7), numactl(8)

Linux man-pages 6.13 2024-12-14 261

get_robust_list(2) System Calls Manual get_robust_list(2)

NAME
get_robust_list, set_robust_list - get/set list of robust futexes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of struct robust_list_head */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_get_robust_list, int pid ,
struct robust_list_head **head_ptr, size_t *sizep);

long syscall(SYS_set_robust_list,
struct robust_list_head *head , size_t size);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
These system calls deal with per-thread robust futex lists. These lists are managed in
user space: the kernel knows only about the location of the head of the list. A thread
can inform the kernel of the location of its robust futex list using set_robust_list().
The address of a thread’s robust futex list can be obtained using get_robust_list().

The purpose of the robust futex list is to ensure that if a thread accidentally fails to un-
lock a futex before terminating or calling execve(2), another thread that is waiting on
that futex is notified that the former owner of the futex has died. This notification
consists of two pieces: the FUTEX_OWNER_DIED bit is set in the futex word, and
the kernel performs a futex(2) FUTEX_WAKE operation on one of the threads wait-
ing on the futex.

The get_robust_list() system call returns the head of the robust futex list of the thread
whose thread ID is specified in pid . If pid is 0, the head of the list for the calling
thread is returned. The list head is stored in the location pointed to by head_ptr. The
size of the object pointed to by **head_ptr is stored in sizep.

Permission to employ get_robust_list() is governed by a ptrace access mode
PTRACE_MODE_READ_REALCREDS check; see ptrace(2).

The set_robust_list() system call requests the kernel to record the head of the list of
robust futexes owned by the calling thread. The head argument is the list head to
record. The size argument should be sizeof(*head).

RETURN VALUE
The set_robust_list() and get_robust_list() system calls return zero when the opera-
tion is successful, an error code otherwise.

ERRORS
The set_robust_list() system call can fail with the following error:

EINVAL
size does not equal sizeof(struct robust_list_head).

The get_robust_list() system call can fail with the following errors:

Linux man-pages 6.13 2024-11-17 262

get_robust_list(2) System Calls Manual get_robust_list(2)

EFAULT
The head of the robust futex list can’t be stored at the location head .

EPERM
The calling process does not have permission to see the robust futex list of the
thread with the thread ID pid , and does not have the CAP_SYS_PTRACE ca-
pability.

ESRCH
No thread with the thread ID pid could be found.

VERSIONS
These system calls were added in Linux 2.6.17.

NOTES
These system calls are not needed by normal applications.

A thread can have only one robust futex list; therefore applications that wish to use
this functionality should use the robust mutexes provided by glibc.

In the initial implementation, a thread waiting on a futex was notified that the owner
had died only if the owner terminated. Starting with Linux 2.6.28, notification was
extended to include the case where the owner performs an execve(2).

The thread IDs mentioned in the main text are kernel thread IDs of the kind returned
by clone(2) and gettid(2).

SEE ALSO
futex(2), pthread_mutexattr_setrobust(3)

Documentation/robust-futexes.txt and Documentation/robust-futex-ABI.txt in the
Linux kernel source tree

Linux man-pages 6.13 2024-11-17 263

getcpu(2) System Calls Manual getcpu(2)

NAME
getcpu - determine CPU and NUMA node on which the calling thread is running

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>

int getcpu(unsigned int *_Nullable cpu, unsigned int *_Nullable node);

DESCRIPTION
The getcpu() system call identifies the processor and node on which the calling thread
or process is currently running and writes them into the integers pointed to by the cpu
and node arguments. The processor is a unique small integer identifying a CPU. The
node is a unique small identifier identifying a NUMA node. When either cpu or node
is NULL nothing is written to the respective pointer.

The information placed in cpu is guaranteed to be current only at the time of the call:
unless the CPU affinity has been fixed using sched_setaffinity(2), the kernel might
change the CPU at any time. (Normally this does not happen because the scheduler
tries to minimize movements between CPUs to keep caches hot, but it is possible.)
The caller must allow for the possibility that the information returned in cpu and node
is no longer current by the time the call returns.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

Arguments point outside the calling process’s address space.

STANDARDS
Linux.

HISTORY
Linux 2.6.19 (x86-64 and i386), glibc 2.29.

C library/kernel differences
The kernel system call has a third argument:

int getcpu(unsigned int *cpu, unsigned int *node,
struct getcpu_cache *tcache);

The tcache argument is unused since Linux 2.6.24, and (when invoking the system
call directly) should be specified as NULL, unless portability to Linux 2.6.23 or ear-
lier is required.

In Linux 2.6.23 and earlier, if the tcache argument was non-NULL, then it specified a
pointer to a caller-allocated buffer in thread-local storage that was used to provide a
caching mechanism for getcpu(). Use of the cache could speed getcpu() calls, at the
cost that there was a very small chance that the returned information would be out of
date. The caching mechanism was considered to cause problems when migrating
threads between CPUs, and so the argument is now ignored.

Linux man-pages 6.13 2024-07-23 264

getcpu(2) System Calls Manual getcpu(2)

NOTES
Linux makes a best effort to make this call as fast as possible. (On some architec-
tures, this is done via an implementation in the vdso(7).) The intention of getcpu() is
to allow programs to make optimizations with per-CPU data or for NUMA optimiza-
tion.

SEE ALSO
mbind(2), sched_setaffinity(2), set_mempolicy(2), sched_getcpu(3), cpuset(7), vdso(7)

Linux man-pages 6.13 2024-07-23 265

getdents(2) System Calls Manual getdents(2)

NAME
getdents, getdents64 - get directory entries

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_getdents, unsigned int fd , struct linux_dirent *dirp,
unsigned int count);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <dirent.h>

ssize_t getdents64(int fd , void dirp[.count], size_t count);

Note: glibc provides no wrapper for getdents(), necessitating the use of syscall(2).

Note: There is no definition of struct linux_dirent in glibc; see NOTES.

DESCRIPTION
These are not the interfaces you are interested in. Look at readdir(3) for the POSIX-
conforming C library interface. This page documents the bare kernel system call in-
terfaces.

getdents()
The system call getdents() reads several linux_dirent structures from the directory re-
ferred to by the open file descriptor fd into the buffer pointed to by dirp. The argu-
ment count specifies the size of that buffer.

The linux_dirent structure is declared as follows:

struct linux_dirent {
unsigned long d_ino; /* Inode number */
unsigned long d_off; /* Not an offset; see below */
unsigned short d_reclen; /* Length of this linux_dirent */
char d_name[]; /* Filename (null-terminated) */

/* length is actually (d_reclen - 2 -
offsetof(struct linux_dirent, d_name)) */

/*
char pad; // Zero padding byte
char d_type; // File type (only since Linux

// 2.6.4); offset is (d_reclen - 1)
*/

}

d_ino is an inode number. d_off is a filesystem-specific value with no specific mean-
ing to user space, though on older filesystems it used to be the distance from the start
of the directory to the start of the next linux_dirent; see readdir(3). d_reclen is the
size of this entire linux_dirent. d_name is a null-terminated filename.

d_type is a byte at the end of the structure that indicates the file type. It contains one
of the following values (defined in <dirent.h>):

Linux man-pages 6.13 2024-11-17 266

getdents(2) System Calls Manual getdents(2)

DT_BLK This is a block device.

DT_CHR This is a character device.

DT_DIR This is a directory.

DT_FIFO This is a named pipe (FIFO).

DT_LNK This is a symbolic link.

DT_REG This is a regular file.

DT_SOCK This is a UNIX domain socket.

DT_UNKNOWN
The file type is unknown.

The d_type field is implemented since Linux 2.6.4. It occupies a space that was previ-
ously a zero-filled padding byte in the linux_dirent structure. Thus, on kernels up to
and including Linux 2.6.3, attempting to access this field always provides the value 0
(DT_UNKNOWN).

Currently, only some filesystems (among them: Btrfs, ext2, ext3, and ext4) have full
support for returning the file type in d_type. All applications must properly handle a
return of DT_UNKNOWN.

getdents64()
The original Linux getdents() system call did not handle large filesystems and large
file offsets. Consequently, Linux 2.4 added getdents64(), with wider types for the
d_ino and d_off fields. In addition, getdents64() supports an explicit d_type field.

The getdents64() system call is like getdents(), except that its second argument is a
pointer to a buffer containing structures of the following type:

struct linux_dirent64 {
ino64_t d_ino; /* 64-bit inode number */
off64_t d_off; /* Not an offset; see getdents() */
unsigned short d_reclen; /* Size of this dirent */
unsigned char d_type; /* File type */
char d_name[]; /* Filename (null-terminated) */

};

RETURN VALUE
On success, the number of bytes read is returned. On end of directory, 0 is returned.
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EBADF

Invalid file descriptor fd .

EFAULT
Argument points outside the calling process’s address space.

EINVAL
Result buffer is too small.

ENOENT
No such directory.

Linux man-pages 6.13 2024-11-17 267

getdents(2) System Calls Manual getdents(2)

ENOTDIR
File descriptor does not refer to a directory.

STANDARDS
None.

HISTORY
SVr4.

getdents64()
glibc 2.30.

NOTES
glibc does not provide a wrapper for getdents(); call getdents() using syscall(2). In
that case you will need to define the linux_dirent or linux_dirent64 structure yourself.

Probably, you want to use readdir(3) instead of these system calls.

These calls supersede readdir(2).

EXAMPLES
The program below demonstrates the use of getdents(). The following output shows
an example of what we see when running this program on an ext2 directory:

$./a.out /testfs/
--------------- nread=120 ---------------
inode# file type d_reclen d_off d_name

2 directory 16 12 .
2 directory 16 24 ..

11 directory 24 44 lost+found
12 regular 16 56 a

228929 directory 16 68 sub
16353 directory 16 80 sub2

130817 directory 16 4096 sub3

Program source

#define _GNU_SOURCE
#include <dirent.h> /* Defines DT_* constants */
#include <err.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>

struct linux_dirent {
unsigned long d_ino;
off_t d_off;
unsigned short d_reclen;
char d_name[];

};

Linux man-pages 6.13 2024-11-17 268

getdents(2) System Calls Manual getdents(2)

#define BUF_SIZE 1024

int
main(int argc, char *argv[])
{

int fd;
char d_type;
char buf[BUF_SIZE];
long nread;
struct linux_dirent *d;

fd = open(argc > 1 ? argv[1] : ".", O_RDONLY | O_DIRECTORY);
if (fd == -1)

err(EXIT_FAILURE, "open");

for (;;) {
nread = syscall(SYS_getdents, fd, buf, BUF_SIZE);
if (nread == -1)

err(EXIT_FAILURE, "getdents");

if (nread == 0)
break;

printf("--------------- nread=%ld ---------------\n", nread);
printf("inode# file type d_reclen d_off d_name\n");
for (size_t bpos = 0; bpos < nread;) {

d = (struct linux_dirent *) (buf + bpos);
printf("%8lu ", d->d_ino);
d_type = *(buf + bpos + d->d_reclen - 1);
printf("%-10s ", (d_type == DT_REG) ? "regular" :

(d_type == DT_DIR) ? "directory" :
(d_type == DT_FIFO) ? "FIFO" :
(d_type == DT_SOCK) ? "socket" :
(d_type == DT_LNK) ? "symlink" :
(d_type == DT_BLK) ? "block dev" :
(d_type == DT_CHR) ? "char dev" : "???");

printf("%4d %10jd %s\n", d->d_reclen,
(intmax_t) d->d_off, d->d_name);

bpos += d->d_reclen;
}

}

exit(EXIT_SUCCESS);
}

SEE ALSO
readdir(2), readdir(3), inode(7)

Linux man-pages 6.13 2024-11-17 269

getdomainname(2) System Calls Manual getdomainname(2)

NAME
getdomainname, setdomainname - get/set NIS domain name

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getdomainname(char *name, size_t size);
int setdomainname(const char *name, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getdomainname(), setdomainname():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
These functions are used to access or to change the NIS domain name of the host sys-
tem. More precisely, they operate on the NIS domain name associated with the call-
ing process’s UTS namespace.

setdomainname() sets the domain name to the value given in the character array
name. The size argument specifies the number of bytes in name. (Thus, name does
not require a terminating null byte.)

getdomainname() returns the null-terminated domain name in the character array
name, which has a size of size bytes. If the null-terminated domain name requires
more than len bytes, getdomainname() returns the first len bytes (glibc) or gives an
error (libc).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
setdomainname() can fail with the following errors:

EFAULT
name pointed outside of user address space.

EINVAL
size was negative or too large.

EPERM
The caller did not have the CAP_SYS_ADMIN capability in the user name-
space associated with its UTS namespace (see namespaces(7)).

getdomainname() can fail with the following errors:

EINVAL
For getdomainname() under libc: name is NULL or name is equal or longer
than size bytes.

Linux man-pages 6.13 2024-11-17 270

getdomainname(2) System Calls Manual getdomainname(2)

VERSIONS
On most Linux architectures (including x86), there is no getdomainname() system
call; instead, glibc implements getdomainname() as a library function that returns a
copy of the domainname field returned from a call to uname(2).

STANDARDS
None.

HISTORY
Since Linux 1.0, the limit on the size of a domain name, including the terminating
null byte, is 64 bytes. In older kernels, it was 8 bytes.

SEE ALSO
gethostname(2), sethostname(2), uname(2), uts_namespaces(7)

Linux man-pages 6.13 2024-11-17 271

getgid(2) System Calls Manual getgid(2)

NAME
getgid, getegid - get group identity

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

gid_t getgid(void);
gid_t getegid(void);

DESCRIPTION
getgid() returns the real group ID of the calling process.

getegid() returns the effective group ID of the calling process.

ERRORS
These functions are always successful and never modify errno.

VERSIONS
On Alpha, instead of a pair of getgid() and getegid() system calls, a single getxgid()
system call is provided, which returns a pair of real and effective GIDs. The glibc
getgid() and getegid() wrapper functions transparently deal with this. See syscall(2)
for details regarding register mapping.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

The original Linux getgid() and getegid() system calls supported only 16-bit group
IDs. Subsequently, Linux 2.4 added getgid32() and getegid32(), supporting 32-bit
IDs. The glibc getgid() and getegid() wrapper functions transparently deal with the
variations across kernel versions.

SEE ALSO
getresgid(2), setgid(2), setregid(2), credentials(7)

Linux man-pages 6.13 2024-07-23 272

getgroups(2) System Calls Manual getgroups(2)

NAME
getgroups, setgroups - get/set list of supplementary group IDs

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getgroups(int size, gid_t list[_Nullable .size]);

#include <grp.h>

int setgroups(size_t size, const gid_t list[_Nullable .size]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setgroups():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
getgroups() returns the supplementary group IDs of the calling process in list. The
argument size should be set to the maximum number of items that can be stored in the
buffer pointed to by list. If the calling process is a member of more than size supple-
mentary groups, then an error results.

It is unspecified whether the effective group ID of the calling process is included in
the returned list. (Thus, an application should also call getegid(2) and add or remove
the resulting value.)

If size is zero, list is not modified, but the total number of supplementary group IDs
for the process is returned. This allows the caller to determine the size of a dynami-
cally allocated list to be used in a further call to getgroups().

setgroups() sets the supplementary group IDs for the calling process. Appropriate
privileges are required (see the description of the EPERM error, below). The size ar-
gument specifies the number of supplementary group IDs in the buffer pointed to by
list. A process can drop all of its supplementary groups with the call:

setgroups(0, NULL);

RETURN VALUE
On success, getgroups() returns the number of supplementary group IDs. On error,
-1 is returned, and errno is set to indicate the error.

On success, setgroups() returns 0. On error, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
EFAULT

list has an invalid address.

getgroups() can additionally fail with the following error:

Linux man-pages 6.13 2024-12-14 273

getgroups(2) System Calls Manual getgroups(2)

EINVAL
size is less than the number of supplementary group IDs, but is not zero.

setgroups() can additionally fail with the following errors:

EINVAL
size is greater than NGROUPS_MAX (32 before Linux 2.6.4; 65536 since
Linux 2.6.4).

ENOMEM
Out of memory.

EPERM
The calling process has insufficient privilege (the caller does not have the
CAP_SETGID capability in the user namespace in which it resides).

EPERM (since Linux 3.19)
The use of setgroups() is denied in this user namespace. See the description
of /proc/ pid /setgroups in user_namespaces(7).

VERSIONS
C library/kernel differences

At the kernel level, user IDs and group IDs are a per-thread attribute. However,
POSIX requires that all threads in a process share the same credentials. The NPTL
threading implementation handles the POSIX requirements by providing wrapper
functions for the various system calls that change process UIDs and GIDs. These
wrapper functions (including the one for setgroups()) employ a signal-based tech-
nique to ensure that when one thread changes credentials, all of the other threads in
the process also change their credentials. For details, see nptl(7).

STANDARDS
getgroups()

POSIX.1-2008.

setgroups()
None.

HISTORY
getgroups()

SVr4, 4.3BSD, POSIX.1-2001.

setgroups()
SVr4, 4.3BSD. Since setgroups() requires privilege, it is not covered by
POSIX.1.

The original Linux getgroups() system call supported only 16-bit group IDs. Subse-
quently, Linux 2.4 added getgroups32(), supporting 32-bit IDs. The glibc get-
groups() wrapper function transparently deals with the variation across kernel ver-
sions.

NOTES
A process can have up to NGROUPS_MAX supplementary group IDs in addition to
the effective group ID. The constant NGROUPS_MAX is defined in <limits.h>.
The set of supplementary group IDs is inherited from the parent process, and pre-
served across an execve(2).

Linux man-pages 6.13 2024-12-14 274

getgroups(2) System Calls Manual getgroups(2)

The maximum number of supplementary group IDs can be found at run time using
sysconf(3):

long ngroups_max;
ngroups_max = sysconf(_SC_NGROUPS_MAX);

The maximum return value of getgroups() cannot be larger than one more than this
value. Since Linux 2.6.4, the maximum number of supplementary group IDs is also
exposed via the Linux-specific read-only file, /proc/sys/kernel/ngroups_max.

EXAMPLES
#include <err.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

#define MALLOC(n, T) ((T *) reallocarray(NULL, n, sizeof(T)))

static gid_t *agetgroups(size_t *ngids);

int
main(void)
{

gid_t *gids;
size_t n;

gids = agetgroups(&n);
if (gids == NULL)

err(EXIT_FAILURE, "agetgroups");

if (n != 0) {
printf("%jd", (intmax_t) gids[0]);
for (size_t i = 1; i < n; i++)

printf(" %jd", (intmax_t) gids[i]);
}
puts("");

free(gids);
exit(EXIT_SUCCESS);

}

static gid_t *
agetgroups(size_t *ngids)
{

int n;
gid_t *gids;

Linux man-pages 6.13 2024-12-14 275

getgroups(2) System Calls Manual getgroups(2)

n = getgroups(0, NULL);
if (n == -1)

return NULL;

gids = MALLOC(n, gid_t);
if (gids == NULL)

return NULL;

n = getgroups(n, gids);
if (n == -1) {

free(gids);
return NULL;

}

*ngids = n;
return gids;

}

SEE ALSO
getgid(2), setgid(2), getgrouplist(3), group_member(3), initgroups(3), capabilities(7),
credentials(7)

Linux man-pages 6.13 2024-12-14 276

gethostname(2) System Calls Manual gethostname(2)

NAME
gethostname, sethostname - get/set hostname

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int gethostname(char *name, size_t size);
int sethostname(const char *name, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gethostname():
_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200112L

|| /* glibc 2.19 and earlier */ _BSD_SOURCE

sethostname():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
These system calls are used to access or to change the system hostname. More pre-
cisely, they operate on the hostname associated with the calling process’s UTS name-
space.

sethostname() sets the hostname to the value given in the character array name. The
size argument specifies the number of bytes in name. (Thus, name does not require a
terminating null byte.)

gethostname() returns the null-terminated hostname in the character array name,
which has a size of size bytes. If the null-terminated hostname is too large to fit, then
the name is truncated, and no error is returned (but see VERSIONS below). POSIX.1
says that if such truncation occurs, then it is unspecified whether the returned buffer
includes a terminating null byte.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EFAULT

name is an invalid address.

EINVAL
size is negative or, for sethostname(), size is larger than the maximum al-
lowed size.

ENAMETOOLONG
(glibc gethostname()) size is smaller than the actual size. (Before glibc 2.1,
glibc uses EINVAL for this case.)

Linux man-pages 6.13 2024-11-17 277

gethostname(2) System Calls Manual gethostname(2)

EPERM
For sethostname(), the caller did not have the CAP_SYS_ADMIN capability
in the user namespace associated with its UTS namespace (see
namespaces(7)).

VERSIONS
SUSv2 guarantees that "Host names are limited to 255 bytes". POSIX.1 guarantees
that "Host names (not including the terminating null byte) are limited to
HOST_NAME_MAX bytes". On Linux, HOST_NAME_MAX is defined with the
value 64, which has been the limit since Linux 1.0 (earlier kernels imposed a limit of
8 bytes).

C library/kernel differences
The GNU C library does not employ the gethostname() system call; instead, it imple-
ments gethostname() as a library function that calls uname(2) and copies up to size
bytes from the returned nodename field into name. Having performed the copy, the
function then checks if the length of the nodename was greater than or equal to size,
and if it is, then the function returns -1 with errno set to ENAMETOOLONG; in
this case, a terminating null byte is not included in the returned name.

STANDARDS
gethostname()

POSIX.1-2008.

sethostname()
None.

HISTORY
SVr4, 4.4BSD (these interfaces first appeared in 4.2BSD). POSIX.1-2001 and
POSIX.1-2008 specify gethostname() but not sethostname().

Versions of glibc before glibc 2.2 handle the case where the length of the nodename
was greater than or equal to size differently: nothing is copied into name and the func-
tion returns -1 with errno set to ENAMETOOLONG.

SEE ALSO
hostname(1), getdomainname(2), setdomainname(2), uname(2), uts_namespaces(7)

Linux man-pages 6.13 2024-11-17 278

getitimer(2) System Calls Manual getitimer(2)

NAME
getitimer, setitimer - get or set value of an interval timer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/time.h>

int getitimer(int which, struct itimerval *curr_value);
int setitimer(int which, const struct itimerval *restrict new_value,

struct itimerval *_Nullable restrict old_value);

DESCRIPTION
These system calls provide access to interval timers, that is, timers that initially expire
at some point in the future, and (optionally) at regular intervals after that. When a
timer expires, a signal is generated for the calling process, and the timer is reset to the
specified interval (if the interval is nonzero).

Three types of timers—specified via the which argument—are provided, each of
which counts against a different clock and generates a different signal on timer expira-
tion:

ITIMER_REAL
This timer counts down in real (i.e., wall clock) time. At each expiration, a
SIGALRM signal is generated.

ITIMER_VIRTUAL
This timer counts down against the user-mode CPU time consumed by the
process. (The measurement includes CPU time consumed by all threads in the
process.) At each expiration, a SIGVTALRM signal is generated.

ITIMER_PROF
This timer counts down against the total (i.e., both user and system) CPU time
consumed by the process. (The measurement includes CPU time consumed
by all threads in the process.) At each expiration, a SIGPROF signal is gener-
ated.

In conjunction with ITIMER_VIRTUAL, this timer can be used to profile
user and system CPU time consumed by the process.

A process has only one of each of the three types of timers.

Timer values are defined by the following structures:

struct itimerval {
struct timeval it_interval; /* Interval for periodic timer */
struct timeval it_value; /* Time until next expiration */

};

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

Linux man-pages 6.13 2024-07-23 279

getitimer(2) System Calls Manual getitimer(2)

getitimer()
The function getitimer() places the current value of the timer specified by which in
the buffer pointed to by curr_value.

The it_value substructure is populated with the amount of time remaining until the
next expiration of the specified timer. This value changes as the timer counts down,
and will be reset to it_interval when the timer expires. If both fields of it_value are
zero, then this timer is currently disarmed (inactive).

The it_interval substructure is populated with the timer interval. If both fields of
it_interval are zero, then this is a single-shot timer (i.e., it expires just once).

setitimer()
The function setitimer() arms or disarms the timer specified by which, by setting the
timer to the value specified by new_value. If old_value is non-NULL, the buffer it
points to is used to return the previous value of the timer (i.e., the same information
that is returned by getitimer())

If either field in new_value.it_value is nonzero, then the timer is armed to initially ex-
pire at the specified time. If both fields in new_value.it_value are zero, then the timer
is disarmed.

The new_value.it_interval field specifies the new interval for the timer; if both of its
subfields are zero, the timer is single-shot.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EFAULT

new_value, old_value, or curr_value is not valid a pointer.

EINVAL
which is not one of ITIMER_REAL, ITIMER_VIRTUAL, or
ITIMER_PROF; or (since Linux 2.6.22) one of the tv_usec fields in the
structure pointed to by new_value contains a value outside the range [0,
999999].

VERSIONS
The standards are silent on the meaning of the call:

setitimer(which, NULL, &old_value);

Many systems (Solaris, the BSDs, and perhaps others) treat this as equivalent to:

getitimer(which, &old_value);

In Linux, this is treated as being equivalent to a call in which the new_value fields are
zero; that is, the timer is disabled. Don’t use this Linux misfeature: it is nonportable
and unnecessary.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (this call first appeared in 4.2BSD). POSIX.1-2008
marks getitimer() and setitimer() obsolete, recommending the use of the POSIX

Linux man-pages 6.13 2024-07-23 280

getitimer(2) System Calls Manual getitimer(2)

timers API (timer_gettime(2), timer_settime(2), etc.) instead.

NOTES
Timers will never expire before the requested time, but may expire some (short) time
afterward, which depends on the system timer resolution and on the system load; see
time(7). (But see BUGS below.) If the timer expires while the process is active (al-
ways true for ITIMER_VIRTUAL), the signal will be delivered immediately when
generated.

A child created via fork(2) does not inherit its parent’s interval timers. Interval timers
are preserved across an execve(2).

POSIX.1 leaves the interaction between setitimer() and the three interfaces alarm(2),
sleep(3), and usleep(3) unspecified.

BUGS
The generation and delivery of a signal are distinct, and only one instance of each of
the signals listed above may be pending for a process. Under very heavy loading, an
ITIMER_REAL timer may expire before the signal from a previous expiration has
been delivered. The second signal in such an event will be lost.

Before Linux 2.6.16, timer values are represented in jiffies. If a request is made set a
timer with a value whose jiffies representation exceeds MAX_SEC_IN_JIFFIES
(defined in include/linux/jiffies.h), then the timer is silently truncated to this ceiling
value. On Linux/i386 (where, since Linux 2.6.13, the default jiffy is 0.004 seconds),
this means that the ceiling value for a timer is approximately 99.42 days. Since Linux
2.6.16, the kernel uses a different internal representation for times, and this ceiling is
removed.

On certain systems (including i386), Linux kernels before Linux 2.6.12 have a bug
which will produce premature timer expirations of up to one jiffy under some circum-
stances. This bug is fixed in Linux 2.6.12.

POSIX.1-2001 says that setitimer() should fail if a tv_usec value is specified that is
outside of the range [0, 999999]. However, up to and including Linux 2.6.21, Linux
does not give an error, but instead silently adjusts the corresponding seconds value for
the timer. From Linux 2.6.22 onward, this nonconformance has been repaired: an im-
proper tv_usec value results in an EINVAL error.

SEE ALSO
gettimeofday(2), sigaction(2), signal(2), timer_create(2), timerfd_create(2), time(7)

Linux man-pages 6.13 2024-07-23 281

getpagesize(2) System Calls Manual getpagesize(2)

NAME
getpagesize - get memory page size

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getpagesize(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpagesize():
Since glibc 2.20:

_DEFAULT_SOURCE || ! (_POSIX_C_SOURCE >= 200112L)
glibc 2.12 to glibc 2.19:

_BSD_SOURCE || ! (_POSIX_C_SOURCE >= 200112L)
Before glibc 2.12:

_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The function getpagesize() returns the number of bytes in a memory page, where
"page" is a fixed-length block, the unit for memory allocation and file mapping per-
formed by mmap(2).

VERSIONS
A user program should not hard-code a page size, neither as a literal nor using the
PAGE_SIZE macro, because some architectures support multiple page sizes.

This manual page is in section 2 because Alpha, SPARC, and SPARC64 all have a
Linux system call getpagesize() though other architectures do not, and use the ELF
auxiliary vector instead.

STANDARDS
None.

HISTORY
This call first appeared in 4.2BSD. SVr4, 4.4BSD, SUSv2. In SUSv2 the getpage-
size() call was labeled LEGACY, and it was removed in POSIX.1-2001.

glibc 2.0 returned a constant even on architectures with multiple page sizes.

SEE ALSO
mmap(2), sysconf(3)

Linux man-pages 6.13 2024-07-23 282

getpeername(2) System Calls Manual getpeername(2)

NAME
getpeername - get name of connected peer socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int getpeername(int sockfd , struct sockaddr *restrict addr,
socklen_t *restrict addrlen);

DESCRIPTION
getpeername() returns the address of the peer connected to the socket sockfd , in the
buffer pointed to by addr. The addrlen argument should be initialized to indicate the
amount of space pointed to by addr. On return it contains the actual size of the name
returned (in bytes). The name is truncated if the buffer provided is too small.

The returned address is truncated if the buffer provided is too small; in this case, ad-
drlen will return a value greater than was supplied to the call.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EBADF

The argument sockfd is not a valid file descriptor.

EFAULT
The addr argument points to memory not in a valid part of the process address
space.

EINVAL
addrlen is invalid (e.g., is negative).

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOTCONN
The socket is not connected.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).

NOTES
For stream sockets, once a connect(2) has been performed, either socket can call get-
peername() to obtain the address of the peer socket. On the other hand, datagram
sockets are connectionless. Calling connect(2) on a datagram socket merely sets the
peer address for outgoing datagrams sent with write(2) or recv(2). The caller of con-
nect(2) can use getpeername() to obtain the peer address that it earlier set for the
socket. However, the peer socket is unaware of this information, and calling

Linux man-pages 6.13 2024-07-23 283

getpeername(2) System Calls Manual getpeername(2)

getpeername() on the peer socket will return no useful information (unless a con-
nect(2) call was also executed on the peer). Note also that the receiver of a datagram
can obtain the address of the sender when using recvfrom(2).

SEE ALSO
accept(2), bind(2), getsockname(2), ip(7), socket(7), unix(7)

Linux man-pages 6.13 2024-07-23 284

getpid(2) System Calls Manual getpid(2)

NAME
getpid, getppid - get process identification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

DESCRIPTION
getpid() returns the process ID (PID) of the calling process. (This is often used by
routines that generate unique temporary filenames.)

getppid() returns the process ID of the parent of the calling process. This will be ei-
ther the ID of the process that created this process using fork(), or, if that process has
already terminated, the ID of the process to which this process has been reparented
(either init(1) or a "subreaper" process defined via the prctl(2)
PR_SET_CHILD_SUBREAPER operation).

ERRORS
These functions are always successful.

VERSIONS
On Alpha, instead of a pair of getpid() and getppid() system calls, a single getxpid()
system call is provided, which returns a pair of PID and parent PID. The glibc get-
pid() and getppid() wrapper functions transparently deal with this. See syscall(2) for
details regarding register mapping.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD, SVr4.

C library/kernel differences
From glibc 2.3.4 up to and including glibc 2.24, the glibc wrapper function for get-
pid() cached PIDs, with the goal of avoiding additional system calls when a process
calls getpid() repeatedly. Normally this caching was invisible, but its correct opera-
tion relied on support in the wrapper functions for fork(2), vfork(2), and clone(2): if an
application bypassed the glibc wrappers for these system calls by using syscall(2),
then a call to getpid() in the child would return the wrong value (to be precise: it
would return the PID of the parent process). In addition, there were cases where get-
pid() could return the wrong value even when invoking clone(2) via the glibc wrapper
function. (For a discussion of one such case, see BUGS in clone(2).) Furthermore,
the complexity of the caching code had been the source of a few bugs within glibc
over the years.

Because of the aforementioned problems, since glibc 2.25, the PID cache is removed:
calls to getpid() always invoke the actual system call, rather than returning a cached
value.

Linux man-pages 6.13 2024-07-23 285

getpid(2) System Calls Manual getpid(2)

NOTES
If the caller’s parent is in a different PID namespace (see pid_namespaces(7)), getp-
pid() returns 0.

From a kernel perspective, the PID (which is shared by all of the threads in a multi-
threaded process) is sometimes also known as the thread group ID (TGID). This con-
trasts with the kernel thread ID (TID), which is unique for each thread. For further
details, see gettid(2) and the discussion of the CLONE_THREAD flag in clone(2).

SEE ALSO
clone(2), fork(2), gettid(2), kill(2), exec(3), mkstemp(3), tempnam(3), tmpfile(3), tmp-
nam(3), credentials(7), pid_namespaces(7)

Linux man-pages 6.13 2024-07-23 286

getpriority(2) System Calls Manual getpriority(2)

NAME
getpriority, setpriority - get/set program scheduling priority

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int prio);

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which
and who is obtained with the getpriority() call and set with the setpriority() call.
The process attribute dealt with by these system calls is the same attribute (also
known as the "nice" value) that is dealt with by nice(2).

The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and
who is interpreted relative to which (a process identifier for PRIO_PROCESS,
process group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A zero
value for who denotes (respectively) the calling process, the process group of the call-
ing process, or the real user ID of the calling process.

The prio argument is a value in the range -20 to 19 (but see NOTES below), with -20
being the highest priority and 19 being the lowest priority. Attempts to set a priority
outside this range are silently clamped to the range. The default priority is 0; lower
values give a process a higher scheduling priority.

The getpriority() call returns the highest priority (lowest numerical value) enjoyed by
any of the specified processes. The setpriority() call sets the priorities of all of the
specified processes to the specified value.

Traditionally, only a privileged process could lower the nice value (i.e., set a higher
priority). However, since Linux 2.6.12, an unprivileged process can decrease the nice
value of a target process that has a suitable RLIMIT_NICE soft limit; see getr-
limit(2) for details.

RETURN VALUE
On success, getpriority() returns the calling thread’s nice value, which may be a neg-
ative number. On error, it returns -1 and sets errno to indicate the error.

Since a successful call to getpriority() can legitimately return the value -1, it is nec-
essary to clear errno prior to the call, then check errno afterward to determine if -1 is
an error or a legitimate value.

setpriority() returns 0 on success. On failure, it returns -1 and sets errno to indicate
the error.

ERRORS
EACCES

The caller attempted to set a lower nice value (i.e., a higher process priority),
but did not have the required privilege (on Linux: did not have the
CAP_SYS_NICE capability).

Linux man-pages 6.13 2024-07-23 287

getpriority(2) System Calls Manual getpriority(2)

EINVAL
which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

EPERM
A process was located, but its effective user ID did not match either the effec-
tive or the real user ID of the caller, and was not privileged (on Linux: did not
have the CAP_SYS_NICE capability). But see HISTORY below.

ESRCH
No process was located using the which and who values specified.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (these interfaces first appeared in 4.2BSD).

The details on the condition for EPERM depend on the system. The above descrip-
tion is what POSIX.1-2001 says, and seems to be followed on all System V-like sys-
tems. Linux kernels before Linux 2.6.12 required the real or effective user ID of the
caller to match the real user of the process who (instead of its effective user ID).
Linux 2.6.12 and later require the effective user ID of the caller to match the real or
effective user ID of the process who. All BSD-like systems (SunOS 4.1.3, Ultrix 4.2,
4.3BSD, FreeBSD 4.3, OpenBSD-2.5, ...) behave in the same manner as Linux 2.6.12
and later.

NOTES
For further details on the nice value, see sched(7).

Note: the addition of the "autogroup" feature in Linux 2.6.38 means that the nice
value no longer has its traditional effect in many circumstances. For details, see
sched(7).

A child created by fork(2) inherits its parent’s nice value. The nice value is preserved
across execve(2).

C library/kernel differences
The getpriority system call returns nice values translated to the range 40..1, since a
negative return value would be interpreted as an error. The glibc wrapper function for
getpriority() translates the value back according to the formula unice = 20 - knice
(thus, the 40..1 range returned by the kernel corresponds to the range -20..19 as seen
by user space).

BUGS
According to POSIX, the nice value is a per-process setting. However, under the cur-
rent Linux/NPTL implementation of POSIX threads, the nice value is a per-thread at-
tribute: different threads in the same process can have different nice values. Portable
applications should avoid relying on the Linux behavior, which may be made stan-
dards conformant in the future.

SEE ALSO
nice(1), renice(1), fork(2), capabilities(7), sched(7)

Documentation/scheduler/sched-nice-design.txt in the Linux kernel source tree
(since Linux 2.6.23)

Linux man-pages 6.13 2024-07-23 288

getrandom(2) System Calls Manual getrandom(2)

NAME
getrandom - obtain a series of random bytes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/random.h>

ssize_t getrandom(void buf [.buflen], size_t buflen, unsigned int flags);

DESCRIPTION
The getrandom() system call fills the buffer pointed to by buf with up to buflen ran-
dom bytes. These bytes can be used to seed user-space random number generators or
for cryptographic purposes.

By default, getrandom() draws entropy from the urandom source (i.e., the same
source as the /dev/urandom device). This behavior can be changed via the flags argu-
ment.

If the urandom source has been initialized, reads of up to 256 bytes will always return
as many bytes as requested and will not be interrupted by signals. No such guarantees
apply for larger buffer sizes. For example, if the call is interrupted by a signal han-
dler, it may return a partially filled buffer, or fail with the error EINTR.

If the urandom source has not yet been initialized, then getrandom() will block, un-
less GRND_NONBLOCK is specified in flags.

The flags argument is a bit mask that can contain zero or more of the following values
ORed together:

GRND_RANDOM
If this bit is set, then random bytes are drawn from the random source (i.e., the
same source as the /dev/random device) instead of the urandom source. The
random source is limited based on the entropy that can be obtained from envi-
ronmental noise. If the number of available bytes in the random source is less
than requested in buflen, the call returns just the available random bytes. If no
random bytes are available, the behavior depends on the presence of
GRND_NONBLOCK in the flags argument.

GRND_NONBLOCK
By default, when reading from the random source, getrandom() blocks if no
random bytes are available, and when reading from the urandom source, it
blocks if the entropy pool has not yet been initialized. If the GRND_NON-
BLOCK flag is set, then getrandom() does not block in these cases, but in-
stead immediately returns -1 with errno set to EAGAIN.

RETURN VALUE
On success, getrandom() returns the number of bytes that were copied to the buffer
buf . This may be less than the number of bytes requested via buflen if either
GRND_RANDOM was specified in flags and insufficient entropy was present in the
random source or the system call was interrupted by a signal.

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.13 2024-07-23 289

getrandom(2) System Calls Manual getrandom(2)

ERRORS
EAGAIN

The requested entropy was not available, and getrandom() would have
blocked if the GRND_NONBLOCK flag was not set.

EFAULT
The address referred to by buf is outside the accessible address space.

EINTR
The call was interrupted by a signal handler; see the description of how inter-
rupted read(2) calls on "slow" devices are handled with and without the
SA_RESTART flag in the signal(7) man page.

EINVAL
An invalid flag was specified in flags.

ENOSYS
The glibc wrapper function for getrandom() determined that the underlying
kernel does not implement this system call.

STANDARDS
Linux.

HISTORY
Linux 3.17, glibc 2.25.

NOTES
For an overview and comparison of the various interfaces that can be used to obtain
randomness, see random(7).

Unlike /dev/random and /dev/urandom, getrandom() does not involve the use of
pathnames or file descriptors. Thus, getrandom() can be useful in cases where ch-
root(2) makes /dev pathnames invisible, and where an application (e.g., a daemon
during start-up) closes a file descriptor for one of these files that was opened by a li-
brary.

Maximum number of bytes returned
As of Linux 3.19 the following limits apply:

• When reading from the urandom source, a maximum of 32Mi-1 bytes is returned
by a single call to getrandom() on systems where int has a size of 32 bits.

• When reading from the random source, a maximum of 512 bytes is returned.

Interruption by a signal handler
When reading from the urandom source (GRND_RANDOM is not set), getran-
dom() will block until the entropy pool has been initialized (unless the GRND_NON-
BLOCK flag was specified). If a request is made to read a large number of bytes
(more than 256), getrandom() will block until those bytes have been generated and
transferred from kernel memory to buf . When reading from the random source
(GRND_RANDOM is set), getrandom() will block until some random bytes become
available (unless the GRND_NONBLOCK flag was specified).

The behavior when a call to getrandom() that is blocked while reading from the
urandom source is interrupted by a signal handler depends on the initialization state of
the entropy buffer and on the request size, buflen. If the entropy is not yet initialized,

Linux man-pages 6.13 2024-07-23 290

getrandom(2) System Calls Manual getrandom(2)

then the call fails with the EINTR error. If the entropy pool has been initialized and
the request size is large (buflen > 256), the call either succeeds, returning a partially
filled buffer, or fails with the error EINTR. If the entropy pool has been initialized
and the request size is small (buflen <= 256), then getrandom() will not fail with
EINTR. Instead, it will return all of the bytes that have been requested.

When reading from the random source, blocking requests of any size can be inter-
rupted by a signal handler (the call fails with the error EINTR).

Using getrandom() to read small buffers (<= 256 bytes) from the urandom source is
the preferred mode of usage.

The special treatment of small values of buflen was designed for compatibility with
OpenBSD’s getentropy(3), which is nowadays supported by glibc.

The user of getrandom() must always check the return value, to determine whether
either an error occurred or fewer bytes than requested were returned. In the case
where GRND_RANDOM is not specified and buflen is less than or equal to 256, a
return of fewer bytes than requested should never happen, but the careful programmer
will check for this anyway!

BUGS
As of Linux 3.19, the following bug exists:

• Depending on CPU load, getrandom() does not react to interrupts before reading
all bytes requested.

SEE ALSO
getentropy(3), random(4), urandom(4), random(7), signal(7)

Linux man-pages 6.13 2024-07-23 291

getresuid(2) System Calls Manual getresuid(2)

NAME
getresuid, getresgid - get real, effective, and saved user/group IDs

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

int getresuid(uid_t *ruid , uid_t *euid , uid_t *suid);
int getresgid(gid_t *rgid , gid_t *egid , gid_t *sgid);

DESCRIPTION
getresuid() returns the real UID, the effective UID, and the saved set-user-ID of the
calling process, in the arguments ruid , euid , and suid , respectively. getresgid() per-
forms the analogous task for the process’s group IDs.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EFAULT

One of the arguments specified an address outside the calling program’s ad-
dress space.

STANDARDS
None. These calls also appear on HP-UX and some of the BSDs.

HISTORY
Linux 2.1.44, glibc 2.3.2.

The original Linux getresuid() and getresgid() system calls supported only 16-bit
user and group IDs. Subsequently, Linux 2.4 added getresuid32() and getresgid32(),
supporting 32-bit IDs. The glibc getresuid() and getresgid() wrapper functions trans-
parently deal with the variations across kernel versions.

SEE ALSO
getuid(2), setresuid(2), setreuid(2), setuid(2), credentials(7)

Linux man-pages 6.13 2024-07-23 292

getrlimit(2) System Calls Manual getrlimit(2)

NAME
getrlimit, setrlimit, prlimit - get/set resource limits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlim);
int setrlimit(int resource, const struct rlimit *rlim);

int prlimit(pid_t pid , int resource,
const struct rlimit *_Nullable new_limit,
struct rlimit *_Nullable old_limit);

struct rlimit {
rlim_t rlim_cur; /* Soft limit */
rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */

};

typedef /* ... */ rlim_t; /* Unsigned integer type */

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

prlimit():
_GNU_SOURCE

DESCRIPTION
The getrlimit() and setrlimit() system calls get and set resource limits. Each resource
has an associated soft and hard limit, as defined by the rlimit structure.

The soft limit is the value that the kernel enforces for the corresponding resource.
The hard limit acts as a ceiling for the soft limit: an unprivileged process may set only
its soft limit to a value in the range from 0 up to the hard limit, and (irreversibly)
lower its hard limit. A privileged process (under Linux: one with the CAP_SYS_RE-
SOURCE capability in the initial user namespace) may make arbitrary changes to ei-
ther limit value.

The value RLIM_INFINITY denotes no limit on a resource (both in the structure re-
turned by getrlimit() and in the structure passed to setrlimit())

The resource argument must be one of:

RLIMIT_AS
This is the maximum size of the process’s virtual memory (address space).
The limit is specified in bytes, and is rounded down to the system page size.
This limit affects calls to brk(2), mmap(2), and mremap(2), which fail with the
error ENOMEM upon exceeding this limit. In addition, automatic stack ex-
pansion fails (and generates a SIGSEGV that kills the process if no alternate
stack has been made available via sigaltstack(2)). Since the value is a long, on
machines with a 32-bit long either this limit is at most 2 GiB, or this resource
is unlimited.

RLIMIT_CORE
This is the maximum size of a core file (see core(5)) in bytes that the process
may dump. When 0 no core dump files are created. When nonzero, larger

Linux man-pages 6.13 2024-07-23 293

getrlimit(2) System Calls Manual getrlimit(2)

dumps are truncated to this size.

RLIMIT_CPU
This is a limit, in seconds, on the amount of CPU time that the process can
consume. When the process reaches the soft limit, it is sent a SIGXCPU sig-
nal. The default action for this signal is to terminate the process. However,
the signal can be caught, and the handler can return control to the main pro-
gram. If the process continues to consume CPU time, it will be sent SIGX-
CPU once per second until the hard limit is reached, at which time it is sent
SIGKILL. (This latter point describes Linux behavior. Implementations vary
in how they treat processes which continue to consume CPU time after reach-
ing the soft limit. Portable applications that need to catch this signal should
perform an orderly termination upon first receipt of SIGXCPU.)

RLIMIT_DATA
This is the maximum size of the process’s data segment (initialized data,
uninitialized data, and heap). The limit is specified in bytes, and is rounded
down to the system page size. This limit affects calls to brk(2), sbrk(2), and
(since Linux 4.7) mmap(2), which fail with the error ENOMEM upon en-
countering the soft limit of this resource.

RLIMIT_FSIZE
This is the maximum size in bytes of files that the process may create. At-
tempts to extend a file beyond this limit result in delivery of a SIGXFSZ sig-
nal. By default, this signal terminates a process, but a process can catch this
signal instead, in which case the relevant system call (e.g., write(2), trun-
cate(2)) fails with the error EFBIG.

RLIMIT_LOCKS (Linux 2.4.0 to Linux 2.4.24)
This is a limit on the combined number of flock(2) locks and fcntl(2) leases
that this process may establish.

RLIMIT_MEMLOCK
This is the maximum number of bytes of memory that may be locked into
RAM. This limit is in effect rounded down to the nearest multiple of the sys-
tem page size. This limit affects mlock(2), mlockall(2), and the mmap(2)
MAP_LOCKED operation. Since Linux 2.6.9, it also affects the shmctl(2)
SHM_LOCK operation, where it sets a maximum on the total bytes in shared
memory segments (see shmget(2)) that may be locked by the real user ID of
the calling process. The shmctl(2) SHM_LOCK locks are accounted for sep-
arately from the per-process memory locks established by mlock(2), mlock-
all(2), and mmap(2) MAP_LOCKED; a process can lock bytes up to this
limit in each of these two categories.

Before Linux 2.6.9, this limit controlled the amount of memory that could be
locked by a privileged process. Since Linux 2.6.9, no limits are placed on the
amount of memory that a privileged process may lock, and this limit instead
governs the amount of memory that an unprivileged process may lock.

RLIMIT_MSGQUEUE (since Linux 2.6.8)
This is a limit on the number of bytes that can be allocated for POSIX mes-
sage queues for the real user ID of the calling process. This limit is enforced
for mq_open(3). Each message queue that the user creates counts (until it is

Linux man-pages 6.13 2024-07-23 294

getrlimit(2) System Calls Manual getrlimit(2)

removed) against this limit according to the formula:

Since Linux 3.5:

bytes = attr.mq_maxmsg * sizeof(struct msg_msg) +
MIN(attr.mq_maxmsg, MQ_PRIO_MAX) *

sizeof(struct posix_msg_tree_node)+
/* For overhead */

attr.mq_maxmsg * attr.mq_msgsize;
/* For message data */

Linux 3.4 and earlier:

bytes = attr.mq_maxmsg * sizeof(struct msg_msg *) +
/* For overhead */

attr.mq_maxmsg * attr.mq_msgsize;
/* For message data */

where attr is the mq_attr structure specified as the fourth argument to
mq_open(3), and the msg_msg and posix_msg_tree_node structures are ker-
nel-internal structures.

The "overhead" addend in the formula accounts for overhead bytes required by
the implementation and ensures that the user cannot create an unlimited num-
ber of zero-length messages (such messages nevertheless each consume some
system memory for bookkeeping overhead).

RLIMIT_NICE (since Linux 2.6.12, but see BUGS below)
This specifies a ceiling to which the process’s nice value can be raised using
setpriority(2) or nice(2). The actual ceiling for the nice value is calculated as
20 - rlim_cur. The useful range for this limit is thus from 1 (corresponding to
a nice value of 19) to 40 (corresponding to a nice value of -20). This unusual
choice of range was necessary because negative numbers cannot be specified
as resource limit values, since they typically have special meanings. For ex-
ample, RLIM_INFINITY typically is the same as -1. For more detail on the
nice value, see sched(7).

RLIMIT_NOFILE
This specifies a value one greater than the maximum file descriptor number
that can be opened by this process. Attempts (open(2), pipe(2), dup(2), etc.)
to exceed this limit yield the error EMFILE. (Historically, this limit was
named RLIMIT_OFILE on BSD.)

Since Linux 4.5, this limit also defines the maximum number of file descrip-
tors that an unprivileged process (one without the CAP_SYS_RESOURCE
capability) may have "in flight" to other processes, by being passed across
UNIX domain sockets. This limit applies to the sendmsg(2) system call. For
further details, see unix(7).

RLIMIT_NPROC
This is a limit on the number of extant process (or, more precisely on Linux,
threads) for the real user ID of the calling process. So long as the current
number of processes belonging to this process’s real user ID is greater than or
equal to this limit, fork(2) fails with the error EAGAIN.

Linux man-pages 6.13 2024-07-23 295

getrlimit(2) System Calls Manual getrlimit(2)

The RLIMIT_NPROC limit is not enforced for processes that have either the
CAP_SYS_ADMIN or the CAP_SYS_RESOURCE capability, or run with
real user ID 0.

RLIMIT_RSS
This is a limit (in bytes) on the process’s resident set (the number of virtual
pages resident in RAM). This limit has effect only in Linux 2.4.x, x < 30, and
there affects only calls to madvise(2) specifying MADV_WILLNEED.

RLIMIT_RTPRIO (since Linux 2.6.12, but see BUGS)
This specifies a ceiling on the real-time priority that may be set for this
process using sched_setscheduler(2) and sched_setparam(2).

For further details on real-time scheduling policies, see sched(7)

RLIMIT_RTTIME (since Linux 2.6.25)
This is a limit (in microseconds) on the amount of CPU time that a process
scheduled under a real-time scheduling policy may consume without making a
blocking system call. For the purpose of this limit, each time a process makes
a blocking system call, the count of its consumed CPU time is reset to zero.
The CPU time count is not reset if the process continues trying to use the CPU
but is preempted, its time slice expires, or it calls sched_yield(2).

Upon reaching the soft limit, the process is sent a SIGXCPU signal. If the
process catches or ignores this signal and continues consuming CPU time,
then SIGXCPU will be generated once each second until the hard limit is
reached, at which point the process is sent a SIGKILL signal.

The intended use of this limit is to stop a runaway real-time process from lock-
ing up the system.

For further details on real-time scheduling policies, see sched(7)

RLIMIT_SIGPENDING (since Linux 2.6.8)
This is a limit on the number of signals that may be queued for the real user ID
of the calling process. Both standard and real-time signals are counted for the
purpose of checking this limit. However, the limit is enforced only for
sigqueue(3); it is always possible to use kill(2) to queue one instance of any of
the signals that are not already queued to the process.

RLIMIT_STACK
This is the maximum size of the process stack, in bytes. Upon reaching this
limit, a SIGSEGV signal is generated. To handle this signal, a process must
employ an alternate signal stack (sigaltstack(2)).

Since Linux 2.6.23, this limit also determines the amount of space used for the
process’s command-line arguments and environment variables; for details, see
execve(2).

prlimit()
The Linux-specific prlimit() system call combines and extends the functionality of
setrlimit() and getrlimit(). It can be used to both set and get the resource limits of an
arbitrary process.

The resource argument has the same meaning as for setrlimit() and getrlimit().

Linux man-pages 6.13 2024-07-23 296

getrlimit(2) System Calls Manual getrlimit(2)

If the new_limit argument is not NULL, then the rlimit structure to which it points is
used to set new values for the soft and hard limits for resource. If the old_limit argu-
ment is not NULL, then a successful call to prlimit() places the previous soft and
hard limits for resource in the rlimit structure pointed to by old_limit.

The pid argument specifies the ID of the process on which the call is to operate. If
pid is 0, then the call applies to the calling process. To set or get the resources of a
process other than itself, the caller must have the CAP_SYS_RESOURCE capability
in the user namespace of the process whose resource limits are being changed, or the
real, effective, and saved set user IDs of the target process must match the real user ID
of the caller and the real, effective, and saved set group IDs of the target process must
match the real group ID of the caller.

RETURN VALUE
On success, these system calls return 0. On error, -1 is returned, and errno is set to
indicate the error.

ERRORS
EFAULT

A pointer argument points to a location outside the accessible address space.

EINVAL
The value specified in resource is not valid; or, for setrlimit() or prlimit():
rlim->rlim_cur was greater than rlim->rlim_max.

EPERM
An unprivileged process tried to raise the hard limit; the CAP_SYS_RE-
SOURCE capability is required to do this.

EPERM
The caller tried to increase the hard RLIMIT_NOFILE limit above the maxi-
mum defined by /proc/sys/fs/nr_open (see proc(5))

EPERM
(prlimit()) The calling process did not have permission to set limits for the
process specified by pid .

ESRCH
Could not find a process with the ID specified in pid .

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetrlimit(), setrlimit(), prlimit()

STANDARDS
getrlimit()
setrlimit()

POSIX.1-2008.

prlimit()
Linux.

RLIMIT_MEMLOCK and RLIMIT_NPROC derive from BSD and are not speci-
fied in POSIX.1; they are present on the BSDs and Linux, but on few other implemen-
tations. RLIMIT_RSS derives from BSD and is not specified in POSIX.1; it is

Linux man-pages 6.13 2024-07-23 297

getrlimit(2) System Calls Manual getrlimit(2)

nevertheless present on most implementations. RLIMIT_MSGQUEUE,
RLIMIT_NICE, RLIMIT_RTPRIO, RLIMIT_RTTIME, and
RLIMIT_SIGPENDING are Linux-specific.

HISTORY
getrlimit()
setrlimit()

POSIX.1-2001, SVr4, 4.3BSD.

prlimit()
Linux 2.6.36, glibc 2.13.

NOTES
A child process created via fork(2) inherits its parent’s resource limits. Resource lim-
its are preserved across execve(2).

Resource limits are per-process attributes that are shared by all of the threads in a
process.

Lowering the soft limit for a resource below the process’s current consumption of that
resource will succeed (but will prevent the process from further increasing its con-
sumption of the resource).

One can set the resource limits of the shell using the built-in ulimit command (limit in
csh(1)). The shell’s resource limits are inherited by the processes that it creates to ex-
ecute commands.

Since Linux 2.6.24, the resource limits of any process can be inspected via
/proc/ pid /limits; see proc(5).

Ancient systems provided a vlimit() function with a similar purpose to setrlimit().
For backward compatibility, glibc also provides vlimit(). All new applications should
be written using setrlimit().

C library/kernel ABI differences
Since glibc 2.13, the glibc getrlimit() and setrlimit() wrapper functions no longer in-
voke the corresponding system calls, but instead employ prlimit(), for the reasons de-
scribed in BUGS.

The name of the glibc wrapper function is prlimit(); the underlying system call is
prlimit64().

BUGS
In older Linux kernels, the SIGXCPU and SIGKILL signals delivered when a
process encountered the soft and hard RLIMIT_CPU limits were delivered one
(CPU) second later than they should have been. This was fixed in Linux 2.6.8.

In Linux 2.6.x kernels before Linux 2.6.17, a RLIMIT_CPU limit of 0 is wrongly
treated as "no limit" (like RLIM_INFINITY). Since Linux 2.6.17, setting a limit of
0 does have an effect, but is actually treated as a limit of 1 second.

A kernel bug means that RLIMIT_RTPRIO does not work in Linux 2.6.12; the
problem is fixed in Linux 2.6.13.

In Linux 2.6.12, there was an off-by-one mismatch between the priority ranges re-
turned by getpriority(2) and RLIMIT_NICE. This had the effect that the actual ceil-
ing for the nice value was calculated as 19 - rlim_cur. This was fixed in Linux 2.6.13.

Linux man-pages 6.13 2024-07-23 298

getrlimit(2) System Calls Manual getrlimit(2)

Since Linux 2.6.12, if a process reaches its soft RLIMIT_CPU limit and has a han-
dler installed for SIGXCPU, then, in addition to invoking the signal handler, the ker-
nel increases the soft limit by one second. This behavior repeats if the process contin-
ues to consume CPU time, until the hard limit is reached, at which point the process is
killed. Other implementations do not change the RLIMIT_CPU soft limit in this
manner, and the Linux behavior is probably not standards conformant; portable appli-
cations should avoid relying on this Linux-specific behavior. The Linux-specific
RLIMIT_RTTIME limit exhibits the same behavior when the soft limit is encoun-
tered.

Kernels before Linux 2.4.22 did not diagnose the error EINVAL for setrlimit() when
rlim->rlim_cur was greater than rlim->rlim_max.

Linux doesn’t return an error when an attempt to set RLIMIT_CPU has failed, for
compatibility reasons.

Representation of "large" resource limit values on 32-bit platforms
The glibc getrlimit() and setrlimit() wrapper functions use a 64-bit rlim_t data type,
even on 32-bit platforms. However, the rlim_t data type used in the getrlimit() and
setrlimit() system calls is a (32-bit) unsigned long. Furthermore, in Linux, the kernel
represents resource limits on 32-bit platforms as unsigned long. However, a 32-bit
data type is not wide enough. The most pertinent limit here is RLIMIT_FSIZE,
which specifies the maximum size to which a file can grow: to be useful, this limit
must be represented using a type that is as wide as the type used to represent file off-
sets—that is, as wide as a 64-bit off_t (assuming a program compiled with
_FILE_OFFSET_BITS=64).

To work around this kernel limitation, if a program tried to set a resource limit to a
value larger than can be represented in a 32-bit unsigned long, then the glibc setr-
limit() wrapper function silently converted the limit value to RLIM_INFINITY. In
other words, the requested resource limit setting was silently ignored.

Since glibc 2.13, glibc works around the limitations of the getrlimit() and setrlimit()
system calls by implementing setrlimit() and getrlimit() as wrapper functions that
call prlimit().

EXAMPLES
The program below demonstrates the use of prlimit().

#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <err.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <time.h>

int
main(int argc, char *argv[])
{

pid_t pid;
struct rlimit old, new;

Linux man-pages 6.13 2024-07-23 299

getrlimit(2) System Calls Manual getrlimit(2)

struct rlimit *newp;

if (!(argc == 2 || argc == 4)) {
fprintf(stderr, "Usage: %s <pid> [<new-soft-limit> "

"<new-hard-limit>]\n", argv[0]);
exit(EXIT_FAILURE);

}

pid = atoi(argv[1]); /* PID of target process */

newp = NULL;
if (argc == 4) {

new.rlim_cur = atoi(argv[2]);
new.rlim_max = atoi(argv[3]);
newp = &new;

}

/* Set CPU time limit of target process; retrieve and display
previous limit */

if (prlimit(pid, RLIMIT_CPU, newp, &old) == -1)
err(EXIT_FAILURE, "prlimit-1");

printf("Previous limits: soft=%jd; hard=%jd\n",
(intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

/* Retrieve and display new CPU time limit */

if (prlimit(pid, RLIMIT_CPU, NULL, &old) == -1)
err(EXIT_FAILURE, "prlimit-2");

printf("New limits: soft=%jd; hard=%jd\n",
(intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

exit(EXIT_SUCCESS);
}

SEE ALSO
prlimit(1), dup(2), fcntl(2), fork(2), getrusage(2), mlock(2), mmap(2), open(2), quo-
tactl(2), sbrk(2), shmctl(2), malloc(3), sigqueue(3), ulimit(3), core(5), capabilities(7),
cgroups(7), credentials(7), signal(7)

Linux man-pages 6.13 2024-07-23 300

getrusage(2) System Calls Manual getrusage(2)

NAME
getrusage - get resource usage

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/resource.h>

int getrusage(int who, struct rusage *usage);

DESCRIPTION
getrusage() returns resource usage measures for who, which can be one of the follow-
ing:

RUSAGE_SELF
Return resource usage statistics for the calling process, which is the sum of re-
sources used by all threads in the process.

RUSAGE_CHILDREN
Return resource usage statistics for all children of the calling process that have
terminated and been waited for. These statistics will include the resources
used by grandchildren, and further removed descendants, if all of the interven-
ing descendants waited on their terminated children.

RUSAGE_THREAD (since Linux 2.6.26)
Return resource usage statistics for the calling thread. The _GNU_SOURCE
feature test macro must be defined (before including any header file) in order
to obtain the definition of this constant from <sys/resource.h>.

The resource usages are returned in the structure pointed to by usage, which has the
following form:

struct rusage {
struct timeval ru_utime; /* user CPU time used */
struct timeval ru_stime; /* system CPU time used */
long ru_maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; /* page reclaims (soft page faults) */
long ru_majflt; /* page faults (hard page faults) */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* IPC messages sent */
long ru_msgrcv; /* IPC messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */

};

Not all fields are completed; unmaintained fields are set to zero by the kernel. (The
unmaintained fields are provided for compatibility with other systems, and because
they may one day be supported on Linux.) The fields are interpreted as follows:

Linux man-pages 6.13 2024-07-23 301

getrusage(2) System Calls Manual getrusage(2)

ru_utime
This is the total amount of time spent executing in user mode, expressed in a
timeval structure (seconds plus microseconds).

ru_stime
This is the total amount of time spent executing in kernel mode, expressed in a
timeval structure (seconds plus microseconds).

ru_maxrss (since Linux 2.6.32)
This is the maximum resident set size used (in kilobytes). For
RUSAGE_CHILDREN, this is the resident set size of the largest child, not
the maximum resident set size of the process tree.

ru_ixrss (unmaintained)
This field is currently unused on Linux.

ru_idrss (unmaintained)
This field is currently unused on Linux.

ru_isrss (unmaintained)
This field is currently unused on Linux.

ru_minflt
The number of page faults serviced without any I/O activity; here I/O activity
is avoided by “reclaiming” a page frame from the list of pages awaiting reallo-
cation.

ru_majflt
The number of page faults serviced that required I/O activity.

ru_nswap (unmaintained)
This field is currently unused on Linux.

ru_inblock (since Linux 2.6.22)
The number of times the filesystem had to perform input.

ru_oublock (since Linux 2.6.22)
The number of times the filesystem had to perform output.

ru_msgsnd (unmaintained)
This field is currently unused on Linux.

ru_msgrcv (unmaintained)
This field is currently unused on Linux.

ru_nsignals (unmaintained)
This field is currently unused on Linux.

ru_nvcsw (since Linux 2.6)
The number of times a context switch resulted due to a process voluntarily
giving up the processor before its time slice was completed (usually to await
availability of a resource).

ru_nivcsw (since Linux 2.6)
The number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

Linux man-pages 6.13 2024-07-23 302

getrusage(2) System Calls Manual getrusage(2)

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EFAULT

usage points outside the accessible address space.

EINVAL
who is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetrusage()

STANDARDS
POSIX.1-2008.

POSIX.1 specifies getrusage(), but specifies only the fields ru_utime and ru_stime.

RUSAGE_THREAD is Linux-specific.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

Before Linux 2.6.9, if the disposition of SIGCHLD is set to SIG_IGN then the re-
source usages of child processes are automatically included in the value returned by
RUSAGE_CHILDREN, although POSIX.1-2001 explicitly prohibits this. This non-
conformance is rectified in Linux 2.6.9 and later.

The structure definition shown at the start of this page was taken from 4.3BSD Reno.

Ancient systems provided a vtimes() function with a similar purpose to getrusage().
For backward compatibility, glibc (up until Linux 2.32) also provides vtimes(). All
new applications should be written using getrusage(). (Since Linux 2.33, glibc no
longer provides an vtimes() implementation.)

NOTES
Resource usage metrics are preserved across an execve(2).

SEE ALSO
clock_gettime(2), getrlimit(2), times(2), wait(2), wait4(2), clock(3), proc_pid_stat(5),
proc_pid_io(5)

Linux man-pages 6.13 2024-07-23 303

getsid(2) System Calls Manual getsid(2)

NAME
getsid - get session ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t getsid(pid_t pid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getsid():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

DESCRIPTION
getsid() returns the session ID of the process with process ID pid . If pid is 0, get-
sid() returns the session ID of the calling process.

RETURN VALUE
On success, a session ID is returned. On error, (pid_t) -1 is returned, and errno is set
to indicate the error.

ERRORS
EPERM

A process with process ID pid exists, but it is not in the same session as the
calling process, and the implementation considers this an error.

ESRCH
No process with process ID pid was found.

VERSIONS
Linux does not return EPERM.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4. Linux 2.0.

NOTES
See credentials(7) for a description of sessions and session IDs.

SEE ALSO
getpgid(2), setsid(2), credentials(7)

Linux man-pages 6.13 2024-07-23 304

getsockname(2) System Calls Manual getsockname(2)

NAME
getsockname - get socket name

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int getsockname(int sockfd , struct sockaddr *restrict addr,
socklen_t *restrict addrlen);

DESCRIPTION
getsockname() returns the current address to which the socket sockfd is bound, in the
buffer pointed to by addr. The addrlen argument should be initialized to indicate the
amount of space (in bytes) pointed to by addr. On return it contains the actual size of
the socket address.

The returned address is truncated if the buffer provided is too small; in this case, ad-
drlen will return a value greater than was supplied to the call.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EBADF

The argument sockfd is not a valid file descriptor.

EFAULT
The addr argument points to memory not in a valid part of the process address
space.

EINVAL
addrlen is invalid (e.g., is negative).

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).

SEE ALSO
bind(2), socket(2), getifaddrs(3), ip(7), socket(7), unix(7)

Linux man-pages 6.13 2024-07-23 305

getsockopt(2) System Calls Manual getsockopt(2)

NAME
getsockopt, setsockopt - get and set options on sockets

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int getsockopt(int sockfd , int level, int optname,
void optval[restrict *.optlen],
socklen_t *restrict optlen);

int setsockopt(int sockfd , int level, int optname,
const void optval[.optlen],
socklen_t optlen);

DESCRIPTION
getsockopt() and setsockopt() manipulate options for the socket referred to by the file
descriptor sockfd . Options may exist at multiple protocol levels; they are always
present at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the name
of the option must be specified. To manipulate options at the sockets API level, level
is specified as SOL_SOCKET. To manipulate options at any other level the protocol
number of the appropriate protocol controlling the option is supplied. For example, to
indicate that an option is to be interpreted by the TCP protocol, level should be set to
the protocol number of TCP; see getprotoent(3).

The arguments optval and optlen are used to access option values for setsockopt().
For getsockopt() they identify a buffer in which the value for the requested option(s)
are to be returned. For getsockopt(), optlen is a value-result argument, initially con-
taining the size of the buffer pointed to by optval, and modified on return to indicate
the actual size of the value returned. If no option value is to be supplied or returned,
optval may be NULL.

Optname and any specified options are passed uninterpreted to the appropriate proto-
col module for interpretation. The include file <sys/socket.h> contains definitions for
socket level options, described below. Options at other protocol levels vary in format
and name; consult the appropriate entries in section 4 of the manual.

Most socket-level options utilize an int argument for optval. For setsockopt(), the ar-
gument should be nonzero to enable a boolean option, or zero if the option is to be
disabled.

For a description of the available socket options see socket(7) and the appropriate pro-
tocol man pages.

RETURN VALUE
On success, zero is returned for the standard options. On error, -1 is returned, and er-
rno is set to indicate the error.

Netfilter allows the programmer to define custom socket options with associated han-
dlers; for such options, the return value on success is the value returned by the han-
dler.

Linux man-pages 6.13 2024-07-23 306

getsockopt(2) System Calls Manual getsockopt(2)

ERRORS
EBADF

The argument sockfd is not a valid file descriptor.

EFAULT
The address pointed to by optval is not in a valid part of the process address
space. For getsockopt(), this error may also be returned if optlen is not in a
valid part of the process address space.

EINVAL
optlen invalid in setsockopt(). In some cases this error can also occur for an
invalid value in optval (e.g., for the IP_ADD_MEMBERSHIP option de-
scribed in ip(7)).

ENOPROTOOPT
The option is unknown at the level indicated.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).

BUGS
Several of the socket options should be handled at lower levels of the system.

SEE ALSO
ioctl(2), socket(2), getprotoent(3), protocols(5), ip(7), packet(7), socket(7), tcp(7),
udp(7), unix(7)

Linux man-pages 6.13 2024-07-23 307

gettid(2) System Calls Manual gettid(2)

NAME
gettid - get thread identification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE
#include <unistd.h>

pid_t gettid(void);

DESCRIPTION
gettid() returns the caller’s thread ID (TID). In a single-threaded process, the thread
ID is equal to the process ID (PID, as returned by getpid(2)). In a multithreaded
process, all threads have the same PID, but each one has a unique TID. For further
details, see the discussion of CLONE_THREAD in clone(2).

RETURN VALUE
On success, returns the thread ID of the calling thread.

ERRORS
This call is always successful.

STANDARDS
Linux.

HISTORY
Linux 2.4.11, glibc 2.30.

NOTES
The thread ID returned by this call is not the same thing as a POSIX thread ID (i.e.,
the opaque value returned by pthread_self(3)).

In a new thread group created by a clone(2) call that does not specify the
CLONE_THREAD flag (or, equivalently, a new process created by fork(2)), the new
process is a thread group leader, and its thread group ID (the value returned by get-
pid(2)) is the same as its thread ID (the value returned by gettid())

SEE ALSO
capget(2), clone(2), fcntl(2), fork(2), get_robust_list(2), getpid(2), ioprio_set(2),
perf_event_open(2), sched_setaffinity(2), sched_setparam(2), sched_setscheduler(2),
tgkill(2), timer_create(2)

Linux man-pages 6.13 2024-07-23 308

gettimeofday(2) System Calls Manual gettimeofday(2)

NAME
gettimeofday, settimeofday - get / set time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/time.h>

int gettimeofday(struct timeval *restrict tv,
struct timezone *_Nullable restrict tz);

int settimeofday(const struct timeval *tv,
const struct timezone *_Nullable tz);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

settimeofday():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The functions gettimeofday() and settimeofday() can get and set the time as well as a
timezone.

The tv argument is a struct timeval (as specified in <sys/time.h>):

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

and gives the number of seconds and microseconds since the Epoch (see time(2)).

The tz argument is a struct timezone:

struct timezone {
int tz_minuteswest; /* minutes west of Greenwich */
int tz_dsttime; /* type of DST correction */

};

If either tv or tz is NULL, the corresponding structure is not set or returned. (How-
ever, compilation warnings will result if tv is NULL.)

The use of the timezone structure is obsolete; the tz argument should normally be
specified as NULL. See VERSIONS.

Under Linux, there are some peculiar "warp clock" semantics associated with the set-
timeofday() system call if on the very first call (after booting) that has a non-NULL tz
argument, the tv argument is NULL and the tz_minuteswest field is nonzero. (The
tz_dsttime field should be zero for this case.) In such a case it is assumed that the
CMOS clock is on local time, and that it has to be incremented by this amount to get
UTC system time. No doubt it is a bad idea to use this feature.

RETURN VALUE
gettimeofday() and settimeofday() return 0 for success. On error, -1 is returned and
errno is set to indicate the error.

Linux man-pages 6.13 2024-07-23 309

gettimeofday(2) System Calls Manual gettimeofday(2)

ERRORS
EFAULT

One of tv or tz pointed outside the accessible address space.

EINVAL
(settimeofday()): timezone is invalid.

EINVAL
(settimeofday()): tv.tv_sec is negative or tv.tv_usec is outside the range [0,
999,999].

EINVAL (since Linux 4.3)
(settimeofday()): An attempt was made to set the time to a value less than the
current value of the CLOCK_MONOTONIC clock (see clock_gettime(2)).

EPERM
The calling process has insufficient privilege to call settimeofday(); under
Linux the CAP_SYS_TIME capability is required.

VERSIONS
C library/kernel differences

On some architectures, an implementation of gettimeofday() is provided in the
vdso(7).

The kernel accepts NULL for both tv and tz. The timezone argument is ignored by
glibc and musl, and not passed to/from the kernel. Android’s bionic passes the time-
zone argument to/from the kernel, but Android does not update the kernel timezone
based on the device timezone in Settings, so the kernel’s timezone is typically UTC.

STANDARDS
gettimeofday()

POSIX.1-2008 (obsolete).

settimeofday()
None.

HISTORY
SVr4, 4.3BSD. POSIX.1-2001 describes gettimeofday() but not settimeofday().
POSIX.1-2008 marks gettimeofday() as obsolete, recommending the use of
clock_gettime(2) instead.

Traditionally, the fields of struct timeval were of type long.

The tz_dsttime field
On a non-Linux kernel, with glibc, the tz_dsttime field of struct timezone will be set to
a nonzero value by gettimeofday() if the current timezone has ever had or will have a
daylight saving rule applied. In this sense it exactly mirrors the meaning of day-
light(3) for the current zone. On Linux, with glibc, the setting of the tz_dsttime field
of struct timezone has never been used by settimeofday() or gettimeofday(). Thus,
the following is purely of historical interest.

On old systems, the field tz_dsttime contains a symbolic constant (values are given be-
low) that indicates in which part of the year Daylight Saving Time is in force. (Note:
this value is constant throughout the year: it does not indicate that DST is in force, it
just selects an algorithm.) The daylight saving time algorithms defined are as follows:

Linux man-pages 6.13 2024-07-23 310

gettimeofday(2) System Calls Manual gettimeofday(2)

DST_NONE /* not on DST */
DST_USA /* USA style DST */
DST_AUST /* Australian style DST */
DST_WET /* Western European DST */
DST_MET /* Middle European DST */
DST_EET /* Eastern European DST */
DST_CAN /* Canada */
DST_GB /* Great Britain and Eire */
DST_RUM /* Romania */
DST_TUR /* Turkey */
DST_AUSTALT /* Australian style with shift in 1986 */

Of course it turned out that the period in which Daylight Saving Time is in force can-
not be given by a simple algorithm, one per country; indeed, this period is determined
by unpredictable political decisions. So this method of representing timezones has
been abandoned.

NOTES
The time returned by gettimeofday() is affected by discontinuous jumps in the system
time (e.g., if the system administrator manually changes the system time). If you
need a monotonically increasing clock, see clock_gettime(2).

Macros for operating on timeval structures are described in timeradd(3).

SEE ALSO
date(1), adjtimex(2), clock_gettime(2), time(2), ctime(3), ftime(3), timeradd(3), capa-
bilities(7), time(7), vdso(7), hwclock(8)

Linux man-pages 6.13 2024-07-23 311

getuid(2) System Calls Manual getuid(2)

NAME
getuid, geteuid - get user identity

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

uid_t getuid(void);
uid_t geteuid(void);

DESCRIPTION
getuid() returns the real user ID of the calling process.

geteuid() returns the effective user ID of the calling process.

ERRORS
These functions are always successful and never modify errno.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

In UNIX V6 the getuid() call returned (euid << 8) + uid . UNIX V7 introduced sepa-
rate calls getuid() and geteuid().

The original Linux getuid() and geteuid() system calls supported only 16-bit user
IDs. Subsequently, Linux 2.4 added getuid32() and geteuid32(), supporting 32-bit
IDs. The glibc getuid() and geteuid() wrapper functions transparently deal with the
variations across kernel versions.

On Alpha, instead of a pair of getuid() and geteuid() system calls, a single getxuid()
system call is provided, which returns a pair of real and effective UIDs. The glibc ge-
tuid() and geteuid() wrapper functions transparently deal with this. See syscall(2) for
details regarding register mapping.

SEE ALSO
getresuid(2), setreuid(2), setuid(2), credentials(7)

Linux man-pages 6.13 2024-07-23 312

getunwind(2) System Calls Manual getunwind(2)

NAME
getunwind - copy the unwind data to caller’s buffer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/unwind.h>
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[deprecated]] long syscall(SYS_getunwind, void buf [.buf_size],
size_t buf_size);

DESCRIPTION
Note: this system call is obsolete.

The IA-64-specific getunwind() system call copies the kernel’s call frame unwind
data into the buffer pointed to by buf and returns the size of the unwind data; this data
describes the gate page (kernel code that is mapped into user space).

The size of the buffer buf is specified in buf_size. The data is copied only if buf_size
is greater than or equal to the size of the unwind data and buf is not NULL; other-
wise, no data is copied, and the call succeeds, returning the size that would be needed
to store the unwind data.

The first part of the unwind data contains an unwind table. The rest contains the asso-
ciated unwind information, in no particular order. The unwind table contains entries
of the following form:

u64 start; (64-bit address of start of function)
u64 end; (64-bit address of end of function)
u64 info; (BUF-relative offset to unwind info)

An entry whose start value is zero indicates the end of the table. For more informa-
tion about the format, see the IA-64 Software Conventions and Runtime Architecture
manual.

RETURN VALUE
On success, getunwind() returns the size of the unwind data. On error, -1 is returned
and errno is set to indicate the error.

ERRORS
getunwind() fails with the error EFAULT if the unwind info can’t be stored in the
space specified by buf .

STANDARDS
Linux on IA-64.

HISTORY
Linux 2.4.

This system call has been deprecated. The modern way to obtain the kernel’s unwind
data is via the vdso(7).

SEE ALSO
getauxval(3)

Linux man-pages 6.13 2024-07-23 313

getxattr(2) System Calls Manual getxattr(2)

NAME
getxattr, lgetxattr, fgetxattr - retrieve an extended attribute value

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/xattr.h>

ssize_t getxattr(const char *path, const char *name,
void value[.size], size_t size);

ssize_t lgetxattr(const char *path, const char *name,
void value[.size], size_t size);

ssize_t fgetxattr(int fd , const char *name,
void value[.size], size_t size);

DESCRIPTION
Extended attributes are name:value pairs associated with inodes (files, directories,
symbolic links, etc.). They are extensions to the normal attributes which are associ-
ated with all inodes in the system (i.e., the stat(2) data). A complete overview of ex-
tended attributes concepts can be found in xattr(7).

getxattr() retrieves the value of the extended attribute identified by name and associ-
ated with the given path in the filesystem. The attribute value is placed in the buffer
pointed to by value; size specifies the size of that buffer. The return value of the call
is the number of bytes placed in value.

lgetxattr() is identical to getxattr(), except in the case of a symbolic link, where the
link itself is interrogated, not the file that it refers to.

fgetxattr() is identical to getxattr(), only the open file referred to by fd (as returned
by open(2)) is interrogated in place of path.

An extended attribute name is a null-terminated string. The name includes a name-
space prefix; there may be several, disjoint namespaces associated with an individual
inode. The value of an extended attribute is a chunk of arbitrary textual or binary data
that was assigned using setxattr(2).

If size is specified as zero, these calls return the current size of the named extended at-
tribute (and leave value unchanged). This can be used to determine the size of the
buffer that should be supplied in a subsequent call. (But, bear in mind that there is a
possibility that the attribute value may change between the two calls, so that it is still
necessary to check the return status from the second call.)

RETURN VALUE
On success, these calls return a nonnegative value which is the size (in bytes) of the
extended attribute value. On failure, -1 is returned and errno is set to indicate the er-
ror.

ERRORS
E2BIG

The size of the attribute value is larger than the maximum size allowed; the at-
tribute cannot be retrieved. This can happen on filesystems that support very
large attribute values such as NFSv4, for example.

Linux man-pages 6.13 2024-07-23 314

getxattr(2) System Calls Manual getxattr(2)

ENODATA
The named attribute does not exist, or the process has no access to this at-
tribute.

ENOTSUP
Extended attributes are not supported by the filesystem, or are disabled.

ERANGE
The size of the value buffer is too small to hold the result.

In addition, the errors documented in stat(2) can also occur.

STANDARDS
Linux.

HISTORY
Linux 2.4, glibc 2.3.

EXAMPLES
See listxattr(2).

SEE ALSO
getfattr(1), setfattr(1), listxattr(2), open(2), removexattr(2), setxattr(2), stat(2), sym-
link(7), xattr(7)

Linux man-pages 6.13 2024-07-23 315

idle(2) System Calls Manual idle(2)

NAME
idle - make process 0 idle

SYNOPSIS
#include <unistd.h>

[[deprecated]] int idle(void);

DESCRIPTION
idle() is an internal system call used during bootstrap. It marks the process’s pages as
swappable, lowers its priority, and enters the main scheduling loop. idle() never re-
turns.

Only process 0 may call idle(). Any user process, even a process with superuser per-
mission, will receive EPERM.

RETURN VALUE
idle() never returns for process 0, and always returns -1 for a user process.

ERRORS
EPERM

Always, for a user process.

STANDARDS
Linux.

HISTORY
Removed in Linux 2.3.13.

Linux man-pages 6.13 2024-05-02 316

init_module(2) System Calls Manual init_module(2)

NAME
init_module, finit_module - load a kernel module

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/module.h> /* Definition of MODULE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_init_module, void module_image[.size], unsigned long size,
const char *param_values);

int syscall(SYS_finit_module, int fd ,
const char *param_values, int flags);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
init_module() loads an ELF image into kernel space, performs any necessary symbol
relocations, initializes module parameters to values provided by the caller, and then
runs the module’s init function. This system call requires privilege.

The module_image argument points to a buffer containing the binary image to be
loaded; size specifies the size of that buffer. The module image should be a valid ELF
image, built for the running kernel.

The param_values argument is a string containing space-delimited specifications of
the values for module parameters (defined inside the module using module_param()
and module_param_array())The kernel parses this string and initializes the specified
parameters. Each of the parameter specifications has the form:

name[=value[,value...]]

The parameter name is one of those defined within the module using module_param()
(see the Linux kernel source file include/linux/moduleparam.h). The parameter value
is optional in the case of bool and invbool parameters. Values for array parameters
are specified as a comma-separated list.

finit_module()
The finit_module() system call is like init_module(), but reads the module to be
loaded from the file descriptor fd . It is useful when the authenticity of a kernel mod-
ule can be determined from its location in the filesystem; in cases where that is possi-
ble, the overhead of using cryptographically signed modules to determine the authen-
ticity of a module can be avoided. The param_values argument is as for init_mod-
ule().

The flags argument modifies the operation of finit_module(). It is a bit mask value
created by ORing together zero or more of the following flags:

MODULE_INIT_IGNORE_MODVERSIONS
Ignore symbol version hashes.

Linux man-pages 6.13 2025-01-05 317

init_module(2) System Calls Manual init_module(2)

MODULE_INIT_IGNORE_VERMAGIC
Ignore kernel version magic.

MODULE_INIT_COMPRESSED_FILE (since Linux 5.17)
Use in-kernel module decompression.

There are some safety checks built into a module to ensure that it matches the kernel
against which it is loaded. These checks are recorded when the module is built and
verified when the module is loaded. First, the module records a "vermagic" string
containing the kernel version number and prominent features (such as the CPU type).
Second, if the module was built with the CONFIG_MODVERSIONS configuration
option enabled, a version hash is recorded for each symbol the module uses. This
hash is based on the types of the arguments and return value for the function named
by the symbol. In this case, the kernel version number within the "vermagic" string is
ignored, as the symbol version hashes are assumed to be sufficiently reliable.

Using the MODULE_INIT_IGNORE_VERMAGIC flag indicates that the "ver-
magic" string is to be ignored, and the MODULE_INIT_IGNORE_MODVER-
SIONS flag indicates that the symbol version hashes are to be ignored. If the kernel
is built to permit forced loading (i.e., configured with CONFIG_MOD-
ULE_FORCE_LOAD), then loading continues, otherwise it fails with the error
ENOEXEC as expected for malformed modules.

If the kernel was build with CONFIG_MODULE_DECOMPRESS, the in-kernel
decompression feature can be used. User-space code can check if the kernel supports
decompression by reading the /sys/module/compression attribute. If the kernel sup-
ports decompression, the compressed file can directly be passed to finit_module() us-
ing the MODULE_INIT_COMPRESSED_FILE flag. The in-kernel module de-
compressor supports the following compression algorithms:

• gzip (since Linux 5.17)
• xz (since Linux 5.17)
• zstd (since Linux 6.2)

The kernel only implements a single decompression method. This is selected during
module generation accordingly to the compression method chosen in the kernel con-
figuration.

RETURN VALUE
On success, these system calls return 0. On error, -1 is returned and errno is set to in-
dicate the error.

ERRORS
EBADMSG (since Linux 3.7)

Module signature is misformatted.

EBUSY
Timeout while trying to resolve a symbol reference by this module.

EFAULT
An address argument referred to a location that is outside the process’s acces-
sible address space.

Linux man-pages 6.13 2025-01-05 318

init_module(2) System Calls Manual init_module(2)

ENOKEY (since Linux 3.7)
Module signature is invalid or the kernel does not have a key for this module.
This error is returned only if the kernel was configured with CONFIG_MOD-
ULE_SIG_FORCE; if the kernel was not configured with this option, then an
invalid or unsigned module simply taints the kernel.

ENOMEM
Out of memory.

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capa-
bility), or module loading is disabled (see /proc/sys/kernel/modules_disabled
in proc(5)).

The following errors may additionally occur for init_module():

EEXIST
A module with this name is already loaded.

EINVAL
param_values is invalid, or some part of the ELF image in module_image
contains inconsistencies.

ENOEXEC
The binary image supplied in module_image is not an ELF image, or is an
ELF image that is invalid or for a different architecture.

The following errors may additionally occur for finit_module():

EBADF
The file referred to by fd is not opened for reading.

EFBIG
The file referred to by fd is too large.

EINVAL
flags is invalid.

EINVAL
The decompressor sanity checks failed, while loading a compressed module
with flag MODULE_INIT_COMPRESSED_FILE set.

ENOEXEC
fd does not refer to an open file.

EOPNOTSUPP (since Linux 5.17)
The flag MODULE_INIT_COMPRESSED_FILE is set to load a com-
pressed module, and the kernel was built without CONFIG_MODULE_DE-
COMPRESS.

ETXTBSY (since Linux 4.7)
The file referred to by fd is opened for read-write.

In addition to the above errors, if the module’s init function is executed and returns an
error, then init_module() or finit_module() fails and errno is set to the value returned
by the init function.

Linux man-pages 6.13 2025-01-05 319

init_module(2) System Calls Manual init_module(2)

STANDARDS
Linux.

HISTORY
finit_module()

Linux 3.8.

The init_module() system call is not supported by glibc. No declaration is provided
in glibc headers, but, through a quirk of history, glibc versions before glibc 2.23 did
export an ABI for this system call. Therefore, in order to employ this system call, it is
(before glibc 2.23) sufficient to manually declare the interface in your code; alterna-
tively, you can invoke the system call using syscall(2).

Linux 2.4 and earlier
In Linux 2.4 and earlier, the init_module() system call was rather different:

#include <linux/module.h>

int init_module(const char *name, struct module *image);

(User-space applications can detect which version of init_module() is available by
calling query_module(); the latter call fails with the error ENOSYS on Linux 2.6 and
later.)

The older version of the system call loads the relocated module image pointed to by
image into kernel space and runs the module’s init function. The caller is responsible
for providing the relocated image (since Linux 2.6, the init_module() system call
does the relocation).

The module image begins with a module structure and is followed by code and data as
appropriate. Since Linux 2.2, the module structure is defined as follows:

struct module {
unsigned long size_of_struct;
struct module *next;
const char *name;
unsigned long size;
long usecount;
unsigned long flags;
unsigned int nsyms;
unsigned int ndeps;
struct module_symbol *syms;
struct module_ref *deps;
struct module_ref *refs;
typeof(int (void)) *init;
typeof(void (void)) *cleanup;
const struct exception_table_entry *ex_table_start;
const struct exception_table_entry *ex_table_end;

#ifdef __alpha__
unsigned long gp;

#endif
};

All of the pointer fields, with the exception of next and refs, are expected to point
within the module body and be initialized as appropriate for kernel space, that is,

Linux man-pages 6.13 2025-01-05 320

init_module(2) System Calls Manual init_module(2)

relocated with the rest of the module.

NOTES
Information about currently loaded modules can be found in /proc/modules and in the
file trees under the per-module subdirectories under /sys/module.

See the Linux kernel source file include/linux/module.h for some useful background
information.

SEE ALSO
create_module(2), delete_module(2), query_module(2), lsmod(8), modprobe(8)

Linux man-pages 6.13 2025-01-05 321

inotify_add_watch(2) System Calls Manual inotify_add_watch(2)

NAME
inotify_add_watch - add a watch to an initialized inotify instance

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/inotify.h>

int inotify_add_watch(int fd , const char *pathname, uint32_t mask);

DESCRIPTION
inotify_add_watch() adds a new watch, or modifies an existing watch, for the file
whose location is specified in pathname; the caller must have read permission for this
file. The fd argument is a file descriptor referring to the inotify instance whose watch
list is to be modified. The events to be monitored for pathname are specified in the
mask bit-mask argument. See inotify(7) for a description of the bits that can be set in
mask.

A successful call to inotify_add_watch() returns a unique watch descriptor for this
inotify instance, for the filesystem object (inode) that corresponds to pathname. If the
filesystem object was not previously being watched by this inotify instance, then the
watch descriptor is newly allocated. If the filesystem object was already being
watched (perhaps via a different link to the same object), then the descriptor for the
existing watch is returned.

The watch descriptor is returned by later read(2)s from the inotify file descriptor.
These reads fetch inotify_event structures (see inotify(7)) indicating filesystem events;
the watch descriptor inside this structure identifies the object for which the event oc-
curred.

RETURN VALUE
On success, inotify_add_watch() returns a watch descriptor (a nonnegative integer).
On error, -1 is returned and errno is set to indicate the error.

ERRORS
EACCES

Read access to the given file is not permitted.

EBADF
The given file descriptor is not valid.

EEXIST
mask contains IN_MASK_CREATE and pathname refers to a file already
being watched by the same fd .

EFAULT
pathname points outside of the process’s accessible address space.

EINVAL
The given event mask contains no valid events; or mask contains both
IN_MASK_ADD and IN_MASK_CREATE; or fd is not an inotify file de-
scriptor.

Linux man-pages 6.13 2024-07-23 322

inotify_add_watch(2) System Calls Manual inotify_add_watch(2)

ENAMETOOLONG
pathname is too long.

ENOENT
A directory component in pathname does not exist or is a dangling symbolic
link.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The user limit on the total number of inotify watches was reached or the kernel
failed to allocate a needed resource.

ENOTDIR
mask contains IN_ONLYDIR and pathname is not a directory.

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

EXAMPLES
See inotify(7).

SEE ALSO
inotify_init(2), inotify_rm_watch(2), inotify(7)

Linux man-pages 6.13 2024-07-23 323

inotify_init(2) System Calls Manual inotify_init(2)

NAME
inotify_init, inotify_init1 - initialize an inotify instance

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/inotify.h>

int inotify_init(void);
int inotify_init1(int flags);

DESCRIPTION
For an overview of the inotify API, see inotify(7).

inotify_init() initializes a new inotify instance and returns a file descriptor associated
with a new inotify event queue.

If flags is 0, then inotify_init1() is the same as inotify_init(). The following values
can be bitwise ORed in flags to obtain different behavior:

IN_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description (see
open(2)) referred to by the new file descriptor. Using this flag saves extra calls
to fcntl(2) to achieve the same result.

IN_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See
the description of the O_CLOEXEC flag in open(2) for reasons why this may
be useful.

RETURN VALUE
On success, these system calls return a new file descriptor. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
EINVAL

(inotify_init1()) An invalid value was specified in flags.

EMFILE
The user limit on the total number of inotify instances has been reached.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient kernel memory is available.

STANDARDS
Linux.

HISTORY
inotify_init()

Linux 2.6.13, glibc 2.4.

Linux man-pages 6.13 2024-07-23 324

inotify_init(2) System Calls Manual inotify_init(2)

inotify_init1()
Linux 2.6.27, glibc 2.9.

SEE ALSO
inotify_add_watch(2), inotify_rm_watch(2), inotify(7)

Linux man-pages 6.13 2024-07-23 325

inotify_rm_watch(2) System Calls Manual inotify_rm_watch(2)

NAME
inotify_rm_watch - remove an existing watch from an inotify instance

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/inotify.h>

int inotify_rm_watch(int fd , int wd);

DESCRIPTION
inotify_rm_watch() removes the watch associated with the watch descriptor wd from
the inotify instance associated with the file descriptor fd .

Removing a watch causes an IN_IGNORED event to be generated for this watch de-
scriptor. (See inotify(7).)

RETURN VALUE
On success, inotify_rm_watch() returns zero. On error, -1 is returned and errno is
set to indicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

EINVAL
The watch descriptor wd is not valid; or fd is not an inotify file descriptor.

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

SEE ALSO
inotify_add_watch(2), inotify_init(2), inotify(7)

Linux man-pages 6.13 2024-07-23 326

io_cancel(2) System Calls Manual io_cancel(2)

NAME
io_cancel - cancel an outstanding asynchronous I/O operation

LIBRARY
Standard C library (libc, -lc)

Alternatively, Asynchronous I/O library (libaio, -laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Definition of needed types */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_io_cancel, aio_context_t ctx_id , struct iocb *iocb,
struct io_event *result);

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_cancel() system call attempts to cancel an asynchronous I/O operation previ-
ously submitted with io_submit(2). The iocb argument describes the operation to be
canceled and the ctx_id argument is the AIO context to which the operation was sub-
mitted. If the operation is successfully canceled, the event will be copied into the
memory pointed to by result without being placed into the completion queue.

RETURN VALUE
On success, io_cancel() returns 0. For the failure return, see VERSIONS.

ERRORS
EAGAIN

The iocb specified was not canceled.

EFAULT
One of the data structures points to invalid data.

EINVAL
The AIO context specified by ctx_id is invalid.

ENOSYS
io_cancel() is not implemented on this architecture.

VERSIONS
You probably want to use the io_cancel() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the
ctx_id argument. Note also that the libaio wrapper does not follow the usual C library
conventions for indicating errors: on error it returns a negated error number (the nega-
tive of one of the values listed in ERRORS). If the system call is invoked via
syscall(2), then the return value follows the usual conventions for indicating an error:
-1, with errno set to a (positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

Linux man-pages 6.13 2024-07-23 327

io_cancel(2) System Calls Manual io_cancel(2)

SEE ALSO
io_destroy(2), io_getevents(2), io_setup(2), io_submit(2), aio(7)

Linux man-pages 6.13 2024-07-23 328

io_destroy(2) System Calls Manual io_destroy(2)

NAME
io_destroy - destroy an asynchronous I/O context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/aio_abi.h> /* Definition of aio_context_t */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_io_destroy, aio_context_t ctx_id);

Note: glibc provides no wrapper for io_destroy(), necessitating the use of syscall(2).

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_destroy() system call will attempt to cancel all outstanding asynchronous I/O
operations against ctx_id , will block on the completion of all operations that could not
be canceled, and will destroy the ctx_id .

RETURN VALUE
On success, io_destroy() returns 0. For the failure return, see VERSIONS.

ERRORS
EFAULT

The context pointed to is invalid.

EINVAL
The AIO context specified by ctx_id is invalid.

ENOSYS
io_destroy() is not implemented on this architecture.

VERSIONS
You probably want to use the io_destroy() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the
ctx_id argument. Note also that the libaio wrapper does not follow the usual C library
conventions for indicating errors: on error it returns a negated error number (the nega-
tive of one of the values listed in ERRORS). If the system call is invoked via
syscall(2), then the return value follows the usual conventions for indicating an error:
-1, with errno set to a (positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
io_cancel(2), io_getevents(2), io_setup(2), io_submit(2), aio(7)

Linux man-pages 6.13 2024-07-23 329

io_getevents(2) System Calls Manual io_getevents(2)

NAME
io_getevents - read asynchronous I/O events from the completion queue

LIBRARY
Standard C library (libc, -lc)

Alternatively, Asynchronous I/O library (libaio, -laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Definition of *io_* types */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_io_getevents, aio_context_t ctx_id ,
long min_nr, long nr, struct io_event *events,
struct timespec *timeout);

Note: glibc provides no wrapper for io_getevents(), necessitating the use of
syscall(2).

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_getevents() system call attempts to read at least min_nr events and up to nr
events from the completion queue of the AIO context specified by ctx_id.

The timeout argument specifies the amount of time to wait for events, and is specified
as a relative timeout in a timespec(3) structure.

The specified time will be rounded up to the system clock granularity and is guaran-
teed not to expire early.

Specifying timeout as NULL means block indefinitely until at least min_nr events
have been obtained.

RETURN VALUE
On success, io_getevents() returns the number of events read. This may be 0, or a
value less than min_nr, if the timeout expired. It may also be a nonzero value less
than min_nr, if the call was interrupted by a signal handler.

For the failure return, see VERSIONS.

ERRORS
EFAULT

Either events or timeout is an invalid pointer.

EINTR
Interrupted by a signal handler; see signal(7).

EINVAL
ctx_id is invalid. min_nr is out of range or nr is out of range.

ENOSYS
io_getevents() is not implemented on this architecture.

VERSIONS
You probably want to use the io_getevents() wrapper function provided by libaio.

Linux man-pages 6.13 2024-07-23 330

io_getevents(2) System Calls Manual io_getevents(2)

Note that the libaio wrapper function uses a different type (io_context_t) for the
ctx_id argument. Note also that the libaio wrapper does not follow the usual C library
conventions for indicating errors: on error it returns a negated error number (the nega-
tive of one of the values listed in ERRORS). If the system call is invoked via
syscall(2), then the return value follows the usual conventions for indicating an error:
-1, with errno set to a (positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

BUGS
An invalid ctx_id may cause a segmentation fault instead of generating the error EIN-
VAL.

SEE ALSO
io_cancel(2), io_destroy(2), io_setup(2), io_submit(2), timespec(3), aio(7), time(7)

Linux man-pages 6.13 2024-07-23 331

io_setup(2) System Calls Manual io_setup(2)

NAME
io_setup - create an asynchronous I/O context

LIBRARY
Standard C library (libc, -lc)

Alternatively, Asynchronous I/O library (libaio, -laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Defines needed types */

long io_setup(unsigned int nr_events, aio_context_t *ctx_idp);

Note: There is no glibc wrapper for this system call; see VERSIONS.

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_idp argument. See VERSIONS.

The io_setup() system call creates an asynchronous I/O context suitable for concur-
rently processing nr_events operations. The ctx_idp argument must not point to an
AIO context that already exists, and must be initialized to 0 prior to the call. On suc-
cessful creation of the AIO context, *ctx_idp is filled in with the resulting handle.

RETURN VALUE
On success, io_setup() returns 0. For the failure return, see VERSIONS.

ERRORS
EAGAIN

The specified nr_events exceeds the limit of available events, as defined in
/proc/sys/fs/aio-max-nr (see proc(5)).

EFAULT
An invalid pointer is passed for ctx_idp.

EINVAL
ctx_idp is not initialized, or the specified nr_events exceeds internal limits.
nr_events should be greater than 0.

ENOMEM
Insufficient kernel resources are available.

ENOSYS
io_setup() is not implemented on this architecture.

VERSIONS
glibc does not provide a wrapper for this system call. You could invoke it using
syscall(2). But instead, you probably want to use the io_setup() wrapper function
provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t *) for the
ctx_idp argument. Note also that the libaio wrapper does not follow the usual C li-
brary conventions for indicating errors: on error it returns a negated error number (the
negative of one of the values listed in ERRORS). If the system call is invoked via
syscall(2), then the return value follows the usual conventions for indicating an error:
-1, with errno set to a (positive) value that indicates the error.

Linux man-pages 6.13 2024-07-23 332

io_setup(2) System Calls Manual io_setup(2)

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
io_cancel(2), io_destroy(2), io_getevents(2), io_submit(2), aio(7)

Linux man-pages 6.13 2024-07-23 333

io_submit(2) System Calls Manual io_submit(2)

NAME
io_submit - submit asynchronous I/O blocks for processing

LIBRARY
Standard C library (libc, -lc)

Alternatively, Asynchronous I/O library (libaio, -laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Defines needed types */

int io_submit(aio_context_t ctx_id , long nr, struct iocb **iocbpp);

Note: There is no glibc wrapper for this system call; see VERSIONS.

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_submit() system call queues nr I/O request blocks for processing in the AIO
context ctx_id. The iocbpp argument should be an array of nr AIO control blocks,
which will be submitted to context ctx_id.

The iocb (I/O control block) structure defined in linux/aio_abi.h defines the parame-
ters that control the I/O operation.

#include <linux/aio_abi.h>

struct iocb {
__u64 aio_data;
__u32 PADDED(aio_key, aio_rw_flags);
__u16 aio_lio_opcode;
__s16 aio_reqprio;
__u32 aio_fildes;
__u64 aio_buf;
__u64 aio_nbytes;
__s64 aio_offset;
__u64 aio_reserved2;
__u32 aio_flags;
__u32 aio_resfd;

};

The fields of this structure are as follows:

aio_data
This data is copied into the data field of the io_event structure upon I/O com-
pletion (see io_getevents(2)).

aio_key
This is an internal field used by the kernel. Do not modify this field after an
io_submit() call.

aio_rw_flags
This defines the R/W flags passed with structure. The valid values are:

Linux man-pages 6.13 2025-01-04 334

io_submit(2) System Calls Manual io_submit(2)

RWF_APPEND (since Linux 4.16)
Append data to the end of the file. See the description of the flag of the
same name in pwritev2(2) as well as the description of O_APPEND in
open(2). The aio_offset field is ignored. The file offset is not changed.

RWF_DSYNC (since Linux 4.13)
Write operation complete according to requirement of synchronized
I/O data integrity. See the description of the flag of the same name in
pwritev2(2) as well the description of O_DSYNC in open(2).

RWF_HIPRI (since Linux 4.13)
High priority request, poll if possible

RWF_NOWAIT (since Linux 4.14)
Don’t wait if the I/O will block for operations such as file block alloca-
tions, dirty page flush, mutex locks, or a congested block device inside
the kernel. If any of these conditions are met, the control block is re-
turned immediately with a return value of -EAGAIN in the res field of
the io_event structure (see io_getevents(2)).

RWF_SYNC (since Linux 4.13)
Write operation complete according to requirement of synchronized
I/O file integrity. See the description of the flag of the same name in
pwritev2(2) as well the description of O_SYNC in open(2).

RWF_NOAPPEND (since Linux 6.9)
Do not honor O_APPEND open(2) flag. See the description of
RWF_NOAPPEND in pwritev2(2).

RWF_ATOMIC (since Linux 6.11)
Write a block of data such that a write will never be torn from power
fail or similar. See the description of RWF_ATOMIC in pwritev2(2).
For usage with IOCB_CMD_PWRITEV, the upper vector limit is
stx_atomic_write_segments_max. See STATX_WRITE_ATOMIC
and stx_atomic_write_segments_max description in statx(2).

aio_lio_opcode
This defines the type of I/O to be performed by the iocb structure. The valid
values are defined by the enum defined in linux/aio_abi.h:

enum {
IOCB_CMD_PREAD = 0,
IOCB_CMD_PWRITE = 1,
IOCB_CMD_FSYNC = 2,
IOCB_CMD_FDSYNC = 3,
IOCB_CMD_POLL = 5,
IOCB_CMD_NOOP = 6,
IOCB_CMD_PREADV = 7,
IOCB_CMD_PWRITEV = 8,

};

aio_reqprio
This defines the requests priority.

Linux man-pages 6.13 2025-01-04 335

io_submit(2) System Calls Manual io_submit(2)

aio_fildes
The file descriptor on which the I/O operation is to be performed.

aio_buf
This is the buffer used to transfer data for a read or write operation.

aio_nbytes
This is the size of the buffer pointed to by aio_buf .

aio_offset
This is the file offset at which the I/O operation is to be performed.

aio_flags
This is the set of flags associated with the iocb structure. The valid values are:

IOCB_FLAG_RESFD
Asynchronous I/O control must signal the file descriptor mentioned in
aio_resfd upon completion.

IOCB_FLAG_IOPRIO (since Linux 4.18)
Interpret the aio_reqprio field as an IOPRIO_VALUE as defined by
linux/ioprio.h.

aio_resfd
The file descriptor to signal in the event of asynchronous I/O completion.

RETURN VALUE
On success, io_submit() returns the number of iocbs submitted (which may be less
than nr, or 0 if nr is zero). For the failure return, see VERSIONS.

ERRORS
EAGAIN

Insufficient resources are available to queue any iocbs.

EBADF
The file descriptor specified in the first iocb is invalid.

EFAULT
One of the data structures points to invalid data.

EINVAL
The AIO context specified by ctx_id is invalid. nr is less than 0. The iocb at
*iocbpp[0] is not properly initialized, the operation specified is invalid for the
file descriptor in the iocb, or the value in the aio_reqprio field is invalid.

ENOSYS
io_submit() is not implemented on this architecture.

EPERM
The aio_reqprio field is set with the class IOPRIO_CLASS_RT, but the sub-
mitting context does not have the CAP_SYS_ADMIN capability.

VERSIONS
glibc does not provide a wrapper for this system call. You could invoke it using
syscall(2). But instead, you probably want to use the io_submit() wrapper function
provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the

Linux man-pages 6.13 2025-01-04 336

io_submit(2) System Calls Manual io_submit(2)

ctx_id argument. Note also that the libaio wrapper does not follow the usual C library
conventions for indicating errors: on error it returns a negated error number (the nega-
tive of one of the values listed in ERRORS). If the system call is invoked via
syscall(2), then the return value follows the usual conventions for indicating an error:
-1, with errno set to a (positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
io_cancel(2), io_destroy(2), io_getevents(2), io_setup(2), aio(7)

Linux man-pages 6.13 2025-01-04 337

ioctl(2) System Calls Manual ioctl(2)

NAME
ioctl - control device

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, ...); /* glibc, BSD */
int ioctl(int fd , int op, ...); /* musl, other UNIX */

DESCRIPTION
The ioctl() system call manipulates the underlying device parameters of special files.
In particular, many operating characteristics of character special files (e.g., terminals)
may be controlled with ioctl() operations. The argument fd must be an open file de-
scriptor.

The second argument is a device-dependent operation code. The third argument is an
untyped pointer to memory. It’s traditionally char *argp (from the days before void *
was valid C), and will be so named for this discussion.

An ioctl() op has encoded in it whether the argument is an in parameter or out para-
meter, and the size of the argument argp in bytes. Macros and defines used in speci-
fying an ioctl() op are located in the file <sys/ioctl.h>. See NOTES.

RETURN VALUE
Usually, on success zero is returned. A few ioctl() operations use the return value as
an output parameter and return a nonnegative value on success. On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

EFAULT
argp references an inaccessible memory area.

EINVAL
op or argp is not valid.

ENOTTY
fd is not associated with a character special device.

ENOTTY
The specified operation does not apply to the kind of object that the file de-
scriptor fd references.

VERSIONS
Arguments, returns, and semantics of ioctl() vary according to the device driver in
question (the call is used as a catch-all for operations that don’t cleanly fit the UNIX
stream I/O model).

STANDARDS
None.

Linux man-pages 6.13 2024-07-23 338

ioctl(2) System Calls Manual ioctl(2)

HISTORY
Version 7 AT&T UNIX has

ioctl(int fildes, int op, struct sgttyb *argp);
(where struct sgttyb has historically been used by stty(2) and gtty(2), and is polymor-
phic by operation type (like a void * would be, if it had been available)).

SysIII documents arg without a type at all.

4.3BSD has
ioctl(int d , unsigned long op, char *argp);

(with char * similarly in for void *).

SysVr4 has
int ioctl(int fildes, int op, ... /* arg */);

NOTES
In order to use this call, one needs an open file descriptor. Often the open(2) call has
unwanted side effects, that can be avoided under Linux by giving it the O_NON-
BLOCK flag.

ioctl structure
Ioctl op values are 32-bit constants. In principle these constants are completely arbi-
trary, but people have tried to build some structure into them.

The old Linux situation was that of mostly 16-bit constants, where the last byte is a
serial number, and the preceding byte(s) give a type indicating the driver. Sometimes
the major number was used: 0x03 for the HDIO_* ioctls, 0x06 for the LP* ioctls.
And sometimes one or more ASCII letters were used. For example, TCGETS has
value 0x00005401, with 0x54 = 'T' indicating the terminal driver, and CYGETTIME-
OUT has value 0x00435906, with 0x43 0x59 = 'C' 'Y' indicating the cyclades driver.

Later (0.98p5) some more information was built into the number. One has 2 direction
bits (00: none, 01: write, 10: read, 11: read/write) followed by 14 size bits (giving the
size of the argument), followed by an 8-bit type (collecting the ioctls in groups for a
common purpose or a common driver), and an 8-bit serial number.

The macros describing this structure live in <asm/ioctl.h> and are _IO(type,nr) and
{_IOR,_IOW,_IOWR}(type,nr,size). They use sizeof(size) so that size is a mis-
nomer here: this third argument is a data type.

Note that the size bits are very unreliable: in lots of cases they are wrong, either be-
cause of buggy macros using sizeof(sizeof(struct)), or because of legacy values.

Thus, it seems that the new structure only gave disadvantages: it does not help in
checking, but it causes varying values for the various architectures.

SEE ALSO
execve(2), fcntl(2), ioctl_console(2), ioctl_fat(2), ioctl_fs(2), ioctl_fsmap(2),
ioctl_nsfs(2), ioctl_tty(2), ioctl_userfaultfd(2), ioctl_eventpoll(2), open(2), sd(4),
tty(4)

Linux man-pages 6.13 2024-07-23 339

ioctl_console(2) System Calls Manual ioctl_console(2)

NAME
ioctl_console - ioctls for console terminal and virtual consoles

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, ...);

DESCRIPTION
The following Linux-specific ioctl(2) operations are supported for console terminals
and virtual consoles.

KDGETLED(2const)
KDSETLED(2const)
KDGKBLED(2const)
KDSKBLED(2const)
KDGKBTYPE(2const)
KDADDIO(2const)
KDDELIO(2const)
KDENABIO(2const)
KDDISABIO(2const)
KDSETMODE(2const)
KDGETMODE(2const)
KDMKTONE(2const)
KIOCSOUND(2const)
GIO_CMAP(2const)
PIO_CMAP(2const)
GIO_FONT(2const)
GIO_FONTX(2const)
PIO_FONT(2const)
PIO_FONTX(2const)
PIO_FONTRESET(2const)
GIO_SCRNMAP(2const)
GIO_UNISCRNMAP(2const)
PIO_SCRNMAP(2const)
PIO_UNISCRNMAP(2const)
GIO_UNIMAP(2const)
PIO_UNIMAP(2const)
PIO_UNIMAPCLR(2const)
KDGKBMODE(2const)
KDSKBMODE(2const)
KDGKBMETA(2const)
KDSKBMETA(2const)
KDGKBENT(2const)
KDSKBENT(2const)
KDGKBSENT(2const)
KDSKBSENT(2const)
KDGKBDIACR(2const)
KDGETKEYCODE(2const)

Linux man-pages 6.13 2024-06-14 340

ioctl_console(2) System Calls Manual ioctl_console(2)

KDSETKEYCODE(2const)
KDSIGACCEPT(2const)

See ioctl_kd(2).

TIOCLINUX(2const)

VT_OPENQRY(2const)
VT_GETMODE(2const)
VT_SETMODE(2const)
VT_GETSTATE(2const)
VT_RELDISP(2const)
VT_ACTIVATE(2const)
VT_WAITACTIVE(2const)
VT_DISALLOCATE(2const)
VT_RESIZE(2const)
VT_RESIZEX(2const)

See ioctl_vt(2).

RETURN VALUE
On success, 0 is returned (except where indicated). On failure, -1 is returned, and er-
rno is set to indicate the error.

STANDARDS
Linux.

CAVEATS
Do not regard this man page as documentation of the Linux console ioctls. This is
provided for the curious only, as an alternative to reading the source. Ioctl’s are un-
documented Linux internals, liable to be changed without warning. (And indeed, this
page more or less describes the situation as of kernel version 1.1.94; there are many
minor and not-so-minor differences with earlier versions.)

Very often, ioctls are introduced for communication between the kernel and one par-
ticular well-known program (fdisk, hdparm, setserial, tunelp, loadkeys, selection, set-
font, etc.), and their behavior will be changed when required by this particular pro-
gram.

SEE ALSO
ioctl(2), TIOCLINUX(2const), ioctl_kd(2), ioctl_vt(2), dumpkeys(1), kbd_mode(1),
loadkeys(1), mknod(1), setleds(1), setmetamode(1), execve(2), fcntl(2), ioctl_tty(2),
ioperm(2), termios(3), console_codes(4), mt(4), sd(4), tty(4), ttyS(4), vcs(4), vcsa(4),
charsets(7), mapscrn(8), resizecons(8), setfont(8)

Linux man-pages 6.13 2024-06-14 341

ioctl_eventpoll(2) System Calls Manual ioctl_eventpoll(2)

NAME
ioctl_eventpoll, EPIOCSPARAMS, EPIOCGPARAMS - ioctl() operations for epoll
file descriptors

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/epoll.h> /* Definition of EPIOC* constants */
#include <sys/ioctl.h>

int ioctl(int fd , EPIOCSPARAMS, const struct epoll_params *argp);
int ioctl(int fd , EPIOCGPARAMS, struct epoll_params *argp);

#include <sys/epoll.h>

struct epoll_params {
uint32_t busy_poll_usecs; /* Number of usecs to busy poll */
uint16_t busy_poll_budget; /* Max packets per poll */
uint8_t prefer_busy_poll; /* Boolean preference */

/* pad the struct to a multiple of 64bits */
uint8_t __pad; /* Must be zero */

};

DESCRIPTION
EPIOCSPARAMS

Set the epoll_params structure to configure the operation of epoll. Refer to
the structure description below to learn what configuration is supported.

EPIOCGPARAMS
Get the current epoll_params configuration settings.

All operations documented above must be performed on an epoll file descriptor,
which can be obtained with a call to epoll_create(2) or epoll_create1(2).

The epoll_params structure
argp.busy_poll_usecs denotes the number of microseconds that the network stack will
busy poll. During this time period, the network device will be polled repeatedly for
packets. This value cannot exceed INT_MAX.

argp.busy_poll_budget denotes the maximum number of packets that the network
stack will retrieve on each poll attempt. This value cannot exceed
NAPI_POLL_WEIGHT (which is 64 as of Linux 6.9), unless the process is run with
CAP_NET_ADMIN.

argp.prefer_busy_poll is a boolean field and must be either 0 (disabled) or 1 (en-
abled). If enabled, this indicates to the network stack that busy poll is the preferred
method of processing network data and the network stack should give the application
the opportunity to busy poll. Without this option, very busy systems may continue to
do network processing via the normal method of IRQs triggering softIRQ and NAPI.

argp.__pad must be zero.

Linux man-pages 6.13 2024-07-23 342

ioctl_eventpoll(2) System Calls Manual ioctl_eventpoll(2)

RETURN VALUE
On success, 0 is returned. On failure, -1 is returned, and errno is set to indicate the
error.

ERRORS
EOPNOTSUPP

The kernel was not compiled with busy poll support.

EINVAL
fd is not a valid file descriptor.

EINVAL
argp.__pad is not zero.

EINVAL
argp.busy_poll_usecs exceeds INT_MAX.

EINVAL
argp.prefer_busy_poll is not 0 or 1.

EPERM
The process is being run without CAP_NET_ADMIN and the specified
argp.busy_poll_budget exceeds NAPI_POLL_WEIGHT.

EFAULT
argp is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 6.9. glibc 2.40.

EXAMPLES
/* Code to set the epoll params to enable busy polling */

int epollfd = epoll_create1(0);
struct epoll_params params;

if (epollfd == -1) {
perror("epoll_create1");
exit(EXIT_FAILURE);

}

memset(¶ms, 0, sizeof(struct epoll_params));

params.busy_poll_usecs = 25;
params.busy_poll_budget = 8;
params.prefer_busy_poll = 1;

if (ioctl(epollfd, EPIOCSPARAMS, ¶ms) == -1) {
perror("ioctl");
exit(EXIT_FAILURE);

}

Linux man-pages 6.13 2024-07-23 343

ioctl_eventpoll(2) System Calls Manual ioctl_eventpoll(2)

/* Code to show how to retrieve the current settings */

memset(¶ms, 0, sizeof(struct epoll_params));

if (ioctl(epollfd, EPIOCGPARAMS, ¶ms) == -1) {
perror("ioctl");
exit(EXIT_FAILURE);

}

/* params struct now contains the current parameters */

fprintf(stderr, "epoll usecs: %lu\n", params.busy_poll_usecs);
fprintf(stderr, "epoll packet budget: %u\n", params.busy_poll_budget);
fprintf(stderr, "epoll prefer busy poll: %u\n", params.prefer_busy_poll);

SEE ALSO
ioctl(2), epoll_create(2), epoll_create1(2), epoll(7)

linux.git/Documentation/networking/napi.rst

linux.git/Documentation/admin-guide/sysctl/net.rst

Linux man-pages 6.13 2024-07-23 344

ioctl_fat(2) System Calls Manual ioctl_fat(2)

NAME
ioctl_fat - manipulating the FAT filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, ...);

DESCRIPTION
The ioctl(2) system call can be used to read and write metadata of FAT filesystems
that are not accessible using other system calls. The following op values are avail-
able.

Reading and setting file attributes
FAT_IOCTL_GET_ATTRIBUTES(2const)
FAT_IOCTL_SET_ATTRIBUTES(2const)

Reading the volume ID
FAT_IOCTL_GET_VOLUME_ID(2const)

Reading short filenames of a directory
VFAT_IOCTL_READDIR_BOTH(2const)
VFAT_IOCTL_READDIR_SHORT(2const)

RETURN VALUE
On success, a nonnegative value is returned. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
ENOTTY

The file descriptor fd does not refer to an object in a FAT filesystem.

STANDARDS
Linux.

SEE ALSO
ioctl(2)

Linux man-pages 6.13 2024-07-23 345

ioctl_fs(2) System Calls Manual ioctl_fs(2)

NAME
ioctl_fs - filesystem operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fs.h> /* Definition of op constants */
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, ...);

DESCRIPTION
The following op values are available.

Share some of the data of one file with another file
FICLONE(2const)
FICLONERANGE(2const)

FIDEDUPERANGE(2const)

Operations for inode flags
FS_IOC_GETFLAGS(2const)
FS_IOC_SETFLAGS(2const)

Get or set a filesystem label
FS_IOC_GETFSLABEL(2const)
FS_IOC_SETFSLABEL(2const)

Get and/or clear page flags
PAGEMAP_SCAN(2const)

RETURN VALUE
On success, a nonnegative value is returned. On error, -1 is returned, and errno is set
to indicate the error.

STANDARDS
Linux.

SEE ALSO
ioctl(2)

Linux man-pages 6.13 2024-07-23 346

ioctl_fsmap(2) System Calls Manual ioctl_fsmap(2)

NAME
ioctl_fsmap, FS_IOC_GETFSMAP - retrieve the physical layout of the filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fsmap.h> /* Definition of FS_IOC_GETFSMAP,

FM?_OF_*, and *FMR_OWN_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , FS_IOC_GETFSMAP, struct fsmap_head * arg);

DESCRIPTION
This ioctl(2) operation retrieves physical extent mappings for a filesystem. This infor-
mation can be used to discover which files are mapped to a physical block, examine
free space, or find known bad blocks, among other things.

The sole argument to this operation should be a pointer to a single struct fsmap_head:

struct fsmap {
__u32 fmr_device; /* Device ID */
__u32 fmr_flags; /* Mapping flags */
__u64 fmr_physical; /* Device offset of segment */
__u64 fmr_owner; /* Owner ID */
__u64 fmr_offset; /* File offset of segment */
__u64 fmr_length; /* Length of segment */
__u64 fmr_reserved[3]; /* Must be zero */

};

struct fsmap_head {
__u32 fmh_iflags; /* Control flags */
__u32 fmh_oflags; /* Output flags */
__u32 fmh_count; /* # of entries in array incl. input */
__u32 fmh_entries; /* # of entries filled in (output) */
__u64 fmh_reserved[6]; /* Must be zero */

struct fsmap fmh_keys[2]; /* Low and high keys for
the mapping search */

struct fsmap fmh_recs[]; /* Returned records */
};

The two fmh_keys array elements specify the lowest and highest reverse-mapping key
for which the application would like physical mapping information. A reverse map-
ping key consists of the tuple (device, block, owner, offset). The owner and offset
fields are part of the key because some filesystems support sharing physical blocks be-
tween multiple files and therefore may return multiple mappings for a given physical
block.

Filesystem mappings are copied into the fmh_recs array, which immediately follows
the header data.

Linux man-pages 6.13 2024-07-23 347

ioctl_fsmap(2) System Calls Manual ioctl_fsmap(2)

Fields of struct fsmap_head
The fmh_iflags field is a bit mask passed to the kernel to alter the output. No flags are
currently defined, so the caller must set this value to zero.

The fmh_oflags field is a bit mask of flags set by the kernel concerning the returned
mappings. If FMH_OF_DEV_T is set, then the fmr_device field represents a dev_t
structure containing the major and minor numbers of the block device.

The fmh_count field contains the number of elements in the array being passed to the
kernel. If this value is 0, fmh_entries will be set to the number of records that would
have been returned had the array been large enough; no mapping information will be
returned.

The fmh_entries field contains the number of elements in the fmh_recs array that
contain useful information.

The fmh_reserved fields must be set to zero.

Keys
The two key records in fsmap_head.fmh_keys specify the lowest and highest extent
records in the keyspace that the caller wants returned. A filesystem that can share
blocks between files likely requires the tuple (device, physical, owner, offset, flags)
to uniquely index any filesystem mapping record. Classic non-sharing filesystems
might be able to identify any record with only (device, physical, flags). For example,
if the low key is set to (8:0, 36864, 0, 0, 0), the filesystem will only return records for
extents starting at or above 36 KiB on disk. If the high key is set to (8:0, 1048576, 0,
0, 0), only records below 1 MiB will be returned. The format of fmr_device in the
keys must match the format of the same field in the output records, as defined below.
By convention, the field fsmap_head.fmh_keys[0] must contain the low key and
fsmap_head.fmh_keys[1] must contain the high key for the operation.

For convenience, if fmr_length is set in the low key, it will be added to fmr_block or
fmr_offset as appropriate. The caller can take advantage of this subtlety to set up sub-
sequent calls by copying fsmap_head.fmh_recs[fsmap_head.fmh_entries - 1] into the
low key. The function fsmap_advance (defined in linux/fsmap.h) provides this func-
tionality.

Fields of struct fsmap
The fmr_device field uniquely identifies the underlying storage device. If the
FMH_OF_DEV_T flag is set in the header’s fmh_oflags field, this field contains a
dev_t from which major and minor numbers can be extracted. If the flag is not set,
this field contains a value that must be unique for each unique storage device.

The fmr_physical field contains the disk address of the extent in bytes.

The fmr_owner field contains the owner of the extent. This is an inode number un-
less FMR_OF_SPECIAL_OWNER is set in the fmr_flags field, in which case the
value is determined by the filesystem. See the section below about owner values for
more details.

The fmr_offset field contains the logical address in the mapping record in bytes. This
field has no meaning if the FMR_OF_SPECIAL_OWNER or FMR_OF_EX-
TENT_MAP flags are set in fmr_flags.

The fmr_length field contains the length of the extent in bytes.

Linux man-pages 6.13 2024-07-23 348

ioctl_fsmap(2) System Calls Manual ioctl_fsmap(2)

The fmr_flags field is a bit mask of extent state flags. The bits are:

FMR_OF_PREALLOC
The extent is allocated but not yet written.

FMR_OF_ATTR_FORK
This extent contains extended attribute data.

FMR_OF_EXTENT_MAP
This extent contains extent map information for the owner.

FMR_OF_SHARED
Parts of this extent may be shared.

FMR_OF_SPECIAL_OWNER
The fmr_owner field contains a special value instead of an inode num-
ber.

FMR_OF_LAST
This is the last record in the data set.

The fmr_reserved field will be set to zero.

Owner values
Generally, the value of the fmr_owner field for non-metadata extents should be an in-
ode number. However, filesystems are under no obligation to report inode numbers;
they may instead report FMR_OWN_UNKNOWN if the inode number cannot easily
be retrieved, if the caller lacks sufficient privilege, if the filesystem does not support
stable inode numbers, or for any other reason. If a filesystem wishes to condition the
reporting of inode numbers based on process capabilities, it is strongly urged that the
CAP_SYS_ADMIN capability be used for this purpose.

The following special owner values are generic to all filesystems:

FMR_OWN_FREE
Free space.

FMR_OWN_UNKNOWN
This extent is in use but its owner is not known or not easily retrieved.

FMR_OWN_METADATA
This extent is filesystem metadata.

XFS can return the following special owner values:

XFS_FMR_OWN_FREE
Free space.

XFS_FMR_OWN_UNKNOWN
This extent is in use but its owner is not known or not easily retrieved.

XFS_FMR_OWN_FS
Static filesystem metadata which exists at a fixed address. These are the
AG superblock, the AGF, the AGFL, and the AGI headers.

XFS_FMR_OWN_LOG
The filesystem journal.

Linux man-pages 6.13 2024-07-23 349

ioctl_fsmap(2) System Calls Manual ioctl_fsmap(2)

XFS_FMR_OWN_AG
Allocation group metadata, such as the free space btrees and the reverse
mapping btrees.

XFS_FMR_OWN_INOBT
The inode and free inode btrees.

XFS_FMR_OWN_INODES
Inode records.

XFS_FMR_OWN_REFC
Reference count information.

XFS_FMR_OWN_COW
This extent is being used to stage a copy-on-write.

XFS_FMR_OWN_DEFECTIVE:
This extent has been marked defective either by the filesystem or the un-
derlying device.

ext4 can return the following special owner values:

EXT4_FMR_OWN_FREE
Free space.

EXT4_FMR_OWN_UNKNOWN
This extent is in use but its owner is not known or not easily retrieved.

EXT4_FMR_OWN_FS
Static filesystem metadata which exists at a fixed address. This is the su-
perblock and the group descriptors.

EXT4_FMR_OWN_LOG
The filesystem journal.

EXT4_FMR_OWN_INODES
Inode records.

EXT4_FMR_OWN_BLKBM
Block bit map.

EXT4_FMR_OWN_INOBM
Inode bit map.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
The error placed in errno can be one of, but is not limited to, the following:

EBADF
fd is not open for reading.

EBADMSG
The filesystem has detected a checksum error in the metadata.

EFAULT
The pointer passed in was not mapped to a valid memory address.

Linux man-pages 6.13 2024-07-23 350

ioctl_fsmap(2) System Calls Manual ioctl_fsmap(2)

EINVAL
The array is not long enough, the keys do not point to a valid part of the
filesystem, the low key points to a higher point in the filesystem’s physical
storage address space than the high key, or a nonzero value was passed in one
of the fields that must be zero.

ENOMEM
Insufficient memory to process the operation.

EOPNOTSUPP
The filesystem does not support this operation.

EUCLEAN
The filesystem metadata is corrupt and needs repair.

STANDARDS
Linux.

Not all filesystems support it.

HISTORY
Linux 4.12.

EXAMPLES
See io/fsmap.c in the xfsprogs distribution for a sample program.

SEE ALSO
ioctl(2)

Linux man-pages 6.13 2024-07-23 351

ioctl_kd(2) System Calls Manual ioctl_kd(2)

NAME
ioctl_kd - ioctls for console terminal and virtual consoles

SYNOPSIS
#include <linux/kd.h> /* Definition of op constants */
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, void *argp);

DESCRIPTION
The following Linux-specific ioctl(2) operations are supported for console terminals
and virtual consoles.

KDGETLED
Get state of LEDs. argp points to a char. The lower three bits of *argp are
set to the state of the LEDs, as follows:
LED_CAP 0x04 caps lock led
LED_NUM 0x02 num lock led
LED_SCR 0x01 scroll lock led

KDSETLED
Set the LEDs. The LEDs are set to correspond to the lower three bits of the
unsigned long integer in argp. However, if a higher order bit is set, the LEDs
revert to normal: displaying the state of the keyboard functions of caps lock,
num lock, and scroll lock.

Before Linux 1.1.54, the LEDs just reflected the state of the corresponding keyboard
flags, and KDGETLED/KDSETLED would also change the keyboard flags. Since
Linux 1.1.54 the LEDs can be made to display arbitrary information, but by default
they display the keyboard flags. The following two ioctls are used to access the key-
board flags.

KDGKBLED
Get keyboard flags CapsLock, NumLock, ScrollLock (not lights). argp points
to a char which is set to the flag state. The low order three bits (mask 0x7) get
the current flag state, and the low order bits of the next nibble (mask 0x70) get
the default flag state. (Since Linux 1.1.54.)

KDSKBLED
Set keyboard flags CapsLock, NumLock, ScrollLock (not lights). argp is an
unsigned long integer that has the desired flag state. The low order three bits
(mask 0x7) have the flag state, and the low order bits of the next nibble (mask
0x70) have the default flag state. (Since Linux 1.1.54.)

KDGKBTYPE
Get keyboard type. This returns the value KB_101, defined as 0x02.

KDADDIO
Add I/O port as valid. Equivalent to ioperm(arg,1,1).

KDDELIO
Delete I/O port as valid. Equivalent to ioperm(arg,1,0).

KDENABIO
Enable I/O to video board. Equivalent to ioperm(0x3b4, 0x3df-0x3b4+1, 1).

Linux man-pages 6.13 2024-06-13 352

ioctl_kd(2) System Calls Manual ioctl_kd(2)

KDDISABIO
Disable I/O to video board. Equivalent to ioperm(0x3b4, 0x3df-0x3b4+1, 0).

KDSETMODE
Set text/graphics mode. argp is an unsigned integer containing one of:
KD_TEXT 0x00
KD_GRAPHICS 0x01

KDGETMODE
Get text/graphics mode. argp points to an int which is set to one of the values
shown above for KDSETMODE.

KDMKTONE
Generate tone of specified length. The lower 16 bits of the unsigned long inte-
ger in argp specify the period in clock cycles, and the upper 16 bits give the
duration in msec. If the duration is zero, the sound is turned off. Control re-
turns immediately. For example, argp = (125<<16) + 0x637 would specify
the beep normally associated with a ctrl-G. (Thus since Linux 0.99pl1; broken
in Linux 2.1.49-50.)

KIOCSOUND
Start or stop sound generation. The lower 16 bits of argp specify the period in
clock cycles (that is, argp = 1193180/frequency). argp = 0 turns sound off. In
either case, control returns immediately.

GIO_CMAP
Get the current default color map from kernel. argp points to a 48-byte array.
(Since Linux 1.3.3.)

PIO_CMAP
Change the default text-mode color map. argp points to a 48-byte array which
contains, in order, the Red, Green, and Blue values for the 16 available screen
colors: 0 is off, and 255 is full intensity. The default colors are, in order:
black, dark red, dark green, brown, dark blue, dark purple, dark cyan, light
grey, dark grey, bright red, bright green, yellow, bright blue, bright purple,
bright cyan, and white. (Since Linux 1.3.3.)

GIO_FONT
Gets 256-character screen font in expanded form. argp points to an 8192-byte
array. Fails with error code EINVAL if the currently loaded font is a
512-character font, or if the console is not in text mode.

GIO_FONTX
Gets screen font and associated information. argp points to a struct console-
fontdesc (see PIO_FONTX). On call, the charcount field should be set to the
maximum number of characters that would fit in the buffer pointed to by char-
data. On return, the charcount and charheight are filled with the respective
data for the currently loaded font, and the chardata array contains the font data
if the initial value of charcount indicated enough space was available; other-
wise the buffer is untouched and errno is set to ENOMEM. (Since Linux
1.3.1.)

Linux man-pages 6.13 2024-06-13 353

ioctl_kd(2) System Calls Manual ioctl_kd(2)

PIO_FONT
Sets 256-character screen font. Load font into the EGA/VGA character gener-
ator. argp points to an 8192-byte map, with 32 bytes per character. Only the
first N of them are used for an 8xN font (0 < N <= 32). This call also invali-
dates the Unicode mapping.

PIO_FONTX
Sets screen font and associated rendering information. argp points to a

struct consolefontdesc {
unsigned short charcount; /* characters in font

(256 or 512) */
unsigned short charheight; /* scan lines per

character (1-32) */
char *chardata; /* font data in

expanded form */
};

If necessary, the screen will be appropriately resized, and SIGWINCH sent to
the appropriate processes. This call also invalidates the Unicode mapping.
(Since Linux 1.3.1.)

PIO_FONTRESET
Resets the screen font, size, and Unicode mapping to the bootup defaults.
argp is unused, but should be set to NULL to ensure compatibility with future
versions of Linux. (Since Linux 1.3.28.)

GIO_SCRNMAP
Get screen mapping from kernel. argp points to an area of size E_TABSZ,
which is loaded with the font positions used to display each character. This
call is likely to return useless information if the currently loaded font is more
than 256 characters.

GIO_UNISCRNMAP
Get full Unicode screen mapping from kernel. argp points to an area of size
E_TABSZ*sizeof(unsigned short), which is loaded with the Unicodes each
character represent. A special set of Unicodes, starting at U+F000, are used to
represent "direct to font" mappings. (Since Linux 1.3.1.)

PIO_SCRNMAP
Loads the "user definable" (fourth) table in the kernel which maps bytes into
console screen symbols. argp points to an area of size E_TABSZ.

PIO_UNISCRNMAP
Loads the "user definable" (fourth) table in the kernel which maps bytes into
Unicodes, which are then translated into screen symbols according to the cur-
rently loaded Unicode-to-font map. Special Unicodes starting at U+F000 can
be used to map directly to the font symbols. (Since Linux 1.3.1.)

GIO_UNIMAP
Get Unicode-to-font mapping from kernel. argp points to a

struct unimapdesc {
unsigned short entry_ct;
struct unipair *entries;

Linux man-pages 6.13 2024-06-13 354

ioctl_kd(2) System Calls Manual ioctl_kd(2)

};

where entries points to an array of

struct unipair {
unsigned short unicode;
unsigned short fontpos;

};

(Since Linux 1.1.92.)

PIO_UNIMAP
Put unicode-to-font mapping in kernel. argp points to a struct unimapdesc.
(Since Linux 1.1.92)

PIO_UNIMAPCLR
Clear table, possibly advise hash algorithm. argp points to a

struct unimapinit {
unsigned short advised_hashsize; /* 0 if no opinion */
unsigned short advised_hashstep; /* 0 if no opinion */
unsigned short advised_hashlevel; /* 0 if no opinion */

};

(Since Linux 1.1.92.)

KDGKBMODE
Gets current keyboard mode. argp points to a long which is set to one of
these:
K_RAW 0x00 /* Raw (scancode) mode */
K_XLATE 0x01 /* Translate keycodes using keymap */
K_MEDIUMRAW 0x02 /* Medium raw (scancode) mode */
K_UNICODE 0x03 /* Unicode mode */
K_OFF 0x04 /* Disabled mode; since Linux 2.6.39 */

KDSKBMODE
Sets current keyboard mode. argp is a long equal to one of the values shown
for KDGKBMODE.

KDGKBMETA
Gets meta key handling mode. argp points to a long which is set to one of
these:
K_METABIT 0x03 set high order bit
K_ESCPREFIX 0x04 escape prefix

KDSKBMETA
Sets meta key handling mode. argp is a long equal to one of the values shown
above for KDGKBMETA.

KDGKBENT
Gets one entry in key translation table (keycode to action code). argp points
to a

struct kbentry {
unsigned char kb_table;
unsigned char kb_index;

Linux man-pages 6.13 2024-06-13 355

ioctl_kd(2) System Calls Manual ioctl_kd(2)

unsigned short kb_value;
};

with the first two members filled in: kb_table selects the key table (0 <=
kb_table < MAX_NR_KEYMAPS), and kb_index is the keycode (0 <= kb_in-
dex < NR_KEYS). kb_value is set to the corresponding action code, or
K_HOLE if there is no such key, or K_NOSUCHMAP if kb_table is invalid.

KDSKBENT
Sets one entry in translation table. argp points to a struct kbentry.

KDGKBSENT
Gets one function key string. argp points to a

struct kbsentry {
unsigned char kb_func;
unsigned char kb_string[512];

};

kb_string is set to the (null-terminated) string corresponding to the kb_functh
function key action code.

KDSKBSENT
Sets one function key string entry. argp points to a struct kbsentry.

KDGKBDIACR
Read kernel accent table. argp points to a

struct kbdiacrs {
unsigned int kb_cnt;
struct kbdiacr kbdiacr[256];

};

where kb_cnt is the number of entries in the array, each of which is a

struct kbdiacr {
unsigned char diacr;
unsigned char base;
unsigned char result;

};

KDGETKEYCODE
Read kernel keycode table entry (scan code to keycode). argp points to a

struct kbkeycode {
unsigned int scancode;
unsigned int keycode;

};

keycode is set to correspond to the given scancode. (89 <= scancode <= 255
only. For 1 <= scancode <= 88, keycode==scancode.) (Since Linux 1.1.63.)

KDSETKEYCODE
Write kernel keycode table entry. argp points to a struct kbkeycode. (Since
Linux 1.1.63.)

Linux man-pages 6.13 2024-06-13 356

ioctl_kd(2) System Calls Manual ioctl_kd(2)

KDSIGACCEPT
The calling process indicates its willingness to accept the signal argp when it
is generated by pressing an appropriate key combination. (1 <= argp <=
NSIG). (See spawn_console() in linux/drivers/char/keyboard.c.)

RETURN VALUE
On success, 0 is returned (except where indicated). On failure, -1 is returned, and er-
rno is set to indicate the error.

ERRORS
EINVAL

argp is invalid.

STANDARDS
Linux.

SEE ALSO
ioctl(2), ioctl_console(2)

Linux man-pages 6.13 2024-06-13 357

ioctl_nsfs(2) System Calls Manual ioctl_nsfs(2)

NAME
ioctl_nsfs - ioctl() operations for Linux namespaces

SYNOPSIS
#include <linux/nsfs.h> /* Definition of NS_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, ...);

DESCRIPTION
Discovering namespace relationships

NS_GET_USERNS(2const)
NS_GET_PARENT(2const)

Discovering the namespace type
NS_GET_NSTYPE(2const)

Discovering the owner of a user namespace
NS_GET_OWNER_UID(2const)

ERRORS
ENOTTY

fd does not refer to a /proc/ pid /ns/ * file.

STANDARDS
Linux.

SEE ALSO
ioctl(2), fstat(2), proc(5), namespaces(7)

Linux man-pages 6.13 2024-06-14 358

ioctl_pipe(2) System Calls Manual ioctl_pipe(2)

NAME
ioctl_pipe - ioctl() operations for General notification mechanism

SYNOPSIS
#include <linux/watch_queue.h> /* Definition of IOC_WATCH_QUEUE_* */
#include <sys/ioctl.h>

int ioctl(int pipefd , IOC_WATCH_QUEUE_SET_SIZE, int size);
int ioctl(int pipefd , IOC_WATCH_QUEUE_SET_FILTER,

struct watch_notification_filter * filter);

DESCRIPTION
The following ioctl(2) operations are provided to set up general notification queue pa-
rameters. The notification queue is built on the top of a pipe(2) opened with the
O_NOTIFICATION_PIPE flag.

IOC_WATCH_QUEUE_SET_SIZE (since Linux 5.8)
Preallocates the pipe buffer memory so that it can fit size notification mes-
sages. Currently, size must be between 1 and 512.

IOC_WATCH_QUEUE_SET_FILTER (since Linux 5.8)
Watch queue filter can limit events that are received. Filters are passed in a
struct watch_notification_filter and each filter is described by a struct
watch_notification_type_filter structure.

struct watch_notification_filter {
__u32 nr_filters;
__u32 __reserved;
struct watch_notification_type_filter filters[];

};

struct watch_notification_type_filter {
__u32 type;
__u32 info_filter;
__u32 info_mask;
__u32 subtype_filter[8];

};

SEE ALSO
pipe(2), ioctl(2)

Linux man-pages 6.13 2024-12-23 359

ioctl_tty(2) System Calls Manual ioctl_tty(2)

NAME
ioctl_tty - ioctls for terminals and serial lines

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of constants */
#include <sys/ioctl.h>

int ioctl(int fd , int op, ...);

DESCRIPTION
The ioctl(2) call for terminals and serial ports accepts many possible operation argu-
ments. Most require a third argument, of varying type, here called argp or arg.

Use of ioctl() makes for nonportable programs. Use the POSIX interface described in
termios(3) whenever possible.

Get and set terminal attributes
TCGETS(2const)
TCSETS(2const)
TCSETSW(2const)
TCSETSF(2const)

TCGETS(2const)
TCSETS(2const)
TCSETSW(2const)
TCSETSF(2const)

TCGETS(2const)
TCSETS(2const)
TCSETSW(2const)
TCSETSF(2const)

Locking the termios structure
TIOCGLCKTRMIOS(2const)
TIOCSLCKTRMIOS(2const)

Get and set window size
TIOCGWINSZ(2const)
TIOCSWINSZ(2const)

Sending a break
TCSBRK(2const)
TCSBRKP(2const)
TIOCSBRK(2const)
TIOCCBRK(2const)

Software flow control
TCXONC(2const)

Buffer count and flushing
FIONREAD(2const)

Linux man-pages 6.13 2024-07-23 360

ioctl_tty(2) System Calls Manual ioctl_tty(2)

TIOCINQ(2const)
TIOCOUTQ(2const)
TCFLSH(2const)
TIOCSERGETLSR(2const)

Faking input
TIOCSTI(2const)

Redirecting console output
TIOCCONS(2const)

Controlling terminal
TIOCSCTTY(2const)
TIOCNOTTY(2const)

Process group and session ID
TIOCGPGRP(2const)
TIOCSPGRP(2const)
TIOCGSID(2const)

Exclusive mode
TIOCEXCL(2const)
TIOCGEXCL(2const)
TIOCNXCL(2const)

Line discipline
TIOCGETD(2const)
TIOCSETD(2const)

Pseudoterminal ioctls
TIOCPKT(2const)
TIOCGPKT(2const)

TIOCSPTLCK(2const)
TIOCGPTLCK(2const)

TIOCGPTPEER(2const)

Modem control
TIOCMGET(2const)
TIOCMSET(2const)
TIOCMBIC(2const)
TIOCMBIS(2const)

TIOCMIWAIT(2const)

TIOCGICOUNT(2const)

Marking a line as local
TIOCGSOFTCAR(2const)
TIOCSSOFTCAR(2const)

Linux-specific
For the TIOCLINUX(2const) ioctl, see ioctl_console(2).

Kernel debugging

Linux man-pages 6.13 2024-07-23 361

ioctl_tty(2) System Calls Manual ioctl_tty(2)

TIOCTTYGSTRUCT(2const)

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

SEE ALSO
ioctl(2), ldattach(8), ioctl_console(2), termios(3), pty(7)

Linux man-pages 6.13 2024-07-23 362

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

NAME
ioctl_userfaultfd - create a file descriptor for handling page faults in user space

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , int op, ...);

DESCRIPTION
Various ioctl(2) operations can be performed on a userfaultfd object (created by a call
to userfaultfd(2)) using calls of the form:

ioctl(fd, op, argp);

In the above, fd is a file descriptor referring to a userfaultfd object, op is one of the
operations listed below, and argp is a pointer to a data structure that is specific to op.

The various ioctl(2) operations are described below. The UFFDIO_API, UFF-
DIO_REGISTER, and UFFDIO_UNREGISTER operations are used to configure
userfaultfd behavior. These operations allow the caller to choose what features will be
enabled and what kinds of events will be delivered to the application. The remaining
operations are range operations. These operations enable the calling application to re-
solve page-fault events.

UFFDIO_API(2const)
UFFDIO_REGISTER(2const)
UFFDIO_UNREGISTER(2const)
UFFDIO_COPY(2const)
UFFDIO_ZEROPAGE(2const)
UFFDIO_WAKE(2const)
UFFDIO_WRITEPROTECT(2const)
UFFDIO_CONTINUE(2const)
UFFDIO_POISON(2const)

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
The following general errors can occur for all of the operations described above:

EFAULT
argp does not point to a valid memory address.

EINVAL
(For all operations except UFFDIO_API.) The userfaultfd object has not yet
been enabled (via the UFFDIO_API operation).

STANDARDS
Linux.

Linux man-pages 6.13 2024-07-23 363

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), mmap(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.13 2024-07-23 364

ioctl_vt(2) System Calls Manual ioctl_vt(2)

NAME
ioctl_vt - ioctls for console terminal and virtual consoles

SYNOPSIS
#include <linux/vt.h> /* Definition of VT_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, void *argp);

DESCRIPTION
The following Linux-specific ioctl(2) operations are supported for console terminals
and virtual consoles.

VT_OPENQRY
Returns the first available (non-opened) console. argp points to an int which
is set to the number of the vt (1 <= *argp <= MAX_NR_CONSOLES).

VT_GETMODE
Get mode of active vt. argp points to a

struct vt_mode {
char mode; /* vt mode */
char waitv; /* if set, hang on writes if not active */
short relsig; /* signal to raise on release op */
short acqsig; /* signal to raise on acquisition */
short frsig; /* unused (set to 0) */

};

which is set to the mode of the active vt. mode is set to one of these values:
VT_AUTO auto vt switching
VT_PROCESS process controls switching
VT_ACKACQ acknowledge switch

VT_SETMODE
Set mode of active vt. argp points to a struct vt_mode.

VT_GETSTATE
Get global vt state info. argp points to a

struct vt_stat {
unsigned short v_active; /* active vt */
unsigned short v_signal; /* signal to send */
unsigned short v_state; /* vt bit mask */

};

For each vt in use, the corresponding bit in the v_state member is set. (Linux
1.0 through Linux 1.1.92.)

VT_RELDISP
Release a display.

VT_ACTIVATE
Switch to vt argp (1 <= argp <= MAX_NR_CONSOLES).

VT_WAITACTIVE
Wait until vt argp has been activated.

Linux man-pages 6.13 2024-06-13 365

ioctl_vt(2) System Calls Manual ioctl_vt(2)

VT_DISALLOCATE
Deallocate the memory associated with vt argp. (Since Linux 1.1.54.)

VT_RESIZE
Set the kernel’s idea of screensize. argp points to a

struct vt_sizes {
unsigned short v_rows; /* # rows */
unsigned short v_cols; /* # columns */
unsigned short v_scrollsize; /* no longer used */

};

Note that this does not change the videomode. See resizecons(8)(Since Linux
1.1.54.)

VT_RESIZEX
Set the kernel’s idea of various screen parameters. argp points to a

struct vt_consize {
unsigned short v_rows; /* number of rows */
unsigned short v_cols; /* number of columns */
unsigned short v_vlin; /* number of pixel rows

on screen */
unsigned short v_clin; /* number of pixel rows

per character */
unsigned short v_vcol; /* number of pixel columns

on screen */
unsigned short v_ccol; /* number of pixel columns

per character */
};

Any parameter may be set to zero, indicating "no change", but if multiple pa-
rameters are set, they must be self-consistent. Note that this does not change
the videomode. See resizecons(8)(Since Linux 1.3.3.)

RETURN VALUE
On success, 0 is returned (except where indicated). On failure, -1 is returned, and er-
rno is set to indicate the error.

ERRORS
EINVAL

argp is invalid.

STANDARDS
Linux.

SEE ALSO
ioctl(2), ioctl_console(2)

Linux man-pages 6.13 2024-06-13 366

ioperm(2) System Calls Manual ioperm(2)

NAME
ioperm - set port input/output permissions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/io.h>

int ioperm(unsigned long from, unsigned long num, int turn_on);

DESCRIPTION
ioperm() sets the port access permission bits for the calling thread for num bits start-
ing from port address from. If turn_on is nonzero, then permission for the specified
bits is enabled; otherwise it is disabled. If turn_on is nonzero, the calling thread must
be privileged (CAP_SYS_RAWIO).

Before Linux 2.6.8, only the first 0x3ff I/O ports could be specified in this manner.
For more ports, the iopl(2) system call had to be used (with a level argument of 3).
Since Linux 2.6.8, 65,536 I/O ports can be specified.

Permissions are inherited by the child created by fork(2) (but see HISTORY). Permis-
sions are preserved across execve(2); this is useful for giving port access permissions
to unprivileged programs.

This call is mostly for the i386 architecture. On many other architectures it does not
exist or will always return an error.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EINVAL

Invalid values for from or num.

EIO (on PowerPC) This call is not supported.

ENOMEM
Out of memory.

EPERM
The calling thread has insufficient privilege.

VERSIONS
glibc has an ioperm() prototype both in <sys/io.h> and in <sys/perm.h>. Avoid the
latter, it is available on i386 only.

STANDARDS
Linux.

HISTORY
Before Linux 2.4, permissions were not inherited by a child created by fork(2).

NOTES
The /proc/ioports file shows the I/O ports that are currently allocated on the system.

Linux man-pages 6.13 2024-07-23 367

ioperm(2) System Calls Manual ioperm(2)

SEE ALSO
iopl(2), outb(2), capabilities(7)

Linux man-pages 6.13 2024-07-23 368

iopl(2) System Calls Manual iopl(2)

NAME
iopl - change I/O privilege level

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/io.h>

[[deprecated]] int iopl(int level);

DESCRIPTION
iopl() changes the I/O privilege level of the calling thread, as specified by the two
least significant bits in level.

The I/O privilege level for a normal thread is 0. Permissions are inherited from par-
ents to children.

This call is deprecated, is significantly slower than ioperm(2), and is only provided for
older X servers which require access to all 65536 I/O ports. It is mostly for the i386
architecture. On many other architectures it does not exist or will always return an er-
ror.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EINVAL

level is greater than 3.

ENOSYS
This call is unimplemented.

EPERM
The calling thread has insufficient privilege to call iopl(); the
CAP_SYS_RAWIO capability is required to raise the I/O privilege level
above its current value.

VERSIONS
glibc2 has a prototype both in <sys/io.h> and in <sys/perm.h>. Avoid the latter, it is
available on i386 only.

STANDARDS
Linux.

HISTORY
Prior to Linux 5.5 iopl() allowed the thread to disable interrupts while running at a
higher I/O privilege level. This will probably crash the system, and is not recom-
mended.

Prior to Linux 3.7, on some architectures (such as i386), permissions were inherited
by the child produced by fork(2) and were preserved across execve(2). This behavior
was inadvertently changed in Linux 3.7, and won’t be reinstated.

SEE ALSO
ioperm(2), outb(2), capabilities(7)

Linux man-pages 6.13 2024-07-23 369

ioprio_set(2) System Calls Manual ioprio_set(2)

NAME
ioprio_get, ioprio_set - get/set I/O scheduling class and priority

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/ioprio.h> /* Definition of IOPRIO_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_ioprio_get, int which, int who);
int syscall(SYS_ioprio_set, int which, int who, int ioprio);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
The ioprio_get() and ioprio_set() system calls get and set the I/O scheduling class
and priority of one or more threads.

The which and who arguments identify the thread(s) on which the system calls oper-
ate. The which argument determines how who is interpreted, and has one of the fol-
lowing values:

IOPRIO_WHO_PROCESS
who is a process ID or thread ID identifying a single process or thread. If who
is 0, then operate on the calling thread.

IOPRIO_WHO_PGRP
who is a process group ID identifying all the members of a process group. If
who is 0, then operate on the process group of which the caller is a member.

IOPRIO_WHO_USER
who is a user ID identifying all of the processes that have a matching real
UID.

If which is specified as IOPRIO_WHO_PGRP or IOPRIO_WHO_USER when
calling ioprio_get(), and more than one process matches who, then the returned prior-
ity will be the highest one found among all of the matching processes. One priority is
said to be higher than another one if it belongs to a higher priority class (IO-
PRIO_CLASS_RT is the highest priority class; IOPRIO_CLASS_IDLE is the low-
est) or if it belongs to the same priority class as the other process but has a higher pri-
ority level (a lower priority number means a higher priority level).

The ioprio argument given to ioprio_set() is a bit mask that specifies both the sched-
uling class and the priority to be assigned to the target process(es). The following
macros are used for assembling and dissecting ioprio values:

IOPRIO_PRIO_VALUE(class, data)
Given a scheduling class and priority (data), this macro combines the two val-
ues to produce an ioprio value, which is returned as the result of the macro.

IOPRIO_PRIO_CLASS(mask)
Given mask (an ioprio value), this macro returns its I/O class component, that
is, one of the values IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, or

Linux man-pages 6.13 2024-07-23 370

ioprio_set(2) System Calls Manual ioprio_set(2)

IOPRIO_CLASS_IDLE.

IOPRIO_PRIO_DATA(mask)
Given mask (an ioprio value), this macro returns its priority (data) compo-
nent.

See the NOTES section for more information on scheduling classes and priorities, as
well as the meaning of specifying ioprio as 0.

I/O priorities are supported for reads and for synchronous (O_DIRECT, O_SYNC)
writes. I/O priorities are not supported for asynchronous writes because they are is-
sued outside the context of the program dirtying the memory, and thus program-spe-
cific priorities do not apply.

RETURN VALUE
On success, ioprio_get() returns the ioprio value of the process with highest I/O pri-
ority of any of the processes that match the criteria specified in which and who. On
error, -1 is returned, and errno is set to indicate the error.

On success, ioprio_set() returns 0. On error, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
EINVAL

Invalid value for which or ioprio. Refer to the NOTES section for available
scheduler classes and priority levels for ioprio.

EPERM
The calling process does not have the privilege needed to assign this ioprio to
the specified process(es). See the NOTES section for more information on re-
quired privileges for ioprio_set().

ESRCH
No process(es) could be found that matched the specification in which and
who.

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

NOTES
Two or more processes or threads can share an I/O context. This will be the case
when clone(2) was called with the CLONE_IO flag. However, by default, the dis-
tinct threads of a process will not share the same I/O context. This means that if you
want to change the I/O priority of all threads in a process, you may need to call io-
prio_set() on each of the threads. The thread ID that you would need for this opera-
tion is the one that is returned by gettid(2) or clone(2).

These system calls have an effect only when used in conjunction with an I/O sched-
uler that supports I/O priorities. As at kernel 2.6.17 the only such scheduler is the
Completely Fair Queuing (CFQ) I/O scheduler.

If no I/O scheduler has been set for a thread, then by default the I/O priority will fol-
low the CPU nice value (setpriority(2)). Before Linux 2.6.24, once an I/O priority

Linux man-pages 6.13 2024-07-23 371

ioprio_set(2) System Calls Manual ioprio_set(2)

had been set using ioprio_set(), there was no way to reset the I/O scheduling behavior
to the default. Since Linux 2.6.24, specifying ioprio as 0 can be used to reset to the
default I/O scheduling behavior.

Selecting an I/O scheduler
I/O schedulers are selected on a per-device basis via the special file /sys/block/ de-
vice /queue/scheduler.

One can view the current I/O scheduler via the /sys filesystem. For example, the fol-
lowing command displays a list of all schedulers currently loaded in the kernel:

$ cat /sys/block/sda/queue/scheduler
noop anticipatory deadline [cfq]

The scheduler surrounded by brackets is the one actually in use for the device (sda in
the example). Setting another scheduler is done by writing the name of the new
scheduler to this file. For example, the following command will set the scheduler for
the sda device to cfq:

$ su
Password:
echo cfq > /sys/block/sda/queue/scheduler

The Completely Fair Queuing (CFQ) I/O scheduler
Since version 3 (also known as CFQ Time Sliced), CFQ implements I/O nice levels
similar to those of CPU scheduling. These nice levels are grouped into three schedul-
ing classes, each one containing one or more priority levels:

IOPRIO_CLASS_RT (1)
This is the real-time I/O class. This scheduling class is given higher priority
than any other class: processes from this class are given first access to the disk
every time. Thus, this I/O class needs to be used with some care: one I/O real-
time process can starve the entire system. Within the real-time class, there are
8 levels of class data (priority) that determine exactly how much time this
process needs the disk for on each service. The highest real-time priority level
is 0; the lowest is 7. In the future, this might change to be more directly map-
pable to performance, by passing in a desired data rate instead.

IOPRIO_CLASS_BE (2)
This is the best-effort scheduling class, which is the default for any process
that hasn’t set a specific I/O priority. The class data (priority) determines how
much I/O bandwidth the process will get. Best-effort priority levels are analo-
gous to CPU nice values (see getpriority(2)). The priority level determines a
priority relative to other processes in the best-effort scheduling class. Priority
levels range from 0 (highest) to 7 (lowest).

IOPRIO_CLASS_IDLE (3)
This is the idle scheduling class. Processes running at this level get I/O time
only when no one else needs the disk. The idle class has no class data. Atten-
tion is required when assigning this priority class to a process, since it may be-
come starved if higher priority processes are constantly accessing the disk.

Refer to the kernel source file Documentation/block/ioprio.txt for more information
on the CFQ I/O Scheduler and an example program.

Linux man-pages 6.13 2024-07-23 372

ioprio_set(2) System Calls Manual ioprio_set(2)

Required permissions to set I/O priorities
Permission to change a process’s priority is granted or denied based on two criteria:

Process ownership
An unprivileged process may set the I/O priority only for a process whose real
UID matches the real or effective UID of the calling process. A process which
has the CAP_SYS_NICE capability can change the priority of any process.

What is the desired priority
Attempts to set very high priorities (IOPRIO_CLASS_RT) require the
CAP_SYS_ADMIN capability. Up to Linux 2.6.24 also required
CAP_SYS_ADMIN to set a very low priority (IOPRIO_CLASS_IDLE), but
since Linux 2.6.25, this is no longer required.

A call to ioprio_set() must follow both rules, or the call will fail with the error
EPERM.

BUGS
glibc does not yet provide a suitable header file defining the function prototypes and
macros described on this page. Suitable definitions can be found in linux/ioprio.h.

SEE ALSO
ionice(1), getpriority(2), open(2), capabilities(7), cgroups(7)

Documentation/block/ioprio.txt in the Linux kernel source tree

Linux man-pages 6.13 2024-07-23 373

ipc(2) System Calls Manual ipc(2)

NAME
ipc - System V IPC system calls

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/ipc.h> /* Definition of needed constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_ipc, unsigned int call, int first,
unsigned long second , unsigned long third , void *ptr,
long fifth);

Note: glibc provides no wrapper for ipc(), necessitating the use of syscall(2).

DESCRIPTION
ipc() is a common kernel entry point for the System V IPC calls for messages, sema-
phores, and shared memory. call determines which IPC function to invoke; the other
arguments are passed through to the appropriate call.

User-space programs should call the appropriate functions by their usual names. Only
standard library implementors and kernel hackers need to know about ipc().

VERSIONS
On some architectures—for example x86-64 and ARM—there is no ipc() system call;
instead, msgctl(2), semctl(2), shmctl(2), and so on really are implemented as separate
system calls.

STANDARDS
Linux.

SEE ALSO
msgctl(2), msgget(2), msgrcv(2), msgsnd(2), semctl(2), semget(2), semop(2), semtime-
dop(2), shmat(2), shmctl(2), shmdt(2), shmget(2), sysvipc(7)

Linux man-pages 6.13 2024-07-23 374

kcmp(2) System Calls Manual kcmp(2)

NAME
kcmp - compare two processes to determine if they share a kernel resource

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/kcmp.h> /* Definition of KCMP_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_kcmp, pid_t pid1, pid_t pid2, int type,
unsigned long idx1, unsigned long idx2);

Note: glibc provides no wrapper for kcmp(), necessitating the use of syscall(2).

DESCRIPTION
The kcmp() system call can be used to check whether the two processes identified by
pid1 and pid2 share a kernel resource such as virtual memory, file descriptors, and so
on.

Permission to employ kcmp() is governed by ptrace access mode
PTRACE_MODE_READ_REALCREDS checks against both pid1 and pid2; see
ptrace(2).

The type argument specifies which resource is to be compared in the two processes. It
has one of the following values:

KCMP_FILE
Check whether a file descriptor idx1 in the process pid1 refers to the same
open file description (see open(2)) as file descriptor idx2 in the process pid2.
The existence of two file descriptors that refer to the same open file descrip-
tion can occur as a result of dup(2) (and similar) fork(2), or passing file de-
scriptors via a domain socket (see unix(7)).

KCMP_FILES
Check whether the processes share the same set of open file descriptors. The
arguments idx1 and idx2 are ignored. See the discussion of the
CLONE_FILES flag in clone(2).

KCMP_FS
Check whether the processes share the same filesystem information (i.e., file
mode creation mask, working directory, and filesystem root). The arguments
idx1 and idx2 are ignored. See the discussion of the CLONE_FS flag in
clone(2).

KCMP_IO
Check whether the processes share I/O context. The arguments idx1 and idx2
are ignored. See the discussion of the CLONE_IO flag in clone(2).

KCMP_SIGHAND
Check whether the processes share the same table of signal dispositions. The
arguments idx1 and idx2 are ignored. See the discussion of the CLONE_SIG-
HAND flag in clone(2).

Linux man-pages 6.13 2024-07-23 375

kcmp(2) System Calls Manual kcmp(2)

KCMP_SYSVSEM
Check whether the processes share the same list of System V semaphore undo
operations. The arguments idx1 and idx2 are ignored. See the discussion of
the CLONE_SYSVSEM flag in clone(2).

KCMP_VM
Check whether the processes share the same address space. The arguments
idx1 and idx2 are ignored. See the discussion of the CLONE_VM flag in
clone(2).

KCMP_EPOLL_TFD (since Linux 4.13)
Check whether the file descriptor idx1 of the process pid1 is present in the
epoll(7) instance described by idx2 of the process pid2. The argument idx2 is
a pointer to a structure where the target file is described. This structure has the
form:

struct kcmp_epoll_slot {
__u32 efd;
__u32 tfd;
__u64 toff;

};

Within this structure, efd is an epoll file descriptor returned from epoll_create(2), tfd
is a target file descriptor number, and toff is a target file offset counted from zero.
Several different targets may be registered with the same file descriptor number and
setting a specific offset helps to investigate each of them.

Note the kcmp() is not protected against false positives which may occur if the
processes are currently running. One should stop the processes by sending SIGSTOP
(see signal(7)) prior to inspection with this system call to obtain meaningful results.

RETURN VALUE
The return value of a successful call to kcmp() is simply the result of arithmetic com-
parison of kernel pointers (when the kernel compares resources, it uses their memory
addresses).

The easiest way to explain is to consider an example. Suppose that v1 and v2 are the
addresses of appropriate resources, then the return value is one of the following:

0 v1 is equal to v2; in other words, the two processes share the resource.

1 v1 is less than v2.

2 v1 is greater than v2.

3 v1 is not equal to v2, but ordering information is unavailable.

On error, -1 is returned, and errno is set to indicate the error.

kcmp() was designed to return values suitable for sorting. This is particularly handy
if one needs to compare a large number of file descriptors.

ERRORS
EBADF

type is KCMP_FILE and fd1 or fd2 is not an open file descriptor.

Linux man-pages 6.13 2024-07-23 376

kcmp(2) System Calls Manual kcmp(2)

EFAULT
The epoll slot addressed by idx2 is outside of the user’s address space.

EINVAL
type is invalid.

ENOENT
The target file is not present in epoll(7) instance.

EPERM
Insufficient permission to inspect process resources. The
CAP_SYS_PTRACE capability is required to inspect processes that you do
not own. Other ptrace limitations may also apply, such as CONFIG_SECU-
RITY_YAMA, which, when /proc/sys/kernel/yama/ptrace_scope is 2, limits
kcmp() to child processes; see ptrace(2).

ESRCH
Process pid1 or pid2 does not exist.

STANDARDS
Linux.

HISTORY
Linux 3.5.

Before Linux 5.12, this system call is available only if the kernel is configured with
CONFIG_CHECKPOINT_RESTORE, since the original purpose of the system
call was for the checkpoint/restore in user space (CRIU) feature. (The alternative to
this system call would have been to expose suitable process information via the
proc(5) filesystem; this was deemed to be unsuitable for security reasons.) Since
Linux 5.12, this system call is also available if the kernel is configured with CON-
FIG_KCMP.

NOTES
See clone(2) for some background information on the shared resources referred to on
this page.

EXAMPLES
The program below uses kcmp() to test whether pairs of file descriptors refer to the
same open file description. The program tests different cases for the file descriptor
pairs, as described in the program output. An example run of the program is as fol-
lows:

$./a.out
Parent PID is 1144
Parent opened file on FD 3

PID of child of fork() is 1145
Compare duplicate FDs from different processes:

kcmp(1145, 1144, KCMP_FILE, 3, 3) ==> same
Child opened file on FD 4

Compare FDs from distinct open()s in same process:
kcmp(1145, 1145, KCMP_FILE, 3, 4) ==> different

Child duplicated FD 3 to create FD 5
Compare duplicated FDs in same process:

Linux man-pages 6.13 2024-07-23 377

kcmp(2) System Calls Manual kcmp(2)

kcmp(1145, 1145, KCMP_FILE, 3, 5) ==> same

Program source

#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <linux/kcmp.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

static int
kcmp(pid_t pid1, pid_t pid2, int type,

unsigned long idx1, unsigned long idx2)
{

return syscall(SYS_kcmp, pid1, pid2, type, idx1, idx2);
}

static void
test_kcmp(char *msg, pid_t pid1, pid_t pid2, int fd_a, int fd_b)
{

printf("\t%s\n", msg);
printf("\t\tkcmp(%jd, %jd, KCMP_FILE, %d, %d) ==> %s\n",

(intmax_t) pid1, (intmax_t) pid2, fd_a, fd_b,
(kcmp(pid1, pid2, KCMP_FILE, fd_a, fd_b) == 0) ?

"same" : "different");
}

int
main(void)
{

int fd1, fd2, fd3;
static const char pathname[] = "/tmp/kcmp.test";

fd1 = open(pathname, O_CREAT | O_RDWR, 0600);
if (fd1 == -1)

err(EXIT_FAILURE, "open");

printf("Parent PID is %jd\n", (intmax_t) getpid());
printf("Parent opened file on FD %d\n\n", fd1);

switch (fork()) {
case -1:

err(EXIT_FAILURE, "fork");

Linux man-pages 6.13 2024-07-23 378

kcmp(2) System Calls Manual kcmp(2)

case 0:
printf("PID of child of fork() is %jd\n", (intmax_t) getpid());

test_kcmp("Compare duplicate FDs from different processes:",
getpid(), getppid(), fd1, fd1);

fd2 = open(pathname, O_CREAT | O_RDWR, 0600);
if (fd2 == -1)

err(EXIT_FAILURE, "open");
printf("Child opened file on FD %d\n", fd2);

test_kcmp("Compare FDs from distinct open()s in same process:",
getpid(), getpid(), fd1, fd2);

fd3 = dup(fd1);
if (fd3 == -1)

err(EXIT_FAILURE, "dup");
printf("Child duplicated FD %d to create FD %d\n", fd1, fd3);

test_kcmp("Compare duplicated FDs in same process:",
getpid(), getpid(), fd1, fd3);

break;

default:
wait(NULL);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
clone(2), unshare(2)

Linux man-pages 6.13 2024-07-23 379

kexec_load(2) System Calls Manual kexec_load(2)

NAME
kexec_load, kexec_file_load - load a new kernel for later execution

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/kexec.h> /* Definition of KEXEC_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_kexec_load, unsigned long entry,
unsigned long nr_segments, struct kexec_segment *segments,
unsigned long flags);

long syscall(SYS_kexec_file_load, int kernel_fd , int initrd_fd ,
unsigned long cmdline_len, const char *cmdline,
unsigned long flags);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
The kexec_load() system call loads a new kernel that can be executed later by re-
boot(2).

The flags argument is a bit mask that controls the operation of the call. The following
values can be specified in flags:

KEXEC_ON_CRASH (since Linux 2.6.13)
Execute the new kernel automatically on a system crash. This "crash kernel"
is loaded into an area of reserved memory that is determined at boot time us-
ing the crashkernel kernel command-line parameter. The location of this re-
served memory is exported to user space via the /proc/iomem file, in an entry
labeled "Crash kernel". A user-space application can parse this file and pre-
pare a list of segments (see below) that specify this reserved memory as desti-
nation. If this flag is specified, the kernel checks that the target segments spec-
ified in segments fall within the reserved region.

KEXEC_PRESERVE_CONTEXT (since Linux 2.6.27)
Preserve the system hardware and software states before executing the new
kernel. This could be used for system suspend. This flag is available only if
the kernel was configured with CONFIG_KEXEC_JUMP, and is effective
only if nr_segments is greater than 0.

The high-order bits (corresponding to the mask 0xffff0000) of flags contain the archi-
tecture of the to-be-executed kernel. Specify (OR) the constant
KEXEC_ARCH_DEFAULT to use the current architecture, or one of the following
architecture constants KEXEC_ARCH_386, KEXEC_ARCH_68K,
KEXEC_ARCH_X86_64, KEXEC_ARCH_PPC, KEXEC_ARCH_PPC64,
KEXEC_ARCH_IA_64, KEXEC_ARCH_ARM, KEXEC_ARCH_S390,
KEXEC_ARCH_SH, KEXEC_ARCH_MIPS, and KEXEC_ARCH_MIPS_LE.
The architecture must be executable on the CPU of the system.

The entry argument is the physical entry address in the kernel image. The nr_seg-
ments argument is the number of segments pointed to by the segments pointer; the

Linux man-pages 6.13 2024-07-23 380

kexec_load(2) System Calls Manual kexec_load(2)

kernel imposes an (arbitrary) limit of 16 on the number of segments. The segments
argument is an array of kexec_segment structures which define the kernel layout:

struct kexec_segment {
void *buf; /* Buffer in user space */
size_t bufsz; /* Buffer length in user space */
void *mem; /* Physical address of kernel */
size_t memsz; /* Physical address length */

};

The kernel image defined by segments is copied from the calling process into the ker-
nel either in regular memory or in reserved memory (if KEXEC_ON_CRASH is set).
The kernel first performs various sanity checks on the information passed in segments.
If these checks pass, the kernel copies the segment data to kernel memory. Each seg-
ment specified in segments is copied as follows:

• buf and bufsz identify a memory region in the caller’s virtual address space that is
the source of the copy. The value in bufsz may not exceed the value in the memsz
field.

• mem and memsz specify a physical address range that is the target of the copy.
The values specified in both fields must be multiples of the system page size.

• bufsz bytes are copied from the source buffer to the target kernel buffer. If bufsz is
less than memsz, then the excess bytes in the kernel buffer are zeroed out.

In case of a normal kexec (i.e., the KEXEC_ON_CRASH flag is not set), the seg-
ment data is loaded in any available memory and is moved to the final destination at
kexec reboot time (e.g., when the kexec(8) command is executed with the -e option).

In case of kexec on panic (i.e., the KEXEC_ON_CRASH flag is set), the segment
data is loaded to reserved memory at the time of the call, and, after a crash, the kexec
mechanism simply passes control to that kernel.

The kexec_load() system call is available only if the kernel was configured with
CONFIG_KEXEC.

kexec_file_load()
The kexec_file_load() system call is similar to kexec_load(), but it takes a different
set of arguments. It reads the kernel to be loaded from the file referred to by the file
descriptor kernel_fd , and the initrd (initial RAM disk) to be loaded from file referred
to by the file descriptor initrd_fd . The cmdline argument is a pointer to a buffer con-
taining the command line for the new kernel. The cmdline_len argument specifies
size of the buffer. The last byte in the buffer must be a null byte ('\0').

The flags argument is a bit mask which modifies the behavior of the call. The follow-
ing values can be specified in flags:

KEXEC_FILE_UNLOAD
Unload the currently loaded kernel.

KEXEC_FILE_ON_CRASH
Load the new kernel in the memory region reserved for the crash kernel (as for
KEXEC_ON_CRASH). This kernel is booted if the currently running kernel
crashes.

Linux man-pages 6.13 2024-07-23 381

kexec_load(2) System Calls Manual kexec_load(2)

KEXEC_FILE_NO_INITRAMFS
Loading initrd/initramfs is optional. Specify this flag if no initramfs is being
loaded. If this flag is set, the value passed in initrd_fd is ignored.

The kexec_file_load() system call was added to provide support for systems where
"kexec" loading should be restricted to only kernels that are signed. This system call
is available only if the kernel was configured with CONFIG_KEXEC_FILE.

RETURN VALUE
On success, these system calls returns 0. On error, -1 is returned and errno is set to
indicate the error.

ERRORS
EADDRNOTAVAIL

The KEXEC_ON_CRASH flags was specified, but the region specified by
the mem and memsz fields of one of the segments entries lies outside the range
of memory reserved for the crash kernel.

EADDRNOTAVAIL
The value in a mem or memsz field in one of the segments entries is not a mul-
tiple of the system page size.

EBADF
kernel_fd or initrd_fd is not a valid file descriptor.

EBUSY
Another crash kernel is already being loaded or a crash kernel is already in
use.

EINVAL
flags is invalid.

EINVAL
The value of a bufsz field in one of the segments entries exceeds the value in
the corresponding memsz field.

EINVAL
nr_segments exceeds KEXEC_SEGMENT_MAX (16).

EINVAL
Two or more of the kernel target buffers overlap.

EINVAL
The value in cmdline[cmdline_len-1] is not '\0'.

EINVAL
The file referred to by kernel_fd or initrd_fd is empty (length zero).

ENOEXEC
kernel_fd does not refer to an open file, or the kernel can’t load this file. Cur-
rently, the file must be a bzImage and contain an x86 kernel that is loadable
above 4 GiB in memory (see the kernel source file Documenta-
tion/x86/boot.txt).

ENOMEM
Could not allocate memory.

Linux man-pages 6.13 2024-07-23 382

kexec_load(2) System Calls Manual kexec_load(2)

EPERM
The caller does not have the CAP_SYS_BOOT capability.

STANDARDS
Linux.

HISTORY
kexec_load()

Linux 2.6.13.

kexec_file_load()
Linux 3.17.

SEE ALSO
reboot(2), syscall(2), kexec(8)

The kernel source files Documentation/kdump/kdump.txt and Documentation/ad-
min-guide/kernel-parameters.txt

Linux man-pages 6.13 2024-07-23 383

keyctl(2) System Calls Manual keyctl(2)

NAME
keyctl - manipulate the kernel’s key management facility

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, int op, ...);

DESCRIPTION
keyctl() allows user-space programs to perform key manipulation.

The operation performed by keyctl() is determined by the value of the op argument.
Each of these operations is wrapped by the libkeyutils library (provided by the keyutils
package) into individual functions (see keyctl(3)) to permit the compiler to check
types.

The permitted values for op are:

KEYCTL_GET_KEYRING_ID(2const)
KEYCTL_JOIN_SESSION_KEYRING(2const)
KEYCTL_UPDATE(2const)
KEYCTL_REVOKE(2const)
KEYCTL_CHOWN(2const)
KEYCTL_SETPERM(2const)
KEYCTL_DESCRIBE(2const)
KEYCTL_CLEAR(2const)
KEYCTL_LINK(2const)
KEYCTL_UNLINK(2const)
KEYCTL_SEARCH(2const)
KEYCTL_READ(2const)
KEYCTL_INSTANTIATE(2const)
KEYCTL_INSTANTIATE_IOV(2const)
KEYCTL_NEGATE(2const)
KEYCTL_REJECT(2const)
KEYCTL_SET_REQKEY_KEYRING(2const)
KEYCTL_SET_TIMEOUT(2const)
KEYCTL_ASSUME_AUTHORITY(2const)
KEYCTL_GET_SECURITY(2const)
KEYCTL_SESSION_TO_PARENT(2const)
KEYCTL_INVALIDATE(2const)
KEYCTL_GET_PERSISTENT(2const)
KEYCTL_DH_COMPUTE(2const)
KEYCTL_RESTRICT_KEYRING(2const)

RETURN VALUE
For a successful call, the return value depends on the operation.

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.13 2024-08-21 384

keyctl(2) System Calls Manual keyctl(2)

ERRORS
EACCES

The requested operation wasn’t permitted.

EDQUOT
The key quota for the caller’s user would be exceeded by creating a key or
linking it to the keyring.

EINVAL
size of the string (including the terminating null byte) specified in arg3 (the
key type) or arg4 (the key description) exceeded the limit (32 bytes and 4096
bytes respectively).

EKEYEXPIRED
An expired key was found or specified.

EKEYREJECTED
A rejected key was found or specified.

EKEYREVOKED
A revoked key was found or specified.

ENOKEY
No matching key was found or an invalid key was specified.

ENOMEM
One of kernel memory allocation routines failed during the execution of the
syscall.

ENOTDIR
A key of keyring type was expected but the ID of a key with a different type
was provided.

VERSIONS
A wrapper is provided in the libkeyutils library. (The accompanying package provides
the <keyutils.h> header file.) However, rather than using this system call directly, you
probably want to use the various library functions mentioned in the descriptions of in-
dividual operations above.

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

EXAMPLES
The program below provide subset of the functionality of the request-key(8) program
provided by the keyutils package. For informational purposes, the program records
various information in a log file.

As described in request_key(2), the request-key(8) program is invoked with command-
line arguments that describe a key that is to be instantiated. The example program
fetches and logs these arguments. The program assumes authority to instantiate the
requested key, and then instantiates that key.

The following shell session demonstrates the use of this program. In the session, we
compile the program and then use it to temporarily replace the standard request-key(8)

Linux man-pages 6.13 2024-08-21 385

keyctl(2) System Calls Manual keyctl(2)

program. (Note that temporarily disabling the standard request-key(8) program may
not be safe on some systems.) While our example program is installed, we use the ex-
ample program shown in request_key(2) to request a key.

$ cc -o key_instantiate key_instantiate.c -lkeyutils
$ sudo mv /sbin/request-key /sbin/request-key.backup
$ sudo cp key_instantiate /sbin/request-key
$./t_request_key user mykey somepayloaddata
Key ID is 20d035bf
$ sudo mv /sbin/request-key.backup /sbin/request-key

Looking at the log file created by this program, we can see the command-line argu-
ments supplied to our example program:

$ cat /tmp/key_instantiate.log
Time: Mon Nov 7 13:06:47 2016

Command line arguments:
argv[0]: /sbin/request-key
operation: create
key_to_instantiate: 20d035bf
UID: 1000
GID: 1000
thread_keyring: 0
process_keyring: 0
session_keyring: 256e6a6

Key description: user;1000;1000;3f010000;mykey
Auth key payload: somepayloaddata
Destination keyring: 256e6a6
Auth key description: .request_key_auth;1000;1000;0b010000;20d035bf

The last few lines of the above output show that the example program was able to
fetch:

• the description of the key to be instantiated, which included the name of the key
(mykey);

• the payload of the authorization key, which consisted of the data (somepayload-
data) passed to request_key(2);

• the destination keyring that was specified in the call to request_key(2); and

• the description of the authorization key, where we can see that the name of the au-
thorization key matches the ID of the key that is to be instantiated (20d035bf).

The example program in request_key(2) specified the destination keyring as
KEY_SPEC_SESSION_KEYRING. By examining the contents of /proc/keys, we
can see that this was translated to the ID of the destination keyring (0256e6a6) shown
in the log output above; we can also see the newly created key with the name mykey
and ID 20d035bf .

$ cat /proc/keys | egrep 'mykey|256e6a6'
0256e6a6 I--Q--- 194 perm 3f030000 1000 1000 keyring _ses: 3
20d035bf I--Q--- 1 perm 3f010000 1000 1000 user mykey: 16

Linux man-pages 6.13 2024-08-21 386

keyctl(2) System Calls Manual keyctl(2)

Program source

/* key_instantiate.c */

#include <errno.h>
#include <keyutils.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <time.h>

#ifndef KEY_SPEC_REQUESTOR_KEYRING
#define KEY_SPEC_REQUESTOR_KEYRING (-8)
#endif

int
main(int argc, char *argv[])
{

int akp_size; /* Size of auth_key_payload */
int auth_key;
char dbuf[256];
char auth_key_payload[256];
char *operation;
FILE *fp;
gid_t gid;
uid_t uid;
time_t t;
key_serial_t key_to_instantiate, dest_keyring;
key_serial_t thread_keyring, process_keyring, session_keyring;

if (argc != 8) {
fprintf(stderr, "Usage: %s op key uid gid thread_keyring "

"process_keyring session_keyring\n", argv[0]);
exit(EXIT_FAILURE);

}

fp = fopen("/tmp/key_instantiate.log", "w");
if (fp == NULL)

exit(EXIT_FAILURE);

setbuf(fp, NULL);

t = time(NULL);
fprintf(fp, "Time: %s\n", ctime(&t));

/*
* The kernel passes a fixed set of arguments to the program

Linux man-pages 6.13 2024-08-21 387

keyctl(2) System Calls Manual keyctl(2)

* that it execs; fetch them.
*/

operation = argv[1];
key_to_instantiate = atoi(argv[2]);
uid = atoi(argv[3]);
gid = atoi(argv[4]);
thread_keyring = atoi(argv[5]);
process_keyring = atoi(argv[6]);
session_keyring = atoi(argv[7]);

fprintf(fp, "Command line arguments:\n");
fprintf(fp, " argv[0]: %s\n", argv[0]);
fprintf(fp, " operation: %s\n", operation);
fprintf(fp, " key_to_instantiate: %jx\n",

(uintmax_t) key_to_instantiate);
fprintf(fp, " UID: %jd\n", (intmax_t) uid);
fprintf(fp, " GID: %jd\n", (intmax_t) gid);
fprintf(fp, " thread_keyring: %jx\n",

(uintmax_t) thread_keyring);
fprintf(fp, " process_keyring: %jx\n",

(uintmax_t) process_keyring);
fprintf(fp, " session_keyring: %jx\n",

(uintmax_t) session_keyring);
fprintf(fp, "\n");

/*
* Assume the authority to instantiate the key named in argv[2].
*/

if (keyctl(KEYCTL_ASSUME_AUTHORITY, key_to_instantiate) == -1) {
fprintf(fp, "KEYCTL_ASSUME_AUTHORITY failed: %s\n",

strerror(errno));
exit(EXIT_FAILURE);

}

/*
* Fetch the description of the key that is to be instantiated.
*/

if (keyctl(KEYCTL_DESCRIBE, key_to_instantiate,
dbuf, sizeof(dbuf)) == -1) {

fprintf(fp, "KEYCTL_DESCRIBE failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);

}

fprintf(fp, "Key description: %s\n", dbuf);

/*
* Fetch the payload of the authorization key, which is
* actually the callout data given to request_key().
*/

Linux man-pages 6.13 2024-08-21 388

keyctl(2) System Calls Manual keyctl(2)

akp_size = keyctl(KEYCTL_READ, KEY_SPEC_REQKEY_AUTH_KEY,
auth_key_payload, sizeof(auth_key_payload));

if (akp_size == -1) {
fprintf(fp, "KEYCTL_READ failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);

}

auth_key_payload[akp_size] = '\0';
fprintf(fp, "Auth key payload: %s\n", auth_key_payload);

/*
* For interest, get the ID of the authorization key and
* display it.
*/

auth_key = keyctl(KEYCTL_GET_KEYRING_ID,
KEY_SPEC_REQKEY_AUTH_KEY);

if (auth_key == -1) {
fprintf(fp, "KEYCTL_GET_KEYRING_ID failed: %s\n",

strerror(errno));
exit(EXIT_FAILURE);

}

fprintf(fp, "Auth key ID: %jx\n", (uintmax_t) auth_key);

/*
* Fetch key ID for the request_key(2) destination keyring.
*/

dest_keyring = keyctl(KEYCTL_GET_KEYRING_ID,
KEY_SPEC_REQUESTOR_KEYRING);

if (dest_keyring == -1) {
fprintf(fp, "KEYCTL_GET_KEYRING_ID failed: %s\n",

strerror(errno));
exit(EXIT_FAILURE);

}

fprintf(fp, "Destination keyring: %jx\n", (uintmax_t) dest_keyring);

/*
* Fetch the description of the authorization key. This
* allows us to see the key type, UID, GID, permissions,
* and description (name) of the key. Among other things,
* we will see that the name of the key is a hexadecimal
* string representing the ID of the key to be instantiated.
*/

if (keyctl(KEYCTL_DESCRIBE, KEY_SPEC_REQKEY_AUTH_KEY,
dbuf, sizeof(dbuf)) == -1)

{
fprintf(fp, "KEYCTL_DESCRIBE failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);

Linux man-pages 6.13 2024-08-21 389

keyctl(2) System Calls Manual keyctl(2)

}

fprintf(fp, "Auth key description: %s\n", dbuf);

/*
* Instantiate the key using the callout data that was supplied
* in the payload of the authorization key.
*/

if (keyctl(KEYCTL_INSTANTIATE, key_to_instantiate,
auth_key_payload, akp_size + 1, dest_keyring) == -1)

{
fprintf(fp, "KEYCTL_INSTANTIATE failed: %s\n",

strerror(errno));
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
keyctl(1), add_key(2), request_key(2), keyctl(3), recursive_key_scan(3),
recursive_session_key_scan(3), capabilities(7), credentials(7), keyrings(7),
keyutils(7), persistent-keyring(7), process-keyring(7), session-keyring(7), thread-
keyring(7), user-keyring(7), user_namespaces(7), user-session-keyring(7), request-
key(8)

The kernel source files under Documentation/security/keys/ (or, before Linux 4.13, in
the file Documentation/security/keys.txt).

Linux man-pages 6.13 2024-08-21 390

kill(2) System Calls Manual kill(2)

NAME
kill - send signal to a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int kill(pid_t pid , int sig);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

kill():
_POSIX_C_SOURCE

DESCRIPTION
The kill() system call can be used to send any signal to any process group or process.

If pid is positive, then signal sig is sent to the process with the ID specified by pid.

If pid equals 0, then sig is sent to every process in the process group of the calling
process.

If pid equals -1, then sig is sent to every process for which the calling process has
permission to send signals, except for process 1 (init), but see below.

If pid is less than -1, then sig is sent to every process in the process group whose ID
is -pid.

If sig is 0, then no signal is sent, but existence and permission checks are still per-
formed; this can be used to check for the existence of a process ID or process group
ID that the caller is permitted to signal.

For a process to have permission to send a signal, it must either be privileged (under
Linux: have the CAP_KILL capability in the user namespace of the target process),
or the real or effective user ID of the sending process must equal the real or saved set-
user-ID of the target process. In the case of SIGCONT, it suffices when the sending
and receiving processes belong to the same session. (Historically, the rules were dif-
ferent; see HISTORY.)

RETURN VALUE
On success, zero is returned. If signals were sent to a process group, success means
that at least one signal was delivered. On error, -1 is returned, and errno is set to in-
dicate the error.

ERRORS
EINVAL

An invalid signal was specified.

EPERM
The calling process does not have permission to send the signal to any of the
target processes.

ESRCH
The target process or process group does not exist. Note that an existing
process might be a zombie, a process that has terminated execution, but has
not yet been wait(2)ed for.

Linux man-pages 6.13 2025-02-12 391

kill(2) System Calls Manual kill(2)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

Linux notes
Across different kernel versions, Linux has enforced different rules for the permis-
sions required for an unprivileged process to send a signal to another process. In
Linux 1.0 to 1.2.2, a signal could be sent if the effective user ID of the sender matched
effective user ID of the target, or the real user ID of the sender matched the real user
ID of the target. From Linux 1.2.3 until 1.3.77, a signal could be sent if the effective
user ID of the sender matched either the real or effective user ID of the target. The
current rules, which conform to POSIX.1, were adopted in Linux 1.3.78.

NOTES
The only signals that can be sent to process ID 1, the init process, are those for which
init has explicitly installed signal handlers. This is done to assure the system is not
brought down accidentally.

POSIX.1 requires that kill(-1,sig) send sig to all processes that the calling process
may send signals to, except possibly for some implementation-defined system
processes. Linux allows a process to signal itself, but on Linux the call kill(-1,sig)
does not signal the calling process.

POSIX.1 requires that if a process sends a signal to itself, and the sending thread does
not have the signal blocked, and no other thread has it unblocked or is waiting for it in
sigwait(3), at least one unblocked signal must be delivered to the sending thread be-
fore the kill() returns.

BUGS
In Linux 2.6 up to and including Linux 2.6.7, there was a bug that meant that when
sending signals to a process group, kill() failed with the error EPERM if the caller
did not have permission to send the signal to any (rather than all) of the members of
the process group. Notwithstanding this error return, the signal was still delivered to
all of the processes for which the caller had permission to signal.

SEE ALSO
kill(1), _exit(2), pidfd_send_signal(2), signal(2), tkill(2), exit(3), killpg(3),
sigqueue(3), capabilities(7), credentials(7), signal(7)

Linux man-pages 6.13 2025-02-12 392

landlock_add_rule(2) System Calls Manual landlock_add_rule(2)

NAME
landlock_add_rule - add a new Landlock rule to a ruleset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/landlock.h> /* Definition of LANDLOCK_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */

int syscall(SYS_landlock_add_rule, int ruleset_fd ,
enum landlock_rule_type rule_type,
const void *rule_attr, uint32_t flags);

DESCRIPTION
A Landlock rule describes an action on an object which the process intends to per-
form. A set of rules is aggregated in a ruleset, which can then restrict the thread en-
forcing it, and its future children.

The landlock_add_rule() system call adds a new Landlock rule to an existing ruleset.
See landlock(7) for a global overview.

ruleset_fd is a Landlock ruleset file descriptor obtained with landlock_create_rule-
set(2).

rule_type identifies the structure type pointed to by rule_attr. Currently, Linux sup-
ports the following rule_type values:

LANDLOCK_RULE_PATH_BENEATH
For these rules, the object is a file hierarchy, and the related filesystem actions
are defined with filesystem access rights.

In this case, rule_attr points to the following structure:

struct landlock_path_beneath_attr {
__u64 allowed_access;
__s32 parent_fd;

} __attribute__((packed));

allowed_access contains a bitmask of allowed filesystem actions, which can
be applied on the given parent_fd (see Filesystem actions in landlock(7)).

parent_fd is an opened file descriptor, preferably with the O_PATH flag,
which identifies the parent directory of the file hierarchy or just a file.

LANDLOCK_RULE_NET_PORT
For these rules, the object is a TCP port, and the related actions are defined
with network access rights.

In this case, rule_attr points to the following structure:

struct landlock_net_port_attr {
__u64 allowed_access;
__u64 port;

};

allowed_access contains a bitmask of allowed network actions, which can be
applied on the given port.

Linux man-pages 6.13 2024-08-21 393

landlock_add_rule(2) System Calls Manual landlock_add_rule(2)

port is the network port in host endianness.

It should be noted that port 0 passed to bind(2) will bind to an available port
from the ephemeral port range. This can be configured in the
/proc/sys/net/ipv4/ip_local_port_range sysctl (also used for IPv6).

A Landlock rule with port 0 and the LANDLOCK_AC-
CESS_NET_BIND_TCP right means that requesting to bind on port 0 is al-
lowed and it will automatically translate to binding on the related port range.

flags must be 0.

RETURN VALUE
On success, landlock_add_rule() returns 0. On error, -1 is returned and errno is set
to indicate the error.

ERRORS
landlock_add_rule() can fail for the following reasons:

EAFNOSUPPORT
rule_type is LANDLOCK_RULE_NET_PORT, but TCP is not supported by
the running kernel.

EOPNOTSUPP
Landlock is supported by the kernel but disabled at boot time.

EINVAL
flags is not 0.

EINVAL
The rule accesses are inconsistent (i.e., rule_attr->allowed_access is not a
subset of the ruleset handled accesses).

EINVAL
In struct landlock_path_beneath_attr, the rule accesses are not applicable to
the file (i.e., some access rights in rule_attr->allowed_access are only applic-
able to directories, but rule_attr->parent_fd does not refer to a directory).

EINVAL
In struct landlock_net_port_attr, the port number is greater than 65535.

ENOMSG
Empty accesses (i.e., rule_attr->allowed_access is 0).

EBADF
ruleset_fd is not a file descriptor for the current thread, or a member of
rule_attr is not a file descriptor as expected.

EBADFD
ruleset_fd is not a ruleset file descriptor, or a member of rule_attr is not the
expected file descriptor type.

EPERM
ruleset_fd has no write access to the underlying ruleset.

EFAULT
rule_attr was not a valid address.

Linux man-pages 6.13 2024-08-21 394

landlock_add_rule(2) System Calls Manual landlock_add_rule(2)

STANDARDS
Linux.

HISTORY
Linux 5.13.

EXAMPLES
See landlock(7).

SEE ALSO
landlock_create_ruleset(2), landlock_restrict_self(2), landlock(7)

Linux man-pages 6.13 2024-08-21 395

landlock_create_ruleset(2) System Calls Manual landlock_create_ruleset(2)

NAME
landlock_create_ruleset - create a new Landlock ruleset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/landlock.h> /* Definition of LANDLOCK_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_landlock_create_ruleset,
const struct landlock_ruleset_attr *attr,
size_t size , uint32_t flags);

DESCRIPTION
A Landlock ruleset identifies a set of rules (i.e., actions on objects). This land-
lock_create_ruleset() system call creates a new file descriptor which identifies a rule-
set. This file descriptor can then be used by landlock_add_rule(2) and landlock_re-
strict_self(2). See landlock(7) for a global overview.

attr specifies the properties of the new ruleset. It points to the following structure:

struct landlock_ruleset_attr {
__u64 handled_access_fs;
__u64 handled_access_net;

};

handled_access_fs is a bitmask of handled filesystem actions (see Filesystem
actions in landlock(7)).

handled_access_net is a bitmask of handled network actions (see Network
actions in landlock(7)).

This structure defines a set of handled access rights, a set of actions on differ-
ent object types, which should be denied by default when the ruleset is en-
acted. Vice versa, access rights that are not specifically listed here are not go-
ing to be denied by this ruleset when it is enacted.

For historical reasons, the LANDLOCK_ACCESS_FS_REFER right is al-
ways denied by default, even when its bit is not set in handled_access_fs. In
order to add new rules with this access right, the bit must still be set explicitly
(see Filesystem actions in landlock(7)).

The explicit listing of handled access rights is required for backwards compat-
ibility reasons. In most use cases, processes that use Landlock will handle a
wide range or all access rights that they know about at build time (and that
they have tested with a kernel that supported them all).

This structure can grow in future Landlock versions.

size must be specified as sizeof(struct landlock_ruleset_attr) for compatibility rea-
sons.

flags must be 0 if attr is used. Otherwise, flags can be set to:

Linux man-pages 6.13 2024-11-26 396

landlock_create_ruleset(2) System Calls Manual landlock_create_ruleset(2)

LANDLOCK_CREATE_RULESET_VERSION
If attr is NULL and size is 0, then the returned value is the highest supported
Landlock ABI version (starting at 1). This version can be used for a best-ef-
fort security approach, which is encouraged when user space is not pinned to a
specific kernel version. All features documented in these man pages are avail-
able with the version 1.

RETURN VALUE
On success, landlock_create_ruleset() returns a new Landlock ruleset file descriptor,
or a Landlock ABI version, according to flags. On error, -1 is returned and errno is
set to indicate the error.

ERRORS
landlock_create_ruleset() can fail for the following reasons:

EOPNOTSUPP
Landlock is supported by the kernel but disabled at boot time.

EINVAL
Unknown flags, or unknown access, or too small size.

E2BIG
size is too big.

EFAULT
attr was not a valid address.

ENOMSG
Empty accesses (i.e., attr did not specify any access rights to restrict).

STANDARDS
Linux.

HISTORY
Linux 5.13.

EXAMPLES
See landlock(7).

SEE ALSO
landlock_add_rule(2), landlock_restrict_self(2), landlock(7)

Linux man-pages 6.13 2024-11-26 397

landlock_restrict_self (2) System Calls Manual landlock_restrict_self (2)

NAME
landlock_restrict_self - enforce a Landlock ruleset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/landlock.h> /* Definition of LANDLOCK_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */

int syscall(SYS_landlock_restrict_self, int ruleset_fd ,
uint32_t flags);

DESCRIPTION
Once a Landlock ruleset is populated with the desired rules, the landlock_re-
strict_self() system call enforces this ruleset on the calling thread. See landlock(7)
for a global overview.

A thread can be restricted with multiple rulesets that are then composed together to
form the thread’s Landlock domain. This can be seen as a stack of rulesets but it is
implemented in a more efficient way. A domain can only be updated in such a way
that the constraints of each past and future composed rulesets will restrict the thread
and its future children for their entire life. It is then possible to gradually enforce tai-
lored access control policies with multiple independent rulesets coming from different
sources (e.g., init system configuration, user session policy, built-in application pol-
icy). However, most applications should only need one call to landlock_re-
strict_self() and they should avoid arbitrary numbers of such calls because of the
composed rulesets limit. Instead, developers are encouraged to build a single tailored
ruleset with multiple calls to landlock_add_rule(2).

In order to enforce a ruleset, either the caller must have the CAP_SYS_ADMIN ca-
pability in its user namespace, or the thread must already have the no_new_privs bit
set. As for seccomp(2), this avoids scenarios where unprivileged processes can affect
the behavior of privileged children (e.g., because of set-user-ID binaries). If that bit
was not already set by an ancestor of this thread, the thread must make the following
call:

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

ruleset_fd is a Landlock ruleset file descriptor obtained with landlock_create_rule-
set(2) and fully populated with a set of calls to landlock_add_rule(2).

flags must be 0.

RETURN VALUE
On success, landlock_restrict_self() returns 0. On error, -1 is returned and errno is
set to indicate the error.

ERRORS
landlock_restrict_self() can fail for the following reasons:

EOPNOTSUPP
Landlock is supported by the kernel but disabled at boot time.

Linux man-pages 6.13 2024-07-23 398

landlock_restrict_self (2) System Calls Manual landlock_restrict_self (2)

EINVAL
flags is not 0.

EBADF
ruleset_fd is not a file descriptor for the current thread.

EBADFD
ruleset_fd is not a ruleset file descriptor.

EPERM
ruleset_fd has no read access to the underlying ruleset, or the calling thread is
not running with no_new_privs, or it doesn’t have the CAP_SYS_ADMIN in
its user namespace.

E2BIG
The maximum number of composed rulesets is reached for the calling thread.
This limit is currently 64.

STANDARDS
Linux.

HISTORY
Linux 5.13.

EXAMPLES
See landlock(7).

SEE ALSO
landlock_create_ruleset(2), landlock_add_rule(2), landlock(7)

Linux man-pages 6.13 2024-07-23 399

link(2) System Calls Manual link(2)

NAME
link, linkat - make a new name for a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int link(const char *oldpath, const char *newpath);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int linkat(int olddirfd , const char *oldpath,
int newdirfd , const char *newpath, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

linkat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
link() creates a new link (also known as a hard link) to an existing file.

If newpath exists, it will not be overwritten.

This new name may be used exactly as the old one for any operation; both names refer
to the same file (and so have the same permissions and ownership) and it is impossible
to tell which name was the "original".

linkat()
The linkat() system call operates in exactly the same way as link(), except for the dif-
ferences described here.

If the pathname given in oldpath is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor olddirfd (rather than relative to the current work-
ing directory of the calling process, as is done by link() for a relative pathname).

If oldpath is relative and olddirfd is the special value AT_FDCWD, then oldpath is
interpreted relative to the current working directory of the calling process (like link())

If oldpath is absolute, then olddirfd is ignored.

The interpretation of newpath is as for oldpath, except that a relative pathname is in-
terpreted relative to the directory referred to by the file descriptor newdirfd .

The following values can be bitwise ORed in flags:

AT_EMPTY_PATH (since Linux 2.6.39)
If oldpath is an empty string, create a link to the file referenced by olddirfd
(which may have been obtained using the open(2) O_PATH flag). In this
case, olddirfd can refer to any type of file except a directory. This will gener-
ally not work if the file has a link count of zero (files created with O_TMP-
FILE and without O_EXCL are an exception). The caller must have the
CAP_DAC_READ_SEARCH capability in order to use this flag. This flag is

Linux man-pages 6.13 2024-07-23 400

link(2) System Calls Manual link(2)

Linux-specific; define _GNU_SOURCE to obtain its definition.

AT_SYMLINK_FOLLOW (since Linux 2.6.18)
By default, linkat(), does not dereference oldpath if it is a symbolic link (like
link())The flag AT_SYMLINK_FOLLOW can be specified in flags to cause
oldpath to be dereferenced if it is a symbolic link. If procfs is mounted, this
can be used as an alternative to AT_EMPTY_PATH, like this:

linkat(AT_FDCWD, "/proc/self/fd/<fd>", newdirfd,
newname, AT_SYMLINK_FOLLOW);

Before Linux 2.6.18, the flags argument was unused, and had to be specified as 0.

See openat(2) for an explanation of the need for linkat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

Write access to the directory containing newpath is denied, or search permis-
sion is denied for one of the directories in the path prefix of oldpath or new-
path. (See also path_resolution(7).)

EDQUOT
The user’s quota of disk blocks on the filesystem has been exhausted.

EEXIST
newpath already exists.

EFAULT
oldpath or newpath points outside your accessible address space.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving oldpath or newpath.

EMLINK
The file referred to by oldpath already has the maximum number of links to it.
For example, on an ext4(5) filesystem that does not employ the dir_index fea-
ture, the limit on the number of hard links to a file is 65,000; on btrfs(5), the
limit is 65,535 links.

ENAMETOOLONG
oldpath or newpath was too long.

ENOENT
A directory component in oldpath or newpath does not exist or is a dangling
symbolic link.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing the file has no room for the new directory entry.

Linux man-pages 6.13 2024-07-23 401

link(2) System Calls Manual link(2)

ENOTDIR
A component used as a directory in oldpath or newpath is not, in fact, a direc-
tory.

EPERM
oldpath is a directory.

EPERM
The filesystem containing oldpath and newpath does not support the creation
of hard links.

EPERM (since Linux 3.6)
The caller does not have permission to create a hard link to this file (see the
description of /proc/sys/fs/protected_hardlinks in proc(5)).

EPERM
oldpath is marked immutable or append-only. (See FS_IOC_SET-
FLAGS(2const).)

EROFS
The file is on a read-only filesystem.

EXDEV
oldpath and newpath are not on the same mounted filesystem. (Linux permits
a filesystem to be mounted at multiple points, but link() does not work across
different mounts, even if the same filesystem is mounted on both.)

The following additional errors can occur for linkat():

EBADF
oldpath (newpath) is relative but olddirfd (newdirfd) is neither AT_FDCWD
nor a valid file descriptor.

EINVAL
An invalid flag value was specified in flags.

ENOENT
AT_EMPTY_PATH was specified in flags, but the caller did not have the
CAP_DAC_READ_SEARCH capability.

ENOENT
An attempt was made to link to the /proc/self/fd/NN file corresponding to a
file descriptor created with

open(path, O_TMPFILE | O_EXCL, mode);

See open(2).

ENOENT
An attempt was made to link to a /proc/self/fd/NN file corresponding to a file
that has been deleted.

ENOENT
oldpath is a relative pathname and olddirfd refers to a directory that has been
deleted, or newpath is a relative pathname and newdirfd refers to a directory
that has been deleted.

Linux man-pages 6.13 2024-07-23 402

link(2) System Calls Manual link(2)

ENOTDIR
oldpath is relative and olddirfd is a file descriptor referring to a file other than
a directory; or similar for newpath and newdirfd

EPERM
AT_EMPTY_PATH was specified in flags, oldpath is an empty string, and
olddirfd refers to a directory.

VERSIONS
POSIX.1-2001 says that link() should dereference oldpath if it is a symbolic link.
However, since Linux 2.0, Linux does not do so: if oldpath is a symbolic link, then
newpath is created as a (hard) link to the same symbolic link file (i.e., newpath be-
comes a symbolic link to the same file that oldpath refers to). Some other implemen-
tations behave in the same manner as Linux. POSIX.1-2008 changes the specification
of link(), making it implementation-dependent whether or not oldpath is dereferenced
if it is a symbolic link. For precise control over the treatment of symbolic links when
creating a link, use linkat().

glibc
On older kernels where linkat() is unavailable, the glibc wrapper function falls back
to the use of link(), unless the AT_SYMLINK_FOLLOW is specified. When old-
path and newpath are relative pathnames, glibc constructs pathnames based on the
symbolic links in /proc/self/fd that correspond to the olddirfd and newdirfd argu-
ments.

STANDARDS
link() POSIX.1-2008.

HISTORY
link() SVr4, 4.3BSD, POSIX.1-2001 (but see VERSIONS).

linkat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

NOTES
Hard links, as created by link(), cannot span filesystems. Use symlink(2) if this is re-
quired.

BUGS
On NFS filesystems, the return code may be wrong in case the NFS server performs
the link creation and dies before it can say so. Use stat(2) to find out if the link got
created.

SEE ALSO
ln(1), open(2), rename(2), stat(2), symlink(2), unlink(2), path_resolution(7), sym-
link(7)

Linux man-pages 6.13 2024-07-23 403

listen(2) System Calls Manual listen(2)

NAME
listen - listen for connections on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int listen(int sockfd , int backlog);

DESCRIPTION
listen() marks the socket referred to by sockfd as a passive socket, that is, as a socket
that will be used to accept incoming connection requests using accept(2).

The sockfd argument is a file descriptor that refers to a socket of type
SOCK_STREAM or SOCK_SEQPACKET.

The backlog argument defines the maximum length to which the queue of pending
connections for sockfd may grow. If a connection request arrives when the queue is
full, the client may receive an error with an indication of ECONNREFUSED or, if
the underlying protocol supports retransmission, the request may be ignored so that a
later reattempt at connection succeeds.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EADDRINUSE

Another socket is already listening on the same port.

EADDRINUSE
(Internet domain sockets) The socket referred to by sockfd had not previously
been bound to an address and, upon attempting to bind it to an ephemeral port,
it was determined that all port numbers in the ephemeral port range are cur-
rently in use. See the discussion of /proc/sys/net/ipv4/ip_local_port_range in
ip(7).

EBADF
The argument sockfd is not a valid file descriptor.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EOPNOTSUPP
The socket is not of a type that supports the listen() operation.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.4BSD (first appeared in 4.2BSD).

NOTES
To accept connections, the following steps are performed:

Linux man-pages 6.13 2024-07-23 404

listen(2) System Calls Manual listen(2)

(1) A socket is created with socket(2).

(2) The socket is bound to a local address using bind(2), so that other sockets
may be connect(2)ed to it.

(3) A willingness to accept incoming connections and a queue limit for incom-
ing connections are specified with listen().

(4) Connections are accepted with accept(2).

The behavior of the backlog argument on TCP sockets changed with Linux 2.2. Now
it specifies the queue length for completely established sockets waiting to be accepted,
instead of the number of incomplete connection requests. The maximum length of the
queue for incomplete sockets can be set using /proc/sys/net/ipv4/tcp_max_syn_back-
log. When syncookies are enabled there is no logical maximum length and this set-
ting is ignored. See tcp(7) for more information.

If the backlog argument is greater than the value in /proc/sys/net/core/somaxconn,
then it is silently capped to that value. Since Linux 5.4, the default in this file is 4096;
in earlier kernels, the default value is 128. Before Linux 2.4.25, this limit was a hard
coded value, SOMAXCONN, with the value 128.

EXAMPLES
See bind(2).

SEE ALSO
accept(2), bind(2), connect(2), socket(2), socket(7)

Linux man-pages 6.13 2024-07-23 405

listmount(2) System Calls Manual listmount(2)

NAME
listmount - get a list of mount ID’s

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/mount.h> /* Definition of struct mnt_id_req constants */
#include <unistd.h>

int syscall(SYS_listmount, struct mnt_id_req *req,
uint64_t *mnt_ids, size_t nr_mnt_ids,
unsigned long flags);

#include <linux/mount.h>

struct mnt_id_req {
__u32 size; /* sizeof(struct mnt_id_req) */
__u64 mnt_id; /* The parent mnt_id being searched */
__u64 param; /* The next mnt_id we want to find */

};

Note: glibc provides no wrapper for listmount(), necessitating the use of syscall(2).

DESCRIPTION
To access the mounts in your namespace, you must have CAP_SYS_ADMIN in the
user namespace.

This function returns a list of mount IDs under the req.mnt_id. This is meant to be
used in conjuction with statmount(2) in order to provide a way to iterate and discover
mounted file systems.

The mnt_id_req structure
req.size is used by the kernel to determine which struct mnt_id_req is being passed in,
it should always be set to sizeof(struct mnt_id_req).

req.mnt_id is the parent mnt_id that we will list from, which can either be
LSMT_ROOT which means the root mount of the current mount namespace, or a
mount ID obtained from either statx(2) using STATX_MNT_ID_UNIQUE or from
listmount(2).

req.param is used to tell the kernel what mount ID to start the list from. This is useful
if multiple calls to listmount(2) are required. This can be set to the last mount ID re-
turned in order to resume from a previous spot in the list.

RETURN VALUE
On success, the number of entries filled into mnt_ids is returned; 0 if there are no
more mounts left. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EPERM

Permission is denied for accessing this mount.

EFAULT
req or mnt_ids points to a location outside the process’s accessible address
space.

Linux man-pages 6.13 2024-11-17 406

listmount(2) System Calls Manual listmount(2)

EINVAL
Invalid flag specified in flags.

EINVAL
req is of insufficient size to be utilized.

E2BIG
req is too large, the limit is the architectures page size.

ENOENT
The specified req.mnt_id doesn’t exist.

ENOMEM
Out of memory (i.e., kernel memory).

STANDARDS
Linux.

SEE ALSO
statmount(2), statx(2)

Linux man-pages 6.13 2024-11-17 407

listxattr(2) System Calls Manual listxattr(2)

NAME
listxattr, llistxattr, flistxattr - list extended attribute names

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/xattr.h>

ssize_t listxattr(const char *path, char *_Nullable list, size_t size);
ssize_t llistxattr(const char *path, char *_Nullable list, size_t size);
ssize_t flistxattr(int fd , char *_Nullable list, size_t size);

DESCRIPTION
Extended attributes are name:value pairs associated with inodes (files, directories,
symbolic links, etc.). They are extensions to the normal attributes which are associ-
ated with all inodes in the system (i.e., the stat(2) data). A complete overview of ex-
tended attributes concepts can be found in xattr(7).

listxattr() retrieves the list of extended attribute names associated with the given path
in the filesystem. The retrieved list is placed in list, a caller-allocated buffer whose
size (in bytes) is specified in the argument size. The list is the set of (null-terminated)
names, one after the other. Names of extended attributes to which the calling process
does not have access may be omitted from the list. The length of the attribute name
list is returned.

llistxattr() is identical to listxattr(), except in the case of a symbolic link, where the
list of names of extended attributes associated with the link itself is retrieved, not the
file that it refers to.

flistxattr() is identical to listxattr(), only the open file referred to by fd (as returned
by open(2)) is interrogated in place of path.

A single extended attribute name is a null-terminated string. The name includes a
namespace prefix; there may be several, disjoint namespaces associated with an indi-
vidual inode.

If size is specified as zero, these calls return the current size of the list of extended at-
tribute names (and leave list unchanged). This can be used to determine the size of
the buffer that should be supplied in a subsequent call. (But, bear in mind that there is
a possibility that the set of extended attributes may change between the two calls, so
that it is still necessary to check the return status from the second call.)

Example
The list of names is returned as an unordered array of null-terminated character
strings (attribute names are separated by null bytes ('\0')), like this:

user.name1\0system.name1\0user.name2\0

Filesystems that implement POSIX ACLs using extended attributes might return a list
like this:

system.posix_acl_access\0system.posix_acl_default\0

RETURN VALUE
On success, a nonnegative number is returned indicating the size of the extended at-
tribute name list. On failure, -1 is returned and errno is set to indicate the error.

Linux man-pages 6.13 2024-07-23 408

listxattr(2) System Calls Manual listxattr(2)

ERRORS
E2BIG

The size of the list of extended attribute names is larger than the maximum
size allowed; the list cannot be retrieved. This can happen on filesystems that
support an unlimited number of extended attributes per file such as XFS, for
example. See BUGS.

ENOTSUP
Extended attributes are not supported by the filesystem, or are disabled.

ERANGE
The size of the list buffer is too small to hold the result.

In addition, the errors documented in stat(2) can also occur.

STANDARDS
Linux.

HISTORY
Linux 2.4, glibc 2.3.

BUGS
As noted in xattr(7), the VFS imposes a limit of 64 kB on the size of the extended at-
tribute name list returned by listxattr(). If the total size of attribute names attached to
a file exceeds this limit, it is no longer possible to retrieve the list of attribute names.

EXAMPLES
The following program demonstrates the usage of listxattr() and getxattr(2). For the
file whose pathname is provided as a command-line argument, it lists all extended file
attributes and their values.

To keep the code simple, the program assumes that attribute keys and values are con-
stant during the execution of the program. A production program should expect and
handle changes during execution of the program. For example, the number of bytes
required for attribute keys might increase between the two calls to listxattr(). An ap-
plication could handle this possibility using a loop that retries the call (perhaps up to a
predetermined maximum number of attempts) with a larger buffer each time it fails
with the error ERANGE. Calls to getxattr(2) could be handled similarly.

The following output was recorded by first creating a file, setting some extended file
attributes, and then listing the attributes with the example program.

Example output
$ touch /tmp/foo
$ setfattr -n user.fred -v chocolate /tmp/foo
$ setfattr -n user.frieda -v bar /tmp/foo
$ setfattr -n user.empty /tmp/foo
$./listxattr /tmp/foo
user.fred: chocolate
user.frieda: bar
user.empty: <no value>

Program source (listxattr.c)
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.13 2024-07-23 409

listxattr(2) System Calls Manual listxattr(2)

#include <string.h>
#include <sys/xattr.h>

int
main(int argc, char *argv[])
{

char *buf, *key, *val;
ssize_t buflen, keylen, vallen;

if (argc != 2) {
fprintf(stderr, "Usage: %s path\n", argv[0]);
exit(EXIT_FAILURE);

}

/*
* Determine the length of the buffer needed.
*/

buflen = listxattr(argv[1], NULL, 0);
if (buflen == -1) {

perror("listxattr");
exit(EXIT_FAILURE);

}
if (buflen == 0) {

printf("%s has no attributes.\n", argv[1]);
exit(EXIT_SUCCESS);

}

/*
* Allocate the buffer.
*/

buf = malloc(buflen);
if (buf == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

/*
* Copy the list of attribute keys to the buffer.
*/

buflen = listxattr(argv[1], buf, buflen);
if (buflen == -1) {

perror("listxattr");
exit(EXIT_FAILURE);

}

/*
* Loop over the list of zero terminated strings with the
* attribute keys. Use the remaining buffer length to determine
* the end of the list.

Linux man-pages 6.13 2024-07-23 410

listxattr(2) System Calls Manual listxattr(2)

*/
key = buf;
while (buflen > 0) {

/*
* Output attribute key.
*/

printf("%s: ", key);

/*
* Determine length of the value.
*/

vallen = getxattr(argv[1], key, NULL, 0);
if (vallen == -1)

perror("getxattr");

if (vallen > 0) {

/*
* Allocate value buffer.
* One extra byte is needed to append 0x00.
*/

val = malloc(vallen + 1);
if (val == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

/*
* Copy value to buffer.
*/

vallen = getxattr(argv[1], key, val, vallen);
if (vallen == -1) {

perror("getxattr");
} else {

/*
* Output attribute value.
*/

val[vallen] = 0;
printf("%s", val);

}

free(val);
} else if (vallen == 0) {

printf("<no value>");
}

printf("\n");

Linux man-pages 6.13 2024-07-23 411

listxattr(2) System Calls Manual listxattr(2)

/*
* Forward to next attribute key.
*/

keylen = strlen(key) + 1;
buflen -= keylen;
key += keylen;

}

free(buf);
exit(EXIT_SUCCESS);

}

SEE ALSO
getfattr(1), setfattr(1), getxattr(2), open(2), removexattr(2), setxattr(2), stat(2), sym-
link(7), xattr(7)

Linux man-pages 6.13 2024-07-23 412

_llseek(2) System Calls Manual _llseek(2)

NAME
_llseek - reposition read/write file offset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS__llseek, unsigned int fd , unsigned long offset_high,
unsigned long offset_low, loff_t *result,
unsigned int whence);

Note: glibc provides no wrapper for _llseek(), necessitating the use of syscall(2).

DESCRIPTION
Note: for information about the llseek(3) library function, see lseek64(3).

The _llseek() system call repositions the offset of the open file description associated
with the file descriptor fd to the value

(offset_high << 32) | offset_low

This new offset is a byte offset relative to the beginning of the file, the current file off-
set, or the end of the file, depending on whether whence is SEEK_SET,
SEEK_CUR, or SEEK_END, respectively.

The new file offset is returned in the argument result. The type loff_t is a 64-bit
signed type.

This system call exists on various 32-bit platforms to support seeking to large file off-
sets.

RETURN VALUE
Upon successful completion, _llseek() returns 0. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
EBADF

fd is not an open file descriptor.

EFAULT
Problem with copying results to user space.

EINVAL
whence is invalid.

VERSIONS
You probably want to use the lseek(2) wrapper function instead.

STANDARDS
Linux.

SEE ALSO
lseek(2), open(2), lseek64(3)

Linux man-pages 6.13 2024-07-23 413

lookup_dcookie(2) System Calls Manual lookup_dcookie(2)

NAME
lookup_dcookie - return a directory entry’s path

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_lookup_dcookie, uint64_t cookie, char buffer[.size],
size_t size);

Note: glibc provides no wrapper for lookup_dcookie(), necessitating the use of
syscall(2).

DESCRIPTION
Look up the full path of the directory entry specified by the value cookie. The cookie
is an opaque identifier uniquely identifying a particular directory entry. The buffer
given is filled in with the full path of the directory entry.

For lookup_dcookie() to return successfully, the kernel must still hold a cookie refer-
ence to the directory entry.

RETURN VALUE
On success, lookup_dcookie() returns the length of the path string copied into the
buffer. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

The buffer was not valid.

EINVAL
The kernel has no registered cookie/directory entry mappings at the time of
lookup, or the cookie does not refer to a valid directory entry.

ENAMETOOLONG
The name could not fit in the buffer.

ENOMEM
The kernel could not allocate memory for the temporary buffer holding the
path.

EPERM
The process does not have the capability CAP_SYS_ADMIN required to look
up cookie values.

ERANGE
The buffer was not large enough to hold the path of the directory entry.

STANDARDS
Linux.

HISTORY
Linux 2.5.43.

The ENAMETOOLONG error was added in Linux 2.5.70.

Linux man-pages 6.13 2024-11-17 414

lookup_dcookie(2) System Calls Manual lookup_dcookie(2)

NOTES
lookup_dcookie() is a special-purpose system call, currently used only by the opro-
file(1) profiler. It relies on a kernel driver to register cookies for directory entries.

The path returned may be suffixed by the string " (deleted)" if the directory entry has
been removed.

SEE ALSO
oprofile(1)

Linux man-pages 6.13 2024-11-17 415

lseek(2) System Calls Manual lseek(2)

NAME
lseek - reposition read/write file offset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

off_t lseek(int fd , off_t offset, int whence);

DESCRIPTION
lseek() repositions the file offset of the open file description associated with the file
descriptor fd to the argument offset according to the directive whence as follows:

SEEK_SET
The file offset is set to offset bytes.

SEEK_CUR
The file offset is set to its current location plus offset bytes.

SEEK_END
The file offset is set to the size of the file plus offset bytes.

lseek() allows the file offset to be set beyond the end of the file (but this does not
change the size of the file). If data is later written at this point, subsequent reads of
the data in the gap (a "hole") return null bytes ('\0') until data is actually written into
the gap.

Seeking file data and holes
Since Linux 3.1, Linux supports the following additional values for whence:

SEEK_DATA
Adjust the file offset to the next location in the file greater than or equal to off-
set containing data. If offset points to data, then the file offset is set to offset.

SEEK_HOLE
Adjust the file offset to the next hole in the file greater than or equal to offset.
If offset points into the middle of a hole, then the file offset is set to offset. If
there is no hole past offset, then the file offset is adjusted to the end of the file
(i.e., there is an implicit hole at the end of any file).

In both of the above cases, lseek() fails if offset points past the end of the file.

These operations allow applications to map holes in a sparsely allocated file. This can
be useful for applications such as file backup tools, which can save space when creat-
ing backups and preserve holes, if they have a mechanism for discovering holes.

For the purposes of these operations, a hole is a sequence of zeros that (normally) has
not been allocated in the underlying file storage. However, a filesystem is not obliged
to report holes, so these operations are not a guaranteed mechanism for mapping the
storage space actually allocated to a file. (Furthermore, a sequence of zeros that actu-
ally has been written to the underlying storage may not be reported as a hole.) In the
simplest implementation, a filesystem can support the operations by making
SEEK_HOLE always return the offset of the end of the file, and making
SEEK_DATA always return offset (i.e., even if the location referred to by offset is a
hole, it can be considered to consist of data that is a sequence of zeros).

Linux man-pages 6.13 2024-07-23 416

lseek(2) System Calls Manual lseek(2)

The _GNU_SOURCE feature test macro must be defined in order to obtain the defin-
itions of SEEK_DATA and SEEK_HOLE from <unistd.h>.

The SEEK_HOLE and SEEK_DATA operations are supported for the following
filesystems:

• Btrfs (since Linux 3.1)

• OCFS (since Linux 3.2)

• XFS (since Linux 3.5)

• ext4 (since Linux 3.8)

• tmpfs(5) (since Linux 3.8)

• NFS (since Linux 3.18)

• FUSE (since Linux 4.5)

• GFS2 (since Linux 4.15)

RETURN VALUE
Upon successful completion, lseek() returns the resulting offset location as measured
in bytes from the beginning of the file. On error, the value (off_t) -1 is returned and
errno is set to indicate the error.

ERRORS
EBADF

fd is not an open file descriptor.

EINVAL
whence is not valid. Or: the resulting file offset would be negative, or beyond
the end of a seekable device.

ENXIO
whence is SEEK_DATA or SEEK_HOLE, and offset is beyond the end of
the file, or whence is SEEK_DATA and offset is within a hole at the end of the
file.

EOVERFLOW
The resulting file offset cannot be represented in an off_t.

ESPIPE
fd is associated with a pipe, socket, or FIFO.

VERSIONS
On Linux, using lseek() on a terminal device fails with the error ESPIPE.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEEK_DATA and SEEK_HOLE are nonstandard extensions also present in Solaris,
FreeBSD, and DragonFly BSD; they are proposed for inclusion in the next POSIX re-
vision (Issue 8).

Linux man-pages 6.13 2024-07-23 417

lseek(2) System Calls Manual lseek(2)

NOTES
See open(2) for a discussion of the relationship between file descriptors, open file de-
scriptions, and files.

If the O_APPEND file status flag is set on the open file description, then a write(2)
always moves the file offset to the end of the file, regardless of the use of lseek().

Some devices are incapable of seeking and POSIX does not specify which devices
must support lseek().

SEE ALSO
dup(2), fallocate(2), fork(2), open(2), fseek(3), lseek64(3), posix_fallocate(3)

Linux man-pages 6.13 2024-07-23 418

madvise(2) System Calls Manual madvise(2)

NAME
madvise - give advice about use of memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int madvise(void addr[.size], size_t size, int advice);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

madvise():
Since glibc 2.19:

_DEFAULT_SOURCE
Up to and including glibc 2.19:

_BSD_SOURCE

DESCRIPTION
The madvise() system call is used to give advice or directions to the kernel about the
address range beginning at address addr and with size size. madvise() only operates
on whole pages, therefore addr must be page-aligned. The value of size is rounded
up to a multiple of page size. In most cases, the goal of such advice is to improve sys-
tem or application performance.

Initially, the system call supported a set of "conventional" advice values, which are
also available on several other implementations. (Note, though, that madvise() is not
specified in POSIX.) Subsequently, a number of Linux-specific advice values have
been added.

Conventional advice values
The advice values listed below allow an application to tell the kernel how it expects to
use some mapped or shared memory areas, so that the kernel can choose appropriate
read-ahead and caching techniques. These advice values do not influence the seman-
tics of the application (except in the case of MADV_DONTNEED), but may influ-
ence its performance. All of the advice values listed here have analogs in the POSIX-
specified posix_madvise(3) function, and the values have the same meanings, with the
exception of MADV_DONTNEED.

The advice is indicated in the advice argument, which is one of the following:

MADV_NORMAL
No special treatment. This is the default.

MADV_RANDOM
Expect page references in random order. (Hence, read ahead may be less use-
ful than normally.)

MADV_SEQUENTIAL
Expect page references in sequential order. (Hence, pages in the given range
can be aggressively read ahead, and may be freed soon after they are ac-
cessed.)

Linux man-pages 6.13 2024-12-23 419

madvise(2) System Calls Manual madvise(2)

MADV_WILLNEED
Expect access in the near future. (Hence, it might be a good idea to read some
pages ahead.)

MADV_DONTNEED
Do not expect access in the near future. (For the time being, the application is
finished with the given range, so the kernel can free resources associated with
it.)

After a successful MADV_DONTNEED operation, the semantics of memory
access in the specified region are changed: subsequent accesses of pages in the
range will succeed, but will result in either repopulating the memory contents
from the up-to-date contents of the underlying mapped file (for shared file
mappings, shared anonymous mappings, and shmem-based techniques such as
System V shared memory segments) or zero-fill-on-demand pages for anony-
mous private mappings.

Note that, when applied to shared mappings, MADV_DONTNEED might not
lead to immediate freeing of the pages in the range. The kernel is free to delay
freeing the pages until an appropriate moment. The resident set size (RSS) of
the calling process will be immediately reduced however.

MADV_DONTNEED cannot be applied to locked pages, or VM_PFNMAP
pages. (Pages marked with the kernel-internal VM_PFNMAP flag are special
memory areas that are not managed by the virtual memory subsystem. Such
pages are typically created by device drivers that map the pages into user
space.)

Support for Huge TLB pages was added in Linux v5.18. Addresses within a
mapping backed by Huge TLB pages must be aligned to the underlying Huge
TLB page size, and the range size is rounded up to a multiple of the underly-
ing Huge TLB page size.

Linux-specific advice values
The following Linux-specific advice values have no counterparts in the POSIX-speci-
fied posix_madvise(3), and may or may not have counterparts in the madvise() inter-
face available on other implementations. Note that some of these operations change
the semantics of memory accesses.

MADV_REMOVE (since Linux 2.6.16)
Free up a given range of pages and its associated backing store. This is equiv-
alent to punching a hole in the corresponding range of the backing store (see
fallocate(2)). Subsequent accesses in the specified address range will see data
with a value of zero.

The specified address range must be mapped shared and writable. This flag
cannot be applied to locked pages, or VM_PFNMAP pages.

In the initial implementation, only tmpfs(5) supported MADV_REMOVE; but
since Linux 3.5, any filesystem which supports the fallocate(2) FAL-
LOC_FL_PUNCH_HOLE mode also supports MADV_REMOVE. Filesys-
tems which do not support MADV_REMOVE fail with the error EOPNOT-
SUPP.

Linux man-pages 6.13 2024-12-23 420

madvise(2) System Calls Manual madvise(2)

Support for the Huge TLB filesystem was added in Linux v4.3.

MADV_DONTFORK (since Linux 2.6.16)
Do not make the pages in this range available to the child after a fork(2). This
is useful to prevent copy-on-write semantics from changing the physical loca-
tion of a page if the parent writes to it after a fork(2). (Such page relocations
cause problems for hardware that DMAs into the page.)

MADV_DOFORK (since Linux 2.6.16)
Undo the effect of MADV_DONTFORK, restoring the default behavior,
whereby a mapping is inherited across fork(2).

MADV_HWPOISON (since Linux 2.6.32)
Poison the pages in the range specified by addr and size and handle subse-
quent references to those pages like a hardware memory corruption. This op-
eration is available only for privileged (CAP_SYS_ADMIN) processes. This
operation may result in the calling process receiving a SIGBUS and the page
being unmapped.

This feature is intended for testing of memory error-handling code; it is avail-
able only if the kernel was configured with CONFIG_MEMORY_FAIL-
URE.

MADV_MERGEABLE (since Linux 2.6.32)
Enable Kernel Samepage Merging (KSM) for the pages in the range specified
by addr and size. The kernel regularly scans those areas of user memory that
have been marked as mergeable, looking for pages with identical content.
These are replaced by a single write-protected page (which is automatically
copied if a process later wants to update the content of the page). KSM
merges only private anonymous pages (see mmap(2)).

The KSM feature is intended for applications that generate many instances of
the same data (e.g., virtualization systems such as KVM). It can consume a lot
of processing power; use with care. See the Linux kernel source file Docu-
mentation/admin-guide/mm/ksm.rst for more details.

The MADV_MERGEABLE and MADV_UNMERGEABLE operations are
available only if the kernel was configured with CONFIG_KSM.

MADV_UNMERGEABLE (since Linux 2.6.32)
Undo the effect of an earlier MADV_MERGEABLE operation on the speci-
fied address range; KSM unmerges whatever pages it had merged in the ad-
dress range specified by addr and size.

MADV_SOFT_OFFLINE (since Linux 2.6.33)
Soft offline the pages in the range specified by addr and size. The memory of
each page in the specified range is preserved (i.e., when next accessed, the
same content will be visible, but in a new physical page frame), and the origi-
nal page is offlined (i.e., no longer used, and taken out of normal memory
management). The effect of the MADV_SOFT_OFFLINE operation is in-
visible to (i.e., does not change the semantics of) the calling process.

This feature is intended for testing of memory error-handling code; it is avail-
able only if the kernel was configured with CONFIG_MEMORY_FAIL-
URE.

Linux man-pages 6.13 2024-12-23 421

madvise(2) System Calls Manual madvise(2)

MADV_HUGEPAGE (since Linux 2.6.38)
Enable Transparent Huge Pages (THP) for pages in the range specified by
addr and size. The kernel will regularly scan the areas marked as huge page
candidates to replace them with huge pages. The kernel will also allocate
huge pages directly when the region is naturally aligned to the huge page size
(see posix_memalign(2)).

This feature is primarily aimed at applications that use large mappings of data
and access large regions of that memory at a time (e.g., virtualization systems
such as QEMU). It can very easily waste memory (e.g., a 2 MB mapping that
only ever accesses 1 byte will result in 2 MB of wired memory instead of one
4 KB page). See the Linux kernel source file Documentation/ad-
min-guide/mm/transhuge.rst for more details.

Most common kernels configurations provide MADV_HUGEPAGE-style be-
havior by default, and thus MADV_HUGEPAGE is normally not necessary.
It is mostly intended for embedded systems, where MADV_HUGEPAGE-
style behavior may not be enabled by default in the kernel. On such systems,
this flag can be used in order to selectively enable THP. Whenever
MADV_HUGEPAGE is used, it should always be in regions of memory with
an access pattern that the developer knows in advance won’t risk to increase
the memory footprint of the application when transparent hugepages are en-
abled.

Since Linux 5.4, automatic scan of eligible areas and replacement by huge
pages works with private anonymous pages (see mmap(2)), shmem pages, and
file-backed pages. For all memory types, memory may only be replaced by
huge pages on hugepage-aligned boundaries. For file-mapped memory —in-
cluding tmpfs (see tmpfs(2))— the mapping must also be naturally hugepage-
aligned within the file. Additionally, for file-backed, non-tmpfs memory, the
file must not be open for write and the mapping must be executable.

The VMA must not be marked VM_NOHUGEPAGE, VM_HUGETLB,
VM_IO, VM_DONTEXPAND, VM_MIXEDMAP, or VM_PFNMAP, nor
can it be stack memory or backed by a DAX-enabled device (unless the DAX
device is hot-plugged as System RAM). The process must also not have
PR_SET_THP_DISABLE set (see prctl(2)).

The MADV_HUGEPAGE, MADV_NOHUGEPAGE, and MADV_COL-
LAPSE operations are available only if the kernel was configured with CON-
FIG_TRANSPARENT_HUGEPAGE and file/shmem memory is only sup-
ported if the kernel was configured with CON-
FIG_READ_ONLY_THP_FOR_FS.

MADV_NOHUGEPAGE (since Linux 2.6.38)
Ensures that memory in the address range specified by addr and size will not
be backed by transparent hugepages.

MADV_COLLAPSE (since Linux 6.1)
Perform a best-effort synchronous collapse of the native pages mapped by the
memory range into Transparent Huge Pages (THPs). MADV_COLLAPSE
operates on the current state of memory of the calling process and makes no
persistent changes or guarantees on how pages will be mapped, constructed, or

Linux man-pages 6.13 2024-12-23 422

madvise(2) System Calls Manual madvise(2)

faulted in the future.

MADV_COLLAPSE supports private anonymous pages (see mmap(2)),
shmem pages, and file-backed pages. See MADV_HUGEPAGE for general
information on memory requirements for THP. If the range provided spans
multiple VMAs, the semantics of the collapse over each VMA is independent
from the others. If collapse of a given huge page-aligned/sized region fails,
the operation may continue to attempt collapsing the remainder of the speci-
fied memory. MADV_COLLAPSE will automatically clamp the provided
range to be hugepage-aligned.

All non-resident pages covered by the range will first be swapped/faulted-in,
before being copied onto a freshly allocated hugepage. If the native pages
compose the same PTE-mapped hugepage, and are suitably aligned, allocation
of a new hugepage may be elided and collapse may happen in-place. Un-
mapped pages will have their data directly initialized to 0 in the new
hugepage. However, for every eligible hugepage-aligned/sized region to be
collapsed, at least one page must currently be backed by physical memory.

MADV_COLLAPSE is independent of any sysfs (see sysfs(5)) setting under
/sys/kernel/mm/transparent_hugepage, both in terms of determining THP eli-
gibility, and allocation semantics. See Linux kernel source file Documenta-
tion/admin-guide/mm/transhuge.rst for more information. MADV_COL-
LAPSE also ignores huge= tmpfs mount when operating on tmpfs files. Allo-
cation for the new hugepage may enter direct reclaim and/or compaction, re-
gardless of VMA flags (though VM_NOHUGEPAGE is still respected).

When the system has multiple NUMA nodes, the hugepage will be allocated
from the node providing the most native pages.

If all hugepage-sized/aligned regions covered by the provided range were ei-
ther successfully collapsed, or were already PMD-mapped THPs, this opera-
tion will be deemed successful. Note that this doesn’t guarantee anything
about other possible mappings of the memory. In the event multiple
hugepage-aligned/sized areas fail to collapse, only the most-recently–failed
code will be set in errno.

MADV_DONTDUMP (since Linux 3.4)
Exclude from a core dump those pages in the range specified by addr and size.
This is useful in applications that have large areas of memory that are known
not to be useful in a core dump. The effect of MADV_DONTDUMP takes
precedence over the bit mask that is set via the /proc/ pid /coredump_filter file
(see core(5)).

MADV_DODUMP (since Linux 3.4)
Undo the effect of an earlier MADV_DONTDUMP.

MADV_FREE (since Linux 4.5)
The application no longer requires the pages in the range specified by addr
and size. The kernel can thus free these pages, but the freeing could be de-
layed until memory pressure occurs. For each of the pages that has been
marked to be freed but has not yet been freed, the free operation will be can-
celed if the caller writes into the page. After a successful MADV_FREE

Linux man-pages 6.13 2024-12-23 423

madvise(2) System Calls Manual madvise(2)

operation, any stale data (i.e., dirty, unwritten pages) will be lost when the ker-
nel frees the pages. However, subsequent writes to pages in the range will
succeed and then kernel cannot free those dirtied pages, so that the caller can
always see just written data. If there is no subsequent write, the kernel can
free the pages at any time. Once pages in the range have been freed, the caller
will see zero-fill-on-demand pages upon subsequent page references.

The MADV_FREE operation can be applied only to private anonymous pages
(see mmap(2)). Before Linux 4.12, when freeing pages on a swapless system,
the pages in the given range are freed instantly, regardless of memory pressure.

MADV_WIPEONFORK (since Linux 4.14)
Present the child process with zero-filled memory in this range after a fork(2).
This is useful in forking servers in order to ensure that sensitive per-process
data (for example, PRNG seeds, cryptographic secrets, and so on) is not
handed to child processes.

The MADV_WIPEONFORK operation can be applied only to private anony-
mous pages (see mmap(2)).

Within the child created by fork(2), the MADV_WIPEONFORK setting re-
mains in place on the specified address range. This setting is cleared during
execve(2).

MADV_KEEPONFORK (since Linux 4.14)
Undo the effect of an earlier MADV_WIPEONFORK.

MADV_COLD (since Linux 5.4)
Deactivate a given range of pages. This will make the pages a more probable
reclaim target should there be a memory pressure. This is a nondestructive op-
eration. The advice might be ignored for some pages in the range when it is
not applicable.

MADV_PAGEOUT (since Linux 5.4)
Reclaim a given range of pages. This is done to free up memory occupied by
these pages. If a page is anonymous, it will be swapped out. If a page is file-
backed and dirty, it will be written back to the backing storage. The advice
might be ignored for some pages in the range when it is not applicable.

MADV_POPULATE_READ (since Linux 5.14)
"Populate (prefault) page tables readable, faulting in all pages in the range just
as if manually reading from each page; however, avoid the actual memory ac-
cess that would have been performed after handling the fault.

In contrast to MAP_POPULATE, MADV_POPULATE_READ does not
hide errors, can be applied to (parts of) existing mappings and will always
populate (prefault) page tables readable. One example use case is prefaulting
a file mapping, reading all file content from disk; however, pages won’t be
dirtied and consequently won’t have to be written back to disk when evicting
the pages from memory.

Depending on the underlying mapping, map the shared zeropage, preallocate
memory or read the underlying file; files with holes might or might not preal-
locate blocks. If populating fails, a SIGBUS signal is not generated; instead,
an error is returned.

Linux man-pages 6.13 2024-12-23 424

madvise(2) System Calls Manual madvise(2)

If MADV_POPULATE_READ succeeds, all page tables have been popu-
lated (prefaulted) readable once. If MADV_POPULATE_READ fails, some
page tables might have been populated.

MADV_POPULATE_READ cannot be applied to mappings without read
permissions and special mappings, for example, mappings marked with ker-
nel-internal flags such as VM_PFNMAP or VM_IO, or secret memory re-
gions created using memfd_secret(2).

Note that with MADV_POPULATE_READ, the process can be killed at any
moment when the system runs out of memory.

MADV_POPULATE_WRITE (since Linux 5.14)
Populate (prefault) page tables writable, faulting in all pages in the range just
as if manually writing to each each page; however, avoid the actual memory
access that would have been performed after handling the fault.

In contrast to MAP_POPULATE, MADV_POPULATE_WRITE does not
hide errors, can be applied to (parts of) existing mappings and will always
populate (prefault) page tables writable. One example use case is preallocat-
ing memory, breaking any CoW (Copy on Write).

Depending on the underlying mapping, preallocate memory or read the under-
lying file; files with holes will preallocate blocks. If populating fails, a SIG-
BUS signal is not generated; instead, an error is returned.

If MADV_POPULATE_WRITE succeeds, all page tables have been popu-
lated (prefaulted) writable once. If MADV_POPULATE_WRITE fails,
some page tables might have been populated.

MADV_POPULATE_WRITE cannot be applied to mappings without write
permissions and special mappings, for example, mappings marked with ker-
nel-internal flags such as VM_PFNMAP or VM_IO, or secret memory re-
gions created using memfd_secret(2).

Note that with MADV_POPULATE_WRITE, the process can be killed at
any moment when the system runs out of memory.

MADV_GUARD_INSTALL (since Linux 6.13)
Install a lightweight guard region into the range specified by addr and size,
causing any read or write in the range to result in a SIGSEGV signal being
raised.

If the region maps memory pages those mappings will be replaced as part of
the operation, though if MADV_GUARD_INSTALL is applied to regions
containing pre-existing lightweight guard regions, they are left in place.

This operation is supported only for writable anonymous private mappings
which have not been mlock’d. An EINVAL error is returned if it is attempted
on any other kind of mapping.

This operation is more efficient than mapping a new region of memory
PROT_NONE, as it does not require the establishment of new mappings. In-
stead, regions of an existing mapping simply have their page tables manipu-
lated to establish the desired behavior. No additional memory is used.

Linux man-pages 6.13 2024-12-23 425

madvise(2) System Calls Manual madvise(2)

Lightweight guard regions remain on fork (except for any parts which have
had MADV_WIPEONFORK applied to them), and are not removed by
MADV_DONTNEED, MADV_FREE, MADV_PAGEOUT, or
MADV_COLD.

Attempting to mlock(2) lightweight guard regions will fail, as will
MADV_POPULATE_READ or MADV_POPULATE_WRITE.

If the mapping has its attributes changed, or is split or partially unmapped, any
existing guard regions remain in place (except if they are unmapped).

If a mapping is moved using mremap(2), lightweight guard regions are moved
with it.

Lightweight guard regions are removed when unmapped, on process teardown,
or when the MADV_GUARD_REMOVE operation is applied to them.

MADV_GUARD_REMOVE (since Linux 6.13)
Remove any lightweight guard regions which exist in the range specified by
addr and size.

All mappings in the range other than lightweight guard regions are left in
place (including mlock’d mappings). The operation is, however, valid only for
writable anonymous private mappings, returning an EINVAL error otherwise.

When lightweight guard regions are removed, they act as empty regions of the
containing mapping. Since only writable anonymous private mappings are
supported, they therefore become zero-fill-on-demand pages.

If any transparent huge pages are encountered in the operation, they are left in
place.

RETURN VALUE
On success, madvise() returns zero. On error, it returns -1 and errno is set to indicate
the error.

ERRORS
EACCES

advice is MADV_REMOVE, but the specified address range is not a shared
writable mapping.

EAGAIN
A kernel resource was temporarily unavailable.

EBADF
The map exists, but the area maps something that isn’t a file.

EBUSY
(for MADV_COLLAPSE) Could not charge hugepage to cgroup: cgroup
limit exceeded.

EBUSY
(for MADV_SOFT_OFFLINE) Any pages within the specified address range
could not be offlined. This might occur if the page is currently in use or
locked.

Linux man-pages 6.13 2024-12-23 426

madvise(2) System Calls Manual madvise(2)

EFAULT
advice is MADV_POPULATE_READ or MADV_POPULATE_WRITE,
and populating (prefaulting) page tables failed because a SIGBUS would have
been generated on actual memory access and the reason is not a HW poisoned
page (HW poisoned pages can, for example, be created using the
MADV_HWPOISON flag described elsewhere in this page).

EINVAL
addr is not page-aligned or size is negative.

EINVAL
advice is not a valid.

EINVAL
advice is MADV_COLD or MADV_PAGEOUT and the specified address
range includes locked, Huge TLB pages, or VM_PFNMAP pages.

EINVAL
advice is MADV_DONTNEED or MADV_REMOVE and the specified ad-
dress range includes locked, Huge TLB pages, or VM_PFNMAP pages.

EINVAL
advice is MADV_MERGEABLE or MADV_UNMERGEABLE, but the
kernel was not configured with CONFIG_KSM.

EINVAL
advice is MADV_FREE or MADV_WIPEONFORK but the specified ad-
dress range includes file, Huge TLB, MAP_SHARED, or VM_PFNMAP
ranges.

EINVAL
advice is MADV_POPULATE_READ or MADV_POPULATE_WRITE,
but the specified address range includes ranges with insufficient permissions or
special mappings, for example, mappings marked with kernel-internal flags
such a VM_IO or VM_PFNMAP, or secret memory regions created using
memfd_secret(2).

EINVAL
advice is MADV_GUARD_INSTALL or MADV_GUARD_REMOVE, but
the specified address range contains an unsupported mapping.

EIO (for MADV_WILLNEED) Paging in this area would exceed the process’s
maximum resident set size.

ENOMEM
(for MADV_WILLNEED) Not enough memory: paging in failed.

ENOMEM
(for MADV_COLLAPSE) Not enough memory: could not allocate hugepage.

ENOMEM
Addresses in the specified range are not currently mapped, or are outside the
address space of the process.

Linux man-pages 6.13 2024-12-23 427

madvise(2) System Calls Manual madvise(2)

ENOMEM
advice is MADV_POPULATE_READ or MADV_POPULATE_WRITE,
and populating (prefaulting) page tables failed because there was not enough
memory.

EPERM
advice is MADV_HWPOISON, but the caller does not have the
CAP_SYS_ADMIN capability.

EHWPOISON
advice is MADV_POPULATE_READ or MADV_POPULATE_WRITE,
and populating (prefaulting) page tables failed because a HW poisoned page
(HW poisoned pages can, for example, be created using the MADV_HWPOI-
SON flag described elsewhere in this page) was encountered.

VERSIONS
Versions of this system call, implementing a wide variety of advice values, exist on
many other implementations. Other implementations typically implement at least the
flags listed above under Conventional advice flags, albeit with some variation in se-
mantics.

POSIX.1-2001 describes posix_madvise(3) with constants POSIX_MADV_NOR-
MAL, POSIX_MADV_RANDOM, POSIX_MADV_SEQUENTIAL,
POSIX_MADV_WILLNEED, and POSIX_MADV_DONTNEED, and so on, with
behavior close to the similarly named flags listed above.

Linux
The Linux implementation requires that the address addr be page-aligned, and allows
size to be zero. If there are some parts of the specified address range that are not
mapped, the Linux version of madvise() ignores them and applies the call to the rest
(but returns ENOMEM from the system call, as it should).

madvise(0, 0, advice) will return zero iff advice is supported by the kernel and can be
relied on to probe for support.

STANDARDS
None.

HISTORY
First appeared in 4.4BSD.

Since Linux 3.18, support for this system call is optional, depending on the setting of
the CONFIG_ADVISE_SYSCALLS configuration option.

SEE ALSO
getrlimit(2), memfd_secret(2), mincore(2), mmap(2), mprotect(2), msync(2), mun-
map(2), prctl(2), process_madvise(2), posix_madvise(3), core(5)

Linux man-pages 6.13 2024-12-23 428

mbind(2) System Calls Manual mbind(2)

NAME
mbind - set memory policy for a memory range

LIBRARY
NUMA (Non-Uniform Memory Access) policy library (libnuma, -lnuma)

SYNOPSIS
#include <numaif.h>

long mbind(void addr[.size], unsigned long size, int mode,
const unsigned long nodemask[(.maxnode + ULONG_WIDTH - 1)

/ ULONG_WIDTH],
unsigned long maxnode, unsigned int flags);

DESCRIPTION
mbind() sets the NUMA memory policy, which consists of a policy mode and zero or
more nodes, for the memory range starting with addr and continuing for size bytes.
The memory policy defines from which node memory is allocated.

If the memory range specified by the addr and size arguments includes an "anony-
mous" region of memory—that is a region of memory created using the mmap(2) sys-
tem call with the MAP_ANONYMOUS—or a memory-mapped file, mapped using
the mmap(2) system call with the MAP_PRIVATE flag, pages will be allocated only
according to the specified policy when the application writes (stores) to the page. For
anonymous regions, an initial read access will use a shared page in the kernel contain-
ing all zeros. For a file mapped with MAP_PRIVATE, an initial read access will al-
locate pages according to the memory policy of the thread that causes the page to be
allocated. This may not be the thread that called mbind().

The specified policy will be ignored for any MAP_SHARED mappings in the speci-
fied memory range. Rather the pages will be allocated according to the memory pol-
icy of the thread that caused the page to be allocated. Again, this may not be the
thread that called mbind().

If the specified memory range includes a shared memory region created using the
shmget(2) system call and attached using the shmat(2) system call, pages allocated for
the anonymous or shared memory region will be allocated according to the policy
specified, regardless of which process attached to the shared memory segment causes
the allocation. If, however, the shared memory region was created with the
SHM_HUGETLB flag, the huge pages will be allocated according to the policy spec-
ified only if the page allocation is caused by the process that calls mbind() for that re-
gion.

By default, mbind() has an effect only for new allocations; if the pages inside the
range have been already touched before setting the policy, then the policy has no ef-
fect. This default behavior may be overridden by the MPOL_MF_MOVE and
MPOL_MF_MOVE_ALL flags described below.

The mode argument must specify one of MPOL_DEFAULT, MPOL_BIND,
MPOL_INTERLEAVE, MPOL_WEIGHTED_INTERLEAVE, MPOL_PRE-
FERRED, MPOL_PREFERRED_MANY, or MPOL_LOCAL (which are de-
scribed in detail below). All policy modes except MPOL_DEFAULT require the
caller to specify the node or nodes to which the mode applies, via the nodemask argu-
ment.

Linux man-pages 6.13 2025-02-21 429

mbind(2) System Calls Manual mbind(2)

The mode argument may also include an optional mode flag. The supported mode
flags are:

MPOL_F_NUMA_BALANCING (since Linux 5.15)
When mode is MPOL_BIND, enable the kernel NUMA balancing for the task
if it is supported by the kernel. If the flag isn’t supported by the kernel, or is
used with mode other than MPOL_BIND, -1 is returned and errno is set to
EINVAL.

MPOL_F_STATIC_NODES (since Linux-2.6.26)
A nonempty nodemask specifies physical node IDs. Linux does not remap the
nodemask when the thread moves to a different cpuset context, nor when the
set of nodes allowed by the thread’s current cpuset context changes.

MPOL_F_RELATIVE_NODES (since Linux-2.6.26)
A nonempty nodemask specifies node IDs that are relative to the set of node
IDs allowed by the thread’s current cpuset.

nodemask points to a bit mask of nodes containing up to maxnode bits. The bit mask
size is rounded to the next multiple of sizeof(unsigned long), but the kernel will use
bits only up to maxnode. A NULL value of nodemask or a maxnode value of zero
specifies the empty set of nodes. If the value of maxnode is zero, the nodemask argu-
ment is ignored. Where a nodemask is required, it must contain at least one node that
is on-line, allowed by the thread’s current cpuset context (unless the MPOL_F_STA-
TIC_NODES mode flag is specified), and contains memory.

The mode argument must include one of the following values:

MPOL_DEFAULT
This mode requests that any nondefault policy be removed, restoring default
behavior. When applied to a range of memory via mbind(), this means to use
the thread memory policy, which may have been set with set_mempolicy(2). If
the mode of the thread memory policy is also MPOL_DEFAULT, the system-
wide default policy will be used. The system-wide default policy allocates
pages on the node of the CPU that triggers the allocation. For MPOL_DE-
FAULT, the nodemask and maxnode arguments must be specify the empty set
of nodes.

MPOL_BIND
This mode specifies a strict policy that restricts memory allocation to the
nodes specified in nodemask. If nodemask specifies more than one node, page
allocations will come from the node with sufficient free memory that is closest
to the node where the allocation takes place. Pages will not be allocated from
any node not specified in the IR nodemask . (Before Linux 2.6.26, page allo-
cations came from the node with the lowest numeric node ID first, until that
node contained no free memory. Allocations then came from the node with
the next highest node ID specified in nodemask and so forth, until none of the
specified nodes contained free memory.)

MPOL_INTERLEAVE
This mode specifies that page allocations be interleaved across the set of nodes
specified in nodemask. This optimizes for bandwidth instead of latency by
spreading out pages and memory accesses to those pages across multiple

Linux man-pages 6.13 2025-02-21 430

mbind(2) System Calls Manual mbind(2)

nodes. To be effective the memory area should be fairly large, at least 1 MB
or bigger with a fairly uniform access pattern. Accesses to a single page of the
area will still be limited to the memory bandwidth of a single node.

MPOL_WEIGHTED_INTERLEAVE (since Linux 6.9)
This mode interleaves page allocations across the nodes specified in nodemask
according to the weights in /sys/kernel/mm/mempolicy/weighted_interleave.
For example, if bits 0, 2, and 5 are set in nodemask, and the contents of
/sys/kernel/mm/mempolicy/weighted_interleave/node0, /sys/ . . . /node2, and
/sys/ . . . /node5 are 4, 7, and 9, respectively, then pages in this region will be
allocated on nodes 0, 2, and 5 in a 4:7:9 ratio.

MPOL_PREFERRED
This mode sets the preferred node for allocation. The kernel will try to allo-
cate pages from this node first and fall back to other nodes if the preferred
nodes is low on free memory. If nodemask specifies more than one node ID,
the first node in the mask will be selected as the preferred node. If the node-
mask and maxnode arguments specify the empty set, then the memory is allo-
cated on the node of the CPU that triggered the allocation.

MPOL_PREFERRED_MANY (since Linux 5.15)
Specifies a set of nodes for allocation; see set_mempolicy(2)

MPOL_LOCAL (since Linux 3.8)
This mode specifies "local allocation"; the memory is allocated on the node of
the CPU that triggered the allocation (the "local node"). The nodemask and
maxnode arguments must specify the empty set. If the "local node" is low on
free memory, the kernel will try to allocate memory from other nodes. The
kernel will allocate memory from the "local node" whenever memory for this
node is available. If the "local node" is not allowed by the thread’s current
cpuset context, the kernel will try to allocate memory from other nodes. The
kernel will allocate memory from the "local node" whenever it becomes al-
lowed by the thread’s current cpuset context. By contrast, MPOL_DEFAULT
reverts to the memory policy of the thread (which may be set via set_mempol-
icy(2)); that policy may be something other than "local allocation".

If MPOL_MF_STRICT is passed in flags and mode is not MPOL_DEFAULT, then
the call fails with the error EIO if the existing pages in the memory range don’t fol-
low the policy.

If MPOL_MF_MOVE is specified in flags, then the kernel will attempt to move all
the existing pages in the memory range so that they follow the policy. Pages that are
shared with other processes will not be moved. If MPOL_MF_STRICT is also spec-
ified, then the call fails with the error EIO if some pages could not be moved. If the
MPOL_INTERLEAVE policy was specified, pages already residing on the specified
nodes will not be moved such that they are interleaved.

If MPOL_MF_MOVE_ALL is passed in flags, then the kernel will attempt to move
all existing pages in the memory range regardless of whether other processes use the
pages. The calling thread must be privileged (CAP_SYS_NICE) to use this flag. If
MPOL_MF_STRICT is also specified, then the call fails with the error EIO if some
pages could not be moved. If the MPOL_INTERLEAVE policy was specified,
pages already residing on the specified nodes will not be moved such that they are

Linux man-pages 6.13 2025-02-21 431

mbind(2) System Calls Manual mbind(2)

interleaved.

RETURN VALUE
On success, mbind() returns 0; on error, -1 is returned and errno is set to indicate the
error.

ERRORS
EFAULT

Part or all of the memory range specified by nodemask and maxnode points
outside your accessible address space. Or, there was an unmapped hole in the
specified memory range specified by addr and size.

EINVAL
An invalid value was specified for flags or mode; or addr + size was less than
addr; or addr is not a multiple of the system page size. Or, mode is
MPOL_DEFAULT and nodemask specified a nonempty set; or mode is
MPOL_BIND or MPOL_INTERLEAVE and nodemask is empty. Or,
maxnode exceeds a kernel-imposed limit. Or, nodemask specifies one or more
node IDs that are greater than the maximum supported node ID. Or, none of
the node IDs specified by nodemask are on-line and allowed by the thread’s
current cpuset context, or none of the specified nodes contain memory. Or, the
mode argument specified both MPOL_F_STATIC_NODES and
MPOL_F_RELATIVE_NODES.

EIO MPOL_MF_STRICT was specified and an existing page was already on a
node that does not follow the policy; or MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL was specified and the kernel was unable to move
all existing pages in the range.

ENOMEM
Insufficient kernel memory was available.

EPERM
The flags argument included the MPOL_MF_MOVE_ALL flag and the
caller does not have the CAP_SYS_NICE privilege.

STANDARDS
Linux.

HISTORY
Linux 2.6.7.

Support for huge page policy was added with Linux 2.6.16. For interleave policy to
be effective on huge page mappings the policied memory needs to be tens of
megabytes or larger.

Before Linux 5.7. MPOL_MF_STRICT was ignored on huge page mappings.

MPOL_MF_MOVE and MPOL_MF_MOVE_ALL are available only on Linux
2.6.16 and later.

NOTES
For information on library support, see numa(7).

NUMA policy is not supported on a memory-mapped file range that was mapped with
the MAP_SHARED flag.

Linux man-pages 6.13 2025-02-21 432

mbind(2) System Calls Manual mbind(2)

The MPOL_DEFAULT mode can have different effects for mbind() and set_mem-
policy(2). When MPOL_DEFAULT is specified for set_mempolicy(2), the thread’s
memory policy reverts to the system default policy or local allocation. When
MPOL_DEFAULT is specified for a range of memory using mbind(), any pages sub-
sequently allocated for that range will use the thread’s memory policy, as set by
set_mempolicy(2). This effectively removes the explicit policy from the specified
range, "falling back" to a possibly nondefault policy. To select explicit "local alloca-
tion" for a memory range, specify a mode of MPOL_LOCAL or MPOL_PRE-
FERRED with an empty set of nodes. This method will work for set_mempolicy(2),
as well.

SEE ALSO
get_mempolicy(2), getcpu(2), mmap(2), set_mempolicy(2), shmat(2), shmget(2),
numa(3), cpuset(7), numa(7), numactl(8)

Linux man-pages 6.13 2025-02-21 433

membarrier(2) System Calls Manual membarrier(2)

NAME
membarrier - issue memory barriers on a set of threads

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/membarrier.h> /* Definition of MEMBARRIER_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_membarrier, int cmd , unsigned int flags, int cpu_id);

Note: glibc provides no wrapper for membarrier(), necessitating the use of
syscall(2).

DESCRIPTION
The membarrier() system call helps reducing the overhead of the memory barrier in-
structions required to order memory accesses on multi-core systems. However, this
system call is heavier than a memory barrier, so using it effectively is not as simple as
replacing memory barriers with this system call, but requires understanding of the de-
tails below.

Use of memory barriers needs to be done taking into account that a memory barrier
always needs to be either matched with its memory barrier counterparts, or that the ar-
chitecture’s memory model doesn’t require the matching barriers.

There are cases where one side of the matching barriers (which we will refer to as
"fast side") is executed much more often than the other (which we will refer to as
"slow side"). This is a prime target for the use of membarrier(). The key idea is to
replace, for these matching barriers, the fast-side memory barriers by simple compiler
barriers, for example:

asm volatile ("" : : : "memory")

and replace the slow-side memory barriers by calls to membarrier().

This will add overhead to the slow side, and remove overhead from the fast side, thus
resulting in an overall performance increase as long as the slow side is infrequent
enough that the overhead of the membarrier() calls does not outweigh the perfor-
mance gain on the fast side.

The cmd argument is one of the following:

MEMBARRIER_CMD_QUERY (since Linux 4.3)
Query the set of supported commands. The return value of the call is a bit
mask of supported commands. MEMBARRIER_CMD_QUERY, which has
the value 0, is not itself included in this bit mask. This command is always
supported (on kernels where membarrier() is provided).

MEMBARRIER_CMD_GLOBAL (since Linux 4.16)
Ensure that all threads from all processes on the system pass through a state
where all memory accesses to user-space addresses match program order be-
tween entry to and return from the membarrier() system call. All threads on
the system are targeted by this command.

Linux man-pages 6.13 2024-07-23 434

membarrier(2) System Calls Manual membarrier(2)

MEMBARRIER_CMD_GLOBAL_EXPEDITED (since Linux 4.16)
Execute a memory barrier on all running threads of all processes that previ-
ously registered with MEMBARRIER_CMD_REGISTER_GLOBAL_EX-
PEDITED.

Upon return from the system call, the calling thread has a guarantee that all
running threads have passed through a state where all memory accesses to
user-space addresses match program order between entry to and return from
the system call (non-running threads are de facto in such a state). This guaran-
tee is provided only for the threads of processes that previously registered with
MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED.

Given that registration is about the intent to receive the barriers, it is valid to
invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED from a process
that has not employed MEMBARRIER_CMD_REGIS-
TER_GLOBAL_EXPEDITED.

The "expedited" commands complete faster than the non-expedited ones; they
never block, but have the downside of causing extra overhead.

MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED (since Linux 4.16)
Register the process’s intent to receive MEMBAR-
RIER_CMD_GLOBAL_EXPEDITED memory barriers.

MEMBARRIER_CMD_PRIVATE_EXPEDITED (since Linux 4.14)
Execute a memory barrier on each running thread belonging to the same
process as the calling thread.

Upon return from the system call, the calling thread has a guarantee that all its
running thread siblings have passed through a state where all memory accesses
to user-space addresses match program order between entry to and return from
the system call (non-running threads are de facto in such a state). This guaran-
tee is provided only for threads in the same process as the calling thread.

The "expedited" commands complete faster than the non-expedited ones; they
never block, but have the downside of causing extra overhead.

A process must register its intent to use the private expedited command prior
to using it.

MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED (since Linux 4.14)
Register the process’s intent to use MEMBARRIER_CMD_PRIVATE_EX-
PEDITED.

MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE (since Linux
4.16)

In addition to providing the memory ordering guarantees described in MEM-
BARRIER_CMD_PRIVATE_EXPEDITED, upon return from system call
the calling thread has a guarantee that all its running thread siblings have exe-
cuted a core serializing instruction. This guarantee is provided only for
threads in the same process as the calling thread.

The "expedited" commands complete faster than the non-expedited ones, they
never block, but have the downside of causing extra overhead.

Linux man-pages 6.13 2024-07-23 435

membarrier(2) System Calls Manual membarrier(2)

A process must register its intent to use the private expedited sync core com-
mand prior to using it.

MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE
(since Linux 4.16)

Register the process’s intent to use MEMBARRIER_CMD_PRIVATE_EX-
PEDITED_SYNC_CORE.

MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ (since Linux 5.10)
Ensure the caller thread, upon return from system call, that all its running
thread siblings have any currently running rseq critical sections restarted if
flags parameter is 0; if flags parameter is MEMBAR-
RIER_CMD_FLAG_CPU, then this operation is performed only on CPU in-
dicated by cpu_id . This guarantee is provided only for threads in the same
process as the calling thread.

RSEQ membarrier is only available in the "private expedited" form.

A process must register its intent to use the private expedited rseq command
prior to using it.

MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ (since
Linux 5.10)

Register the process’s intent to use MEMBARRIER_CMD_PRIVATE_EX-
PEDITED_RSEQ.

MEMBARRIER_CMD_SHARED (since Linux 4.3)
This is an alias for MEMBARRIER_CMD_GLOBAL that exists for header
backward compatibility.

The flags argument must be specified as 0 unless the command is MEMBAR-
RIER_CMD_PRIVATE_EXPEDITED_RSEQ, in which case flags can be either 0
or MEMBARRIER_CMD_FLAG_CPU.

The cpu_id argument is ignored unless flags is MEMBAR-
RIER_CMD_FLAG_CPU, in which case it must specify the CPU targeted by this
membarrier command.

All memory accesses performed in program order from each targeted thread are guar-
anteed to be ordered with respect to membarrier().

If we use the semantic barrier() to represent a compiler barrier forcing memory ac-
cesses to be performed in program order across the barrier, and smp_mb() to represent
explicit memory barriers forcing full memory ordering across the barrier, we have the
following ordering table for each pairing of barrier(), membarrier(), and smp_mb().
The pair ordering is detailed as (O: ordered, X: not ordered):

barrier() smp_mb() membarrier()
barrier() X X O
smp_mb() X O O
membarrier() O O O

RETURN VALUE
On success, the MEMBARRIER_CMD_QUERY operation returns a bit mask of
supported commands, and the MEMBARRIER_CMD_GLOBAL, MEMBAR-
RIER_CMD_GLOBAL_EXPEDITED,

Linux man-pages 6.13 2024-07-23 436

membarrier(2) System Calls Manual membarrier(2)

MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED, MEMBAR-
RIER_CMD_PRIVATE_EXPEDITED, MEMBARRIER_CMD_REGIS-
TER_PRIVATE_EXPEDITED, MEMBARRIER_CMD_PRIVATE_EXPE-
DITED_SYNC_CORE, and MEMBARRIER_CMD_REGISTER_PRI-
VATE_EXPEDITED_SYNC_CORE operations return zero. On error, -1 is re-
turned, and errno is set to indicate the error.

For a given command, with flags set to 0, this system call is guaranteed to always re-
turn the same value until reboot. Further calls with the same arguments will lead to
the same result. Therefore, with flags set to 0, error handling is required only for the
first call to membarrier().

ERRORS
EINVAL

cmd is invalid, or flags is nonzero, or the MEMBARRIER_CMD_GLOBAL
command is disabled because the nohz_full CPU parameter has been set, or
the MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE and
MEMBARRIER_CMD_REGISTER_PRIVATE_EXPE-
DITED_SYNC_CORE commands are not implemented by the architecture.

ENOSYS
The membarrier() system call is not implemented by this kernel.

EPERM
The current process was not registered prior to using private expedited com-
mands.

STANDARDS
Linux.

HISTORY
Linux 4.3.

Before Linux 5.10, the prototype was:

int membarrier(int cmd, int flags);

NOTES
A memory barrier instruction is part of the instruction set of architectures with weakly
ordered memory models. It orders memory accesses prior to the barrier and after the
barrier with respect to matching barriers on other cores. For instance, a load fence
can order loads prior to and following that fence with respect to stores ordered by
store fences.

Program order is the order in which instructions are ordered in the program assembly
code.

Examples where membarrier() can be useful include implementations of Read-
Copy-Update libraries and garbage collectors.

EXAMPLES
Assuming a multithreaded application where "fast_path()" is executed very frequently,
and where "slow_path()" is executed infrequently, the following code (x86) can be
transformed using membarrier():

#include <stdlib.h>

Linux man-pages 6.13 2024-07-23 437

membarrier(2) System Calls Manual membarrier(2)

static volatile int a, b;

static void
fast_path(int *read_b)
{

a = 1;
asm volatile ("mfence" : : : "memory");
*read_b = b;

}

static void
slow_path(int *read_a)
{

b = 1;
asm volatile ("mfence" : : : "memory");
*read_a = a;

}

int
main(void)
{

int read_a, read_b;

/*
* Real applications would call fast_path() and slow_path()
* from different threads. Call those from main() to keep
* this example short.
*/

slow_path(&read_a);
fast_path(&read_b);

/*
* read_b == 0 implies read_a == 1 and
* read_a == 0 implies read_b == 1.
*/

if (read_b == 0 && read_a == 0)
abort();

exit(EXIT_SUCCESS);
}

The code above transformed to use membarrier() becomes:

#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

Linux man-pages 6.13 2024-07-23 438

membarrier(2) System Calls Manual membarrier(2)

#include <sys/syscall.h>
#include <linux/membarrier.h>

static volatile int a, b;

static int
membarrier(int cmd, unsigned int flags, int cpu_id)
{

return syscall(__NR_membarrier, cmd, flags, cpu_id);
}

static int
init_membarrier(void)
{

int ret;

/* Check that membarrier() is supported. */

ret = membarrier(MEMBARRIER_CMD_QUERY, 0, 0);
if (ret < 0) {

perror("membarrier");
return -1;

}

if (!(ret & MEMBARRIER_CMD_GLOBAL)) {
fprintf(stderr,

"membarrier does not support MEMBARRIER_CMD_GLOBAL\n");
return -1;

}

return 0;
}

static void
fast_path(int *read_b)
{

a = 1;
asm volatile ("" : : : "memory");
*read_b = b;

}

static void
slow_path(int *read_a)
{

b = 1;
membarrier(MEMBARRIER_CMD_GLOBAL, 0, 0);
*read_a = a;

}

Linux man-pages 6.13 2024-07-23 439

membarrier(2) System Calls Manual membarrier(2)

int
main(int argc, char *argv[])
{

int read_a, read_b;

if (init_membarrier())
exit(EXIT_FAILURE);

/*
* Real applications would call fast_path() and slow_path()
* from different threads. Call those from main() to keep
* this example short.
*/

slow_path(&read_a);
fast_path(&read_b);

/*
* read_b == 0 implies read_a == 1 and
* read_a == 0 implies read_b == 1.
*/

if (read_b == 0 && read_a == 0)
abort();

exit(EXIT_SUCCESS);
}

Linux man-pages 6.13 2024-07-23 440

memfd_create(2) System Calls Manual memfd_create(2)

NAME
memfd_create - create an anonymous file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/mman.h>

int memfd_create(const char *name, unsigned int flags);

DESCRIPTION
memfd_create() creates an anonymous file and returns a file descriptor that refers to
it. The file behaves like a regular file, and so can be modified, truncated, memory-
mapped, and so on. However, unlike a regular file, it lives in RAM and has a volatile
backing storage. Once all references to the file are dropped, it is automatically re-
leased. Anonymous memory is used for all backing pages of the file. Therefore, files
created by memfd_create() have the same semantics as other anonymous memory al-
locations such as those allocated using mmap(2) with the MAP_ANONYMOUS flag.

The initial size of the file is set to 0. Following the call, the file size should be set us-
ing ftruncate(2). (Alternatively, the file may be populated by calls to write(2) or simi-
lar.)

The name supplied in name is used as a filename and will be displayed as the target of
the corresponding symbolic link in the directory /proc/self/fd/ . The displayed name is
always prefixed with memfd: and serves only for debugging purposes. Names do not
affect the behavior of the file descriptor, and as such multiple files can have the same
name without any side effects.

The following values may be bitwise ORed in flags to change the behavior of
memfd_create():

MFD_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See
the description of the O_CLOEXEC flag in open(2) for reasons why this may
be useful.

MFD_ALLOW_SEALING
Allow sealing operations on this file. See the discussion of the
F_ADD_SEALS and F_GET_SEALS operations in fcntl(2), and also
NOTES, below. The initial set of seals is empty. If this flag is not set, the ini-
tial set of seals will be F_SEAL_SEAL, meaning that no other seals can be
set on the file.

MFD_HUGETLB (since Linux 4.14)
The anonymous file will be created in the hugetlbfs filesystem using huge
pages. See the Linux kernel source file Documentation/ad-
min-guide/mm/hugetlbpage.rst for more information about hugetlbfs. Speci-
fying both MFD_HUGETLB and MFD_ALLOW_SEALING in flags is
supported since Linux 4.16.

Linux man-pages 6.13 2024-11-17 441

memfd_create(2) System Calls Manual memfd_create(2)

MFD_HUGE_2MB
MFD_HUGE_1GB
. . . Used in conjunction with MFD_HUGETLB to select alternative hugetlb page

sizes (respectively, 2 MB, 1 GB, ...) on systems that support multiple hugetlb
page sizes. Definitions for known huge page sizes are included in the header
file <linux/memfd.h>.

For details on encoding huge page sizes not included in the header file, see the
discussion of the similarly named constants in mmap(2).

Unused bits in flags must be 0.

As its return value, memfd_create() returns a new file descriptor that can be used to
refer to the file. This file descriptor is opened for both reading and writing
(O_RDWR) and O_LARGEFILE is set for the file descriptor.

With respect to fork(2) and execve(2), the usual semantics apply for the file descriptor
created by memfd_create(). A copy of the file descriptor is inherited by the child
produced by fork(2) and refers to the same file. The file descriptor is preserved across
execve(2), unless the close-on-exec flag has been set.

RETURN VALUE
On success, memfd_create() returns a new file descriptor. On error, -1 is returned
and errno is set to indicate the error.

ERRORS
EFAULT

The address in name points to invalid memory.

EINVAL
flags included unknown bits.

EINVAL
name was too long. (The limit is 249 bytes, excluding the terminating null
byte.)

EINVAL
Both MFD_HUGETLB and MFD_ALLOW_SEALING were specified in
flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
There was insufficient memory to create a new anonymous file.

EPERM
The MFD_HUGETLB flag was specified, but the caller was not privileged
(did not have the CAP_IPC_LOCK capability) and is not a member of the
sysctl_hugetlb_shm_group group; see the description of
/proc/sys/vm/sysctl_hugetlb_shm_group in proc(5).

Linux man-pages 6.13 2024-11-17 442

memfd_create(2) System Calls Manual memfd_create(2)

STANDARDS
Linux.

HISTORY
Linux 3.17, glibc 2.27.

NOTES
The memfd_create() system call provides a simple alternative to manually mounting
a tmpfs(5) filesystem and creating and opening a file in that filesystem. The primary
purpose of memfd_create() is to create files and associated file descriptors that are
used with the file-sealing APIs provided by fcntl(2).

The memfd_create() system call also has uses without file sealing (which is why file-
sealing is disabled, unless explicitly requested with the MFD_ALLOW_SEALING
flag). In particular, it can be used as an alternative to creating files in tmp or as an al-
ternative to using the open(2) O_TMPFILE in cases where there is no intention to
actually link the resulting file into the filesystem.

File sealing
In the absence of file sealing, processes that communicate via shared memory must ei-
ther trust each other, or take measures to deal with the possibility that an untrusted
peer may manipulate the shared memory region in problematic ways. For example,
an untrusted peer might modify the contents of the shared memory at any time, or
shrink the shared memory region. The former possibility leaves the local process vul-
nerable to time-of-check-to-time-of-use race conditions (typically dealt with by copy-
ing data from the shared memory region before checking and using it). The latter pos-
sibility leaves the local process vulnerable to SIGBUS signals when an attempt is
made to access a now-nonexistent location in the shared memory region. (Dealing
with this possibility necessitates the use of a handler for the SIGBUS signal.)

Dealing with untrusted peers imposes extra complexity on code that employs shared
memory. Memory sealing enables that extra complexity to be eliminated, by allowing
a process to operate secure in the knowledge that its peer can’t modify the shared
memory in an undesired fashion.

An example of the usage of the sealing mechanism is as follows:

(1) The first process creates a tmpfs(5) file using memfd_create(). The call yields
a file descriptor used in subsequent steps.

(2) The first process sizes the file created in the previous step using ftruncate(2),
maps it using mmap(2), and populates the shared memory with the desired data.

(3) The first process uses the fcntl(2) F_ADD_SEALS operation to place one or
more seals on the file, in order to restrict further modifications on the file. (If
placing the seal F_SEAL_WRITE, then it will be necessary to first unmap the
shared writable mapping created in the previous step. Otherwise, behavior sim-
ilar to F_SEAL_WRITE can be achieved by using F_SEAL_FU-
TURE_WRITE, which will prevent future writes via mmap(2) and write(2)
from succeeding while keeping existing shared writable mappings).

(4) A second process obtains a file descriptor for the tmpfs(5) file and maps it.
Among the possible ways in which this could happen are the following:

Linux man-pages 6.13 2024-11-17 443

memfd_create(2) System Calls Manual memfd_create(2)

• The process that called memfd_create() could transfer the resulting file de-
scriptor to the second process via a UNIX domain socket (see unix(7) and
cmsg(3)). The second process then maps the file using mmap(2).

• The second process is created via fork(2) and thus automatically inherits the
file descriptor and mapping. (Note that in this case and the next, there is a
natural trust relationship between the two processes, since they are running
under the same user ID. Therefore, file sealing would not normally be nec-
essary.)

• The second process opens the file /proc/ pid /fd/ fd, where <pid> is the PID
of the first process (the one that called memfd_create()), and <fd> is the
number of the file descriptor returned by the call to memfd_create() in that
process. The second process then maps the file using mmap(2).

(5) The second process uses the fcntl(2) F_GET_SEALS operation to retrieve the
bit mask of seals that has been applied to the file. This bit mask can be in-
spected in order to determine what kinds of restrictions have been placed on file
modifications. If desired, the second process can apply further seals to impose
additional restrictions (so long as the F_SEAL_SEAL seal has not yet been ap-
plied).

EXAMPLES
Below are shown two example programs that demonstrate the use of memfd_create()
and the file sealing API.

The first program, t_memfd_create.c, creates a tmpfs(5) file using memfd_create(),
sets a size for the file, maps it into memory, and optionally places some seals on the
file. The program accepts up to three command-line arguments, of which the first two
are required. The first argument is the name to associate with the file, the second ar-
gument is the size to be set for the file, and the optional third argument is a string of
characters that specify seals to be set on the file.

The second program, t_get_seals.c, can be used to open an existing file that was cre-
ated via memfd_create() and inspect the set of seals that have been applied to that
file.

The following shell session demonstrates the use of these programs. First we create a
tmpfs(5) file and set some seals on it:

$./t_memfd_create my_memfd_file 4096 sw &
[1] 11775
PID: 11775; fd: 3; /proc/11775/fd/3

At this point, the t_memfd_create program continues to run in the background. From
another program, we can obtain a file descriptor for the file created by memfd_cre-
ate() by opening the /proc/ pid /fd file that corresponds to the file descriptor opened by
memfd_create(). Using that pathname, we inspect the content of the /proc/ pid /fd
symbolic link, and use our t_get_seals program to view the seals that have been
placed on the file:

$ readlink /proc/11775/fd/3
/memfd:my_memfd_file (deleted)
$./t_get_seals /proc/11775/fd/3
Existing seals: WRITE SHRINK

Linux man-pages 6.13 2024-11-17 444

memfd_create(2) System Calls Manual memfd_create(2)

Program source: t_memfd_create.c

#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd;
char *name, *seals_arg;
ssize_t size;
unsigned int seals;

if (argc < 3) {
fprintf(stderr, "%s name size [seals]\n", argv[0]);
fprintf(stderr, "\t'seals' can contain any of the "

"following characters:\n");
fprintf(stderr, "\t\tg - F_SEAL_GROW\n");
fprintf(stderr, "\t\ts - F_SEAL_SHRINK\n");
fprintf(stderr, "\t\tw - F_SEAL_WRITE\n");
fprintf(stderr, "\t\tW - F_SEAL_FUTURE_WRITE\n");
fprintf(stderr, "\t\tS - F_SEAL_SEAL\n");
exit(EXIT_FAILURE);

}

name = argv[1];
size = atoi(argv[2]);
seals_arg = argv[3];

/* Create an anonymous file in tmpfs; allow seals to be
placed on the file. */

fd = memfd_create(name, MFD_ALLOW_SEALING);
if (fd == -1)

err(EXIT_FAILURE, "memfd_create");

/* Size the file as specified on the command line. */

if (ftruncate(fd, size) == -1)
err(EXIT_FAILURE, "truncate");

Linux man-pages 6.13 2024-11-17 445

memfd_create(2) System Calls Manual memfd_create(2)

printf("PID: %jd; fd: %d; /proc/%jd/fd/%d\n",
(intmax_t) getpid(), fd, (intmax_t) getpid(), fd);

/* Code to map the file and populate the mapping with data
omitted. */

/* If a 'seals' command-line argument was supplied, set some
seals on the file. */

if (seals_arg != NULL) {
seals = 0;

if (strchr(seals_arg, 'g') != NULL)
seals |= F_SEAL_GROW;

if (strchr(seals_arg, 's') != NULL)
seals |= F_SEAL_SHRINK;

if (strchr(seals_arg, 'w') != NULL)
seals |= F_SEAL_WRITE;

if (strchr(seals_arg, 'W') != NULL)
seals |= F_SEAL_FUTURE_WRITE;

if (strchr(seals_arg, 'S') != NULL)
seals |= F_SEAL_SEAL;

if (fcntl(fd, F_ADD_SEALS, seals) == -1)
err(EXIT_FAILURE, "fcntl");

}

/* Keep running, so that the file created by memfd_create()
continues to exist. */

pause();

exit(EXIT_SUCCESS);
}

Program source: t_get_seals.c

#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

int fd;
unsigned int seals;

Linux man-pages 6.13 2024-11-17 446

memfd_create(2) System Calls Manual memfd_create(2)

if (argc != 2) {
fprintf(stderr, "%s /proc/PID/fd/FD\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDWR);
if (fd == -1)

err(EXIT_FAILURE, "open");

seals = fcntl(fd, F_GET_SEALS);
if (seals == -1)

err(EXIT_FAILURE, "fcntl");

printf("Existing seals:");
if (seals & F_SEAL_SEAL)

printf(" SEAL");
if (seals & F_SEAL_GROW)

printf(" GROW");
if (seals & F_SEAL_WRITE)

printf(" WRITE");
if (seals & F_SEAL_FUTURE_WRITE)

printf(" FUTURE_WRITE");
if (seals & F_SEAL_SHRINK)

printf(" SHRINK");
printf("\n");

/* Code to map the file and access the contents of the
resulting mapping omitted. */

exit(EXIT_SUCCESS);
}

SEE ALSO
fcntl(2), ftruncate(2), memfd_secret(2), mmap(2), shmget(2), shm_open(3)

Linux man-pages 6.13 2024-11-17 447

memfd_secret(2) System Calls Manual memfd_secret(2)

NAME
memfd_secret - create an anonymous RAM-based file to access secret memory re-
gions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_memfd_secret, unsigned int flags);

Note: glibc provides no wrapper for memfd_secret(), necessitating the use of
syscall(2).

DESCRIPTION
memfd_secret() creates an anonymous RAM-based file and returns a file descriptor
that refers to it. The file provides a way to create and access memory regions with
stronger protection than usual RAM-based files and anonymous memory mappings.
Once all open references to the file are closed, it is automatically released. The initial
size of the file is set to 0. Following the call, the file size should be set using ftrun-
cate(2).

The memory areas backing the file created with memfd_secret(2) are visible only to
the processes that have access to the file descriptor. The memory region is removed
from the kernel page tables and only the page tables of the processes holding the file
descriptor map the corresponding physical memory. (Thus, the pages in the region
can’t be accessed by the kernel itself, so that, for example, pointers to the region can’t
be passed to system calls.)

The following values may be bitwise ORed in flags to control the behavior of
memfd_secret():

FD_CLOEXEC
Set the close-on-exec flag on the new file descriptor, which causes the region
to be removed from the process on execve(2). See the description of the
O_CLOEXEC flag in open(2)

As its return value, memfd_secret() returns a new file descriptor that refers to an
anonymous file. This file descriptor is opened for both reading and writing
(O_RDWR) and O_LARGEFILE is set for the file descriptor.

With respect to fork(2) and execve(2), the usual semantics apply for the file descriptor
created by memfd_secret(). A copy of the file descriptor is inherited by the child
produced by fork(2) and refers to the same file. The file descriptor is preserved across
execve(2), unless the close-on-exec flag has been set.

The memory region is locked into memory in the same way as with mlock(2), so that
it will never be written into swap, and hibernation is inhibited for as long as any
memfd_secret() descriptions exist. However the implementation of memfd_secret()
will not try to populate the whole range during the mmap(2) call that attaches the re-
gion into the process’s address space; instead, the pages are only actually allocated as
they are faulted in. The amount of memory allowed for memory mappings of the file
descriptor obeys the same rules as mlock(2) and cannot exceed

Linux man-pages 6.13 2024-07-23 448

memfd_secret(2) System Calls Manual memfd_secret(2)

RLIMIT_MEMLOCK.

RETURN VALUE
On success, memfd_secret() returns a new file descriptor. On error, -1 is returned
and errno is set to indicate the error.

ERRORS
EINVAL

flags included unknown bits.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

EMFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
There was insufficient memory to create a new anonymous file.

ENOSYS
memfd_secret() is not implemented on this architecture, or has not been en-
abled on the kernel command-line with secretmem_enable=1.

STANDARDS
Linux.

HISTORY
Linux 5.14.

NOTES
The memfd_secret() system call is designed to allow a user-space process to create a
range of memory that is inaccessible to anybody else - kernel included. There is no
100% guarantee that kernel won’t be able to access memory ranges backed by
memfd_secret() in any circumstances, but nevertheless, it is much harder to exfiltrate
data from these regions.

memfd_secret() provides the following protections:

• Enhanced protection (in conjunction with all the other in-kernel attack prevention
systems) against ROP attacks. Absence of any in-kernel primitive for accessing
memory backed by memfd_secret() means that one-gadget ROP attack can’t
work to perform data exfiltration. The attacker would need to find enough ROP
gadgets to reconstruct the missing page table entries, which significantly increases
difficulty of the attack, especially when other protections like the kernel stack size
limit and address space layout randomization are in place.

• Prevent cross-process user-space memory exposures. Once a region for a
memfd_secret() memory mapping is allocated, the user can’t accidentally pass it
into the kernel to be transmitted somewhere. The memory pages in this region
cannot be accessed via the direct map and they are disallowed in get_user_pages.

• Harden against exploited kernel flaws. In order to access memory areas backed by
memfd_secret(), a kernel-side attack would need to either walk the page tables
and create new ones, or spawn a new privileged user-space process to perform se-
crets exfiltration using ptrace(2).

The way memfd_secret() allocates and locks the memory may impact overall system

Linux man-pages 6.13 2024-07-23 449

memfd_secret(2) System Calls Manual memfd_secret(2)

performance, therefore the system call is disabled by default and only available if the
system administrator turned it on using "secretmem.enable=y" kernel parameter.

To prevent potential data leaks of memory regions backed by memfd_secret() from a
hybernation image, hybernation is prevented when there are active memfd_secret()
users.

SEE ALSO
fcntl(2), ftruncate(2), mlock(2), memfd_create(2), mmap(2), setrlimit(2)

Linux man-pages 6.13 2024-07-23 450

migrate_pages(2) System Calls Manual migrate_pages(2)

NAME
migrate_pages - move all pages in a process to another set of nodes

LIBRARY
NUMA (Non-Uniform Memory Access) policy library (libnuma, -lnuma)

SYNOPSIS
#include <numaif.h>

long migrate_pages(int pid , unsigned long maxnode,
const unsigned long *old_nodes,
const unsigned long *new_nodes);

DESCRIPTION
migrate_pages() attempts to move all pages of the process pid that are in memory
nodes old_nodes to the memory nodes in new_nodes. Pages not located in any node
in old_nodes will not be migrated. As far as possible, the kernel maintains the rela-
tive topology relationship inside old_nodes during the migration to new_nodes.

The old_nodes and new_nodes arguments are pointers to bit masks of node numbers,
with up to maxnode bits in each mask. These masks are maintained as arrays of un-
signed long integers (in the last long integer, the bits beyond those specified by maxn-
ode are ignored). The maxnode argument is the maximum node number in the bit
mask plus one (this is the same as in mbind(2), but different from select(2)).

The pid argument is the ID of the process whose pages are to be moved. To move
pages in another process, the caller must be privileged (CAP_SYS_NICE) or the real
or effective user ID of the calling process must match the real or saved-set user ID of
the target process. If pid is 0, then migrate_pages() moves pages of the calling
process.

Pages shared with another process will be moved only if the initiating process has the
CAP_SYS_NICE privilege.

RETURN VALUE
On success migrate_pages() returns the number of pages that could not be moved
(i.e., a return of zero means that all pages were successfully moved). On error, it re-
turns -1, and sets errno to indicate the error.

ERRORS
EFAULT

Part or all of the memory range specified by old_nodes/new_nodes and maxn-
ode points outside your accessible address space.

EINVAL
The value specified by maxnode exceeds a kernel-imposed limit. Or,
old_nodes or new_nodes specifies one or more node IDs that are greater than
the maximum supported node ID. Or, none of the node IDs specified by
new_nodes are on-line and allowed by the process’s current cpuset context, or
none of the specified nodes contain memory.

EPERM
Insufficient privilege (CAP_SYS_NICE) to move pages of the process speci-
fied by pid , or insufficient privilege (CAP_SYS_NICE) to access the speci-
fied target nodes.

Linux man-pages 6.13 2024-07-23 451

migrate_pages(2) System Calls Manual migrate_pages(2)

ESRCH
No process matching pid could be found.

STANDARDS
Linux.

HISTORY
Linux 2.6.16.

NOTES
For information on library support, see numa(7).

Use get_mempolicy(2) with the MPOL_F_MEMS_ALLOWED flag to obtain the set
of nodes that are allowed by the calling process’s cpuset. Note that this information is
subject to change at any time by manual or automatic reconfiguration of the cpuset.

Use of migrate_pages() may result in pages whose location (node) violates the mem-
ory policy established for the specified addresses (see mbind(2)) and/or the specified
process (see set_mempolicy(2)). That is, memory policy does not constrain the desti-
nation nodes used by migrate_pages().

The <numaif.h> header is not included with glibc, but requires installing lib-
numa-devel or a similar package.

SEE ALSO
get_mempolicy(2), mbind(2), set_mempolicy(2), numa(3), numa_maps(5), cpuset(7),
numa(7), migratepages(8), numastat(8)

Documentation/vm/page_migration.rst in the Linux kernel source tree

Linux man-pages 6.13 2024-07-23 452

mincore(2) System Calls Manual mincore(2)

NAME
mincore - determine whether pages are resident in memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int mincore(void addr[.length], size_t length, unsigned char *vec);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mincore():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
mincore() returns a vector that indicates whether pages of the calling process’s virtual
memory are resident in core (RAM), and so will not cause a disk access (page fault) if
referenced. The kernel returns residency information about the pages starting at the
address addr, and continuing for length bytes.

The addr argument must be a multiple of the system page size. The length argument
need not be a multiple of the page size, but since residency information is returned for
whole pages, length is effectively rounded up to the next multiple of the page size.
One may obtain the page size (PAGE_SIZE) using sysconf(_SC_PAGESIZE).

The vec argument must point to an array containing at least (length+PAGE_SIZE-1) /
PAGE_SIZE bytes. On return, the least significant bit of each byte will be set if the
corresponding page is currently resident in memory, and be clear otherwise. (The set-
tings of the other bits in each byte are undefined; these bits are reserved for possible
later use.) Of course the information returned in vec is only a snapshot: pages that are
not locked in memory can come and go at any moment, and the contents of vec may
already be stale by the time this call returns.

RETURN VALUE
On success, mincore() returns zero. On error, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
EAGAIN kernel is temporarily out of resources.

EFAULT
vec points to an invalid address.

EINVAL
addr is not a multiple of the page size.

ENOMEM
length is greater than (TASK_SIZE - addr). (This could occur if a negative
value is specified for length, since that value will be interpreted as a large un-
signed integer.) In Linux 2.6.11 and earlier, the error EINVAL was returned
for this condition.

Linux man-pages 6.13 2024-07-23 453

mincore(2) System Calls Manual mincore(2)

ENOMEM
addr to addr + length contained unmapped memory.

STANDARDS
None.

HISTORY
Linux 2.3.99pre1, glibc 2.2.

First appeared in 4.4BSD.

NetBSD, FreeBSD, OpenBSD, Solaris 8, AIX 5.1, SunOS 4.1.

BUGS
Before Linux 2.6.21, mincore() did not return correct information for MAP_PRI-
VATE mappings, or for nonlinear mappings (established using remap_file_pages(2)).

SEE ALSO
fincore(1), madvise(2), mlock(2), mmap(2), posix_fadvise(2), posix_madvise(3)

Linux man-pages 6.13 2024-07-23 454

mkdir(2) System Calls Manual mkdir(2)

NAME
mkdir, mkdirat - create a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

int mkdir(const char *pathname, mode_t mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int mkdirat(int dirfd , const char *pathname, mode_t mode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mkdirat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
mkdir() attempts to create a directory named pathname.

The argument mode specifies the mode for the new directory (see inode(7)). It is
modified by the process’s umask in the usual way: in the absence of a default ACL,
the mode of the created directory is (mode & ~umask & 0777). Whether other mode
bits are honored for the created directory depends on the operating system. For
Linux, see VERSIONS below.

The newly created directory will be owned by the effective user ID of the process. If
the directory containing the file has the set-group-ID bit set, or if the filesystem is
mounted with BSD group semantics (mount -o bsdgroups or, synonymously mount
-o grpid), the new directory will inherit the group ownership from its parent; other-
wise it will be owned by the effective group ID of the process.

If the parent directory has the set-group-ID bit set, then so will the newly created di-
rectory.

mkdirat()
The mkdirat() system call operates in exactly the same way as mkdir(), except for
the differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by mkdir() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like
mkdir())

If pathname is absolute, then dirfd is ignored.

See openat(2) for an explanation of the need for mkdirat().

Linux man-pages 6.13 2025-03-03 455

mkdir(2) System Calls Manual mkdir(2)

RETURN VALUE
mkdir() and mkdirat() return zero on success. On error, -1 is returned and errno is
set to indicate the error.

ERRORS
EACCES

The parent directory does not allow write permission to the process, or one of
the directories in pathname did not allow search permission. (See also
path_resolution(7).)

EBADF
(mkdirat()) pathname is relative but dirfd is neither AT_FDCWD nor a valid
file descriptor.

EDQUOT
The user’s quota of disk blocks or inodes on the filesystem has been ex-
hausted.

EEXIST
pathname already exists (not necessarily as a directory). This includes the
case where pathname is a symbolic link, dangling or not.

EFAULT
pathname points outside your accessible address space.

EINVAL
The final component ("basename") of the new directory’s pathname is invalid
(e.g., it contains characters not permitted by the underlying filesystem).

ELOOP
Too many symbolic links were encountered in resolving pathname.

EMLINK
The number of links to the parent directory would exceed LINK_MAX.

ENAMETOOLONG
pathname was too long.

ENOENT
A directory component in pathname does not exist or is a dangling symbolic
link.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing pathname has no room for the new directory.

ENOSPC
The new directory cannot be created because the user’s disk quota is ex-
hausted.

ENOTDIR
A component used as a directory in pathname is not, in fact, a directory.

ENOTDIR
(mkdirat()) pathname is relative and dirfd is a file descriptor referring to a
file other than a directory.

Linux man-pages 6.13 2025-03-03 456

mkdir(2) System Calls Manual mkdir(2)

EPERM
The filesystem containing pathname does not support the creation of directo-
ries.

EROFS
pathname refers to a file on a read-only filesystem.

EOVERFLOW
UID or GID mappings (see user_namespaces(7)) have not been configured.

VERSIONS
Under Linux, apart from the permission bits, the S_ISVTX mode bit is also honored.

glibc notes
On older kernels where mkdirat() is unavailable, the glibc wrapper function falls
back to the use of mkdir(). When pathname is a relative pathname, glibc constructs a
pathname based on the symbolic link in /proc/self/fd that corresponds to the dirfd ar-
gument.

STANDARDS
POSIX.1-2008.

HISTORY
mkdir()

SVr4, BSD, POSIX.1-2001.

mkdirat()
Linux 2.6.16, glibc 2.4.

NOTES
There are many infelicities in the protocol underlying NFS. Some of these affect
mkdir().

SEE ALSO
mkdir(1), chmod(2), chown(2), mknod(2), mount(2), rmdir(2), stat(2), umask(2), un-
link(2), acl(5), path_resolution(7)

Linux man-pages 6.13 2025-03-03 457

mknod(2) System Calls Manual mknod(2)

NAME
mknod, mknodat - create a special or ordinary file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

int mknod(const char *pathname, mode_t mode, dev_t dev);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int mknodat(int dirfd , const char *pathname, mode_t mode, dev_t dev);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mknod():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The system call mknod() creates a filesystem node (file, device special file, or named
pipe) named pathname, with attributes specified by mode and dev.

The mode argument specifies both the file mode to use and the type of node to be cre-
ated. It should be a combination (using bitwise OR) of one of the file types listed be-
low and zero or more of the file mode bits listed in inode(7).

The file mode is modified by the process’s umask in the usual way: in the absence of a
default ACL, the permissions of the created node are (mode & ~umask).

The file type must be one of S_IFREG, S_IFCHR, S_IFBLK, S_IFIFO, or S_IF-
SOCK to specify a regular file (which will be created empty), character special file,
block special file, FIFO (named pipe), or UNIX domain socket, respectively. (Zero
file type is equivalent to type S_IFREG.)

If the file type is S_IFCHR or S_IFBLK, then dev specifies the major and minor
numbers of the newly created device special file (makedev(3) may be useful to build
the value for dev); otherwise it is ignored.

If pathname already exists, or is a symbolic link, this call fails with an EEXIST error.

The newly created node will be owned by the effective user ID of the process. If the
directory containing the node has the set-group-ID bit set, or if the filesystem is
mounted with BSD group semantics, the new node will inherit the group ownership
from its parent directory; otherwise it will be owned by the effective group ID of the
process.

mknodat()
The mknodat() system call operates in exactly the same way as mknod(), except for
the differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by mknod() for a relative pathname).

Linux man-pages 6.13 2024-07-23 458

mknod(2) System Calls Manual mknod(2)

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like
mknod())

If pathname is absolute, then dirfd is ignored.

See openat(2) for an explanation of the need for mknodat().

RETURN VALUE
mknod() and mknodat() return zero on success. On error, -1 is returned and errno is
set to indicate the error.

ERRORS
EACCES

The parent directory does not allow write permission to the process, or one of
the directories in the path prefix of pathname did not allow search permission.
(See also path_resolution(7).)

EBADF
(mknodat()) pathname is relative but dirfd is neither AT_FDCWD nor a
valid file descriptor.

EDQUOT
The user’s quota of disk blocks or inodes on the filesystem has been ex-
hausted.

EEXIST
pathname already exists. This includes the case where pathname is a sym-
bolic link, dangling or not.

EFAULT
pathname points outside your accessible address space.

EINVAL
mode requested creation of something other than a regular file, device special
file, FIFO or socket.

ELOOP
Too many symbolic links were encountered in resolving pathname.

ENAMETOOLONG
pathname was too long.

ENOENT
A directory component in pathname does not exist or is a dangling symbolic
link.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing pathname has no room for the new node.

ENOTDIR
A component used as a directory in pathname is not, in fact, a directory.

Linux man-pages 6.13 2024-07-23 459

mknod(2) System Calls Manual mknod(2)

ENOTDIR
(mknodat()) pathname is relative and dirfd is a file descriptor referring to a
file other than a directory.

EPERM
mode requested creation of something other than a regular file, FIFO (named
pipe), or UNIX domain socket, and the caller is not privileged (Linux: does
not have the CAP_MKNOD capability); also returned if the filesystem con-
taining pathname does not support the type of node requested.

EROFS
pathname refers to a file on a read-only filesystem.

VERSIONS
POSIX.1-2001 says: "The only portable use of mknod() is to create a FIFO-special
file. If mode is not S_IFIFO or dev is not 0, the behavior of mknod() is unspecified."
However, nowadays one should never use mknod() for this purpose; one should use
mkfifo(3), a function especially defined for this purpose.

Under Linux, mknod() cannot be used to create directories. One should make direc-
tories with mkdir(2).

STANDARDS
POSIX.1-2008.

HISTORY
mknod()

SVr4, 4.4BSD, POSIX.1-2001 (but see VERSIONS).

mknodat()
Linux 2.6.16, glibc 2.4. POSIX.1-2008.

NOTES
There are many infelicities in the protocol underlying NFS. Some of these affect
mknod() and mknodat().

SEE ALSO
mknod(1), chmod(2), chown(2), fcntl(2), mkdir(2), mount(2), socket(2), stat(2),
umask(2), unlink(2), makedev(3), mkfifo(3), acl(5), path_resolution(7)

Linux man-pages 6.13 2024-07-23 460

mlock(2) System Calls Manual mlock(2)

NAME
mlock, mlock2, munlock, mlockall, munlockall - lock and unlock memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int mlock(const void addr[.size], size_t size);
int mlock2(const void addr[.size], size_t size, unsigned int flags);
int munlock(const void addr[.size], size_t size);

int mlockall(int flags);
int munlockall(void);

DESCRIPTION
mlock(), mlock2(), and mlockall() lock part or all of the calling process’s virtual ad-
dress space into RAM, preventing that memory from being paged to the swap area.

munlock() and munlockall() perform the converse operation, unlocking part or all of
the calling process’s virtual address space, so that pages in the specified virtual ad-
dress range can be swapped out again if required by the kernel memory manager.

Memory locking and unlocking are performed in units of whole pages.

mlock(), mlock2(), and munlock()
mlock() locks pages in the address range starting at addr and continuing for size
bytes. All pages that contain a part of the specified address range are guaranteed to be
resident in RAM when the call returns successfully; the pages are guaranteed to stay
in RAM until later unlocked.

mlock2() also locks pages in the specified range starting at addr and continuing for
size bytes. However, the state of the pages contained in that range after the call re-
turns successfully will depend on the value in the flags argument.

The flags argument can be either 0 or the following constant:

MLOCK_ONFAULT
Lock pages that are currently resident and mark the entire range so that the re-
maining nonresident pages are locked when they are populated by a page fault.

If flags is 0, mlock2() behaves exactly the same as mlock().

munlock() unlocks pages in the address range starting at addr and continuing for size
bytes. After this call, all pages that contain a part of the specified memory range can
be moved to external swap space again by the kernel.

mlockall() and munlockall()
mlockall() locks all pages mapped into the address space of the calling process. This
includes the pages of the code, data, and stack segment, as well as shared libraries,
user space kernel data, shared memory, and memory-mapped files. All mapped pages
are guaranteed to be resident in RAM when the call returns successfully; the pages are
guaranteed to stay in RAM until later unlocked.

The flags argument is constructed as the bitwise OR of one or more of the following
constants:

Linux man-pages 6.13 2024-11-17 461

mlock(2) System Calls Manual mlock(2)

MCL_CURRENT
Lock all pages which are currently mapped into the address space of the
process.

MCL_FUTURE
Lock all pages which will become mapped into the address space of the
process in the future. These could be, for instance, new pages required by a
growing heap and stack as well as new memory-mapped files or shared mem-
ory regions.

MCL_ONFAULT (since Linux 4.4)
Used together with MCL_CURRENT, MCL_FUTURE, or both. Mark all
current (with MCL_CURRENT) or future (with MCL_FUTURE) mappings
to lock pages when they are faulted in. When used with MCL_CURRENT,
all present pages are locked, but mlockall() will not fault in non-present pages.
When used with MCL_FUTURE, all future mappings will be marked to lock
pages when they are faulted in, but they will not be populated by the lock
when the mapping is created. MCL_ONFAULT must be used with either
MCL_CURRENT or MCL_FUTURE or both.

If MCL_FUTURE has been specified, then a later system call (e.g., mmap(2),
sbrk(2), malloc(3)), may fail if it would cause the number of locked bytes to exceed
the permitted maximum (see below). In the same circumstances, stack growth may
likewise fail: the kernel will deny stack expansion and deliver a SIGSEGV signal to
the process.

munlockall() unlocks all pages mapped into the address space of the calling process.

RETURN VALUE
On success, these system calls return 0. On error, -1 is returned, errno is set to indi-
cate the error, and no changes are made to any locks in the address space of the
process.

ERRORS
EAGAIN

(mlock(), mlock2(), and munlock()) Some or all of the specified address range
could not be locked.

EINVAL
(mlock(), mlock2(), and munlock()) The result of the addition addr+size was
less than addr (e.g., the addition may have resulted in an overflow).

EINVAL
(mlock2()) Unknown flags were specified.

EINVAL
(mlockall()) Unknown flags were specified or MCL_ONFAULT was speci-
fied without either MCL_FUTURE or MCL_CURRENT.

EINVAL
(Not on Linux) addr was not a multiple of the page size.

ENOMEM
(mlock(), mlock2(), and munlock()) Some of the specified address range does
not correspond to mapped pages in the address space of the process.

Linux man-pages 6.13 2024-11-17 462

mlock(2) System Calls Manual mlock(2)

ENOMEM
(mlock(), mlock2(), and munlock()) Locking or unlocking a region would re-
sult in the total number of mappings with distinct attributes (e.g., locked ver-
sus unlocked) exceeding the allowed maximum. (For example, unlocking a
range in the middle of a currently locked mapping would result in three map-
pings: two locked mappings at each end and an unlocked mapping in the mid-
dle.)

ENOMEM
(Linux 2.6.9 and later) the caller had a nonzero RLIMIT_MEMLOCK soft
resource limit, but tried to lock more memory than the limit permitted. This
limit is not enforced if the process is privileged (CAP_IPC_LOCK).

ENOMEM
(Linux 2.4 and earlier) the calling process tried to lock more than half of
RAM.

EPERM
The caller is not privileged, but needs privilege (CAP_IPC_LOCK) to per-
form the requested operation.

EPERM
(munlockall()) (Linux 2.6.8 and earlier) The caller was not privileged
(CAP_IPC_LOCK).

VERSIONS
Linux

Under Linux, mlock(), mlock2(), and munlock() automatically round addr down to
the nearest page boundary. However, the POSIX.1 specification of mlock() and
munlock() allows an implementation to require that addr is page aligned, so portable
applications should ensure this.

The VmLck field of the Linux-specific /proc/ pid /status file shows how many kilo-
bytes of memory the process with ID PID has locked using mlock(), mlock2(),
mlockall(), and mmap(2) MAP_LOCKED.

STANDARDS
mlock()
munlock()
mlockall()
munlockall()

POSIX.1-2008.

mlock2()
Linux.

On POSIX systems on which mlock() and munlock() are available, _POSIX_MEM-
LOCK_RANGE is defined in <unistd.h> and the number of bytes in a page can be
determined from the constant PAGESIZE (if defined) in <limits.h> or by calling
sysconf(_SC_PAGESIZE).

On POSIX systems on which mlockall() and munlockall() are available,
_POSIX_MEMLOCK is defined in <unistd.h> to a value greater than 0. (See also
sysconf(3).)

Linux man-pages 6.13 2024-11-17 463

mlock(2) System Calls Manual mlock(2)

HISTORY
mlock()
munlock()
mlockall()
munlockall()

POSIX.1-2001, POSIX.1-2008, SVr4.

mlock2()
Linux 4.4, glibc 2.27.

NOTES
Memory locking has two main applications: real-time algorithms and high-security
data processing. Real-time applications require deterministic timing, and, like sched-
uling, paging is one major cause of unexpected program execution delays. Real-time
applications will usually also switch to a real-time scheduler with sched_setsched-
uler(2). Cryptographic security software often handles critical bytes like passwords
or secret keys as data structures. As a result of paging, these secrets could be trans-
ferred onto a persistent swap store medium, where they might be accessible to the en-
emy long after the security software has erased the secrets in RAM and terminated.
(But be aware that the suspend mode on laptops and some desktop computers will
save a copy of the system’s RAM to disk, regardless of memory locks.)

Real-time processes that are using mlockall() to prevent delays on page faults should
reserve enough locked stack pages before entering the time-critical section, so that no
page fault can be caused by function calls. This can be achieved by calling a function
that allocates a sufficiently large automatic variable (an array) and writes to the mem-
ory occupied by this array in order to touch these stack pages. This way, enough
pages will be mapped for the stack and can be locked into RAM. The dummy writes
ensure that not even copy-on-write page faults can occur in the critical section.

Memory locks are not inherited by a child created via fork(2) and are automatically
removed (unlocked) during an execve(2) or when the process terminates. The mlock-
all() MCL_FUTURE and MCL_FUTURE | MCL_ONFAULT settings are not in-
herited by a child created via fork(2) and are cleared during an execve(2).

Note that fork(2) will prepare the address space for a copy-on-write operation. The
consequence is that any write access that follows will cause a page fault that in turn
may cause high latencies for a real-time process. Therefore, it is crucial not to invoke
fork(2) after an mlockall() or mlock() operation—not even from a thread which runs
at a low priority within a process which also has a thread running at elevated priority.

The memory lock on an address range is automatically removed if the address range is
unmapped via munmap(2).

Memory locks do not stack, that is, pages which have been locked several times by
calls to mlock(), mlock2(), or mlockall() will be unlocked by a single call to
munlock() for the corresponding range or by munlockall(). Pages which are mapped
to several locations or by several processes stay locked into RAM as long as they are
locked at least at one location or by at least one process.

If a call to mlockall() which uses the MCL_FUTURE flag is followed by another
call that does not specify this flag, the changes made by the MCL_FUTURE call will
be lost.

Linux man-pages 6.13 2024-11-17 464

mlock(2) System Calls Manual mlock(2)

The mlock2() MLOCK_ONFAULT flag and the mlockall() MCL_ONFAULT flag
allow efficient memory locking for applications that deal with large mappings where
only a (small) portion of pages in the mapping are touched. In such cases, locking all
of the pages in a mapping would incur a significant penalty for memory locking.

Limits and permissions
In Linux 2.6.8 and earlier, a process must be privileged (CAP_IPC_LOCK) in order
to lock memory and the RLIMIT_MEMLOCK soft resource limit defines a limit on
how much memory the process may lock.

Since Linux 2.6.9, no limits are placed on the amount of memory that a privileged
process can lock and the RLIMIT_MEMLOCK soft resource limit instead defines a
limit on how much memory an unprivileged process may lock.

BUGS
In Linux 4.8 and earlier, a bug in the kernel’s accounting of locked memory for un-
privileged processes (i.e., without CAP_IPC_LOCK) meant that if the region speci-
fied by addr and size overlapped an existing lock, then the already locked bytes in the
overlapping region were counted twice when checking against the limit. Such double
accounting could incorrectly calculate a "total locked memory" value for the process
that exceeded the RLIMIT_MEMLOCK limit, with the result that mlock() and
mlock2() would fail on requests that should have succeeded. This bug was fixed in
Linux 4.9.

In Linux 2.4 series of kernels up to and including Linux 2.4.17, a bug caused the
mlockall() MCL_FUTURE flag to be inherited across a fork(2). This was rectified
in Linux 2.4.18.

Since Linux 2.6.9, if a privileged process calls mlockall(MCL_FUTURE) and later
drops privileges (loses the CAP_IPC_LOCK capability by, for example, setting its
effective UID to a nonzero value), then subsequent memory allocations (e.g.,
mmap(2), brk(2)) will fail if the RLIMIT_MEMLOCK resource limit is encoun-
tered.

SEE ALSO
mincore(2), mmap(2), setrlimit(2), shmctl(2), sysconf(3), proc(5), capabilities(7)

Linux man-pages 6.13 2024-11-17 465

mmap(2) System Calls Manual mmap(2)

NAME
mmap, munmap - map or unmap files or devices into memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

void *mmap(void addr[.length], size_t length, int prot, int flags,
int fd , off_t offset);

int munmap(void addr[.length], size_t length);

See VERSIONS for information on feature test macro requirements.

DESCRIPTION
mmap() creates a new mapping in the virtual address space of the calling process.
The starting address for the new mapping is specified in addr. The length argument
specifies the length of the mapping (which must be greater than 0).

If addr is NULL, then the kernel chooses the (page-aligned) address at which to cre-
ate the mapping; this is the most portable method of creating a new mapping. If addr
is not NULL, then the kernel takes it as a hint about where to place the mapping; on
Linux, the kernel will pick a nearby page boundary (but always above or equal to the
value specified by /proc/sys/vm/mmap_min_addr) and attempt to create the mapping
there. If another mapping already exists there, the kernel picks a new address that
may or may not depend on the hint. The address of the new mapping is returned as
the result of the call.

The contents of a file mapping (as opposed to an anonymous mapping; see
MAP_ANONYMOUS below), are initialized using length bytes starting at offset off-
set in the file (or other object) referred to by the file descriptor fd . offset must be a
multiple of the page size as returned by sysconf(_SC_PAGE_SIZE).

After the mmap() call has returned, the file descriptor, fd , can be closed immediately
without invalidating the mapping.

The prot argument describes the desired memory protection of the mapping (and
must not conflict with the open mode of the file). It is either PROT_NONE or the
bitwise OR of one or more of the following flags:

PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

PROT_WRITE
Pages may be written.

PROT_NONE Pages may not be accessed.

The flags argument
The flags argument determines whether updates to the mapping are visible to other
processes mapping the same region, and whether updates are carried through to the
underlying file. This behavior is determined by including exactly one of the following
values in flags:

Linux man-pages 6.13 2024-07-23 466

mmap(2) System Calls Manual mmap(2)

MAP_SHARED
Share this mapping. Updates to the mapping are visible to other processes
mapping the same region, and (in the case of file-backed mappings) are carried
through to the underlying file. (To precisely control when updates are carried
through to the underlying file requires the use of msync(2).)

MAP_SHARED_VALIDATE (since Linux 4.15)
This flag provides the same behavior as MAP_SHARED except that
MAP_SHARED mappings ignore unknown flags in flags. By contrast, when
creating a mapping using MAP_SHARED_VALIDATE, the kernel verifies
all passed flags are known and fails the mapping with the error EOPNOT-
SUPP for unknown flags. This mapping type is also required to be able to use
some mapping flags (e.g., MAP_SYNC).

MAP_PRIVATE
Create a private copy-on-write mapping. Updates to the mapping are not visi-
ble to other processes mapping the same file, and are not carried through to the
underlying file. It is unspecified whether changes made to the file after the
mmap() call are visible in the mapped region.

Both MAP_SHARED and MAP_PRIVATE are described in POSIX.1-2001 and
POSIX.1-2008. MAP_SHARED_VALIDATE is a Linux extension.

In addition, zero or more of the following values can be ORed in flags:

MAP_32BIT (since Linux 2.4.20, 2.6)
Put the mapping into the first 2 Gigabytes of the process address space. This
flag is supported only on x86-64, for 64-bit programs. It was added to allow
thread stacks to be allocated somewhere in the first 2 GB of memory, so as to
improve context-switch performance on some early 64-bit processors. Mod-
ern x86-64 processors no longer have this performance problem, so use of this
flag is not required on those systems. The MAP_32BIT flag is ignored when
MAP_FIXED is set.

MAP_ANON
Synonym for MAP_ANONYMOUS; provided for compatibility with other
implementations.

MAP_ANONYMOUS
The mapping is not backed by any file; its contents are initialized to zero. The
fd argument is ignored; however, some implementations require fd to be -1 if
MAP_ANONYMOUS (or MAP_ANON) is specified, and portable applica-
tions should ensure this. The offset argument should be zero. Support for
MAP_ANONYMOUS in conjunction with MAP_SHARED was added in
Linux 2.4.

MAP_DENYWRITE
This flag is ignored. (Long ago—Linux 2.0 and earlier—it signaled that at-
tempts to write to the underlying file should fail with ETXTBSY. But this
was a source of denial-of-service attacks.)

MAP_EXECUTABLE
This flag is ignored.

Linux man-pages 6.13 2024-07-23 467

mmap(2) System Calls Manual mmap(2)

MAP_FILE
Compatibility flag. Ignored.

MAP_FIXED
Don’t interpret addr as a hint: place the mapping at exactly that address. addr
must be suitably aligned: for most architectures a multiple of the page size is
sufficient; however, some architectures may impose additional restrictions. If
the memory region specified by addr and length overlaps pages of any exist-
ing mapping(s), then the overlapped part of the existing mapping(s) will be
discarded. If the specified address cannot be used, mmap() will fail.

Software that aspires to be portable should use the MAP_FIXED flag with
care, keeping in mind that the exact layout of a process’s memory mappings is
allowed to change significantly between Linux versions, C library versions,
and operating system releases. Carefully read the discussion of this flag in
NOTES!

MAP_FIXED_NOREPLACE (since Linux 4.17)
This flag provides behavior that is similar to MAP_FIXED with respect to the
addr enforcement, but differs in that MAP_FIXED_NOREPLACE never
clobbers a preexisting mapped range. If the requested range would collide
with an existing mapping, then this call fails with the error EEXIST. This flag
can therefore be used as a way to atomically (with respect to other threads) at-
tempt to map an address range: one thread will succeed; all others will report
failure.

Note that older kernels which do not recognize the MAP_FIXED_NORE-
PLACE flag will typically (upon detecting a collision with a preexisting map-
ping) fall back to a “non-MAP_FIXED” type of behavior: they will return an
address that is different from the requested address. Therefore, backward-
compatible software should check the returned address against the requested
address.

MAP_GROWSDOWN
This flag is used for stacks. It indicates to the kernel virtual memory system
that the mapping should extend downward in memory. The return address is
one page lower than the memory area that is actually created in the process’s
virtual address space. Touching an address in the "guard" page below the
mapping will cause the mapping to grow by a page. This growth can be re-
peated until the mapping grows to within a page of the high end of the next
lower mapping, at which point touching the "guard" page will result in a
SIGSEGV signal.

MAP_HUGETLB (since Linux 2.6.32)
Allocate the mapping using "huge" pages. See the Linux kernel source file
Documentation/admin-guide/mm/hugetlbpage.rst for further information, as
well as NOTES, below.

MAP_HUGE_2MB
MAP_HUGE_1GB (since Linux 3.8)

Used in conjunction with MAP_HUGETLB to select alternative hugetlb page
sizes (respectively, 2 MB and 1 GB) on systems that support multiple hugetlb
page sizes.

Linux man-pages 6.13 2024-07-23 468

mmap(2) System Calls Manual mmap(2)

More generally, the desired huge page size can be configured by encoding the
base-2 logarithm of the desired page size in the six bits at the offset
MAP_HUGE_SHIFT. (A value of zero in this bit field provides the default
huge page size; the default huge page size can be discovered via the Hugepa-
gesize field exposed by /proc/meminfo.) Thus, the above two constants are de-
fined as:

#define MAP_HUGE_2MB (21 << MAP_HUGE_SHIFT)
#define MAP_HUGE_1GB (30 << MAP_HUGE_SHIFT)

The range of huge page sizes that are supported by the system can be discov-
ered by listing the subdirectories in /sys/kernel/mm/hugepages.

MAP_LOCKED (since Linux 2.5.37)
Mark the mapped region to be locked in the same way as mlock(2). This im-
plementation will try to populate (prefault) the whole range but the mmap()
call doesn’t fail with ENOMEM if this fails. Therefore major faults might
happen later on. So the semantic is not as strong as mlock(2). One should use
mmap() plus mlock(2) when major faults are not acceptable after the initial-
ization of the mapping. The MAP_LOCKED flag is ignored in older kernels.

MAP_NONBLOCK (since Linux 2.5.46)
This flag is meaningful only in conjunction with MAP_POPULATE. Don’t
perform read-ahead: create page tables entries only for pages that are already
present in RAM. Since Linux 2.6.23, this flag causes MAP_POPULATE to
do nothing. One day, the combination of MAP_POPULATE and
MAP_NONBLOCK may be reimplemented.

MAP_NORESERVE
Do not reserve swap space for this mapping. When swap space is reserved,
one has the guarantee that it is possible to modify the mapping. When swap
space is not reserved one might get SIGSEGV upon a write if no physical
memory is available. See also the discussion of the file /proc/sys/vm/overcom-
mit_memory in proc(5). Before Linux 2.6, this flag had effect only for private
writable mappings.

MAP_POPULATE (since Linux 2.5.46)
Populate (prefault) page tables for a mapping. For a file mapping, this causes
read-ahead on the file. This will help to reduce blocking on page faults later.
The mmap() call doesn’t fail if the mapping cannot be populated (for exam-
ple, due to limitations on the number of mapped huge pages when using
MAP_HUGETLB). Support for MAP_POPULATE in conjunction with pri-
vate mappings was added in Linux 2.6.23.

MAP_STACK (since Linux 2.6.27)
Allocate the mapping at an address suitable for a process or thread stack.

This flag is currently a no-op on Linux. However, by employing this flag, ap-
plications can ensure that they transparently obtain support if the flag is imple-
mented in the future. Thus, it is used in the glibc threading implementation to
allow for the fact that some architectures may (later) require special treatment
for stack allocations. A further reason to employ this flag is portability:
MAP_STACK exists (and has an effect) on some other systems (e.g., some of

Linux man-pages 6.13 2024-07-23 469

mmap(2) System Calls Manual mmap(2)

the BSDs).

MAP_SYNC (since Linux 4.15)
This flag is available only with the MAP_SHARED_VALIDATE mapping
type; mappings of type MAP_SHARED will silently ignore this flag. This
flag is supported only for files supporting DAX (direct mapping of persistent
memory). For other files, creating a mapping with this flag results in an EOP-
NOTSUPP error.

Shared file mappings with this flag provide the guarantee that while some
memory is mapped writable in the address space of the process, it will be visi-
ble in the same file at the same offset even after the system crashes or is re-
booted. In conjunction with the use of appropriate CPU instructions, this pro-
vides users of such mappings with a more efficient way of making data modifi-
cations persistent.

MAP_UNINITIALIZED (since Linux 2.6.33)
Don’t clear anonymous pages. This flag is intended to improve performance
on embedded devices. This flag is honored only if the kernel was configured
with the CONFIG_MMAP_ALLOW_UNINITIALIZED option. Because
of the security implications, that option is normally enabled only on embedded
devices (i.e., devices where one has complete control of the contents of user
memory).

Of the above flags, only MAP_FIXED is specified in POSIX.1-2001 and
POSIX.1-2008. However, most systems also support MAP_ANONYMOUS (or its
synonym MAP_ANON).

munmap()
The munmap() system call deletes the mappings for the specified address range, and
causes further references to addresses within the range to generate invalid memory
references. The region is also automatically unmapped when the process is termi-
nated. On the other hand, closing the file descriptor does not unmap the region.

The address addr must be a multiple of the page size (but length need not be). All
pages containing a part of the indicated range are unmapped, and subsequent refer-
ences to these pages will generate SIGSEGV. It is not an error if the indicated range
does not contain any mapped pages.

RETURN VALUE
On success, mmap() returns a pointer to the mapped area. On error, the value
MAP_FAILED (that is, (void *) -1) is returned, and errno is set to indicate the error.

On success, munmap() returns 0. On failure, it returns -1, and errno is set to indi-
cate the error (probably to EINVAL).

ERRORS
EACCES

A file descriptor refers to a non-regular file. Or a file mapping was requested,
but fd is not open for reading. Or MAP_SHARED was requested and
PROT_WRITE is set, but fd is not open in read/write (O_RDWR) mode. Or
PROT_WRITE is set, but the file is append-only.

Linux man-pages 6.13 2024-07-23 470

mmap(2) System Calls Manual mmap(2)

EAGAIN
The file has been locked, or too much memory has been locked (see setr-
limit(2)).

EBADF
fd is not a valid file descriptor (and MAP_ANONYMOUS was not set).

EEXIST
MAP_FIXED_NOREPLACE was specified in flags, and the range covered
by addr and length clashes with an existing mapping.

EINVAL
We don’t like addr, length, or offset (e.g., they are too large, or not aligned on
a page boundary).

EINVAL
(since Linux 2.6.12) length was 0.

EINVAL
flags contained none of MAP_PRIVATE, MAP_SHARED, or
MAP_SHARED_VALIDATE.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
The underlying filesystem of the specified file does not support memory map-
ping.

ENOMEM
No memory is available.

ENOMEM
The process’s maximum number of mappings would have been exceeded.
This error can also occur for munmap(), when unmapping a region in the
middle of an existing mapping, since this results in two smaller mappings on
either side of the region being unmapped.

ENOMEM
(since Linux 4.7) The process’s RLIMIT_DATA limit, described in getr-
limit(2), would have been exceeded.

ENOMEM
We don’t like addr, because it exceeds the virtual address space of the CPU.

EOVERFLOW
On 32-bit architecture together with the large file extension (i.e., using 64-bit
off_t): the number of pages used for length plus number of pages used for off-
set would overflow unsigned long (32 bits).

EPERM
The prot argument asks for PROT_EXEC but the mapped area belongs to a
file on a filesystem that was mounted no-exec.

EPERM
The operation was prevented by a file seal; see fcntl(2).

Linux man-pages 6.13 2024-07-23 471

mmap(2) System Calls Manual mmap(2)

EPERM
The MAP_HUGETLB flag was specified, but the caller was not privileged
(did not have the CAP_IPC_LOCK capability) and is not a member of the
sysctl_hugetlb_shm_group group; see the description of
/proc/sys/vm/sysctl_hugetlb_shm_group in proc_sys(5).

ETXTBSY
MAP_DENYWRITE was set but the object specified by fd is open for writ-
ing.

Use of a mapped region can result in these signals:

SIGSEGV
Attempted write into a region mapped as read-only.

SIGBUS
Attempted access to a page of the buffer that lies beyond the end of the
mapped file. For an explanation of the treatment of the bytes in the page that
corresponds to the end of a mapped file that is not a multiple of the page size,
see NOTES.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemmap(), munmap()

VERSIONS
On some hardware architectures (e.g., i386), PROT_WRITE implies PROT_READ.
It is architecture dependent whether PROT_READ implies PROT_EXEC or not.
Portable programs should always set PROT_EXEC if they intend to execute code in
the new mapping.

The portable way to create a mapping is to specify addr as 0 (NULL), and omit
MAP_FIXED from flags. In this case, the system chooses the address for the map-
ping; the address is chosen so as not to conflict with any existing mapping, and will
not be 0. If the MAP_FIXED flag is specified, and addr is 0 (NULL), then the
mapped address will be 0 (NULL).

Certain flags constants are defined only if suitable feature test macros are defined
(possibly by default): _DEFAULT_SOURCE with glibc 2.19 or later; or
_BSD_SOURCE or _SVID_SOURCE in glibc 2.19 and earlier. (Employing
_GNU_SOURCE also suffices, and requiring that macro specifically would have
been more logical, since these flags are all Linux-specific.) The relevant flags are:
MAP_32BIT, MAP_ANONYMOUS (and the synonym MAP_ANON),
MAP_DENYWRITE, MAP_EXECUTABLE, MAP_FILE, MAP_GROWS-
DOWN, MAP_HUGETLB, MAP_LOCKED, MAP_NONBLOCK,
MAP_NORESERVE, MAP_POPULATE, and MAP_STACK.

C library/kernel differences
This page describes the interface provided by the glibc mmap() wrapper function.
Originally, this function invoked a system call of the same name. Since Linux 2.4,
that system call has been superseded by mmap2(2), and nowadays the glibc mmap()
wrapper function invokes mmap2(2) with a suitably adjusted value for offset.

Linux man-pages 6.13 2024-07-23 472

mmap(2) System Calls Manual mmap(2)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD.

On POSIX systems on which mmap(), msync(2), and munmap() are available,
_POSIX_MAPPED_FILES is defined in <unistd.h> to a value greater than 0. (See
also sysconf(3).)

NOTES
Memory mapped by mmap() is preserved across fork(2), with the same attributes.

A file is mapped in multiples of the page size. For a file that is not a multiple of the
page size, the remaining bytes in the partial page at the end of the mapping are zeroed
when mapped, and modifications to that region are not written out to the file. The ef-
fect of changing the size of the underlying file of a mapping on the pages that corre-
spond to added or removed regions of the file is unspecified.

An application can determine which pages of a mapping are currently resident in the
buffer/page cache using mincore(2).

Using MAP_FIXED safely
The only safe use for MAP_FIXED is where the address range specified by addr and
length was previously reserved using another mapping; otherwise, the use of
MAP_FIXED is hazardous because it forcibly removes preexisting mappings, mak-
ing it easy for a multithreaded process to corrupt its own address space.

For example, suppose that thread A looks through /proc/ pid /maps in order to locate
an unused address range that it can map using MAP_FIXED, while thread B simulta-
neously acquires part or all of that same address range. When thread A subsequently
employs mmap(MAP_FIXED), it will effectively clobber the mapping that thread B
created. In this scenario, thread B need not create a mapping directly; simply making
a library call that, internally, uses dlopen(3) to load some other shared library, will
suffice. The dlopen(3) call will map the library into the process’s address space. Fur-
thermore, almost any library call may be implemented in a way that adds memory
mappings to the address space, either with this technique, or by simply allocating
memory. Examples include brk(2), malloc(3), pthread_create(3), and the PAM li-
braries 〈http://www.linux-pam.org〉.

Since Linux 4.17, a multithreaded program can use the MAP_FIXED_NORE-
PLACE flag to avoid the hazard described above when attempting to create a map-
ping at a fixed address that has not been reserved by a preexisting mapping.

Timestamps changes for file-backed mappings
For file-backed mappings, the st_atime field for the mapped file may be updated at
any time between the mmap() and the corresponding unmapping; the first reference to
a mapped page will update the field if it has not been already.

The st_ctime and st_mtime field for a file mapped with PROT_WRITE and
MAP_SHARED will be updated after a write to the mapped region, and before a sub-
sequent msync(2) with the MS_SYNC or MS_ASYNC flag, if one occurs.

Linux man-pages 6.13 2024-07-23 473

mmap(2) System Calls Manual mmap(2)

Huge page (Huge TLB) mappings
For mappings that employ huge pages, the requirements for the arguments of mmap()
and munmap() differ somewhat from the requirements for mappings that use the na-
tive system page size.

For mmap(), offset must be a multiple of the underlying huge page size. The system
automatically aligns length to be a multiple of the underlying huge page size.

For munmap(), addr, and length must both be a multiple of the underlying huge page
size.

BUGS
On Linux, there are no guarantees like those suggested above under MAP_NORE-
SERVE. By default, any process can be killed at any moment when the system runs
out of memory.

Before Linux 2.6.7, the MAP_POPULATE flag has effect only if prot is specified as
PROT_NONE.

SUSv3 specifies that mmap() should fail if length is 0. However, before Linux
2.6.12, mmap() succeeded in this case: no mapping was created and the call returned
addr. Since Linux 2.6.12, mmap() fails with the error EINVAL for this case.

POSIX specifies that the system shall always zero fill any partial page at the end of
the object and that system will never write any modification of the object beyond its
end. On Linux, when you write data to such partial page after the end of the object,
the data stays in the page cache even after the file is closed and unmapped and even
though the data is never written to the file itself, subsequent mappings may see the
modified content. In some cases, this could be fixed by calling msync(2) before the
unmap takes place; however, this doesn’t work on tmpfs(5) (for example, when using
the POSIX shared memory interface documented in shm_overview(7)).

EXAMPLES
The following program prints part of the file specified in its first command-line argu-
ment to standard output. The range of bytes to be printed is specified via offset and
length values in the second and third command-line arguments. The program creates
a memory mapping of the required pages of the file and then uses write(2) to output
the desired bytes.

Program source
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

int
main(int argc, char *argv[])

Linux man-pages 6.13 2024-07-23 474

mmap(2) System Calls Manual mmap(2)

{
int fd;
char *addr;
off_t offset, pa_offset;
size_t length;
ssize_t s;
struct stat sb;

if (argc < 3 || argc > 4) {
fprintf(stderr, "%s file offset [length]\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDONLY);
if (fd == -1)

handle_error("open");

if (fstat(fd, &sb) == -1) /* To obtain file size */
handle_error("fstat");

offset = atoi(argv[2]);
pa_offset = offset & ~(sysconf(_SC_PAGE_SIZE) - 1);

/* offset for mmap() must be page aligned */

if (offset >= sb.st_size) {
fprintf(stderr, "offset is past end of file\n");
exit(EXIT_FAILURE);

}

if (argc == 4) {
length = atoi(argv[3]);
if (offset + length > sb.st_size)

length = sb.st_size - offset;
/* Can't display bytes past end of file */

} else { /* No length arg ==> display to end of file */
length = sb.st_size - offset;

}

addr = mmap(NULL, length + offset - pa_offset, PROT_READ,
MAP_PRIVATE, fd, pa_offset);

if (addr == MAP_FAILED)
handle_error("mmap");

s = write(STDOUT_FILENO, addr + offset - pa_offset, length);
if (s != length) {

if (s == -1)
handle_error("write");

Linux man-pages 6.13 2024-07-23 475

mmap(2) System Calls Manual mmap(2)

fprintf(stderr, "partial write");
exit(EXIT_FAILURE);

}

munmap(addr, length + offset - pa_offset);
close(fd);

exit(EXIT_SUCCESS);
}

SEE ALSO
ftruncate(2), getpagesize(2), memfd_create(2), mincore(2), mlock(2), mmap2(2),
mprotect(2), mremap(2), msync(2), remap_file_pages(2), setrlimit(2), shmat(2), user-
faultfd(2), shm_open(3), shm_overview(7)

The descriptions of the following files in proc(5): /proc/ pid /maps,
/proc/ pid /map_files, and /proc/ pid /smaps.

B.O. Gallmeister, POSIX.4, O’Reilly, pp. 128–129 and 389–391.

Linux man-pages 6.13 2024-07-23 476

mmap2(2) System Calls Manual mmap2(2)

NAME
mmap2 - map files or devices into memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h> /* Definition of MAP_* and PROT_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

void *syscall(SYS_mmap2, unsigned long addr, unsigned long length,
unsigned long prot, unsigned long flags,
unsigned long fd , unsigned long pgoffset);

DESCRIPTION
This is probably not the system call that you are interested in; instead, see mmap(2),
which describes the glibc wrapper function that invokes this system call.

The mmap2() system call provides the same interface as mmap(2), except that the fi-
nal argument specifies the offset into the file in 4096-byte units (instead of bytes, as is
done by mmap(2)). This enables applications that use a 32-bit off_t to map large files
(up to 2^44 bytes).

RETURN VALUE
On success, mmap2() returns a pointer to the mapped area. On error, -1 is returned
and errno is set to indicate the error.

ERRORS
EFAULT

Problem with getting the data from user space.

EINVAL
(Various platforms where the page size is not 4096 bytes.) offset * 4096 is not
a multiple of the system page size.

mmap2() can also return any of the errors described in mmap(2).

VERSIONS
On architectures where this system call is present, the glibc mmap() wrapper function
invokes this system call rather than the mmap(2) system call.

This system call does not exist on x86-64.

On ia64, the unit for offset is actually the system page size, rather than 4096 bytes.

STANDARDS
Linux.

HISTORY
Linux 2.3.31.

SEE ALSO
getpagesize(2), mmap(2), mremap(2), msync(2), shm_open(3)

Linux man-pages 6.13 2024-07-23 477

modify_ldt(2) System Calls Manual modify_ldt(2)

NAME
modify_ldt - get or set a per-process LDT entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/ldt.h> /* Definition of struct user_desc */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_modify_ldt, int func, void ptr[.bytecount],
unsigned long bytecount);

Note: glibc provides no wrapper for modify_ldt(), necessitating the use of syscall(2).

DESCRIPTION
modify_ldt() reads or writes the local descriptor table (LDT) for a process. The LDT
is an array of segment descriptors that can be referenced by user code. Linux allows
processes to configure a per-process (actually per-mm) LDT. For more information
about the LDT, see the Intel Software Developer’s Manual or the AMD Architecture
Programming Manual.

When func is 0, modify_ldt() reads the LDT into the memory pointed to by ptr. The
number of bytes read is the smaller of bytecount and the actual size of the LDT, al-
though the kernel may act as though the LDT is padded with additional trailing zero
bytes. On success, modify_ldt() will return the number of bytes read.

When func is 1 or 0x11, modify_ldt() modifies the LDT entry indicated by ptr->en-
try_number. ptr points to a user_desc structure and bytecount must equal the size of
this structure.

The user_desc structure is defined in <asm/ldt.h> as:

struct user_desc {
unsigned int entry_number;
unsigned int base_addr;
unsigned int limit;
unsigned int seg_32bit:1;
unsigned int contents:2;
unsigned int read_exec_only:1;
unsigned int limit_in_pages:1;
unsigned int seg_not_present:1;
unsigned int useable:1;

};

In Linux 2.4 and earlier, this structure was named modify_ldt_ldt_s.

The contents field is the segment type (data, expand-down data, non-conforming code,
or conforming code). The other fields match their descriptions in the CPU manual, al-
though modify_ldt() cannot set the hardware-defined "accessed" bit described in the
CPU manual.

A user_desc is considered "empty" if read_exec_only and seg_not_present are set to
1 and all of the other fields are 0. An LDT entry can be cleared by setting it to an
"empty" user_desc or, if func is 1, by setting both base and limit to 0.

Linux man-pages 6.13 2024-07-23 478

modify_ldt(2) System Calls Manual modify_ldt(2)

A conforming code segment (i.e., one with contents==3) will be rejected if func is 1
or if seg_not_present is 0.

When func is 2, modify_ldt() will read zeros. This appears to be a leftover from
Linux 2.4.

RETURN VALUE
On success, modify_ldt() returns either the actual number of bytes read (for reading)
or 0 (for writing). On failure, modify_ldt() returns -1 and sets errno to indicate the
error.

ERRORS
EFAULT

ptr points outside the address space.

EINVAL
ptr is 0, or func is 1 and bytecount is not equal to the size of the structure
user_desc, or func is 1 or 0x11 and the new LDT entry has invalid values.

ENOSYS
func is neither 0, 1, 2, nor 0x11.

STANDARDS
Linux.

NOTES
modify_ldt() should not be used for thread-local storage, as it slows down context
switches and only supports a limited number of threads. Threading libraries should
use set_thread_area(2) or arch_prctl(2) instead, except on extremely old kernels that
do not support those system calls.

The normal use for modify_ldt() is to run legacy 16-bit or segmented 32-bit code.
Not all kernels allow 16-bit segments to be installed, however.

Even on 64-bit kernels, modify_ldt() cannot be used to create a long mode (i.e.,
64-bit) code segment. The undocumented field "lm" in user_desc is not useful, and,
despite its name, does not result in a long mode segment.

BUGS
On 64-bit kernels before Linux 3.19, setting the "lm" bit in user_desc prevents the de-
scriptor from being considered empty. Keep in mind that the "lm" bit does not exist in
the 32-bit headers, but these buggy kernels will still notice the bit even when set in a
32-bit process.

SEE ALSO
arch_prctl(2), set_thread_area(2), vm86(2)

Linux man-pages 6.13 2024-07-23 479

mount(2) System Calls Manual mount(2)

NAME
mount - mount filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mount.h>

int mount(const char *source, const char *target,
const char * filesystemtype, unsigned long mountflags,
const void *_Nullable data);

DESCRIPTION
mount() attaches the filesystem specified by source (which is often a pathname refer-
ring to a device, but can also be the pathname of a directory or file, or a dummy
string) to the location (a directory or file) specified by the pathname in target.

Appropriate privilege (Linux: the CAP_SYS_ADMIN capability) is required to
mount filesystems.

Values for the filesystemtype argument supported by the kernel are listed in
/proc/filesystems (e.g., "btrfs", "ext4", "jfs", "xfs", "vfat", "fuse", "tmpfs", "cgroup",
"proc", "mqueue", "nfs", "cifs", "iso9660"). Further types may become available
when the appropriate modules are loaded.

The data argument is interpreted by the different filesystems. Typically it is a string
of comma-separated options understood by this filesystem. See mount(8) for details
of the options available for each filesystem type. This argument may be specified as
NULL, if there are no options.

A call to mount() performs one of a number of general types of operation, depending
on the bits specified in mountflags. The choice of which operation to perform is de-
termined by testing the bits set in mountflags, with the tests being conducted in the or-
der listed here:

• Remount an existing mount: mountflags includes MS_REMOUNT.

• Create a bind mount: mountflags includes MS_BIND.

• Change the propagation type of an existing mount: mountflags includes one of
MS_SHARED, MS_PRIVATE, MS_SLAVE, or MS_UNBINDABLE.

• Move an existing mount to a new location: mountflags includes MS_MOVE.

• Create a new mount: mountflags includes none of the above flags.

Each of these operations is detailed later in this page. Further flags may be specified
in mountflags to modify the behavior of mount(), as described below.

Additional mount flags
The list below describes the additional flags that can be specified in mountflags. Note
that some operation types ignore some or all of these flags, as described later in this
page.

MS_DIRSYNC (since Linux 2.5.19)
Make directory changes on this filesystem synchronous. (This property can be
obtained for individual directories or subtrees using chattr(1)

Linux man-pages 6.13 2024-07-23 480

mount(2) System Calls Manual mount(2)

MS_LAZYTIME (since Linux 4.0)
Reduce on-disk updates of inode timestamps (atime, mtime, ctime) by main-
taining these changes only in memory. The on-disk timestamps are updated
only when:

• the inode needs to be updated for some change unrelated to file time-
stamps;

• the application employs fsync(2), syncfs(2), or sync(2);

• an undeleted inode is evicted from memory; or

• more than 24 hours have passed since the inode was written to disk.

This mount option significantly reduces writes needed to update the inode’s
timestamps, especially mtime and atime. However, in the event of a system
crash, the atime and mtime fields on disk might be out of date by up to 24
hours.

Examples of workloads where this option could be of significant benefit in-
clude frequent random writes to preallocated files, as well as cases where the
MS_STRICTATIME mount option is also enabled. (The advantage of com-
bining MS_STRICTATIME and MS_LAZYTIME is that stat(2) will return
the correctly updated atime, but the atime updates will be flushed to disk only
in the cases listed above.)

MS_MANDLOCK
Permit mandatory locking on files in this filesystem. (Mandatory locking must
still be enabled on a per-file basis, as described in fcntl(2).) Since Linux 4.5,
this mount option requires the CAP_SYS_ADMIN capability and a kernel
configured with the CONFIG_MANDATORY_FILE_LOCKING option.
Mandatory locking has been fully deprecated in Linux 5.15, so this flag should
be considered deprecated.

MS_NOATIME
Do not update access times for (all types of) files on this filesystem.

MS_NODEV
Do not allow access to devices (special files) on this filesystem.

MS_NODIRATIME
Do not update access times for directories on this filesystem. This flag pro-
vides a subset of the functionality provided by MS_NOATIME; that is,
MS_NOATIME implies MS_NODIRATIME.

MS_NOEXEC
Do not allow programs to be executed from this filesystem.

MS_NOSUID
Do not honor set-user-ID and set-group-ID bits or file capabilities when exe-
cuting programs from this filesystem. In addition, SELinux domain transitions
require the permission nosuid_transition, which in turn needs also the policy
capability nnp_nosuid_transition.

Linux man-pages 6.13 2024-07-23 481

mount(2) System Calls Manual mount(2)

MS_RDONLY
Mount filesystem read-only.

MS_REC (since Linux 2.4.11)
Used in conjunction with MS_BIND to create a recursive bind mount, and in
conjunction with the propagation type flags to recursively change the propaga-
tion type of all of the mounts in a subtree. See below for further details.

MS_RELATIME (since Linux 2.6.20)
When a file on this filesystem is accessed, update the file’s last access time
(atime) only if the current value of atime is less than or equal to the file’s last
modification time (mtime) or last status change time (ctime). This option is
useful for programs, such as mutt(1), that need to know when a file has been
read since it was last modified. Since Linux 2.6.30, the kernel defaults to the
behavior provided by this flag (unless MS_NOATIME was specified), and the
MS_STRICTATIME flag is required to obtain traditional semantics. In addi-
tion, since Linux 2.6.30, the file’s last access time is always updated if it is
more than 1 day old.

MS_SILENT (since Linux 2.6.17)
Suppress the display of certain (printk()) warning messages in the kernel log.
This flag supersedes the misnamed and obsolete MS_VERBOSE flag (avail-
able since Linux 2.4.12), which has the same meaning.

MS_STRICTATIME (since Linux 2.6.30)
Always update the last access time (atime) when files on this filesystem are ac-
cessed. (This was the default behavior before Linux 2.6.30.) Specifying this
flag overrides the effect of setting the MS_NOATIME and MS_RELATIME
flags.

MS_SYNCHRONOUS
Make writes on this filesystem synchronous (as though the O_SYNC flag to
open(2) was specified for all file opens to this filesystem).

MS_NOSYMFOLLOW (since Linux 5.10)
Do not follow symbolic links when resolving paths. Symbolic links can still
be created, and readlink(1), readlink(2), realpath(1), and realpath(3) all still
work properly.

From Linux 2.4 onward, some of the above flags are settable on a per-mount basis,
while others apply to the superblock of the mounted filesystem, meaning that all
mounts of the same filesystem share those flags. (Previously, all of the flags were per-
superblock.)

The per-mount-point flags are as follows:

• Since Linux 2.4: MS_NODEV, MS_NOEXEC, and MS_NOSUID flags are set-
table on a per-mount-point basis.

• Additionally, since Linux 2.6.16: MS_NOATIME and MS_NODIRATIME.

• Additionally, since Linux 2.6.20: MS_RELATIME.

The following flags are per-superblock: MS_DIRSYNC, MS_LAZYTIME,
MS_MANDLOCK, MS_SILENT, and MS_SYNCHRONOUS. The initial settings
of these flags are determined on the first mount of the filesystem, and will be shared

Linux man-pages 6.13 2024-07-23 482

mount(2) System Calls Manual mount(2)

by all subsequent mounts of the same filesystem. Subsequently, the settings of the
flags can be changed via a remount operation (see below). Such changes will be visi-
ble via all mounts associated with the filesystem.

Since Linux 2.6.16, MS_RDONLY can be set or cleared on a per-mount-point basis
as well as on the underlying filesystem superblock. The mounted filesystem will be
writable only if neither the filesystem nor the mountpoint are flagged as read-only.

Remounting an existing mount
An existing mount may be remounted by specifying MS_REMOUNT in mountflags.
This allows you to change the mountflags and data of an existing mount without hav-
ing to unmount and remount the filesystem. target should be the same value specified
in the initial mount() call.

The source and filesystemtype arguments are ignored.

The mountflags and data arguments should match the values used in the original
mount() call, except for those parameters that are being deliberately changed.

The following mountflags can be changed: MS_LAZYTIME, MS_MANDLOCK,
MS_NOATIME, MS_NODEV, MS_NODIRATIME, MS_NOEXEC, MS_NO-
SUID, MS_RELATIME, MS_RDONLY, MS_STRICTATIME (whose effect is to
clear the MS_NOATIME and MS_RELATIME flags), and MS_SYNCHRONOUS.
Attempts to change the setting of the MS_DIRSYNC and MS_SILENT flags during
a remount are silently ignored. Note that changes to per-superblock flags are visible
via all mounts of the associated filesystem (because the per-superblock flags are
shared by all mounts).

Since Linux 3.17, if none of MS_NOATIME, MS_NODIRATIME, MS_RELA-
TIME, or MS_STRICTATIME is specified in mountflags, then the remount opera-
tion preserves the existing values of these flags (rather than defaulting to MS_RELA-
TIME).

Since Linux 2.6.26, the MS_REMOUNT flag can be used with MS_BIND to modify
only the per-mount-point flags. This is particularly useful for setting or clearing the
"read-only" flag on a mount without changing the underlying filesystem. Specifying
mountflags as:

MS_REMOUNT | MS_BIND | MS_RDONLY

will make access through this mountpoint read-only, without affecting other mounts.

Creating a bind mount
If mountflags includes MS_BIND (available since Linux 2.4), then perform a bind
mount. A bind mount makes a file or a directory subtree visible at another point
within the single directory hierarchy. Bind mounts may cross filesystem boundaries
and span chroot(2) jails.

The filesystemtype and data arguments are ignored.

The remaining bits (other than MS_REC, described below) in the mountflags argu-
ment are also ignored. (The bind mount has the same mount options as the underly-
ing mount.) However, see the discussion of remounting above, for a method of mak-
ing an existing bind mount read-only.

By default, when a directory is bind mounted, only that directory is mounted; if there

Linux man-pages 6.13 2024-07-23 483

mount(2) System Calls Manual mount(2)

are any submounts under the directory tree, they are not bind mounted. If the
MS_REC flag is also specified, then a recursive bind mount operation is performed:
all submounts under the source subtree (other than unbindable mounts) are also bind
mounted at the corresponding location in the target subtree.

Changing the propagation type of an existing mount
If mountflags includes one of MS_SHARED, MS_PRIVATE, MS_SLAVE, or
MS_UNBINDABLE (all available since Linux 2.6.15), then the propagation type of
an existing mount is changed. If more than one of these flags is specified, an error re-
sults.

The only other flags that can be specified while changing the propagation type are
MS_REC (described below) and MS_SILENT (which is ignored).

The source, filesystemtype, and data arguments are ignored.

The meanings of the propagation type flags are as follows:

MS_SHARED
Make this mount shared. Mount and unmount events immediately under this
mount will propagate to the other mounts that are members of this mount’s
peer group. Propagation here means that the same mount or unmount will au-
tomatically occur under all of the other mounts in the peer group. Conversely,
mount and unmount events that take place under peer mounts will propagate to
this mount.

MS_PRIVATE
Make this mount private. Mount and unmount events do not propagate into or
out of this mount.

MS_SLAVE
If this is a shared mount that is a member of a peer group that contains other
members, convert it to a slave mount. If this is a shared mount that is a mem-
ber of a peer group that contains no other members, convert it to a private
mount. Otherwise, the propagation type of the mount is left unchanged.

When a mount is a slave, mount and unmount events propagate into this mount
from the (master) shared peer group of which it was formerly a member.
Mount and unmount events under this mount do not propagate to any peer.

A mount can be the slave of another peer group while at the same time sharing
mount and unmount events with a peer group of which it is a member.

MS_UNBINDABLE
Make this mount unbindable. This is like a private mount, and in addition this
mount can’t be bind mounted. When a recursive bind mount (mount() with
the MS_BIND and MS_REC flags) is performed on a directory subtree, any
unbindable mounts within the subtree are automatically pruned (i.e., not repli-
cated) when replicating that subtree to produce the target subtree.

By default, changing the propagation type affects only the target mount. If the
MS_REC flag is also specified in mountflags, then the propagation type of all mounts
under target is also changed.

For further details regarding mount propagation types (including the default propaga-
tion type assigned to new mounts), see mount_namespaces(7).

Linux man-pages 6.13 2024-07-23 484

mount(2) System Calls Manual mount(2)

Moving a mount
If mountflags contains the flag MS_MOVE (available since Linux 2.4.18), then move
a subtree: source specifies an existing mount and target specifies the new location to
which that mount is to be relocated. The move is atomic: at no point is the subtree un-
mounted.

The remaining bits in the mountflags argument are ignored, as are the filesystemtype
and data arguments.

Creating a new mount
If none of MS_REMOUNT, MS_BIND, MS_MOVE, MS_SHARED, MS_PRI-
VATE, MS_SLAVE, or MS_UNBINDABLE is specified in mountflags, then
mount() performs its default action: creating a new mount. source specifies the
source for the new mount, and target specifies the directory at which to create the
mount point.

The filesystemtype and data arguments are employed, and further bits may be speci-
fied in mountflags to modify the behavior of the call.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
The error values given below result from filesystem type independent errors. Each
filesystem type may have its own special errors and its own special behavior. See the
Linux kernel source code for details.

EACCES
A component of a path was not searchable. (See also path_resolution(7).)

EACCES
Mounting a read-only filesystem was attempted without giving the
MS_RDONLY flag.

The filesystem may be read-only for various reasons, including: it resides on a
read-only optical disk; it is resides on a device with a physical switch that has
been set to mark the device read-only; the filesystem implementation was
compiled with read-only support; or errors were detected when initially
mounting the filesystem, so that it was marked read-only and can’t be re-
mounted as read-write (until the errors are fixed).

Some filesystems instead return the error EROFS on an attempt to mount a
read-only filesystem.

EACCES
The block device source is located on a filesystem mounted with the
MS_NODEV option.

EBUSY
An attempt was made to stack a new mount directly on top of an existing
mount point that was created in this mount namespace with the same source
and target.

Linux man-pages 6.13 2024-07-23 485

mount(2) System Calls Manual mount(2)

EBUSY
source cannot be remounted read-only, because it still holds files open for
writing.

EFAULT
One of the pointer arguments points outside the user address space.

EINVAL
source had an invalid superblock.

EINVAL
A remount operation (MS_REMOUNT) was attempted, but source was not
already mounted on target.

EINVAL
A move operation (MS_MOVE) was attempted, but the mount tree under
source includes unbindable mounts and target is a mount that has propagation
type MS_SHARED.

EINVAL
A move operation (MS_MOVE) was attempted, but the parent mount of
source mount has propagation type MS_SHARED.

EINVAL
A move operation (MS_MOVE) was attempted, but source was not a mount,
or was '/'.

EINVAL
A bind operation (MS_BIND) was requested where source referred a mount
namespace magic link (i.e., a /proc/ pid /ns/mnt magic link or a bind mount to
such a link) and the propagation type of the parent mount of target was
MS_SHARED, but propagation of the requested bind mount could lead to a
circular dependency that might prevent the mount namespace from ever being
freed.

EINVAL
mountflags includes more than one of MS_SHARED, MS_PRIVATE,
MS_SLAVE, or MS_UNBINDABLE.

EINVAL
mountflags includes MS_SHARED, MS_PRIVATE, MS_SLAVE, or
MS_UNBINDABLE and also includes a flag other than MS_REC or
MS_SILENT.

EINVAL
An attempt was made to bind mount an unbindable mount.

EINVAL
In an unprivileged mount namespace (i.e., a mount namespace owned by a
user namespace that was created by an unprivileged user), a bind mount opera-
tion (MS_BIND) was attempted without specifying (MS_REC), which would
have revealed the filesystem tree underneath one of the submounts of the di-
rectory being bound.

Linux man-pages 6.13 2024-07-23 486

mount(2) System Calls Manual mount(2)

ELOOP
Too many links encountered during pathname resolution.

ELOOP
A move operation was attempted, and target is a descendant of source.

EMFILE
(In case no block device is required:) Table of dummy devices is full.

ENAMETOOLONG
A pathname was longer than MAXPATHLEN.

ENODEV
filesystemtype not configured in the kernel.

ENOENT
A pathname was empty or had a nonexistent component.

ENOMEM
The kernel could not allocate a free page to copy filenames or data into.

ENOTBLK
source is not a block device (and a device was required).

ENOTDIR
target, or a prefix of source, is not a directory.

ENXIO
The major number of the block device source is out of range.

EPERM
The caller does not have the required privileges.

EPERM
An attempt was made to modify (MS_REMOUNT) the MS_RDONLY,
MS_NOSUID, or MS_NOEXEC flag, or one of the "atime" flags
(MS_NOATIME, MS_NODIRATIME, MS_RELATIME) of an existing
mount, but the mount is locked; see mount_namespaces(7).

EROFS
Mounting a read-only filesystem was attempted without giving the
MS_RDONLY flag. See EACCES, above.

STANDARDS
Linux.

HISTORY
The definitions of MS_DIRSYNC, MS_MOVE, MS_PRIVATE, MS_REC,
MS_RELATIME, MS_SHARED, MS_SLAVE, MS_STRICTATIME, and
MS_UNBINDABLE were added to glibc headers in glibc 2.12.

Since Linux 2.4 a single filesystem can be mounted at multiple mount points, and
multiple mounts can be stacked on the same mount point.

The mountflags argument may have the magic number 0xC0ED (MS_MGC_VAL) in
the top 16 bits. (All of the other flags discussed in DESCRIPTION occupy the low
order 16 bits of mountflags.) Specifying MS_MGC_VAL was required before Linux
2.4, but since Linux 2.4 is no longer required and is ignored if specified.

Linux man-pages 6.13 2024-07-23 487

mount(2) System Calls Manual mount(2)

The original MS_SYNC flag was renamed MS_SYNCHRONOUS in 1.1.69 when a
different MS_SYNC was added to <mman.h>.

Before Linux 2.4 an attempt to execute a set-user-ID or set-group-ID program on a
filesystem mounted with MS_NOSUID would fail with EPERM. Since Linux 2.4
the set-user-ID and set-group-ID bits are just silently ignored in this case.

NOTES
Mount namespaces

Starting with Linux 2.4.19, Linux provides mount namespaces. A mount namespace
is the set of filesystem mounts that are visible to a process. Mount namespaces can be
(and usually are) shared between multiple processes, and changes to the namespace
(i.e., mounts and unmounts) by one process are visible to all other processes sharing
the same namespace. (The pre-2.4.19 Linux situation can be considered as one in
which a single namespace was shared by every process on the system.)

A child process created by fork(2) shares its parent’s mount namespace; the mount
namespace is preserved across an execve(2).

A process can obtain a private mount namespace if: it was created using the clone(2)
CLONE_NEWNS flag, in which case its new namespace is initialized to be a copy of
the namespace of the process that called clone(2); or it calls unshare(2) with the
CLONE_NEWNS flag, which causes the caller’s mount namespace to obtain a pri-
vate copy of the namespace that it was previously sharing with other processes, so that
future mounts and unmounts by the caller are invisible to other processes (except
child processes that the caller subsequently creates) and vice versa.

For further details on mount namespaces, see mount_namespaces(7).

Parental relationship between mounts
Each mount has a parent mount. The overall parental relationship of all mounts de-
fines the single directory hierarchy seen by the processes within a mount namespace.

The parent of a new mount is defined when the mount is created. In the usual case,
the parent of a new mount is the mount of the filesystem containing the directory or
file at which the new mount is attached. In the case where a new mount is stacked on
top of an existing mount, the parent of the new mount is the previous mount that was
stacked at that location.

The parental relationship between mounts can be discovered via the
/proc/ pid /mountinfo file (see below).

/proc/pid/mounts and /proc/pid/mountinfo
The Linux-specific /proc/ pid /mounts file exposes the list of mounts in the mount
namespace of the process with the specified ID. The /proc/ pid /mountinfo file ex-
poses even more information about mounts, including the propagation type and mount
ID information that makes it possible to discover the parental relationship between
mounts. See proc(5) and mount_namespaces(7) for details of this file.

SEE ALSO
mountpoint(1), chroot(2), FS_IOC_SETFLAGS(2const), mount_setattr(2),
pivot_root(2), umount(2), mount_namespaces(7), path_resolution(7), findmnt(8), ls-
blk(8), mount(8), umount(8)

Linux man-pages 6.13 2024-07-23 488

mount_setattr(2) System Calls Manual mount_setattr(2)

NAME
mount_setattr - change properties of a mount or mount tree

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fcntl.h> /* Definition of AT_* constants */
#include <linux/mount.h> /* Definition of MOUNT_ATTR_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_mount_setattr, int dirfd , const char *pathname,
unsigned int flags, struct mount_attr *attr, size_t size);

Note: glibc provides no wrapper for mount_setattr(), necessitating the use of
syscall(2).

DESCRIPTION
The mount_setattr() system call changes the mount properties of a mount or an en-
tire mount tree. If pathname is a relative pathname, then it is interpreted relative to
the directory referred to by the file descriptor dirfd . If dirfd is the special value
AT_FDCWD, then pathname is interpreted relative to the current working directory
of the calling process. If pathname is the empty string and AT_EMPTY_PATH is
specified in flags, then the mount properties of the mount identified by dirfd are
changed. (See openat(2) for an explanation of why the dirfd argument is useful.)

The mount_setattr() system call uses an extensible structure (struct mount_attr) to
allow for future extensions. Any non-flag extensions to mount_setattr() will be im-
plemented as new fields appended to the this structure, with a zero value in a new field
resulting in the kernel behaving as though that extension field was not present. There-
fore, the caller must zero-fill this structure on initialization. See the "Extensibility"
subsection under NOTES for more details.

The size argument should usually be specified as sizeof(struct mount_attr). However,
if the caller is using a kernel that supports an extended struct mount_attr, but the
caller does not intend to make use of these features, it is possible to pass the size of an
earlier version of the structure together with the extended structure. This allows the
kernel to not copy later parts of the structure that aren’t used anyway. With each ex-
tension that changes the size of struct mount_attr, the kernel will expose a definition
of the form MOUNT_ATTR_SIZE_VERnumber. For example, the macro for the
size of the initial version of struct mount_attr is MOUNT_ATTR_SIZE_VER0.

The flags argument can be used to alter the pathname resolution behavior. The sup-
ported values are:

AT_EMPTY_PATH
If pathname is the empty string, change the mount properties on dirfd itself.

AT_RECURSIVE
Change the mount properties of the entire mount tree.

AT_SYMLINK_NOFOLLOW
Don’t follow trailing symbolic links.

Linux man-pages 6.13 2024-07-23 489

mount_setattr(2) System Calls Manual mount_setattr(2)

AT_NO_AUTOMOUNT
Don’t trigger automounts.

The attr argument of mount_setattr() is a structure of the following form:

struct mount_attr {
__u64 attr_set; /* Mount properties to set */
__u64 attr_clr; /* Mount properties to clear */
__u64 propagation; /* Mount propagation type */
__u64 userns_fd; /* User namespace file descriptor */

};

The attr_set and attr_clr members are used to specify the mount properties that are
supposed to be set or cleared for a mount or mount tree. Flags set in attr_set enable a
property on a mount or mount tree, and flags set in attr_clr remove a property from a
mount or mount tree.

When changing mount properties, the kernel will first clear the flags specified in the
attr_clr field, and then set the flags specified in the attr_set field. For example, these
settings:

struct mount_attr attr = {
.attr_clr = MOUNT_ATTR_NOEXEC | MOUNT_ATTR_NODEV,
.attr_set = MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID,

};

are equivalent to the following steps:

unsigned int current_mnt_flags = mnt->mnt_flags;

/*
* Clear all flags set in .attr_clr,
* clearing MOUNT_ATTR_NOEXEC and MOUNT_ATTR_NODEV.
*/

current_mnt_flags &= ~attr->attr_clr;

/*
* Now set all flags set in .attr_set,
* applying MOUNT_ATTR_RDONLY and MOUNT_ATTR_NOSUID.
*/

current_mnt_flags |= attr->attr_set;

mnt->mnt_flags = current_mnt_flags;

As a result of this change, the mount or mount tree (a) is read-only; (b) blocks the ex-
ecution of set-user-ID and set-group-ID programs; (c) allows execution of programs;
and (d) allows access to devices.

Multiple changes with the same set of flags requested in attr_clr and attr_set are
guaranteed to be idempotent after the changes have been applied.

The following mount attributes can be specified in the attr_set or attr_clr fields:

Linux man-pages 6.13 2024-07-23 490

mount_setattr(2) System Calls Manual mount_setattr(2)

MOUNT_ATTR_RDONLY
If set in attr_set, makes the mount read-only. If set in attr_clr, removes the
read-only setting if set on the mount.

MOUNT_ATTR_NOSUID
If set in attr_set, causes the mount not to honor the set-user-ID and set-group-
ID mode bits and file capabilities when executing programs. If set in attr_clr,
clears the set-user-ID, set-group-ID, and file capability restriction if set on this
mount.

MOUNT_ATTR_NODEV
If set in attr_set, prevents access to devices on this mount. If set in attr_clr,
removes the restriction that prevented accessing devices on this mount.

MOUNT_ATTR_NOEXEC
If set in attr_set, prevents executing programs on this mount. If set in
attr_clr, removes the restriction that prevented executing programs on this
mount.

MOUNT_ATTR_NOSYMFOLLOW
If set in attr_set, prevents following symbolic links on this mount. If set in
attr_clr, removes the restriction that prevented following symbolic links on
this mount.

MOUNT_ATTR_NODIRATIME
If set in attr_set, prevents updating access time for directories on this mount.
If set in attr_clr, removes the restriction that prevented updating access time
for directories. Note that MOUNT_ATTR_NODIRATIME can be combined
with other access-time settings and is implied by the noatime setting. All
other access-time settings are mutually exclusive.

MOUNT_ATTR__ATIME - changing access-time settings
The access-time values listed below are an enumeration that includes the value
zero, expressed in the bits defined by the mask MOUNT_ATTR__ATIME.
Even though these bits are an enumeration (in contrast to the other mount flags
such as MOUNT_ATTR_NOEXEC), they are nonetheless passed in attr_set
and attr_clr for consistency with fsmount(2), which introduced this behavior.

Note that, since the access-time values are an enumeration rather than bit val-
ues, a caller wanting to transition to a different access-time setting cannot sim-
ply specify the access-time setting in attr_set, but must also include
MOUNT_ATTR__ATIME in the attr_clr field. The kernel will verify that
MOUNT_ATTR__ATIME isn’t partially set in attr_clr (i.e., either all bits in
the MOUNT_ATTR__ATIME bit field are either set or clear), and that
attr_set doesn’t have any access-time bits set if MOUNT_ATTR__ATIME
isn’t set in attr_clr.

MOUNT_ATTR_RELATIME
When a file is accessed via this mount, update the file’s last access time
(atime) only if the current value of atime is less than or equal to the
file’s last modification time (mtime) or last status change time (ctime).

To enable this access-time setting on a mount or mount tree,
MOUNT_ATTR_RELATIME must be set in attr_set and

Linux man-pages 6.13 2024-07-23 491

mount_setattr(2) System Calls Manual mount_setattr(2)

MOUNT_ATTR__ATIME must be set in the attr_clr field.

MOUNT_ATTR_NOATIME
Do not update access times for (all types of) files on this mount.

To enable this access-time setting on a mount or mount tree,
MOUNT_ATTR_NOATIME must be set in attr_set and
MOUNT_ATTR__ATIME must be set in the attr_clr field.

MOUNT_ATTR_STRICTATIME
Always update the last access time (atime) when files are accessed on
this mount.

To enable this access-time setting on a mount or mount tree,
MOUNT_ATTR_STRICTATIME must be set in attr_set and
MOUNT_ATTR__ATIME must be set in the attr_clr field.

MOUNT_ATTR_IDMAP
If set in attr_set, creates an ID-mapped mount. The ID mapping is taken from
the user namespace specified in userns_fd and attached to the mount.

Since it is not supported to change the ID mapping of a mount after it has been
ID mapped, it is invalid to specify MOUNT_ATTR_IDMAP in attr_clr.

For further details, see the subsection "ID-mapped mounts" under NOTES.

The propagation field is used to specify the propagation type of the mount or mount
tree. This field either has the value zero, meaning leave the propagation type un-
changed, or it has one of the following values:

MS_PRIVATE
Turn all mounts into private mounts.

MS_SHARED
Turn all mounts into shared mounts.

MS_SLAVE
Turn all mounts into dependent mounts.

MS_UNBINDABLE
Turn all mounts into unbindable mounts.

For further details on the above propagation types, see mount_namespaces(7).

RETURN VALUE
On success, mount_setattr() returns zero. On error, -1 is returned and errno is set to
indicate the error.

ERRORS
EBADF

pathname is relative but dirfd is neither AT_FDCWD nor a valid file descrip-
tor.

EBADF
userns_fd is not a valid file descriptor.

EBUSY
The caller tried to change the mount to MOUNT_ATTR_RDONLY, but the
mount still holds files open for writing.

Linux man-pages 6.13 2024-07-23 492

mount_setattr(2) System Calls Manual mount_setattr(2)

EBUSY
The caller tried to create an ID-mapped mount raising
MOUNT_ATTR_IDMAP and specifying userns_fd but the mount still holds
files open for writing.

EINVAL
The pathname specified via the dirfd and pathname arguments to mount_se-
tattr() isn’t a mount point.

EINVAL
An unsupported value was set in flags.

EINVAL
An unsupported value was specified in the attr_set field of mount_attr.

EINVAL
An unsupported value was specified in the attr_clr field of mount_attr.

EINVAL
An unsupported value was specified in the propagation field of mount_attr.

EINVAL
More than one of MS_SHARED, MS_SLAVE, MS_PRIVATE, or MS_UN-
BINDABLE was set in the propagation field of mount_attr.

EINVAL
An access-time setting was specified in the attr_set field without
MOUNT_ATTR__ATIME being set in the attr_clr field.

EINVAL
MOUNT_ATTR_IDMAP was specified in attr_clr.

EINVAL
A file descriptor value was specified in userns_fd which exceeds INT_MAX.

EINVAL
A valid file descriptor value was specified in userns_fd , but the file descriptor
did not refer to a user namespace.

EINVAL
The underlying filesystem does not support ID-mapped mounts.

EINVAL
The mount that is to be ID mapped is not a detached mount; that is, the mount
has not previously been visible in a mount namespace.

EINVAL
A partial access-time setting was specified in attr_clr instead of
MOUNT_ATTR__ATIME being set.

EINVAL
The mount is located outside the caller’s mount namespace.

EINVAL
The underlying filesystem has been mounted in a mount namespace that is
owned by a noninitial user namespace

Linux man-pages 6.13 2024-07-23 493

mount_setattr(2) System Calls Manual mount_setattr(2)

ENOENT
A pathname was empty or had a nonexistent component.

ENOMEM
When changing mount propagation to MS_SHARED, a new peer group ID
needs to be allocated for all mounts without a peer group ID set. This alloca-
tion failed because there was not enough memory to allocate the relevant inter-
nal structures.

ENOSPC
When changing mount propagation to MS_SHARED, a new peer group ID
needs to be allocated for all mounts without a peer group ID set. This alloca-
tion failed because the kernel has run out of IDs.

EPERM
One of the mounts had at least one of MOUNT_ATTR_NOATIME,
MOUNT_ATTR_NODEV, MOUNT_ATTR_NODIRATIME,
MOUNT_ATTR_NOEXEC, MOUNT_ATTR_NOSUID, or
MOUNT_ATTR_RDONLY set and the flag is locked. Mount attributes be-
come locked on a mount if:

• A new mount or mount tree is created causing mount propagation across
user namespaces (i.e., propagation to a mount namespace owned by a dif-
ferent user namespace). The kernel will lock the aforementioned flags to
prevent these sensitive properties from being altered.

• A new mount and user namespace pair is created. This happens for exam-
ple when specifying CLONE_NEWUSER | CLONE_NEWNS in un-
share(2), clone(2), or clone3(2). The aforementioned flags become locked
in the new mount namespace to prevent sensitive mount properties from
being altered. Since the newly created mount namespace will be owned by
the newly created user namespace, a calling process that is privileged in
the new user namespace would—in the absence of such locking—be able
to alter sensitive mount properties (e.g., to remount a mount that was
marked read-only as read-write in the new mount namespace).

EPERM
A valid file descriptor value was specified in userns_fd , but the file descriptor
refers to the initial user namespace.

EPERM
An attempt was made to add an ID mapping to a mount that is already ID
mapped.

EPERM
The caller does not have CAP_SYS_ADMIN in the initial user namespace.

STANDARDS
Linux.

HISTORY
Linux 5.12.

Linux man-pages 6.13 2024-07-23 494

mount_setattr(2) System Calls Manual mount_setattr(2)

NOTES
ID-mapped mounts

Creating an ID-mapped mount makes it possible to change the ownership of all files
located under a mount. Thus, ID-mapped mounts make it possible to change owner-
ship in a temporary and localized way. It is a localized change because the ownership
changes are visible only via a specific mount. All other users and locations where the
filesystem is exposed are unaffected. It is a temporary change because the ownership
changes are tied to the lifetime of the mount.

Whenever callers interact with the filesystem through an ID-mapped mount, the ID
mapping of the mount will be applied to user and group IDs associated with filesys-
tem objects. This encompasses the user and group IDs associated with inodes and
also the following xattr(7) keys:

• security.capability, whenever filesystem capabilities are stored or returned in the
VFS_CAP_REVISION_3 format, which stores a root user ID alongside the capa-
bilities (see capabilities(7)).

• system.posix_acl_access and system.posix_acl_default, whenever user IDs or
group IDs are stored in ACL_USER or ACL_GROUP entries.

The following conditions must be met in order to create an ID-mapped mount:

• The caller must have the CAP_SYS_ADMIN capability in the user namespace
the filesystem was mounted in.

• The underlying filesystem must support ID-mapped mounts. Currently, the fol-
lowing filesystems support ID-mapped mounts:

• xfs(5) (since Linux 5.12)
• ext4(5) (since Linux 5.12)
• FAT (since Linux 5.12)
• btrfs(5) (since Linux 5.15)
• ntfs3 (since Linux 5.15)
• f2fs (since Linux 5.18)
• erofs (since Linux 5.19)
• overlayfs (ID-mapped lower and upper layers supported since Linux 5.19)
• squashfs (since Linux 6.2)
• tmpfs (since Linux 6.3)
• cephfs (since Linux 6.7)
• hugetlbfs (since Linux 6.9)

• The mount must not already be ID-mapped. This also implies that the ID map-
ping of a mount cannot be altered.

• The mount must not have any writers.

• The mount must be a detached mount; that is, it must have been created by calling
open_tree(2) with the OPEN_TREE_CLONE flag and it must not already have
been visible in a mount namespace. (To put things another way: the mount must
not have been attached to the filesystem hierarchy with a system call such as
move_mount(2)

ID mappings can be created for user IDs, group IDs, and project IDs. An ID mapping
is essentially a mapping of a range of user or group IDs into another or the same range

Linux man-pages 6.13 2024-07-23 495

mount_setattr(2) System Calls Manual mount_setattr(2)

of user or group IDs. ID mappings are written to map files as three numbers separated
by white space. The first two numbers specify the starting user or group ID in each of
the two user namespaces. The third number specifies the range of the ID mapping.
For example, a mapping for user IDs such as "1000 1001 1" would indicate that user
ID 1000 in the caller’s user namespace is mapped to user ID 1001 in its ancestor user
namespace. Since the map range is 1, only user ID 1000 is mapped.

It is possible to specify up to 340 ID mappings for each ID mapping type. If any user
IDs or group IDs are not mapped, all files owned by that unmapped user or group ID
will appear as being owned by the overflow user ID or overflow group ID respectively.

Further details on setting up ID mappings can be found in user_namespaces(7).

In the common case, the user namespace passed in userns_fd (together with
MOUNT_ATTR_IDMAP in attr_set) to create an ID-mapped mount will be the user
namespace of a container. In other scenarios it will be a dedicated user namespace as-
sociated with a user’s login session as is the case for portable home directories in sys-
temd-homed.service(8)). It is also perfectly fine to create a dedicated user namespace
for the sake of ID mapping a mount.

ID-mapped mounts can be useful in the following and a variety of other scenarios:

• Sharing files or filesystems between multiple users or multiple machines, espe-
cially in complex scenarios. For example, ID-mapped mounts are used to imple-
ment portable home directories in systemd-homed.service(8), where they allow
users to move their home directory to an external storage device and use it on mul-
tiple computers where they are assigned different user IDs and group IDs. This
effectively makes it possible to assign random user IDs and group IDs at login
time.

• Sharing files or filesystems from the host with unprivileged containers. This al-
lows a user to avoid having to change ownership permanently through chown(2).

• ID mapping a container’s root filesystem. Users don’t need to change ownership
permanently through chown(2). Especially for large root filesystems, using
chown(2) can be prohibitively expensive.

• Sharing files or filesystems between containers with non-overlapping ID map-
pings.

• Implementing discretionary access (DAC) permission checking for filesystems
lacking a concept of ownership.

• Efficiently changing ownership on a per-mount basis. In contrast to chown(2),
changing ownership of large sets of files is instantaneous with ID-mapped mounts.
This is especially useful when ownership of an entire root filesystem of a virtual
machine or container is to be changed as mentioned above. With ID-mapped
mounts, a single mount_setattr() system call will be sufficient to change the own-
ership of all files.

• Taking the current ownership into account. ID mappings specify precisely what a
user or group ID is supposed to be mapped to. This contrasts with the chown(2)
system call which cannot by itself take the current ownership of the files it
changes into account. It simply changes the ownership to the specified user ID
and group ID.

Linux man-pages 6.13 2024-07-23 496

mount_setattr(2) System Calls Manual mount_setattr(2)

• Locally and temporarily restricted ownership changes. ID-mapped mounts make
it possible to change ownership locally, restricting the ownership changes to spe-
cific mounts, and temporarily as the ownership changes only apply as long as the
mount exists. By contrast, changing ownership via the chown(2) system call
changes the ownership globally and permanently.

Extensibility
In order to allow for future extensibility, mount_setattr() requires the user-space ap-
plication to specify the size of the mount_attr structure that it is passing. By provid-
ing this information, it is possible for mount_setattr() to provide both forwards- and
backwards-compatibility, with size acting as an implicit version number. (Because
new extension fields will always be appended, the structure size will always increase.)
This extensibility design is very similar to other system calls such as perf_setattr(2),
perf_event_open(2), clone3(2) and openat2(2).

Let usize be the size of the structure as specified by the user-space application, and let
ksize be the size of the structure which the kernel supports, then there are three cases
to consider:

• If ksize equals usize, then there is no version mismatch and attr can be used ver-
batim.

• If ksize is larger than usize, then there are some extension fields that the kernel
supports which the user-space application is unaware of. Because a zero value in
any added extension field signifies a no-op, the kernel treats all of the extension
fields not provided by the user-space application as having zero values. This pro-
vides backwards-compatibility.

• If ksize is smaller than usize, then there are some extension fields which the user-
space application is aware of but which the kernel does not support. Because any
extension field must have its zero values signify a no-op, the kernel can safely ig-
nore the unsupported extension fields if they are all zero. If any unsupported ex-
tension fields are non-zero, then -1 is returned and errno is set to E2BIG. This
provides forwards-compatibility.

Because the definition of struct mount_attr may change in the future (with new fields
being added when system headers are updated), user-space applications should zero-
fill struct mount_attr to ensure that recompiling the program with new headers will
not result in spurious errors at run time. The simplest way is to use a designated ini-
tializer:

struct mount_attr attr = {
.attr_set = MOUNT_ATTR_RDONLY,
.attr_clr = MOUNT_ATTR_NODEV

};

Alternatively, the structure can be zero-filled using memset(3) or similar functions:

struct mount_attr attr;
memset(&attr, 0, sizeof(attr));
attr.attr_set = MOUNT_ATTR_RDONLY;
attr.attr_clr = MOUNT_ATTR_NODEV;

A user-space application that wishes to determine which extensions the running kernel
supports can do so by conducting a binary search on size with a structure which has

Linux man-pages 6.13 2024-07-23 497

mount_setattr(2) System Calls Manual mount_setattr(2)

every byte nonzero (to find the largest value which doesn’t produce an error of
E2BIG).

EXAMPLES
/*

* This program allows the caller to create a new detached mount
* and set various properties on it.
*/

#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <getopt.h>
#include <linux/mount.h>
#include <linux/types.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/syscall.h>
#include <unistd.h>

static inline int
mount_setattr(int dirfd, const char *pathname, unsigned int flags,

struct mount_attr *attr, size_t size)
{

return syscall(SYS_mount_setattr, dirfd, pathname, flags,
attr, size);

}

static inline int
open_tree(int dirfd, const char *filename, unsigned int flags)
{

return syscall(SYS_open_tree, dirfd, filename, flags);
}

static inline int
move_mount(int from_dirfd, const char *from_pathname,

int to_dirfd, const char *to_pathname, unsigned int flags)
{

return syscall(SYS_move_mount, from_dirfd, from_pathname,
to_dirfd, to_pathname, flags);

}

static const struct option longopts[] = {
{"map-mount", required_argument, NULL, 'a'},
{"recursive", no_argument, NULL, 'b'},
{"read-only", no_argument, NULL, 'c'},
{"block-setid", no_argument, NULL, 'd'},
{"block-devices", no_argument, NULL, 'e'},

Linux man-pages 6.13 2024-07-23 498

mount_setattr(2) System Calls Manual mount_setattr(2)

{"block-exec", no_argument, NULL, 'f'},
{"no-access-time", no_argument, NULL, 'g'},
{ NULL, 0, NULL, 0 },

};

int
main(int argc, char *argv[])
{

int fd_userns = -1;
int fd_tree;
int index = 0;
int ret;
bool recursive = false;
const char *source;
const char *target;
struct mount_attr *attr = &(struct mount_attr){};

while ((ret = getopt_long_only(argc, argv, "",
longopts, &index)) != -1) {

switch (ret) {
case 'a':

fd_userns = open(optarg, O_RDONLY | O_CLOEXEC);
if (fd_userns == -1)

err(EXIT_FAILURE, "open(%s)", optarg);
break;

case 'b':
recursive = true;
break;

case 'c':
attr->attr_set |= MOUNT_ATTR_RDONLY;
break;

case 'd':
attr->attr_set |= MOUNT_ATTR_NOSUID;
break;

case 'e':
attr->attr_set |= MOUNT_ATTR_NODEV;
break;

case 'f':
attr->attr_set |= MOUNT_ATTR_NOEXEC;
break;

case 'g':
attr->attr_set |= MOUNT_ATTR_NOATIME;
attr->attr_clr |= MOUNT_ATTR__ATIME;
break;

default:
errx(EXIT_FAILURE, "Invalid argument specified");

}
}

Linux man-pages 6.13 2024-07-23 499

mount_setattr(2) System Calls Manual mount_setattr(2)

if ((argc - optind) < 2)
errx(EXIT_FAILURE, "Missing source or target mount point");

source = argv[optind];
target = argv[optind + 1];

/* In the following, -1 as the 'dirfd' argument ensures that
open_tree() fails if 'source' is not an absolute pathname. */

fd_tree = open_tree(-1, source,
OPEN_TREE_CLONE | OPEN_TREE_CLOEXEC |
AT_EMPTY_PATH | (recursive ? AT_RECURSIVE : 0));

if (fd_tree == -1)
err(EXIT_FAILURE, "open(%s)", source);

if (fd_userns >= 0) {
attr->attr_set |= MOUNT_ATTR_IDMAP;
attr->userns_fd = fd_userns;

}

ret = mount_setattr(fd_tree, "",
AT_EMPTY_PATH | (recursive ? AT_RECURSIVE : 0),
attr, sizeof(struct mount_attr));

if (ret == -1)
err(EXIT_FAILURE, "mount_setattr");

close(fd_userns);

/* In the following, -1 as the 'to_dirfd' argument ensures that
open_tree() fails if 'target' is not an absolute pathname. */

ret = move_mount(fd_tree, "", -1, target,
MOVE_MOUNT_F_EMPTY_PATH);

if (ret == -1)
err(EXIT_FAILURE, "move_mount() to %s", target);

close(fd_tree);

exit(EXIT_SUCCESS);
}

SEE ALSO
newgidmap(1), newuidmap(1), clone(2), mount(2), unshare(2), proc(5), capabili-
ties(7), mount_namespaces(7), user_namespaces(7), xattr(7)

Linux man-pages 6.13 2024-07-23 500

move_pages(2) System Calls Manual move_pages(2)

NAME
move_pages - move individual pages of a process to another node

LIBRARY
NUMA (Non-Uniform Memory Access) policy library (libnuma, -lnuma)

SYNOPSIS
#include <numaif.h>

long move_pages(int pid , unsigned long count, void *pages[.count],
const int nodes[.count], int status[.count], int flags);

DESCRIPTION
move_pages() moves the specified pages of the process pid to the memory nodes
specified by nodes. The result of the move is reflected in status. The flags indicate
constraints on the pages to be moved.

pid is the ID of the process in which pages are to be moved. If pid is 0, then
move_pages() moves pages of the calling process.

To move pages in another process requires the following privileges:

• Up to and including Linux 4.12: the caller must be privileged (CAP_SYS_NICE)
or the real or effective user ID of the calling process must match the real or saved-
set user ID of the target process.

• The older rules allowed the caller to discover various virtual address choices made
by the kernel that could lead to the defeat of address-space-layout randomization
for a process owned by the same UID as the caller, the rules were changed starting
with Linux 4.13. Since Linux 4.13, permission is governed by a ptrace access
mode PTRACE_MODE_READ_REALCREDS check with respect to the target
process; see ptrace(2).

count is the number of pages to move. It defines the size of the three arrays pages,
nodes, and status.

pages is an array of pointers to the pages that should be moved. These are pointers
that should be aligned to page boundaries. Addresses are specified as seen by the
process specified by pid .

nodes is an array of integers that specify the desired location for each page. Each ele-
ment in the array is a node number. nodes can also be NULL, in which case
move_pages() does not move any pages but instead will return the node where each
page currently resides, in the status array. Obtaining the status of each page may be
necessary to determine pages that need to be moved.

status is an array of integers that return the status of each page. The array contains
valid values only if move_pages() did not return an error. Preinitialization of the ar-
ray to a value which cannot represent a real numa node or valid error of status array
could help to identify pages that have been migrated.

flags specify what types of pages to move. MPOL_MF_MOVE means that only
pages that are in exclusive use by the process are to be moved.
MPOL_MF_MOVE_ALL means that pages shared between multiple processes can
also be moved. The process must be privileged (CAP_SYS_NICE) to use
MPOL_MF_MOVE_ALL.

Linux man-pages 6.13 2024-07-23 501

move_pages(2) System Calls Manual move_pages(2)

Page states in the status array
The following values can be returned in each element of the status array.

0..MAX_NUMNODES
Identifies the node on which the page resides.

-EACCES
The page is mapped by multiple processes and can be moved only if
MPOL_MF_MOVE_ALL is specified.

-EBUSY
The page is currently busy and cannot be moved. Try again later. This occurs
if a page is undergoing I/O or another kernel subsystem is holding a reference
to the page.

-EFAULT
This is a zero page or the memory area is not mapped by the process.

-EIO Unable to write back a page. The page has to be written back in order to move
it since the page is dirty and the filesystem does not provide a migration func-
tion that would allow the move of dirty pages.

-EINVAL
A dirty page cannot be moved. The filesystem does not provide a migration
function and has no ability to write back pages.

-ENOENT
The page is not present.

-ENOMEM
Unable to allocate memory on target node.

RETURN VALUE
On success move_pages() returns zero. On error, it returns -1, and sets errno to indi-
cate the error. If positive value is returned, it is the number of nonmigrated pages.

ERRORS
Positive value

The number of nonmigrated pages if they were the result of nonfatal reasons
(since Linux 4.17).

E2BIG
Too many pages to move. Since Linux 2.6.29, the kernel no longer generates
this error.

EACCES
One of the target nodes is not allowed by the current cpuset.

EFAULT
Parameter array could not be accessed.

EINVAL
Flags other than MPOL_MF_MOVE and MPOL_MF_MOVE_ALL was
specified or an attempt was made to migrate pages of a kernel thread.

ENODEV
One of the target nodes is not online.

Linux man-pages 6.13 2024-07-23 502

move_pages(2) System Calls Manual move_pages(2)

EPERM
The caller specified MPOL_MF_MOVE_ALL without sufficient privileges
(CAP_SYS_NICE). Or, the caller attempted to move pages of a process be-
longing to another user but did not have privilege to do so
(CAP_SYS_NICE).

ESRCH
Process does not exist.

STANDARDS
Linux.

HISTORY
Linux 2.6.18.

NOTES
For information on library support, see numa(7).

Use get_mempolicy(2) with the MPOL_F_MEMS_ALLOWED flag to obtain the set
of nodes that are allowed by the current cpuset. Note that this information is subject
to change at any time by manual or automatic reconfiguration of the cpuset.

Use of this function may result in pages whose location (node) violates the memory
policy established for the specified addresses (See mbind(2)) and/or the specified
process (See set_mempolicy(2)). That is, memory policy does not constrain the desti-
nation nodes used by move_pages().

The <numaif.h> header is not included with glibc, but requires installing lib-
numa-devel or a similar package.

SEE ALSO
get_mempolicy(2), mbind(2), set_mempolicy(2), numa(3), numa_maps(5), cpuset(7),
numa(7), migratepages(8), numastat(8)

Linux man-pages 6.13 2024-07-23 503

mprotect(2) System Calls Manual mprotect(2)

NAME
mprotect, pkey_mprotect - set protection on a region of memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int mprotect(void addr[.size], size_t size, int prot);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/mman.h>

int pkey_mprotect(void addr[.size], size_t size, int prot, int pkey);

DESCRIPTION
mprotect() changes the access protections for the calling process’s memory pages
containing any part of the address range in the interval [addr, addr+size-1]. addr
must be aligned to a page boundary.

If the calling process tries to access memory in a manner that violates the protections,
then the kernel generates a SIGSEGV signal for the process.

prot is a combination of the following access flags: PROT_NONE or a bitwise OR of
the other values in the following list:

PROT_NONE
The memory cannot be accessed at all.

PROT_READ
The memory can be read.

PROT_WRITE
The memory can be modified.

PROT_EXEC
The memory can be executed.

PROT_SEM (since Linux 2.5.7)
The memory can be used for atomic operations. This flag was introduced as
part of the futex(2) implementation (in order to guarantee the ability to per-
form atomic operations required by commands such as FUTEX_WAIT), but
is not currently used in on any architecture.

PROT_SAO (since Linux 2.6.26)
The memory should have strong access ordering. This feature is specific to
the PowerPC architecture (version 2.06 of the architecture specification adds
the SAO CPU feature, and it is available on POWER 7 or PowerPC A2, for ex-
ample).

Additionally (since Linux 2.6.0), prot can have one of the following flags set:

PROT_GROWSUP
Apply the protection mode up to the end of a mapping that grows upwards.
(Such mappings are created for the stack area on architectures—for example,
HP-PARISC—that have an upwardly growing stack.)

Linux man-pages 6.13 2024-11-17 504

mprotect(2) System Calls Manual mprotect(2)

PROT_GROWSDOWN
Apply the protection mode down to the beginning of a mapping that grows
downward (which should be a stack segment or a segment mapped with the
MAP_GROWSDOWN flag set).

Like mprotect(), pkey_mprotect() changes the protection on the pages specified by
addr and size. The pkey argument specifies the protection key (see pkeys(7)) to as-
sign to the memory. The protection key must be allocated with pkey_alloc(2) before it
is passed to pkey_mprotect(). For an example of the use of this system call, see
pkeys(7).

RETURN VALUE
On success, mprotect() and pkey_mprotect() return zero. On error, these system
calls return -1, and errno is set to indicate the error.

ERRORS
EACCES

The memory cannot be given the specified access. This can happen, for exam-
ple, if you mmap(2) a file to which you have read-only access, then ask mpro-
tect() to mark it PROT_WRITE.

EINVAL
addr is not a valid pointer, or not a multiple of the system page size.

EINVAL
(pkey_mprotect()) pkey has not been allocated with pkey_alloc(2)

EINVAL
Both PROT_GROWSUP and PROT_GROWSDOWN were specified in
prot.

EINVAL
Invalid flags specified in prot.

EINVAL
(PowerPC architecture) PROT_SAO was specified in prot, but SAO hardware
feature is not available.

ENOMEM
Internal kernel structures could not be allocated.

ENOMEM
Addresses in the range [addr, addr+size-1] are invalid for the address space of
the process, or specify one or more pages that are not mapped. (Before Linux
2.4.19, the error EFAULT was incorrectly produced for these cases.)

ENOMEM
Changing the protection of a memory region would result in the total number
of mappings with distinct attributes (e.g., read versus read/write protection)
exceeding the allowed maximum. (For example, making the protection of a
range PROT_READ in the middle of a region currently protected as
PROT_READ|PROT_WRITE would result in three mappings: two
read/write mappings at each end and a read-only mapping in the middle.)

Linux man-pages 6.13 2024-11-17 505

mprotect(2) System Calls Manual mprotect(2)

VERSIONS
POSIX says that the behavior of mprotect() is unspecified if it is applied to a region
of memory that was not obtained via mmap(2).

On Linux, it is always permissible to call mprotect() on any address in a process’s ad-
dress space (except for the kernel vsyscall area). In particular, it can be used to
change existing code mappings to be writable.

Whether PROT_EXEC has any effect different from PROT_READ depends on
processor architecture, kernel version, and process state. If READ_IM-
PLIES_EXEC is set in the process’s personality flags (see personality(2)), specifying
PROT_READ will implicitly add PROT_EXEC.

On some hardware architectures (e.g., i386), PROT_WRITE implies PROT_READ.

POSIX.1 says that an implementation may permit access other than that specified in
prot, but at a minimum can allow write access only if PROT_WRITE has been set,
and must not allow any access if PROT_NONE has been set.

Applications should be careful when mixing use of mprotect() and pkey_mprotect().
On x86, when mprotect() is used with prot set to PROT_EXEC a pkey may be allo-
cated and set on the memory implicitly by the kernel, but only when the pkey was 0
previously.

On systems that do not support protection keys in hardware, pkey_mprotect() may
still be used, but pkey must be set to -1. When called this way, the operation of
pkey_mprotect() is equivalent to mprotect().

STANDARDS
mprotect()

POSIX.1-2008.

pkey_mprotect()
Linux.

HISTORY
mprotect()

POSIX.1-2001, SVr4.

pkey_mprotect()
Linux 4.9, glibc 2.27.

NOTES
EXAMPLES

The program below demonstrates the use of mprotect(). The program allocates four
pages of memory, makes the third of these pages read-only, and then executes a loop
that walks upward through the allocated region modifying bytes.

An example of what we might see when running the program is the following:

$./a.out
Start of region: 0x804c000
Got SIGSEGV at address: 0x804e000

Program source

#include <malloc.h>

Linux man-pages 6.13 2024-11-17 506

mprotect(2) System Calls Manual mprotect(2)

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <unistd.h>

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

static char *buffer;

static void
handler(int sig, siginfo_t *si, void *unused)
{

/* Note: calling printf() from a signal handler is not safe
(and should not be done in production programs), since
printf() is not async-signal-safe; see signal-safety(7).
Nevertheless, we use printf() here as a simple way of
showing that the handler was called. */

printf("Got SIGSEGV at address: %p\n", si->si_addr);
exit(EXIT_FAILURE);

}

int
main(void)
{

int pagesize;
struct sigaction sa;

sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);
sa.sa_sigaction = handler;
if (sigaction(SIGSEGV, &sa, NULL) == -1)

handle_error("sigaction");

pagesize = sysconf(_SC_PAGE_SIZE);
if (pagesize == -1)

handle_error("sysconf");

/* Allocate a buffer aligned on a page boundary;
initial protection is PROT_READ | PROT_WRITE. */

buffer = memalign(pagesize, 4 * pagesize);
if (buffer == NULL)

handle_error("memalign");

printf("Start of region: %p\n", buffer);

Linux man-pages 6.13 2024-11-17 507

mprotect(2) System Calls Manual mprotect(2)

if (mprotect(buffer + pagesize * 2, pagesize,
PROT_READ) == -1)

handle_error("mprotect");

for (char *p = buffer ; ;)
*(p++) = 'a';

printf("Loop completed\n"); /* Should never happen */
exit(EXIT_SUCCESS);

}

SEE ALSO
mmap(2), sysconf(3), pkeys(7)

Linux man-pages 6.13 2024-11-17 508

mq_getsetattr(2) System Calls Manual mq_getsetattr(2)

NAME
mq_getsetattr - get/set message queue attributes

SYNOPSIS
#include <mqueue.h> /* Definition of struct mq_attr */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_mq_getsetattr, mqd_t mqdes,
const struct mq_attr *newattr, struct mq_attr *oldattr);

DESCRIPTION
Do not use this system call.

This is the low-level system call used to implement mq_getattr(3) and mq_setattr(3).
For an explanation of how this system call operates, see the description of mq_se-
tattr(3).

STANDARDS
None.

NOTES
Never call it unless you are writing a C library!

SEE ALSO
mq_getattr(3), mq_overview(7)

Linux man-pages 6.13 2024-05-02 509

mremap(2) System Calls Manual mremap(2)

NAME
mremap - remap a virtual memory address

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/mman.h>

void *mremap(void old_address[.old_size], size_t old_size,
size_t new_size, int flags, ... /* void *new_address */);

DESCRIPTION
mremap() expands (or shrinks) an existing memory mapping, potentially moving it at
the same time (controlled by the flags argument and the available virtual address
space).

old_address is the old address of the virtual memory block that you want to expand
(or shrink). Note that old_address has to be page aligned. old_size is the old size of
the virtual memory block. new_size is the requested size of the virtual memory block
after the resize. An optional fifth argument, new_address, may be provided; see the
description of MREMAP_FIXED below.

If the value of old_size is zero, and old_address refers to a shareable mapping (see the
description of MAP_SHARED in mmap(2)), then mremap() will create a new map-
ping of the same pages. new_size will be the size of the new mapping and the loca-
tion of the new mapping may be specified with new_address; see the description of
MREMAP_FIXED below. If a new mapping is requested via this method, then the
MREMAP_MAYMOVE flag must also be specified.

The flags bit-mask argument may be 0, or include the following flags:

MREMAP_MAYMOVE
By default, if there is not sufficient space to expand a mapping at its current
location, then mremap() fails. If this flag is specified, then the kernel is per-
mitted to relocate the mapping to a new virtual address, if necessary. If the
mapping is relocated, then absolute pointers into the old mapping location be-
come invalid (offsets relative to the starting address of the mapping should be
employed).

MREMAP_FIXED (since Linux 2.3.31)
This flag serves a similar purpose to the MAP_FIXED flag of mmap(2). If
this flag is specified, then mremap() accepts a fifth argument, void *new_ad-
dress, which specifies a page-aligned address to which the mapping must be
moved. Any previous mapping at the address range specified by new_address
and new_size is unmapped.

If MREMAP_FIXED is specified, then MREMAP_MAYMOVE must also
be specified.

MREMAP_DONTUNMAP (since Linux 5.7)
This flag, which must be used in conjunction with MREMAP_MAYMOVE,
remaps a mapping to a new address but does not unmap the mapping at
old_address.

Linux man-pages 6.13 2024-11-13 510

mremap(2) System Calls Manual mremap(2)

The MREMAP_DONTUNMAP flag can be used only with mappings that are
not VM_DONTEXPAND or VM_MIXEDMAP. Before Linux 5.13, the
MREMAP_DONTUNMAP flag could be used only with private anonymous
mappings (see the description of MAP_PRIVATE and MAP_ANONY-
MOUS in mmap(2)).

After completion, any access to the range specified by old_address and
old_size will result in a page fault. The page fault will be handled by a user-
faultfd(2) handler if the address is in a range previously registered with user-
faultfd(2). Otherwise, the kernel allocates a zero-filled page to handle the
fault.

The MREMAP_DONTUNMAP flag may be used to atomically move a map-
ping while leaving the source mapped. See NOTES for some possible applica-
tions of MREMAP_DONTUNMAP.

If the memory segment specified by old_address and old_size is locked (using
mlock(2) or similar), then this lock is maintained when the segment is resized and/or
relocated. As a consequence, the amount of memory locked by the process may
change.

RETURN VALUE
On success mremap() returns a pointer to the new virtual memory area. On error, the
value MAP_FAILED (that is, (void *) -1) is returned, and errno is set to indicate the
error.

ERRORS
EAGAIN

The caller tried to expand a memory segment that is locked, but this was not
possible without exceeding the RLIMIT_MEMLOCK resource limit.

EFAULT
Some address in the range old_address to old_address+old_size is an invalid
virtual memory address for this process. You can also get EFAULT even if
there exist mappings that cover the whole address space requested, but those
mappings are of different types.

EINVAL
An invalid argument was given. Possible causes are:

• old_address was not page aligned;

• a value other than MREMAP_MAYMOVE or MREMAP_FIXED or
MREMAP_DONTUNMAP was specified in flags;

• new_size was zero;

• new_size or new_address was invalid;

• the new address range specified by new_address and new_size overlapped
the old address range specified by old_address and old_size;

• MREMAP_FIXED or MREMAP_DONTUNMAP was specified with-
out also specifying MREMAP_MAYMOVE;

Linux man-pages 6.13 2024-11-13 511

mremap(2) System Calls Manual mremap(2)

• MREMAP_DONTUNMAP was specified, but one or more pages in the
range specified by old_address and old_size were not private anonymous;

• MREMAP_DONTUNMAP was specified and old_size was not equal to
new_size;

• old_size was zero and old_address does not refer to a shareable mapping
(but see BUGS);

• old_size was zero and the MREMAP_MAYMOVE flag was not specified.

ENOMEM
Not enough memory was available to complete the operation. Possible causes
are:

• The memory area cannot be expanded at the current virtual address, and
the MREMAP_MAYMOVE flag is not set in flags. Or, there is not
enough (virtual) memory available.

• MREMAP_DONTUNMAP was used causing a new mapping to be cre-
ated that would exceed the (virtual) memory available. Or, it would ex-
ceed the maximum number of allowed mappings.

STANDARDS
Linux.

HISTORY
Prior to glibc 2.4, glibc did not expose the definition of MREMAP_FIXED, and the
prototype for mremap() did not allow for the new_address argument.

NOTES
mremap() changes the mapping between virtual addresses and memory pages. This
can be used to implement a very efficient realloc(3).

In Linux, memory is divided into pages. A process has (one or) several linear virtual
memory segments. Each virtual memory segment has one or more mappings to real
memory pages (in the page table). Each virtual memory segment has its own protec-
tion (access rights), which may cause a segmentation violation (SIGSEGV) if the
memory is accessed incorrectly (e.g., writing to a read-only segment). Accessing vir-
tual memory outside of the segments will also cause a segmentation violation.

If mremap() is used to move or expand an area locked with mlock(2) or equivalent,
the mremap() call will make a best effort to populate the new area but will not fail
with ENOMEM if the area cannot be populated.

MREMAP_DONTUNMAP use cases
Possible applications for MREMAP_DONTUNMAP include:

• Non-cooperative userfaultfd(2): an application can yank out a virtual address
range using MREMAP_DONTUNMAP and then employ a userfaultfd(2) han-
dler to handle the page faults that subsequently occur as other threads in the
process touch pages in the yanked range.

• Garbage collection: MREMAP_DONTUNMAP can be used in conjunction with
userfaultfd(2) to implement garbage collection algorithms (e.g., in a Java virtual
machine). Such an implementation can be cheaper (and simpler) than conven-
tional garbage collection techniques that involve marking pages with protection

Linux man-pages 6.13 2024-11-13 512

mremap(2) System Calls Manual mremap(2)

PROT_NONE in conjunction with the use of a SIGSEGV handler to catch ac-
cesses to those pages.

BUGS
Before Linux 4.14, if old_size was zero and the mapping referred to by old_address
was a private mapping (see the description of MAP_PRIVATE in mmap(2)),
mremap() created a new private mapping unrelated to the original mapping. This be-
havior was unintended and probably unexpected in user-space applications (since the
intention of mremap() is to create a new mapping based on the original mapping).
Since Linux 4.14, mremap() fails with the error EINVAL in this scenario.

SEE ALSO
brk(2), getpagesize(2), getrlimit(2), mlock(2), mmap(2), sbrk(2), malloc(3), realloc(3)

Your favorite text book on operating systems for more information on paged memory
(e.g., Modern Operating Systems by Andrew S. Tanenbaum, Inside Linux by Ran-
dolph Bentson, The Design of the UNIX Operating System by Maurice J. Bach)

Linux man-pages 6.13 2024-11-13 513

msgctl(2) System Calls Manual msgctl(2)

NAME
msgctl - System V message control operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/msg.h>

int msgctl(int msqid , int op, struct msqid_ds *buf);

DESCRIPTION
msgctl() performs the control operation specified by op on the System V message
queue with identifier msqid .

The msqid_ds data structure is defined in <sys/msg.h> as follows:

struct msqid_ds {
struct ipc_perm msg_perm; /* Ownership and permissions */
time_t msg_stime; /* Time of last msgsnd(2) */
time_t msg_rtime; /* Time of last msgrcv(2) */
time_t msg_ctime; /* Time of creation or last

modification by msgctl() */
unsigned long msg_cbytes; /* # of bytes in queue */
msgqnum_t msg_qnum; /* # number of messages in queue */
msglen_t msg_qbytes; /* Maximum # of bytes in queue */
pid_t msg_lspid; /* PID of last msgsnd(2) */
pid_t msg_lrpid; /* PID of last msgrcv(2) */

};

The fields of the msqid_ds structure are as follows:

msg_perm This is an ipc_perm structure (see below) that specifies the access per-
missions on the message queue.

msg_stime Time of the last msgsnd(2) system call.

msg_rtime Time of the last msgrcv(2) system call.

msg_ctime Time of creation of queue or time of last msgctl() IPC_SET operation.

msg_cbytes Number of bytes in all messages currently on the message queue. This
is a nonstandard Linux extension that is not specified in POSIX.

msg_qnum Number of messages currently on the message queue.

msg_qbytes Maximum number of bytes of message text allowed on the message
queue.

msg_lspid ID of the process that performed the last msgsnd(2) system call.

msg_lrpid ID of the process that performed the last msgrcv(2) system call.

The ipc_perm structure is defined as follows (the highlighted fields are settable using
IPC_SET):

struct ipc_perm {
key_t __key; /* Key supplied to msgget(2) */
uid_t uid; /* Effective UID of owner */

Linux man-pages 6.13 2024-07-23 514

msgctl(2) System Calls Manual msgctl(2)

gid_t gid; /* Effective GID of owner */
uid_t cuid; /* Effective UID of creator */
gid_t cgid; /* Effective GID of creator */
unsigned short mode; /* Permissions */
unsigned short __seq; /* Sequence number */

};

The least significant 9 bits of the mode field of the ipc_perm structure define the ac-
cess permissions for the message queue. The permission bits are as follows:
0400 Read by user
0200 Write by user
0040 Read by group
0020 Write by group
0004 Read by others
0002 Write by others

Bits 0100, 0010, and 0001 (the execute bits) are unused by the system.

Valid values for op are:

IPC_STAT
Copy information from the kernel data structure associated with msqid into
the msqid_ds structure pointed to by buf . The caller must have read permis-
sion on the message queue.

IPC_SET
Write the values of some members of the msqid_ds structure pointed to by buf
to the kernel data structure associated with this message queue, updating also
its msg_ctime member.

The following members of the structure are updated: msg_qbytes,
msg_perm.uid , msg_perm.gid , and (the least significant 9 bits of)
msg_perm.mode.

The effective UID of the calling process must match the owner
(msg_perm.uid) or creator (msg_perm.cuid) of the message queue, or the
caller must be privileged. Appropriate privilege (Linux: the CAP_SYS_RE-
SOURCE capability) is required to raise the msg_qbytes value beyond the
system parameter MSGMNB.

IPC_RMID
Immediately remove the message queue, awakening all waiting reader and
writer processes (with an error return and errno set to EIDRM). The calling
process must have appropriate privileges or its effective user ID must be either
that of the creator or owner of the message queue. The third argument to ms-
gctl() is ignored in this case.

IPC_INFO (Linux-specific)
Return information about system-wide message queue limits and parameters
in the structure pointed to by buf . This structure is of type msginfo (thus, a
cast is required), defined in <sys/msg.h> if the _GNU_SOURCE feature test
macro is defined:

struct msginfo {
int msgpool; /* Size in kibibytes of buffer pool

Linux man-pages 6.13 2024-07-23 515

msgctl(2) System Calls Manual msgctl(2)

used to hold message data;
unused within kernel */

int msgmap; /* Maximum number of entries in message
map; unused within kernel */

int msgmax; /* Maximum number of bytes that can be
written in a single message */

int msgmnb; /* Maximum number of bytes that can be
written to queue; used to initialize
msg_qbytes during queue creation
(msgget(2)) */

int msgmni; /* Maximum number of message queues */
int msgssz; /* Message segment size;

unused within kernel */
int msgtql; /* Maximum number of messages on all queues

in system; unused within kernel */
unsigned short msgseg;

/* Maximum number of segments;
unused within kernel */

};

The msgmni, msgmax, and msgmnb settings can be changed via /proc files of
the same name; see proc(5) for details.

MSG_INFO (Linux-specific)
Return a msginfo structure containing the same information as for IPC_INFO,
except that the following fields are returned with information about system re-
sources consumed by message queues: the msgpool field returns the number
of message queues that currently exist on the system; the msgmap field returns
the total number of messages in all queues on the system; and the msgtql field
returns the total number of bytes in all messages in all queues on the system.

MSG_STAT (Linux-specific)
Return a msqid_ds structure as for IPC_STAT. However, the msqid argument
is not a queue identifier, but instead an index into the kernel’s internal array
that maintains information about all message queues on the system.

MSG_STAT_ANY (Linux-specific, since Linux 4.17)
Return a msqid_ds structure as for MSG_STAT. However, msg_perm.mode is
not checked for read access for msqid meaning that any user can employ this
operation (just as any user may read /proc/sysvipc/msg to obtain the same in-
formation).

RETURN VALUE
On success, IPC_STAT, IPC_SET, and IPC_RMID return 0. A successful
IPC_INFO or MSG_INFO operation returns the index of the highest used entry in
the kernel’s internal array recording information about all message queues. (This in-
formation can be used with repeated MSG_STAT or MSG_STAT_ANY operations
to obtain information about all queues on the system.) A successful MSG_STAT or
MSG_STAT_ANY operation returns the identifier of the queue whose index was
given in msqid .

On failure, -1 is returned and errno is set to indicate the error.

Linux man-pages 6.13 2024-07-23 516

msgctl(2) System Calls Manual msgctl(2)

ERRORS
EACCES

The argument op is equal to IPC_STAT or MSG_STAT, but the calling
process does not have read permission on the message queue msqid , and does
not have the CAP_IPC_OWNER capability in the user namespace that gov-
erns its IPC namespace.

EFAULT
The argument op has the value IPC_SET or IPC_STAT, but the address
pointed to by buf isn’t accessible.

EIDRM
The message queue was removed.

EINVAL
Invalid value for op or msqid . Or: for a MSG_STAT operation, the index
value specified in msqid referred to an array slot that is currently unused.

EPERM
The argument op has the value IPC_SET or IPC_RMID, but the effective
user ID of the calling process is not the creator (as found in msg_perm.cuid)
or the owner (as found in msg_perm.uid) of the message queue, and the caller
is not privileged (Linux: does not have the CAP_SYS_ADMIN capability).

EPERM
An attempt (IPC_SET) was made to increase msg_qbytes beyond the system
parameter MSGMNB, but the caller is not privileged (Linux: does not have
the CAP_SYS_RESOURCE capability).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

Various fields in the struct msqid_ds were typed as short under Linux 2.2 and have
become long under Linux 2.4. To take advantage of this, a recompilation under
glibc-2.1.91 or later should suffice. (The kernel distinguishes old and new calls by an
IPC_64 flag in op.)

NOTES
The IPC_INFO, MSG_STAT, and MSG_INFO operations are used by the ipcs(1)
program to provide information on allocated resources. In the future these may modi-
fied or moved to a /proc filesystem interface.

SEE ALSO
msgget(2), msgrcv(2), msgsnd(2), capabilities(7), mq_overview(7), sysvipc(7)

Linux man-pages 6.13 2024-07-23 517

msgget(2) System Calls Manual msgget(2)

NAME
msgget - get a System V message queue identifier

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/msg.h>

int msgget(key_t key, int msgflg);

DESCRIPTION
The msgget() system call returns the System V message queue identifier associated
with the value of the key argument. It may be used either to obtain the identifier of a
previously created message queue (when msgflg is zero and key does not have the
value IPC_PRIVATE), or to create a new set.

A new message queue is created if key has the value IPC_PRIVATE or key isn’t
IPC_PRIVATE, no message queue with the given key key exists, and IPC_CREAT
is specified in msgflg.

If msgflg specifies both IPC_CREAT and IPC_EXCL and a message queue already
exists for key, then msgget() fails with errno set to EEXIST. (This is analogous to
the effect of the combination O_CREAT | O_EXCL for open(2).)

Upon creation, the least significant bits of the argument msgflg define the permissions
of the message queue. These permission bits have the same format and semantics as
the permissions specified for the mode argument of open(2). (The execute permis-
sions are not used.)

If a new message queue is created, then its associated data structure msqid_ds (see
msgctl(2)) is initialized as follows:

• msg_perm.cuid and msg_perm.uid are set to the effective user ID of the calling
process.

• msg_perm.cgid and msg_perm.gid are set to the effective group ID of the calling
process.

• The least significant 9 bits of msg_perm.mode are set to the least significant 9 bits
of msgflg.

• msg_qnum, msg_lspid , msg_lrpid , msg_stime, and msg_rtime are set to 0.

• msg_ctime is set to the current time.

• msg_qbytes is set to the system limit MSGMNB.

If the message queue already exists the permissions are verified, and a check is made
to see if it is marked for destruction.

RETURN VALUE
On success, msgget() returns the message queue identifier (a nonnegative integer).
On failure, -1 is returned, and errno is set to indicate the error.

ERRORS
EACCES

A message queue exists for key, but the calling process does not have permis-
sion to access the queue, and does not have the CAP_IPC_OWNER

Linux man-pages 6.13 2024-07-23 518

msgget(2) System Calls Manual msgget(2)

capability in the user namespace that governs its IPC namespace.

EEXIST
IPC_CREAT and IPC_EXCL were specified in msgflg, but a message queue
already exists for key.

ENOENT
No message queue exists for key and msgflg did not specify IPC_CREAT.

ENOMEM
A message queue has to be created but the system does not have enough mem-
ory for the new data structure.

ENOSPC
A message queue has to be created but the system limit for the maximum
number of message queues (MSGMNI) would be exceeded.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

Linux
Until Linux 2.3.20, Linux would return EIDRM for a msgget() on a message queue
scheduled for deletion.

NOTES
IPC_PRIVATE isn’t a flag field but a key_t type. If this special value is used for key,
the system call ignores everything but the least significant 9 bits of msgflg and creates
a new message queue (on success).

The following is a system limit on message queue resources affecting a msgget() call:

MSGMNI
System-wide limit on the number of message queues. Before Linux 3.19, the
default value for this limit was calculated using a formula based on available
system memory. Since Linux 3.19, the default value is 32,000. On Linux, this
limit can be read and modified via /proc/sys/kernel/msgmni.

BUGS
The name choice IPC_PRIVATE was perhaps unfortunate, IPC_NEW would more
clearly show its function.

SEE ALSO
msgctl(2), msgrcv(2), msgsnd(2), ftok(3), capabilities(7), mq_overview(7), sysvipc(7)

Linux man-pages 6.13 2024-07-23 519

MSGOP(2) System Calls Manual MSGOP(2)

NAME
msgrcv, msgsnd - System V message queue operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/msg.h>

int msgsnd(int msqid , const void msgp[.msgsz], size_t msgsz,
int msgflg);

ssize_t msgrcv(int msqid , void msgp[.msgsz], size_t msgsz, long msgtyp,
int msgflg);

DESCRIPTION
The msgsnd() and msgrcv() system calls are used to send messages to, and receive
messages from, a System V message queue. The calling process must have write per-
mission on the message queue in order to send a message, and read permission to re-
ceive a message.

The msgp argument is a pointer to a caller-defined structure of the following general
form:

struct msgbuf {
long mtype; /* message type, must be > 0 */
char mtext[1]; /* message data */

};

The mtext field is an array (or other structure) whose size is specified by msgsz, a
nonnegative integer value. Messages of zero length (i.e., no mtext field) are permit-
ted. The mtype field must have a strictly positive integer value. This value can be
used by the receiving process for message selection (see the description of msgrcv()
below).

msgsnd()
The msgsnd() system call appends a copy of the message pointed to by msgp to the
message queue whose identifier is specified by msqid .

If sufficient space is available in the queue, msgsnd() succeeds immediately. The
queue capacity is governed by the msg_qbytes field in the associated data structure for
the message queue. During queue creation this field is initialized to MSGMNB bytes,
but this limit can be modified using msgctl(2). A message queue is considered to be
full if either of the following conditions is true:

• Adding a new message to the queue would cause the total number of bytes in the
queue to exceed the queue’s maximum size (the msg_qbytes field).

• Adding another message to the queue would cause the total number of messages
in the queue to exceed the queue’s maximum size (the msg_qbytes field). This
check is necessary to prevent an unlimited number of zero-length messages being
placed on the queue. Although such messages contain no data, they nevertheless
consume (locked) kernel memory.

If insufficient space is available in the queue, then the default behavior of msgsnd() is
to block until space becomes available. If IPC_NOWAIT is specified in msgflg, then

Linux man-pages 6.13 2024-07-23 520

MSGOP(2) System Calls Manual MSGOP(2)

the call instead fails with the error EAGAIN.

A blocked msgsnd() call may also fail if:

• the queue is removed, in which case the system call fails with errno set to EI-
DRM; or

• a signal is caught, in which case the system call fails with errno set to EINTR;see
signal(7). (msgsnd() is never automatically restarted after being interrupted by a
signal handler, regardless of the setting of the SA_RESTART flag when establish-
ing a signal handler.)

Upon successful completion the message queue data structure is updated as follows:

• msg_lspid is set to the process ID of the calling process.

• msg_qnum is incremented by 1.

• msg_stime is set to the current time.

msgrcv()
The msgrcv() system call removes a message from the queue specified by msqid and
places it in the buffer pointed to by msgp.

The argument msgsz specifies the maximum size in bytes for the member mtext of the
structure pointed to by the msgp argument. If the message text has length greater than
msgsz, then the behavior depends on whether MSG_NOERROR is specified in ms-
gflg. If MSG_NOERROR is specified, then the message text will be truncated (and
the truncated part will be lost); if MSG_NOERROR is not specified, then the mes-
sage isn’t removed from the queue and the system call fails returning -1 with errno
set to E2BIG.

Unless MSG_COPY is specified in msgflg (see below), the msgtyp argument speci-
fies the type of message requested, as follows:

• If msgtyp is 0, then the first message in the queue is read.

• If msgtyp is greater than 0, then the first message in the queue of type msgtyp is
read, unless MSG_EXCEPT was specified in msgflg, in which case the first mes-
sage in the queue of type not equal to msgtyp will be read.

• If msgtyp is less than 0, then the first message in the queue with the lowest type
less than or equal to the absolute value of msgtyp will be read.

The msgflg argument is a bit mask constructed by ORing together zero or more of the
following flags:

IPC_NOWAIT
Return immediately if no message of the requested type is in the queue. The
system call fails with errno set to ENOMSG.

MSG_COPY (since Linux 3.8)
Nondestructively fetch a copy of the message at the ordinal position in the
queue specified by msgtyp (messages are considered to be numbered starting
at 0).

This flag must be specified in conjunction with IPC_NOWAIT, with the result
that, if there is no message available at the given position, the call fails imme-
diately with the error ENOMSG. Because they alter the meaning of msgtyp in

Linux man-pages 6.13 2024-07-23 521

MSGOP(2) System Calls Manual MSGOP(2)

orthogonal ways, MSG_COPY and MSG_EXCEPT may not both be speci-
fied in msgflg.

The MSG_COPY flag was added for the implementation of the kernel check-
point-restore facility and is available only if the kernel was built with the
CONFIG_CHECKPOINT_RESTORE option.

MSG_EXCEPT
Used with msgtyp greater than 0 to read the first message in the queue with
message type that differs from msgtyp.

MSG_NOERROR
To truncate the message text if longer than msgsz bytes.

If no message of the requested type is available and IPC_NOWAIT isn’t specified in
msgflg, the calling process is blocked until one of the following conditions occurs:

• A message of the desired type is placed in the queue.

• The message queue is removed from the system. In this case, the system call fails
with errno set to EIDRM.

• The calling process catches a signal. In this case, the system call fails with errno
set to EINTR. (msgrcv() is never automatically restarted after being interrupted
by a signal handler, regardless of the setting of the SA_RESTART flag when es-
tablishing a signal handler.)

Upon successful completion the message queue data structure is updated as follows:

msg_lrpid is set to the process ID of the calling process.

msg_qnum is decremented by 1.

msg_rtime is set to the current time.

RETURN VALUE
On success, msgsnd() returns 0 and msgrcv() returns the number of bytes actually
copied into the mtext array. On failure, both functions return -1, and set errno to in-
dicate the error.

ERRORS
msgsnd() can fail with the following errors:

EACCES
The calling process does not have write permission on the message queue, and
does not have the CAP_IPC_OWNER capability in the user namespace that
governs its IPC namespace.

EAGAIN
The message can’t be sent due to the msg_qbytes limit for the queue and
IPC_NOWAIT was specified in msgflg.

EFAULT
The address pointed to by msgp isn’t accessible.

EIDRM
The message queue was removed.

Linux man-pages 6.13 2024-07-23 522

MSGOP(2) System Calls Manual MSGOP(2)

EINTR
Sleeping on a full message queue condition, the process caught a signal.

EINVAL
Invalid msqid value, or nonpositive mtype value, or invalid msgsz value (less
than 0 or greater than the system value MSGMAX).

ENOMEM
The system does not have enough memory to make a copy of the message
pointed to by msgp.

msgrcv() can fail with the following errors:

E2BIG
The message text length is greater than msgsz and MSG_NOERROR isn’t
specified in msgflg.

EACCES
The calling process does not have read permission on the message queue, and
does not have the CAP_IPC_OWNER capability in the user namespace that
governs its IPC namespace.

EFAULT
The address pointed to by msgp isn’t accessible.

EIDRM
While the process was sleeping to receive a message, the message queue was
removed.

EINTR
While the process was sleeping to receive a message, the process caught a sig-
nal; see signal(7).

EINVAL
msqid was invalid, or msgsz was less than 0.

EINVAL (since Linux 3.14)
msgflg specified MSG_COPY, but not IPC_NOWAIT.

EINVAL (since Linux 3.14)
msgflg specified both MSG_COPY and MSG_EXCEPT.

ENOMSG
IPC_NOWAIT was specified in msgflg and no message of the requested type
existed on the message queue.

ENOMSG
IPC_NOWAIT and MSG_COPY were specified in msgflg and the queue
contains less than msgtyp messages.

ENOSYS (since Linux 3.8)
Both MSG_COPY and IPC_NOWAIT were specified in msgflg, and this ker-
nel was configured without CONFIG_CHECKPOINT_RESTORE.

STANDARDS
POSIX.1-2008.

The MSG_EXCEPT and MSG_COPY flags are Linux-specific; their definitions can

Linux man-pages 6.13 2024-07-23 523

MSGOP(2) System Calls Manual MSGOP(2)

be obtained by defining the _GNU_SOURCE feature test macro.

HISTORY
POSIX.1-2001, SVr4.

The msgp argument is declared as struct msgbuf * in glibc 2.0 and 2.1. It is declared
as void * in glibc 2.2 and later, as required by SUSv2 and SUSv3.

NOTES
The following limits on message queue resources affect the msgsnd() call:

MSGMAX
Maximum size of a message text, in bytes (default value: 8192 bytes). On
Linux, this limit can be read and modified via /proc/sys/kernel/msgmax.

MSGMNB
Maximum number of bytes that can be held in a message queue (default value:
16384 bytes). On Linux, this limit can be read and modified via /proc/sys/ker-
nel/msgmnb. A privileged process (Linux: a process with the CAP_SYS_RE-
SOURCE capability) can increase the size of a message queue beyond MS-
GMNB using the msgctl(2) IPC_SET operation.

The implementation has no intrinsic system-wide limits on the number of message
headers (MSGTQL) and the number of bytes in the message pool (MSGPOOL).

BUGS
In Linux 3.13 and earlier, if msgrcv() was called with the MSG_COPY flag, but
without IPC_NOWAIT, and the message queue contained less than msgtyp messages,
then the call would block until the next message is written to the queue. At that point,
the call would return a copy of the message, regardless of whether that message was
at the ordinal position msgtyp. This bug is fixed in Linux 3.14.

Specifying both MSG_COPY and MSC_EXCEPT in msgflg is a logical error (since
these flags impose different interpretations on msgtyp). In Linux 3.13 and earlier, this
error was not diagnosed by msgrcv(). This bug is fixed in Linux 3.14.

EXAMPLES
The program below demonstrates the use of msgsnd() and msgrcv().

The example program is first run with the -s option to send a message and then run
again with the -r option to receive a message.

The following shell session shows a sample run of the program:

$./a.out -s
sent: a message at Wed Mar 4 16:25:45 2015

$./a.out -r
message received: a message at Wed Mar 4 16:25:45 2015

Program source

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>

Linux man-pages 6.13 2024-07-23 524

MSGOP(2) System Calls Manual MSGOP(2)

#include <sys/msg.h>
#include <time.h>
#include <unistd.h>

struct msgbuf {
long mtype;
char mtext[80];

};

static void
usage(char *prog_name, char *msg)
{

if (msg != NULL)
fputs(msg, stderr);

fprintf(stderr, "Usage: %s [options]\n", prog_name);
fprintf(stderr, "Options are:\n");
fprintf(stderr, "-s send message using msgsnd()\n");
fprintf(stderr, "-r read message using msgrcv()\n");
fprintf(stderr, "-t message type (default is 1)\n");
fprintf(stderr, "-k message queue key (default is 1234)\n");
exit(EXIT_FAILURE);

}

static void
send_msg(int qid, int msgtype)
{

time_t t;
struct msgbuf msg;

msg.mtype = msgtype;

time(&t);
snprintf(msg.mtext, sizeof(msg.mtext), "a message at %s",

ctime(&t));

if (msgsnd(qid, &msg, sizeof(msg.mtext),
IPC_NOWAIT) == -1)

{
perror("msgsnd error");
exit(EXIT_FAILURE);

}
printf("sent: %s\n", msg.mtext);

}

static void
get_msg(int qid, int msgtype)
{

struct msgbuf msg;

Linux man-pages 6.13 2024-07-23 525

MSGOP(2) System Calls Manual MSGOP(2)

if (msgrcv(qid, &msg, sizeof(msg.mtext), msgtype,
MSG_NOERROR | IPC_NOWAIT) == -1) {

if (errno != ENOMSG) {
perror("msgrcv");
exit(EXIT_FAILURE);

}
printf("No message available for msgrcv()\n");

} else {
printf("message received: %s\n", msg.mtext);

}
}

int
main(int argc, char *argv[])
{

int qid, opt;
int mode = 0; /* 1 = send, 2 = receive */
int msgtype = 1;
int msgkey = 1234;

while ((opt = getopt(argc, argv, "srt:k:")) != -1) {
switch (opt) {
case 's':

mode = 1;
break;

case 'r':
mode = 2;
break;

case 't':
msgtype = atoi(optarg);
if (msgtype <= 0)

usage(argv[0], "-t option must be greater than 0\n");
break;

case 'k':
msgkey = atoi(optarg);
break;

default:
usage(argv[0], "Unrecognized option\n");

}
}

if (mode == 0)
usage(argv[0], "must use either -s or -r option\n");

qid = msgget(msgkey, IPC_CREAT | 0666);

if (qid == -1) {
perror("msgget");

Linux man-pages 6.13 2024-07-23 526

MSGOP(2) System Calls Manual MSGOP(2)

exit(EXIT_FAILURE);
}

if (mode == 2)
get_msg(qid, msgtype);

else
send_msg(qid, msgtype);

exit(EXIT_SUCCESS);
}

SEE ALSO
msgctl(2), msgget(2), capabilities(7), mq_overview(7), sysvipc(7)

Linux man-pages 6.13 2024-07-23 527

msync(2) System Calls Manual msync(2)

NAME
msync - synchronize a file with a memory map

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int msync(void addr[.length], size_t length, int flags);

DESCRIPTION
msync() flushes changes made to the in-core copy of a file that was mapped into
memory using mmap(2) back to the filesystem. Without use of this call, there is no
guarantee that changes are written back before munmap(2) is called. To be more pre-
cise, the part of the file that corresponds to the memory area starting at addr and hav-
ing length length is updated.

The flags argument should specify exactly one of MS_ASYNC and MS_SYNC, and
may additionally include the MS_INVALIDATE bit. These bits have the following
meanings:

MS_ASYNC
Specifies that an update be scheduled, but the call returns immediately.

MS_SYNC
Requests an update and waits for it to complete.

MS_INVALIDATE
Asks to invalidate other mappings of the same file (so that they can be updated
with the fresh values just written).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EBUSY

MS_INVALIDATE was specified in flags, and a memory lock exists for the
specified address range.

EINVAL
addr is not a multiple of PAGESIZE; or any bit other than MS_ASYNC |
MS_INVALIDATE | MS_SYNC is set in flags; or both MS_SYNC and
MS_ASYNC are set in flags.

ENOMEM
The indicated memory (or part of it) was not mapped.

VERSIONS
According to POSIX, either MS_SYNC or MS_ASYNC must be specified in flags,
and indeed failure to include one of these flags will cause msync() to fail on some
systems. However, Linux permits a call to msync() that specifies neither of these
flags, with semantics that are (currently) equivalent to specifying MS_ASYNC.
(Since Linux 2.6.19, MS_ASYNC is in fact a no-op, since the kernel properly tracks
dirty pages and flushes them to storage as necessary.) Notwithstanding the Linux

Linux man-pages 6.13 2024-07-23 528

msync(2) System Calls Manual msync(2)

behavior, portable, future-proof applications should ensure that they specify either
MS_SYNC or MS_ASYNC in flags.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

This call was introduced in Linux 1.3.21, and then used EFAULT instead of
ENOMEM. In Linux 2.4.19, this was changed to the POSIX value ENOMEM.

On POSIX systems on which msync() is available, both _POSIX_MAPPED_FILES
and _POSIX_SYNCHRONIZED_IO are defined in <unistd.h> to a value greater
than 0. (See also sysconf(3).)

SEE ALSO
mmap(2)

B.O. Gallmeister, POSIX.4, O’Reilly, pp. 128–129 and 389–391.

Linux man-pages 6.13 2024-07-23 529

nanosleep(2) System Calls Manual nanosleep(2)

NAME
nanosleep - high-resolution sleep

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

int nanosleep(const struct timespec *duration,
struct timespec *_Nullable rem);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nanosleep():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
nanosleep() suspends the execution of the calling thread until either at least the time
specified in *duration has elapsed, or the delivery of a signal that triggers the invoca-
tion of a handler in the calling thread or that terminates the process.

If the call is interrupted by a signal handler, nanosleep() returns -1, sets errno to
EINTR, and writes the remaining time into the structure pointed to by rem unless rem
is NULL. The value of *rem can then be used to call nanosleep() again and complete
the specified pause (but see NOTES).

The timespec(3) structure is used to specify intervals of time with nanosecond preci-
sion.

The value of the nanoseconds field must be in the range [0, 999999999].

Compared to sleep(3) and usleep(3), nanosleep() has the following advantages: it pro-
vides a higher resolution for specifying the sleep interval; POSIX.1 explicitly speci-
fies that it does not interact with signals; and it makes the task of resuming a sleep that
has been interrupted by a signal handler easier.

RETURN VALUE
On successfully sleeping for the requested duration, nanosleep() returns 0. If the call
is interrupted by a signal handler or encounters an error, then it returns -1, with errno
set to indicate the error.

ERRORS
EFAULT

Problem with copying information from user space.

EINTR
The pause has been interrupted by a signal that was delivered to the thread
(see signal(7)). The remaining sleep time has been written into *rem so that
the thread can easily call nanosleep() again and continue with the pause.

EINVAL
The value in the tv_nsec field was not in the range [0, 999999999] or tv_sec
was negative.

VERSIONS
POSIX.1 specifies that nanosleep() should measure time against the CLOCK_RE-
ALTIME clock. However, Linux measures the time using the

Linux man-pages 6.13 2024-07-23 530

nanosleep(2) System Calls Manual nanosleep(2)

CLOCK_MONOTONIC clock. This probably does not matter, since the POSIX.1
specification for clock_settime(2) says that discontinuous changes in CLOCK_RE-
ALTIME should not affect nanosleep():

Setting the value of the CLOCK_REALTIME clock via clock_settime(2)
shall have no effect on threads that are blocked waiting for a relative time ser-
vice based upon this clock, including the nanosleep() function; ... Conse-
quently, these time services shall expire when the requested duration elapses,
independently of the new or old value of the clock.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

In order to support applications requiring much more precise pauses (e.g., in order to
control some time-critical hardware), nanosleep() would handle pauses of up to 2
milliseconds by busy waiting with microsecond precision when called from a thread
scheduled under a real-time policy like SCHED_FIFO or SCHED_RR. This special
extension was removed in Linux 2.5.39, and is thus not available in Linux 2.6.0 and
later kernels.

NOTES
If the duration is not an exact multiple of the granularity underlying clock (see
time(7)), then the interval will be rounded up to the next multiple. Furthermore, after
the sleep completes, there may still be a delay before the CPU becomes free to once
again execute the calling thread.

The fact that nanosleep() sleeps for a relative interval can be problematic if the call is
repeatedly restarted after being interrupted by signals, since the time between the in-
terruptions and restarts of the call will lead to drift in the time when the sleep finally
completes. This problem can be avoided by using clock_nanosleep(2) with an ab-
solute time value.

BUGS
If a program that catches signals and uses nanosleep() receives signals at a very high
rate, then scheduling delays and rounding errors in the kernel’s calculation of the
sleep interval and the returned remain value mean that the remain value may steadily
increase on successive restarts of the nanosleep() call. To avoid such problems, use
clock_nanosleep(2) with the TIMER_ABSTIME flag to sleep to an absolute dead-
line.

In Linux 2.4, if nanosleep() is stopped by a signal (e.g., SIGTSTP), then the call fails
with the error EINTR after the thread is resumed by a SIGCONT signal. If the sys-
tem call is subsequently restarted, then the time that the thread spent in the stopped
state is not counted against the sleep interval. This problem is fixed in Linux 2.6.0
and later kernels.

SEE ALSO
clock_nanosleep(2), restart_syscall(2), sched_setscheduler(2), timer_create(2),
sleep(3), timespec(3), usleep(3), time(7)

Linux man-pages 6.13 2024-07-23 531

nfsservctl(2) System Calls Manual nfsservctl(2)

NAME
nfsservctl - syscall interface to kernel nfs daemon

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/nfsd/syscall.h>

long nfsservctl(int cmd , struct nfsctl_arg *argp,
union nfsctl_res *resp);

DESCRIPTION
Note: Since Linux 3.1, this system call no longer exists. It has been replaced by a set
of files in the nfsd filesystem; see nfsd(7)

/*
* These are the commands understood by nfsctl().
*/

#define NFSCTL_SVC 0 /* This is a server process. */
#define NFSCTL_ADDCLIENT 1 /* Add an NFS client. */
#define NFSCTL_DELCLIENT 2 /* Remove an NFS client. */
#define NFSCTL_EXPORT 3 /* Export a filesystem. */
#define NFSCTL_UNEXPORT 4 /* Unexport a filesystem. */
#define NFSCTL_UGIDUPDATE 5 /* Update a client's UID/GID map

(only in Linux 2.4.x and earlier). */
#define NFSCTL_GETFH 6 /* Get a file handle (used by mountd(8))

(only in Linux 2.4.x and earlier). */

struct nfsctl_arg {
int ca_version; /* safeguard */
union {

struct nfsctl_svc u_svc;
struct nfsctl_client u_client;
struct nfsctl_export u_export;
struct nfsctl_uidmap u_umap;
struct nfsctl_fhparm u_getfh;
unsigned int u_debug;

} u;
}

union nfsctl_res {
struct knfs_fh cr_getfh;
unsigned int cr_debug;

};

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

STANDARDS
Linux.

Linux man-pages 6.13 2024-07-23 532

nfsservctl(2) System Calls Manual nfsservctl(2)

HISTORY
Removed in Linux 3.1. Removed in glibc 2.28.

SEE ALSO
nfsd(7)

Linux man-pages 6.13 2024-07-23 533

nice(2) System Calls Manual nice(2)

NAME
nice - change process priority

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int nice(int inc);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nice():
_XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
nice() adds inc to the nice value for the calling thread. (A higher nice value means a
lower priority.)

The range of the nice value is +19 (low priority) to -20 (high priority). Attempts to
set a nice value outside the range are clamped to the range.

Traditionally, only a privileged process could lower the nice value (i.e., set a higher
priority). However, since Linux 2.6.12, an unprivileged process can decrease the nice
value of a target process that has a suitable RLIMIT_NICE soft limit; see getr-
limit(2) for details.

RETURN VALUE
On success, the new nice value is returned (but see VERSIONS below). On error, -1
is returned, and errno is set to indicate the error.

A successful call can legitimately return -1. To detect an error, set errno to 0 before
the call, and check whether it is nonzero after nice() returns -1.

ERRORS
EPERM

The calling process attempted to increase its priority by supplying a negative
inc but has insufficient privileges. Under Linux, the CAP_SYS_NICE capa-
bility is required. (But see the discussion of the RLIMIT_NICE resource
limit in setrlimit(2).)

VERSIONS
C library/kernel differences

POSIX.1 specifies that nice() should return the new nice value. However, the raw
Linux system call returns 0 on success. Likewise, the nice() wrapper function pro-
vided in glibc 2.2.3 and earlier returns 0 on success.

Since glibc 2.2.4, the nice() wrapper function provided by glibc provides confor-
mance to POSIX.1 by calling getpriority(2) to obtain the new nice value, which is
then returned to the caller.

STANDARDS
POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 534

nice(2) System Calls Manual nice(2)

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
For further details on the nice value, see sched(7).

Note: the addition of the "autogroup" feature in Linux 2.6.38 means that the nice
value no longer has its traditional effect in many circumstances. For details, see
sched(7).

SEE ALSO
nice(1), renice(1), fork(2), getpriority(2), getrlimit(2), setpriority(2), capabilities(7),
sched(7)

Linux man-pages 6.13 2024-07-23 535

open(2) System Calls Manual open(2)

NAME
open, openat, creat - open and possibly create a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int open(const char *pathname, int flags, ...
/* mode_t mode */);

int creat(const char *pathname, mode_t mode);

int openat(int dirfd , const char *pathname, int flags, ...
/* mode_t mode */);

/* Documented separately, in openat2(2): */
int openat2(int dirfd , const char *pathname,

const struct open_how *how, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

openat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
The open() system call opens the file specified by pathname. If the specified file does
not exist, it may optionally (if O_CREAT is specified in flags) be created by open().

The return value of open() is a file descriptor, a small, nonnegative integer that is an
index to an entry in the process’s table of open file descriptors. The file descriptor is
used in subsequent system calls (read(2), write(2), lseek(2), fcntl(2), etc.) to refer to
the open file. The file descriptor returned by a successful call will be the lowest-num-
bered file descriptor not currently open for the process.

By default, the new file descriptor is set to remain open across an execve(2) (i.e., the
FD_CLOEXEC file descriptor flag described in fcntl(2) is initially disabled); the
O_CLOEXEC flag, described below, can be used to change this default. The file off-
set is set to the beginning of the file (see lseek(2)).

A call to open() creates a new open file description, an entry in the system-wide table
of open files. The open file description records the file offset and the file status flags
(see below). A file descriptor is a reference to an open file description; this reference
is unaffected if pathname is subsequently removed or modified to refer to a different
file. For further details on open file descriptions, see NOTES.

The argument flags must include one of the following access modes: O_RDONLY,
O_WRONLY, or O_RDWR. These request opening the file read-only, write-only, or
read/write, respectively.

In addition, zero or more file creation flags and file status flags can be bitwise ORed in
flags. The file creation flags are O_CLOEXEC, O_CREAT, O_DIRECTORY,
O_EXCL, O_NOCTTY, O_NOFOLLOW, O_TMPFILE, and O_TRUNC. The

Linux man-pages 6.13 2024-07-23 536

open(2) System Calls Manual open(2)

file status flags are all of the remaining flags listed below. The distinction between
these two groups of flags is that the file creation flags affect the semantics of the open
operation itself, while the file status flags affect the semantics of subsequent I/O oper-
ations. The file status flags can be retrieved and (in some cases) modified; see fcntl(2)
for details.

The full list of file creation flags and file status flags is as follows:

O_APPEND
The file is opened in append mode. Before each write(2), the file offset is po-
sitioned at the end of the file, as if with lseek(2). The modification of the file
offset and the write operation are performed as a single atomic step.

O_APPEND may lead to corrupted files on NFS filesystems if more than one
process appends data to a file at once. This is because NFS does not support
appending to a file, so the client kernel has to simulate it, which can’t be done
without a race condition.

O_ASYNC
Enable signal-driven I/O: generate a signal (SIGIO by default, but this can be
changed via fcntl(2)) when input or output becomes possible on this file de-
scriptor. This feature is available only for terminals, pseudoterminals, sockets,
and (since Linux 2.6) pipes and FIFOs. See fcntl(2) for further details. See
also BUGS, below.

O_CLOEXEC (since Linux 2.6.23)
Enable the close-on-exec flag for the new file descriptor. Specifying this flag
permits a program to avoid additional fcntl(2) F_SETFD operations to set the
FD_CLOEXEC flag.

Note that the use of this flag is essential in some multithreaded programs, be-
cause using a separate fcntl(2) F_SETFD operation to set the FD_CLOEXEC
flag does not suffice to avoid race conditions where one thread opens a file de-
scriptor and attempts to set its close-on-exec flag using fcntl(2) at the same
time as another thread does a fork(2) plus execve(2). Depending on the order
of execution, the race may lead to the file descriptor returned by open() being
unintentionally leaked to the program executed by the child process created by
fork(2). (This kind of race is in principle possible for any system call that cre-
ates a file descriptor whose close-on-exec flag should be set, and various other
Linux system calls provide an equivalent of the O_CLOEXEC flag to deal
with this problem.)

O_CREAT
If pathname does not exist, create it as a regular file.

The owner (user ID) of the new file is set to the effective user ID of the
process.

The group ownership (group ID) of the new file is set either to the effective
group ID of the process (System V semantics) or to the group ID of the parent
directory (BSD semantics). On Linux, the behavior depends on whether the
set-group-ID mode bit is set on the parent directory: if that bit is set, then BSD
semantics apply; otherwise, System V semantics apply. For some filesystems,
the behavior also depends on the bsdgroups and sysvgroups mount options

Linux man-pages 6.13 2024-07-23 537

open(2) System Calls Manual open(2)

described in mount(8)

The mode argument specifies the file mode bits to be applied when a new file
is created. If neither O_CREAT nor O_TMPFILE is specified in flags, then
mode is ignored (and can thus be specified as 0, or simply omitted). The mode
argument must be supplied if O_CREAT or O_TMPFILE is specified in
flags; if it is not supplied, some arbitrary bytes from the stack will be applied
as the file mode.

The effective mode is modified by the process’s umask in the usual way: in the
absence of a default ACL, the mode of the created file is (mode & ~umask).

Note that mode applies only to future accesses of the newly created file; the
open() call that creates a read-only file may well return a read/write file de-
scriptor.

The following symbolic constants are provided for mode:

S_IRWXU
00700 user (file owner) has read, write, and execute permission

S_IRUSR
00400 user has read permission

S_IWUSR
00200 user has write permission

S_IXUSR
00100 user has execute permission

S_IRWXG
00070 group has read, write, and execute permission

S_IRGRP
00040 group has read permission

S_IWGRP
00020 group has write permission

S_IXGRP
00010 group has execute permission

S_IRWXO
00007 others have read, write, and execute permission

S_IROTH
00004 others have read permission

S_IWOTH
00002 others have write permission

S_IXOTH
00001 others have execute permission

According to POSIX, the effect when other bits are set in mode is unspecified.
On Linux, the following bits are also honored in mode:

Linux man-pages 6.13 2024-07-23 538

open(2) System Calls Manual open(2)

S_ISUID 0004000 set-user-ID bit

S_ISGID 0002000 set-group-ID bit (see inode(7)).

S_ISVTX
0001000 sticky bit (see inode(7)).

O_DIRECT (since Linux 2.4.10)
Try to minimize cache effects of the I/O to and from this file. In general this
will degrade performance, but it is useful in special situations, such as when
applications do their own caching. File I/O is done directly to/from user-space
buffers. The O_DIRECT flag on its own makes an effort to transfer data syn-
chronously, but does not give the guarantees of the O_SYNC flag that data and
necessary metadata are transferred. To guarantee synchronous I/O, O_SYNC
must be used in addition to O_DIRECT. See NOTES below for further dis-
cussion.

A semantically similar (but deprecated) interface for block devices is de-
scribed in raw(8)

O_DIRECTORY
If pathname is not a directory, cause the open to fail. This flag was added in
Linux 2.1.126, to avoid denial-of-service problems if opendir(3) is called on a
FIFO or tape device.

O_DSYNC
Write operations on the file will complete according to the requirements of
synchronized I/O data integrity completion.

By the time write(2) (and similar) return, the output data has been transferred
to the underlying hardware, along with any file metadata that would be re-
quired to retrieve that data (i.e., as though each write(2) was followed by a call
to fdatasync(2)). See VERSIONS.

O_EXCL
Ensure that this call creates the file: if this flag is specified in conjunction with
O_CREAT, and pathname already exists, then open() fails with the error
EEXIST.

When these two flags are specified, symbolic links are not followed: if path-
name is a symbolic link, then open() fails regardless of where the symbolic
link points.

In general, the behavior of O_EXCL is undefined if it is used without
O_CREAT. There is one exception: on Linux 2.6 and later, O_EXCL can be
used without O_CREAT if pathname refers to a block device. If the block
device is in use by the system (e.g., mounted), open() fails with the error
EBUSY.

On NFS, O_EXCL is supported only when using NFSv3 or later on kernel 2.6
or later. In NFS environments where O_EXCL support is not provided, pro-
grams that rely on it for performing locking tasks will contain a race condi-
tion. Portable programs that want to perform atomic file locking using a lock-
file, and need to avoid reliance on NFS support for O_EXCL, can create a
unique file on the same filesystem (e.g., incorporating hostname and PID), and

Linux man-pages 6.13 2024-07-23 539

open(2) System Calls Manual open(2)

use link(2) to make a link to the lockfile. If link(2) returns 0, the lock is suc-
cessful. Otherwise, use stat(2) on the unique file to check if its link count has
increased to 2, in which case the lock is also successful.

O_LARGEFILE
(LFS) Allow files whose sizes cannot be represented in an off_t (but can be
represented in an off64_t) to be opened. The _LARGEFILE64_SOURCE
macro must be defined (before including any header files) in order to obtain
this definition. Setting the _FILE_OFFSET_BITS feature test macro to 64
(rather than using O_LARGEFILE) is the preferred method of accessing
large files on 32-bit systems (see feature_test_macros(7)).

O_NOATIME (since Linux 2.6.8)
Do not update the file last access time (st_atime in the inode) when the file is
read(2).

This flag can be employed only if one of the following conditions is true:

• The effective UID of the process matches the owner UID of the file.

• The calling process has the CAP_FOWNER capability in its user name-
space and the owner UID of the file has a mapping in the namespace.

This flag is intended for use by indexing or backup programs, where its use
can significantly reduce the amount of disk activity. This flag may not be ef-
fective on all filesystems. One example is NFS, where the server maintains
the access time.

O_NOCTTY
If pathname refers to a terminal device—see tty(4)—it will not become the
process’s controlling terminal even if the process does not have one.

O_NOFOLLOW
If the trailing component (i.e., basename) of pathname is a symbolic link, then
the open fails, with the error ELOOP. Symbolic links in earlier components
of the pathname will still be followed. (Note that the ELOOP error that can
occur in this case is indistinguishable from the case where an open fails be-
cause there are too many symbolic links found while resolving components in
the prefix part of the pathname.)

This flag is a FreeBSD extension, which was added in Linux 2.1.126, and has
subsequently been standardized in POSIX.1-2008.

See also O_PATH below.

O_NONBLOCK or O_NDELAY
When possible, the file is opened in nonblocking mode. Neither the open()
nor any subsequent I/O operations on the file descriptor which is returned will
cause the calling process to wait.

Note that the setting of this flag has no effect on the operation of poll(2), se-
lect(2), epoll(7), and similar, since those interfaces merely inform the caller
about whether a file descriptor is "ready", meaning that an I/O operation per-
formed on the file descriptor with the O_NONBLOCK flag clear would not
block.

Linux man-pages 6.13 2024-07-23 540

open(2) System Calls Manual open(2)

Note that this flag has no effect for regular files and block devices; that is, I/O
operations will (briefly) block when device activity is required, regardless of
whether O_NONBLOCK is set. Since O_NONBLOCK semantics might
eventually be implemented, applications should not depend upon blocking be-
havior when specifying this flag for regular files and block devices.

For the handling of FIFOs (named pipes), see also fifo(7). For a discussion of
the effect of O_NONBLOCK in conjunction with mandatory file locks and
with file leases, see fcntl(2).

O_PATH (since Linux 2.6.39)
Obtain a file descriptor that can be used for two purposes: to indicate a loca-
tion in the filesystem tree and to perform operations that act purely at the file
descriptor level. The file itself is not opened, and other file operations (e.g.,
read(2), write(2), fchmod(2), fchown(2), fgetxattr(2), ioctl(2), mmap(2)) fail
with the error EBADF.

The following operations can be performed on the resulting file descriptor:

• close(2).

• fchdir(2), if the file descriptor refers to a directory (since Linux 3.5).

• fstat(2) (since Linux 3.6).

• fstatfs(2) (since Linux 3.12).

• Duplicating the file descriptor (dup(2), fcntl(2) F_DUPFD, etc.).

• Getting and setting file descriptor flags (fcntl(2) F_GETFD and
F_SETFD).

• Retrieving open file status flags using the fcntl(2) F_GETFL operation:
the returned flags will include the bit O_PATH.

• Passing the file descriptor as the dirfd argument of openat() and the other
"*at()" system calls. This includes linkat(2) with AT_EMPTY_PATH (or
via procfs using AT_SYMLINK_FOLLOW) even if the file is not a di-
rectory.

• Passing the file descriptor to another process via a UNIX domain socket
(see SCM_RIGHTS in unix(7)).

When O_PATH is specified in flags, flag bits other than O_CLOEXEC,
O_DIRECTORY, and O_NOFOLLOW are ignored.

Opening a file or directory with the O_PATH flag requires no permissions on
the object itself (but does require execute permission on the directories in the
path prefix). Depending on the subsequent operation, a check for suitable file
permissions may be performed (e.g., fchdir(2) requires execute permission on
the directory referred to by its file descriptor argument). By contrast, obtain-
ing a reference to a filesystem object by opening it with the O_RDONLY flag
requires that the caller have read permission on the object, even when the sub-
sequent operation (e.g., fchdir(2), fstat(2)) does not require read permission on
the object.

If pathname is a symbolic link and the O_NOFOLLOW flag is also specified,
then the call returns a file descriptor referring to the symbolic link. This file

Linux man-pages 6.13 2024-07-23 541

open(2) System Calls Manual open(2)

descriptor can be used as the dirfd argument in calls to fchownat(2), fstatat(2),
linkat(2), and readlinkat(2) with an empty pathname to have the calls operate
on the symbolic link.

If pathname refers to an automount point that has not yet been triggered, so no
other filesystem is mounted on it, then the call returns a file descriptor refer-
ring to the automount directory without triggering a mount. fstatfs(2) can then
be used to determine if it is, in fact, an untriggered automount point (.f_type
== AUTOFS_SUPER_MAGIC).

One use of O_PATH for regular files is to provide the equivalent of POSIX.1’s
O_EXEC functionality. This permits us to open a file for which we have exe-
cute permission but not read permission, and then execute that file, with steps
something like the following:

char buf[PATH_MAX];
fd = open("some_prog", O_PATH);
snprintf(buf, PATH_MAX, "/proc/self/fd/%d", fd);
execl(buf, "some_prog", (char *) NULL);

An O_PATH file descriptor can also be passed as the argument of fexecve(3).

O_SYNC
Write operations on the file will complete according to the requirements of
synchronized I/O file integrity completion (by contrast with the synchronized
I/O data integrity completion provided by O_DSYNC.)

By the time write(2) (or similar) returns, the output data and associated file
metadata have been transferred to the underlying hardware (i.e., as though
each write(2) was followed by a call to fsync(2)). See VERSIONS.

O_TMPFILE (since Linux 3.11)
Create an unnamed temporary regular file. The pathname argument specifies
a directory; an unnamed inode will be created in that directory’s filesystem.
Anything written to the resulting file will be lost when the last file descriptor is
closed, unless the file is given a name.

O_TMPFILE must be specified with one of O_RDWR or O_WRONLY and,
optionally, O_EXCL. If O_EXCL is not specified, then linkat(2) can be used
to link the temporary file into the filesystem, making it permanent, using code
like the following:

char path[PATH_MAX];
fd = open("/path/to/dir", O_TMPFILE | O_RDWR,

S_IRUSR | S_IWUSR);

/* File I/O on 'fd'... */

linkat(fd, "", AT_FDCWD, "/path/for/file", AT_EMPTY_PATH);

/* If the caller doesn't have the CAP_DAC_READ_SEARCH
capability (needed to use AT_EMPTY_PATH with linkat(2)),
and there is a proc(5) filesystem mounted, then the
linkat(2) call above can be replaced with:

Linux man-pages 6.13 2024-07-23 542

open(2) System Calls Manual open(2)

snprintf(path, PATH_MAX, "/proc/self/fd/%d", fd);
linkat(AT_FDCWD, path, AT_FDCWD, "/path/for/file",

AT_SYMLINK_FOLLOW);
*/

In this case, the open() mode argument determines the file permission mode,
as with O_CREAT.

Specifying O_EXCL in conjunction with O_TMPFILE prevents a temporary
file from being linked into the filesystem in the above manner. (Note that the
meaning of O_EXCL in this case is different from the meaning of O_EXCL
otherwise.)

There are two main use cases for O_TMPFILE:

• Improved tmpfile(3) functionality: race-free creation of temporary files that
(1) are automatically deleted when closed; (2) can never be reached via
any pathname; (3) are not subject to symlink attacks; and (4) do not re-
quire the caller to devise unique names.

• Creating a file that is initially invisible, which is then populated with data
and adjusted to have appropriate filesystem attributes (fchown(2), fch-
mod(2), fsetxattr(2), etc.) before being atomically linked into the filesys-
tem in a fully formed state (using linkat(2) as described above).

O_TMPFILE requires support by the underlying filesystem; only a subset of
Linux filesystems provide that support. In the initial implementation, support
was provided in the ext2, ext3, ext4, UDF, Minix, and tmpfs filesystems. Sup-
port for other filesystems has subsequently been added as follows: XFS (Linux
3.15); Btrfs (Linux 3.16); F2FS (Linux 3.16); and ubifs (Linux 4.9)

O_TRUNC
If the file already exists and is a regular file and the access mode allows writ-
ing (i.e., is O_RDWR or O_WRONLY) it will be truncated to length 0. If the
file is a FIFO or terminal device file, the O_TRUNC flag is ignored. Other-
wise, the effect of O_TRUNC is unspecified.

creat()
A call to creat() is equivalent to calling open() with flags equal to
O_CREAT|O_WRONLY|O_TRUNC.

openat()
The openat() system call operates in exactly the same way as open(), except for the
differences described here.

The dirfd argument is used in conjunction with the pathname argument as follows:

• If the pathname given in pathname is absolute, then dirfd is ignored.

• If the pathname given in pathname is relative and dirfd is the special value
AT_FDCWD, then pathname is interpreted relative to the current working direc-
tory of the calling process (like open())

Linux man-pages 6.13 2024-07-23 543

open(2) System Calls Manual open(2)

• If the pathname given in pathname is relative, then it is interpreted relative to the
directory referred to by the file descriptor dirfd (rather than relative to the current
working directory of the calling process, as is done by open() for a relative path-
name). In this case, dirfd must be a directory that was opened for reading
(O_RDONLY) or using the O_PATH flag.

If the pathname given in pathname is relative, and dirfd is not a valid file descriptor,
an error (EBADF) results. (Specifying an invalid file descriptor number in dirfd can
be used as a means to ensure that pathname is absolute.)

openat2(2)
The openat2(2) system call is an extension of openat(), and provides a superset of the
features of openat(). It is documented separately, in openat2(2).

RETURN VALUE
On success, open(), openat(), and creat() return the new file descriptor (a nonnega-
tive integer). On error, -1 is returned and errno is set to indicate the error.

ERRORS
open(), openat(), and creat() can fail with the following errors:

EACCES
The requested access to the file is not allowed, or search permission is denied
for one of the directories in the path prefix of pathname, or the file did not ex-
ist yet and write access to the parent directory is not allowed. (See also
path_resolution(7).)

EACCES
Where O_CREAT is specified, the protected_fifos or protected_regular sysctl
is enabled, the file already exists and is a FIFO or regular file, the owner of the
file is neither the current user nor the owner of the containing directory, and
the containing directory is both world- or group-writable and sticky. For de-
tails, see the descriptions of /proc/sys/fs/protected_fifos and /proc/sys/fs/pro-
tected_regular in proc_sys_fs(5).

EBADF
(openat()) pathname is relative but dirfd is neither AT_FDCWD nor a valid
file descriptor.

EBUSY
O_EXCL was specified in flags and pathname refers to a block device that is
in use by the system (e.g., it is mounted).

EDQUOT
Where O_CREAT is specified, the file does not exist, and the user’s quota of
disk blocks or inodes on the filesystem has been exhausted.

EEXIST
pathname already exists and O_CREAT and O_EXCL were used.

EFAULT
pathname points outside your accessible address space.

EFBIG
See EOVERFLOW.

Linux man-pages 6.13 2024-07-23 544

open(2) System Calls Manual open(2)

EINTR
While blocked waiting to complete an open of a slow device (e.g., a FIFO; see
fifo(7)), the call was interrupted by a signal handler; see signal(7).

EINVAL
The filesystem does not support the O_DIRECT flag. See NOTES for more
information.

EINVAL
Invalid value in flags.

EINVAL
O_TMPFILE was specified in flags, but neither O_WRONLY nor
O_RDWR was specified.

EINVAL
O_CREAT was specified in flags and the final component ("basename") of
the new file’s pathname is invalid (e.g., it contains characters not permitted by
the underlying filesystem).

EINVAL
The final component ("basename") of pathname is invalid (e.g., it contains
characters not permitted by the underlying filesystem).

EISDIR
pathname refers to a directory and the access requested involved writing (that
is, O_WRONLY or O_RDWR is set).

EISDIR
pathname refers to an existing directory, O_TMPFILE and one of
O_WRONLY or O_RDWR were specified in flags, but this kernel version
does not provide the O_TMPFILE functionality.

ELOOP
Too many symbolic links were encountered in resolving pathname.

ELOOP
pathname was a symbolic link, and flags specified O_NOFOLLOW but not
O_PATH.

EMFILE
The per-process limit on the number of open file descriptors has been reached
(see the description of RLIMIT_NOFILE in getrlimit(2)).

ENAMETOOLONG
pathname was too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
pathname refers to a device special file and no corresponding device exists.
(This is a Linux kernel bug; in this situation ENXIO must be returned.)

ENOENT
O_CREAT is not set and the named file does not exist.

Linux man-pages 6.13 2024-07-23 545

open(2) System Calls Manual open(2)

ENOENT
A directory component in pathname does not exist or is a dangling symbolic
link.

ENOENT
pathname refers to a nonexistent directory, O_TMPFILE and one of
O_WRONLY or O_RDWR were specified in flags, but this kernel version
does not provide the O_TMPFILE functionality.

ENOMEM
The named file is a FIFO, but memory for the FIFO buffer can’t be allocated
because the per-user hard limit on memory allocation for pipes has been
reached and the caller is not privileged; see pipe(7).

ENOMEM
Insufficient kernel memory was available.

ENOSPC
pathname was to be created but the device containing pathname has no room
for the new file.

ENOTDIR
A component used as a directory in pathname is not, in fact, a directory, or
O_DIRECTORY was specified and pathname was not a directory.

ENOTDIR
(openat()) pathname is a relative pathname and dirfd is a file descriptor refer-
ring to a file other than a directory.

ENXIO
O_NONBLOCK | O_WRONLY is set, the named file is a FIFO, and no
process has the FIFO open for reading.

ENXIO
The file is a device special file and no corresponding device exists.

ENXIO
The file is a UNIX domain socket.

EOPNOTSUPP
The filesystem containing pathname does not support O_TMPFILE.

EOVERFLOW
pathname refers to a regular file that is too large to be opened. The usual sce-
nario here is that an application compiled on a 32-bit platform without
-D_FILE_OFFSET_BITS=64 tried to open a file whose size exceeds
(1<<31)-1 bytes; see also O_LARGEFILE above. This is the error speci-
fied by POSIX.1; before Linux 2.6.24, Linux gave the error EFBIG for this
case.

EPERM
The O_NOATIME flag was specified, but the effective user ID of the caller
did not match the owner of the file and the caller was not privileged.

Linux man-pages 6.13 2024-07-23 546

open(2) System Calls Manual open(2)

EPERM
The operation was prevented by a file seal; see fcntl(2).

EROFS
pathname refers to a file on a read-only filesystem and write access was re-
quested.

ETXTBSY
pathname refers to an executable image which is currently being executed and
write access was requested.

ETXTBSY
pathname refers to a file that is currently in use as a swap file, and the
O_TRUNC flag was specified.

ETXTBSY
pathname refers to a file that is currently being read by the kernel (e.g., for
module/firmware loading), and write access was requested.

EWOULDBLOCK
The O_NONBLOCK flag was specified, and an incompatible lease was held
on the file (see fcntl(2)).

VERSIONS
The (undefined) effect of O_RDONLY | O_TRUNC varies among implementations.
On many systems the file is actually truncated.

Synchronized I/O
The POSIX.1-2008 "synchronized I/O" option specifies different variants of synchro-
nized I/O, and specifies the open() flags O_SYNC, O_DSYNC, and O_RSYNC for
controlling the behavior. Regardless of whether an implementation supports this op-
tion, it must at least support the use of O_SYNC for regular files.

Linux implements O_SYNC and O_DSYNC, but not O_RSYNC. Somewhat incor-
rectly, glibc defines O_RSYNC to have the same value as O_SYNC. (O_RSYNC is
defined in the Linux header file <asm/fcntl.h> on HP PA-RISC, but it is not used.)

O_SYNC provides synchronized I/O file integrity completion, meaning write opera-
tions will flush data and all associated metadata to the underlying hardware.
O_DSYNC provides synchronized I/O data integrity completion, meaning write op-
erations will flush data to the underlying hardware, but will only flush metadata up-
dates that are required to allow a subsequent read operation to complete successfully.
Data integrity completion can reduce the number of disk operations that are required
for applications that don’t need the guarantees of file integrity completion.

To understand the difference between the two types of completion, consider two
pieces of file metadata: the file last modification timestamp (st_mtime) and the file
length. All write operations will update the last file modification timestamp, but only
writes that add data to the end of the file will change the file length. The last modifi-
cation timestamp is not needed to ensure that a read completes successfully, but the
file length is. Thus, O_DSYNC would only guarantee to flush updates to the file
length metadata (whereas O_SYNC would also always flush the last modification
timestamp metadata).

Before Linux 2.6.33, Linux implemented only the O_SYNC flag for open().

Linux man-pages 6.13 2024-07-23 547

open(2) System Calls Manual open(2)

However, when that flag was specified, most filesystems actually provided the equiva-
lent of synchronized I/O data integrity completion (i.e., O_SYNC was actually imple-
mented as the equivalent of O_DSYNC).

Since Linux 2.6.33, proper O_SYNC support is provided. However, to ensure back-
ward binary compatibility, O_DSYNC was defined with the same value as the histori-
cal O_SYNC, and O_SYNC was defined as a new (two-bit) flag value that includes
the O_DSYNC flag value. This ensures that applications compiled against new head-
ers get at least O_DSYNC semantics before Linux 2.6.33.

C library/kernel differences
Since glibc 2.26, the glibc wrapper function for open() employs the openat() system
call, rather than the kernel’s open() system call. For certain architectures, this is also
true before glibc 2.26.

STANDARDS
open()
creat()
openat()

POSIX.1-2008.

openat2(2) Linux.

The O_DIRECT, O_NOATIME, O_PATH, and O_TMPFILE flags are Linux-spe-
cific. One must define _GNU_SOURCE to obtain their definitions.

The O_CLOEXEC, O_DIRECTORY, and O_NOFOLLOW flags are not specified
in POSIX.1-2001, but are specified in POSIX.1-2008. Since glibc 2.12, one can ob-
tain their definitions by defining either _POSIX_C_SOURCE with a value greater
than or equal to 200809L or _XOPEN_SOURCE with a value greater than or equal
to 700. In glibc 2.11 and earlier, one obtains the definitions by defining
_GNU_SOURCE.

HISTORY
open()
creat()

SVr4, 4.3BSD, POSIX.1-2001.

openat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

NOTES
Under Linux, the O_NONBLOCK flag is sometimes used in cases where one wants
to open but does not necessarily have the intention to read or write. For example, this
may be used to open a device in order to get a file descriptor for use with ioctl(2).

Note that open() can open device special files, but creat() cannot create them; use
mknod(2) instead.

If the file is newly created, its st_atime, st_ctime, st_mtime fields (respectively, time
of last access, time of last status change, and time of last modification; see stat(2)) are
set to the current time, and so are the st_ctime and st_mtime fields of the parent direc-
tory. Otherwise, if the file is modified because of the O_TRUNC flag, its st_ctime
and st_mtime fields are set to the current time.

The files in the /proc/ pid /fd directory show the open file descriptors of the process

Linux man-pages 6.13 2024-07-23 548

open(2) System Calls Manual open(2)

with the PID pid . The files in the /proc/ pid /fdinfo directory show even more infor-
mation about these file descriptors. See proc(5) for further details of both of these di-
rectories.

The Linux header file <asm/fcntl.h> doesn’t define O_ASYNC; the (BSD-derived)
FASYNC synonym is defined instead.

Open file descriptions
The term open file description is the one used by POSIX to refer to the entries in the
system-wide table of open files. In other contexts, this object is variously also called
an "open file object", a "file handle", an "open file table entry", or—in kernel-devel-
oper parlance—a struct file.

When a file descriptor is duplicated (using dup(2) or similar), the duplicate refers to
the same open file description as the original file descriptor, and the two file descrip-
tors consequently share the file offset and file status flags. Such sharing can also oc-
cur between processes: a child process created via fork(2) inherits duplicates of its
parent’s file descriptors, and those duplicates refer to the same open file descriptions.

Each open() of a file creates a new open file description; thus, there may be multiple
open file descriptions corresponding to a file inode.

On Linux, one can use the kcmp(2) KCMP_FILE operation to test whether two file
descriptors (in the same process or in two different processes) refer to the same open
file description.

NFS
There are many infelicities in the protocol underlying NFS, affecting amongst others
O_SYNC and O_NDELAY.

On NFS filesystems with UID mapping enabled, open() may return a file descriptor
but, for example, read(2) requests are denied with EACCES. This is because the
client performs open() by checking the permissions, but UID mapping is performed
by the server upon read and write requests.

FIFOs
Opening the read or write end of a FIFO blocks until the other end is also opened (by
another process or thread). See fifo(7) for further details.

File access mode
Unlike the other values that can be specified in flags, the access mode values
O_RDONLY, O_WRONLY, and O_RDWR do not specify individual bits. Rather,
they define the low order two bits of flags, and are defined respectively as 0, 1, and 2.
In other words, the combination O_RDONLY | O_WRONLY is a logical error, and
certainly does not have the same meaning as O_RDWR.

Linux reserves the special, nonstandard access mode 3 (binary 11) in flags to mean:
check for read and write permission on the file and return a file descriptor that can’t be
used for reading or writing. This nonstandard access mode is used by some Linux dri-
vers to return a file descriptor that is to be used only for device-specific ioctl(2) opera-
tions.

Rationale for openat() and other directory file descriptor APIs
openat() and the other system calls and library functions that take a directory file de-
scriptor argument (i.e., execveat(2), faccessat(2), fanotify_mark(2), fchmodat(2),

Linux man-pages 6.13 2024-07-23 549

open(2) System Calls Manual open(2)

fchownat(2), fspick(2), fstatat(2), futimesat(2), linkat(2), mkdirat(2), mknodat(2),
mount_setattr(2), move_mount(2), name_to_handle_at(2), open_tree(2), openat2(2),
readlinkat(2), renameat(2), renameat2(2), statx(2), symlinkat(2), unlinkat(2), utimen-
sat(2), mkfifoat(3), and scandirat(3)) address two problems with the older interfaces
that preceded them. Here, the explanation is in terms of the openat() call, but the ra-
tionale is analogous for the other interfaces.

First, openat() allows an application to avoid race conditions that could occur when
using open() to open files in directories other than the current working directory.
These race conditions result from the fact that some component of the directory prefix
given to open() could be changed in parallel with the call to open(). Suppose, for ex-
ample, that we wish to create the file dir1/dir2/xxx.dep if the file dir1/dir2/xxx exists.
The problem is that between the existence check and the file-creation step, dir1 or
dir2 (which might be symbolic links) could be modified to point to a different loca-
tion. Such races can be avoided by opening a file descriptor for the target directory,
and then specifying that file descriptor as the dirfd argument of (say) fstatat(2) and
openat(). The use of the dirfd file descriptor also has other benefits:

• the file descriptor is a stable reference to the directory, even if the directory is re-
named; and

• the open file descriptor prevents the underlying filesystem from being dismounted,
just as when a process has a current working directory on a filesystem.

Second, openat() allows the implementation of a per-thread "current working direc-
tory", via file descriptor(s) maintained by the application. (This functionality can also
be obtained by tricks based on the use of /proc/self/fd/ dirfd, but less efficiently.)

The dirfd argument for these APIs can be obtained by using open() or openat() to
open a directory (with either the O_RDONLY or the O_PATH flag). Alternatively,
such a file descriptor can be obtained by applying dirfd(3) to a directory stream cre-
ated using opendir(3).

When these APIs are given a dirfd argument of AT_FDCWD or the specified path-
name is absolute, then they handle their pathname argument in the same way as the
corresponding conventional APIs. However, in this case, several of the APIs have a
flags argument that provides access to functionality that is not available with the cor-
responding conventional APIs.

O_DIRECT
The O_DIRECT flag may impose alignment restrictions on the length and address of
user-space buffers and the file offset of I/Os. In Linux alignment restrictions vary by
filesystem and kernel version and might be absent entirely. The handling of mis-
aligned O_DIRECT I/Os also varies; they can either fail with EINVAL or fall back
to buffered I/O.

Since Linux 6.1, O_DIRECT support and alignment restrictions for a file can be
queried using statx(2), using the STATX_DIOALIGN flag. Support for
STATX_DIOALIGN varies by filesystem; see statx(2).

Some filesystems provide their own interfaces for querying O_DIRECT alignment
restrictions, for example the XFS_IOC_DIOINFO operation in xf-
sctl(3)STATX_DIOALIGN should be used instead when it is available.

If none of the above is available, then direct I/O support and alignment restrictions

Linux man-pages 6.13 2024-07-23 550

open(2) System Calls Manual open(2)

can only be assumed from known characteristics of the filesystem, the individual file,
the underlying storage device(s), and the kernel version. In Linux 2.4, most filesys-
tems based on block devices require that the file offset and the length and memory ad-
dress of all I/O segments be multiples of the filesystem block size (typically 4096
bytes). In Linux 2.6.0, this was relaxed to the logical block size of the block device
(typically 512 bytes). A block device’s logical block size can be determined using the
ioctl(2) BLKSSZGET operation or from the shell using the command:

blockdev --getss

O_DIRECT I/Os should never be run concurrently with the fork(2) system call, if the
memory buffer is a private mapping (i.e., any mapping created with the mmap(2)
MAP_PRIVATE flag; this includes memory allocated on the heap and statically allo-
cated buffers). Any such I/Os, whether submitted via an asynchronous I/O interface
or from another thread in the process, should be completed before fork(2) is called.
Failure to do so can result in data corruption and undefined behavior in parent and
child processes. This restriction does not apply when the memory buffer for the
O_DIRECT I/Os was created using shmat(2) or mmap(2) with the MAP_SHARED
flag. Nor does this restriction apply when the memory buffer has been advised as
MADV_DONTFORK with madvise(2), ensuring that it will not be available to the
child after fork(2).

The O_DIRECT flag was introduced in SGI IRIX, where it has alignment restrictions
similar to those of Linux 2.4. IRIX has also a fcntl(2) call to query appropriate align-
ments, and sizes. FreeBSD 4.x introduced a flag of the same name, but without align-
ment restrictions.

O_DIRECT support was added in Linux 2.4.10. Older Linux kernels simply ignore
this flag. Some filesystems may not implement the flag, in which case open() fails
with the error EINVAL if it is used.

Applications should avoid mixing O_DIRECT and normal I/O to the same file, and
especially to overlapping byte regions in the same file. Even when the filesystem cor-
rectly handles the coherency issues in this situation, overall I/O throughput is likely to
be slower than using either mode alone. Likewise, applications should avoid mixing
mmap(2) of files with direct I/O to the same files.

The behavior of O_DIRECT with NFS will differ from local filesystems. Older ker-
nels, or kernels configured in certain ways, may not support this combination. The
NFS protocol does not support passing the flag to the server, so O_DIRECT I/O will
bypass the page cache only on the client; the server may still cache the I/O. The client
asks the server to make the I/O synchronous to preserve the synchronous semantics of
O_DIRECT. Some servers will perform poorly under these circumstances, espe-
cially if the I/O size is small. Some servers may also be configured to lie to clients
about the I/O having reached stable storage; this will avoid the performance penalty at
some risk to data integrity in the event of server power failure. The Linux NFS client
places no alignment restrictions on O_DIRECT I/O.

In summary, O_DIRECT is a potentially powerful tool that should be used with cau-
tion. It is recommended that applications treat use of O_DIRECT as a performance
option which is disabled by default.

Linux man-pages 6.13 2024-07-23 551

open(2) System Calls Manual open(2)

BUGS
Currently, it is not possible to enable signal-driven I/O by specifying O_ASYNC
when calling open(); use fcntl(2) to enable this flag.

One must check for two different error codes, EISDIR and ENOENT, when trying to
determine whether the kernel supports O_TMPFILE functionality.

When both O_CREAT and O_DIRECTORY are specified in flags and the file spec-
ified by pathname does not exist, open() will create a regular file (i.e., O_DIREC-
TORY is ignored).

SEE ALSO
chmod(2), chown(2), close(2), dup(2), fcntl(2), link(2), lseek(2), mknod(2), mmap(2),
mount(2), open_by_handle_at(2), openat2(2), read(2), socket(2), stat(2), umask(2),
unlink(2), write(2), fopen(3), acl(5), fifo(7), inode(7), path_resolution(7), symlink(7)

Linux man-pages 6.13 2024-07-23 552

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

NAME
name_to_handle_at, open_by_handle_at - obtain handle for a pathname and open file
via a handle

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h>

int name_to_handle_at(int dirfd , const char *pathname,
struct file_handle *handle,
int *mount_id , int flags);

int open_by_handle_at(int mount_fd , struct file_handle *handle,
int flags);

DESCRIPTION
The name_to_handle_at() and open_by_handle_at() system calls split the function-
ality of openat(2) into two parts: name_to_handle_at() returns an opaque handle that
corresponds to a specified file; open_by_handle_at() opens the file corresponding to
a handle returned by a previous call to name_to_handle_at() and returns an open file
descriptor.

name_to_handle_at()
The name_to_handle_at() system call returns a file handle and a mount ID corre-
sponding to the file specified by the dirfd and pathname arguments. The file handle
is returned via the argument handle, which is a pointer to a structure of the following
form:

struct file_handle {
unsigned int handle_bytes; /* Size of f_handle [in, out] */
int handle_type; /* Handle type [out] */
unsigned char f_handle[0]; /* File identifier (sized by

caller) [out] */
};

It is the caller’s responsibility to allocate the structure with a size large enough to hold
the handle returned in f_handle. Before the call, the handle_bytes field should be ini-
tialized to contain the allocated size for f_handle. (The constant MAX_HAN-
DLE_SZ, defined in <fcntl.h>, specifies the maximum expected size for a file handle.
It is not a guaranteed upper limit as future filesystems may require more space.) Upon
successful return, the handle_bytes field is updated to contain the number of bytes ac-
tually written to f_handle.

The caller can discover the required size for the file_handle structure by making a call
in which handle->handle_bytes is zero; in this case, the call fails with the error
EOVERFLOW and handle->handle_bytes is set to indicate the required size; the
caller can then use this information to allocate a structure of the correct size (see EX-
AMPLES below). Some care is needed here as EOVERFLOW can also indicate that
no file handle is available for this particular name in a filesystem which does normally
support file-handle lookup. This case can be detected when the EOVERFLOW error
is returned without handle_bytes being increased.

Linux man-pages 6.13 2024-07-23 553

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

Other than the use of the handle_bytes field, the caller should treat the file_handle
structure as an opaque data type: the handle_type and f_handle fields can be used in a
subsequent call to open_by_handle_at(). The caller can also use the opaque
file_handle to compare the identity of filesystem objects that were queried at different
times and possibly at different paths. The fanotify(7) subsystem can report events
with an information record containing a file_handle to identify the filesystem object.

The flags argument is a bit mask constructed by ORing together zero or more of
AT_HANDLE_FID, AT_EMPTY_PATH, and AT_SYMLINK_FOLLOW, de-
scribed below.

When flags contain the AT_HANDLE_FID (since Linux 6.5) flag, the caller indi-
cates that the returned file_handle is needed to identify the filesystem object, and not
for opening the file later, so it should be expected that a subsequent call to
open_by_handle_at() with the returned file_handle may fail.

Together, the pathname and dirfd arguments identify the file for which a handle is to
be obtained. There are four distinct cases:

• If pathname is a nonempty string containing an absolute pathname, then a handle
is returned for the file referred to by that pathname. In this case, dirfd is ignored.

• If pathname is a nonempty string containing a relative pathname and dirfd has the
special value AT_FDCWD, then pathname is interpreted relative to the current
working directory of the caller, and a handle is returned for the file to which it
refers.

• If pathname is a nonempty string containing a relative pathname and dirfd is a file
descriptor referring to a directory, then pathname is interpreted relative to the di-
rectory referred to by dirfd , and a handle is returned for the file to which it refers.
(See openat(2) for an explanation of why "directory file descriptors" are useful.)

• If pathname is an empty string and flags specifies the value AT_EMPTY_PATH,
then dirfd can be an open file descriptor referring to any type of file, or AT_FD-
CWD, meaning the current working directory, and a handle is returned for the file
to which it refers.

The mount_id argument returns an identifier for the filesystem mount that corre-
sponds to pathname. This corresponds to the first field in one of the records in
/proc/self/mountinfo. Opening the pathname in the fifth field of that record yields a
file descriptor for the mount point; that file descriptor can be used in a subsequent call
to open_by_handle_at(). mount_id is returned both for a successful call and for a
call that results in the error EOVERFLOW.

By default, name_to_handle_at() does not dereference pathname if it is a symbolic
link, and thus returns a handle for the link itself. If AT_SYMLINK_FOLLOW is
specified in flags, pathname is dereferenced if it is a symbolic link (so that the call re-
turns a handle for the file referred to by the link).

name_to_handle_at() does not trigger a mount when the final component of the path-
name is an automount point. When a filesystem supports both file handles and auto-
mount points, a name_to_handle_at() call on an automount point will return with er-
ror EOVERFLOW without having increased handle_bytes. This can happen since
Linux 4.13 with NFS when accessing a directory which is on a separate filesystem on
the server. In this case, the automount can be triggered by adding a "/" to the end of

Linux man-pages 6.13 2024-07-23 554

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

the pathname.

open_by_handle_at()
The open_by_handle_at() system call opens the file referred to by handle, a file han-
dle returned by a previous call to name_to_handle_at().

The mount_fd argument is a file descriptor for any object (file, directory, etc.) in the
mounted filesystem with respect to which handle should be interpreted. The special
value AT_FDCWD can be specified, meaning the current working directory of the
caller.

The flags argument is as for open(2). If handle refers to a symbolic link, the caller
must specify the O_PATH flag, and the symbolic link is not dereferenced; the O_NO-
FOLLOW flag, if specified, is ignored.

The caller must have the CAP_DAC_READ_SEARCH capability to invoke
open_by_handle_at().

RETURN VALUE
On success, name_to_handle_at() returns 0, and open_by_handle_at() returns a file
descriptor (a nonnegative integer).

In the event of an error, both system calls return -1 and set errno to indicate the error.

ERRORS
name_to_handle_at() and open_by_handle_at() can fail for the same errors as ope-
nat(2). In addition, they can fail with the errors noted below.

name_to_handle_at() can fail with the following errors:

EFAULT
pathname, mount_id , or handle points outside your accessible address space.

EINVAL
flags includes an invalid bit value.

EINVAL
handle->handle_bytes is greater than MAX_HANDLE_SZ.

ENOENT
pathname is an empty string, but AT_EMPTY_PATH was not specified in
flags.

ENOTDIR
The file descriptor supplied in dirfd does not refer to a directory, and it is not
the case that both flags includes AT_EMPTY_PATH and pathname is an
empty string.

EOPNOTSUPP
The filesystem does not support decoding of a pathname to a file handle.

EOVERFLOW
The handle->handle_bytes value passed into the call was too small. When
this error occurs, handle->handle_bytes is updated to indicate the required
size for the handle.

open_by_handle_at() can fail with the following errors:

Linux man-pages 6.13 2024-07-23 555

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

EBADF
mount_fd is not an open file descriptor.

EBADF
pathname is relative but dirfd is neither AT_FDCWD nor a valid file descrip-
tor.

EFAULT
handle points outside your accessible address space.

EINVAL
handle->handle_bytes is greater than MAX_HANDLE_SZ or is equal to
zero.

ELOOP
handle refers to a symbolic link, but O_PATH was not specified in flags.

EPERM
The caller does not have the CAP_DAC_READ_SEARCH capability.

ESTALE
The specified handle is not valid for opening a file. This error will occur if,
for example, the file has been deleted. This error can also occur if the handle
was acquired using the AT_HANDLE_FID flag and the filesystem does not
support open_by_handle_at().

VERSIONS
FreeBSD has a broadly similar pair of system calls in the form of getfh() and
fhopen().

STANDARDS
Linux.

HISTORY
Linux 2.6.39, glibc 2.14.

NOTES
A file handle can be generated in one process using name_to_handle_at() and later
used in a different process that calls open_by_handle_at().

Some filesystem don’t support the translation of pathnames to file handles, for exam-
ple, /proc, /sys, and various network filesystems. Some filesystems support the trans-
lation of pathnames to file handles, but do not support using those file handles in
open_by_handle_at().

A file handle may become invalid ("stale") if a file is deleted, or for other filesystem-
specific reasons. Invalid handles are notified by an ESTALE error from
open_by_handle_at().

These system calls are designed for use by user-space file servers. For example, a
user-space NFS server might generate a file handle and pass it to an NFS client.
Later, when the client wants to open the file, it could pass the handle back to the
server. This sort of functionality allows a user-space file server to operate in a state-
less fashion with respect to the files it serves.

If pathname refers to a symbolic link and flags does not specify AT_SYM-
LINK_FOLLOW, then name_to_handle_at() returns a handle for the link (rather

Linux man-pages 6.13 2024-07-23 556

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

than the file to which it refers). The process receiving the handle can later perform
operations on the symbolic link by converting the handle to a file descriptor using
open_by_handle_at() with the O_PATH flag, and then passing the file descriptor as
the dirfd argument in system calls such as readlinkat(2) and fchownat(2).

Obtaining a persistent filesystem ID
The mount IDs in /proc/self/mountinfo can be reused as filesystems are unmounted
and mounted. Therefore, the mount ID returned by name_to_handle_at() (in
*mount_id) should not be treated as a persistent identifier for the corresponding
mounted filesystem. However, an application can use the information in the
mountinfo record that corresponds to the mount ID to derive a persistent identifier.

For example, one can use the device name in the fifth field of the mountinfo record to
search for the corresponding device UUID via the symbolic links in /dev/disks/by-
uuid . (A more comfortable way of obtaining the UUID is to use the libblkid(3) li-
brary.) That process can then be reversed, using the UUID to look up the device
name, and then obtaining the corresponding mount point, in order to produce the
mount_fd argument used by open_by_handle_at().

EXAMPLES
The two programs below demonstrate the use of name_to_handle_at() and
open_by_handle_at(). The first program (t_name_to_handle_at.c) uses
name_to_handle_at() to obtain the file handle and mount ID for the file specified in
its command-line argument; the handle and mount ID are written to standard output.

The second program (t_open_by_handle_at.c) reads a mount ID and file handle from
standard input. The program then employs open_by_handle_at() to open the file us-
ing that handle. If an optional command-line argument is supplied, then the mount_fd
argument for open_by_handle_at() is obtained by opening the directory named in
that argument. Otherwise, mount_fd is obtained by scanning /proc/self/mountinfo to
find a record whose mount ID matches the mount ID read from standard input, and the
mount directory specified in that record is opened. (These programs do not deal with
the fact that mount IDs are not persistent.)

The following shell session demonstrates the use of these two programs:

$ echo 'Can you please think about it?' > cecilia.txt
$./t_name_to_handle_at cecilia.txt > fh
$./t_open_by_handle_at < fh
open_by_handle_at: Operation not permitted
$ sudo ./t_open_by_handle_at < fh # Need CAP_SYS_ADMIN
Read 31 bytes
$ rm cecilia.txt

Now we delete and (quickly) re-create the file so that it has the same content and (by
chance) the same inode. Nevertheless, open_by_handle_at() recognizes that the
original file referred to by the file handle no longer exists.

$ stat --printf="%i\n" cecilia.txt # Display inode number
4072121
$ rm cecilia.txt
$ echo 'Can you please think about it?' > cecilia.txt
$ stat --printf="%i\n" cecilia.txt # Check inode number

Linux man-pages 6.13 2024-07-23 557

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

4072121
$ sudo ./t_open_by_handle_at < fh
open_by_handle_at: Stale NFS file handle

Program source: t_name_to_handle_at.c

#define _GNU_SOURCE
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

int mount_id, fhsize, flags, dirfd;
char *pathname;
struct file_handle *fhp;

if (argc != 2) {
fprintf(stderr, "Usage: %s pathname\n", argv[0]);
exit(EXIT_FAILURE);

}

pathname = argv[1];

/* Allocate file_handle structure. */

fhsize = sizeof(*fhp);
fhp = malloc(fhsize);
if (fhp == NULL)

err(EXIT_FAILURE, "malloc");

/* Make an initial call to name_to_handle_at() to discover
the size required for file handle. */

dirfd = AT_FDCWD; /* For name_to_handle_at() calls */
flags = 0; /* For name_to_handle_at() calls */
fhp->handle_bytes = 0;
if (name_to_handle_at(dirfd, pathname, fhp,

&mount_id, flags) != -1
|| errno != EOVERFLOW)

{
fprintf(stderr, "Unexpected result from name_to_handle_at()\n");
exit(EXIT_FAILURE);

}

/* Reallocate file_handle structure with correct size. */

Linux man-pages 6.13 2024-07-23 558

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

fhsize = sizeof(*fhp) + fhp->handle_bytes;
fhp = realloc(fhp, fhsize); /* Copies fhp->handle_bytes */
if (fhp == NULL)

err(EXIT_FAILURE, "realloc");

/* Get file handle from pathname supplied on command line. */

if (name_to_handle_at(dirfd, pathname, fhp, &mount_id, flags) == -1)
err(EXIT_FAILURE, "name_to_handle_at");

/* Write mount ID, file handle size, and file handle to stdout,
for later reuse by t_open_by_handle_at.c. */

printf("%d\n", mount_id);
printf("%u %d ", fhp->handle_bytes, fhp->handle_type);
for (size_t j = 0; j < fhp->handle_bytes; j++)

printf(" %02x", fhp->f_handle[j]);
printf("\n");

exit(EXIT_SUCCESS);
}

Program source: t_open_by_handle_at.c

#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

/* Scan /proc/self/mountinfo to find the line whose mount ID matches
'mount_id'. (An easier way to do this is to install and use the
'libmount' library provided by the 'util-linux' project.)
Open the corresponding mount path and return the resulting file
descriptor. */

static int
open_mount_path_by_id(int mount_id)
{

int mi_mount_id, found;
char mount_path[PATH_MAX];
char *linep;
FILE *fp;
size_t lsize;

Linux man-pages 6.13 2024-07-23 559

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

ssize_t nread;

fp = fopen("/proc/self/mountinfo", "r");
if (fp == NULL)

err(EXIT_FAILURE, "fopen");

found = 0;
linep = NULL;
while (!found) {

nread = getline(&linep, &lsize, fp);
if (nread == -1)

break;

nread = sscanf(linep, "%d %*d %*s %*s %s",
&mi_mount_id, mount_path);

if (nread != 2) {
fprintf(stderr, "Bad sscanf()\n");
exit(EXIT_FAILURE);

}

if (mi_mount_id == mount_id)
found = 1;

}
free(linep);

fclose(fp);

if (!found) {
fprintf(stderr, "Could not find mount point\n");
exit(EXIT_FAILURE);

}

return open(mount_path, O_RDONLY);
}

int
main(int argc, char *argv[])
{

int mount_id, fd, mount_fd, handle_bytes;
char buf[1000];

#define LINE_SIZE 100
char line1[LINE_SIZE], line2[LINE_SIZE];
char *nextp;
ssize_t nread;
struct file_handle *fhp;

if ((argc > 1 && strcmp(argv[1], "--help") == 0) || argc > 2) {
fprintf(stderr, "Usage: %s [mount-path]\n", argv[0]);
exit(EXIT_FAILURE);

Linux man-pages 6.13 2024-07-23 560

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

}

/* Standard input contains mount ID and file handle information:

Line 1: <mount_id>
Line 2: <handle_bytes> <handle_type> <bytes of handle in hex>

*/

if (fgets(line1, sizeof(line1), stdin) == NULL ||
fgets(line2, sizeof(line2), stdin) == NULL)

{
fprintf(stderr, "Missing mount_id / file handle\n");
exit(EXIT_FAILURE);

}

mount_id = atoi(line1);

handle_bytes = strtoul(line2, &nextp, 0);

/* Given handle_bytes, we can now allocate file_handle structure. */

fhp = malloc(sizeof(*fhp) + handle_bytes);
if (fhp == NULL)

err(EXIT_FAILURE, "malloc");

fhp->handle_bytes = handle_bytes;

fhp->handle_type = strtoul(nextp, &nextp, 0);

for (size_t j = 0; j < fhp->handle_bytes; j++)
fhp->f_handle[j] = strtoul(nextp, &nextp, 16);

/* Obtain file descriptor for mount point, either by opening
the pathname specified on the command line, or by scanning
/proc/self/mounts to find a mount that matches the 'mount_id'
that we received from stdin. */

if (argc > 1)
mount_fd = open(argv[1], O_RDONLY);

else
mount_fd = open_mount_path_by_id(mount_id);

if (mount_fd == -1)
err(EXIT_FAILURE, "opening mount fd");

/* Open file using handle and mount point. */

fd = open_by_handle_at(mount_fd, fhp, O_RDONLY);
if (fd == -1)

Linux man-pages 6.13 2024-07-23 561

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

err(EXIT_FAILURE, "open_by_handle_at");

/* Try reading a few bytes from the file. */

nread = read(fd, buf, sizeof(buf));
if (nread == -1)

err(EXIT_FAILURE, "read");

printf("Read %zd bytes\n", nread);

exit(EXIT_SUCCESS);
}

SEE ALSO
open(2), libblkid(3), blkid(8), findfs(8), mount(8)

The libblkid and libmount documentation in the latest util-linux release at
〈https://www.kernel.org/pub/linux/utils/util-linux/〉

Linux man-pages 6.13 2024-07-23 562

openat2(2) System Calls Manual openat2(2)

NAME
openat2 - open and possibly create a file (extended)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of O_* and S_* constants */
#include <linux/openat2.h> /* Definition of RESOLVE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_openat2, int dirfd , const char *pathname,
struct open_how *how, size_t size);

Note: glibc provides no wrapper for openat2(), necessitating the use of syscall(2).

DESCRIPTION
The openat2() system call is an extension of openat(2) and provides a superset of its
functionality.

The openat2() system call opens the file specified by pathname. If the specified file
does not exist, it may optionally (if O_CREAT is specified in how.flags) be created.

As with openat(2), if pathname is a relative pathname, then it is interpreted relative to
the directory referred to by the file descriptor dirfd (or the current working directory
of the calling process, if dirfd is the special value AT_FDCWD). If pathname is an
absolute pathname, then dirfd is ignored (unless how.resolve contains RE-
SOLVE_IN_ROOT, in which case pathname is resolved relative to dirfd).

Rather than taking a single flags argument, an extensible structure (how) is passed to
allow for future extensions. The size argument must be specified as sizeof(struct
open_how).

The open_how structure
The how argument specifies how pathname should be opened, and acts as a superset
of the flags and mode arguments to openat(2). This argument is a pointer to an
open_how structure, described in open_how(2type).

Any future extensions to openat2() will be implemented as new fields appended to the
open_how structure, with a zero value in a new field resulting in the kernel behaving
as though that extension field was not present. Therefore, the caller must zero-fill this
structure on initialization. (See the "Extensibility" section of the NOTES for more
detail on why this is necessary.)

The fields of the open_how structure are as follows:

flags This field specifies the file creation and file status flags to use when opening
the file. All of the O_* flags defined for openat(2) are valid openat2() flag
values.

Whereas openat(2) ignores unknown bits in its flags argument, openat2() re-
turns an error if unknown or conflicting flags are specified in how.flags.

mode This field specifies the mode for the new file, with identical semantics to the
mode argument of openat(2).

Linux man-pages 6.13 2024-07-23 563

openat2(2) System Calls Manual openat2(2)

Whereas openat(2) ignores bits other than those in the range 07777 in its
mode argument, openat2() returns an error if how.mode contains bits other
than 07777 . Similarly, an error is returned if openat2() is called with a
nonzero how.mode and how.flags does not contain O_CREAT or O_TMP-
FILE.

resolve
This is a bit-mask of flags that modify the way in which all components of
pathname will be resolved. (See path_resolution(7) for background informa-
tion.)

The primary use case for these flags is to allow trusted programs to restrict
how untrusted paths (or paths inside untrusted directories) are resolved. The
full list of resolve flags is as follows:

RESOLVE_BENEATH
Do not permit the path resolution to succeed if any component of the
resolution is not a descendant of the directory indicated by dirfd . This
causes absolute symbolic links (and absolute values of pathname) to
be rejected.

Currently, this flag also disables magic-link resolution (see below).
However, this may change in the future. Therefore, to ensure that
magic links are not resolved, the caller should explicitly specify RE-
SOLVE_NO_MAGICLINKS.

RESOLVE_IN_ROOT
Treat the directory referred to by dirfd as the root directory while re-
solving pathname. Absolute symbolic links are interpreted relative to
dirfd . If a prefix component of pathname equates to dirfd , then an im-
mediately following .. component likewise equates to dirfd (just as /..
is traditionally equivalent to /). If pathname is an absolute path, it is
also interpreted relative to dirfd .

The effect of this flag is as though the calling process had used ch-
root(2) to (temporarily) modify its root directory (to the directory re-
ferred to by dirfd). However, unlike chroot(2) (which changes the
filesystem root permanently for a process), RESOLVE_IN_ROOT al-
lows a program to efficiently restrict path resolution on a per-open ba-
sis.

Currently, this flag also disables magic-link resolution. However, this
may change in the future. Therefore, to ensure that magic links are not
resolved, the caller should explicitly specify RESOLVE_NO_MAGI-
CLINKS.

RESOLVE_NO_MAGICLINKS
Disallow all magic-link resolution during path resolution.

Magic links are symbolic link-like objects that are most notably found
in proc(5); examples include /proc/ pid /exe and /proc/ pid /fd/*. (See
symlink(7) for more details.)

Unknowingly opening magic links can be risky for some applications.
Examples of such risks include the following:

Linux man-pages 6.13 2024-07-23 564

openat2(2) System Calls Manual openat2(2)

• If the process opening a pathname is a controlling process that cur-
rently has no controlling terminal (see credentials(7)), then opening
a magic link inside /proc/ pid /fd that happens to refer to a terminal
would cause the process to acquire a controlling terminal.

• In a containerized environment, a magic link inside /proc may refer
to an object outside the container, and thus may provide a means to
escape from the container.

Because of such risks, an application may prefer to disable magic link
resolution using the RESOLVE_NO_MAGICLINKS flag.

If the trailing component (i.e., basename) of pathname is a magic link,
how.resolve contains RESOLVE_NO_MAGICLINKS, and how.flags
contains both O_PATH and O_NOFOLLOW, then an O_PATH file
descriptor referencing the magic link will be returned.

RESOLVE_NO_SYMLINKS
Disallow resolution of symbolic links during path resolution. This op-
tion implies RESOLVE_NO_MAGICLINKS.

If the trailing component (i.e., basename) of pathname is a symbolic
link, how.resolve contains RESOLVE_NO_SYMLINKS, and
how.flags contains both O_PATH and O_NOFOLLOW, then an
O_PATH file descriptor referencing the symbolic link will be returned.

Note that the effect of the RESOLVE_NO_SYMLINKS flag, which
affects the treatment of symbolic links in all of the components of
pathname, differs from the effect of the O_NOFOLLOW file creation
flag (in how.flags), which affects the handling of symbolic links only in
the final component of pathname.

Applications that employ the RESOLVE_NO_SYMLINKS flag are
encouraged to make its use configurable (unless it is used for a specific
security purpose), as symbolic links are very widely used by end-users.
Setting this flag indiscriminately—i.e., for purposes not specifically re-
lated to security—for all uses of openat2() may result in spurious er-
rors on previously functional systems. This may occur if, for example,
a system pathname that is used by an application is modified (e.g., in a
new distribution release) so that a pathname component (now) contains
a symbolic link.

RESOLVE_NO_XDEV
Disallow traversal of mount points during path resolution (including all
bind mounts). Consequently, pathname must either be on the same
mount as the directory referred to by dirfd , or on the same mount as
the current working directory if dirfd is specified as AT_FDCWD.

Applications that employ the RESOLVE_NO_XDEV flag are encour-
aged to make its use configurable (unless it is used for a specific secu-
rity purpose), as bind mounts are widely used by end-users. Setting
this flag indiscriminately—i.e., for purposes not specifically related to
security—for all uses of openat2() may result in spurious errors on
previously functional systems. This may occur if, for example, a

Linux man-pages 6.13 2024-07-23 565

openat2(2) System Calls Manual openat2(2)

system pathname that is used by an application is modified (e.g., in a
new distribution release) so that a pathname component (now) contains
a bind mount.

RESOLVE_CACHED
Make the open operation fail unless all path components are already
present in the kernel’s lookup cache. If any kind of revalidation or I/O
is needed to satisfy the lookup, openat2() fails with the error EA-
GAIN. This is useful in providing a fast-path open that can be per-
formed without resorting to thread offload, or other mechanisms that
an application might use to offload slower operations.

If any bits other than those listed above are set in how.resolve, an error is re-
turned.

RETURN VALUE
On success, a new file descriptor is returned. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
The set of errors returned by openat2() includes all of the errors returned by ope-
nat(2), as well as the following additional errors:

E2BIG
An extension that this kernel does not support was specified in how. (See the
"Extensibility" section of NOTES for more detail on how extensions are han-
dled.)

EAGAIN
how.resolve contains either RESOLVE_IN_ROOT or RESOLVE_BE-
NEATH, and the kernel could not ensure that a ".." component didn’t escape
(due to a race condition or potential attack). The caller may choose to retry
the openat2() call.

EAGAIN
RESOLVE_CACHED was set, and the open operation cannot be performed
using only cached information. The caller should retry without RE-
SOLVE_CACHED set in how.resolve.

EINVAL
An unknown flag or invalid value was specified in how.

EINVAL
mode is nonzero, but how.flags does not contain O_CREAT or O_TMPFILE.

EINVAL
size was smaller than any known version of struct open_how.

ELOOP
how.resolve contains RESOLVE_NO_SYMLINKS, and one of the path com-
ponents was a symbolic link (or magic link).

ELOOP
how.resolve contains RESOLVE_NO_MAGICLINKS, and one of the path
components was a magic link.

Linux man-pages 6.13 2024-07-23 566

openat2(2) System Calls Manual openat2(2)

EXDEV
how.resolve contains either RESOLVE_IN_ROOT or RESOLVE_BE-
NEATH, and an escape from the root during path resolution was detected.

EXDEV
how.resolve contains RESOLVE_NO_XDEV, and a path component crosses
a mount point.

STANDARDS
Linux.

HISTORY
Linux 5.6.

The semantics of RESOLVE_BENEATH were modeled after FreeBSD’s O_BE-
NEATH.

NOTES
Extensibility

In order to allow for future extensibility, openat2() requires the user-space application
to specify the size of the open_how structure that it is passing. By providing this in-
formation, it is possible for openat2() to provide both forwards- and backwards-com-
patibility, with size acting as an implicit version number. (Because new extension
fields will always be appended, the structure size will always increase.) This extensi-
bility design is very similar to other system calls such as sched_setattr(2),
perf_event_open(2), and clone3(2).

If we let usize be the size of the structure as specified by the user-space application,
and ksize be the size of the structure which the kernel supports, then there are three
cases to consider:

• If ksize equals usize, then there is no version mismatch and how can be used ver-
batim.

• If ksize is larger than usize, then there are some extension fields that the kernel
supports which the user-space application is unaware of. Because a zero value in
any added extension field signifies a no-op, the kernel treats all of the extension
fields not provided by the user-space application as having zero values. This pro-
vides backwards-compatibility.

• If ksize is smaller than usize, then there are some extension fields which the user-
space application is aware of but which the kernel does not support. Because any
extension field must have its zero values signify a no-op, the kernel can safely ig-
nore the unsupported extension fields if they are all-zero. If any unsupported ex-
tension fields are nonzero, then -1 is returned and errno is set to E2BIG. This
provides forwards-compatibility.

Because the definition of struct open_how may change in the future (with new fields
being added when system headers are updated), user-space applications should zero-
fill struct open_how to ensure that recompiling the program with new headers will not
result in spurious errors at run time. The simplest way is to use a designated initial-
izer:

struct open_how how = { .flags = O_RDWR,
.resolve = RESOLVE_IN_ROOT };

Linux man-pages 6.13 2024-07-23 567

openat2(2) System Calls Manual openat2(2)

or explicitly using memset(3) or similar:

struct open_how how;
memset(&how, 0, sizeof(how));
how.flags = O_RDWR;
how.resolve = RESOLVE_IN_ROOT;

A user-space application that wishes to determine which extensions the running kernel
supports can do so by conducting a binary search on size with a structure which has
every byte nonzero (to find the largest value which doesn’t produce an error of
E2BIG).

SEE ALSO
openat(2), open_how(2type), path_resolution(7), symlink(7)

Linux man-pages 6.13 2024-07-23 568

outb(2) System Calls Manual outb(2)

NAME
outb, outw, outl, outsb, outsw, outsl, inb, inw, inl, insb, insw, insl, outb_p, outw_p,
outl_p, inb_p, inw_p, inl_p - port I/O

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/io.h>

unsigned char inb(unsigned short port);
unsigned char inb_p(unsigned short port);
unsigned short inw(unsigned short port);
unsigned short inw_p(unsigned short port);
unsigned int inl(unsigned short port);
unsigned int inl_p(unsigned short port);

void outb(unsigned char value, unsigned short port);
void outb_p(unsigned char value, unsigned short port);
void outw(unsigned short value, unsigned short port);
void outw_p(unsigned short value, unsigned short port);
void outl(unsigned int value, unsigned short port);
void outl_p(unsigned int value, unsigned short port);

void insb(unsigned short port, void addr[.count],
unsigned long count);

void insw(unsigned short port, void addr[.count],
unsigned long count);

void insl(unsigned short port, void addr[.count],
unsigned long count);

void outsb(unsigned short port, const void addr[.count],
unsigned long count);

void outsw(unsigned short port, const void addr[.count],
unsigned long count);

void outsl(unsigned short port, const void addr[.count],
unsigned long count);

DESCRIPTION
This family of functions is used to do low-level port input and output. The out* func-
tions do port output, the in* functions do port input; the b-suffix functions are byte-
width and the w-suffix functions word-width; the _p-suffix functions pause until the
I/O completes.

They are primarily designed for internal kernel use, but can be used from user space.

You must compile with -O or -O2 or similar. The functions are defined as inline
macros, and will not be substituted in without optimization enabled, causing unre-
solved references at link time.

You use ioperm(2) or alternatively iopl(2) to tell the kernel to allow the user space ap-
plication to access the I/O ports in question. Failure to do this will cause the applica-
tion to receive a segmentation fault.

Linux man-pages 6.13 2024-07-23 569

outb(2) System Calls Manual outb(2)

VERSIONS
outb() and friends are hardware-specific. The value argument is passed first and the
port argument is passed second, which is the opposite order from most DOS imple-
mentations.

STANDARDS
None.

SEE ALSO
ioperm(2), iopl(2)

Linux man-pages 6.13 2024-07-23 570

pause(2) System Calls Manual pause(2)

NAME
pause - wait for signal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int pause(void);

DESCRIPTION
pause() causes the calling process (or thread) to sleep until a signal is delivered that
either terminates the process or causes the invocation of a signal-catching function.

RETURN VALUE
pause() returns only when a signal was caught and the signal-catching function re-
turned. In this case, pause() returns -1, and errno is set to EINTR.

ERRORS
EINTR

a signal was caught and the signal-catching function returned.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
kill(2), select(2), signal(2), sigsuspend(2)

Linux man-pages 6.13 2024-07-23 571

pciconfig_read(2) System Calls Manual pciconfig_read(2)

NAME
pciconfig_read, pciconfig_write, pciconfig_iobase - pci device information handling

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <pci.h>

int pciconfig_read(unsigned long bus, unsigned long dfn,
unsigned long off , unsigned long size,
unsigned char *buf);

int pciconfig_write(unsigned long bus, unsigned long dfn,
unsigned long off , unsigned long size,
unsigned char *buf);

int pciconfig_iobase(int which, unsigned long bus,
unsigned long devfn);

DESCRIPTION
Most of the interaction with PCI devices is already handled by the kernel PCI layer,
and thus these calls should not normally need to be accessed from user space.

pciconfig_read()
Reads to buf from device dev at offset off value.

pciconfig_write()
Writes from buf to device dev at offset off value.

pciconfig_iobase()
You pass it a bus/devfn pair and get a physical address for either the memory
offset (for things like prep, this is 0xc0000000), the IO base for PIO cycles, or
the ISA holes if any.

RETURN VALUE
pciconfig_read()

On success, zero is returned. On error, -1 is returned and errno is set to indi-
cate the error.

pciconfig_write()
On success, zero is returned. On error, -1 is returned and errno is set to indi-
cate the error.

pciconfig_iobase()
Returns information on locations of various I/O regions in physical memory
according to the which value. Values for which are:
IOBASE_BRIDGE_NUMBER, IOBASE_MEMORY, IOBASE_IO,
IOBASE_ISA_IO, IOBASE_ISA_MEM.

ERRORS
EINVAL

size value is invalid. This does not apply to pciconfig_iobase().

EIO I/O error.

Linux man-pages 6.13 2024-11-17 572

pciconfig_read(2) System Calls Manual pciconfig_read(2)

ENODEV
For pciconfig_iobase(), "hose" value is NULL. For the other calls, could not
find a slot.

ENOSYS
The system has not implemented these calls (CONFIG_PCI not defined).

EOPNOTSUPP
This return value is valid only for pciconfig_iobase(). It is returned if the
value for which is invalid.

EPERM
User does not have the CAP_SYS_ADMIN capability. This does not apply to
pciconfig_iobase().

STANDARDS
Linux.

HISTORY
Linux 2.0.26/2.1.11.

SEE ALSO
capabilities(7)

Linux man-pages 6.13 2024-11-17 573

perf_event_open(2) System Calls Manual perf_event_open(2)

NAME
perf_event_open - set up performance monitoring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/perf_event.h> /* Definition of PERF_* constants */
#include <linux/hw_breakpoint.h> /* Definition of HW_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_perf_event_open, struct perf_event_attr *attr,
pid_t pid , int cpu, int group_fd , unsigned long flags);

Note: glibc provides no wrapper for perf_event_open(), necessitating the use of
syscall(2).

DESCRIPTION
Given a list of parameters, perf_event_open() returns a file descriptor, for use in sub-
sequent system calls (read(2), mmap(2), prctl(2), fcntl(2), etc.).

A call to perf_event_open() creates a file descriptor that allows measuring perfor-
mance information. Each file descriptor corresponds to one event that is measured;
these can be grouped together to measure multiple events simultaneously.

Events can be enabled and disabled in two ways: via ioctl(2) and via prctl(2). When
an event is disabled it does not count or generate overflows but does continue to exist
and maintain its count value.

Events come in two flavors: counting and sampled. A counting event is one that is
used for counting the aggregate number of events that occur. In general, counting
event results are gathered with a read(2) call. A sampling event periodically writes
measurements to a buffer that can then be accessed via mmap(2).

Arguments
The pid and cpu arguments allow specifying which process and CPU to monitor:

pid == 0 and cpu == -1
This measures the calling process/thread on any CPU.

pid == 0 and cpu >= 0
This measures the calling process/thread only when running on the specified
CPU.

pid > 0 and cpu == -1
This measures the specified process/thread on any CPU.

pid > 0 and cpu >= 0
This measures the specified process/thread only when running on the specified
CPU.

pid == -1 and cpu >= 0
This measures all processes/threads on the specified CPU. This requires
CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN capability or a
/proc/sys/kernel/perf_event_paranoid value of less than 1.

Linux man-pages 6.13 2024-11-17 574

perf_event_open(2) System Calls Manual perf_event_open(2)

pid == -1 and cpu == -1
This setting is invalid and will return an error.

When pid is greater than zero, permission to perform this system call is governed by
CAP_PERFMON (since Linux 5.9) and a ptrace access mode
PTRACE_MODE_READ_REALCREDS check on older Linux versions; see
ptrace(2).

The group_fd argument allows event groups to be created. An event group has one
event which is the group leader. The leader is created first, with group_fd = -1. The
rest of the group members are created with subsequent perf_event_open() calls with
group_fd being set to the file descriptor of the group leader. (A single event on its
own is created with group_fd = -1 and is considered to be a group with only 1 mem-
ber.) An event group is scheduled onto the CPU as a unit: it will be put onto the CPU
only if all of the events in the group can be put onto the CPU. This means that the
values of the member events can be meaningfully compared —added, divided (to get
ratios), and so on— with each other, since they have counted events for the same set
of executed instructions.

The flags argument is formed by ORing together zero or more of the following val-
ues:

PERF_FLAG_FD_CLOEXEC (since Linux 3.14)
This flag enables the close-on-exec flag for the created event file descriptor, so
that the file descriptor is automatically closed on execve(2). Setting the close-
on-exec flags at creation time, rather than later with fcntl(2), avoids potential
race conditions where the calling thread invokes perf_event_open() and fc-
ntl(2) at the same time as another thread calls fork(2) then execve(2).

PERF_FLAG_FD_NO_GROUP
This flag tells the event to ignore the group_fd parameter except for the pur-
pose of setting up output redirection using the PERF_FLAG_FD_OUTPUT
flag.

PERF_FLAG_FD_OUTPUT (broken since Linux 2.6.35)
This flag re-routes the event’s sampled output to instead be included in the
mmap buffer of the event specified by group_fd .

PERF_FLAG_PID_CGROUP (since Linux 2.6.39)
This flag activates per-container system-wide monitoring. A container is an
abstraction that isolates a set of resources for finer-grained control (CPUs,
memory, etc.). In this mode, the event is measured only if the thread running
on the monitored CPU belongs to the designated container (cgroup). The
cgroup is identified by passing a file descriptor opened on its directory in the
cgroupfs filesystem. For instance, if the cgroup to monitor is called test, then
a file descriptor opened on /dev/cgroup/test (assuming cgroupfs is mounted on
/dev/cgroup) must be passed as the pid parameter. cgroup monitoring is avail-
able only for system-wide events and may therefore require extra permissions.

The perf_event_attr structure provides detailed configuration information for the
event being created.

struct perf_event_attr {
__u32 type; /* Type of event */

Linux man-pages 6.13 2024-11-17 575

perf_event_open(2) System Calls Manual perf_event_open(2)

__u32 size; /* Size of attribute structure */
__u64 config; /* Type-specific configuration */

union {
__u64 sample_period; /* Period of sampling */
__u64 sample_freq; /* Frequency of sampling */

};

__u64 sample_type; /* Specifies values included in sample */
__u64 read_format; /* Specifies values returned in read */

__u64 disabled : 1, /* off by default */
inherit : 1, /* children inherit it */
pinned : 1, /* must always be on PMU */
exclusive : 1, /* only group on PMU */
exclude_user : 1, /* don't count user */
exclude_kernel : 1, /* don't count kernel */
exclude_hv : 1, /* don't count hypervisor */
exclude_idle : 1, /* don't count when idle */
mmap : 1, /* include mmap data */
comm : 1, /* include comm data */
freq : 1, /* use freq, not period */
inherit_stat : 1, /* per task counts */
enable_on_exec : 1, /* next exec enables */
task : 1, /* trace fork/exit */
watermark : 1, /* wakeup_watermark */
precise_ip : 2, /* skid constraint */
mmap_data : 1, /* non-exec mmap data */
sample_id_all : 1, /* sample_type all events */
exclude_host : 1, /* don't count in host */
exclude_guest : 1, /* don't count in guest */
exclude_callchain_kernel : 1,

/* exclude kernel callchains */
exclude_callchain_user : 1,

/* exclude user callchains */
mmap2 : 1, /* include mmap with inode data */
comm_exec : 1, /* flag comm events that are

due to exec */
use_clockid : 1, /* use clockid for time fields */
context_switch : 1, /* context switch data */
write_backward : 1, /* Write ring buffer from end

to beginning */
namespaces : 1, /* include namespaces data */
ksymbol : 1, /* include ksymbol events */
bpf_event : 1, /* include bpf events */
aux_output : 1, /* generate AUX records

instead of events */
cgroup : 1, /* include cgroup events */
text_poke : 1, /* include text poke events */

Linux man-pages 6.13 2024-11-17 576

perf_event_open(2) System Calls Manual perf_event_open(2)

build_id : 1, /* use build id in mmap2 events */
inherit_thread : 1, /* children only inherit */

/* if cloned with CLONE_THREAD */
remove_on_exec : 1, /* event is removed from task

on exec */
sigtrap : 1, /* send synchronous SIGTRAP

on event */

__reserved_1 : 26;

union {
__u32 wakeup_events; /* wakeup every n events */
__u32 wakeup_watermark; /* bytes before wakeup */

};

__u32 bp_type; /* breakpoint type */

union {
__u64 bp_addr; /* breakpoint address */
__u64 kprobe_func; /* for perf_kprobe */
__u64 uprobe_path; /* for perf_uprobe */
__u64 config1; /* extension of config */

};

union {
__u64 bp_len; /* breakpoint size */
__u64 kprobe_addr; /* with kprobe_func == NULL */
__u64 probe_offset; /* for perf_[k,u]probe */
__u64 config2; /* extension of config1 */

};
__u64 branch_sample_type; /* enum perf_branch_sample_type */
__u64 sample_regs_user; /* user regs to dump on samples */
__u32 sample_stack_user; /* size of stack to dump on

samples */
__s32 clockid; /* clock to use for time fields */
__u64 sample_regs_intr; /* regs to dump on samples */
__u32 aux_watermark; /* aux bytes before wakeup */
__u16 sample_max_stack; /* max frames in callchain */
__u16 __reserved_2; /* align to u64 */
__u32 aux_sample_size; /* max aux sample size */
__u32 __reserved_3; /* align to u64 */
__u64 sig_data; /* user data for sigtrap */

};

The fields of the perf_event_attr structure are described in more detail below:

type This field specifies the overall event type. It has one of the following values:

Linux man-pages 6.13 2024-11-17 577

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_TYPE_HARDWARE
This indicates one of the "generalized" hardware events provided by
the kernel. See the config field definition for more details.

PERF_TYPE_SOFTWARE
This indicates one of the software-defined events provided by the ker-
nel (even if no hardware support is available).

PERF_TYPE_TRACEPOINT
This indicates a tracepoint provided by the kernel tracepoint infrastruc-
ture.

PERF_TYPE_HW_CACHE
This indicates a hardware cache event. This has a special encoding,
described in the config field definition.

PERF_TYPE_RAW
This indicates a "raw" implementation-specific event in the config
field.

PERF_TYPE_BREAKPOINT (since Linux 2.6.33)
This indicates a hardware breakpoint as provided by the CPU. Break-
points can be read/write accesses to an address as well as execution of
an instruction address.

dynamic PMU
Since Linux 2.6.38, perf_event_open() can support multiple PMUs.
To enable this, a value exported by the kernel can be used in the type
field to indicate which PMU to use. The value to use can be found in
the sysfs filesystem: there is a subdirectory per PMU instance under
/sys/bus/event_source/devices. In each subdirectory there is a type file
whose content is an integer that can be used in the type field. For in-
stance, /sys/bus/event_source/devices/cpu/type contains the value for
the core CPU PMU, which is usually 4.

kprobe
uprobe (both since Linux 4.17)

These two dynamic PMUs create a kprobe/uprobe and attach it to the
file descriptor generated by perf_event_open. The kprobe/uprobe will
be destroyed on the destruction of the file descriptor. See fields
kprobe_func, uprobe_path, kprobe_addr, and probe_offset for more
details.

size The size of the perf_event_attr structure for forward/backward compatibility.
Set this using sizeof(struct perf_event_attr) to allow the kernel to see the struct
size at the time of compilation.

The related define PERF_ATTR_SIZE_VER0 is set to 64; this was the size
of the first published struct. PERF_ATTR_SIZE_VER1 is 72, corresponding
to the addition of breakpoints in Linux 2.6.33. PERF_ATTR_SIZE_VER2 is
80 corresponding to the addition of branch sampling in Linux 3.4.
PERF_ATTR_SIZE_VER3 is 96 corresponding to the addition of sam-
ple_regs_user and sample_stack_user in Linux 3.7.
PERF_ATTR_SIZE_VER4 is 104 corresponding to the addition of

Linux man-pages 6.13 2024-11-17 578

perf_event_open(2) System Calls Manual perf_event_open(2)

sample_regs_intr in Linux 3.19. PERF_ATTR_SIZE_VER5 is 112 corre-
sponding to the addition of aux_watermark in Linux 4.1.

config This specifies which event you want, in conjunction with the type field. The
config1 and config2 fields are also taken into account in cases where 64 bits is
not enough to fully specify the event. The encoding of these fields are event
dependent.

There are various ways to set the config field that are dependent on the value
of the previously described type field. What follows are various possible set-
tings for config separated out by type.

If type is PERF_TYPE_HARDWARE, we are measuring one of the general-
ized hardware CPU events. Not all of these are available on all platforms. Set
config to one of the following:

PERF_COUNT_HW_CPU_CYCLES
Total cycles. Be wary of what happens during CPU frequency
scaling.

PERF_COUNT_HW_INSTRUCTIONS
Retired instructions. Be careful, these can be affected by vari-
ous issues, most notably hardware interrupt counts.

PERF_COUNT_HW_CACHE_REFERENCES
Cache accesses. Usually this indicates Last Level Cache ac-
cesses but this may vary depending on your CPU. This may in-
clude prefetches and coherency messages; again this depends
on the design of your CPU.

PERF_COUNT_HW_CACHE_MISSES
Cache misses. Usually this indicates Last Level Cache misses;
this is intended to be used in conjunction with the
PERF_COUNT_HW_CACHE_REFERENCES event to cal-
culate cache miss rates.

PERF_COUNT_HW_BRANCH_INSTRUCTIONS
Retired branch instructions. Prior to Linux 2.6.35, this used the
wrong event on AMD processors.

PERF_COUNT_HW_BRANCH_MISSES
Mispredicted branch instructions.

PERF_COUNT_HW_BUS_CYCLES
Bus cycles, which can be different from total cycles.

PERF_COUNT_HW_STALLED_CYCLES_FRONTEND (since
Linux 3.0)

Stalled cycles during issue.

PERF_COUNT_HW_STALLED_CYCLES_BACKEND (since
Linux 3.0)

Stalled cycles during retirement.

Linux man-pages 6.13 2024-11-17 579

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_COUNT_HW_REF_CPU_CYCLES (since Linux 3.3)
Total cycles; not affected by CPU frequency scaling.

If type is PERF_TYPE_SOFTWARE, we are measuring software events pro-
vided by the kernel. Set config to one of the following:

PERF_COUNT_SW_CPU_CLOCK
This reports the CPU clock, a high-resolution per-CPU timer.

PERF_COUNT_SW_TASK_CLOCK
This reports a clock count specific to the task that is running.

PERF_COUNT_SW_PAGE_FAULTS
This reports the number of page faults.

PERF_COUNT_SW_CONTEXT_SWITCHES
This counts context switches. Until Linux 2.6.34, these were
all reported as user-space events, after that they are reported as
happening in the kernel.

PERF_COUNT_SW_CPU_MIGRATIONS
This reports the number of times the process has migrated to a
new CPU.

PERF_COUNT_SW_PAGE_FAULTS_MIN
This counts the number of minor page faults. These did not re-
quire disk I/O to handle.

PERF_COUNT_SW_PAGE_FAULTS_MAJ
This counts the number of major page faults. These required
disk I/O to handle.

PERF_COUNT_SW_ALIGNMENT_FAULTS (since Linux 2.6.33)
This counts the number of alignment faults. These happen
when unaligned memory accesses happen; the kernel can han-
dle these but it reduces performance. This happens only on
some architectures (never on x86).

PERF_COUNT_SW_EMULATION_FAULTS (since Linux 2.6.33)
This counts the number of emulation faults. The kernel some-
times traps on unimplemented instructions and emulates them
for user space. This can negatively impact performance.

PERF_COUNT_SW_DUMMY (since Linux 3.12)
This is a placeholder event that counts nothing. Informational
sample record types such as mmap or comm must be associated
with an active event. This dummy event allows gathering such
records without requiring a counting event.

PERF_COUNT_SW_BPF_OUTPUT (since Linux 4.4)
This is used to generate raw sample data from BPF. BPF pro-
grams can write to this event using bpf_perf_event_output
helper.

Linux man-pages 6.13 2024-11-17 580

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_COUNT_SW_CGROUP_SWITCHES (since Linux 5.13)
This counts context switches to a task in a different cgroup. In
other words, if the next task is in the same cgroup, it won’t
count the switch.

If type is PERF_TYPE_TRACEPOINT, then we are measuring kernel trace-
points. The value to use in config can be obtained from under debugfs trac-
ing/events/*/*/id if ftrace is enabled in the kernel.

If type is PERF_TYPE_HW_CACHE, then we are measuring a hardware
CPU cache event. To calculate the appropriate config value, use the following
equation:

config = (perf_hw_cache_id) |
(perf_hw_cache_op_id << 8) |
(perf_hw_cache_op_result_id << 16);

where perf_hw_cache_id is one of:

PERF_COUNT_HW_CACHE_L1D
for measuring Level 1 Data Cache

PERF_COUNT_HW_CACHE_L1I
for measuring Level 1 Instruction Cache

PERF_COUNT_HW_CACHE_LL
for measuring Last-Level Cache

PERF_COUNT_HW_CACHE_DTLB
for measuring the Data TLB

PERF_COUNT_HW_CACHE_ITLB
for measuring the Instruction TLB

PERF_COUNT_HW_CACHE_BPU
for measuring the branch prediction unit

PERF_COUNT_HW_CACHE_NODE (since Linux 3.1)
for measuring local memory accesses

and perf_hw_cache_op_id is one of:

PERF_COUNT_HW_CACHE_OP_READ
for read accesses

PERF_COUNT_HW_CACHE_OP_WRITE
for write accesses

PERF_COUNT_HW_CACHE_OP_PREFETCH
for prefetch accesses

and perf_hw_cache_op_result_id is one of:

PERF_COUNT_HW_CACHE_RESULT_ACCESS
to measure accesses

PERF_COUNT_HW_CACHE_RESULT_MISS
to measure misses

If type is PERF_TYPE_RAW, then a custom "raw" config value is needed.

Linux man-pages 6.13 2024-11-17 581

perf_event_open(2) System Calls Manual perf_event_open(2)

Most CPUs support events that are not covered by the "generalized" events.
These are implementation defined; see your CPU manual (for example the In-
tel Volume 3B documentation or the AMD BIOS and Kernel Developer
Guide). The libpfm4 library can be used to translate from the name in the ar-
chitectural manuals to the raw hex value perf_event_open() expects in this
field.

If type is PERF_TYPE_BREAKPOINT, then leave config set to zero. Its
parameters are set in other places.

If type is kprobe or uprobe, set retprobe (bit 0 of config, see
/sys/bus/event_source/devices/[k,u]probe/format/retprobe) for kretprobe/uret-
probe. See fields kprobe_func, uprobe_path, kprobe_addr, and probe_offset
for more details.

kprobe_func
uprobe_path
kprobe_addr
probe_offset

These fields describe the kprobe/uprobe for dynamic PMUs kprobe and up-
robe. For kprobe: use kprobe_func and probe_offset, or use kprobe_addr
and leave kprobe_func as NULL. For uprobe: use uprobe_path and
probe_offset.

sample_period
sample_freq

A "sampling" event is one that generates an overflow notification every N
events, where N is given by sample_period . A sampling event has sample_pe-
riod > 0. When an overflow occurs, requested data is recorded in the mmap
buffer. The sample_type field controls what data is recorded on each overflow.

sample_freq can be used if you wish to use frequency rather than period. In
this case, you set the freq flag. The kernel will adjust the sampling period to
try and achieve the desired rate. The rate of adjustment is a timer tick.

sample_type
The various bits in this field specify which values to include in the sample.
They will be recorded in a ring-buffer, which is available to user space using
mmap(2). The order in which the values are saved in the sample are docu-
mented in the MMAP Layout subsection below; it is not the enum
perf_event_sample_format order.

PERF_SAMPLE_IP
Records instruction pointer.

PERF_SAMPLE_TID
Records the process and thread IDs.

PERF_SAMPLE_TIME
Records a timestamp.

PERF_SAMPLE_ADDR
Records an address, if applicable.

Linux man-pages 6.13 2024-11-17 582

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_SAMPLE_READ
Record counter values for all events in a group, not just the group
leader.

PERF_SAMPLE_CALLCHAIN
Records the callchain (stack backtrace).

PERF_SAMPLE_ID
Records a unique ID for the opened event’s group leader.

PERF_SAMPLE_CPU
Records CPU number.

PERF_SAMPLE_PERIOD
Records the current sampling period.

PERF_SAMPLE_STREAM_ID
Records a unique ID for the opened event. Unlike PERF_SAM-
PLE_ID the actual ID is returned, not the group leader. This ID is the
same as the one returned by PERF_FORMAT_ID.

PERF_SAMPLE_RAW
Records additional data, if applicable. Usually returned by tracepoint
events.

PERF_SAMPLE_BRANCH_STACK (since Linux 3.4)
This provides a record of recent branches, as provided by CPU branch
sampling hardware (such as Intel Last Branch Record). Not all hard-
ware supports this feature.

See the branch_sample_type field for how to filter which branches are
reported.

PERF_SAMPLE_REGS_USER (since Linux 3.7)
Records the current user-level CPU register state (the values in the
process before the kernel was called).

PERF_SAMPLE_STACK_USER (since Linux 3.7)
Records the user level stack, allowing stack unwinding.

PERF_SAMPLE_WEIGHT (since Linux 3.10)
Records a hardware provided weight value that expresses how costly
the sampled event was. This allows the hardware to highlight expen-
sive events in a profile.

PERF_SAMPLE_DATA_SRC (since Linux 3.10)
Records the data source: where in the memory hierarchy the data asso-
ciated with the sampled instruction came from. This is available only
if the underlying hardware supports this feature.

PERF_SAMPLE_IDENTIFIER (since Linux 3.12)
Places the SAMPLE_ID value in a fixed position in the record, either
at the beginning (for sample events) or at the end (if a non-sample
event).

This was necessary because a sample stream may have records from
various different event sources with different sample_type settings.

Linux man-pages 6.13 2024-11-17 583

perf_event_open(2) System Calls Manual perf_event_open(2)

Parsing the event stream properly was not possible because the format
of the record was needed to find SAMPLE_ID, but the format could
not be found without knowing what event the sample belonged to
(causing a circular dependency).

The PERF_SAMPLE_IDENTIFIER setting makes the event stream
always parsable by putting SAMPLE_ID in a fixed location, even
though it means having duplicate SAMPLE_ID values in records.

PERF_SAMPLE_TRANSACTION (since Linux 3.13)
Records reasons for transactional memory abort events (for example,
from Intel TSX transactional memory support).

The precise_ip setting must be greater than 0 and a transactional mem-
ory abort event must be measured or no values will be recorded. Also
note that some perf_event measurements, such as sampled cycle count-
ing, may cause extraneous aborts (by causing an interrupt during a
transaction).

PERF_SAMPLE_REGS_INTR (since Linux 3.19)
Records a subset of the current CPU register state as specified by sam-
ple_regs_intr. Unlike PERF_SAMPLE_REGS_USER the register
values will return kernel register state if the overflow happened while
kernel code is running. If the CPU supports hardware sampling of reg-
ister state (i.e., PEBS on Intel x86) and precise_ip is set higher than
zero then the register values returned are those captured by hardware at
the time of the sampled instruction’s retirement.

PERF_SAMPLE_PHYS_ADDR (since Linux 4.13)
Records physical address of data like in PERF_SAMPLE_ADDR.

PERF_SAMPLE_CGROUP (since Linux 5.7)
Records (perf_event) cgroup ID of the process. This corresponds to
the id field in the PERF_RECORD_CGROUP event.

PERF_SAMPLE_DATA_PAGE_SIZE (since Linux 5.11)
Records page size of data like in PERF_SAMPLE_ADDR.

PERF_SAMPLE_CODE_PAGE_SIZE (since Linux 5.11)
Records page size of ip like in PERF_SAMPLE_IP.

PERF_SAMPLE_WEIGHT_STRUCT (since Linux 5.12)
Records hardware provided weight values like in PERF_SAM-
PLE_WEIGHT, but it can represent multiple values in a struct. This
shares the same space as PERF_SAMPLE_WEIGHT, so users can
apply either of those, not both. It has the following format and the
meaning of each field is dependent on the hardware implementation.

union perf_sample_weight {
u64 full; /* PERF_SAMPLE_WEIGHT */
struct { /* PERF_SAMPLE_WEIGHT_STRUCT */

u32 var1_dw;
u16 var2_w;
u16 var3_w;

};

Linux man-pages 6.13 2024-11-17 584

perf_event_open(2) System Calls Manual perf_event_open(2)

};

read_format
This field specifies the format of the data returned by read(2) on a
perf_event_open() file descriptor.

PERF_FORMAT_TOTAL_TIME_ENABLED
Adds the 64-bit time_enabled field. This can be used to calculate esti-
mated totals if the PMU is overcommitted and multiplexing is happen-
ing.

PERF_FORMAT_TOTAL_TIME_RUNNING
Adds the 64-bit time_running field. This can be used to calculate esti-
mated totals if the PMU is overcommitted and multiplexing is happen-
ing.

PERF_FORMAT_ID
Adds a 64-bit unique value that corresponds to the event group.

PERF_FORMAT_GROUP
Allows all counter values in an event group to be read with one read.

PERF_FORMAT_LOST (since Linux 6.0)
Adds a 64-bit value that is the number of lost samples for this event.
This would be only meaningful when sample_period or sample_freq is
set.

disabled
The disabled bit specifies whether the counter starts out disabled or enabled.
If disabled, the event can later be enabled by ioctl(2), prctl(2), or en-
able_on_exec.

When creating an event group, typically the group leader is initialized with
disabled set to 1 and any child events are initialized with disabled set to 0.
Despite disabled being 0, the child events will not start until the group leader
is enabled.

inherit
The inherit bit specifies that this counter should count events of child tasks as
well as the task specified. This applies only to new children, not to any exist-
ing children at the time the counter is created (nor to any new children of ex-
isting children).

Inherit does not work for some combinations of read_format values, such as
PERF_FORMAT_GROUP. Additionally, using it together with cpu == -1
prevents the creation of the mmap ring-buffer used for logging asynchronous
events in sampled mode.

pinned
The pinned bit specifies that the counter should always be on the CPU if at all
possible. It applies only to hardware counters and only to group leaders. If a
pinned counter cannot be put onto the CPU (e.g., because there are not enough
hardware counters or because of a conflict with some other event), then the
counter goes into an ’error’ state, where reads return end-of-file (i.e., read(2)
returns 0) until the counter is subsequently enabled or disabled.

Linux man-pages 6.13 2024-11-17 585

perf_event_open(2) System Calls Manual perf_event_open(2)

exclusive
The exclusive bit specifies that when this counter’s group is on the CPU, it
should be the only group using the CPU’s counters. In the future this may al-
low monitoring programs to support PMU features that need to run alone so
that they do not disrupt other hardware counters.

Note that many unexpected situations may prevent events with the exclusive
bit set from ever running. This includes any users running a system-wide
measurement as well as any kernel use of the performance counters (including
the commonly enabled NMI Watchdog Timer interface).

exclude_user
If this bit is set, the count excludes events that happen in user space.

exclude_kernel
If this bit is set, the count excludes events that happen in kernel space.

exclude_hv
If this bit is set, the count excludes events that happen in the hypervisor. This
is mainly for PMUs that have built-in support for handling this (such as
POWER). Extra support is needed for handling hypervisor measurements on
most machines.

exclude_idle
If set, don’t count when the CPU is running the idle task. While you can cur-
rently enable this for any event type, it is ignored for all but software events.

mmap
The mmap bit enables generation of PERF_RECORD_MMAP samples for
every mmap(2) call that has PROT_EXEC set. This allows tools to notice
new executable code being mapped into a program (dynamic shared libraries
for example) so that addresses can be mapped back to the original code.

comm The comm bit enables tracking of process command name as modified by the
execve(2) and prctl(PR_SET_NAME) system calls as well as writing to
/proc/self/comm. If the comm_exec flag is also successfully set (possible since
Linux 3.16), then the misc flag PERF_RECORD_MISC_COMM_EXEC
can be used to differentiate the execve(2) case from the others.

freq If this bit is set, then sample_frequency not sample_period is used when set-
ting up the sampling interval.

inherit_stat
This bit enables saving of event counts on context switch for inherited tasks.
This is meaningful only if the inherit field is set.

enable_on_exec
If this bit is set, a counter is automatically enabled after a call to execve(2).

task If this bit is set, then fork/exit notifications are included in the ring buffer.

watermark
If set, have an overflow notification happen when we cross the wakeup_water-
mark boundary. Otherwise, overflow notifications happen after
wakeup_events samples.

Linux man-pages 6.13 2024-11-17 586

perf_event_open(2) System Calls Manual perf_event_open(2)

precise_ip (since Linux 2.6.35)
This controls the amount of skid. Skid is how many instructions execute be-
tween an event of interest happening and the kernel being able to stop and
record the event. Smaller skid is better and allows more accurate reporting of
which events correspond to which instructions, but hardware is often limited
with how small this can be.

The possible values of this field are the following:

0 SAMPLE_IP can have arbitrary skid.

1 SAMPLE_IP must have constant skid.

2 SAMPLE_IP requested to have 0 skid.

3 SAMPLE_IP must have 0 skid. See also the description of
PERF_RECORD_MISC_EXACT_IP.

mmap_data (since Linux 2.6.36)
This is the counterpart of the mmap field. This enables generation of
PERF_RECORD_MMAP samples for mmap(2) calls that do not have
PROT_EXEC set (for example data and SysV shared memory).

sample_id_all (since Linux 2.6.38)
If set, then TID, TIME, ID, STREAM_ID, and CPU can additionally be in-
cluded in non-PERF_RECORD_SAMPLEs if the corresponding sam-
ple_type is selected.

If PERF_SAMPLE_IDENTIFIER is specified, then an additional ID value
is included as the last value to ease parsing the record stream. This may lead
to the id value appearing twice.

The layout is described by this pseudo-structure:

struct sample_id {
{ u32 pid, tid; } /* if PERF_SAMPLE_TID set */
{ u64 time; } /* if PERF_SAMPLE_TIME set */
{ u64 id; } /* if PERF_SAMPLE_ID set */
{ u64 stream_id;} /* if PERF_SAMPLE_STREAM_ID set */
{ u32 cpu, res; } /* if PERF_SAMPLE_CPU set */
{ u64 id; } /* if PERF_SAMPLE_IDENTIFIER set */

};

exclude_host (since Linux 3.2)
When conducting measurements that include processes running VM instances
(i.e., have executed a KVM_RUN ioctl(2)), only measure events happening
inside a guest instance. This is only meaningful outside the guests; this setting
does not change counts gathered inside of a guest. Currently, this functionality
is x86 only.

exclude_guest (since Linux 3.2)
When conducting measurements that include processes running VM instances
(i.e., have executed a KVM_RUN ioctl(2)), do not measure events happening
inside guest instances. This is only meaningful outside the guests; this setting
does not change counts gathered inside of a guest. Currently, this functionality
is x86 only.

Linux man-pages 6.13 2024-11-17 587

perf_event_open(2) System Calls Manual perf_event_open(2)

exclude_callchain_kernel (since Linux 3.7)
Do not include kernel callchains.

exclude_callchain_user (since Linux 3.7)
Do not include user callchains.

mmap2 (since Linux 3.16)
Generate an extended executable mmap record that contains enough additional
information to uniquely identify shared mappings. The mmap flag must also
be set for this to work.

comm_exec (since Linux 3.16)
This is purely a feature-detection flag, it does not change kernel behavior. If
this flag can successfully be set, then, when comm is enabled, the
PERF_RECORD_MISC_COMM_EXEC flag will be set in the misc field of
a comm record header if the rename event being reported was caused by a call
to execve(2). This allows tools to distinguish between the various types of
process renaming.

use_clockid (since Linux 4.1)
This allows selecting which internal Linux clock to use when generating time-
stamps via the clockid field. This can make it easier to correlate perf sample
times with timestamps generated by other tools.

context_switch (since Linux 4.3)
This enables the generation of PERF_RECORD_SWITCH records when a
context switch occurs. It also enables the generation of
PERF_RECORD_SWITCH_CPU_WIDE records when sampling in CPU-
wide mode. This functionality is in addition to existing tracepoint and soft-
ware events for measuring context switches. The advantage of this method is
that it will give full information even with strict perf_event_paranoid settings.

write_backward (since Linux 4.6)
This causes the ring buffer to be written from the end to the beginning. This is
to support reading from overwritable ring buffer.

namespaces (since Linux 4.11)
This enables the generation of PERF_RECORD_NAMESPACES records
when a task enters a new namespace. Each namespace has a combination of
device and inode numbers.

ksymbol (since Linux 5.0)
This enables the generation of PERF_RECORD_KSYMBOL records when
new kernel symbols are registered or unregistered. This is analyzing dynamic
kernel functions like eBPF.

bpf_event (since Linux 5.0)
This enables the generation of PERF_RECORD_BPF_EVENT records
when an eBPF program is loaded or unloaded.

aux_output (since Linux 5.4)
This allows normal (non-AUX) events to generate data for AUX events if the
hardware supports it.

Linux man-pages 6.13 2024-11-17 588

perf_event_open(2) System Calls Manual perf_event_open(2)

cgroup (since Linux 5.7)
This enables the generation of PERF_RECORD_CGROUP records when a
new cgroup is created (and activated).

text_poke (since Linux 5.8)
This enables the generation of PERF_RECORD_TEXT_POKE records
when there’s a change to the kernel text (i.e., self-modifying code).

build_id (since Linux 5.12)
This changes the contents in the PERF_RECORD_MMAP2 to have a build-
id instead of device and inode numbers.

inherit_thread (since Linux 5.13)
This disables the inheritance of the event to a child process. Only new threads
in the same process (which is cloned with CLONE_THREAD) will inherit
the event.

remove_on_exec (since Linux 5.13)
This closes the event when it starts a new process image by execve(2).

sigtrap (since Linux 5.13)
This enables synchronous signal delivery of SIGTRAP on event overflow.

wakeup_events
wakeup_watermark

This union sets how many samples (wakeup_events) or bytes (wakeup_water-
mark) happen before an overflow notification happens. Which one is used is
selected by the watermark bit flag.

wakeup_events counts only PERF_RECORD_SAMPLE record types. To
receive overflow notification for all PERF_RECORD types choose water-
mark and set wakeup_watermark to 1.

Prior to Linux 3.0, setting wakeup_events to 0 resulted in no overflow notifica-
tions; more recent kernels treat 0 the same as 1.

bp_type (since Linux 2.6.33)
This chooses the breakpoint type. It is one of:

HW_BREAKPOINT_EMPTY
No breakpoint.

HW_BREAKPOINT_R
Count when we read the memory location.

HW_BREAKPOINT_W
Count when we write the memory location.

HW_BREAKPOINT_RW
Count when we read or write the memory location.

HW_BREAKPOINT_X
Count when we execute code at the memory location.

The values can be combined via a bitwise or, but the combination of
HW_BREAKPOINT_R or HW_BREAKPOINT_W with HW_BREAK-
POINT_X is not allowed.

Linux man-pages 6.13 2024-11-17 589

perf_event_open(2) System Calls Manual perf_event_open(2)

bp_addr (since Linux 2.6.33)
This is the address of the breakpoint. For execution breakpoints, this is the
memory address of the instruction of interest; for read and write breakpoints, it
is the memory address of the memory location of interest.

config1 (since Linux 2.6.39)
config1 is used for setting events that need an extra register or otherwise do
not fit in the regular config field. Raw OFFCORE_EVENTS on Ne-
halem/Westmere/SandyBridge use this field on Linux 3.3 and later kernels.

bp_len (since Linux 2.6.33)
bp_len is the size of the breakpoint being measured if type is
PERF_TYPE_BREAKPOINT. Options are HW_BREAKPOINT_LEN_1,
HW_BREAKPOINT_LEN_2, HW_BREAKPOINT_LEN_4, and
HW_BREAKPOINT_LEN_8. For an execution breakpoint, set this to
sizeof(long).

config2 (since Linux 2.6.39)
config2 is a further extension of the config1 field.

branch_sample_type (since Linux 3.4)
If PERF_SAMPLE_BRANCH_STACK is enabled, then this specifies what
branches to include in the branch record.

The first part of the value is the privilege level, which is a combination of one
of the values listed below. If the user does not set privilege level explicitly, the
kernel will use the event’s privilege level. Event and branch privilege levels do
not have to match.

PERF_SAMPLE_BRANCH_USER
Branch target is in user space.

PERF_SAMPLE_BRANCH_KERNEL
Branch target is in kernel space.

PERF_SAMPLE_BRANCH_HV
Branch target is in hypervisor.

PERF_SAMPLE_BRANCH_PLM_ALL
A convenience value that is the three preceding values ORed together.

In addition to the privilege value, at least one or more of the following bits
must be set.

PERF_SAMPLE_BRANCH_ANY
Any branch type.

PERF_SAMPLE_BRANCH_ANY_CALL
Any call branch (includes direct calls, indirect calls, and far jumps).

PERF_SAMPLE_BRANCH_IND_CALL
Indirect calls.

PERF_SAMPLE_BRANCH_CALL (since Linux 4.4)
Direct calls.

Linux man-pages 6.13 2024-11-17 590

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_SAMPLE_BRANCH_ANY_RETURN
Any return branch.

PERF_SAMPLE_BRANCH_IND_JUMP (since Linux 4.2)
Indirect jumps.

PERF_SAMPLE_BRANCH_COND (since Linux 3.16)
Conditional branches.

PERF_SAMPLE_BRANCH_ABORT_TX (since Linux 3.11)
Transactional memory aborts.

PERF_SAMPLE_BRANCH_IN_TX (since Linux 3.11)
Branch in transactional memory transaction.

PERF_SAMPLE_BRANCH_NO_TX (since Linux 3.11)
Branch not in transactional memory transaction. PERF_SAM-
PLE_BRANCH_CALL_STACK (since Linux 4.1) Branch is part of a
hardware-generated call stack. This requires hardware support, cur-
rently only found on Intel x86 Haswell or newer.

sample_regs_user (since Linux 3.7)
This bit mask defines the set of user CPU registers to dump on samples. The
layout of the register mask is architecture-specific and is described in the ker-
nel header file arch/ARCH/include/uapi/asm/perf_regs.h.

sample_stack_user (since Linux 3.7)
This defines the size of the user stack to dump if PERF_SAM-
PLE_STACK_USER is specified.

clockid (since Linux 4.1)
If use_clockid is set, then this field selects which internal Linux timer to use
for timestamps. The available timers are defined in linux/time.h, with
CLOCK_MONOTONIC, CLOCK_MONOTONIC_RAW, CLOCK_RE-
ALTIME, CLOCK_BOOTTIME, and CLOCK_TAI currently supported.

aux_watermark (since Linux 4.1)
This specifies how much data is required to trigger a PERF_RECORD_AUX
sample.

sample_max_stack (since Linux 4.8)
When sample_type includes PERF_SAMPLE_CALLCHAIN, this field
specifies how many stack frames to report when generating the callchain.

aux_sample_size (since Linux 5.5)
When PERF_SAMPLE_AUX flag is set, specify the desired size of AUX
data. Note that it can get smaller data than the specified size.

sig_data (since Linux 5.13)
This data will be copied to user’s signal handler (through si_perf in the sig-
info_t) to disambiguate which event triggered the signal.

Reading results
Once a perf_event_open() file descriptor has been opened, the values of the events
can be read from the file descriptor. The values that are there are specified by the
read_format field in the attr structure at open time.

Linux man-pages 6.13 2024-11-17 591

perf_event_open(2) System Calls Manual perf_event_open(2)

If you attempt to read into a buffer that is not big enough to hold the data, the error
ENOSPC results.

Here is the layout of the data returned by a read:

• If PERF_FORMAT_GROUP was specified to allow reading all events in a group
at once:

struct read_format {
u64 nr; /* The number of events */
u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
struct {

u64 value; /* The value of the event */
u64 id; /* if PERF_FORMAT_ID */
u64 lost; /* if PERF_FORMAT_LOST */

} values[nr];
};

• If PERF_FORMAT_GROUP was not specified:

struct read_format {
u64 value; /* The value of the event */
u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
u64 id; /* if PERF_FORMAT_ID */
u64 lost; /* if PERF_FORMAT_LOST */

};

The values read are as follows:

nr The number of events in this file descriptor. Available only if PERF_FOR-
MAT_GROUP was specified.

time_enabled
time_running

Total time the event was enabled and running. Normally these values are the
same. Multiplexing happens if the number of events is more than the number
of available PMU counter slots. In that case the events run only part of the
time and the time_enabled and time running values can be used to scale an es-
timated value for the count.

value An unsigned 64-bit value containing the counter result.

id A globally unique value for this particular event; only present if PERF_FOR-
MAT_ID was specified in read_format.

lost The number of lost samples of this event; only present if PERF_FOR-
MAT_LOST was specified in read_format.

MMAP layout
When using perf_event_open() in sampled mode, asynchronous events (like counter
overflow or PROT_EXEC mmap tracking) are logged into a ring-buffer. This ring-
buffer is created and accessed through mmap(2).

The mmap size should be 1+2^n pages, where the first page is a metadata page (struct

Linux man-pages 6.13 2024-11-17 592

perf_event_open(2) System Calls Manual perf_event_open(2)

perf_event_mmap_page) that contains various bits of information such as where the
ring-buffer head is.

Before Linux 2.6.39, there is a bug that means you must allocate an mmap ring buffer
when sampling even if you do not plan to access it.

The structure of the first metadata mmap page is as follows:

struct perf_event_mmap_page {
__u32 version; /* version number of this structure */
__u32 compat_version; /* lowest version this is compat with */
__u32 lock; /* seqlock for synchronization */
__u32 index; /* hardware counter identifier */
__s64 offset; /* add to hardware counter value */
__u64 time_enabled; /* time event active */
__u64 time_running; /* time event on CPU */
union {

__u64 capabilities;
struct {

__u64 cap_usr_time / cap_usr_rdpmc / cap_bit0 : 1,
cap_bit0_is_deprecated : 1,
cap_user_rdpmc : 1,
cap_user_time : 1,
cap_user_time_zero : 1,

};
};
__u16 pmc_width;
__u16 time_shift;
__u32 time_mult;
__u64 time_offset;
__u64 __reserved[120]; /* Pad to 1 k */
__u64 data_head; /* head in the data section */
__u64 data_tail; /* user-space written tail */
__u64 data_offset; /* where the buffer starts */
__u64 data_size; /* data buffer size */
__u64 aux_head;
__u64 aux_tail;
__u64 aux_offset;
__u64 aux_size;

}

The following list describes the fields in the perf_event_mmap_page structure in more
detail:

version
Version number of this structure.

compat_version
The lowest version this is compatible with.

Linux man-pages 6.13 2024-11-17 593

perf_event_open(2) System Calls Manual perf_event_open(2)

lock A seqlock for synchronization.

index A unique hardware counter identifier.

offset When using rdpmc for reads this offset value must be added to the one re-
turned by rdpmc to get the current total event count.

time_enabled
Time the event was active.

time_running
Time the event was running.

cap_usr_time / cap_usr_rdpmc / cap_bit0 (since Linux 3.4)
There was a bug in the definition of cap_usr_time and cap_usr_rdpmc from
Linux 3.4 until Linux 3.11. Both bits were defined to point to the same loca-
tion, so it was impossible to know if cap_usr_time or cap_usr_rdpmc were ac-
tually set.

Starting with Linux 3.12, these are renamed to cap_bit0 and you should use
the cap_user_time and cap_user_rdpmc fields instead.

cap_bit0_is_deprecated (since Linux 3.12)
If set, this bit indicates that the kernel supports the properly separated
cap_user_time and cap_user_rdpmc bits.

If not-set, it indicates an older kernel where cap_usr_time and cap_usr_rdpmc
map to the same bit and thus both features should be used with caution.

cap_user_rdpmc (since Linux 3.12)
If the hardware supports user-space read of performance counters without
syscall (this is the "rdpmc" instruction on x86), then the following code can be
used to do a read:

u32 seq, time_mult, time_shift, idx, width;
u64 count, enabled, running;
u64 cyc, time_offset;

do {
seq = pc->lock;
barrier();
enabled = pc->time_enabled;
running = pc->time_running;

if (pc->cap_usr_time && enabled != running) {
cyc = rdtsc();
time_offset = pc->time_offset;
time_mult = pc->time_mult;
time_shift = pc->time_shift;

}

idx = pc->index;
count = pc->offset;

if (pc->cap_usr_rdpmc && idx) {

Linux man-pages 6.13 2024-11-17 594

perf_event_open(2) System Calls Manual perf_event_open(2)

width = pc->pmc_width;
count += rdpmc(idx - 1);

}

barrier();
} while (pc->lock != seq);

cap_user_time (since Linux 3.12)
This bit indicates the hardware has a constant, nonstop timestamp counter
(TSC on x86).

cap_user_time_zero (since Linux 3.12)
Indicates the presence of time_zero which allows mapping timestamp values to
the hardware clock.

pmc_width
If cap_usr_rdpmc, this field provides the bit-width of the value read using the
rdpmc or equivalent instruction. This can be used to sign extend the result
like:

pmc <<= 64 - pmc_width;
pmc >>= 64 - pmc_width; // signed shift right
count += pmc;

time_shift
time_mult
time_offset

If cap_usr_time, these fields can be used to compute the time delta since
time_enabled (in nanoseconds) using rdtsc or similar.

u64 quot, rem;
u64 delta;

quot = cyc >> time_shift;
rem = cyc & (((u64)1 << time_shift) - 1);
delta = time_offset + quot * time_mult +

((rem * time_mult) >> time_shift);

Where time_offset, time_mult, time_shift, and cyc are read in the seqcount
loop described above. This delta can then be added to enabled and possible
running (if idx), improving the scaling:

enabled += delta;
if (idx)

running += delta;
quot = count / running;
rem = count % running;
count = quot * enabled + (rem * enabled) / running;

time_zero (since Linux 3.12)

If cap_usr_time_zero is set, then the hardware clock (the TSC timestamp
counter on x86) can be calculated from the time_zero, time_mult, and
time_shift values:

Linux man-pages 6.13 2024-11-17 595

perf_event_open(2) System Calls Manual perf_event_open(2)

time = timestamp - time_zero;
quot = time / time_mult;
rem = time % time_mult;
cyc = (quot << time_shift) + (rem << time_shift) / time_mult;

And vice versa:

quot = cyc >> time_shift;
rem = cyc & (((u64)1 << time_shift) - 1);
timestamp = time_zero + quot * time_mult +

((rem * time_mult) >> time_shift);

data_head
This points to the head of the data section. The value continuously increases,
it does not wrap. The value needs to be manually wrapped by the size of the
mmap buffer before accessing the samples.

On SMP-capable platforms, after reading the data_head value, user space
should issue an rmb().

data_tail
When the mapping is PROT_WRITE, the data_tail value should be written
by user space to reflect the last read data. In this case, the kernel will not over-
write unread data.

data_offset (since Linux 4.1)
Contains the offset of the location in the mmap buffer where perf sample data
begins.

data_size (since Linux 4.1)
Contains the size of the perf sample region within the mmap buffer.

aux_head
aux_tail
aux_offset
aux_size (since Linux 4.1)

The AUX region allows mmap(2)-ing a separate sample buffer for high-band-
width data streams (separate from the main perf sample buffer). An example
of a high-bandwidth stream is instruction tracing support, as is found in newer
Intel processors.

To set up an AUX area, first aux_offset needs to be set with an offset greater
than data_offset+data_size and aux_size needs to be set to the desired buffer
size. The desired offset and size must be page aligned, and the size must be a
power of two. These values are then passed to mmap in order to map the AUX
buffer. Pages in the AUX buffer are included as part of the RLIMIT_MEM-
LOCK resource limit (see setrlimit(2)), and also as part of the
perf_event_mlock_kb allowance.

By default, the AUX buffer will be truncated if it will not fit in the available
space in the ring buffer. If the AUX buffer is mapped as a read only buffer,
then it will operate in ring buffer mode where old data will be overwritten by
new. In overwrite mode, it might not be possible to infer where the new data
began, and it is the consumer’s job to disable measurement while reading to
avoid possible data races.

Linux man-pages 6.13 2024-11-17 596

perf_event_open(2) System Calls Manual perf_event_open(2)

The aux_head and aux_tail ring buffer pointers have the same behavior and
ordering rules as the previous described data_head and data_tail.

The following 2ˆn ring-buffer pages have the layout described below.

If perf_event_attr.sample_id_all is set, then all event types will have the sample_type
selected fields related to where/when (identity) an event took place (TID, TIME, ID,
CPU, STREAM_ID) described in PERF_RECORD_SAMPLE below, it will be
stashed just after the perf_event_header and the fields already present for the existing
fields, that is, at the end of the payload. This allows a newer perf.data file to be sup-
ported by older perf tools, with the new optional fields being ignored.

The mmap values start with a header:

struct perf_event_header {
__u32 type;
__u16 misc;
__u16 size;

};

Below, we describe the perf_event_header fields in more detail. For ease of reading,
the fields with shorter descriptions are presented first.

size This indicates the size of the record.

misc The misc field contains additional information about the sample.

The CPU mode can be determined from this value by masking with
PERF_RECORD_MISC_CPUMODE_MASK and looking for one of the
following (note these are not bit masks, only one can be set at a time):

PERF_RECORD_MISC_CPUMODE_UNKNOWN
Unknown CPU mode.

PERF_RECORD_MISC_KERNEL
Sample happened in the kernel.

PERF_RECORD_MISC_USER
Sample happened in user code.

PERF_RECORD_MISC_HYPERVISOR
Sample happened in the hypervisor.

PERF_RECORD_MISC_GUEST_KERNEL (since Linux 2.6.35)
Sample happened in the guest kernel.

PERF_RECORD_MISC_GUEST_USER (since Linux 2.6.35)
Sample happened in guest user code.

Since the following three statuses are generated by different record types, they
alias to the same bit:

PERF_RECORD_MISC_MMAP_DATA (since Linux 3.10)
This is set when the mapping is not executable; otherwise the mapping
is executable.

PERF_RECORD_MISC_COMM_EXEC (since Linux 3.16)
This is set for a PERF_RECORD_COMM record on kernels more re-
cent than Linux 3.16 if a process name change was caused by an

Linux man-pages 6.13 2024-11-17 597

perf_event_open(2) System Calls Manual perf_event_open(2)

execve(2) system call.

PERF_RECORD_MISC_SWITCH_OUT (since Linux 4.3)
When a PERF_RECORD_SWITCH or
PERF_RECORD_SWITCH_CPU_WIDE record is generated, this
bit indicates that the context switch is away from the current process
(instead of into the current process).

In addition, the following bits can be set:

PERF_RECORD_MISC_EXACT_IP
This indicates that the content of PERF_SAMPLE_IP points to the
actual instruction that triggered the event. See also
perf_event_attr.precise_ip.

PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (since Linux 4.17)
When a PERF_RECORD_SWITCH or
PERF_RECORD_SWITCH_CPU_WIDE record is generated, this
indicates the context switch was a preemption.

PERF_RECORD_MISC_MMAP_BUILD_ID (since Linux 5.12)
This indicates that the content of PERF_SAMPLE_MMAP2 contains
build-ID data instead of device major and minor numbers as well as the
inode number.

PERF_RECORD_MISC_EXT_RESERVED (since Linux 2.6.35)
This indicates there is extended data available (currently not used).

PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT
This bit is not set by the kernel. It is reserved for the user-space perf
utility to indicate that /proc/ pid /maps parsing was taking too long and
was stopped, and thus the mmap records may be truncated.

type The type value is one of the below. The values in the corresponding record
(that follows the header) depend on the type selected as shown.

PERF_RECORD_MMAP
The MMAP events record the PROT_EXEC mappings so that we can
correlate user-space IPs to code. They have the following structure:

struct {
struct perf_event_header header;
u32 pid, tid;
u64 addr;
u64 len;
u64 pgoff;
char filename[];

};

pid is the process ID.

tid is the thread ID.

addr is the address of the allocated memory. len is the size of the allo-
cated memory. pgoff is the page offset of the allocated memory.
filename is a string describing the backing of the allocated

Linux man-pages 6.13 2024-11-17 598

perf_event_open(2) System Calls Manual perf_event_open(2)

memory.

PERF_RECORD_LOST
This record indicates when events are lost.

struct {
struct perf_event_header header;
u64 id;
u64 lost;
struct sample_id sample_id;

};

id is the unique event ID for the samples that were lost.

lost is the number of events that were lost.

PERF_RECORD_COMM
This record indicates a change in the process name.

struct {
struct perf_event_header header;
u32 pid;
u32 tid;
char comm[];
struct sample_id sample_id;

};

pid is the process ID.

tid is the thread ID.

comm is a string containing the new name of the process.

PERF_RECORD_EXIT
This record indicates a process exit event.

struct {
struct perf_event_header header;
u32 pid, ppid;
u32 tid, ptid;
u64 time;
struct sample_id sample_id;

};

PERF_RECORD_THROTTLE
PERF_RECORD_UNTHROTTLE

This record indicates a throttle/unthrottle event.

struct {
struct perf_event_header header;
u64 time;
u64 id;
u64 stream_id;
struct sample_id sample_id;

};

Linux man-pages 6.13 2024-11-17 599

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_RECORD_FORK
This record indicates a fork event.

struct {
struct perf_event_header header;
u32 pid, ppid;
u32 tid, ptid;
u64 time;
struct sample_id sample_id;

};

PERF_RECORD_READ
This record indicates a read event.

struct {
struct perf_event_header header;
u32 pid, tid;
struct read_format values;
struct sample_id sample_id;

};

PERF_RECORD_SAMPLE
This record indicates a sample.

struct {
struct perf_event_header header;
u64 sample_id; /* if PERF_SAMPLE_IDENTIFIER */
u64 ip; /* if PERF_SAMPLE_IP */
u32 pid, tid; /* if PERF_SAMPLE_TID */
u64 time; /* if PERF_SAMPLE_TIME */
u64 addr; /* if PERF_SAMPLE_ADDR */
u64 id; /* if PERF_SAMPLE_ID */
u64 stream_id; /* if PERF_SAMPLE_STREAM_ID */
u32 cpu, res; /* if PERF_SAMPLE_CPU */
u64 period; /* if PERF_SAMPLE_PERIOD */
struct read_format v;

/* if PERF_SAMPLE_READ */
u64 nr; /* if PERF_SAMPLE_CALLCHAIN */
u64 ips[nr]; /* if PERF_SAMPLE_CALLCHAIN */
u32 size; /* if PERF_SAMPLE_RAW */
char data[size]; /* if PERF_SAMPLE_RAW */
u64 bnr; /* if PERF_SAMPLE_BRANCH_STACK */
struct perf_branch_entry lbr[bnr];

/* if PERF_SAMPLE_BRANCH_STACK */
u64 abi; /* if PERF_SAMPLE_REGS_USER */
u64 regs[weight(mask)];

/* if PERF_SAMPLE_REGS_USER */
u64 size; /* if PERF_SAMPLE_STACK_USER */
char data[size]; /* if PERF_SAMPLE_STACK_USER */
u64 dyn_size; /* if PERF_SAMPLE_STACK_USER &&

size != 0 */
union perf_sample_weight weight;

Linux man-pages 6.13 2024-11-17 600

perf_event_open(2) System Calls Manual perf_event_open(2)

/* if PERF_SAMPLE_WEIGHT */
/* || PERF_SAMPLE_WEIGHT_STRUCT */

u64 data_src; /* if PERF_SAMPLE_DATA_SRC */
u64 transaction; /* if PERF_SAMPLE_TRANSACTION */
u64 abi; /* if PERF_SAMPLE_REGS_INTR */
u64 regs[weight(mask)];

/* if PERF_SAMPLE_REGS_INTR */
u64 phys_addr; /* if PERF_SAMPLE_PHYS_ADDR */
u64 cgroup; /* if PERF_SAMPLE_CGROUP */
u64 data_page_size;

/* if PERF_SAMPLE_DATA_PAGE_SIZE */
u64 code_page_size;

/* if PERF_SAMPLE_CODE_PAGE_SIZE */
u64 size; /* if PERF_SAMPLE_AUX */
char data[size]; /* if PERF_SAMPLE_AUX */

};

sample_id
If PERF_SAMPLE_IDENTIFIER is enabled, a 64-bit unique ID
is included. This is a duplication of the PERF_SAMPLE_ID id
value, but included at the beginning of the sample so parsers can
easily obtain the value.

ip If PERF_SAMPLE_IP is enabled, then a 64-bit instruction pointer
value is included.

pid
tid If PERF_SAMPLE_TID is enabled, then a 32-bit process ID and

32-bit thread ID are included.

time
If PERF_SAMPLE_TIME is enabled, then a 64-bit timestamp is
included. This is obtained via local_clock() which is a hardware
timestamp if available and the jiffies value if not.

addr
If PERF_SAMPLE_ADDR is enabled, then a 64-bit address is in-
cluded. This is usually the address of a tracepoint, breakpoint, or
software event; otherwise the value is 0.

id If PERF_SAMPLE_ID is enabled, a 64-bit unique ID is included.
If the event is a member of an event group, the group leader ID is re-
turned. This ID is the same as the one returned by PERF_FOR-
MAT_ID.

stream_id
If PERF_SAMPLE_STREAM_ID is enabled, a 64-bit unique ID
is included. Unlike PERF_SAMPLE_ID the actual ID is returned,
not the group leader. This ID is the same as the one returned by
PERF_FORMAT_ID.

Linux man-pages 6.13 2024-11-17 601

perf_event_open(2) System Calls Manual perf_event_open(2)

cpu
res If PERF_SAMPLE_CPU is enabled, this is a 32-bit value indicat-

ing which CPU was being used, in addition to a reserved (unused)
32-bit value.

period
If PERF_SAMPLE_PERIOD is enabled, a 64-bit value indicating
the current sampling period is written.

v If PERF_SAMPLE_READ is enabled, a structure of type read_for-
mat is included which has values for all events in the event group.
The values included depend on the read_format value used at
perf_event_open() time.

nr
ips[nr]

If PERF_SAMPLE_CALLCHAIN is enabled, then a 64-bit num-
ber is included which indicates how many following 64-bit instruc-
tion pointers will follow. This is the current callchain.

size
data[size]

If PERF_SAMPLE_RAW is enabled, then a 32-bit value indicating
size is included followed by an array of 8-bit values of size size.
The values are padded with 0 to have 64-bit alignment.

This RAW record data is opaque with respect to the ABI. The ABI
doesn’t make any promises with respect to the stability of its con-
tent, it may vary depending on event, hardware, and kernel version.

bnr
lbr[bnr]

If PERF_SAMPLE_BRANCH_STACK is enabled, then a 64-bit
value indicating the number of records is included, followed by bnr
perf_branch_entry structures which each include the fields:

from This indicates the source instruction (may not be a branch).

to The branch target.

mispred
The branch target was mispredicted.

predicted
The branch target was predicted.

in_tx (since Linux 3.11)
The branch was in a transactional memory transaction.

abort (since Linux 3.11)
The branch was in an aborted transactional memory transac-
tion.

cycles (since Linux 4.3)
This reports the number of cycles elapsed since the previous
branch stack update.

Linux man-pages 6.13 2024-11-17 602

perf_event_open(2) System Calls Manual perf_event_open(2)

The entries are from most to least recent, so the first entry has the
most recent branch.

Support for mispred , predicted , and cycles is optional; if not sup-
ported, those values will be 0.

The type of branches recorded is specified by the branch_sam-
ple_type field.

abi
regs[weight(mask)]

If PERF_SAMPLE_REGS_USER is enabled, then the user CPU
registers are recorded.

The abi field is one of PERF_SAMPLE_REGS_ABI_NONE,
PERF_SAMPLE_REGS_ABI_32, or PERF_SAM-
PLE_REGS_ABI_64.

The regs field is an array of the CPU registers that were specified by
the sample_regs_user attr field. The number of values is the number
of bits set in the sample_regs_user bit mask.

size
data[size]
dyn_size

If PERF_SAMPLE_STACK_USER is enabled, then the user stack
is recorded. This can be used to generate stack backtraces. size is
the size requested by the user in sample_stack_user or else the max-
imum record size. data is the stack data (a raw dump of the memory
pointed to by the stack pointer at the time of sampling). dyn_size is
the amount of data actually dumped (can be less than size). Note
that dyn_size is omitted if size is 0.

weight
If PERF_SAMPLE_WEIGHT or PERF_SAM-
PLE_WEIGHT_STRUCT is enabled, then a 64-bit value provided
by the hardware is recorded that indicates how costly the event was.
This allows expensive events to stand out more clearly in profiles.

data_src
If PERF_SAMPLE_DATA_SRC is enabled, then a 64-bit value is
recorded that is made up of the following fields:

mem_op
Type of opcode, a bitwise combination of:

PERF_MEM_OP_NA Not available
PERF_MEM_OP_LOAD Load instruction
PERF_MEM_OP_STORE Store instruction
PERF_MEM_OP_PFETCH

Prefetch
PERF_MEM_OP_EXEC Executable code

Linux man-pages 6.13 2024-11-17 603

perf_event_open(2) System Calls Manual perf_event_open(2)

mem_lvl
Memory hierarchy level hit or miss, a bitwise combination of
the following, shifted left by PERF_MEM_LVL_SHIFT:

PERF_MEM_LVL_NA Not available
PERF_MEM_LVL_HIT Hit
PERF_MEM_LVL_MISS Miss
PERF_MEM_LVL_L1 Level 1 cache
PERF_MEM_LVL_LFB Line fill buffer
PERF_MEM_LVL_L2 Level 2 cache
PERF_MEM_LVL_L3 Level 3 cache
PERF_MEM_LVL_LOC_RAM

Local DRAM
PERF_MEM_LVL_REM_RAM1

Remote DRAM 1 hop
PERF_MEM_LVL_REM_RAM2

Remote DRAM 2 hops
PERF_MEM_LVL_REM_CCE1

Remote cache 1 hop
PERF_MEM_LVL_REM_CCE2

Remote cache 2 hops
PERF_MEM_LVL_IO I/O memory
PERF_MEM_LVL_UNC Uncached memory

mem_snoop
Snoop mode, a bitwise combination of the following, shifted
left by PERF_MEM_SNOOP_SHIFT:

PERF_MEM_SNOOP_NA
Not available

PERF_MEM_SNOOP_NONE
No snoop

PERF_MEM_SNOOP_HIT
Snoop hit

PERF_MEM_SNOOP_MISS
Snoop miss

PERF_MEM_SNOOP_HITM
Snoop hit modified

mem_lock
Lock instruction, a bitwise combination of the following,
shifted left by PERF_MEM_LOCK_SHIFT:

PERF_MEM_LOCK_NA Not available
PERF_MEM_LOCK_LOCKED

Locked transaction

mem_dtlb
TLB access hit or miss, a bitwise combination of the following,
shifted left by PERF_MEM_TLB_SHIFT:

Linux man-pages 6.13 2024-11-17 604

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_MEM_TLB_NA Not available
PERF_MEM_TLB_HIT Hit
PERF_MEM_TLB_MISS Miss
PERF_MEM_TLB_L1 Level 1 TLB
PERF_MEM_TLB_L2 Level 2 TLB
PERF_MEM_TLB_WK Hardware walker
PERF_MEM_TLB_OS OS fault handler

transaction
If the PERF_SAMPLE_TRANSACTION flag is set, then a 64-bit
field is recorded describing the sources of any transactional memory
aborts.

The field is a bitwise combination of the following values:

PERF_TXN_ELISION
Abort from an elision type transaction (Intel-CPU-specific).

PERF_TXN_TRANSACTION
Abort from a generic transaction.

PERF_TXN_SYNC
Synchronous abort (related to the reported instruction).

PERF_TXN_ASYNC
Asynchronous abort (not related to the reported instruction).

PERF_TXN_RETRY
Retryable abort (retrying the transaction may have suc-
ceeded).

PERF_TXN_CONFLICT
Abort due to memory conflicts with other threads.

PERF_TXN_CAPACITY_WRITE
Abort due to write capacity overflow.

PERF_TXN_CAPACITY_READ
Abort due to read capacity overflow.

In addition, a user-specified abort code can be obtained from the
high 32 bits of the field by shifting right by
PERF_TXN_ABORT_SHIFT and masking with the value
PERF_TXN_ABORT_MASK.

abi
regs[weight(mask)]

If PERF_SAMPLE_REGS_INTR is enabled, then the user CPU
registers are recorded.

The abi field is one of PERF_SAMPLE_REGS_ABI_NONE,
PERF_SAMPLE_REGS_ABI_32, or PERF_SAM-
PLE_REGS_ABI_64.

The regs field is an array of the CPU registers that were specified by
the sample_regs_intr attr field. The number of values is the number
of bits set in the sample_regs_intr bit mask.

Linux man-pages 6.13 2024-11-17 605

perf_event_open(2) System Calls Manual perf_event_open(2)

phys_addr
If the PERF_SAMPLE_PHYS_ADDR flag is set, then the 64-bit
physical address is recorded.

cgroup
If the PERF_SAMPLE_CGROUP flag is set, then the 64-bit
cgroup ID (for the perf_event subsystem) is recorded. To get the
pathname of the cgroup, the ID should match to one in a
PERF_RECORD_CGROUP.

data_page_size
If the PERF_SAMPLE_DATA_PAGE_SIZE flag is set, then the
64-bit page size value of the data address is recorded.

code_page_size
If the PERF_SAMPLE_CODE_PAGE_SIZE flag is set, then the
64-bit page size value of the ip address is recorded.

size
data[size]

If PERF_SAMPLE_AUX is enabled, a snapshot of the aux buffer is
recorded.

PERF_RECORD_MMAP2
This record includes extended information on mmap(2) calls returning ex-
ecutable mappings. The format is similar to that of the
PERF_RECORD_MMAP record, but includes extra values that allow
uniquely identifying shared mappings. Depending on the
PERF_RECORD_MISC_MMAP_BUILD_ID bit in the header, the ex-
tra values have different layout and meanings.

struct {
struct perf_event_header header;
u32 pid;
u32 tid;
u64 addr;
u64 len;
u64 pgoff;
union {

struct {
u32 maj;
u32 min;
u64 ino;
u64 ino_generation;

};
struct { /* if PERF_RECORD_MISC_MMAP_BUILD_ID */

u8 build_id_size;
u8 __reserved_1;
u16 __reserved_2;
u8 build_id[20];

};
};

Linux man-pages 6.13 2024-11-17 606

perf_event_open(2) System Calls Manual perf_event_open(2)

u32 prot;
u32 flags;
char filename[];
struct sample_id sample_id;

};

pid is the process ID.

tid is the thread ID.

addr is the address of the allocated memory.

len is the size of the allocated memory.

pgoff is the page offset of the allocated memory.

maj is the major ID of the underlying device.

min is the minor ID of the underlying device.

ino is the inode number.

ino_generation
is the inode generation.

build_id_size
is the actual size of build_id field (up to 20).

build_id
is a raw data to identify a binary.

prot is the protection information.

flags is the flags information.

filename
is a string describing the backing of the allocated memory.

PERF_RECORD_AUX (since Linux 4.1)
This record reports that new data is available in the separate AUX buffer
region.

struct {
struct perf_event_header header;
u64 aux_offset;
u64 aux_size;
u64 flags;
struct sample_id sample_id;

};

aux_offset
offset in the AUX mmap region where the new data begins.

aux_size
size of the data made available.

flags describes the AUX update.

PERF_AUX_FLAG_TRUNCATED
if set, then the data returned was truncated to fit the avail-
able buffer size.

Linux man-pages 6.13 2024-11-17 607

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_AUX_FLAG_OVERWRITE
if set, then the data returned has overwritten previous data.

PERF_RECORD_ITRACE_START (since Linux 4.1)
This record indicates which process has initiated an instruction trace
event, allowing tools to properly correlate the instruction addresses in the
AUX buffer with the proper executable.

struct {
struct perf_event_header header;
u32 pid;
u32 tid;

};

pid process ID of the thread starting an instruction trace.

tid thread ID of the thread starting an instruction trace.

PERF_RECORD_LOST_SAMPLES (since Linux 4.2)
When using hardware sampling (such as Intel PEBS) this record indicates
some number of samples that may have been lost.

struct {
struct perf_event_header header;
u64 lost;
struct sample_id sample_id;

};

lost the number of potentially lost samples.

PERF_RECORD_SWITCH (since Linux 4.3)
This record indicates a context switch has happened. The
PERF_RECORD_MISC_SWITCH_OUT bit in the misc field indi-
cates whether it was a context switch into or away from the current
process.

struct {
struct perf_event_header header;
struct sample_id sample_id;

};

PERF_RECORD_SWITCH_CPU_WIDE (since Linux 4.3)
As with PERF_RECORD_SWITCH this record indicates a context
switch has happened, but it only occurs when sampling in CPU-wide
mode and provides additional information on the process being switched
to/from. The PERF_RECORD_MISC_SWITCH_OUT bit in the misc
field indicates whether it was a context switch into or away from the cur-
rent process.

struct {
struct perf_event_header header;
u32 next_prev_pid;
u32 next_prev_tid;
struct sample_id sample_id;

};

Linux man-pages 6.13 2024-11-17 608

perf_event_open(2) System Calls Manual perf_event_open(2)

next_prev_pid
The process ID of the previous (if switching in) or next (if switch-
ing out) process on the CPU.

next_prev_tid
The thread ID of the previous (if switching in) or next (if switch-
ing out) thread on the CPU.

PERF_RECORD_NAMESPACES (since Linux 4.11)
This record includes various namespace information of a process.

struct {
struct perf_event_header header;
u32 pid;
u32 tid;
u64 nr_namespaces;
struct { u64 dev, inode } [nr_namespaces];
struct sample_id sample_id;

};

pid is the process ID

tid is the thread ID

nr_namespace
is the number of namespaces in this record

Each namespace has dev and inode fields and is recorded in the fixed po-
sition like below:

NET_NS_INDEX=0
Network namespace

UTS_NS_INDEX=1
UTS namespace

IPC_NS_INDEX=2
IPC namespace

PID_NS_INDEX=3
PID namespace

USER_NS_INDEX=4
User namespace

MNT_NS_INDEX=5
Mount namespace

CGROUP_NS_INDEX=6
Cgroup namespace

PERF_RECORD_KSYMBOL (since Linux 5.0)
This record indicates kernel symbol register/unregister events.

struct {
struct perf_event_header header;
u64 addr;
u32 len;

Linux man-pages 6.13 2024-11-17 609

perf_event_open(2) System Calls Manual perf_event_open(2)

u16 ksym_type;
u16 flags;
char name[];
struct sample_id sample_id;

};

addr is the address of the kernel symbol.

len is the size of the kernel symbol.

ksym_type
is the type of the kernel symbol. Currently the following types are
available:

PERF_RECORD_KSYMBOL_TYPE_BPF
The kernel symbol is a BPF function.

flags If the PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER
is set, then this event is for unregistering the kernel symbol.

PERF_RECORD_BPF_EVENT (since Linux 5.0)
This record indicates BPF program is loaded or unloaded.

struct {
struct perf_event_header header;
u16 type;
u16 flags;
u32 id;
u8 tag[BPF_TAG_SIZE];
struct sample_id sample_id;

};

type is one of the following values:

PERF_BPF_EVENT_PROG_LOAD
A BPF program is loaded

PERF_BPF_EVENT_PROG_UNLOAD
A BPF program is unloaded

id is the ID of the BPF program.

tag is the tag of the BPF program. Currently, BPF_TAG_SIZE is de-
fined as 8.

PERF_RECORD_CGROUP (since Linux 5.7)
This record indicates a new cgroup is created and activated.

struct {
struct perf_event_header header;
u64 id;
char path[];
struct sample_id sample_id;

};

id is the cgroup identifier. This can be also retrieved by
name_to_handle_at(2) on the cgroup path (as a file handle).

Linux man-pages 6.13 2024-11-17 610

perf_event_open(2) System Calls Manual perf_event_open(2)

path is the path of the cgroup from the root.

PERF_RECORD_TEXT_POKE (since Linux 5.8)
This record indicates a change in the kernel text. This includes addition
and removal of the text and the corresponding size is zero in this case.

struct {
struct perf_event_header header;
u64 addr;
u16 old_len;
u16 new_len;
u8 bytes[];
struct sample_id sample_id;

};

addr is the address of the change

old_len
is the old size

new_len
is the new size

bytes contains old bytes immediately followed by new bytes.

Overflow handling
Events can be set to notify when a threshold is crossed, indicating an overflow. Over-
flow conditions can be captured by monitoring the event file descriptor with poll(2),
select(2), or epoll(7). Alternatively, the overflow events can be captured via sa signal
handler, by enabling I/O signaling on the file descriptor; see the discussion of the
F_SETOWN and F_SETSIG operations in fcntl(2).

Overflows are generated only by sampling events (sample_period must have a
nonzero value).

There are two ways to generate overflow notifications.

The first is to set a wakeup_events or wakeup_watermark value that will trigger if a
certain number of samples or bytes have been written to the mmap ring buffer. In this
case, POLL_IN is indicated.

The other way is by use of the PERF_EVENT_IOC_REFRESH ioctl. This ioctl
adds to a counter that decrements each time the event overflows. When nonzero,
POLL_IN is indicated, but once the counter reaches 0 POLL_HUP is indicated and
the underlying event is disabled.

Refreshing an event group leader refreshes all siblings and refreshing with a parame-
ter of 0 currently enables infinite refreshes; these behaviors are unsupported and
should not be relied on.

Starting with Linux 3.18, POLL_HUP is indicated if the event being monitored is at-
tached to a different process and that process exits.

rdpmc instruction
Starting with Linux 3.4 on x86, you can use the rdpmc instruction to get low-latency
reads without having to enter the kernel. Note that using rdpmc is not necessarily
faster than other methods for reading event values.

Linux man-pages 6.13 2024-11-17 611

perf_event_open(2) System Calls Manual perf_event_open(2)

Support for this can be detected with the cap_usr_rdpmc field in the mmap page; doc-
umentation on how to calculate event values can be found in that section.

Originally, when rdpmc support was enabled, any process (not just ones with an active
perf event) could use the rdpmc instruction to access the counters. Starting with
Linux 4.0, rdpmc support is only allowed if an event is currently enabled in a
process’s context. To restore the old behavior, write the value 2 to /sys/de-
vices/cpu/rdpmc.

perf_event ioctl calls
Various ioctls act on perf_event_open() file descriptors:

PERF_EVENT_IOC_ENABLE
This enables the individual event or event group specified by the file descriptor
argument.

If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all
events in a group are enabled, even if the event specified is not the group
leader (but see BUGS).

PERF_EVENT_IOC_DISABLE
This disables the individual counter or event group specified by the file de-
scriptor argument.

Enabling or disabling the leader of a group enables or disables the entire
group; that is, while the group leader is disabled, none of the counters in the
group will count. Enabling or disabling a member of a group other than the
leader affects only that counter; disabling a non-leader stops that counter from
counting but doesn’t affect any other counter.

If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all
events in a group are disabled, even if the event specified is not the group
leader (but see BUGS).

PERF_EVENT_IOC_REFRESH
Non-inherited overflow counters can use this to enable a counter for a number
of overflows specified by the argument, after which it is disabled. Subsequent
calls of this ioctl add the argument value to the current count. An overflow no-
tification with POLL_IN set will happen on each overflow until the count
reaches 0; when that happens a notification with POLL_HUP set is sent and
the event is disabled. Using an argument of 0 is considered undefined behav-
ior.

PERF_EVENT_IOC_RESET
Reset the event count specified by the file descriptor argument to zero. This
resets only the counts; there is no way to reset the multiplexing time_enabled
or time_running values.

If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all
events in a group are reset, even if the event specified is not the group leader
(but see BUGS).

PERF_EVENT_IOC_PERIOD
This updates the overflow period for the event.

Linux man-pages 6.13 2024-11-17 612

perf_event_open(2) System Calls Manual perf_event_open(2)

Since Linux 3.7 (on ARM) and Linux 3.14 (all other architectures), the new
period takes effect immediately. On older kernels, the new period did not take
effect until after the next overflow.

The argument is a pointer to a 64-bit value containing the desired new period.

Prior to Linux 2.6.36, this ioctl always failed due to a bug in the kernel.

PERF_EVENT_IOC_SET_OUTPUT
This tells the kernel to report event notifications to the specified file descriptor
rather than the default one. The file descriptors must all be on the same CPU.

The argument specifies the desired file descriptor, or -1 if output should be ig-
nored.

PERF_EVENT_IOC_SET_FILTER (since Linux 2.6.33)
This adds an ftrace filter to this event.

The argument is a pointer to the desired ftrace filter.

PERF_EVENT_IOC_ID (since Linux 3.12)
This returns the event ID value for the given event file descriptor.

The argument is a pointer to a 64-bit unsigned integer to hold the result.

PERF_EVENT_IOC_SET_BPF (since Linux 4.1)
This allows attaching a Berkeley Packet Filter (BPF) program to an existing
kprobe tracepoint event. You need CAP_PERFMON (since Linux 5.8) or
CAP_SYS_ADMIN privileges to use this ioctl.

The argument is a BPF program file descriptor that was created by a previous
bpf(2) system call.

PERF_EVENT_IOC_PAUSE_OUTPUT (since Linux 4.7)
This allows pausing and resuming the event’s ring-buffer. A paused ring-
buffer does not prevent generation of samples, but simply discards them. The
discarded samples are considered lost, and cause a PERF_RECORD_LOST
sample to be generated when possible. An overflow signal may still be trig-
gered by the discarded sample even though the ring-buffer remains empty.

The argument is an unsigned 32-bit integer. A nonzero value pauses the ring-
buffer, while a zero value resumes the ring-buffer.

PERF_EVENT_MODIFY_ATTRIBUTES (since Linux 4.17)
This allows modifying an existing event without the overhead of closing and
reopening a new event. Currently this is supported only for breakpoint events.

The argument is a pointer to a perf_event_attr structure containing the up-
dated event settings.

PERF_EVENT_IOC_QUERY_BPF (since Linux 4.16)
This allows querying which Berkeley Packet Filter (BPF) programs are at-
tached to an existing kprobe tracepoint. You can only attach one BPF program
per event, but you can have multiple events attached to a tracepoint. Querying
this value on one tracepoint event returns the ID of all BPF programs in all
events attached to the tracepoint. You need CAP_PERFMON (since Linux
5.8) or CAP_SYS_ADMIN privileges to use this ioctl.

Linux man-pages 6.13 2024-11-17 613

perf_event_open(2) System Calls Manual perf_event_open(2)

The argument is a pointer to a structure
struct perf_event_query_bpf {

__u32 ids_len;
__u32 prog_cnt;
__u32 ids[0];

};

The ids_len field indicates the number of ids that can fit in the provided ids ar-
ray. The prog_cnt value is filled in by the kernel with the number of attached
BPF programs. The ids array is filled with the ID of each attached BPF pro-
gram. If there are more programs than will fit in the array, then the kernel will
return ENOSPC and ids_len will indicate the number of program IDs that
were successfully copied.

Using prctl(2)
A process can enable or disable all currently open event groups using the prctl(2)
PR_TASK_PERF_EVENTS_ENABLE and PR_TASK_PERF_EVENTS_DIS-
ABLE operations. This applies only to events created locally by the calling process.
This does not apply to events created by other processes attached to the calling
process or inherited events from a parent process. Only group leaders are enabled and
disabled, not any other members of the groups.

perf_event related configuration files
Files in /proc/sys/kernel/

/proc/sys/kernel/perf_event_paranoid
The perf_event_paranoid file can be set to restrict access to the perfor-
mance counters.

2 allow only user-space measurements (default since Linux 4.6).
1 allow both kernel and user measurements (default before Linux

4.6).
0 allow access to CPU-specific data but not raw tracepoint samples.
-1 no restrictions.

The existence of the perf_event_paranoid file is the official method for
determining if a kernel supports perf_event_open().

/proc/sys/kernel/perf_event_max_sample_rate
This sets the maximum sample rate. Setting this too high can allow users
to sample at a rate that impacts overall machine performance and poten-
tially lock up the machine. The default value is 100000 (samples per sec-
ond).

/proc/sys/kernel/perf_event_max_stack
This file sets the maximum depth of stack frame entries reported when
generating a call trace.

/proc/sys/kernel/perf_event_mlock_kb
Maximum number of pages an unprivileged user can mlock(2). The de-
fault is 516 (kB).

Files in /sys/bus/event_source/devices/

Since Linux 2.6.34, the kernel supports having multiple PMUs available for

Linux man-pages 6.13 2024-11-17 614

perf_event_open(2) System Calls Manual perf_event_open(2)

monitoring. Information on how to program these PMUs can be found under
/sys/bus/event_source/devices/ . Each subdirectory corresponds to a different
PMU.

/sys/bus/event_source/devices/*/type (since Linux 2.6.38)
This contains an integer that can be used in the type field of
perf_event_attr to indicate that you wish to use this PMU.

/sys/bus/event_source/devices/cpu/rdpmc (since Linux 3.4)
If this file is 1, then direct user-space access to the performance counter
registers is allowed via the rdpmc instruction. This can be disabled by
echoing 0 to the file.

As of Linux 4.0 the behavior has changed, so that 1 now means only al-
low access to processes with active perf events, with 2 indicating the old
allow-anyone-access behavior.

/sys/bus/event_source/devices/*/format/ (since Linux 3.4)
This subdirectory contains information on the architecture-specific sub-
fields available for programming the various config fields in the
perf_event_attr struct.

The content of each file is the name of the config field, followed by a
colon, followed by a series of integer bit ranges separated by commas.
For example, the file event may contain the value config1:1,6-10,44
which indicates that event is an attribute that occupies bits 1,6–10, and 44
of perf_event_attr::config1.

/sys/bus/event_source/devices/*/events/ (since Linux 3.4)
This subdirectory contains files with predefined events. The contents are
strings describing the event settings expressed in terms of the fields found
in the previously mentioned ./format/ directory. These are not necessar-
ily complete lists of all events supported by a PMU, but usually a subset
of events deemed useful or interesting.

The content of each file is a list of attribute names separated by commas.
Each entry has an optional value (either hex or decimal). If no value is
specified, then it is assumed to be a single-bit field with a value of 1. An
example entry may look like this: event=0x2,inv,ldlat=3.

/sys/bus/event_source/devices/*/uevent
This file is the standard kernel device interface for injecting hotplug
events.

/sys/bus/event_source/devices/*/cpumask (since Linux 3.7)
The cpumask file contains a comma-separated list of integers that indi-
cate a representative CPU number for each socket (package) on the moth-
erboard. This is needed when setting up uncore or northbridge events, as
those PMUs present socket-wide events.

RETURN VALUE
On success, perf_event_open() returns the new file descriptor. On error, -1 is re-
turned and errno is set to indicate the error.

Linux man-pages 6.13 2024-11-17 615

perf_event_open(2) System Calls Manual perf_event_open(2)

ERRORS
The errors returned by perf_event_open() can be inconsistent, and may vary across
processor architectures and performance monitoring units.

E2BIG
Returned if the perf_event_attr size value is too small (smaller than
PERF_ATTR_SIZE_VER0), too big (larger than the page size), or larger
than the kernel supports and the extra bytes are not zero. When E2BIG is re-
turned, the perf_event_attr size field is overwritten by the kernel to be the size
of the structure it was expecting.

EACCES
Returned when the requested event requires CAP_PERFMON (since Linux
5.8) or CAP_SYS_ADMIN permissions (or a more permissive perf_event
paranoid setting). Some common cases where an unprivileged process may
encounter this error: attaching to a process owned by a different user; monitor-
ing all processes on a given CPU (i.e., specifying the pid argument as -1); and
not setting exclude_kernel when the paranoid setting requires it.

EBADF
Returned if the group_fd file descriptor is not valid, or, if
PERF_FLAG_PID_CGROUP is set, the cgroup file descriptor in pid is not
valid.

EBUSY (since Linux 4.1)
Returned if another event already has exclusive access to the PMU.

EFAULT
Returned if the attr pointer points at an invalid memory address.

EINTR
Returned when trying to mix perf and ftrace handling for a uprobe.

EINVAL
Returned if the specified event is invalid. There are many possible reasons for
this. A not-exhaustive list: sample_freq is higher than the maximum setting;
the cpu to monitor does not exist; read_format is out of range; sample_type is
out of range; the flags value is out of range; exclusive or pinned set and the
event is not a group leader; the event config values are out of range or set re-
served bits; the generic event selected is not supported; or there is not enough
room to add the selected event.

EMFILE
Each opened event uses one file descriptor. If a large number of events are
opened, the per-process limit on the number of open file descriptors will be
reached, and no more events can be created.

ENODEV
Returned when the event involves a feature not supported by the current CPU.

ENOENT
Returned if the type setting is not valid. This error is also returned for some
unsupported generic events.

Linux man-pages 6.13 2024-11-17 616

perf_event_open(2) System Calls Manual perf_event_open(2)

ENOSPC
Prior to Linux 3.3, if there was not enough room for the event, ENOSPC was
returned. In Linux 3.3, this was changed to EINVAL. ENOSPC is still re-
turned if you try to add more breakpoint events than supported by the hard-
ware.

ENOSYS
Returned if PERF_SAMPLE_STACK_USER is set in sample_type and it is
not supported by hardware.

EOPNOTSUPP
Returned if an event requiring a specific hardware feature is requested but
there is no hardware support. This includes requesting low-skid events if not
supported, branch tracing if it is not available, sampling if no PMU interrupt is
available, and branch stacks for software events.

EOVERFLOW (since Linux 4.8)
Returned if PERF_SAMPLE_CALLCHAIN is requested and sam-
ple_max_stack is larger than the maximum specified in /proc/sys/ker-
nel/perf_event_max_stack.

EPERM
Returned on many (but not all) architectures when an unsupported exclude_hv,
exclude_idle, exclude_user, or exclude_kernel setting is specified.

It can also happen, as with EACCES, when the requested event requires
CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN permissions (or a
more permissive perf_event paranoid setting). This includes setting a break-
point on a kernel address, and (since Linux 3.13) setting a kernel function-
trace tracepoint.

ESRCH
Returned if attempting to attach to a process that does not exist.

STANDARDS
Linux.

HISTORY
perf_event_open() was introduced in Linux 2.6.31 but was called
perf_counter_open(). It was renamed in Linux 2.6.32.

NOTES
The official way of knowing if perf_event_open() support is enabled is checking for
the existence of the file /proc/sys/kernel/perf_event_paranoid .

CAP_PERFMON capability (since Linux 5.8) provides secure approach to perfor-
mance monitoring and observability operations in a system according to the principal
of least privilege (POSIX IEEE 1003.1e). Accessing system performance monitoring
and observability operations using CAP_PERFMON rather than the much more
powerful CAP_SYS_ADMIN excludes chances to misuse credentials and makes op-
erations more secure. CAP_SYS_ADMIN usage for secure system performance
monitoring and observability is discouraged in favor of the CAP_PERFMON capa-
bility.

Linux man-pages 6.13 2024-11-17 617

perf_event_open(2) System Calls Manual perf_event_open(2)

BUGS
The F_SETOWN_EX option to fcntl(2) is needed to properly get overflow signals in
threads. This was introduced in Linux 2.6.32.

Prior to Linux 2.6.33 (at least for x86), the kernel did not check if events could be
scheduled together until read time. The same happens on all known kernels if the
NMI watchdog is enabled. This means to see if a given set of events works you have
to perf_event_open(), start, then read before you know for sure you can get valid
measurements.

Prior to Linux 2.6.34, event constraints were not enforced by the kernel. In that case,
some events would silently return "0" if the kernel scheduled them in an improper
counter slot.

Prior to Linux 2.6.34, there was a bug when multiplexing where the wrong results
could be returned.

Kernels from Linux 2.6.35 to Linux 2.6.39 can quickly crash the kernel if "inherit" is
enabled and many threads are started.

Prior to Linux 2.6.35, PERF_FORMAT_GROUP did not work with attached
processes.

There is a bug in the kernel code between Linux 2.6.36 and Linux 3.0 that ignores the
"watermark" field and acts as if a wakeup_event was chosen if the union has a
nonzero value in it.

From Linux 2.6.31 to Linux 3.4, the PERF_IOC_FLAG_GROUP ioctl argument
was broken and would repeatedly operate on the event specified rather than iterating
across all sibling events in a group.

From Linux 3.4 to Linux 3.11, the mmap cap_usr_rdpmc and cap_usr_time bits
mapped to the same location. Code should migrate to the new cap_user_rdpmc and
cap_user_time fields instead.

Always double-check your results! Various generalized events have had wrong val-
ues. For example, retired branches measured the wrong thing on AMD machines until
Linux 2.6.35.

EXAMPLES
The following is a short example that measures the total instruction count of a call to
printf(3).

#include <err.h>
#include <linux/perf_event.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>

static long
perf_event_open(struct perf_event_attr *hw_event, pid_t pid,

Linux man-pages 6.13 2024-11-17 618

perf_event_open(2) System Calls Manual perf_event_open(2)

int cpu, int group_fd, unsigned long flags)
{

int ret;

ret = syscall(SYS_perf_event_open, hw_event, pid, cpu,
group_fd, flags);

return ret;
}

int
main(void)
{

int fd;
long long count;
struct perf_event_attr pe;

memset(&pe, 0, sizeof(pe));
pe.type = PERF_TYPE_HARDWARE;
pe.size = sizeof(pe);
pe.config = PERF_COUNT_HW_INSTRUCTIONS;
pe.disabled = 1;
pe.exclude_kernel = 1;
pe.exclude_hv = 1;

fd = perf_event_open(&pe, 0, -1, -1, 0);
if (fd == -1)

err(EXIT_FAILURE, "Error opening leader %llx\n", pe.config);

if (ioctl(fd, PERF_EVENT_IOC_RESET, 0) == -1)
err(EXIT_FAILURE, "PERF_EVENT_IOC_RESET");

if (ioctl(fd, PERF_EVENT_IOC_ENABLE, 0) == -1)
err(EXIT_FAILURE, "PERF_EVENT_IOC_ENABLE");

printf("Measuring instruction count for this printf\n");

if (ioctl(fd, PERF_EVENT_IOC_DISABLE, 0) == -1)
err(EXIT_FAILURE, "PERF_EVENT_IOC_DISABLE");

if (read(fd, &count, sizeof(count)) != sizeof(count))
err(EXIT_FAILURE, "read");

printf("Used %lld instructions\n", count);

if (close(fd) == -1)
err(EXIT_FAILURE, "close");

}

SEE ALSO
perf (1), fcntl(2), mmap(2), open(2), prctl(2), read(2)

Documentation/admin-guide/perf-security.rst in the kernel source tree

Linux man-pages 6.13 2024-11-17 619

perfmonctl(2) System Calls Manual perfmonctl(2)

NAME
perfmonctl - interface to IA-64 performance monitoring unit

SYNOPSIS
#include <syscall.h>
#include <perfmon.h>

long perfmonctl(int fd , int cmd , void arg[.narg], int narg);

Note: There is no glibc wrapper for this system call; see HISTORY.

DESCRIPTION
The IA-64-specific perfmonctl() system call provides an interface to the PMU (per-
formance monitoring unit). The PMU consists of PMD (performance monitoring
data) registers and PMC (performance monitoring control) registers, which gather
hardware statistics.

perfmonctl() applies the operation cmd to the input arguments specified by arg. The
number of arguments is defined by narg. The fd argument specifies the perfmon con-
text to operate on.

Supported values for cmd are:

PFM_CREATE_CONTEXT
perfmonctl(int fd , PFM_CREATE_CONTEXT, pfarg_context_t *ctxt, 1);
Set up a context.

The fd parameter is ignored. A new perfmon context is created as specified in
ctxt and its file descriptor is returned in ctxt->ctx_fd.

The file descriptor can be used in subsequent calls to perfmonctl() and can be
used to read event notifications (type pfm_msg_t) using read(2). The file de-
scriptor is pollable using select(2), poll(2), and epoll(7).

The context can be destroyed by calling close(2) on the file descriptor.

PFM_WRITE_PMCS
perfmonctl(int fd , PFM_WRITE_PMCS, pfarg_reg_t *pmcs, n);
Set PMC registers.

PFM_WRITE_PMDS
perfmonctl(int fd , PFM_WRITE_PMDS, pfarg_reg_t *pmds, n);
Set PMD registers.

PFM_READ_PMDS
perfmonctl(int fd , PFM_READ_PMDS, pfarg_reg_t *pmds, n);
Read PMD registers.

PFM_START
perfmonctl(int fd , PFM_START, NULL, 0);
Start monitoring.

PFM_STOP
perfmonctl(int fd , PFM_STOP, NULL, 0);
Stop monitoring.

Linux man-pages 6.13 2024-05-02 620

perfmonctl(2) System Calls Manual perfmonctl(2)

PFM_LOAD_CONTEXT
perfmonctl(int fd , PFM_LOAD_CONTEXT, pfarg_load_t *largs, 1);
Attach the context to a thread.

PFM_UNLOAD_CONTEXT
perfmonctl(int fd , PFM_UNLOAD_CONTEXT, NULL, 0);
Detach the context from a thread.

PFM_RESTART
perfmonctl(int fd , PFM_RESTART, NULL, 0);
Restart monitoring after receiving an overflow notification.

PFM_GET_FEATURES
perfmonctl(int fd , PFM_GET_FEATURES, pfarg_features_t *arg, 1);

PFM_DEBUG
perfmonctl(int fd , PFM_DEBUG, val, 0);
If val is nonzero, enable debugging mode, otherwise disable.

PFM_GET_PMC_RESET_VAL
perfmonctl(int fd , PFM_GET_PMC_RESET_VAL, pfarg_reg_t *req, n);
Reset PMC registers to default values.

RETURN VALUE
perfmonctl() returns zero when the operation is successful. On error, -1 is returned
and errno is set to indicate the error.

STANDARDS
Linux on IA-64.

HISTORY
Added in Linux 2.4; removed in Linux 5.10.

This system call was broken for many years, and ultimately removed in Linux 5.10.

glibc does not provide a wrapper for this system call; on kernels where it exists, call it
using syscall(2).

SEE ALSO
gprof (1)

The perfmon2 interface specification

Linux man-pages 6.13 2024-05-02 621

personality(2) System Calls Manual personality(2)

NAME
personality - set the process execution domain

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/personality.h>

int personality(unsigned long persona);

DESCRIPTION
Linux supports different execution domains, or personalities, for each process.
Among other things, execution domains tell Linux how to map signal numbers into
signal actions. The execution domain system allows Linux to provide limited support
for binaries compiled under other UNIX-like operating systems.

If persona is not 0xffffffff, then personality() sets the caller’s execution domain to the
value specified by persona. Specifying persona as 0xffffffff provides a way of re-
trieving the current persona without changing it.

A list of the available execution domains can be found in <sys/personality.h>. The
execution domain is a 32-bit value in which the top three bytes are set aside for flags
that cause the kernel to modify the behavior of certain system calls so as to emulate
historical or architectural quirks. The least significant byte is a value defining the per-
sonality the kernel should assume. The flag values are as follows:

ADDR_COMPAT_LAYOUT (since Linux 2.6.9)
With this flag set, provide legacy virtual address space layout.

ADDR_NO_RANDOMIZE (since Linux 2.6.12)
With this flag set, disable address-space-layout randomization.

ADDR_LIMIT_32BIT (since Linux 2.2)
Limit the address space to 32 bits.

ADDR_LIMIT_3GB (since Linux 2.4.0)
With this flag set, use 0xc0000000 as the offset at which to search a virtual
memory chunk on mmap(2); otherwise use 0xffffe000. Applies to 32-bit x86
processes only.

FDPIC_FUNCPTRS (since Linux 2.6.11)
User-space function pointers to signal handlers point to descriptors. Applies
only to ARM if BINFMT_ELF_FDPIC and SuperH.

MMAP_PAGE_ZERO (since Linux 2.4.0)
Map page 0 as read-only (to support binaries that depend on this SVr4 behav-
ior).

READ_IMPLIES_EXEC (since Linux 2.6.8)
With this flag set, PROT_READ implies PROT_EXEC for mmap(2).

SHORT_INODE (since Linux 2.4.0)
No effect.

STICKY_TIMEOUTS (since Linux 1.2.0)
With this flag set, select(2), pselect(2), and ppoll(2) do not modify the returned
timeout argument when interrupted by a signal handler.

Linux man-pages 6.13 2024-07-23 622

personality(2) System Calls Manual personality(2)

UNAME26 (since Linux 3.1)
Have uname(2) report a 2.6.(40+x) version number rather than a MAJOR.x
version number. Added as a stopgap measure to support broken applications
that could not handle the kernel version-numbering switch from Linux 2.6.x to
Linux 3.x.

WHOLE_SECONDS (since Linux 1.2.0)
No effect.

The available execution domains are:

PER_BSD (since Linux 1.2.0)
BSD. (No effects.)

PER_HPUX (since Linux 2.4)
Support for 32-bit HP/UX. This support was never complete, and was
dropped so that since Linux 4.0, this value has no effect.

PER_IRIX32 (since Linux 2.2)
IRIX 5 32-bit. Never fully functional; support dropped in Linux 2.6.27. Im-
plies STICKY_TIMEOUTS.

PER_IRIX64 (since Linux 2.2)
IRIX 6 64-bit. Implies STICKY_TIMEOUTS; otherwise no effect.

PER_IRIXN32 (since Linux 2.2)
IRIX 6 new 32-bit. Implies STICKY_TIMEOUTS; otherwise no effect.

PER_ISCR4 (since Linux 1.2.0)
Implies STICKY_TIMEOUTS; otherwise no effect.

PER_LINUX (since Linux 1.2.0)
Linux.

PER_LINUX32 (since Linux 2.2)
uname(2) returns the name of the 32-bit architecture in the machine field
("i686" instead of "x86_64", &c.).

Under ia64 (Itanium), processes with this personality don’t have the
O_LARGEFILE open(2) flag forced.

Under 64-bit ARM, setting this personality is forbidden if execve(2)ing a
32-bit process would also be forbidden (cf. the allow_mismatched_32bit_el0
kernel parameter and Documentation/arm64/asymmetric-32bit.rst).

PER_LINUX32_3GB (since Linux 2.4)
Same as PER_LINUX32, but implies ADDR_LIMIT_3GB.

PER_LINUX_32BIT (since Linux 2.0)
Same as PER_LINUX, but implies ADDR_LIMIT_32BIT.

PER_LINUX_FDPIC (since Linux 2.6.11)
Same as PER_LINUX, but implies FDPIC_FUNCPTRS.

PER_OSF4 (since Linux 2.4)
OSF/1 v4. No effect since Linux 6.1, which removed a.out binary support.
Before, on alpha, would clear top 32 bits of iov_len in the user’s buffer for
compatibility with old versions of OSF/1 where iov_len was defined as. int.

Linux man-pages 6.13 2024-07-23 623

personality(2) System Calls Manual personality(2)

PER_OSR5 (since Linux 2.4)
SCO OpenServer 5. Implies STICKY_TIMEOUTS and WHOLE_SEC-
ONDS; otherwise no effect.

PER_RISCOS (since Linux 2.3.7; macro since Linux 2.3.13)
Acorn RISC OS/Arthur (MIPS). No effect. Up to Linux v4.0, would set the
emulation altroot to /usr/gnemul/riscos (cf. PER_SUNOS, below). Before
then, up to Linux 2.6.3, just Arthur emulation.

PER_SCOSVR3 (since Linux 1.2.0)
SCO UNIX System V Release 3. Same as PER_OSR5, but also implies
SHORT_INODE.

PER_SOLARIS (since Linux 2.4)
Solaris. Implies STICKY_TIMEOUTS; otherwise no effect.

PER_SUNOS (since Linux 2.4.0)
Sun OS. Same as PER_BSD, but implies STICKY_TIMEOUTS. Prior to
Linux 2.6.26, diverted library and dynamic linker searches to /usr/gnemul.
Buggy, largely unmaintained, and almost entirely unused.

PER_SVR3 (since Linux 1.2.0)
AT&T UNIX System V Release 3. Implies STICKY_TIMEOUTS and
SHORT_INODE; otherwise no effect.

PER_SVR4 (since Linux 1.2.0)
AT&T UNIX System V Release 4. Implies STICKY_TIMEOUTS and
MMAP_PAGE_ZERO; otherwise no effect.

PER_UW7 (since Linux 2.4)
UnixWare 7. Implies STICKY_TIMEOUTS and MMAP_PAGE_ZERO;
otherwise no effect.

PER_WYSEV386 (since Linux 1.2.0)
WYSE UNIX System V/386. Implies STICKY_TIMEOUTS and
SHORT_INODE; otherwise no effect.

PER_XENIX (since Linux 1.2.0)
XENIX. Implies STICKY_TIMEOUTS and SHORT_INODE; otherwise
no effect.

RETURN VALUE
On success, the previous persona is returned. On error, -1 is returned, and errno is
set to indicate the error.

ERRORS
EINVAL

The kernel was unable to change the personality.

STANDARDS
Linux.

HISTORY
Linux 1.1.20, glibc 2.3.

Linux man-pages 6.13 2024-07-23 624

personality(2) System Calls Manual personality(2)

SEE ALSO
setarch(8)

Linux man-pages 6.13 2024-07-23 625

pidfd_getfd(2) System Calls Manual pidfd_getfd(2)

NAME
pidfd_getfd - obtain a duplicate of another process’s file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_pidfd_getfd, int pidfd , int targetfd ,
unsigned int flags);

Note: glibc provides no wrapper for pidfd_getfd(), necessitating the use of syscall(2).

DESCRIPTION
The pidfd_getfd() system call allocates a new file descriptor in the calling process.
This new file descriptor is a duplicate of an existing file descriptor, targetfd , in the
process referred to by the PID file descriptor pidfd .

The duplicate file descriptor refers to the same open file description (see open(2)) as
the original file descriptor in the process referred to by pidfd . The two file descriptors
thus share file status flags and file offset. Furthermore, operations on the underlying
file object (for example, assigning an address to a socket object using bind(2)) can
equally be performed via the duplicate file descriptor.

The close-on-exec flag (FD_CLOEXEC; see fcntl(2)) is set on the file descriptor re-
turned by pidfd_getfd().

The flags argument is reserved for future use. Currently, it must be specified as 0.

Permission to duplicate another process’s file descriptor is governed by a ptrace ac-
cess mode PTRACE_MODE_ATTACH_REALCREDS check (see ptrace(2)).

RETURN VALUE
On success, pidfd_getfd() returns a file descriptor (a nonnegative integer). On error,
-1 is returned and errno is set to indicate the error.

ERRORS
EBADF

pidfd is not a valid PID file descriptor.

EBADF
targetfd is not an open file descriptor in the process referred to by pidfd .

EINVAL
flags is not 0.

EMFILE
The per-process limit on the number of open file descriptors has been reached
(see the description of RLIMIT_NOFILE in getrlimit(2)).

ENFILE
The system-wide limit on the total number of open files has been reached.

EPERM
The calling process did not have PTRACE_MODE_ATTACH_REAL-
CREDS permissions (see ptrace(2)) over the process referred to by pidfd .

Linux man-pages 6.13 2024-07-23 626

pidfd_getfd(2) System Calls Manual pidfd_getfd(2)

ESRCH
The process referred to by pidfd does not exist (i.e., it has terminated and been
waited on).

STANDARDS
Linux.

HISTORY
Linux 5.6.

NOTES
For a description of PID file descriptors, see pidfd_open(2).

The effect of pidfd_getfd() is similar to the use of SCM_RIGHTS messages de-
scribed in unix(7), but differs in the following respects:

• In order to pass a file descriptor using an SCM_RIGHTS message, the two
processes must first establish a UNIX domain socket connection.

• The use of SCM_RIGHTS requires cooperation on the part of the process whose
file descriptor is being copied. By contrast, no such cooperation is necessary
when using pidfd_getfd().

• The ability to use pidfd_getfd() is restricted by a PTRACE_MODE_AT-
TACH_REALCREDS ptrace access mode check.

SEE ALSO
clone3(2), dup(2), kcmp(2), pidfd_open(2)

Linux man-pages 6.13 2024-07-23 627

pidfd_open(2) System Calls Manual pidfd_open(2)

NAME
pidfd_open - obtain a file descriptor that refers to a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_pidfd_open, pid_t pid , unsigned int flags);

Note: glibc provides no wrapper for pidfd_open(), necessitating the use of syscall(2).

DESCRIPTION
The pidfd_open() system call creates a file descriptor that refers to the process whose
PID is specified in pid . The file descriptor is returned as the function result; the
close-on-exec flag is set on the file descriptor.

The flags argument either has the value 0, or contains the following flag:

PIDFD_NONBLOCK (since Linux 5.10)
Return a nonblocking file descriptor. If the process referred to by the file de-
scriptor has not yet terminated, then an attempt to wait on the file descriptor
using waitid(2) will immediately return the error EAGAIN rather than block-
ing.

RETURN VALUE
On success, pidfd_open() returns a file descriptor (a nonnegative integer). On error,
-1 is returned and errno is set to indicate the error.

ERRORS
EINVAL

flags is not valid.

EINVAL
pid is not valid.

EMFILE
The per-process limit on the number of open file descriptors has been reached
(see the description of RLIMIT_NOFILE in getrlimit(2)).

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
The anonymous inode filesystem is not available in this kernel.

ENOMEM
Insufficient kernel memory was available.

ESRCH
The process specified by pid does not exist.

STANDARDS
Linux.

Linux man-pages 6.13 2024-07-23 628

pidfd_open(2) System Calls Manual pidfd_open(2)

HISTORY
Linux 5.3.

NOTES
The following code sequence can be used to obtain a file descriptor for the child of
fork(2):

pid = fork();
if (pid > 0) { /* If parent */

pidfd = pidfd_open(pid, 0);
...

}

Even if the child has already terminated by the time of the pidfd_open() call, its PID
will not have been recycled and the returned file descriptor will refer to the resulting
zombie process. Note, however, that this is guaranteed only if the following condi-
tions hold true:

• the disposition of SIGCHLD has not been explicitly set to SIG_IGN (see sigac-
tion(2));

• the SA_NOCLDWAIT flag was not specified while establishing a handler for
SIGCHLD or while setting the disposition of that signal to SIG_DFL (see sigac-
tion(2)); and

• the zombie process was not reaped elsewhere in the program (e.g., either by an
asynchronously executed signal handler or by wait(2) or similar in another
thread).

If any of these conditions does not hold, then the child process (along with a PID file
descriptor that refers to it) should instead be created using clone(2) with the
CLONE_PIDFD flag.

Use cases for PID file descriptors
A PID file descriptor returned by pidfd_open() (or by clone(2) with the
CLONE_PID flag) can be used for the following purposes:

• The pidfd_send_signal(2) system call can be used to send a signal to the process
referred to by a PID file descriptor.

• A PID file descriptor can be monitored using poll(2), select(2), and epoll(7).
When the process that it refers to terminates, these interfaces indicate the file de-
scriptor as readable. Note, however, that in the current implementation, nothing
can be read from the file descriptor (read(2) on the file descriptor fails with the er-
ror EINVAL).

• If the PID file descriptor refers to a child of the calling process, then it can be
waited on using waitid(2).

• The pidfd_getfd(2) system call can be used to obtain a duplicate of a file descriptor
of another process referred to by a PID file descriptor.

• A PID file descriptor can be used as the argument of setns(2) in order to move into
one or more of the same namespaces as the process referred to by the file descrip-
tor.

Linux man-pages 6.13 2024-07-23 629

pidfd_open(2) System Calls Manual pidfd_open(2)

• A PID file descriptor can be used as the argument of process_madvise(2) in order
to provide advice on the memory usage patterns of the process referred to by the
file descriptor.

The pidfd_open() system call is the preferred way of obtaining a PID file descriptor
for an already existing process. The alternative is to obtain a file descriptor by open-
ing a /proc/ pid directory. However, the latter technique is possible only if the proc(5)
filesystem is mounted; furthermore, the file descriptor obtained in this way is not pol-
lable and can’t be waited on with waitid(2).

EXAMPLES
The program below opens a PID file descriptor for the process whose PID is specified
as its command-line argument. It then uses poll(2) to monitor the file descriptor for
process exit, as indicated by an EPOLLIN event.

Program source

#define _GNU_SOURCE
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>

static int
pidfd_open(pid_t pid, unsigned int flags)
{

return syscall(SYS_pidfd_open, pid, flags);
}

int
main(int argc, char *argv[])
{

int pidfd, ready;
struct pollfd pollfd;

if (argc != 2) {
fprintf(stderr, "Usage: %s <pid>\n", argv[0]);
exit(EXIT_SUCCESS);

}

pidfd = pidfd_open(atoi(argv[1]), 0);
if (pidfd == -1) {

perror("pidfd_open");
exit(EXIT_FAILURE);

}

pollfd.fd = pidfd;
pollfd.events = POLLIN;

Linux man-pages 6.13 2024-07-23 630

pidfd_open(2) System Calls Manual pidfd_open(2)

ready = poll(&pollfd, 1, -1);
if (ready == -1) {

perror("poll");
exit(EXIT_FAILURE);

}

printf("Events (%#x): POLLIN is %sset\n", pollfd.revents,
(pollfd.revents & POLLIN) ? "" : "not ");

close(pidfd);
exit(EXIT_SUCCESS);

}

SEE ALSO
clone(2), kill(2), pidfd_getfd(2), pidfd_send_signal(2), poll(2), process_madvise(2),
select(2), setns(2), waitid(2), epoll(7)

Linux man-pages 6.13 2024-07-23 631

pidfd_send_signal(2) System Calls Manual pidfd_send_signal(2)

NAME
pidfd_send_signal - send a signal to a process specified by a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/signal.h> /* Definition of SIG* constants */
#include <signal.h> /* Definition of SI_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_pidfd_send_signal, int pidfd , int sig,
siginfo_t *_Nullable info, unsigned int flags);

Note: glibc provides no wrapper for pidfd_send_signal(), necessitating the use of
syscall(2).

DESCRIPTION
The pidfd_send_signal() system call sends the signal sig to the target process re-
ferred to by pidfd , a PID file descriptor that refers to a process.

If the info argument points to a siginfo_t buffer, that buffer should be populated as de-
scribed in rt_sigqueueinfo(2).

If the info argument is a null pointer, this is equivalent to specifying a pointer to a sig-
info_t buffer whose fields match the values that are implicitly supplied when a signal
is sent using kill(2):

• si_signo is set to the signal number;
• si_errno is set to 0;
• si_code is set to SI_USER;
• si_pid is set to the caller’s PID; and
• si_uid is set to the caller’s real user ID.

The calling process must either be in the same PID namespace as the process referred
to by pidfd , or be in an ancestor of that namespace.

The flags argument is reserved for future use; currently, this argument must be speci-
fied as 0.

RETURN VALUE
On success, pidfd_send_signal() returns 0. On error, -1 is returned and errno is set
to indicate the error.

ERRORS
EBADF

pidfd is not a valid PID file descriptor.

EINVAL
sig is not a valid signal.

EINVAL
The calling process is not in a PID namespace from which it can send a signal
to the target process.

Linux man-pages 6.13 2024-07-23 632

pidfd_send_signal(2) System Calls Manual pidfd_send_signal(2)

EINVAL
flags is not 0.

EPERM
The calling process does not have permission to send the signal to the target
process.

EPERM
pidfd doesn’t refer to the calling process, and info.si_code is invalid (see
rt_sigqueueinfo(2)).

ESRCH
The target process does not exist (i.e., it has terminated and been waited on).

STANDARDS
Linux.

HISTORY
Linux 5.1.

NOTES
PID file descriptors

The pidfd argument is a PID file descriptor, a file descriptor that refers to process.
Such a file descriptor can be obtained in any of the following ways:

• by opening a /proc/ pid directory;

• using pidfd_open(2); or

• via the PID file descriptor that is returned by a call to clone(2) or clone3(2) that
specifies the CLONE_PIDFD flag.

The pidfd_send_signal() system call allows the avoidance of race conditions that oc-
cur when using traditional interfaces (such as kill(2)) to signal a process. The prob-
lem is that the traditional interfaces specify the target process via a process ID (PID),
with the result that the sender may accidentally send a signal to the wrong process if
the originally intended target process has terminated and its PID has been recycled for
another process. By contrast, a PID file descriptor is a stable reference to a specific
process; if that process terminates, pidfd_send_signal() fails with the error ESRCH.

EXAMPLES
#define _GNU_SOURCE
#include <fcntl.h>
#include <limits.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/syscall.h>
#include <unistd.h>

static int
pidfd_send_signal(int pidfd, int sig, siginfo_t *info,

unsigned int flags)
{

Linux man-pages 6.13 2024-07-23 633

pidfd_send_signal(2) System Calls Manual pidfd_send_signal(2)

return syscall(SYS_pidfd_send_signal, pidfd, sig, info, flags);
}

int
main(int argc, char *argv[])
{

int pidfd, sig;
char path[PATH_MAX];
siginfo_t info;

if (argc != 3) {
fprintf(stderr, "Usage: %s <pid> <signal>\n", argv[0]);
exit(EXIT_FAILURE);

}

sig = atoi(argv[2]);

/* Obtain a PID file descriptor by opening the /proc/PID directory
of the target process. */

snprintf(path, sizeof(path), "/proc/%s", argv[1]);

pidfd = open(path, O_RDONLY);
if (pidfd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

/* Populate a 'siginfo_t' structure for use with
pidfd_send_signal(). */

memset(&info, 0, sizeof(info));
info.si_code = SI_QUEUE;
info.si_signo = sig;
info.si_errno = 0;
info.si_uid = getuid();
info.si_pid = getpid();
info.si_value.sival_int = 1234;

/* Send the signal. */

if (pidfd_send_signal(pidfd, sig, &info, 0) == -1) {
perror("pidfd_send_signal");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

Linux man-pages 6.13 2024-07-23 634

pidfd_send_signal(2) System Calls Manual pidfd_send_signal(2)

SEE ALSO
clone(2), kill(2), pidfd_open(2), rt_sigqueueinfo(2), sigaction(2), pid_namespaces(7),
signal(7)

Linux man-pages 6.13 2024-07-23 635

pipe(2) System Calls Manual pipe(2)

NAME
pipe, pipe2 - create pipe

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int pipe(int pipefd[2]);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h> /* Definition of O_* constants */
#include <unistd.h>

int pipe2(int pipefd[2], int flags);

/* On Alpha, IA-64, MIPS, SuperH, and SPARC/SPARC64, pipe() has the
following prototype; see VERSIONS */

#include <unistd.h>

struct fd_pair {
long fd[2];

};
struct fd_pair pipe(void);

DESCRIPTION
pipe() creates a pipe, a unidirectional data channel that can be used for interprocess
communication. The array pipefd is used to return two file descriptors referring to the
ends of the pipe. pipefd[0] refers to the read end of the pipe. pipefd[1] refers to the
write end of the pipe. Data written to the write end of the pipe is buffered by the ker-
nel until it is read from the read end of the pipe. For further details, see pipe(7).

If flags is 0, then pipe2() is the same as pipe(). The following values can be bitwise
ORed in flags to obtain different behavior:

O_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the two new file descriptors.
See the description of the same flag in open(2) for reasons why this may be
useful.

O_DIRECT (since Linux 3.4)
Create a pipe that performs I/O in "packet" mode. Each write(2) to the pipe is
dealt with as a separate packet, and read(2)s from the pipe will read one
packet at a time. Note the following points:

• Writes of greater than PIPE_BUF bytes (see pipe(7)) will be split into
multiple packets. The constant PIPE_BUF is defined in <limits.h>.

• If a read(2) specifies a buffer size that is smaller than the next packet, then
the requested number of bytes are read, and the excess bytes in the packet
are discarded. Specifying a buffer size of PIPE_BUF will be sufficient to
read the largest possible packets (see the previous point).

• Zero-length packets are not supported. (A read(2) that specifies a buffer
size of zero is a no-op, and returns 0.)

Linux man-pages 6.13 2024-07-23 636

pipe(2) System Calls Manual pipe(2)

Older kernels that do not support this flag will indicate this via an EINVAL er-
ror.

Since Linux 4.5, it is possible to change the O_DIRECT setting of a pipe file
descriptor using fcntl(2).

O_NONBLOCK
Set the O_NONBLOCK file status flag on the open file descriptions referred
to by the new file descriptors. Using this flag saves extra calls to fcntl(2) to
achieve the same result.

O_NOTIFICATION_PIPE
Since Linux 5.8, general notification mechanism is built on the top of the pipe
where kernel splices notification messages into pipes opened by user space.
The owner of the pipe has to tell the kernel which sources of events to watch
and filters can also be applied to select which subevents should be placed into
the pipe.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, errno is set to indicate the er-
ror, and pipefd is left unchanged.

On Linux (and other systems), pipe() does not modify pipefd on failure. A require-
ment standardizing this behavior was added in POSIX.1-2008 TC2. The Linux-spe-
cific pipe2() system call likewise does not modify pipefd on failure.

ERRORS
EFAULT

pipefd is not valid.

EINVAL
(pipe2()) Invalid value in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENFILE
The user hard limit on memory that can be allocated for pipes has been
reached and the caller is not privileged; see pipe(7).

ENOPKG
(pipe2()) O_NOTIFICATION_PIPE was passed in flags and support for no-
tifications (CONFIG_WATCH_QUEUE) is not compiled into the kernel.

VERSIONS
The System V ABI on some architectures allows the use of more than one register for
returning multiple values; several architectures (namely, Alpha, IA-64, MIPS, Su-
perH, and SPARC/SPARC64) (ab)use this feature in order to implement the pipe()
system call in a functional manner: the call doesn’t take any arguments and returns a
pair of file descriptors as the return value on success. The glibc pipe() wrapper func-
tion transparently deals with this. See syscall(2) for information regarding registers
used for storing second file descriptor.

Linux man-pages 6.13 2024-07-23 637

pipe(2) System Calls Manual pipe(2)

STANDARDS
pipe() POSIX.1-2008.

pipe2()
Linux.

HISTORY
pipe() POSIX.1-2001.

pipe2()
Linux 2.6.27, glibc 2.9.

EXAMPLES
The following program creates a pipe, and then fork(2)s to create a child process; the
child inherits a duplicate set of file descriptors that refer to the same pipe. After the
fork(2), each process closes the file descriptors that it doesn’t need for the pipe (see
pipe(7)). The parent then writes the string contained in the program’s command-line
argument to the pipe, and the child reads this string a byte at a time from the pipe and
echoes it on standard output.

Program source
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int pipefd[2];
char buf;
pid_t cpid;

if (argc != 2) {
fprintf(stderr, "Usage: %s <string>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (pipe(pipefd) == -1)
err(EXIT_FAILURE, "pipe");

cpid = fork();
if (cpid == -1)

err(EXIT_FAILURE, "fork");

if (cpid == 0) { /* Child reads from pipe */
if (close(pipefd[1]) == -1) /* Close unused write end */

err(EXIT_FAILURE, "close");

Linux man-pages 6.13 2024-07-23 638

pipe(2) System Calls Manual pipe(2)

while (read(pipefd[0], &buf, 1) > 0) {
if (write(STDOUT_FILENO, &buf, 1) != 1)

err(EXIT_FAILURE, "write");
}

if (write(STDOUT_FILENO, "\n", 1) != 1)
err(EXIT_FAILURE, "write");

if (close(pipefd[0]) == -1)
err(EXIT_FAILURE, "close");

_exit(EXIT_SUCCESS);

} else { /* Parent writes argv[1] to pipe */
if (close(pipefd[0]) == -1) /* Close unused read end */

err(EXIT_FAILURE, "close");
if (write(pipefd[1], argv[1], strlen(argv[1])) != strlen(argv[1]))

err(EXIT_FAILURE, "write");
if (close(pipefd[1]) == -1) /* Reader will see EOF */

err(EXIT_FAILURE, "close");
if (wait(NULL) == -1) /* Wait for child */

err(EXIT_FAILURE, "wait");
exit(EXIT_SUCCESS);

}
}

SEE ALSO
fork(2), read(2), socketpair(2), splice(2), tee(2), vmsplice(2), write(2), popen(3),
pipe(7)

Linux man-pages 6.13 2024-07-23 639

pivot_root(2) System Calls Manual pivot_root(2)

NAME
pivot_root - change the root mount

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_pivot_root, const char *new_root, const char *put_old);

Note: glibc provides no wrapper for pivot_root(), necessitating the use of syscall(2).

DESCRIPTION
pivot_root() changes the root mount in the mount namespace of the calling process.
More precisely, it moves the root mount to the directory put_old and makes new_root
the new root mount. The calling process must have the CAP_SYS_ADMIN capabil-
ity in the user namespace that owns the caller’s mount namespace.

pivot_root() changes the root directory and the current working directory of each
process or thread in the same mount namespace to new_root if they point to the old
root directory. (See also NOTES.) On the other hand, pivot_root() does not change
the caller’s current working directory (unless it is on the old root directory), and thus
it should be followed by a chdir("/") call.

The following restrictions apply:

• new_root and put_old must be directories.

• new_root and put_old must not be on the same mount as the current root.

• put_old must be at or underneath new_root; that is, adding some nonnegative
number of "/.." suffixes to the pathname pointed to by put_old must yield the
same directory as new_root.

• new_root must be a path to a mount point, but can’t be "/". A path that is not al-
ready a mount point can be converted into one by bind mounting the path onto it-
self.

• The propagation type of the parent mount of new_root and the parent mount of the
current root directory must not be MS_SHARED; similarly, if put_old is an exist-
ing mount point, its propagation type must not be MS_SHARED. These restric-
tions ensure that pivot_root() never propagates any changes to another mount
namespace.

• The current root directory must be a mount point.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
pivot_root() may fail with any of the same errors as stat(2). Additionally, it may fail
with the following errors:

Linux man-pages 6.13 2024-07-23 640

pivot_root(2) System Calls Manual pivot_root(2)

EBUSY
new_root or put_old is on the current root mount. (This error covers the
pathological case where new_root is "/".)

EINVAL
new_root is not a mount point.

EINVAL
put_old is not at or underneath new_root.

EINVAL
The current root directory is not a mount point (because of an earlier
chroot(2)).

EINVAL
The current root is on the rootfs (initial ramfs) mount; see NOTES.

EINVAL
Either the mount point at new_root, or the parent mount of that mount point,
has propagation type MS_SHARED.

EINVAL
put_old is a mount point and has the propagation type MS_SHARED.

ENOTDIR
new_root or put_old is not a directory.

EPERM
The calling process does not have the CAP_SYS_ADMIN capability.

STANDARDS
Linux.

HISTORY
Linux 2.3.41.

NOTES
A command-line interface for this system call is provided by pivot_root(8)

pivot_root() allows the caller to switch to a new root filesystem while at the same
time placing the old root mount at a location under new_root from where it can subse-
quently be unmounted. (The fact that it moves all processes that have a root directory
or current working directory on the old root directory to the new root frees the old
root directory of users, allowing the old root mount to be unmounted more easily.)

One use of pivot_root() is during system startup, when the system mounts a tempo-
rary root filesystem (e.g., an initrd(4)), then mounts the real root filesystem, and even-
tually turns the latter into the root directory of all relevant processes and threads. A
modern use is to set up a root filesystem during the creation of a container.

The fact that pivot_root() modifies process root and current working directories in the
manner noted in DESCRIPTION is necessary in order to prevent kernel threads from
keeping the old root mount busy with their root and current working directories, even
if they never access the filesystem in any way.

The rootfs (initial ramfs) cannot be pivot_root()ed. The recommended method of
changing the root filesystem in this case is to delete everything in rootfs, overmount
rootfs with the new root, attach stdin/stdout/stderr to the new /dev/console, and exec

Linux man-pages 6.13 2024-07-23 641

pivot_root(2) System Calls Manual pivot_root(2)

the new init(1)Helper programs for this process exist; see switch_root(8)

pivot_root(".", ".")
new_root and put_old may be the same directory. In particular, the following se-
quence allows a pivot-root operation without needing to create and remove a tempo-
rary directory:

chdir(new_root);
pivot_root(".", ".");
umount2(".", MNT_DETACH);

This sequence succeeds because the pivot_root() call stacks the old root mount point
on top of the new root mount point at / . At that point, the calling process’s root direc-
tory and current working directory refer to the new root mount point (new_root).
During the subsequent umount() call, resolution of "." starts with new_root and then
moves up the list of mounts stacked at / , with the result that old root mount point is
unmounted.

Historical notes
For many years, this manual page carried the following text:

pivot_root() may or may not change the current root and the current working
directory of any processes or threads which use the old root directory. The
caller of pivot_root() must ensure that processes with root or current working
directory at the old root operate correctly in either case. An easy way to en-
sure this is to change their root and current working directory to new_root be-
fore invoking pivot_root().

This text, written before the system call implementation was even finalized in the ker-
nel, was probably intended to warn users at that time that the implementation might
change before final release. However, the behavior stated in DESCRIPTION has re-
mained consistent since this system call was first implemented and will not change
now.

EXAMPLES
The program below demonstrates the use of pivot_root() inside a mount namespace
that is created using clone(2). After pivoting to the root directory named in the pro-
gram’s first command-line argument, the child created by clone(2) then executes the
program named in the remaining command-line arguments.

We demonstrate the program by creating a directory that will serve as the new root
filesystem and placing a copy of the (statically linked) busybox(1) executable in that
directory.

$ mkdir /tmp/rootfs
$ ls -id /tmp/rootfs # Show inode number of new root directory
319459 /tmp/rootfs
$ cp $(which busybox) /tmp/rootfs
$ PS1='bbsh$ ' sudo ./pivot_root_demo /tmp/rootfs /busybox sh
bbsh$ PATH=/
bbsh$ busybox ln busybox ln
bbsh$ ln busybox echo
bbsh$ ln busybox ls
bbsh$ ls

Linux man-pages 6.13 2024-07-23 642

pivot_root(2) System Calls Manual pivot_root(2)

busybox echo ln ls
bbsh$ ls -id / # Compare with inode number above
319459 /
bbsh$ echo 'hello world'
hello world

Program source

/* pivot_root_demo.c */

#define _GNU_SOURCE
#include <err.h>
#include <limits.h>
#include <sched.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/wait.h>
#include <unistd.h>

static int
pivot_root(const char *new_root, const char *put_old)
{

return syscall(SYS_pivot_root, new_root, put_old);
}

#define STACK_SIZE (1024 * 1024)

static int /* Startup function for cloned child */
child(void *arg)
{

char path[PATH_MAX];
char **args = arg;
char *new_root = args[0];
const char *put_old = "/oldrootfs";

/* Ensure that 'new_root' and its parent mount don't have
shared propagation (which would cause pivot_root() to
return an error), and prevent propagation of mount
events to the initial mount namespace. */

if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL) == -1)
err(EXIT_FAILURE, "mount-MS_PRIVATE");

/* Ensure that 'new_root' is a mount point. */

Linux man-pages 6.13 2024-07-23 643

pivot_root(2) System Calls Manual pivot_root(2)

if (mount(new_root, new_root, NULL, MS_BIND, NULL) == -1)
err(EXIT_FAILURE, "mount-MS_BIND");

/* Create directory to which old root will be pivoted. */

snprintf(path, sizeof(path), "%s/%s", new_root, put_old);
if (mkdir(path, 0777) == -1)

err(EXIT_FAILURE, "mkdir");

/* And pivot the root filesystem. */

if (pivot_root(new_root, path) == -1)
err(EXIT_FAILURE, "pivot_root");

/* Switch the current working directory to "/". */

if (chdir("/") == -1)
err(EXIT_FAILURE, "chdir");

/* Unmount old root and remove mount point. */

if (umount2(put_old, MNT_DETACH) == -1)
perror("umount2");

if (rmdir(put_old) == -1)
perror("rmdir");

/* Execute the command specified in argv[1]... */

execv(args[1], &args[1]);
err(EXIT_FAILURE, "execv");

}

int
main(int argc, char *argv[])
{

char *stack;

/* Create a child process in a new mount namespace. */

stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);

if (stack == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

if (clone(child, stack + STACK_SIZE,
CLONE_NEWNS | SIGCHLD, &argv[1]) == -1)

err(EXIT_FAILURE, "clone");

Linux man-pages 6.13 2024-07-23 644

pivot_root(2) System Calls Manual pivot_root(2)

/* Parent falls through to here; wait for child. */

if (wait(NULL) == -1)
err(EXIT_FAILURE, "wait");

exit(EXIT_SUCCESS);
}

SEE ALSO
chdir(2), chroot(2), mount(2), stat(2), initrd(4), mount_namespaces(7), pivot_root(8),
switch_root(8)

Linux man-pages 6.13 2024-07-23 645

pkey_alloc(2) System Calls Manual pkey_alloc(2)

NAME
pkey_alloc, pkey_free - allocate or free a protection key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/mman.h>

int pkey_alloc(unsigned int flags, unsigned int access_rights);
int pkey_free(int pkey);

DESCRIPTION
pkey_alloc() allocates a protection key (pkey) and allows it to be passed to
pkey_mprotect(2).

The pkey_alloc() flags is reserved for future use and currently must always be speci-
fied as 0.

The pkey_alloc() access_rights argument may contain zero or more disable opera-
tions:

PKEY_DISABLE_ACCESS
Disable all data access to memory covered by the returned protection key.

PKEY_DISABLE_WRITE
Disable write access to memory covered by the returned protection key.

pkey_free() frees a protection key and makes it available for later allocations. After a
protection key has been freed, it may no longer be used in any protection-key-related
operations.

An application should not call pkey_free() on any protection key which has been as-
signed to an address range by pkey_mprotect(2) and which is still in use. The behav-
ior in this case is undefined and may result in an error.

RETURN VALUE
On success, pkey_alloc() returns a positive protection key value. On success,
pkey_free() returns zero. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

pkey, flags, or access_rights is invalid.

ENOSPC
(pkey_alloc()) All protection keys available for the current process have been
allocated. The number of keys available is architecture-specific and imple-
mentation-specific and may be reduced by kernel-internal use of certain keys.
There are currently 15 keys available to user programs on x86.

This error will also be returned if the processor or operating system does not
support protection keys. Applications should always be prepared to handle
this error, since factors outside of the application’s control can reduce the
number of available pkeys.

Linux man-pages 6.13 2024-07-23 646

pkey_alloc(2) System Calls Manual pkey_alloc(2)

STANDARDS
Linux.

HISTORY
Linux 4.9, glibc 2.27.

NOTES
pkey_alloc() is always safe to call regardless of whether or not the operating system
supports protection keys. It can be used in lieu of any other mechanism for detecting
pkey support and will simply fail with the error ENOSPC if the operating system has
no pkey support.

The kernel guarantees that the contents of the hardware rights register (PKRU) will be
preserved only for allocated protection keys. Any time a key is unallocated (either be-
fore the first call returning that key from pkey_alloc() or after it is freed via
pkey_free()), the kernel may make arbitrary changes to the parts of the rights register
affecting access to that key.

EXAMPLES
See pkeys(7).

SEE ALSO
pkey_mprotect(2), pkeys(7)

Linux man-pages 6.13 2024-07-23 647

poll(2) System Calls Manual poll(2)

NAME
poll, ppoll - wait for some event on a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <poll.h>

int poll(struct pollfd * fds, nfds_t nfds, int timeout);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <poll.h>

int ppoll(struct pollfd * fds, nfds_t nfds,
const struct timespec *_Nullable tmo_p,
const sigset_t *_Nullable sigmask);

DESCRIPTION
poll() performs a similar task to select(2): it waits for one of a set of file descriptors to
become ready to perform I/O. The Linux-specific epoll(7) API performs a similar
task, but offers features beyond those found in poll().

The set of file descriptors to be monitored is specified in the fds argument, which is
an array of structures of the following form:

struct pollfd {
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

};

The caller should specify the number of items in the fds array in nfds.

The field fd contains a file descriptor for an open file. If this field is negative, then the
corresponding events field is ignored and the revents field returns zero. (This provides
an easy way of ignoring a file descriptor for a single poll() call: simply set the fd field
to its bitwise complement.)

The field events is an input parameter, a bit mask specifying the events the application
is interested in for the file descriptor fd . This field may be specified as zero, in which
case the only events that can be returned in revents are POLLHUP, POLLERR, and
POLLNVAL (see below).

The field revents is an output parameter, filled by the kernel with the events that actu-
ally occurred. The bits returned in revents can include any of those specified in
events, or one of the values POLLERR, POLLHUP, or POLLNVAL. (These three
bits are meaningless in the events field, and will be set in the revents field whenever
the corresponding condition is true.)

If none of the events requested (and no error) has occurred for any of the file descrip-
tors, then poll() blocks until one of the events occurs.

The timeout argument specifies the number of milliseconds that poll() should block
waiting for a file descriptor to become ready. The call will block until either:

Linux man-pages 6.13 2024-07-23 648

poll(2) System Calls Manual poll(2)

• a file descriptor becomes ready;

• the call is interrupted by a signal handler; or

• the timeout expires.

Being "ready" means that the requested operation will not block; thus, poll()ing regu-
lar files, block devices, and other files with no reasonable polling semantic always re-
turns instantly as ready to read and write.

Note that the timeout interval will be rounded up to the system clock granularity, and
kernel scheduling delays mean that the blocking interval may overrun by a small
amount. Specifying a negative value in timeout means an infinite timeout. Specifying
a timeout of zero causes poll() to return immediately, even if no file descriptors are
ready.

The bits that may be set/returned in events and revents are defined in <poll.h>:

POLLIN
There is data to read.

POLLPRI
There is some exceptional condition on the file descriptor. Possibilities in-
clude:

• There is out-of-band data on a TCP socket (see tcp(7)).

• A pseudoterminal master in packet mode has seen a state change on the
slave (see ioctl_tty(2)).

• A cgroup.events file has been modified (see cgroups(7)).

POLLOUT
Writing is now possible, though a write larger than the available space in a
socket or pipe will still block (unless O_NONBLOCK is set).

POLLRDHUP (since Linux 2.6.17)
Stream socket peer closed connection, or shut down writing half of connec-
tion. The _GNU_SOURCE feature test macro must be defined (before in-
cluding any header files) in order to obtain this definition.

POLLERR
Error condition (only returned in revents; ignored in events). This bit is also
set for a file descriptor referring to the write end of a pipe when the read end
has been closed.

POLLHUP
Hang up (only returned in revents; ignored in events). Note that when reading
from a channel such as a pipe or a stream socket, this event merely indicates
that the peer closed its end of the channel. Subsequent reads from the channel
will return 0 (end of file) only after all outstanding data in the channel has
been consumed.

POLLNVAL
Invalid request: fd not open (only returned in revents; ignored in events).

When compiling with _XOPEN_SOURCE defined, one also has the following,
which convey no further information beyond the bits listed above:

Linux man-pages 6.13 2024-07-23 649

poll(2) System Calls Manual poll(2)

POLLRDNORM
Equivalent to POLLIN.

POLLRDBAND
Priority band data can be read (generally unused on Linux).

POLLWRNORM
Equivalent to POLLOUT.

POLLWRBAND
Priority data may be written.

Linux also knows about, but does not use POLLMSG.

ppoll()
The relationship between poll() and ppoll() is analogous to the relationship between
select(2) and pselect(2): like pselect(2), ppoll() allows an application to safely wait
until either a file descriptor becomes ready or until a signal is caught.

Other than the difference in the precision of the timeout argument, the following
ppoll() call:

ready = ppoll(&fds, nfds, tmo_p, &sigmask);

is nearly equivalent to atomically executing the following calls:

sigset_t origmask;
int timeout;

timeout = (tmo_p == NULL) ? -1 :
(tmo_p->tv_sec * 1000 + tmo_p->tv_nsec / 1000000);

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = poll(&fds, nfds, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The above code segment is described as nearly equivalent because whereas a negative
timeout value for poll() is interpreted as an infinite timeout, a negative value ex-
pressed in *tmo_p results in an error from ppoll().

See the description of pselect(2) for an explanation of why ppoll() is necessary.

If the sigmask argument is specified as NULL, then no signal mask manipulation is
performed (and thus ppoll() differs from poll() only in the precision of the timeout ar-
gument).

The tmo_p argument specifies an upper limit on the amount of time that ppoll() will
block. This argument is a pointer to a timespec(3) structure.

If tmo_p is specified as NULL, then ppoll() can block indefinitely.

RETURN VALUE
On success, poll() returns a nonnegative value which is the number of elements in the
pollfds whose revents fields have been set to a nonzero value (indicating an event or
an error). A return value of zero indicates that the system call timed out before any
file descriptors became ready.

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.13 2024-07-23 650

poll(2) System Calls Manual poll(2)

ERRORS
EFAULT

fds points outside the process’s accessible address space. The array given as
argument was not contained in the calling program’s address space.

EINTR
A signal occurred before any requested event; see signal(7).

EINVAL
The nfds value exceeds the RLIMIT_NOFILE value.

EINVAL
(ppoll()) The timeout value expressed in *tmo_p is invalid (negative).

ENOMEM
Unable to allocate memory for kernel data structures.

VERSIONS
On some other UNIX systems, poll() can fail with the error EAGAIN if the system
fails to allocate kernel-internal resources, rather than ENOMEM as Linux does.
POSIX permits this behavior. Portable programs may wish to check for EAGAIN
and loop, just as with EINTR.

Some implementations define the nonstandard constant INFTIM with the value -1
for use as a timeout for poll(). This constant is not provided in glibc.

C library/kernel differences
The Linux ppoll() system call modifies its tmo_p argument. However, the glibc wrap-
per function hides this behavior by using a local variable for the timeout argument that
is passed to the system call. Thus, the glibc ppoll() function does not modify its
tmo_p argument.

The raw ppoll() system call has a fifth argument, size_t sigsetsize, which specifies the
size in bytes of the sigmask argument. The glibc ppoll() wrapper function specifies
this argument as a fixed value (equal to sizeof(kernel_sigset_t)). See sigprocmask(2)
for a discussion on the differences between the kernel and the libc notion of the sigset.

STANDARDS
poll() POSIX.1-2008.

ppoll()
Linux.

HISTORY
poll() POSIX.1-2001. Linux 2.1.23.

On older kernels that lack this system call, the glibc poll() wrapper function
provides emulation using select(2).

ppoll()
Linux 2.6.16, glibc 2.4.

NOTES
The operation of poll() and ppoll() is not affected by the O_NONBLOCK flag.

For a discussion of what may happen if a file descriptor being monitored by poll() is
closed in another thread, see select(2).

Linux man-pages 6.13 2024-07-23 651

poll(2) System Calls Manual poll(2)

BUGS
See the discussion of spurious readiness notifications under the BUGS section of se-
lect(2).

EXAMPLES
The program below opens each of the files named in its command-line arguments and
monitors the resulting file descriptors for readiness to read (POLLIN). The program
loops, repeatedly using poll() to monitor the file descriptors, printing the number of
ready file descriptors on return. For each ready file descriptor, the program:

• displays the returned revents field in a human-readable form;

• if the file descriptor is readable, reads some data from it, and displays that data on
standard output; and

• if the file descriptor was not readable, but some other event occurred (presumably
POLLHUP), closes the file descriptor.

Suppose we run the program in one terminal, asking it to open a FIFO:

$ mkfifo myfifo
$./poll_input myfifo

In a second terminal window, we then open the FIFO for writing, write some data to
it, and close the FIFO:

$ echo aaaaabbbbbccccc > myfifo

In the terminal where we are running the program, we would then see:

Opened "myfifo" on fd 3
About to poll()
Ready: 1

fd=3; events: POLLIN POLLHUP
read 10 bytes: aaaaabbbbb

About to poll()
Ready: 1

fd=3; events: POLLIN POLLHUP
read 6 bytes: ccccc

About to poll()
Ready: 1

fd=3; events: POLLHUP
closing fd 3

All file descriptors closed; bye

In the above output, we see that poll() returned three times:

• On the first return, the bits returned in the revents field were POLLIN, indicating
that the file descriptor is readable, and POLLHUP, indicating that the other end
of the FIFO has been closed. The program then consumed some of the available
input.

• The second return from poll() also indicated POLLIN and POLLHUP; the pro-
gram then consumed the last of the available input.

Linux man-pages 6.13 2024-07-23 652

poll(2) System Calls Manual poll(2)

• On the final return, poll() indicated only POLLHUP on the FIFO, at which point
the file descriptor was closed and the program terminated.

Program source

/* poll_input.c

Licensed under GNU General Public License v2 or later.
*/
#include <fcntl.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

int
main(int argc, char *argv[])
{

int ready;
char buf[10];
nfds_t num_open_fds, nfds;
ssize_t s;
struct pollfd *pfds;

if (argc < 2) {
fprintf(stderr, "Usage: %s file...\n", argv[0]);
exit(EXIT_FAILURE);

}

num_open_fds = nfds = argc - 1;
pfds = calloc(nfds, sizeof(struct pollfd));
if (pfds == NULL)

errExit("malloc");

/* Open each file on command line, and add it to 'pfds' array. */

for (nfds_t j = 0; j < nfds; j++) {
pfds[j].fd = open(argv[j + 1], O_RDONLY);
if (pfds[j].fd == -1)

errExit("open");

printf("Opened \"%s\" on fd %d\n", argv[j + 1], pfds[j].fd);

pfds[j].events = POLLIN;
}

Linux man-pages 6.13 2024-07-23 653

poll(2) System Calls Manual poll(2)

/* Keep calling poll() as long as at least one file descriptor is
open. */

while (num_open_fds > 0) {
printf("About to poll()\n");
ready = poll(pfds, nfds, -1);
if (ready == -1)

errExit("poll");

printf("Ready: %d\n", ready);

/* Deal with array returned by poll(). */

for (nfds_t j = 0; j < nfds; j++) {
if (pfds[j].revents != 0) {

printf(" fd=%d; events: %s%s%s\n", pfds[j].fd,
(pfds[j].revents & POLLIN) ? "POLLIN " : "",
(pfds[j].revents & POLLHUP) ? "POLLHUP " : "",
(pfds[j].revents & POLLERR) ? "POLLERR " : "");

if (pfds[j].revents & POLLIN) {
s = read(pfds[j].fd, buf, sizeof(buf));
if (s == -1)

errExit("read");
printf(" read %zd bytes: %.*s\n",

s, (int) s, buf);
} else { /* POLLERR | POLLHUP */

printf(" closing fd %d\n", pfds[j].fd);
if (close(pfds[j].fd) == -1)

errExit("close");
num_open_fds--;

}
}

}
}

printf("All file descriptors closed; bye\n");
exit(EXIT_SUCCESS);

}

SEE ALSO
restart_syscall(2), select(2), select_tut(2), timespec(3), epoll(7), time(7)

Linux man-pages 6.13 2024-07-23 654

posix_fadvise(2) System Calls Manual posix_fadvise(2)

NAME
posix_fadvise - predeclare an access pattern for file data

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int posix_fadvise(int fd , off_t offset, off_t size, int advice);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_fadvise():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
Programs can use posix_fadvise() to announce an intention to access file data in a
specific pattern in the future, thus allowing the kernel to perform appropriate opti-
mizations.

The advice applies to a (not necessarily existent) region starting at offset and extend-
ing for len bytes (or until the end of the file if len is 0) within the file referred to by fd.
The advice is not binding; it merely constitutes an expectation on behalf of the appli-
cation.

Permissible values for advice include:

POSIX_FADV_NORMAL
Indicates that the application has no advice to give about its access pattern for
the specified data. If no advice is given for an open file, this is the default as-
sumption.

POSIX_FADV_SEQUENTIAL
The application expects to access the specified data sequentially (with lower
offsets read before higher ones).

POSIX_FADV_RANDOM
The specified data will be accessed in random order.

POSIX_FADV_NOREUSE
The specified data will be accessed only once.

Before Linux 2.6.18, POSIX_FADV_NOREUSE had the same semantics as
POSIX_FADV_WILLNEED. This was probably a bug; from Linux 2.6.18
until Linux 6.2 this flag was a no-op. Since Linux 6.3,
POSIX_FADV_NOREUSE signals that the kernel page replacement algo-
rithm can ignore access to mapped page cache marked by this flag. This is
useful, for example, while streaming large files.

POSIX_FADV_WILLNEED
The specified data will be accessed in the near future.

POSIX_FADV_WILLNEED initiates a nonblocking read of the specified re-
gion into the page cache. The amount of data read may be decreased by the
kernel depending on virtual memory load. (A few megabytes will usually be
fully satisfied, and more is rarely useful.)

Linux man-pages 6.13 2024-11-20 655

posix_fadvise(2) System Calls Manual posix_fadvise(2)

POSIX_FADV_DONTNEED
The specified data will not be accessed in the near future.

POSIX_FADV_DONTNEED attempts to free cached pages associated with
the specified region. This is useful, for example, while streaming large files.
A program may periodically request the kernel to free cached data that has al-
ready been used, so that more useful cached pages are not discarded instead.

Requests to discard partial pages are ignored. It is preferable to preserve
needed data than discard unneeded data. If the application requires that data
be considered for discarding, then offset and size must be page-aligned.

The implementation may attempt to write back dirty pages in the specified re-
gion, but this is not guaranteed. Any unwritten dirty pages will not be freed.
If the application wishes to ensure that dirty pages will be released, it should
call fsync(2) or fdatasync(2) first.

RETURN VALUE
On success, zero is returned. On error, an error number is returned.

ERRORS
EBADF

The fd argument was not a valid file descriptor.

EINVAL
An invalid value was specified for advice.

ESPIPE
The specified file descriptor refers to a pipe or FIFO. (ESPIPE is the error
specified by POSIX, but before Linux 2.6.16, Linux returned EINVAL in this
case.)

VERSIONS
Under Linux, POSIX_FADV_NORMAL sets the readahead window to the default
size for the backing device; POSIX_FADV_SEQUENTIAL doubles this size, and
POSIX_FADV_RANDOM disables file readahead entirely.
POSIX_FADV_NOREUSE does not modify the readahead window size. These
changes affect the entire file, not just the specified region (but other open file handles
to the same file are unaffected).

C library/kernel differences
The name of the wrapper function in the C library is posix_fadvise(). The underlying
system call is called fadvise64() (or, on some architectures, fadvise64_64()); the dif-
ference between the two is that the former system call assumes that the type of the len
argument is size_t, while the latter expects loff_t there.

Architecture-specific variants
Some architectures require 64-bit arguments to be aligned in a suitable pair of regis-
ters (see syscall(2) for further detail). On such architectures, the call signature of
posix_fadvise() shown in the SYNOPSIS would force a register to be wasted as
padding between the fd and offset arguments. Therefore, these architectures define a
version of the system call that orders the arguments suitably, but is otherwise exactly
the same as posix_fadvise().

For example, since Linux 2.6.14, ARM has the following system call:

Linux man-pages 6.13 2024-11-20 656

posix_fadvise(2) System Calls Manual posix_fadvise(2)

long arm_fadvise64_64(int fd, int advice,
loff_t offset, loff_t size);

These architecture-specific details are generally hidden from applications by the glibc
posix_fadvise() wrapper function, which invokes the appropriate architecture-specific
system call.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Kernel support first appeared in Linux 2.5.60; the underlying system call is called
fadvise64(). Library support has been provided since glibc 2.2, via the wrapper func-
tion posix_fadvise().

Since Linux 3.18, support for the underlying system call is optional, depending on the
setting of the CONFIG_ADVISE_SYSCALLS configuration option.

The type of the size argument was changed from size_t to off_t in POSIX.1-2001
TC1.

NOTES
The contents of the kernel buffer cache can be cleared via the
/proc/sys/vm/drop_caches interface described in proc(5).

One can obtain a snapshot of which pages of a file are resident in the buffer cache by
opening a file, mapping it with mmap(2), and then applying mincore(2) to the map-
ping.

BUGS
Before Linux 2.6.6, if size was specified as 0, then this was interpreted literally as
"zero bytes", rather than as meaning "all bytes through to the end of the file".

SEE ALSO
fincore(1), mincore(2), readahead(2), sync_file_range(2), posix_fallocate(3),
posix_madvise(3)

Linux man-pages 6.13 2024-11-20 657

prctl(2) System Calls Manual prctl(2)

NAME
prctl - operations on a process or thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(int op, ...);

DESCRIPTION
prctl() manipulates various aspects of the behavior of the calling thread or process.

prctl() is called with a first argument describing what to do, and further arguments
with a significance depending on the first one. The first argument can be:

PR_CAP_AMBIENT
PR_CAPBSET_READ
PR_CAPBSET_DROP
PR_SET_CHILD_SUBREAPER
PR_GET_CHILD_SUBREAPER
PR_SET_DUMPABLE
PR_GET_DUMPABLE
PR_SET_ENDIAN
PR_GET_ENDIAN
PR_SET_FP_MODE
PR_GET_FP_MODE
PR_SET_FPEMU
PR_GET_FPEMU
PR_SET_FPEXC
PR_GET_FPEXC
PR_SET_IO_FLUSHER
PR_GET_IO_FLUSHER
PR_SET_KEEPCAPS
PR_GET_KEEPCAPS
PR_MCE_KILL
PR_MCE_KILL_GET
PR_SET_MM
PR_SET_VMA
PR_MPX_ENABLE_MANAGEMENT
PR_MPX_DISABLE_MANAGEMENT
PR_SET_NAME
PR_GET_NAME
PR_SET_NO_NEW_PRIVS
PR_GET_NO_NEW_PRIVS
PR_PAC_RESET_KEYS
PR_SET_PDEATHSIG
PR_GET_PDEATHSIG

Linux man-pages 6.13 2024-07-23 658

prctl(2) System Calls Manual prctl(2)

PR_SET_PTRACER
PR_SET_SECCOMP
PR_GET_SECCOMP
PR_SET_SECUREBITS
PR_GET_SECUREBITS
PR_GET_SPECULATION_CTRL
PR_SET_SPECULATION_CTRL
PR_SVE_SET_VL
PR_SVE_GET_VL
PR_SET_SYSCALL_USER_DISPATCH
PR_SET_TAGGED_ADDR_CTRL
PR_GET_TAGGED_ADDR_CTRL
PR_TASK_PERF_EVENTS_DISABLE
PR_TASK_PERF_EVENTS_ENABLE
PR_SET_THP_DISABLE
PR_GET_THP_DISABLE
PR_GET_TID_ADDRESS
PR_SET_TIMERSLACK
PR_GET_TIMERSLACK
PR_SET_TIMING
PR_GET_TIMING
PR_SET_TSC
PR_GET_TSC
PR_SET_UNALIGN
PR_GET_UNALIGN
PR_GET_AUXV
PR_SET_MDWE
PR_GET_MDWE
PR_RISCV_SET_ICACHE_FLUSH_CTX

RETURN VALUE
On success, a nonnegative value is returned. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
EINVAL

The value of op is not recognized, or not supported on this system.

EINVAL
An unused argument is nonzero.

VERSIONS
IRIX has a prctl() system call (also introduced in Linux 2.1.44 as irix_prctl on the
MIPS architecture), with prototype

ptrdiff_t prctl(int op, int arg2, int arg3);

and operations to get the maximum number of processes per user, get the maximum
number of processors the calling process can use, find out whether a specified process
is currently blocked, get or set the maximum stack size, and so on.

Linux man-pages 6.13 2024-07-23 659

prctl(2) System Calls Manual prctl(2)

STANDARDS
Linux.

HISTORY
Linux 2.1.57, glibc 2.0.6

CAVEATS
The prototype of the libc wrapper uses a variadic argument list. This makes it neces-
sary to pass the arguments with the right width. When passing numeric constants,
such as 0, use a suffix: 0L.

Careless use of some prctl() operations can confuse the user-space run-time environ-
ment, so these operations should be used with care.

SEE ALSO
signal(2), PR_CAP_AMBIENT(2const), PR_CAPBSET_READ(2const), PR_CAPB-
SET_DROP(2const), PR_SET_CHILD_SUBREAPER(2const),
PR_GET_CHILD_SUBREAPER(2const), PR_SET_DUMPABLE(2const),
PR_GET_DUMPABLE(2const), PR_SET_ENDIAN(2const), PR_GET_EN-
DIAN(2const), PR_SET_FP_MODE(2const), PR_GET_FP_MODE(2const),
PR_SET_FPEMU(2const), PR_GET_FPEMU(2const), PR_SET_FPEXC(2const),
PR_GET_FPEXC(2const), PR_SET_IO_FLUSHER(2const),
PR_GET_IO_FLUSHER(2const), PR_SET_KEEPCAPS(2const), PR_GET_KEEP-
CAPS(2const), PR_MCE_KILL(2const), PR_MCE_KILL_GET(2const),
PR_SET_MM(2const), PR_SET_VMA(2const), PR_MPX_ENABLE_MANAGE-
MENT(2const), PR_MPX_DISABLE_MANAGEMENT(2const),
PR_SET_NAME(2const), PR_GET_NAME(2const),
PR_SET_NO_NEW_PRIVS(2const), PR_GET_NO_NEW_PRIVS(2const),
PR_PAC_RESET_KEYS(2const), PR_SET_PDEATHSIG(2const),
PR_GET_PDEATHSIG(2const), PR_SET_PTRACER(2const), PR_SET_SEC-
COMP(2const), PR_GET_SECCOMP(2const), PR_SET_SECUREBITS(2const),
PR_GET_SECUREBITS(2const), PR_SET_SPECULATION_CTRL(2const),
PR_GET_SPECULATION_CTRL(2const), PR_SVE_SET_VL(2const),
PR_SVE_GET_VL(2const), PR_SET_SYSCALL_USER_DISPATCH(2const),
PR_SET_TAGGED_ADDR_CTRL(2const),
PR_GET_TAGGED_ADDR_CTRL(2const), PR_TASK_PERF_EVENTS_DIS-
ABLE(2const), PR_TASK_PERF_EVENTS_ENABLE(2const), PR_SET_THP_DIS-
ABLE(2const), PR_GET_THP_DISABLE(2const), PR_GET_TID_ADDRESS(2const),
PR_SET_TIMERSLACK(2const), PR_GET_TIMERSLACK(2const), PR_SET_TIM-
ING(2const), PR_GET_TIMING(2const), PR_SET_TSC(2const),
PR_GET_TSC(2const), PR_SET_UNALIGN(2const), PR_GET_UNALIGN(2const),
PR_GET_AUXV(2const), PR_SET_MDWE(2const), PR_GET_MDWE(2const),
PR_RISCV_SET_ICACHE_FLUSH_CTX(2const), core(5)

Linux man-pages 6.13 2024-07-23 660

pread(2) System Calls Manual pread(2)

NAME
pread, pwrite - read from or write to a file descriptor at a given offset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

ssize_t pread(int fd , void buf [.count], size_t count,
off_t offset);

ssize_t pwrite(int fd , const void buf [.count], size_t count,
off_t offset);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pread(), pwrite():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

DESCRIPTION
pread() reads up to count bytes from file descriptor fd at offset offset (from the start
of the file) into the buffer starting at buf . The file offset is not changed.

pwrite() writes up to count bytes from the buffer starting at buf to the file descriptor
fd at offset offset. The file offset is not changed.

The file referenced by fd must be capable of seeking.

RETURN VALUE
On success, pread() returns the number of bytes read (a return of zero indicates end
of file) and pwrite() returns the number of bytes written.

Note that it is not an error for a successful call to transfer fewer bytes than requested
(see read(2) and write(2)).

On error, -1 is returned and errno is set to indicate the error.

ERRORS
pread() can fail and set errno to any error specified for read(2) or lseek(2). pwrite()
can fail and set errno to any error specified for write(2) or lseek(2).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Added in Linux 2.1.60; the entries in the i386 system call table were added in Linux
2.1.69. C library support (including emulation using lseek(2) on older kernels without
the system calls) was added in glibc 2.1.

C library/kernel differences
On Linux, the underlying system calls were renamed in Linux 2.6: pread() became
pread64(), and pwrite() became pwrite64(). The system call numbers remained the
same. The glibc pread() and pwrite() wrapper functions transparently deal with the
change.

On some 32-bit architectures, the calling signature for these system calls differ, for the

Linux man-pages 6.13 2024-07-23 661

pread(2) System Calls Manual pread(2)

reasons described in syscall(2).

NOTES
The pread() and pwrite() system calls are especially useful in multithreaded applica-
tions. They allow multiple threads to perform I/O on the same file descriptor without
being affected by changes to the file offset by other threads.

BUGS
POSIX requires that opening a file with the O_APPEND flag should have no effect
on the location at which pwrite() writes data. However, on Linux, if a file is opened
with O_APPEND, pwrite() appends data to the end of the file, regardless of the value
of offset.

SEE ALSO
lseek(2), read(2), readv(2), write(2)

Linux man-pages 6.13 2024-07-23 662

process_madvise(2) System Calls Manual process_madvise(2)

NAME
process_madvise - give advice about use of memory to a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

ssize_t process_madvise(int pidfd , const struct iovec iovec[.n],
size_t n, int advice, unsigned int flags);

DESCRIPTION
The process_madvise() system call is used to give advice or directions to the kernel
about the address ranges of another process or of the calling process. It provides the
advice for the address ranges described by iovec and n. The goal of such advice is to
improve system or application performance.

The pidfd argument is a PID file descriptor (see pidfd_open(2)) that specifies the
process to which the advice is to be applied.

The pointer iovec points to an array of iovec structures, described in iovec(3type).

n specifies the number of elements in the array of iovec structures. This value must
be less than or equal to IOV_MAX (defined in <limits.h> or accessible via the call
sysconf(_SC_IOV_MAX)).

If manipulating another process, or before Linux 6.13, the advice argument is one of
the following values:

MADV_COLD
See madvise(2).

MADV_COLLAPSE
See madvise(2).

MADV_PAGEOUT
See madvise(2).

MADV_WILLNEED
See madvise(2).

Since Linux 6.13, when manipulating the calling process, any advice flag is permitted.

The flags argument is reserved for future use; currently, this argument must be speci-
fied as 0.

The n and iovec arguments are checked before applying any advice. If n is too big, or
iovec is invalid, then an error will be returned immediately and no advice will be ap-
plied.

The advice might be applied to only a part of iovec if one of its elements points to an
invalid memory region in the remote process. No further elements will be processed
beyond that point. (See the discussion regarding partial advice in RETURN VALUE.)

Since Linux 5.12, permission to apply advice to another process is governed by ptrace
access mode PTRACE_MODE_READ_FSCREDS check (see ptrace(2)); in addi-
tion, because of the performance implications of applying the advice, the caller must
have the CAP_SYS_NICE capability (see capabilities(7)).

Linux man-pages 6.13 2024-12-04 663

process_madvise(2) System Calls Manual process_madvise(2)

RETURN VALUE
On success, process_madvise() returns the number of bytes advised. This return
value may be less than the total number of requested bytes, if an error occurred after
some iovec elements were already processed. The caller should check the return
value to determine whether a partial advice occurred.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EBADF

pidfd is not a valid PID file descriptor.

EFAULT
The memory described by iovec is outside the accessible address space of the
process referred to by pidfd .

EINVAL
flags is not 0.

EINVAL
The sum of the iov_len values of iovec overflows a ssize_t value.

EINVAL
n is too large.

ENOMEM
Could not allocate memory for internal copies of the iovec structures.

EPERM
The caller does not have permission to access the address space of the process
pidfd .

ESRCH
The target process does not exist (i.e., it has terminated and been waited on).

See madvise(2) for advice-specific errors.

STANDARDS
Linux.

HISTORY
Linux 5.10. glibc 2.36.

Support for this system call is optional, depending on the setting of the CON-
FIG_ADVISE_SYSCALLS configuration option.

When this system call first appeared in Linux 5.10, permission to apply advice to an-
other process was entirely governed by ptrace access mode PTRACE_MODE_AT-
TACH_FSCREDS check (see ptrace(2)). This requirement was relaxed in Linux
5.12 so that the caller didn’t require full control over the target process.

SEE ALSO
madvise(2), pidfd_open(2), process_vm_readv(2), process_vm_write(2)

Linux man-pages 6.13 2024-12-04 664

process_vm_readv(2) System Calls Manual process_vm_readv(2)

NAME
process_vm_readv, process_vm_writev - transfer data between process address
spaces

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/uio.h>

ssize_t process_vm_readv(pid_t pid ,
const struct iovec *local_iov,
unsigned long liovcnt,
const struct iovec *remote_iov,
unsigned long riovcnt,
unsigned long flags);

ssize_t process_vm_writev(pid_t pid ,
const struct iovec *local_iov,
unsigned long liovcnt,
const struct iovec *remote_iov,
unsigned long riovcnt,
unsigned long flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

process_vm_readv(), process_vm_writev():
_GNU_SOURCE

DESCRIPTION
These system calls transfer data between the address space of the calling process ("the
local process") and the process identified by pid ("the remote process"). The data
moves directly between the address spaces of the two processes, without passing
through kernel space.

The process_vm_readv() system call transfers data from the remote process to the lo-
cal process. The data to be transferred is identified by remote_iov and riovcnt:
remote_iov is a pointer to an array describing address ranges in the process pid , and
riovcnt specifies the number of elements in remote_iov. The data is transferred to the
locations specified by local_iov and liovcnt: local_iov is a pointer to an array describ-
ing address ranges in the calling process, and liovcnt specifies the number of elements
in local_iov.

The process_vm_writev() system call is the converse of process_vm_readv()—it
transfers data from the local process to the remote process. Other than the direction of
the transfer, the arguments liovcnt, local_iov, riovcnt, and remote_iov have the same
meaning as for process_vm_readv().

The local_iov and remote_iov arguments point to an array of iovec structures, de-
scribed in iovec(3type).

Buffers are processed in array order. This means that process_vm_readv() com-
pletely fills local_iov[0] before proceeding to local_iov[1], and so on. Likewise,
remote_iov[0] is completely read before proceeding to remote_iov[1], and so on.

Similarly, process_vm_writev() writes out the entire contents of local_iov[0] before

Linux man-pages 6.13 2024-07-23 665

process_vm_readv(2) System Calls Manual process_vm_readv(2)

proceeding to local_iov[1], and it completely fills remote_iov[0] before proceeding to
remote_iov[1].

The lengths of remote_iov[i].iov_len and local_iov[i].iov_len do not have to be the
same. Thus, it is possible to split a single local buffer into multiple remote buffers, or
vice versa.

The flags argument is currently unused and must be set to 0.

The values specified in the liovcnt and riovcnt arguments must be less than or equal to
IOV_MAX (defined in <limits.h> or accessible via the call
sysconf(_SC_IOV_MAX)).

The count arguments and local_iov are checked before doing any transfers. If the
counts are too big, or local_iov is invalid, or the addresses refer to regions that are in-
accessible to the local process, none of the vectors will be processed and an error will
be returned immediately.

Note, however, that these system calls do not check the memory regions in the remote
process until just before doing the read/write. Consequently, a partial read/write (see
RETURN VALUE) may result if one of the remote_iov elements points to an invalid
memory region in the remote process. No further reads/writes will be attempted be-
yond that point. Keep this in mind when attempting to read data of unknown length
(such as C strings that are null-terminated) from a remote process, by avoiding span-
ning memory pages (typically 4 KiB) in a single remote iovec element. (Instead, split
the remote read into two remote_iov elements and have them merge back into a single
write local_iov entry. The first read entry goes up to the page boundary, while the
second starts on the next page boundary.)

Permission to read from or write to another process is governed by a ptrace access
mode PTRACE_MODE_ATTACH_REALCREDS check; see ptrace(2).

RETURN VALUE
On success, process_vm_readv() returns the number of bytes read and
process_vm_writev() returns the number of bytes written. This return value may be
less than the total number of requested bytes, if a partial read/write occurred. (Partial
transfers apply at the granularity of iovec elements. These system calls won’t perform
a partial transfer that splits a single iovec element.) The caller should check the return
value to determine whether a partial read/write occurred.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EFAULT

The memory described by local_iov is outside the caller’s accessible address
space.

EFAULT
The memory described by remote_iov is outside the accessible address space
of the process pid .

EINVAL
The sum of the iov_len values of either local_iov or remote_iov overflows a
ssize_t value.

Linux man-pages 6.13 2024-07-23 666

process_vm_readv(2) System Calls Manual process_vm_readv(2)

EINVAL
flags is not 0.

EINVAL
liovcnt or riovcnt is too large.

ENOMEM
Could not allocate memory for internal copies of the iovec structures.

EPERM
The caller does not have permission to access the address space of the process
pid .

ESRCH
No process with ID pid exists.

STANDARDS
Linux.

HISTORY
Linux 3.2, glibc 2.15.

NOTES
The data transfers performed by process_vm_readv() and process_vm_writev() are
not guaranteed to be atomic in any way.

These system calls were designed to permit fast message passing by allowing mes-
sages to be exchanged with a single copy operation (rather than the double copy that
would be required when using, for example, shared memory or pipes).

EXAMPLES
The following code sample demonstrates the use of process_vm_readv(). It reads 20
bytes at the address 0x10000 from the process with PID 10 and writes the first 10
bytes into buf1 and the second 10 bytes into buf2.

#define _GNU_SOURCE
#include <stdlib.h>
#include <sys/types.h>
#include <sys/uio.h>

int
main(void)
{

char buf1[10];
char buf2[10];
pid_t pid = 10; /* PID of remote process */
ssize_t nread;
struct iovec local[2];
struct iovec remote[1];

local[0].iov_base = buf1;
local[0].iov_len = 10;
local[1].iov_base = buf2;
local[1].iov_len = 10;
remote[0].iov_base = (void *) 0x10000;

Linux man-pages 6.13 2024-07-23 667

process_vm_readv(2) System Calls Manual process_vm_readv(2)

remote[0].iov_len = 20;

nread = process_vm_readv(pid, local, 2, remote, 1, 0);
if (nread != 20)

exit(EXIT_FAILURE);

exit(EXIT_SUCCESS);
}

SEE ALSO
readv(2), writev(2)

Linux man-pages 6.13 2024-07-23 668

ptrace(2) System Calls Manual ptrace(2)

NAME
ptrace - process trace

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ptrace.h>

long ptrace(enum __ptrace_request op, pid_t pid ,
void *addr, void *data);

DESCRIPTION
The ptrace() system call provides a means by which one process (the "tracer") may
observe and control the execution of another process (the "tracee"), and examine and
change the tracee’s memory and registers. It is primarily used to implement break-
point debugging and system call tracing.

A tracee first needs to be attached to the tracer. Attachment and subsequent com-
mands are per thread: in a multithreaded process, every thread can be individually at-
tached to a (potentially different) tracer, or left not attached and thus not debugged.
Therefore, "tracee" always means "(one) thread", never "a (possibly multithreaded)
process". Ptrace commands are always sent to a specific tracee using a call of the
form

ptrace(PTRACE_foo, pid, ...)

where pid is the thread ID of the corresponding Linux thread.

(Note that in this page, a "multithreaded process" means a thread group consisting of
threads created using the clone(2) CLONE_THREAD flag.)

A process can initiate a trace by calling fork(2) and having the resulting child do a
PTRACE_TRACEME, followed (typically) by an execve(2). Alternatively, one
process may commence tracing another process using PTRACE_ATTACH or
PTRACE_SEIZE.

While being traced, the tracee will stop each time a signal is delivered, even if the sig-
nal is being ignored. (An exception is SIGKILL, which has its usual effect.) The
tracer will be notified at its next call to waitpid(2) (or one of the related "wait" system
calls); that call will return a status value containing information that indicates the
cause of the stop in the tracee. While the tracee is stopped, the tracer can use various
ptrace operations to inspect and modify the tracee. The tracer then causes the tracee
to continue, optionally ignoring the delivered signal (or even delivering a different sig-
nal instead).

If the PTRACE_O_TRACEEXEC option is not in effect, all successful calls to ex-
ecve(2) by the traced process will cause it to be sent a SIGTRAP signal, giving the
parent a chance to gain control before the new program begins execution.

When the tracer is finished tracing, it can cause the tracee to continue executing in a
normal, untraced mode via PTRACE_DETACH.

The value of op determines the operation to be performed:

Linux man-pages 6.13 2024-11-17 669

ptrace(2) System Calls Manual ptrace(2)

PTRACE_TRACEME
Indicate that this process is to be traced by its parent. A process probably
shouldn’t make this operation if its parent isn’t expecting to trace it. (pid ,
addr, and data are ignored.)

The PTRACE_TRACEME operation is used only by the tracee; the remain-
ing operations are used only by the tracer. In the following operations, pid
specifies the thread ID of the tracee to be acted on. For operations other than
PTRACE_ATTACH, PTRACE_SEIZE, PTRACE_INTERRUPT, and
PTRACE_KILL, the tracee must be stopped.

PTRACE_PEEKTEXT
PTRACE_PEEKDATA

Read a word at the address addr in the tracee’s memory, returning the word as
the result of the ptrace() call. Linux does not have separate text and data ad-
dress spaces, so these two operations are currently equivalent. (data is ig-
nored; but see NOTES.)

PTRACE_PEEKUSER
Read a word at offset addr in the tracee’s USER area, which holds the regis-
ters and other information about the process (see <sys/user.h>). The word is
returned as the result of the ptrace() call. Typically, the offset must be word-
aligned, though this might vary by architecture. See NOTES. (data is ig-
nored; but see NOTES.)

PTRACE_POKETEXT
PTRACE_POKEDATA

Copy the word data to the address addr in the tracee’s memory. As for
PTRACE_PEEKTEXT and PTRACE_PEEKDATA, these two operations
are currently equivalent.

PTRACE_POKEUSER
Copy the word data to offset addr in the tracee’s USER area. As for
PTRACE_PEEKUSER, the offset must typically be word-aligned. In order
to maintain the integrity of the kernel, some modifications to the USER area
are disallowed.

PTRACE_GETREGS
PTRACE_GETFPREGS

Copy the tracee’s general-purpose or floating-point registers, respectively, to
the address data in the tracer. See <sys/user.h> for information on the format
of this data. (addr is ignored.) Note that SPARC systems have the meaning
of data and addr reversed; that is, data is ignored and the registers are copied
to the address addr. PTRACE_GETREGS and PTRACE_GETFPREGS
are not present on all architectures.

PTRACE_GETREGSET (since Linux 2.6.34)
Read the tracee’s registers. addr specifies, in an architecture-dependent way,
the type of registers to be read. NT_PRSTATUS (with numerical value 1)
usually results in reading of general-purpose registers. If the CPU has, for ex-
ample, floating-point and/or vector registers, they can be retrieved by setting
addr to the corresponding NT_foo constant. data points to a struct iovec,
which describes the destination buffer’s location and size. On return, the

Linux man-pages 6.13 2024-11-17 670

ptrace(2) System Calls Manual ptrace(2)

kernel modifies iov.len to indicate the actual number of bytes returned.

PTRACE_SETREGS
PTRACE_SETFPREGS

Modify the tracee’s general-purpose or floating-point registers, respectively,
from the address data in the tracer. As for PTRACE_POKEUSER, some
general-purpose register modifications may be disallowed. (addr is ignored.)
Note that SPARC systems have the meaning of data and addr reversed; that
is, data is ignored and the registers are copied from the address addr.
PTRACE_SETREGS and PTRACE_SETFPREGS are not present on all ar-
chitectures.

PTRACE_SETREGSET (since Linux 2.6.34)
Modify the tracee’s registers. The meaning of addr and data is analogous to
PTRACE_GETREGSET.

PTRACE_GETSIGINFO (since Linux 2.3.99-pre6)
Retrieve information about the signal that caused the stop. Copy a siginfo_t
structure (see sigaction(2)) from the tracee to the address data in the tracer.
(addr is ignored.)

PTRACE_SETSIGINFO (since Linux 2.3.99-pre6)
Set signal information: copy a siginfo_t structure from the address data in the
tracer to the tracee. This will affect only signals that would normally be deliv-
ered to the tracee and were caught by the tracer. It may be difficult to tell
these normal signals from synthetic signals generated by ptrace() itself. (addr
is ignored.)

PTRACE_PEEKSIGINFO (since Linux 3.10)
Retrieve siginfo_t structures without removing signals from a queue. addr
points to a ptrace_peeksiginfo_args structure that specifies the ordinal posi-
tion from which copying of signals should start, and the number of signals to
copy. siginfo_t structures are copied into the buffer pointed to by data. The
return value contains the number of copied signals (zero indicates that there is
no signal corresponding to the specified ordinal position). Within the returned
siginfo structures, the si_code field includes information (__SI_CHLD,
__SI_FAULT, etc.) that are not otherwise exposed to user space.

struct ptrace_peeksiginfo_args {
u64 off; /* Ordinal position in queue at which

to start copying signals */
u32 flags; /* PTRACE_PEEKSIGINFO_SHARED or 0 */
s32 nr; /* Number of signals to copy */

};

Currently, there is only one flag, PTRACE_PEEKSIGINFO_SHARED, for
dumping signals from the process-wide signal queue. If this flag is not set,
signals are read from the per-thread queue of the specified thread.

PTRACE_GETSIGMASK (since Linux 3.11)
Place a copy of the mask of blocked signals (see sigprocmask(2)) in the buffer
pointed to by data, which should be a pointer to a buffer of type sigset_t. The
addr argument contains the size of the buffer pointed to by data (i.e.,

Linux man-pages 6.13 2024-11-17 671

ptrace(2) System Calls Manual ptrace(2)

sizeof(sigset_t)).

PTRACE_SETSIGMASK (since Linux 3.11)
Change the mask of blocked signals (see sigprocmask(2)) to the value speci-
fied in the buffer pointed to by data, which should be a pointer to a buffer of
type sigset_t. The addr argument contains the size of the buffer pointed to by
data (i.e., sizeof(sigset_t)).

PTRACE_SETOPTIONS (since Linux 2.4.6; see BUGS for caveats)
Set ptrace options from data. (addr is ignored.) data is interpreted as a bit
mask of options, which are specified by the following flags:

PTRACE_O_EXITKILL (since Linux 3.8)
Send a SIGKILL signal to the tracee if the tracer exits. This option is
useful for ptrace jailers that want to ensure that tracees can never es-
cape the tracer’s control.

PTRACE_O_TRACECLONE (since Linux 2.5.46)
Stop the tracee at the next clone(2) and automatically start tracing the
newly cloned process, which will start with a SIGSTOP, or
PTRACE_EVENT_STOP if PTRACE_SEIZE was used. A wait-
pid(2) by the tracer will return a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_CLONE<<8))

The PID of the new process can be retrieved with
PTRACE_GETEVENTMSG.

This option may not catch clone(2) calls in all cases. If the tracee calls
clone(2) with the CLONE_VFORK flag,
PTRACE_EVENT_VFORK will be delivered instead if
PTRACE_O_TRACEVFORK is set; otherwise if the tracee calls
clone(2) with the exit signal set to SIGCHLD,
PTRACE_EVENT_FORK will be delivered if
PTRACE_O_TRACEFORK is set.

PTRACE_O_TRACEEXEC (since Linux 2.5.46)
Stop the tracee at the next execve(2). A waitpid(2) by the tracer will
return a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_EXEC<<8))

If the execing thread is not a thread group leader, the thread ID is reset
to thread group leader’s ID before this stop. Since Linux 3.0, the for-
mer thread ID can be retrieved with PTRACE_GETEVENTMSG.

PTRACE_O_TRACEEXIT (since Linux 2.5.60)
Stop the tracee at exit. A waitpid(2) by the tracer will return a status
value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_EXIT<<8))

The tracee’s exit status can be retrieved with
PTRACE_GETEVENTMSG.

The tracee is stopped early during process exit, when registers are still
available, allowing the tracer to see where the exit occurred, whereas

Linux man-pages 6.13 2024-11-17 672

ptrace(2) System Calls Manual ptrace(2)

the normal exit notification is done after the process is finished exiting.
Even though context is available, the tracer cannot prevent the exit
from happening at this point.

PTRACE_O_TRACEFORK (since Linux 2.5.46)
Stop the tracee at the next fork(2) and automatically start tracing the
newly forked process, which will start with a SIGSTOP, or
PTRACE_EVENT_STOP if PTRACE_SEIZE was used. A wait-
pid(2) by the tracer will return a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_FORK<<8))

The PID of the new process can be retrieved with
PTRACE_GETEVENTMSG.

PTRACE_O_TRACESYSGOOD (since Linux 2.4.6)
When delivering system call traps, set bit 7 in the signal number (i.e.,
deliver SIGTRAP|0x80). This makes it easy for the tracer to distin-
guish normal traps from those caused by a system call.

PTRACE_O_TRACEVFORK (since Linux 2.5.46)
Stop the tracee at the next vfork(2) and automatically start tracing the
newly vforked process, which will start with a SIGSTOP, or
PTRACE_EVENT_STOP if PTRACE_SEIZE was used. A wait-
pid(2) by the tracer will return a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_VFORK<<8))

The PID of the new process can be retrieved with
PTRACE_GETEVENTMSG.

PTRACE_O_TRACEVFORKDONE (since Linux 2.5.60)
Stop the tracee at the completion of the next vfork(2). A waitpid(2) by
the tracer will return a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_VFORK_DONE<<8))

The PID of the new process can (since Linux 2.6.18) be retrieved with
PTRACE_GETEVENTMSG.

PTRACE_O_TRACESECCOMP (since Linux 3.5)
Stop the tracee when a seccomp(2) SECCOMP_RET_TRACE rule is
triggered. A waitpid(2) by the tracer will return a status value such
that

status>>8 == (SIGTRAP | (PTRACE_EVENT_SECCOMP<<8))

While this triggers a PTRACE_EVENT stop, it is similar to a syscall-
enter-stop. For details, see the note on PTRACE_EVENT_SEC-
COMP below. The seccomp event message data (from the SEC-
COMP_RET_DATA portion of the seccomp filter rule) can be re-
trieved with PTRACE_GETEVENTMSG.

PTRACE_O_SUSPEND_SECCOMP (since Linux 4.3)
Suspend the tracee’s seccomp protections. This applies regardless of
mode, and can be used when the tracee has not yet installed seccomp
filters. That is, a valid use case is to suspend a tracee’s seccomp

Linux man-pages 6.13 2024-11-17 673

ptrace(2) System Calls Manual ptrace(2)

protections before they are installed by the tracee, let the tracee install
the filters, and then clear this flag when the filters should be resumed.
Setting this option requires that the tracer have the CAP_SYS_AD-
MIN capability, not have any seccomp protections installed, and not
have PTRACE_O_SUSPEND_SECCOMP set on itself.

PTRACE_GETEVENTMSG (since Linux 2.5.46)
Retrieve a message (as an unsigned long) about the ptrace event that just hap-
pened, placing it at the address data in the tracer. For
PTRACE_EVENT_EXIT, this is the tracee’s exit status. For
PTRACE_EVENT_FORK, PTRACE_EVENT_VFORK,
PTRACE_EVENT_VFORK_DONE, and PTRACE_EVENT_CLONE,
this is the PID of the new process. For PTRACE_EVENT_SECCOMP, this
is the seccomp(2) filter’s SECCOMP_RET_DATA associated with the trig-
gered rule. (addr is ignored.)

PTRACE_CONT
Restart the stopped tracee process. If data is nonzero, it is interpreted as the
number of a signal to be delivered to the tracee; otherwise, no signal is deliv-
ered. Thus, for example, the tracer can control whether a signal sent to the
tracee is delivered or not. (addr is ignored.)

PTRACE_SYSCALL
PTRACE_SINGLESTEP

Restart the stopped tracee as for PTRACE_CONT, but arrange for the tracee
to be stopped at the next entry to or exit from a system call, or after execution
of a single instruction, respectively. (The tracee will also, as usual, be stopped
upon receipt of a signal.) From the tracer’s perspective, the tracee will appear
to have been stopped by receipt of a SIGTRAP. So, for
PTRACE_SYSCALL, for example, the idea is to inspect the arguments to the
system call at the first stop, then do another PTRACE_SYSCALL and inspect
the return value of the system call at the second stop. The data argument is
treated as for PTRACE_CONT. (addr is ignored.)

PTRACE_SET_SYSCALL (since Linux 2.6.16)
When in syscall-enter-stop, change the number of the system call that is about
to be executed to the number specified in the data argument. The addr argu-
ment is ignored. This operation is currently supported only on arm (and
arm64, though only for backwards compatibility), but most other architectures
have other means of accomplishing this (usually by changing the register that
the userland code passed the system call number in).

PTRACE_SYSEMU
PTRACE_SYSEMU_SINGLESTEP (since Linux 2.6.14)

For PTRACE_SYSEMU, continue and stop on entry to the next system call,
which will not be executed. See the documentation on syscall-stops below.
For PTRACE_SYSEMU_SINGLESTEP, do the same but also singlestep if
not a system call. This call is used by programs like User Mode Linux that
want to emulate all the tracee’s system calls. The data argument is treated as
for PTRACE_CONT. The addr argument is ignored. These operations are
currently supported only on x86.

Linux man-pages 6.13 2024-11-17 674

ptrace(2) System Calls Manual ptrace(2)

PTRACE_LISTEN (since Linux 3.4)
Restart the stopped tracee, but prevent it from executing. The resulting state of
the tracee is similar to a process which has been stopped by a SIGSTOP (or
other stopping signal). See the "group-stop" subsection for additional infor-
mation. PTRACE_LISTEN works only on tracees attached by
PTRACE_SEIZE.

PTRACE_KILL
Send the tracee a SIGKILL to terminate it. (addr and data are ignored.)

This operation is deprecated; do not use it! Instead, send a SIGKILL directly
using kill(2) or tgkill(2). The problem with PTRACE_KILL is that it requires
the tracee to be in signal-delivery-stop, otherwise it may not work (i.e., may
complete successfully but won’t kill the tracee). By contrast, sending a
SIGKILL directly has no such limitation.

PTRACE_INTERRUPT (since Linux 3.4)
Stop a tracee. If the tracee is running or sleeping in kernel space and
PTRACE_SYSCALL is in effect, the system call is interrupted and syscall-
exit-stop is reported. (The interrupted system call is restarted when the tracee
is restarted.) If the tracee was already stopped by a signal and PTRACE_LIS-
TEN was sent to it, the tracee stops with PTRACE_EVENT_STOP and
WSTOPSIG(status) returns the stop signal. If any other ptrace-stop is gener-
ated at the same time (for example, if a signal is sent to the tracee), this ptrace-
stop happens. If none of the above applies (for example, if the tracee is run-
ning in user space), it stops with PTRACE_EVENT_STOP with WSTOP-
SIG(status) == SIGTRAP. PTRACE_INTERRUPT only works on tracees
attached by PTRACE_SEIZE.

PTRACE_ATTACH
Attach to the process specified in pid , making it a tracee of the calling
process. The tracee is sent a SIGSTOP, but will not necessarily have stopped
by the completion of this call; use waitpid(2) to wait for the tracee to stop.
See the "Attaching and detaching" subsection for additional information.
(addr and data are ignored.)

Permission to perform a PTRACE_ATTACH is governed by a ptrace access
mode PTRACE_MODE_ATTACH_REALCREDS check; see below.

PTRACE_SEIZE (since Linux 3.4)
Attach to the process specified in pid , making it a tracee of the calling
process. Unlike PTRACE_ATTACH, PTRACE_SEIZE does not stop the
process. Group-stops are reported as PTRACE_EVENT_STOP and
WSTOPSIG(status) returns the stop signal. Automatically attached children
stop with PTRACE_EVENT_STOP and WSTOPSIG(status) returns SIG-
TRAP instead of having SIGSTOP signal delivered to them. execve(2) does
not deliver an extra SIGTRAP. Only a PTRACE_SEIZEd process can ac-
cept PTRACE_INTERRUPT and PTRACE_LISTEN commands. The
"seized" behavior just described is inherited by children that are automatically
attached using PTRACE_O_TRACEFORK, PTRACE_O_TRACEV-
FORK, and PTRACE_O_TRACECLONE. addr must be zero. data con-
tains a bit mask of ptrace options to activate immediately.

Linux man-pages 6.13 2024-11-17 675

ptrace(2) System Calls Manual ptrace(2)

Permission to perform a PTRACE_SEIZE is governed by a ptrace access
mode PTRACE_MODE_ATTACH_REALCREDS check; see below.

PTRACE_SECCOMP_GET_FILTER (since Linux 4.4)
This operation allows the tracer to dump the tracee’s classic BPF filters.

addr is an integer specifying the index of the filter to be dumped. The most
recently installed filter has the index 0. If addr is greater than the number of
installed filters, the operation fails with the error ENOENT.

data is either a pointer to a struct sock_filter array that is large enough to store
the BPF program, or NULL if the program is not to be stored.

Upon success, the return value is the number of instructions in the BPF pro-
gram. If data was NULL, then this return value can be used to correctly size
the struct sock_filter array passed in a subsequent call.

This operation fails with the error EACCES if the caller does not have the
CAP_SYS_ADMIN capability or if the caller is in strict or filter seccomp
mode. If the filter referred to by addr is not a classic BPF filter, the operation
fails with the error EMEDIUMTYPE.

This operation is available if the kernel was configured with both the CON-
FIG_SECCOMP_FILTER and the CONFIG_CHECKPOINT_RESTORE
options.

PTRACE_DETACH
Restart the stopped tracee as for PTRACE_CONT, but first detach from it.
Under Linux, a tracee can be detached in this way regardless of which method
was used to initiate tracing. (addr is ignored.)

PTRACE_GET_THREAD_AREA (since Linux 2.6.0)
This operation performs a similar task to get_thread_area(2). It reads the TLS
entry in the GDT whose index is given in addr, placing a copy of the entry
into the struct user_desc pointed to by data. (By contrast with
get_thread_area(2), the entry_number of the struct user_desc is ignored.)

PTRACE_SET_THREAD_AREA (since Linux 2.6.0)
This operation performs a similar task to set_thread_area(2). It sets the TLS
entry in the GDT whose index is given in addr, assigning it the data supplied
in the struct user_desc pointed to by data. (By contrast with
set_thread_area(2), the entry_number of the struct user_desc is ignored; in
other words, this ptrace operation can’t be used to allocate a free TLS entry.)

PTRACE_GET_SYSCALL_INFO (since Linux 5.3)
Retrieve information about the system call that caused the stop. The informa-
tion is placed into the buffer pointed by the data argument, which should be a
pointer to a buffer of type struct ptrace_syscall_info. The addr argument con-
tains the size of the buffer pointed to by the data argument (i.e., sizeof(struct
ptrace_syscall_info)). The return value contains the number of bytes available
to be written by the kernel. If the size of the data to be written by the kernel
exceeds the size specified by the addr argument, the output data is truncated.

The ptrace_syscall_info structure contains the following fields:

Linux man-pages 6.13 2024-11-17 676

ptrace(2) System Calls Manual ptrace(2)

struct ptrace_syscall_info {
__u8 op; /* Type of system call stop */
__u32 arch; /* AUDIT_ARCH_* value; see seccomp(2) */
__u64 instruction_pointer; /* CPU instruction pointer */
__u64 stack_pointer; /* CPU stack pointer */
union {

struct { /* op == PTRACE_SYSCALL_INFO_ENTRY */
__u64 nr; /* System call number */
__u64 args[6]; /* System call arguments */

} entry;
struct { /* op == PTRACE_SYSCALL_INFO_EXIT */

__s64 rval; /* System call return value */
__u8 is_error; /* System call error flag;

Boolean: does rval contain
an error value (-ERRCODE) or
a nonerror return value? */

} exit;
struct { /* op == PTRACE_SYSCALL_INFO_SECCOMP */

__u64 nr; /* System call number */
__u64 args[6]; /* System call arguments */
__u32 ret_data; /* SECCOMP_RET_DATA portion

of SECCOMP_RET_TRACE
return value */

} seccomp;
};

};

The op, arch, instruction_pointer, and stack_pointer fields are defined for all
kinds of ptrace system call stops. The rest of the structure is a union; one
should read only those fields that are meaningful for the kind of system call
stop specified by the op field.

The op field has one of the following values (defined in <linux/ptrace.h>) in-
dicating what type of stop occurred and which part of the union is filled:

PTRACE_SYSCALL_INFO_ENTRY
The entry component of the union contains information relating to a
system call entry stop.

PTRACE_SYSCALL_INFO_EXIT
The exit component of the union contains information relating to a sys-
tem call exit stop.

PTRACE_SYSCALL_INFO_SECCOMP
The seccomp component of the union contains information relating to
a PTRACE_EVENT_SECCOMP stop.

PTRACE_SYSCALL_INFO_NONE
No component of the union contains relevant information.

In case of system call entry or exit stops, the data returned by
PTRACE_GET_SYSCALL_INFO is limited to type
PTRACE_SYSCALL_INFO_NONE unless

Linux man-pages 6.13 2024-11-17 677

ptrace(2) System Calls Manual ptrace(2)

PTRACE_O_TRACESYSGOOD option is set before the corresponding sys-
tem call stop has occurred.

Death under ptrace
When a (possibly multithreaded) process receives a killing signal (one whose disposi-
tion is set to SIG_DFL and whose default action is to kill the process), all threads
exit. Tracees report their death to their tracer(s). Notification of this event is deliv-
ered via waitpid(2).

Note that the killing signal will first cause signal-delivery-stop (on one tracee only),
and only after it is injected by the tracer (or after it was dispatched to a thread which
isn’t traced), will death from the signal happen on all tracees within a multithreaded
process. (The term "signal-delivery-stop" is explained below.)

SIGKILL does not generate signal-delivery-stop and therefore the tracer can’t sup-
press it. SIGKILL kills even within system calls (syscall-exit-stop is not generated
prior to death by SIGKILL). The net effect is that SIGKILL always kills the process
(all its threads), even if some threads of the process are ptraced.

When the tracee calls _exit(2), it reports its death to its tracer. Other threads are not
affected.

When any thread executes exit_group(2), every tracee in its thread group reports its
death to its tracer.

If the PTRACE_O_TRACEEXIT option is on, PTRACE_EVENT_EXIT will hap-
pen before actual death. This applies to exits via exit(2), exit_group(2), and signal
deaths (except SIGKILL, depending on the kernel version; see BUGS below), and
when threads are torn down on execve(2) in a multithreaded process.

The tracer cannot assume that the ptrace-stopped tracee exists. There are many sce-
narios when the tracee may die while stopped (such as SIGKILL). Therefore, the
tracer must be prepared to handle an ESRCH error on any ptrace operation. Unfortu-
nately, the same error is returned if the tracee exists but is not ptrace-stopped (for
commands which require a stopped tracee), or if it is not traced by the process which
issued the ptrace call. The tracer needs to keep track of the stopped/running state of
the tracee, and interpret ESRCH as "tracee died unexpectedly" only if it knows that
the tracee has been observed to enter ptrace-stop. Note that there is no guarantee that
waitpid(WNOHANG) will reliably report the tracee’s death status if a ptrace operation
returned ESRCH. waitpid(WNOHANG) may return 0 instead. In other words, the
tracee may be "not yet fully dead", but already refusing ptrace operations.

The tracer can’t assume that the tracee always ends its life by reporting WIFEX-
ITED(status) or WIFSIGNALED(status); there are cases where this does not occur.
For example, if a thread other than thread group leader does an execve(2), it disap-
pears; its PID will never be seen again, and any subsequent ptrace stops will be re-
ported under the thread group leader’s PID.

Stopped states
A tracee can be in two states: running or stopped. For the purposes of ptrace, a tracee
which is blocked in a system call (such as read(2), pause(2), etc.) is nevertheless con-
sidered to be running, even if the tracee is blocked for a long time. The state of the
tracee after PTRACE_LISTEN is somewhat of a gray area: it is not in any ptrace-
stop (ptrace commands won’t work on it, and it will deliver waitpid(2) notifications),

Linux man-pages 6.13 2024-11-17 678

ptrace(2) System Calls Manual ptrace(2)

but it also may be considered "stopped" because it is not executing instructions (is not
scheduled), and if it was in group-stop before PTRACE_LISTEN, it will not respond
to signals until SIGCONT is received.

There are many kinds of states when the tracee is stopped, and in ptrace discussions
they are often conflated. Therefore, it is important to use precise terms.

In this manual page, any stopped state in which the tracee is ready to accept ptrace
commands from the tracer is called ptrace-stop. Ptrace-stops can be further subdi-
vided into signal-delivery-stop, group-stop, syscall-stop, PTRACE_EVENT stops, and
so on. These stopped states are described in detail below.

When the running tracee enters ptrace-stop, it notifies its tracer using waitpid(2) (or
one of the other "wait" system calls). Most of this manual page assumes that the
tracer waits with:

pid = waitpid(pid_or_minus_1, &status, __WALL);

Ptrace-stopped tracees are reported as returns with pid greater than 0 and WIF-
STOPPED(status) true.

The __WALL flag does not include the WSTOPPED and WEXITED flags, but im-
plies their functionality.

Setting the WCONTINUED flag when calling waitpid(2) is not recommended: the
"continued" state is per-process and consuming it can confuse the real parent of the
tracee.

Use of the WNOHANG flag may cause waitpid(2) to return 0 ("no wait results avail-
able yet") even if the tracer knows there should be a notification. Example:

errno = 0;
ptrace(PTRACE_CONT, pid, 0L, 0L);
if (errno == ESRCH) {

/* tracee is dead */
r = waitpid(tracee, &status, __WALL | WNOHANG);
/* r can still be 0 here! */

}

The following kinds of ptrace-stops exist: signal-delivery-stops, group-stops,
PTRACE_EVENT stops, syscall-stops. They all are reported by waitpid(2) with
WIFSTOPPED(status) true. They may be differentiated by examining the value sta-
tus>>8, and if there is ambiguity in that value, by querying PTRACE_GETSIG-
INFO. (Note: the WSTOPSIG(status) macro can’t be used to perform this examina-
tion, because it returns the value (status>>8) & 0xff .)

Signal-delivery-stop
When a (possibly multithreaded) process receives any signal except SIGKILL, the
kernel selects an arbitrary thread which handles the signal. (If the signal is generated
with tgkill(2), the target thread can be explicitly selected by the caller.) If the selected
thread is traced, it enters signal-delivery-stop. At this point, the signal is not yet deliv-
ered to the process, and can be suppressed by the tracer. If the tracer doesn’t suppress
the signal, it passes the signal to the tracee in the next ptrace restart operation. This
second step of signal delivery is called signal injection in this manual page. Note that
if the signal is blocked, signal-delivery-stop doesn’t happen until the signal is

Linux man-pages 6.13 2024-11-17 679

ptrace(2) System Calls Manual ptrace(2)

unblocked, with the usual exception that SIGSTOP can’t be blocked.

Signal-delivery-stop is observed by the tracer as waitpid(2) returning with WIF-
STOPPED(status) true, with the signal returned by WSTOPSIG(status). If the signal
is SIGTRAP, this may be a different kind of ptrace-stop; see the "Syscall-stops" and
"execve" sections below for details. If WSTOPSIG(status) returns a stopping signal,
this may be a group-stop; see below.

Signal injection and suppression
After signal-delivery-stop is observed by the tracer, the tracer should restart the tracee
with the call

ptrace(PTRACE_restart, pid, 0, sig)

where PTRACE_restart is one of the restarting ptrace operations. If sig is 0, then a
signal is not delivered. Otherwise, the signal sig is delivered. This operation is called
signal injection in this manual page, to distinguish it from signal-delivery-stop.

The sig value may be different from the WSTOPSIG(status) value: the tracer can
cause a different signal to be injected.

Note that a suppressed signal still causes system calls to return prematurely. In this
case, system calls will be restarted: the tracer will observe the tracee to reexecute the
interrupted system call (or restart_syscall(2) system call for a few system calls which
use a different mechanism for restarting) if the tracer uses PTRACE_SYSCALL.
Even system calls (such as poll(2)) which are not restartable after signal are restarted
after signal is suppressed; however, kernel bugs exist which cause some system calls
to fail with EINTR even though no observable signal is injected to the tracee.

Restarting ptrace commands issued in ptrace-stops other than signal-delivery-stop are
not guaranteed to inject a signal, even if sig is nonzero. No error is reported; a
nonzero sig may simply be ignored. Ptrace users should not try to "create a new sig-
nal" this way: use tgkill(2) instead.

The fact that signal injection operations may be ignored when restarting the tracee af-
ter ptrace stops that are not signal-delivery-stops is a cause of confusion among ptrace
users. One typical scenario is that the tracer observes group-stop, mistakes it for sig-
nal-delivery-stop, restarts the tracee with

ptrace(PTRACE_restart, pid, 0, stopsig)

with the intention of injecting stopsig, but stopsig gets ignored and the tracee contin-
ues to run.

The SIGCONT signal has a side effect of waking up (all threads of) a group-stopped
process. This side effect happens before signal-delivery-stop. The tracer can’t sup-
press this side effect (it can only suppress signal injection, which only causes the
SIGCONT handler to not be executed in the tracee, if such a handler is installed). In
fact, waking up from group-stop may be followed by signal-delivery-stop for signal(s)
other than SIGCONT, if they were pending when SIGCONT was delivered. In
other words, SIGCONT may be not the first signal observed by the tracee after it was
sent.

Stopping signals cause (all threads of) a process to enter group-stop. This side effect
happens after signal injection, and therefore can be suppressed by the tracer.

Linux man-pages 6.13 2024-11-17 680

ptrace(2) System Calls Manual ptrace(2)

In Linux 2.4 and earlier, the SIGSTOP signal can’t be injected.

PTRACE_GETSIGINFO can be used to retrieve a siginfo_t structure which corre-
sponds to the delivered signal. PTRACE_SETSIGINFO may be used to modify it.
If PTRACE_SETSIGINFO has been used to alter siginfo_t, the si_signo field and
the sig parameter in the restarting command must match, otherwise the result is unde-
fined.

Group-stop
When a (possibly multithreaded) process receives a stopping signal, all threads stop.
If some threads are traced, they enter a group-stop. Note that the stopping signal will
first cause signal-delivery-stop (on one tracee only), and only after it is injected by the
tracer (or after it was dispatched to a thread which isn’t traced), will group-stop be ini-
tiated on all tracees within the multithreaded process. As usual, every tracee reports
its group-stop separately to the corresponding tracer.

Group-stop is observed by the tracer as waitpid(2) returning with WIFSTOPPED(sta-
tus) true, with the stopping signal available via WSTOPSIG(status). The same result
is returned by some other classes of ptrace-stops, therefore the recommended practice
is to perform the call

ptrace(PTRACE_GETSIGINFO, pid, 0, &siginfo)

The call can be avoided if the signal is not SIGSTOP, SIGTSTP, SIGTTIN, or
SIGTTOU; only these four signals are stopping signals. If the tracer sees something
else, it can’t be a group-stop. Otherwise, the tracer needs to call PTRACE_GET-
SIGINFO. If PTRACE_GETSIGINFO fails with EINVAL, then it is definitely a
group-stop. (Other failure codes are possible, such as ESRCH ("no such process") if
a SIGKILL killed the tracee.)

If tracee was attached using PTRACE_SEIZE, group-stop is indicated by
PTRACE_EVENT_STOP: status>>16 == PTRACE_EVENT_STOP. This allows
detection of group-stops without requiring an extra PTRACE_GETSIGINFO call.

As of Linux 2.6.38, after the tracer sees the tracee ptrace-stop and until it restarts or
kills it, the tracee will not run, and will not send notifications (except SIGKILL
death) to the tracer, even if the tracer enters into another waitpid(2) call.

The kernel behavior described in the previous paragraph causes a problem with trans-
parent handling of stopping signals. If the tracer restarts the tracee after group-stop,
the stopping signal is effectively ignored—the tracee doesn’t remain stopped, it runs.
If the tracer doesn’t restart the tracee before entering into the next waitpid(2), future
SIGCONT signals will not be reported to the tracer; this would cause the SIGCONT
signals to have no effect on the tracee.

Since Linux 3.4, there is a method to overcome this problem: instead of
PTRACE_CONT, a PTRACE_LISTEN command can be used to restart a tracee in
a way where it does not execute, but waits for a new event which it can report via
waitpid(2) (such as when it is restarted by a SIGCONT).

PTRACE_EVENT stops
If the tracer sets PTRACE_O_TRACE_* options, the tracee will enter ptrace-stops
called PTRACE_EVENT stops.

PTRACE_EVENT stops are observed by the tracer as waitpid(2) returning with

Linux man-pages 6.13 2024-11-17 681

ptrace(2) System Calls Manual ptrace(2)

WIFSTOPPED(status), and WSTOPSIG(status) returns SIGTRAP (or for
PTRACE_EVENT_STOP, returns the stopping signal if tracee is in a group-stop).
An additional bit is set in the higher byte of the status word: the value status>>8 will
be

((PTRACE_EVENT_foo<<8) | SIGTRAP).

The following events exist:

PTRACE_EVENT_VFORK
Stop before return from vfork(2) or clone(2) with the CLONE_VFORK flag.
When the tracee is continued after this stop, it will wait for child to exit/exec
before continuing its execution (in other words, the usual behavior on
vfork(2)).

PTRACE_EVENT_FORK
Stop before return from fork(2) or clone(2) with the exit signal set to
SIGCHLD.

PTRACE_EVENT_CLONE
Stop before return from clone(2).

PTRACE_EVENT_VFORK_DONE
Stop before return from vfork(2) or clone(2) with the CLONE_VFORK flag,
but after the child unblocked this tracee by exiting or execing.

For all four stops described above, the stop occurs in the parent (i.e., the tracee), not in
the newly created thread. PTRACE_GETEVENTMSG can be used to retrieve the
new thread’s ID.

PTRACE_EVENT_EXEC
Stop before return from execve(2). Since Linux 3.0,
PTRACE_GETEVENTMSG returns the former thread ID.

PTRACE_EVENT_EXIT
Stop before exit (including death from exit_group(2)), signal death, or exit
caused by execve(2) in a multithreaded process.
PTRACE_GETEVENTMSG returns the exit status. Registers can be exam-
ined (unlike when "real" exit happens). The tracee is still alive; it needs to be
PTRACE_CONTed or PTRACE_DETACHed to finish exiting.

PTRACE_EVENT_STOP
Stop induced by PTRACE_INTERRUPT command, or group-stop, or initial
ptrace-stop when a new child is attached (only if attached using
PTRACE_SEIZE).

PTRACE_EVENT_SECCOMP
Stop triggered by a seccomp(2) rule on tracee syscall entry when
PTRACE_O_TRACESECCOMP has been set by the tracer. The seccomp
event message data (from the SECCOMP_RET_DATA portion of the sec-
comp filter rule) can be retrieved with PTRACE_GETEVENTMSG. The se-
mantics of this stop are described in detail in a separate section below.

PTRACE_GETSIGINFO on PTRACE_EVENT stops returns SIGTRAP in
si_signo, with si_code set to (event<<8) | SIGTRAP.

Linux man-pages 6.13 2024-11-17 682

ptrace(2) System Calls Manual ptrace(2)

Syscall-stops
If the tracee was restarted by PTRACE_SYSCALL or PTRACE_SYSEMU, the
tracee enters syscall-enter-stop just prior to entering any system call (which will not
be executed if the restart was using PTRACE_SYSEMU, regardless of any change
made to registers at this point or how the tracee is restarted after this stop). No matter
which method caused the syscall-entry-stop, if the tracer restarts the tracee with
PTRACE_SYSCALL, the tracee enters syscall-exit-stop when the system call is fin-
ished, or if it is interrupted by a signal. (That is, signal-delivery-stop never happens
between syscall-enter-stop and syscall-exit-stop; it happens after syscall-exit-stop.).
If the tracee is continued using any other method (including PTRACE_SYSEMU),
no syscall-exit-stop occurs. Note that all mentions PTRACE_SYSEMU apply
equally to PTRACE_SYSEMU_SINGLESTEP.

However, even if the tracee was continued using PTRACE_SYSCALL, it is not guar-
anteed that the next stop will be a syscall-exit-stop. Other possibilities are that the
tracee may stop in a PTRACE_EVENT stop (including seccomp stops), exit (if it en-
tered _exit(2) or exit_group(2)), be killed by SIGKILL, or die silently (if it is a thread
group leader, the execve(2) happened in another thread, and that thread is not traced
by the same tracer; this situation is discussed later).

Syscall-enter-stop and syscall-exit-stop are observed by the tracer as waitpid(2) re-
turning with WIFSTOPPED(status) true, and WSTOPSIG(status) giving SIGTRAP.
If the PTRACE_O_TRACESYSGOOD option was set by the tracer, then WSTOP-
SIG(status) will give the value (SIGTRAP | 0x80).

Syscall-stops can be distinguished from signal-delivery-stop with SIGTRAP by
querying PTRACE_GETSIGINFO for the following cases:

si_code <= 0
SIGTRAP was delivered as a result of a user-space action, for example, a sys-
tem call (tgkill(2), kill(2), sigqueue(3), etc.), expiration of a POSIX timer,
change of state on a POSIX message queue, or completion of an asynchronous
I/O operation.

si_code == SI_KERNEL (0x80)
SIGTRAP was sent by the kernel.

si_code == SIGTRAP or si_code == (SIGTRAP|0x80)
This is a syscall-stop.

However, syscall-stops happen very often (twice per system call), and performing
PTRACE_GETSIGINFO for every syscall-stop may be somewhat expensive.

Some architectures allow the cases to be distinguished by examining registers. For
example, on x86, rax == -ENOSYS in syscall-enter-stop. Since SIGTRAP (like any
other signal) always happens after syscall-exit-stop, and at this point rax almost never
contains -ENOSYS, the SIGTRAP looks like "syscall-stop which is not syscall-
enter-stop"; in other words, it looks like a "stray syscall-exit-stop" and can be detected
this way. But such detection is fragile and is best avoided.

Using the PTRACE_O_TRACESYSGOOD option is the recommended method to
distinguish syscall-stops from other kinds of ptrace-stops, since it is reliable and does
not incur a performance penalty.

Syscall-enter-stop and syscall-exit-stop are indistinguishable from each other by the

Linux man-pages 6.13 2024-11-17 683

ptrace(2) System Calls Manual ptrace(2)

tracer. The tracer needs to keep track of the sequence of ptrace-stops in order to not
misinterpret syscall-enter-stop as syscall-exit-stop or vice versa. In general, a syscall-
enter-stop is always followed by syscall-exit-stop, PTRACE_EVENT stop, or the
tracee’s death; no other kinds of ptrace-stop can occur in between. However, note that
seccomp stops (see below) can cause syscall-exit-stops, without preceding syscall-en-
try-stops. If seccomp is in use, care needs to be taken not to misinterpret such stops
as syscall-entry-stops.

If after syscall-enter-stop, the tracer uses a restarting command other than
PTRACE_SYSCALL, syscall-exit-stop is not generated.

PTRACE_GETSIGINFO on syscall-stops returns SIGTRAP in si_signo, with
si_code set to SIGTRAP or (SIGTRAP|0x80).

PTRACE_EVENT_SECCOMP stops (Linux 3.5 to Linux 4.7)
The behavior of PTRACE_EVENT_SECCOMP stops and their interaction with
other kinds of ptrace stops has changed between kernel versions. This documents the
behavior from their introduction until Linux 4.7 (inclusive). The behavior in later ker-
nel versions is documented in the next section.

A PTRACE_EVENT_SECCOMP stop occurs whenever a SEC-
COMP_RET_TRACE rule is triggered. This is independent of which methods was
used to restart the system call. Notably, seccomp still runs even if the tracee was
restarted using PTRACE_SYSEMU and this system call is unconditionally skipped.

Restarts from this stop will behave as if the stop had occurred right before the system
call in question. In particular, both PTRACE_SYSCALL and PTRACE_SYSEMU
will normally cause a subsequent syscall-entry-stop. However, if after the
PTRACE_EVENT_SECCOMP the system call number is negative, both the syscall-
entry-stop and the system call itself will be skipped. This means that if the system
call number is negative after a PTRACE_EVENT_SECCOMP and the tracee is
restarted using PTRACE_SYSCALL, the next observed stop will be a syscall-exit-
stop, rather than the syscall-entry-stop that might have been expected.

PTRACE_EVENT_SECCOMP stops (since Linux 4.8)
Starting with Linux 4.8, the PTRACE_EVENT_SECCOMP stop was reordered to
occur between syscall-entry-stop and syscall-exit-stop. Note that seccomp no longer
runs (and no PTRACE_EVENT_SECCOMP will be reported) if the system call is
skipped due to PTRACE_SYSEMU.

Functionally, a PTRACE_EVENT_SECCOMP stop functions comparably to a
syscall-entry-stop (i.e., continuations using PTRACE_SYSCALL will cause syscall-
exit-stops, the system call number may be changed and any other modified registers
are visible to the to-be-executed system call as well). Note that there may be, but
need not have been a preceding syscall-entry-stop.

After a PTRACE_EVENT_SECCOMP stop, seccomp will be rerun, with a SEC-
COMP_RET_TRACE rule now functioning the same as a SECCOMP_RET_AL-
LOW. Specifically, this means that if registers are not modified during the
PTRACE_EVENT_SECCOMP stop, the system call will then be allowed.

PTRACE_SINGLESTEP stops
[Details of these kinds of stops are yet to be documented.]

Linux man-pages 6.13 2024-11-17 684

ptrace(2) System Calls Manual ptrace(2)

Informational and restarting ptrace commands
Most ptrace commands (all except PTRACE_ATTACH, PTRACE_SEIZE,
PTRACE_TRACEME, PTRACE_INTERRUPT, and PTRACE_KILL) require
the tracee to be in a ptrace-stop, otherwise they fail with ESRCH.

When the tracee is in ptrace-stop, the tracer can read and write data to the tracee using
informational commands. These commands leave the tracee in ptrace-stopped state:

ptrace(PTRACE_PEEKTEXT/PEEKDATA/PEEKUSER, pid, addr, 0);
ptrace(PTRACE_POKETEXT/POKEDATA/POKEUSER, pid, addr, long_val);
ptrace(PTRACE_GETREGS/GETFPREGS, pid, 0, &struct);
ptrace(PTRACE_SETREGS/SETFPREGS, pid, 0, &struct);
ptrace(PTRACE_GETREGSET, pid, NT_foo, &iov);
ptrace(PTRACE_SETREGSET, pid, NT_foo, &iov);
ptrace(PTRACE_GETSIGINFO, pid, 0, &siginfo);
ptrace(PTRACE_SETSIGINFO, pid, 0, &siginfo);
ptrace(PTRACE_GETEVENTMSG, pid, 0, &long_var);
ptrace(PTRACE_SETOPTIONS, pid, 0, PTRACE_O_flags);

Note that some errors are not reported. For example, setting signal information (sig-
info) may have no effect in some ptrace-stops, yet the call may succeed (return 0 and
not set errno); querying PTRACE_GETEVENTMSG may succeed and return some
random value if current ptrace-stop is not documented as returning a meaningful event
message.

The call

ptrace(PTRACE_SETOPTIONS, pid, 0, PTRACE_O_flags);

affects one tracee. The tracee’s current flags are replaced. Flags are inherited by new
tracees created and "auto-attached" via active PTRACE_O_TRACEFORK,
PTRACE_O_TRACEVFORK, or PTRACE_O_TRACECLONE options.

Another group of commands makes the ptrace-stopped tracee run. They have the
form:

ptrace(cmd, pid, 0, sig);

where cmd is PTRACE_CONT, PTRACE_LISTEN, PTRACE_DETACH,
PTRACE_SYSCALL, PTRACE_SINGLESTEP, PTRACE_SYSEMU, or
PTRACE_SYSEMU_SINGLESTEP. If the tracee is in signal-delivery-stop, sig is
the signal to be injected (if it is nonzero). Otherwise, sig may be ignored. (When
restarting a tracee from a ptrace-stop other than signal-delivery-stop, recommended
practice is to always pass 0 in sig.)

Attaching and detaching
A thread can be attached to the tracer using the call

ptrace(PTRACE_ATTACH, pid, 0, 0);

or

ptrace(PTRACE_SEIZE, pid, 0, PTRACE_O_flags);

PTRACE_ATTACH sends SIGSTOP to this thread. If the tracer wants this
SIGSTOP to have no effect, it needs to suppress it. Note that if other signals are con-
currently sent to this thread during attach, the tracer may see the tracee enter signal-

Linux man-pages 6.13 2024-11-17 685

ptrace(2) System Calls Manual ptrace(2)

delivery-stop with other signal(s) first! The usual practice is to reinject these signals
until SIGSTOP is seen, then suppress SIGSTOP injection. The design bug here is
that a ptrace attach and a concurrently delivered SIGSTOP may race and the concur-
rent SIGSTOP may be lost.

Since attaching sends SIGSTOP and the tracer usually suppresses it, this may cause a
stray EINTR return from the currently executing system call in the tracee, as de-
scribed in the "Signal injection and suppression" section.

Since Linux 3.4, PTRACE_SEIZE can be used instead of PTRACE_ATTACH.
PTRACE_SEIZE does not stop the attached process. If you need to stop it after at-
tach (or at any other time) without sending it any signals, use PTRACE_INTER-
RUPT command.

The operation

ptrace(PTRACE_TRACEME, 0, 0, 0);

turns the calling thread into a tracee. The thread continues to run (doesn’t enter
ptrace-stop). A common practice is to follow the PTRACE_TRACEME with

raise(SIGSTOP);

and allow the parent (which is our tracer now) to observe our signal-delivery-stop.

If the PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK, or
PTRACE_O_TRACECLONE options are in effect, then children created by, respec-
tively, vfork(2) or clone(2) with the CLONE_VFORK flag, fork(2) or clone(2) with
the exit signal set to SIGCHLD, and other kinds of clone(2), are automatically at-
tached to the same tracer which traced their parent. SIGSTOP is delivered to the
children, causing them to enter signal-delivery-stop after they exit the system call
which created them.

Detaching of the tracee is performed by:

ptrace(PTRACE_DETACH, pid, 0, sig);

PTRACE_DETACH is a restarting operation; therefore it requires the tracee to be in
ptrace-stop. If the tracee is in signal-delivery-stop, a signal can be injected. Other-
wise, the sig parameter may be silently ignored.

If the tracee is running when the tracer wants to detach it, the usual solution is to send
SIGSTOP (using tgkill(2), to make sure it goes to the correct thread), wait for the
tracee to stop in signal-delivery-stop for SIGSTOP and then detach it (suppressing
SIGSTOP injection). A design bug is that this can race with concurrent SIGSTOPs.
Another complication is that the tracee may enter other ptrace-stops and needs to be
restarted and waited for again, until SIGSTOP is seen. Yet another complication is to
be sure that the tracee is not already ptrace-stopped, because no signal delivery hap-
pens while it is—not even SIGSTOP.

If the tracer dies, all tracees are automatically detached and restarted, unless they were
in group-stop. Handling of restart from group-stop is currently buggy, but the "as
planned" behavior is to leave tracee stopped and waiting for SIGCONT. If the tracee
is restarted from signal-delivery-stop, the pending signal is injected.

Linux man-pages 6.13 2024-11-17 686

ptrace(2) System Calls Manual ptrace(2)

execve(2) under ptrace
When one thread in a multithreaded process calls execve(2), the kernel destroys all
other threads in the process, and resets the thread ID of the execing thread to the
thread group ID (process ID). (Or, to put things another way, when a multithreaded
process does an execve(2), at completion of the call, it appears as though the execve(2)
occurred in the thread group leader, regardless of which thread did the execve(2).)
This resetting of the thread ID looks very confusing to tracers:

• All other threads stop in PTRACE_EVENT_EXIT stop, if the
PTRACE_O_TRACEEXIT option was turned on. Then all other threads except
the thread group leader report death as if they exited via _exit(2) with exit code 0.

• The execing tracee changes its thread ID while it is in the execve(2). (Remember,
under ptrace, the "pid" returned from waitpid(2), or fed into ptrace calls, is the
tracee’s thread ID.) That is, the tracee’s thread ID is reset to be the same as its
process ID, which is the same as the thread group leader’s thread ID.

• Then a PTRACE_EVENT_EXEC stop happens, if the PTRACE_O_TRACE-
EXEC option was turned on.

• If the thread group leader has reported its PTRACE_EVENT_EXIT stop by this
time, it appears to the tracer that the dead thread leader "reappears from nowhere".
(Note: the thread group leader does not report death via WIFEXITED(status) until
there is at least one other live thread. This eliminates the possibility that the tracer
will see it dying and then reappearing.) If the thread group leader was still alive,
for the tracer this may look as if thread group leader returns from a different sys-
tem call than it entered, or even "returned from a system call even though it was
not in any system call". If the thread group leader was not traced (or was traced
by a different tracer), then during execve(2) it will appear as if it has become a
tracee of the tracer of the execing tracee.

All of the above effects are the artifacts of the thread ID change in the tracee.

The PTRACE_O_TRACEEXEC option is the recommended tool for dealing with
this situation. First, it enables PTRACE_EVENT_EXEC stop, which occurs before
execve(2) returns. In this stop, the tracer can use PTRACE_GETEVENTMSG to re-
trieve the tracee’s former thread ID. (This feature was introduced in Linux 3.0.) Sec-
ond, the PTRACE_O_TRACEEXEC option disables legacy SIGTRAP generation
on execve(2).

When the tracer receives PTRACE_EVENT_EXEC stop notification, it is guaran-
teed that except this tracee and the thread group leader, no other threads from the
process are alive.

On receiving the PTRACE_EVENT_EXEC stop notification, the tracer should clean
up all its internal data structures describing the threads of this process, and retain only
one data structure—one which describes the single still running tracee, with

thread ID == thread group ID == process ID.

Example: two threads call execve(2) at the same time:

*** we get syscall-enter-stop in thread 1: **
PID1 execve("/bin/foo", "foo" <unfinished ...>
*** we issue PTRACE_SYSCALL for thread 1 **

Linux man-pages 6.13 2024-11-17 687

ptrace(2) System Calls Manual ptrace(2)

*** we get syscall-enter-stop in thread 2: **
PID2 execve("/bin/bar", "bar" <unfinished ...>
*** we issue PTRACE_SYSCALL for thread 2 **
*** we get PTRACE_EVENT_EXEC for PID0, we issue PTRACE_SYSCALL **
*** we get syscall-exit-stop for PID0: **
PID0 <... execve resumed>) = 0

If the PTRACE_O_TRACEEXEC option is not in effect for the execing tracee, and
if the tracee was PTRACE_ATTACHed rather that PTRACE_SEIZEd, the kernel
delivers an extra SIGTRAP to the tracee after execve(2) returns. This is an ordinary
signal (similar to one which can be generated by kill -TRAP), not a special kind of
ptrace-stop. Employing PTRACE_GETSIGINFO for this signal returns si_code set
to 0 (SI_USER). This signal may be blocked by signal mask, and thus may be deliv-
ered (much) later.

Usually, the tracer (for example, strace(1)) would not want to show this extra post-ex-
ecve SIGTRAP signal to the user, and would suppress its delivery to the tracee (if
SIGTRAP is set to SIG_DFL, it is a killing signal). However, determining which
SIGTRAP to suppress is not easy. Setting the PTRACE_O_TRACEEXEC option
or using PTRACE_SEIZE and thus suppressing this extra SIGTRAP is the recom-
mended approach.

Real parent
The ptrace API (ab)uses the standard UNIX parent/child signaling over waitpid(2).
This used to cause the real parent of the process to stop receiving several kinds of
waitpid(2) notifications when the child process is traced by some other process.

Many of these bugs have been fixed, but as of Linux 2.6.38 several still exist; see
BUGS below.

As of Linux 2.6.38, the following is believed to work correctly:

• exit/death by signal is reported first to the tracer, then, when the tracer consumes
the waitpid(2) result, to the real parent (to the real parent only when the whole
multithreaded process exits). If the tracer and the real parent are the same process,
the report is sent only once.

RETURN VALUE
On success, the PTRACE_PEEK* operations return the requested data (but see
NOTES), the PTRACE_SECCOMP_GET_FILTER operation returns the number
of instructions in the BPF program, the PTRACE_GET_SYSCALL_INFO opera-
tion returns the number of bytes available to be written by the kernel, and other opera-
tions return zero.

On error, all operations return -1, and errno is set to indicate the error. Since the
value returned by a successful PTRACE_PEEK* operation may be -1, the caller
must clear errno before the call, and then check it afterward to determine whether or
not an error occurred.

ERRORS
EBUSY

(i386 only) There was an error with allocating or freeing a debug register.

Linux man-pages 6.13 2024-11-17 688

ptrace(2) System Calls Manual ptrace(2)

EFAULT
There was an attempt to read from or write to an invalid area in the tracer’s or
the tracee’s memory, probably because the area wasn’t mapped or accessible.
Unfortunately, under Linux, different variations of this fault will return EIO or
EFAULT more or less arbitrarily.

EINVAL
An attempt was made to set an invalid option.

EIO op is invalid, or an attempt was made to read from or write to an invalid area
in the tracer’s or the tracee’s memory, or there was a word-alignment violation,
or an invalid signal was specified during a restart operation.

EPERM
The specified process cannot be traced. This could be because the tracer has
insufficient privileges (the required capability is CAP_SYS_PTRACE); un-
privileged processes cannot trace processes that they cannot send signals to or
those running set-user-ID/set-group-ID programs, for obvious reasons. Alter-
natively, the process may already be being traced, or (before Linux 2.6.26) be
init(1) (PID 1).

ESRCH
The specified process does not exist, or is not currently being traced by the
caller, or is not stopped (for operations that require a stopped tracee).

STANDARDS
None.

HISTORY
SVr4, 4.3BSD.

Before Linux 2.6.26, init(1), the process with PID 1, may not be traced.

NOTES
Although arguments to ptrace() are interpreted according to the prototype given, glibc
currently declares ptrace() as a variadic function with only the op argument fixed. It
is recommended to always supply four arguments, even if the requested operation
does not use them, setting unused/ignored arguments to 0L or (void *) 0.

A tracees parent continues to be the tracer even if that tracer calls execve(2).

The layout of the contents of memory and the USER area are quite operating-system-
and architecture-specific. The offset supplied, and the data returned, might not en-
tirely match with the definition of struct user.

The size of a "word" is determined by the operating-system variant (e.g., for 32-bit
Linux it is 32 bits).

This page documents the way the ptrace() call works currently in Linux. Its behavior
differs significantly on other flavors of UNIX. In any case, use of ptrace() is highly
specific to the operating system and architecture.

Ptrace access mode checking
Various parts of the kernel-user-space API (not just ptrace() operations), require so-
called "ptrace access mode" checks, whose outcome determines whether an operation
is permitted (or, in a few cases, causes a "read" operation to return sanitized data).

Linux man-pages 6.13 2024-11-17 689

ptrace(2) System Calls Manual ptrace(2)

These checks are performed in cases where one process can inspect sensitive informa-
tion about, or in some cases modify the state of, another process. The checks are
based on factors such as the credentials and capabilities of the two processes, whether
or not the "target" process is dumpable, and the results of checks performed by any
enabled Linux Security Module (LSM)—for example, SELinux, Yama, or Smack—
and by the commoncap LSM (which is always invoked).

Prior to Linux 2.6.27, all access checks were of a single type. Since Linux 2.6.27,
two access mode levels are distinguished:

PTRACE_MODE_READ
For "read" operations or other operations that are less dangerous, such as:
get_robust_list(2); kcmp(2); reading /proc/ pid /auxv, /proc/ pid /environ, or
/proc/ pid /stat; or readlink(2) of a /proc/ pid /ns/* file.

PTRACE_MODE_ATTACH
For "write" operations, or other operations that are more dangerous, such as:
ptrace attaching (PTRACE_ATTACH) to another process or calling
process_vm_writev(2). (PTRACE_MODE_ATTACH was effectively the de-
fault before Linux 2.6.27.)

Since Linux 4.5, the above access mode checks are combined (ORed) with one of the
following modifiers:

PTRACE_MODE_FSCREDS
Use the caller’s filesystem UID and GID (see credentials(7)) or effective capa-
bilities for LSM checks.

PTRACE_MODE_REALCREDS
Use the caller’s real UID and GID or permitted capabilities for LSM checks.
This was effectively the default before Linux 4.5.

Because combining one of the credential modifiers with one of the aforementioned ac-
cess modes is typical, some macros are defined in the kernel sources for the combina-
tions:

PTRACE_MODE_READ_FSCREDS
Defined as PTRACE_MODE_READ | PTRACE_MODE_FSCREDS.

PTRACE_MODE_READ_REALCREDS
Defined as PTRACE_MODE_READ | PTRACE_MODE_REALCREDS.

PTRACE_MODE_ATTACH_FSCREDS
Defined as PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS.

PTRACE_MODE_ATTACH_REALCREDS
Defined as PTRACE_MODE_ATTACH | PTRACE_MODE_REAL-
CREDS.

One further modifier can be ORed with the access mode:

PTRACE_MODE_NOAUDIT (since Linux 3.3)
Don’t audit this access mode check. This modifier is employed for ptrace ac-
cess mode checks (such as checks when reading /proc/ pid /stat) that merely
cause the output to be filtered or sanitized, rather than causing an error to be
returned to the caller. In these cases, accessing the file is not a security

Linux man-pages 6.13 2024-11-17 690

ptrace(2) System Calls Manual ptrace(2)

violation and there is no reason to generate a security audit record. This modi-
fier suppresses the generation of such an audit record for the particular access
check.

Note that all of the PTRACE_MODE_* constants described in this subsection are
kernel-internal, and not visible to user space. The constant names are mentioned here
in order to label the various kinds of ptrace access mode checks that are performed for
various system calls and accesses to various pseudofiles (e.g., under /proc). These
names are used in other manual pages to provide a simple shorthand for labeling the
different kernel checks.

The algorithm employed for ptrace access mode checking determines whether the
calling process is allowed to perform the corresponding action on the target process.
(In the case of opening /proc/ pid files, the "calling process" is the one opening the
file, and the process with the corresponding PID is the "target process".) The algo-
rithm is as follows:

(1) If the calling thread and the target thread are in the same thread group, access is
always allowed.

(2) If the access mode specifies PTRACE_MODE_FSCREDS, then, for the check
in the next step, employ the caller’s filesystem UID and GID. (As noted in cre-
dentials(7), the filesystem UID and GID almost always have the same values as
the corresponding effective IDs.)

Otherwise, the access mode specifies PTRACE_MODE_REALCREDS, so
use the caller’s real UID and GID for the checks in the next step. (Most APIs
that check the caller’s UID and GID use the effective IDs. For historical rea-
sons, the PTRACE_MODE_REALCREDS check uses the real IDs instead.)

(3) Deny access if neither of the following is true:

• The real, effective, and saved-set user IDs of the target match the caller’s
user ID, and the real, effective, and saved-set group IDs of the target match
the caller’s group ID.

• The caller has the CAP_SYS_PTRACE capability in the user namespace of
the target.

(4) Deny access if the target process "dumpable" attribute has a value other than 1
(SUID_DUMP_USER; see the discussion of PR_SET_DUMPABLE in
prctl(2)), and the caller does not have the CAP_SYS_PTRACE capability in
the user namespace of the target process.

(5) The kernel LSM security_ptrace_access_check() interface is invoked to see if
ptrace access is permitted. The results depend on the LSM(s). The implemen-
tation of this interface in the commoncap LSM performs the following steps:

(5.1) If the access mode includes PTRACE_MODE_FSCREDS, then use
the caller’s effective capability set in the following check; otherwise
(the access mode specifies PTRACE_MODE_REALCREDS, so) use
the caller’s permitted capability set.

(5.2) Deny access if neither of the following is true:

Linux man-pages 6.13 2024-11-17 691

ptrace(2) System Calls Manual ptrace(2)

• The caller and the target process are in the same user namespace,
and the caller’s capabilities are a superset of the target process’s
permitted capabilities.

• The caller has the CAP_SYS_PTRACE capability in the target
process’s user namespace.

Note that the commoncap LSM does not distinguish between
PTRACE_MODE_READ and PTRACE_MODE_ATTACH.

(6) If access has not been denied by any of the preceding steps, then access is al-
lowed.

/proc/sys/kernel/yama/ptrace_scope
On systems with the Yama Linux Security Module (LSM) installed (i.e., the kernel
was configured with CONFIG_SECURITY_YAMA), the /proc/sys/ker-
nel/yama/ptrace_scope file (available since Linux 3.4) can be used to restrict the abil-
ity to trace a process with ptrace() (and thus also the ability to use tools such as
strace(1) and gdb(1)). The goal of such restrictions is to prevent attack escalation
whereby a compromised process can ptrace-attach to other sensitive processes (e.g., a
GPG agent or an SSH session) owned by the user in order to gain additional creden-
tials that may exist in memory and thus expand the scope of the attack.

More precisely, the Yama LSM limits two types of operations:

• Any operation that performs a ptrace access mode PTRACE_MODE_ATTACH
check—for example, ptrace() PTRACE_ATTACH. (See the "Ptrace access
mode checking" discussion above.)

• ptrace() PTRACE_TRACEME.

A process that has the CAP_SYS_PTRACE capability can update the /proc/sys/ker-
nel/yama/ptrace_scope file with one of the following values:

0 ("classic ptrace permissions")
No additional restrictions on operations that perform PTRACE_MODE_AT-
TACH checks (beyond those imposed by the commoncap and other LSMs).

The use of PTRACE_TRACEME is unchanged.

1 ("restricted ptrace") [default value]
When performing an operation that requires a PTRACE_MODE_ATTACH
check, the calling process must either have the CAP_SYS_PTRACE capabil-
ity in the user namespace of the target process or it must have a predefined re-
lationship with the target process. By default, the predefined relationship is
that the target process must be a descendant of the caller.

A target process can employ the prctl(2) PR_SET_PTRACER operation to
declare an additional PID that is allowed to perform PTRACE_MODE_AT-
TACH operations on the target. See the kernel source file Documentation/ad-
min-guide/LSM/Yama.rst (or Documentation/security/Yama.txt before Linux
4.13) for further details.

The use of PTRACE_TRACEME is unchanged.

Linux man-pages 6.13 2024-11-17 692

ptrace(2) System Calls Manual ptrace(2)

2 ("admin-only attach")
Only processes with the CAP_SYS_PTRACE capability in the user name-
space of the target process may perform PTRACE_MODE_ATTACH opera-
tions or trace children that employ PTRACE_TRACEME.

3 ("no attach")
No process may perform PTRACE_MODE_ATTACH operations or trace
children that employ PTRACE_TRACEME.

Once this value has been written to the file, it cannot be changed.

With respect to values 1 and 2, note that creating a new user namespace effectively re-
moves the protection offered by Yama. This is because a process in the parent user
namespace whose effective UID matches the UID of the creator of a child namespace
has all capabilities (including CAP_SYS_PTRACE) when performing operations
within the child user namespace (and further-removed descendants of that name-
space). Consequently, when a process tries to use user namespaces to sandbox itself,
it inadvertently weakens the protections offered by the Yama LSM.

C library/kernel differences
At the system call level, the PTRACE_PEEKTEXT, PTRACE_PEEKDATA, and
PTRACE_PEEKUSER operations have a different API: they store the result at the
address specified by the data parameter, and the return value is the error flag. The
glibc wrapper function provides the API given in DESCRIPTION above, with the re-
sult being returned via the function return value.

BUGS
On hosts with Linux 2.6 kernel headers, PTRACE_SETOPTIONS is declared with a
different value than the one for Linux 2.4. This leads to applications compiled with
Linux 2.6 kernel headers failing when run on Linux 2.4. This can be worked around
by redefining PTRACE_SETOPTIONS to PTRACE_OLDSETOPTIONS, if that
is defined.

Group-stop notifications are sent to the tracer, but not to real parent. Last confirmed
on 2.6.38.6.

If a thread group leader is traced and exits by calling _exit(2), a
PTRACE_EVENT_EXIT stop will happen for it (if requested), but the subsequent
WIFEXITED notification will not be delivered until all other threads exit. As ex-
plained above, if one of other threads calls execve(2), the death of the thread group
leader will never be reported. If the execed thread is not traced by this tracer, the
tracer will never know that execve(2) happened. One possible workaround is to
PTRACE_DETACH the thread group leader instead of restarting it in this case. Last
confirmed on 2.6.38.6.

A SIGKILL signal may still cause a PTRACE_EVENT_EXIT stop before actual
signal death. This may be changed in the future; SIGKILL is meant to always imme-
diately kill tasks even under ptrace. Last confirmed on Linux 3.13.

Some system calls return with EINTR if a signal was sent to a tracee, but delivery
was suppressed by the tracer. (This is very typical operation: it is usually done by de-
buggers on every attach, in order to not introduce a bogus SIGSTOP). As of Linux
3.2.9, the following system calls are affected (this list is likely incomplete):
epoll_wait(2), and read(2) from an inotify(7) file descriptor. The usual symptom of

Linux man-pages 6.13 2024-11-17 693

ptrace(2) System Calls Manual ptrace(2)

this bug is that when you attach to a quiescent process with the command

strace -p <process-ID>

then, instead of the usual and expected one-line output such as

restart_syscall(<... resuming interrupted call ...>_

or

select(6, [5], NULL, [5], NULL_

(’_’ denotes the cursor position), you observe more than one line. For example:

clock_gettime(CLOCK_MONOTONIC, {15370, 690928118}) = 0
epoll_wait(4,_

What is not visible here is that the process was blocked in epoll_wait(2) before
strace(1) has attached to it. Attaching caused epoll_wait(2) to return to user space
with the error EINTR. In this particular case, the program reacted to EINTR by
checking the current time, and then executing epoll_wait(2) again. (Programs which
do not expect such "stray" EINTR errors may behave in an unintended way upon an
strace(1) attach.)

Contrary to the normal rules, the glibc wrapper for ptrace() can set errno to zero.

SEE ALSO
gdb(1), ltrace(1), strace(1), clone(2), execve(2), fork(2), gettid(2), prctl(2), sec-
comp(2), sigaction(2), tgkill(2), vfork(2), waitpid(2), exec(3), capabilities(7), sig-
nal(7)

Linux man-pages 6.13 2024-11-17 694

query_module(2) System Calls Manual query_module(2)

NAME
query_module - query the kernel for various bits pertaining to modules

SYNOPSIS
#include <linux/module.h>

[[deprecated]] int query_module(const char *name, int which,
void buf [.bufsize], size_t bufsize,
size_t *ret);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

query_module() requests information from the kernel about loadable modules. The
returned information is placed in the buffer pointed to by buf . The caller must specify
the size of buf in bufsize. The precise nature and format of the returned information
depend on the operation specified by which. Some operations require name to iden-
tify a currently loaded module, some allow name to be NULL, indicating the kernel
proper.

The following values can be specified for which:

0 Returns success, if the kernel supports query_module(). Used to probe for
availability of the system call.

QM_MODULES
Returns the names of all loaded modules. The returned buffer consists of a se-
quence of null-terminated strings; ret is set to the number of modules.

QM_DEPS
Returns the names of all modules used by the indicated module. The returned
buffer consists of a sequence of null-terminated strings; ret is set to the num-
ber of modules.

QM_REFS
Returns the names of all modules using the indicated module. This is the in-
verse of QM_DEPS. The returned buffer consists of a sequence of null-termi-
nated strings; ret is set to the number of modules.

QM_SYMBOLS
Returns the symbols and values exported by the kernel or the indicated mod-
ule. The returned buffer is an array of structures of the following form

struct module_symbol {
unsigned long value;
unsigned long name;

};

followed by null-terminated strings. The value of name is the character offset
of the string relative to the start of buf ; ret is set to the number of symbols.

QM_INFO
Returns miscellaneous information about the indicated module. The output
buffer format is:

struct module_info {
unsigned long address;

Linux man-pages 6.13 2024-05-02 695

query_module(2) System Calls Manual query_module(2)

unsigned long size;
unsigned long flags;

};

where address is the kernel address at which the module resides, size is the
size of the module in bytes, and flags is a mask of MOD_RUNNING,
MOD_AUTOCLEAN, and so on, that indicates the current status of the mod-
ule (see the Linux kernel source file include/linux/module.h). ret is set to the
size of the module_info structure.

RETURN VALUE
On success, zero is returned. On error, -1 is returned and errno is set to indicate the
error.

ERRORS
EFAULT

At least one of name, buf , or ret was outside the program’s accessible address
space.

EINVAL
Invalid which; or name is NULL (indicating "the kernel"), but this is not per-
mitted with the specified value of which.

ENOENT
No module by that name exists.

ENOSPC
The buffer size provided was too small. ret is set to the minimum size needed.

ENOSYS
query_module() is not supported in this version of the kernel (e.g., Linux 2.6
or later).

STANDARDS
Linux.

VERSIONS
Removed in Linux 2.6.

Some of the information that was formerly available via query_module() can be ob-
tained from /proc/modules, /proc/kallsyms, and the files under the directory /sys/mod-
ule.

The query_module() system call is not supported by glibc. No declaration is pro-
vided in glibc headers, but, through a quirk of history, glibc does export an ABI for
this system call. Therefore, in order to employ this system call, it is sufficient to man-
ually declare the interface in your code; alternatively, you can invoke the system call
using syscall(2).

SEE ALSO
create_module(2), delete_module(2), get_kernel_syms(2), init_module(2), lsmod(8),
modinfo(8)

Linux man-pages 6.13 2024-05-02 696

quotactl(2) System Calls Manual quotactl(2)

NAME
quotactl - manipulate disk quotas

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/quota.h>
#include <xfs/xqm.h> /* Definition of Q_X* and XFS_QUOTA_* constants

(or <linux/dqblk_xfs.h>; see NOTES) */

int quotactl(int op, const char *_Nullable special, int id ,
caddr_t addr);

DESCRIPTION
The quota system can be used to set per-user, per-group, and per-project limits on the
amount of disk space used on a filesystem. For each user and/or group, a soft limit
and a hard limit can be set for each filesystem. The hard limit can’t be exceeded. The
soft limit can be exceeded, but warnings will ensue. Moreover, the user can’t exceed
the soft limit for more than grace period duration (one week by default) at a time; af-
ter this, the soft limit counts as a hard limit.

The quotactl() call manipulates disk quotas. The op argument indicates an operation
to be applied to the user or group ID specified in id . To initialize the op argument,
use the QCMD(subop, type) macro. The type value is either USRQUOTA, for user
quotas, GRPQUOTA, for group quotas, or (since Linux 4.1) PRJQUOTA, for project
quotas. The subop value is described below.

The special argument is a pointer to a null-terminated string containing the pathname
of the (mounted) block special device for the filesystem being manipulated.

The addr argument is the address of an optional, operation-specific, data structure that
is copied in or out of the system. The interpretation of addr is given with each opera-
tion below.

The subop value is one of the following operations:

Q_QUOTAON
Turn on quotas for a filesystem. The id argument is the identification number
of the quota format to be used. Currently, there are three supported quota for-
mats:

QFMT_VFS_OLD
The original quota format.

QFMT_VFS_V0
The standard VFS v0 quota format, which can handle 32-bit
UIDs and GIDs and quota limits up to 2^42 bytes and 2^32 in-
odes.

QFMT_VFS_V1
A quota format that can handle 32-bit UIDs and GIDs and
quota limits of 2^63 - 1 bytes and 2^63 - 1 inodes.

The addr argument points to the pathname of a file containing the quotas for
the filesystem. The quota file must exist; it is normally created with the

Linux man-pages 6.13 2024-07-23 697

quotactl(2) System Calls Manual quotactl(2)

quotacheck(8) program

Quota information can be also stored in hidden system inodes for ext4, XFS,
and other filesystems if the filesystem is configured so. In this case, there are
no visible quota files and there is no need to use quotacheck(8)Quota informa-
tion is always kept consistent by the filesystem and the Q_QUOTAON opera-
tion serves only to enable enforcement of quota limits. The presence of hid-
den system inodes with quota information is indicated by the
DQF_SYS_FILE flag in the dqi_flags field returned by the Q_GETINFO op-
eration.

This operation requires privilege (CAP_SYS_ADMIN).

Q_QUOTAOFF
Turn off quotas for a filesystem. The addr and id arguments are ignored.
This operation requires privilege (CAP_SYS_ADMIN).

Q_GETQUOTA
Get disk quota limits and current usage for user or group id . The addr argu-
ment is a pointer to a dqblk structure defined in <sys/quota.h> as follows:

/* uint64_t is an unsigned 64-bit integer;
uint32_t is an unsigned 32-bit integer */

struct dqblk { /* Definition since Linux 2.4.22 */
uint64_t dqb_bhardlimit; /* Absolute limit on disk

quota blocks alloc */
uint64_t dqb_bsoftlimit; /* Preferred limit on

disk quota blocks */
uint64_t dqb_curspace; /* Current occupied space

(in bytes) */
uint64_t dqb_ihardlimit; /* Maximum number of

allocated inodes */
uint64_t dqb_isoftlimit; /* Preferred inode limit */
uint64_t dqb_curinodes; /* Current number of

allocated inodes */
uint64_t dqb_btime; /* Time limit for excessive

disk use */
uint64_t dqb_itime; /* Time limit for excessive

files */
uint32_t dqb_valid; /* Bit mask of QIF_*

constants */
};

/* Flags in dqb_valid that indicate which fields in
dqblk structure are valid. */

#define QIF_BLIMITS 1
#define QIF_SPACE 2
#define QIF_ILIMITS 4
#define QIF_INODES 8
#define QIF_BTIME 16

Linux man-pages 6.13 2024-07-23 698

quotactl(2) System Calls Manual quotactl(2)

#define QIF_ITIME 32
#define QIF_LIMITS (QIF_BLIMITS | QIF_ILIMITS)
#define QIF_USAGE (QIF_SPACE | QIF_INODES)
#define QIF_TIMES (QIF_BTIME | QIF_ITIME)
#define QIF_ALL (QIF_LIMITS | QIF_USAGE | QIF_TIMES)

The dqb_valid field is a bit mask that is set to indicate the entries in the dqblk
structure that are valid. Currently, the kernel fills in all entries of the dqblk
structure and marks them as valid in the dqb_valid field. Unprivileged users
may retrieve only their own quotas; a privileged user (CAP_SYS_ADMIN)
can retrieve the quotas of any user.

Q_GETNEXTQUOTA (since Linux 4.6)
This operation is the same as Q_GETQUOTA, but it returns quota informa-
tion for the next ID greater than or equal to id that has a quota set.

The addr argument is a pointer to a nextdqblk structure whose fields are as for
the dqblk, except for the addition of a dqb_id field that is used to return the ID
for which quota information is being returned:

struct nextdqblk {
uint64_t dqb_bhardlimit;
uint64_t dqb_bsoftlimit;
uint64_t dqb_curspace;
uint64_t dqb_ihardlimit;
uint64_t dqb_isoftlimit;
uint64_t dqb_curinodes;
uint64_t dqb_btime;
uint64_t dqb_itime;
uint32_t dqb_valid;
uint32_t dqb_id;

};

Q_SETQUOTA
Set quota information for user or group id , using the information supplied in
the dqblk structure pointed to by addr. The dqb_valid field of the dqblk
structure indicates which entries in the structure have been set by the caller.
This operation supersedes the Q_SETQLIM and Q_SETUSE operations in
the previous quota interfaces. This operation requires privilege
(CAP_SYS_ADMIN).

Q_GETINFO (since Linux 2.4.22)
Get information (like grace times) about quotafile. The addr argument should
be a pointer to a dqinfo structure. This structure is defined in <sys/quota.h>
as follows:

/* uint64_t is an unsigned 64-bit integer;
uint32_t is an unsigned 32-bit integer */

struct dqinfo { /* Defined since Linux 2.4.22 */
uint64_t dqi_bgrace; /* Time before block soft limit

becomes hard limit */
uint64_t dqi_igrace; /* Time before inode soft limit

Linux man-pages 6.13 2024-07-23 699

quotactl(2) System Calls Manual quotactl(2)

becomes hard limit */
uint32_t dqi_flags; /* Flags for quotafile

(DQF_*) */
uint32_t dqi_valid;

};

/* Bits for dqi_flags */

/* Quota format QFMT_VFS_OLD */

#define DQF_ROOT_SQUASH (1 << 0) /* Root squash enabled */
/* Before Linux v4.0, this had been defined

privately as V1_DQF_RSQUASH */

/* Quota format QFMT_VFS_V0 / QFMT_VFS_V1 */

#define DQF_SYS_FILE (1 << 16) /* Quota stored in
a system file */

/* Flags in dqi_valid that indicate which fields in
dqinfo structure are valid. */

#define IIF_BGRACE 1
#define IIF_IGRACE 2
#define IIF_FLAGS 4
#define IIF_ALL (IIF_BGRACE | IIF_IGRACE | IIF_FLAGS)

The dqi_valid field in the dqinfo structure indicates the entries in the structure
that are valid. Currently, the kernel fills in all entries of the dqinfo structure
and marks them all as valid in the dqi_valid field. The id argument is ignored.

Q_SETINFO (since Linux 2.4.22)
Set information about quotafile. The addr argument should be a pointer to a
dqinfo structure. The dqi_valid field of the dqinfo structure indicates the en-
tries in the structure that have been set by the caller. This operation supersedes
the Q_SETGRACE and Q_SETFLAGS operations in the previous quota in-
terfaces. The id argument is ignored. This operation requires privilege
(CAP_SYS_ADMIN).

Q_GETFMT (since Linux 2.4.22)
Get quota format used on the specified filesystem. The addr argument should
be a pointer to a 4-byte buffer where the format number will be stored.

Q_SYNC
Update the on-disk copy of quota usages for a filesystem. If special is NULL,
then all filesystems with active quotas are sync’ed. The addr and id argu-
ments are ignored.

Q_GETSTATS (supported up to Linux 2.4.21)
Get statistics and other generic information about the quota subsystem. The
addr argument should be a pointer to a dqstats structure in which data should
be stored. This structure is defined in <sys/quota.h>. The special and id

Linux man-pages 6.13 2024-07-23 700

quotactl(2) System Calls Manual quotactl(2)

arguments are ignored.

This operation is obsolete and was removed in Linux 2.4.22. Files in
/proc/sys/fs/quota/ carry the information instead.

For XFS filesystems making use of the XFS Quota Manager (XQM), the above opera-
tions are bypassed and the following operations are used:

Q_XQUOTAON
Turn on quotas for an XFS filesystem. XFS provides the ability to turn on/off
quota limit enforcement with quota accounting. Therefore, XFS expects addr
to be a pointer to an unsigned int that contains a bitwise combination of the
following flags (defined in <xfs/xqm.h>):

XFS_QUOTA_UDQ_ACCT /* User quota accounting */
XFS_QUOTA_UDQ_ENFD /* User quota limits enforcement */
XFS_QUOTA_GDQ_ACCT /* Group quota accounting */
XFS_QUOTA_GDQ_ENFD /* Group quota limits enforcement */
XFS_QUOTA_PDQ_ACCT /* Project quota accounting */
XFS_QUOTA_PDQ_ENFD /* Project quota limits enforcement */

This operation requires privilege (CAP_SYS_ADMIN). The id argument is
ignored.

Q_XQUOTAOFF
Turn off quotas for an XFS filesystem. As with Q_QUOTAON, XFS filesys-
tems expect a pointer to an unsigned int that specifies whether quota account-
ing and/or limit enforcement need to be turned off (using the same flags as for
Q_XQUOTAON operation). This operation requires privilege
(CAP_SYS_ADMIN). The id argument is ignored.

Q_XGETQUOTA
Get disk quota limits and current usage for user id . The addr argument is a
pointer to an fs_disk_quota structure, which is defined in <xfs/xqm.h> as fol-
lows:

/* All the blk units are in BBs (Basic Blocks) of
512 bytes. */

#define FS_DQUOT_VERSION 1 /* fs_disk_quota.d_version */

#define XFS_USER_QUOTA (1<<0) /* User quota type */
#define XFS_PROJ_QUOTA (1<<1) /* Project quota type */
#define XFS_GROUP_QUOTA (1<<2) /* Group quota type */

struct fs_disk_quota {
int8_t d_version; /* Version of this structure */
int8_t d_flags; /* XFS_{USER,PROJ,GROUP}_QUOTA */
uint16_t d_fieldmask; /* Field specifier */
uint32_t d_id; /* User, project, or group ID */
uint64_t d_blk_hardlimit; /* Absolute limit on

disk blocks */
uint64_t d_blk_softlimit; /* Preferred limit on

Linux man-pages 6.13 2024-07-23 701

quotactl(2) System Calls Manual quotactl(2)

disk blocks */
uint64_t d_ino_hardlimit; /* Maximum # allocated

inodes */
uint64_t d_ino_softlimit; /* Preferred inode limit */
uint64_t d_bcount; /* # disk blocks owned by

the user */
uint64_t d_icount; /* # inodes owned by the user */
int32_t d_itimer; /* Zero if within inode limits */

/* If not, we refuse service */
int32_t d_btimer; /* Similar to above; for

disk blocks */
uint16_t d_iwarns; /* # warnings issued with

respect to # of inodes */
uint16_t d_bwarns; /* # warnings issued with

respect to disk blocks */
int32_t d_padding2; /* Padding - for future use */
uint64_t d_rtb_hardlimit; /* Absolute limit on realtime

(RT) disk blocks */
uint64_t d_rtb_softlimit; /* Preferred limit on RT

disk blocks */
uint64_t d_rtbcount; /* # realtime blocks owned */
int32_t d_rtbtimer; /* Similar to above; for RT

disk blocks */
uint16_t d_rtbwarns; /* # warnings issued with

respect to RT disk blocks */
int16_t d_padding3; /* Padding - for future use */
char d_padding4[8]; /* Yet more padding */

};

Unprivileged users may retrieve only their own quotas; a privileged user
(CAP_SYS_ADMIN) may retrieve the quotas of any user.

Q_XGETNEXTQUOTA (since Linux 4.6)
This operation is the same as Q_XGETQUOTA, but it returns (in the
fs_disk_quota structure pointed by addr) quota information for the next ID
greater than or equal to id that has a quota set. Note that since fs_disk_quota
already has q_id field, no separate structure type is needed (in contrast with
Q_GETQUOTA and Q_GETNEXTQUOTA operations)

Q_XSETQLIM
Set disk quota limits for user id . The addr argument is a pointer to an
fs_disk_quota structure. This operation requires privilege (CAP_SYS_AD-
MIN).

Q_XGETQSTAT
Returns XFS filesystem-specific quota information in the fs_quota_stat struc-
ture pointed by addr. This is useful for finding out how much space is used to
store quota information, and also to get the quota on/off status of a given local
XFS filesystem. The fs_quota_stat structure itself is defined as follows:

#define FS_QSTAT_VERSION 1 /* fs_quota_stat.qs_version */

Linux man-pages 6.13 2024-07-23 702

quotactl(2) System Calls Manual quotactl(2)

struct fs_qfilestat {
uint64_t qfs_ino; /* Inode number */
uint64_t qfs_nblks; /* Number of BBs

512-byte-blocks */
uint32_t qfs_nextents; /* Number of extents */

};

struct fs_quota_stat {
int8_t qs_version; /* Version number for

future changes */
uint16_t qs_flags; /* XFS_QUOTA_{U,P,G}DQ_{ACCT,ENFD} */
int8_t qs_pad; /* Unused */
struct fs_qfilestat qs_uquota; /* User quota storage

information */
struct fs_qfilestat qs_gquota; /* Group quota storage

information */
uint32_t qs_incoredqs; /* Number of dquots in core */
int32_t qs_btimelimit; /* Limit for blocks timer */
int32_t qs_itimelimit; /* Limit for inodes timer */
int32_t qs_rtbtimelimit;/* Limit for RT

blocks timer */
uint16_t qs_bwarnlimit; /* Limit for # of warnings */
uint16_t qs_iwarnlimit; /* Limit for # of warnings */

};

The id argument is ignored.

Q_XGETQSTATV
Returns XFS filesystem-specific quota information in the fs_quota_statv
pointed to by addr. This version of the operation uses a structure with proper
versioning support, along with appropriate layout (all fields are naturally
aligned) and padding to avoiding special compat handling; it also provides the
ability to get statistics regarding the project quota file. The fs_quota_statv
structure itself is defined as follows:

#define FS_QSTATV_VERSION1 1 /* fs_quota_statv.qs_version */

struct fs_qfilestatv {
uint64_t qfs_ino; /* Inode number */
uint64_t qfs_nblks; /* Number of BBs

512-byte-blocks */
uint32_t qfs_nextents; /* Number of extents */
uint32_t qfs_pad; /* Pad for 8-byte alignment */

};

struct fs_quota_statv {
int8_t qs_version; /* Version for future

changes */
uint8_t qs_pad1; /* Pad for 16-bit alignment */
uint16_t qs_flags; /* XFS_QUOTA_.* flags */

Linux man-pages 6.13 2024-07-23 703

quotactl(2) System Calls Manual quotactl(2)

uint32_t qs_incoredqs; /* Number of dquots incore */
struct fs_qfilestatv qs_uquota; /* User quota

information */
struct fs_qfilestatv qs_gquota; /* Group quota

information */
struct fs_qfilestatv qs_pquota; /* Project quota

information */
int32_t qs_btimelimit; /* Limit for blocks timer */
int32_t qs_itimelimit; /* Limit for inodes timer */
int32_t qs_rtbtimelimit; /* Limit for RT blocks

timer */
uint16_t qs_bwarnlimit; /* Limit for # of warnings */
uint16_t qs_iwarnlimit; /* Limit for # of warnings */
uint64_t qs_pad2[8]; /* For future proofing */

};

The qs_version field of the structure should be filled with the version of the
structure supported by the callee (for now, only FS_QSTAT_VERSION1 is
supported). The kernel will fill the structure in accordance with version pro-
vided. The id argument is ignored.

Q_XQUOTARM (buggy until Linux 3.16)
Free the disk space taken by disk quotas. The addr argument should be a
pointer to an unsigned int value containing flags (the same as in d_flags field
of fs_disk_quota structure) which identify what types of quota should be re-
moved. (Note that the quota type passed in the op argument is ignored, but
should remain valid in order to pass preliminary quotactl syscall handler
checks.)

Quotas must have already been turned off. The id argument is ignored.

Q_XQUOTASYNC (since Linux 2.6.15; no-op since Linux 3.4)
This operation was an XFS quota equivalent to Q_SYNC, but it is no-op since
Linux 3.4, as sync(1) writes quota information to disk now (in addition to the
other filesystem metadata that it writes out). The special, id and addr argu-
ments are ignored.

RETURN VALUE
On success, quotactl() returns 0; on error -1 is returned, and errno is set to indicate
the error.

ERRORS
EACCES

op is Q_QUOTAON, and the quota file pointed to by addr exists, but is not a
regular file or is not on the filesystem pointed to by special.

EBUSY
op is Q_QUOTAON, but another Q_QUOTAON had already been per-
formed.

EFAULT
addr or special is invalid.

Linux man-pages 6.13 2024-07-23 704

quotactl(2) System Calls Manual quotactl(2)

EINVAL
op or type is invalid.

EINVAL
op is Q_QUOTAON, but the specified quota file is corrupted.

EINVAL (since Linux 5.5)
op is Q_XQUOTARM, but addr does not point to valid quota types.

ENOENT
The file specified by special or addr does not exist.

ENOSYS
The kernel has not been compiled with the CONFIG_QUOTA option.

ENOTBLK
special is not a block device.

EPERM
The caller lacked the required privilege (CAP_SYS_ADMIN) for the speci-
fied operation.

ERANGE
op is Q_SETQUOTA, but the specified limits are out of the range allowed by
the quota format.

ESRCH
No disk quota is found for the indicated user. Quotas have not been turned on
for this filesystem.

ESRCH
op is Q_QUOTAON, but the specified quota format was not found.

ESRCH
op is Q_GETNEXTQUOTA or Q_XGETNEXTQUOTA, but there is no ID
greater than or equal to id that has an active quota.

NOTES
Instead of <xfs/xqm.h> one can use <linux/dqblk_xfs.h>, taking into account that
there are several naming discrepancies:

• Quota enabling flags (of format XFS_QUOTA_[UGP]DQ_{ACCT,ENFD}) are
defined without a leading "X", as FS_QUOTA_[UGP]DQ_{ACCT,ENFD}.

• The same is true for XFS_{USER,GROUP,PROJ}_QUOTA quota type flags,
which are defined as FS_{USER,GROUP,PROJ}_QUOTA.

• The dqblk_xfs.h header file defines its own XQM_USRQUOTA, XQM_GR-
PQUOTA, and XQM_PRJQUOTA constants for the available quota types, but
their values are the same as for constants without the XQM_ prefix.

SEE ALSO
quota(1), getrlimit(2), quotacheck(8), quotaon(8)

Linux man-pages 6.13 2024-07-23 705

read(2) System Calls Manual read(2)

NAME
read - read from a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

ssize_t read(int fd , void buf [.count], size_t count);

DESCRIPTION
read() attempts to read up to count bytes from file descriptor fd into the buffer start-
ing at buf .

On files that support seeking, the read operation commences at the file offset, and the
file offset is incremented by the number of bytes read. If the file offset is at or past the
end of file, no bytes are read, and read() returns zero.

If count is zero, read() may detect the errors described below. In the absence of any
errors, or if read() does not check for errors, a read() with a count of 0 returns zero
and has no other effects.

According to POSIX.1, if count is greater than SSIZE_MAX, the result is implemen-
tation-defined; see NOTES for the upper limit on Linux.

RETURN VALUE
On success, the number of bytes read is returned (zero indicates end of file), and the
file position is advanced by this number. It is not an error if this number is smaller
than the number of bytes requested; this may happen for example because fewer bytes
are actually available right now (maybe because we were close to end-of-file, or be-
cause we are reading from a pipe, or from a terminal), or because read() was inter-
rupted by a signal. See also NOTES.

On error, -1 is returned, and errno is set to indicate the error. In this case, it is left
unspecified whether the file position (if any) changes.

ERRORS
EAGAIN

The file descriptor fd refers to a file other than a socket and has been marked
nonblocking (O_NONBLOCK), and the read would block. See open(2) for
further details on the O_NONBLOCK flag.

EAGAIN or EWOULDBLOCK
The file descriptor fd refers to a socket and has been marked nonblocking
(O_NONBLOCK), and the read would block. POSIX.1-2001 allows either
error to be returned for this case, and does not require these constants to have
the same value, so a portable application should check for both possibilities.

EBADF
fd is not a valid file descriptor or is not open for reading.

EFAULT
buf is outside your accessible address space.

Linux man-pages 6.13 2024-07-23 706

read(2) System Calls Manual read(2)

EINTR
The call was interrupted by a signal before any data was read; see signal(7).

EINVAL
fd is attached to an object which is unsuitable for reading; or the file was
opened with the O_DIRECT flag, and either the address specified in buf , the
value specified in count, or the file offset is not suitably aligned.

EINVAL
fd was created via a call to timerfd_create(2) and the wrong size buffer was
given to read(); see timerfd_create(2) for further information.

EIO I/O error. This will happen for example when the process is in a background
process group, tries to read from its controlling terminal, and either it is ignor-
ing or blocking SIGTTIN or its process group is orphaned. It may also occur
when there is a low-level I/O error while reading from a disk or tape. A fur-
ther possible cause of EIO on networked filesystems is when an advisory lock
had been taken out on the file descriptor and this lock has been lost. See the
Lost locks section of fcntl(2) for further details.

EISDIR
fd refers to a directory.

Other errors may occur, depending on the object connected to fd .

STANDARDS
POSIX.1-2008.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

NOTES
On Linux, read() (and similar system calls) will transfer at most 0x7ffff000
(2,147,479,552) bytes, returning the number of bytes actually transferred. (This is
true on both 32-bit and 64-bit systems.)

On NFS filesystems, reading small amounts of data will update the timestamp only
the first time, subsequent calls may not do so. This is caused by client side attribute
caching, because most if not all NFS clients leave st_atime (last file access time) up-
dates to the server, and client side reads satisfied from the client’s cache will not cause
st_atime updates on the server as there are no server-side reads. UNIX semantics can
be obtained by disabling client-side attribute caching, but in most situations this will
substantially increase server load and decrease performance.

BUGS
According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions with
Regular File Operations"):

All of the following functions shall be atomic with respect to each other in the
effects specified in POSIX.1-2008 when they operate on regular files or symbolic
links: ...

Among the APIs subsequently listed are read() and readv(2). And among the effects
that should be atomic across threads (and processes) are updates of the file offset.
However, before Linux 3.14, this was not the case: if two processes that share an open
file description (see open(2)) perform a read() (or readv(2)) at the same time, then the

Linux man-pages 6.13 2024-07-23 707

read(2) System Calls Manual read(2)

I/O operations were not atomic with respect to updating the file offset, with the result
that the reads in the two processes might (incorrectly) overlap in the blocks of data
that they obtained. This problem was fixed in Linux 3.14.

SEE ALSO
close(2), fcntl(2), ioctl(2), lseek(2), open(2), pread(2), readdir(2), readlink(2),
readv(2), select(2), write(2), fread(3)

Linux man-pages 6.13 2024-07-23 708

readahead(2) System Calls Manual readahead(2)

NAME
readahead - initiate file readahead into page cache

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#define _FILE_OFFSET_BITS 64
#include <fcntl.h>

ssize_t readahead(int fd , off_t offset, size_t count);

DESCRIPTION
readahead() initiates readahead on a file so that subsequent reads from that file will
be satisfied from the cache, and not block on disk I/O (assuming the readahead was
initiated early enough and that other activity on the system did not in the meantime
flush pages from the cache).

The fd argument is a file descriptor identifying the file which is to be read. The offset
argument specifies the starting point from which data is to be read and count specifies
the number of bytes to be read. I/O is performed in whole pages, so that offset is ef-
fectively rounded down to a page boundary and bytes are read up to the next page
boundary greater than or equal to (offset+count). readahead() does not read beyond
the end of the file. The file offset of the open file description referred to by the file de-
scriptor fd is left unchanged.

RETURN VALUE
On success, readahead() returns 0; on failure, -1 is returned, with errno set to indi-
cate the error.

ERRORS
EBADF

fd is not a valid file descriptor or is not open for reading.

EINVAL
fd does not refer to a file type to which readahead() can be applied.

VERSIONS
On some 32-bit architectures, the calling signature for this system call differs, for the
reasons described in syscall(2).

STANDARDS
Linux.

HISTORY
Linux 2.4.13, glibc 2.3.

NOTES
_FILE_OFFSET_BITS should be defined to be 64 in code that uses a pointer to
readahead, if the code is intended to be portable to traditional 32-bit x86 and ARM
platforms where off_t’s width defaults to 32 bits.

BUGS
readahead() attempts to schedule the reads in the background and return immedi-
ately. However, it may block while it reads the filesystem metadata needed to locate

Linux man-pages 6.13 2024-07-23 709

readahead(2) System Calls Manual readahead(2)

the requested blocks. This occurs frequently with ext[234] on large files using indi-
rect blocks instead of extents, giving the appearance that the call blocks until the re-
quested data has been read.

SEE ALSO
lseek(2), madvise(2), mmap(2), posix_fadvise(2), read(2)

Linux man-pages 6.13 2024-07-23 710

readdir(2) System Calls Manual readdir(2)

NAME
readdir - read directory entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_readdir, unsigned int fd ,
struct old_linux_dirent *dirp, unsigned int count);

Note: There is no definition of struct old_linux_dirent; see VERSIONS.

DESCRIPTION
This is not the function you are interested in. Look at readdir(3) for the POSIX con-
forming C library interface. This page documents the bare kernel system call inter-
face, which is superseded by getdents(2).

readdir() reads one old_linux_dirent structure from the directory referred to by the
file descriptor fd into the buffer pointed to by dirp. The argument count is ignored; at
most one old_linux_dirent structure is read.

The old_linux_dirent structure is declared (privately in Linux kernel file fs/readdir.c)
as follows:

struct old_linux_dirent {
unsigned long d_ino; /* inode number */
unsigned long d_offset; /* offset to this old_linux_dirent */
unsigned short d_namlen; /* length of this d_name */
char d_name[1]; /* filename (null-terminated) */

}

d_ino is an inode number. d_offset is the distance from the start of the directory to
this old_linux_dirent. d_reclen is the size of d_name, not counting the terminating
null byte ('\0'). d_name is a null-terminated filename.

RETURN VALUE
On success, 1 is returned. On end of directory, 0 is returned. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
EBADF

Invalid file descriptor fd .

EFAULT
Argument points outside the calling process’s address space.

EINVAL
Result buffer is too small.

ENOENT
No such directory.

ENOTDIR
File descriptor does not refer to a directory.

Linux man-pages 6.13 2024-07-23 711

readdir(2) System Calls Manual readdir(2)

VERSIONS
You will need to define the old_linux_dirent structure yourself. However, probably
you should use readdir(3) instead.

This system call does not exist on x86-64.

STANDARDS
Linux.

SEE ALSO
getdents(2), readdir(3)

Linux man-pages 6.13 2024-07-23 712

readlink(2) System Calls Manual readlink(2)

NAME
readlink, readlinkat - read value of a symbolic link

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

ssize_t readlink(const char *restrict pathname,
char buf [restrict .bufsiz], size_t bufsiz);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

ssize_t readlinkat(int dirfd , const char *restrict pathname,
char buf [restrict .bufsiz], size_t bufsiz);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

readlink():
_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200112L

|| /* glibc <= 2.19: */ _BSD_SOURCE

readlinkat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
readlink() places the contents of the symbolic link pathname in the buffer buf , which
has size bufsiz. readlink() does not append a terminating null byte to buf . It will
(silently) truncate the contents (to a length of bufsiz characters), in case the buffer is
too small to hold all of the contents.

readlinkat()
The readlinkat() system call operates in exactly the same way as readlink(), except
for the differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by readlink() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like read-
link())

If pathname is absolute, then dirfd is ignored.

Since Linux 2.6.39, pathname can be an empty string, in which case the call operates
on the symbolic link referred to by dirfd (which should have been obtained using
open(2) with the O_PATH and O_NOFOLLOW flags).

See openat(2) for an explanation of the need for readlinkat().

Linux man-pages 6.13 2024-11-28 713

readlink(2) System Calls Manual readlink(2)

RETURN VALUE
On success, these calls return the number of bytes placed in buf . (If the returned
value equals bufsiz, then truncation may have occurred.) On error, -1 is returned and
errno is set to indicate the error.

ERRORS
EACCES

Search permission is denied for a component of the path prefix. (See also
path_resolution(7).)

EBADF
(readlinkat()) pathname is relative but dirfd is neither AT_FDCWD nor a
valid file descriptor.

EFAULT
buf extends outside the process’s allocated address space.

EINVAL
bufsiz is not positive.

EINVAL
The named file (i.e., the final filename component of pathname) is not a sym-
bolic link.

EIO An I/O error occurred while reading from the filesystem.

ELOOP
Too many symbolic links were encountered in translating the pathname.

ENAMETOOLONG
A pathname, or a component of a pathname, was too long.

ENOENT
The named file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

ENOTDIR
(readlinkat()) pathname is relative and dirfd is a file descriptor referring to a
file other than a directory.

STANDARDS
POSIX.1-2008.

HISTORY
readlink()

4.4BSD (first appeared in 4.2BSD), POSIX.1-2001, POSIX.1-2008.

readlinkat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

Up to and including glibc 2.4, the return type of readlink() was declared as int.
Nowadays, the return type is declared as ssize_t, as (newly) required in
POSIX.1-2001.

Linux man-pages 6.13 2024-11-28 714

readlink(2) System Calls Manual readlink(2)

glibc
On older kernels where readlinkat() is unavailable, the glibc wrapper function falls
back to the use of readlink(). When pathname is a relative pathname, glibc con-
structs a pathname based on the symbolic link in /proc/self/fd that corresponds to the
dirfd argument.

NOTES
Using a statically sized buffer might not provide enough room for the symbolic link
contents. The required size for the buffer can be obtained from the stat.st_size value
returned by a call to lstat(2) on the link. However, the number of bytes written by
readlink() and readlinkat() should be checked to make sure that the size of the sym-
bolic link did not increase between the calls. Dynamically allocating the buffer for
readlink() and readlinkat() also addresses a common portability problem when using
PATH_MAX for the buffer size, as this constant is not guaranteed to be defined per
POSIX if the system does not have such limit.

EXAMPLES
The following program allocates the buffer needed by readlink() dynamically from
the information provided by lstat(2), falling back to a buffer of size PATH_MAX in
cases where lstat(2) reports a size of zero.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

char *buf;
ssize_t nbytes, bufsiz;
struct stat sb;

if (argc != 2) {
fprintf(stderr, "Usage: %s <pathname>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (lstat(argv[1], &sb) == -1) {
perror("lstat");
exit(EXIT_FAILURE);

}

/* Add one to the link size, so that we can determine whether
the buffer returned by readlink() was truncated. */

bufsiz = sb.st_size + 1;

Linux man-pages 6.13 2024-11-28 715

readlink(2) System Calls Manual readlink(2)

/* Some magic symlinks under (for example) /proc and /sys
report 'st_size' as zero. In that case, take PATH_MAX as
a "good enough" estimate. */

if (sb.st_size == 0)
bufsiz = PATH_MAX;

buf = malloc(bufsiz);
if (buf == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

nbytes = readlink(argv[1], buf, bufsiz);
if (nbytes == -1) {

perror("readlink");
exit(EXIT_FAILURE);

}

/* Print only 'nbytes' of 'buf', as it doesn’t contain a terminating
null byte ('\0'). */

printf("'%s' points to '%.*s'\n", argv[1], (int) nbytes, buf);

/* If the return value was equal to the buffer size, then
the link target was larger than expected (perhaps because the
target was changed between the call to lstat() and the call to
readlink()). Warn the user that the returned target may have
been truncated. */

if (nbytes == bufsiz)
printf("(Returned buffer may have been truncated)\n");

free(buf);
exit(EXIT_SUCCESS);

}

SEE ALSO
readlink(1), lstat(2), stat(2), symlink(2), realpath(3), path_resolution(7), symlink(7)

Linux man-pages 6.13 2024-11-28 716

readv(2) System Calls Manual readv(2)

NAME
readv, writev, preadv, pwritev, preadv2, pwritev2 - read or write data into multiple
buffers

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/uio.h>

ssize_t readv(int fd , const struct iovec *iov, int iovcnt);
ssize_t writev(int fd , const struct iovec *iov, int iovcnt);

ssize_t preadv(int fd , const struct iovec *iov, int iovcnt,
off_t offset);

ssize_t pwritev(int fd , const struct iovec *iov, int iovcnt,
off_t offset);

ssize_t preadv2(int fd , const struct iovec *iov, int iovcnt,
off_t offset, int flags);

ssize_t pwritev2(int fd , const struct iovec *iov, int iovcnt,
off_t offset, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

preadv(), pwritev():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The readv() system call reads iovcnt buffers from the file associated with the file de-
scriptor fd into the buffers described by iov ("scatter input").

The writev() system call writes iovcnt buffers of data described by iov to the file asso-
ciated with the file descriptor fd ("gather output").

The pointer iov points to an array of iovec structures, described in iovec(3type).

The readv() system call works just like read(2) except that multiple buffers are filled.

The writev() system call works just like write(2) except that multiple buffers are writ-
ten out.

Buffers are processed in array order. This means that readv() completely fills iov[0]
before proceeding to iov[1], and so on. (If there is insufficient data, then not all
buffers pointed to by iov may be filled.) Similarly, writev() writes out the entire con-
tents of iov[0] before proceeding to iov[1], and so on.

The data transfers performed by readv() and writev() are atomic: the data written by
writev() is written as a single block that is not intermingled with output from writes in
other processes; analogously, readv() is guaranteed to read a contiguous block of data
from the file, regardless of read operations performed in other threads or processes
that have file descriptors referring to the same open file description (see open(2)).

Linux man-pages 6.13 2025-01-04 717

readv(2) System Calls Manual readv(2)

preadv() and pwritev()
The preadv() system call combines the functionality of readv() and pread(2). It per-
forms the same task as readv(), but adds a fourth argument, offset, which specifies the
file offset at which the input operation is to be performed.

The pwritev() system call combines the functionality of writev() and pwrite(2). It
performs the same task as writev(), but adds a fourth argument, offset, which specifies
the file offset at which the output operation is to be performed.

The file offset is not changed by these system calls. The file referred to by fd must be
capable of seeking.

preadv2() and pwritev2()
These system calls are similar to preadv() and pwritev() calls, but add a fifth argu-
ment, flags, which modifies the behavior on a per-call basis.

Unlike preadv() and pwritev(), if the offset argument is -1, then the current file offset
is used and updated.

The flags argument contains a bitwise OR of zero or more of the following flags:

RWF_DSYNC (since Linux 4.7)
Provide a per-write equivalent of the O_DSYNC open(2) flag. This flag is
meaningful only for pwritev2(), and its effect applies only to the data range
written by the system call.

RWF_HIPRI (since Linux 4.6)
High priority read/write. Allows block-based filesystems to use polling of the
device, which provides lower latency, but may use additional resources. (Cur-
rently, this feature is usable only on a file descriptor opened using the O_DI-
RECT flag.)

RWF_SYNC (since Linux 4.7)
Provide a per-write equivalent of the O_SYNC open(2) flag. This flag is
meaningful only for pwritev2(), and its effect applies only to the data range
written by the system call.

RWF_NOWAIT (since Linux 4.14)
Do not wait for data which is not immediately available. If this flag is speci-
fied, the preadv2() system call will return instantly if it would have to read
data from the backing storage or wait for a lock. If some data was success-
fully read, it will return the number of bytes read. If no bytes were read, it will
return -1 and set errno to EAGAIN (but see BUGS). Currently, this flag is
meaningful only for preadv2().

RWF_APPEND (since Linux 4.16)
Provide a per-write equivalent of the O_APPEND open(2) flag. This flag is
meaningful only for pwritev2(), and its effect applies only to the data range
written by the system call. The offset argument does not affect the write oper-
ation; the data is always appended to the end of the file. However, if the offset
argument is -1, the current file offset is updated.

RWF_NOAPPEND (since Linux 6.9)
Do not honor the O_APPEND open(2) flag. This flag is meaningful only for
pwritev2(). Historically, Linux honored O_APPEND flag if set and ignored

Linux man-pages 6.13 2025-01-04 718

readv(2) System Calls Manual readv(2)

the offset argument, which is a bug. For pwritev2(), the offset argument is
honored as expected if RWF_NOAPPEND flag is set, the same as if O_AP-
PEND flag were not set.

RWF_ATOMIC (since Linux 6.11)
Requires that writes to regular files in block-based filesystems be issued with
torn-write protection. Torn-write protection means that for a power or any
other hardware failure, all or none of the data from the write will be stored, but
never a mix of old and new data. This flag is meaningful only for pwritev2(),
and its effect applies only to the data range written by the system call. The to-
tal write length must be power-of-2 and must be sized in the range
[stx_atomic_write_unit_min, stx_atomic_write_unit_max]. The write must be
at a naturally-aligned offset within the file with respect to the total write
length. For example, a write of length 32KiB at a file offset of 32KiB is per-
mitted, however a write of length 32KiB at a file offset of 48KiB is not permit-
ted. The upper limit of iovcnt for pwritev2() is given by the value in
stx_atomic_write_segments_max. Torn-write protection only works with
O_DIRECT flag, i.e. buffered writes are not supported. To guarantee consis-
tency from the write between a file’s in-core state with the storage device,
O_SYNC or O_DSYNC must be specified for open(2). The same synchro-
nized I/O guarantees as described in open(2) are provided when these flags or
their equivalent flags and system calls are used (e.g., if RWF_SYNC is speci-
fied for pwritev2())

RETURN VALUE
On success, readv(), preadv(), and preadv2() return the number of bytes read;
writev(), pwritev(), and pwritev2() return the number of bytes written.

Note that it is not an error for a successful call to transfer fewer bytes than requested
(see read(2) and write(2)).

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
The errors are as given for read(2) and write(2). Furthermore, preadv(), preadv2(),
pwritev(), and pwritev2() can also fail for the same reasons as lseek(2). Additionally,
the following errors are defined:

EINVAL
The sum of the iov_len values overflows an ssize_t value.

EINVAL
If RWF_ATOMIC is specified, the combination of the sum of the iov_len val-
ues and the offset value does not comply with the length and offset torn-write
protection rules.

EINVAL
The vector count, iovcnt, is less than zero or greater than the permitted maxi-
mum. If RWF_ATOMIC is specified, this maximum is given by the
stx_atomic_write_segments_max value from statx.

EOPNOTSUPP
An unknown flag is specified in flags.

Linux man-pages 6.13 2025-01-04 719

readv(2) System Calls Manual readv(2)

VERSIONS
C library/kernel differences

The raw preadv() and pwritev() system calls have call signatures that differ slightly
from that of the corresponding GNU C library wrapper functions shown in the SYN-
OPSIS. The final argument, offset, is unpacked by the wrapper functions into two ar-
guments in the system calls:

unsigned long pos_l, unsigned long pos

These arguments contain, respectively, the low order and high order 32 bits of offset.

STANDARDS
readv()
writev()

POSIX.1-2008.

preadv()
pwritev()

BSD.

preadv2()
pwritev2()

Linux.

HISTORY
readv()
writev()

POSIX.1-2001, 4.4BSD (first appeared in 4.2BSD).

preadv(), pwritev(): Linux 2.6.30, glibc 2.10.

preadv2(), pwritev2(): Linux 4.6, glibc 2.26.

Historical C library/kernel differences
To deal with the fact that IOV_MAX was so low on early versions of Linux, the glibc
wrapper functions for readv() and writev() did some extra work if they detected that
the underlying kernel system call failed because this limit was exceeded. In the case
of readv(), the wrapper function allocated a temporary buffer large enough for all of
the items specified by iov, passed that buffer in a call to read(2), copied data from the
buffer to the locations specified by the iov_base fields of the elements of iov, and then
freed the buffer. The wrapper function for writev() performed the analogous task us-
ing a temporary buffer and a call to write(2).

The need for this extra effort in the glibc wrapper functions went away with Linux 2.2
and later. However, glibc continued to provide this behavior until glibc 2.10. Starting
with glibc 2.9, the wrapper functions provide this behavior only if the library detects
that the system is running a Linux kernel older than Linux 2.6.18 (an arbitrarily se-
lected kernel version). And since glibc 2.20 (which requires a minimum of Linux
2.6.32), the glibc wrapper functions always just directly invoke the system calls.

NOTES
POSIX.1 allows an implementation to place a limit on the number of items that can be
passed in iov. An implementation can advertise its limit by defining IOV_MAX in
<limits.h> or at run time via the return value from sysconf(_SC_IOV_MAX). On
modern Linux systems, the limit is 1024. Back in Linux 2.0 days, this limit was 16.

Linux man-pages 6.13 2025-01-04 720

readv(2) System Calls Manual readv(2)

BUGS
Linux 5.9 and Linux 5.10 have a bug where preadv2() with the RWF_NOWAIT flag
may return 0 even when not at end of file.

EXAMPLES
The following code sample demonstrates the use of writev():

char *str0 = "hello ";
char *str1 = "world\n";
ssize_t nwritten;
struct iovec iov[2];

iov[0].iov_base = str0;
iov[0].iov_len = strlen(str0);
iov[1].iov_base = str1;
iov[1].iov_len = strlen(str1);

nwritten = writev(STDOUT_FILENO, iov, 2);

SEE ALSO
pread(2), read(2), write(2)

Linux man-pages 6.13 2025-01-04 721

reboot(2) System Calls Manual reboot(2)

NAME
reboot - reboot or enable/disable Ctrl-Alt-Del

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
/* Since Linux 2.1.30 there are symbolic names LINUX_REBOOT_*

for the constants and a fourth argument to the call: */

#include <linux/reboot.h> /* Definition of LINUX_REBOOT_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_reboot, int magic, int magic2, int op, void *arg);

/* Under glibc and most alternative libc’s (including uclibc, dietlibc,
musl and a few others), some of the constants involved have gotten
symbolic names RB_*, and the library call is a 1-argument
wrapper around the system call: */

#include <sys/reboot.h> /* Definition of RB_* constants */
#include <unistd.h>

int reboot(int op);

DESCRIPTION
The reboot() call reboots the system, or enables/disables the reboot keystroke (abbre-
viated CAD, since the default is Ctrl-Alt-Delete; it can be changed using loadkeys(1)).

This system call fails (with the error EINVAL) unless magic equals LINUX_RE-
BOOT_MAGIC1 (that is, 0xfee1dead) and magic2 equals LINUX_RE-
BOOT_MAGIC2 (that is, 0x28121969). However, since Linux 2.1.17 also
LINUX_REBOOT_MAGIC2A (that is, 0x05121996) and since Linux 2.1.97 also
LINUX_REBOOT_MAGIC2B (that is, 0x16041998) and since Linux 2.5.71 also
LINUX_REBOOT_MAGIC2C (that is, 0x20112000) are permitted as values for
magic2. (The hexadecimal values of these constants are meaningful.)

The op argument can have the following values:

LINUX_REBOOT_CMD_CAD_OFF
(RB_DISABLE_CAD, 0). CAD is disabled. This means that the CAD key-
stroke will cause a SIGINT signal to be sent to init (process 1), whereupon
this process may decide upon a proper action (maybe: kill all processes, sync,
reboot).

LINUX_REBOOT_CMD_CAD_ON
(RB_ENABLE_CAD, 0x89abcdef). CAD is enabled. This means that the
CAD keystroke will immediately cause the action associated with
LINUX_REBOOT_CMD_RESTART.

LINUX_REBOOT_CMD_HALT
(RB_HALT_SYSTEM, 0xcdef0123; since Linux 1.1.76). The message "Sys-
tem halted." is printed, and the system is halted. Control is given to the ROM
monitor, if there is one. If not preceded by a sync(2), data will be lost.

Linux man-pages 6.13 2024-07-23 722

reboot(2) System Calls Manual reboot(2)

LINUX_REBOOT_CMD_KEXEC
(RB_KEXEC, 0x45584543, since Linux 2.6.13). Execute a kernel that has
been loaded earlier with kexec_load(2). This option is available only if the
kernel was configured with CONFIG_KEXEC.

LINUX_REBOOT_CMD_POWER_OFF
(RB_POWER_OFF, 0x4321fedc; since Linux 2.1.30). The message "Power
down." is printed, the system is stopped, and all power is removed from the
system, if possible. If not preceded by a sync(2), data will be lost.

LINUX_REBOOT_CMD_RESTART
(RB_AUTOBOOT, 0x1234567). The message "Restarting system." is
printed, and a default restart is performed immediately. If not preceded by a
sync(2), data will be lost.

LINUX_REBOOT_CMD_RESTART2
(0xa1b2c3d4; since Linux 2.1.30). The message "Restarting system with com-
mand '%s'" is printed, and a restart (using the command string given in arg) is
performed immediately. If not preceded by a sync(2), data will be lost.

LINUX_REBOOT_CMD_SW_SUSPEND
(RB_SW_SUSPEND, 0xd000fce1; since Linux 2.5.18). The system is sus-
pended (hibernated) to disk. This option is available only if the kernel was
configured with CONFIG_HIBERNATION.

Only the superuser may call reboot().

The precise effect of the above actions depends on the architecture. For the i386 ar-
chitecture, the additional argument does not do anything at present (2.1.122), but the
type of reboot can be determined by kernel command-line arguments ("reboot=...") to
be either warm or cold, and either hard or through the BIOS.

Behavior inside PID namespaces
Since Linux 3.4, if reboot() is called from a PID namespace other than the initial PID
namespace with one of the op values listed below, it performs a "reboot" of that name-
space: the "init" process of the PID namespace is immediately terminated, with the ef-
fects described in pid_namespaces(7).

The values that can be supplied in op when calling reboot() in this case are as fol-
lows:

LINUX_REBOOT_CMD_RESTART
LINUX_REBOOT_CMD_RESTART2

The "init" process is terminated, and wait(2) in the parent process reports that
the child was killed with a SIGHUP signal.

LINUX_REBOOT_CMD_POWER_OFF
LINUX_REBOOT_CMD_HALT

The "init" process is terminated, and wait(2) in the parent process reports that
the child was killed with a SIGINT signal.

For the other op values, reboot() returns -1 and errno is set to EINVAL.

RETURN VALUE
For the values of op that stop or restart the system, a successful call to reboot() does
not return. For the other op values, zero is returned on success. In all cases, -1 is

Linux man-pages 6.13 2024-07-23 723

reboot(2) System Calls Manual reboot(2)

returned on failure, and errno is set to indicate the error.

ERRORS
EFAULT

Problem with getting user-space data under LINUX_RE-
BOOT_CMD_RESTART2.

EINVAL
Bad magic numbers or op.

EPERM
The calling process has insufficient privilege to call reboot(); the caller must
have the CAP_SYS_BOOT inside its user namespace.

STANDARDS
Linux.

SEE ALSO
systemctl(1), systemd(1), kexec_load(2), sync(2), bootparam(7), capabilities(7), ctr-
laltdel(8), halt(8), shutdown(8)

Linux man-pages 6.13 2024-07-23 724

recv(2) System Calls Manual recv(2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

ssize_t recv(int sockfd , void buf [.size], size_t size,
int flags);

ssize_t recvfrom(int sockfd , void buf [restrict .size], size_t size,
int flags,
struct sockaddr *_Nullable restrict src_addr,
socklen_t *_Nullable restrict addrlen);

ssize_t recvmsg(int sockfd , struct msghdr *msg, int flags);

DESCRIPTION
The recv(), recvfrom(), and recvmsg() calls are used to receive messages from a
socket. They may be used to receive data on both connectionless and connection-ori-
ented sockets. This page first describes common features of all three system calls, and
then describes the differences between the calls.

The only difference between recv() and read(2) is the presence of flags. With a zero
flags argument, recv() is generally equivalent to read(2) (but see NOTES). Also, the
following call

recv(sockfd, buf, size, flags);

is equivalent to

recvfrom(sockfd, buf, size, flags, NULL, NULL);

All three calls return the size of the message on successful completion. If a message
is too long to fit in the supplied buffer, excess bytes may be discarded depending on
the type of socket the message is received from.

If no messages are available at the socket, the receive calls wait for a message to ar-
rive, unless the socket is nonblocking (see fcntl(2)), in which case the value -1 is re-
turned and errno is set to EAGAIN or EWOULDBLOCK. The receive calls nor-
mally return any data available, up to the requested amount, rather than waiting for re-
ceipt of the full amount requested.

An application can use select(2), poll(2), or epoll(7) to determine when more data ar-
rives on a socket.

The flags argument
The flags argument is formed by ORing one or more of the following values:

MSG_CMSG_CLOEXEC (recvmsg() only; since Linux 2.6.23)
Set the close-on-exec flag for the file descriptor received via a UNIX domain
file descriptor using the SCM_RIGHTS operation (described in unix(7)).
This flag is useful for the same reasons as the O_CLOEXEC flag of open(2).

MSG_DONTWAIT (since Linux 2.2)
Enables nonblocking operation; if the operation would block, the call fails
with the error EAGAIN or EWOULDBLOCK. This provides similar

Linux man-pages 6.13 2024-11-17 725

recv(2) System Calls Manual recv(2)

behavior to setting the O_NONBLOCK flag (via the fcntl(2) F_SETFL oper-
ation), but differs in that MSG_DONTWAIT is a per-call option, whereas
O_NONBLOCK is a setting on the open file description (see open(2)), which
will affect all threads in the calling process as well as other processes that hold
file descriptors referring to the same open file description.

MSG_ERRQUEUE (since Linux 2.2)
This flag specifies that queued errors should be received from the socket error
queue. The error is passed in an ancillary message with a type dependent on
the protocol (for IPv4 IP_RECVERR). The user should supply a buffer of
sufficient size. See cmsg(3) and ip(7) for more information. The payload of
the original packet that caused the error is passed as normal data via
msg_iovec. The original destination address of the datagram that caused the
error is supplied via msg_name.

The error is supplied in a sock_extended_err structure:

#define SO_EE_ORIGIN_NONE 0
#define SO_EE_ORIGIN_LOCAL 1
#define SO_EE_ORIGIN_ICMP 2
#define SO_EE_ORIGIN_ICMP6 3

struct sock_extended_err
{

uint32_t ee_errno; /* Error number */
uint8_t ee_origin; /* Where the error originated */
uint8_t ee_type; /* Type */
uint8_t ee_code; /* Code */
uint8_t ee_pad; /* Padding */
uint32_t ee_info; /* Additional information */
uint32_t ee_data; /* Other data */
/* More data may follow */

};

struct sockaddr *SO_EE_OFFENDER(struct sock_extended_err *);

ee_errno contains the errno number of the queued error. ee_origin is the ori-
gin code of where the error originated. The other fields are protocol-specific.
The macro SO_EE_OFFENDER returns a pointer to the address of the net-
work object where the error originated from given a pointer to the ancillary
message. If this address is not known, the sa_family member of the sockaddr
contains AF_UNSPEC and the other fields of the sockaddr are undefined.
The payload of the packet that caused the error is passed as normal data.

For local errors, no address is passed (this can be checked with the cmsg_len
member of the cmsghdr). For error receives, the MSG_ERRQUEUE flag is
set in the msghdr. After an error has been passed, the pending socket error is
regenerated based on the next queued error and will be passed on the next
socket operation.

Linux man-pages 6.13 2024-11-17 726

recv(2) System Calls Manual recv(2)

MSG_OOB
This flag requests receipt of out-of-band data that would not be received in the
normal data stream. Some protocols place expedited data at the head of the
normal data queue, and thus this flag cannot be used with such protocols.

MSG_PEEK
This flag causes the receive operation to return data from the beginning of the
receive queue without removing that data from the queue. Thus, a subsequent
receive call will return the same data.

MSG_TRUNC (since Linux 2.2)
For raw (AF_PACKET), Internet datagram (since Linux 2.4.27/2.6.8), netlink
(since Linux 2.6.22), and UNIX datagram as well as sequenced-packet (since
Linux 3.4) sockets: return the real size of the packet or datagram, even when it
was longer than the passed buffer.

For use with Internet stream sockets, see tcp(7).

MSG_WAITALL (since Linux 2.2)
This flag requests that the operation block until the full request is satisfied.
However, the call may still return less data than requested if a signal is caught,
an error or disconnect occurs, or the next data to be received is of a different
type than that returned. This flag has no effect for datagram sockets.

recvfrom()
recvfrom() places the received message into the buffer buf . The caller must specify
the size of the buffer in size.

If src_addr is not NULL, and the underlying protocol provides the source address of
the message, that source address is placed in the buffer pointed to by src_addr. In
this case, addrlen is a value-result argument. Before the call, it should be initialized
to the size of the buffer associated with src_addr. Upon return, addrlen is updated to
contain the actual size of the source address. The returned address is truncated if the
buffer provided is too small; in this case, addrlen will return a value greater than was
supplied to the call.

If the caller is not interested in the source address, src_addr and addrlen should be
specified as NULL.

recv()
The recv() call is normally used only on a connected socket (see connect(2)). It is
equivalent to the call:

recvfrom(fd, buf, size, flags, NULL, 0);

recvmsg()
The recvmsg() call uses a msghdr structure to minimize the number of directly sup-
plied arguments. This structure is defined as follows in <sys/socket.h>:

struct msghdr {
void *msg_name; /* Optional address */
socklen_t msg_namelen; /* Size of address */
struct iovec *msg_iov; /* Scatter/gather array */
size_t msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* Ancillary data, see below */

Linux man-pages 6.13 2024-11-17 727

recv(2) System Calls Manual recv(2)

size_t msg_controllen; /* Ancillary data buffer size */
int msg_flags; /* Flags on received message */

};

The msg_name field points to a caller-allocated buffer that is used to return the source
address if the socket is unconnected. The caller should set msg_namelen to the size of
this buffer before this call; upon return from a successful call, msg_namelen will con-
tain the size of the returned address. If the application does not need to know the
source address, msg_name can be specified as NULL.

The fields msg_iov and msg_iovlen describe scatter-gather locations, as discussed in
readv(2).

The field msg_control, which has size msg_controllen, points to a buffer for other
protocol control-related messages or miscellaneous ancillary data. When recvmsg()
is called, msg_controllen should contain the size of the available buffer in msg_con-
trol; upon return from a successful call it will contain the size of the control message
sequence.

The messages are of the form:

struct cmsghdr {
size_t cmsg_len; /* Data byte count, including header

(type is socklen_t in POSIX) */
int cmsg_level; /* Originating protocol */
int cmsg_type; /* Protocol-specific type */

/* followed by
unsigned char cmsg_data[]; */

};

Ancillary data should be accessed only by the macros defined in cmsg(3).

As an example, Linux uses this ancillary data mechanism to pass extended errors, IP
options, or file descriptors over UNIX domain sockets. For further information on the
use of ancillary data in various socket domains, see unix(7) and ip(7).

The msg_flags field in the msghdr is set on return of recvmsg(). It can contain sev-
eral flags:

MSG_EOR
indicates end-of-record; the data returned completed a record (generally used
with sockets of type SOCK_SEQPACKET).

MSG_TRUNC
indicates that the trailing portion of a datagram was discarded because the
datagram was larger than the buffer supplied.

MSG_CTRUNC
indicates that some control data was discarded due to lack of space in the
buffer for ancillary data.

MSG_OOB
is returned to indicate that expedited or out-of-band data was received.

Linux man-pages 6.13 2024-11-17 728

recv(2) System Calls Manual recv(2)

MSG_ERRQUEUE
indicates that no data was received but an extended error from the socket error
queue.

MSG_CMSG_CLOEXEC (since Linux 2.6.23)
indicates that MSG_CMSG_CLOEXEC was specified in the flags argument
of recvmsg().

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred. In the
event of an error, errno is set to indicate the error.

When a stream socket peer has performed an orderly shutdown, the return value will
be 0 (the traditional "end-of-file" return).

Datagram sockets in various domains (e.g., the UNIX and Internet domains) permit
zero-size datagrams. When such a datagram is received, the return value is 0.

The value 0 may also be returned if the requested number of bytes to receive from a
stream socket was 0.

ERRORS
These are some standard errors generated by the socket layer. Additional errors may
be generated and returned from the underlying protocol modules; see their manual
pages.

EAGAIN or EWOULDBLOCK
The socket is marked nonblocking and the receive operation would block, or a
receive timeout had been set and the timeout expired before data was received.
POSIX.1 allows either error to be returned for this case, and does not require
these constants to have the same value, so a portable application should check
for both possibilities.

EBADF
The argument sockfd is an invalid file descriptor.

ECONNREFUSED
A remote host refused to allow the network connection (typically because it is
not running the requested service).

EFAULT
The receive buffer pointer(s) point outside the process’s address space.

EINTR
The receive was interrupted by delivery of a signal before any data was avail-
able; see signal(7).

EINVAL
Invalid argument passed.

ENOMEM
Could not allocate memory for recvmsg().

ENOTCONN
The socket is associated with a connection-oriented protocol and has not been
connected (see connect(2) and accept(2)).

Linux man-pages 6.13 2024-11-17 729

recv(2) System Calls Manual recv(2)

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

VERSIONS
According to POSIX.1, the msg_controllen field of the msghdr structure should be
typed as socklen_t, and the msg_iovlen field should be typed as int, but glibc cur-
rently types both as size_t.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.4BSD (first appeared in 4.2BSD).

POSIX.1 describes only the MSG_OOB, MSG_PEEK, and MSG_WAITALL flags.

NOTES
If a zero-size datagram is pending, read(2) and recv() with a flags argument of zero
provide different behavior. In this circumstance, read(2) has no effect (the datagram
remains pending), while recv() consumes the pending datagram.

See recvmmsg(2) for information about a Linux-specific system call that can be used
to receive multiple datagrams in a single call.

EXAMPLES
An example of the use of recvfrom() is shown in getaddrinfo(3).

SEE ALSO
fcntl(2), getsockopt(2), read(2), recvmmsg(2), select(2), shutdown(2), socket(2),
cmsg(3), sockatmark(3), ip(7), ipv6(7), socket(7), tcp(7), udp(7), unix(7)

Linux man-pages 6.13 2024-11-17 730

recvmmsg(2) System Calls Manual recvmmsg(2)

NAME
recvmmsg - receive multiple messages on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/socket.h>

int recvmmsg(int sockfd , struct mmsghdr msgvec[.n], unsigned int n,
int flags, struct timespec *timeout);

DESCRIPTION
The recvmmsg() system call is an extension of recvmsg(2) that allows the caller to re-
ceive multiple messages from a socket using a single system call. (This has perfor-
mance benefits for some applications.) A further extension over recvmsg(2) is support
for a timeout on the receive operation.

The sockfd argument is the file descriptor of the socket to receive data from.

The msgvec argument is a pointer to an array of mmsghdr structures. The size of this
array is specified in n.

The mmsghdr structure is defined in <sys/socket.h> as:

struct mmsghdr {
struct msghdr msg_hdr; /* Message header */
unsigned int msg_len; /* Number of received bytes for header */

};

The msg_hdr field is a msghdr structure, as described in recvmsg(2). The msg_len
field is the number of bytes returned for the message in the entry. This field has the
same value as the return value of a single recvmsg(2) on the header.

The flags argument contains flags ORed together. The flags are the same as docu-
mented for recvmsg(2), with the following addition:

MSG_WAITFORONE (since Linux 2.6.34)
Turns on MSG_DONTWAIT after the first message has been received.

The timeout argument points to a struct timespec (see clock_gettime(2)) defining a
timeout (seconds plus nanoseconds) for the receive operation (but see BUGS!). (This
interval will be rounded up to the system clock granularity, and kernel scheduling de-
lays mean that the blocking interval may overrun by a small amount.) If timeout is
NULL, then the operation blocks indefinitely.

A blocking recvmmsg() call blocks until n messages have been received or until the
timeout expires. A nonblocking call reads as many messages as are available (up to
the limit specified by n) and returns immediately.

On return from recvmmsg(), successive elements of msgvec are updated to contain
information about each received message: msg_len contains the size of the received
message; the subfields of msg_hdr are updated as described in recvmsg(2). The re-
turn value of the call indicates the number of elements of msgvec that have been up-
dated.

Linux man-pages 6.13 2024-11-17 731

recvmmsg(2) System Calls Manual recvmmsg(2)

RETURN VALUE
On success, recvmmsg() returns the number of messages received in msgvec; on er-
ror, -1 is returned, and errno is set to indicate the error.

ERRORS
Errors are as for recvmsg(2). In addition, the following error can occur:

EINVAL
timeout is invalid.

See also BUGS.

STANDARDS
Linux.

HISTORY
Linux 2.6.33, glibc 2.12.

BUGS
The timeout argument does not work as intended. The timeout is checked only after
the receipt of each datagram, so that if up to n-1 datagrams are received before the
timeout expires, but then no further datagrams are received, the call will block forever.

If an error occurs after at least one message has been received, the call succeeds, and
returns the number of messages received. The error code is expected to be returned
on a subsequent call to recvmmsg(). In the current implementation, however, the er-
ror code can be overwritten in the meantime by an unrelated network event on a
socket, for example an incoming ICMP packet.

EXAMPLES
The following program uses recvmmsg() to receive multiple messages on a socket
and stores them in multiple buffers. The call returns if all buffers are filled or if the
timeout specified has expired.

The following snippet periodically generates UDP datagrams containing a random
number:

$ while true; do echo $RANDOM > /dev/udp/127.0.0.1/1234;
sleep 0.25; done

These datagrams are read by the example application, which can give the following
output:

$./a.out
5 messages received
1 11782
2 11345
3 304
4 13514
5 28421

Program source

#define _GNU_SOURCE
#include <arpa/inet.h>
#include <netinet/in.h>

Linux man-pages 6.13 2024-11-17 732

recvmmsg(2) System Calls Manual recvmmsg(2)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <time.h>

int
main(void)
{
#define VLEN 10
#define BUFSIZE 200
#define TIMEOUT 1

int sockfd, retval;
char bufs[VLEN][BUFSIZE+1];
struct iovec iovecs[VLEN];
struct mmsghdr msgs[VLEN];
struct timespec timeout;
struct sockaddr_in addr;

sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if (sockfd == -1) {

perror("socket()");
exit(EXIT_FAILURE);

}

addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
addr.sin_port = htons(1234);
if (bind(sockfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {

perror("bind()");
exit(EXIT_FAILURE);

}

memset(msgs, 0, sizeof(msgs));
for (size_t i = 0; i < VLEN; i++) {

iovecs[i].iov_base = bufs[i];
iovecs[i].iov_len = BUFSIZE;
msgs[i].msg_hdr.msg_iov = &iovecs[i];
msgs[i].msg_hdr.msg_iovlen = 1;

}

timeout.tv_sec = TIMEOUT;
timeout.tv_nsec = 0;

retval = recvmmsg(sockfd, msgs, VLEN, 0, &timeout);
if (retval == -1) {

perror("recvmmsg()");
exit(EXIT_FAILURE);

}

Linux man-pages 6.13 2024-11-17 733

recvmmsg(2) System Calls Manual recvmmsg(2)

printf("%d messages received\n", retval);
for (size_t i = 0; i < retval; i++) {

bufs[i][msgs[i].msg_len] = 0;
printf("%zu %s", i+1, bufs[i]);

}
exit(EXIT_SUCCESS);

}

SEE ALSO
clock_gettime(2), recvmsg(2), sendmmsg(2), sendmsg(2), socket(2), socket(7)

Linux man-pages 6.13 2024-11-17 734

remap_file_pages(2) System Calls Manual remap_file_pages(2)

NAME
remap_file_pages - create a nonlinear file mapping

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/mman.h>

[[deprecated]] int remap_file_pages(void addr[.size], size_t size,
int prot, size_t pgoff , int flags);

DESCRIPTION
Note: this system call was marked as deprecated starting with Linux 3.16. In Linux
4.0, the implementation was replaced by a slower in-kernel emulation. Those few ap-
plications that use this system call should consider migrating to alternatives. This
change was made because the kernel code for this system call was complex, and it is
believed to be little used or perhaps even completely unused. While it had some use
cases in database applications on 32-bit systems, those use cases don’t exist on 64-bit
systems.

The remap_file_pages() system call is used to create a nonlinear mapping, that is, a
mapping in which the pages of the file are mapped into a nonsequential order in mem-
ory. The advantage of using remap_file_pages() over using repeated calls to
mmap(2) is that the former approach does not require the kernel to create additional
VMA (Virtual Memory Area) data structures.

To create a nonlinear mapping we perform the following steps:

1. Use mmap(2) to create a mapping (which is initially linear). This mapping must
be created with the MAP_SHARED flag.

2. Use one or more calls to remap_file_pages() to rearrange the correspondence be-
tween the pages of the mapping and the pages of the file. It is possible to map the
same page of a file into multiple locations within the mapped region.

The pgoff and size arguments specify the region of the file that is to be relocated
within the mapping: pgoff is a file offset in units of the system page size; size is the
length of the region in bytes.

The addr argument serves two purposes. First, it identifies the mapping whose pages
we want to rearrange. Thus, addr must be an address that falls within a region previ-
ously mapped by a call to mmap(2). Second, addr specifies the address at which the
file pages identified by pgoff and size will be placed.

The values specified in addr and size should be multiples of the system page size. If
they are not, then the kernel rounds both values down to the nearest multiple of the
page size.

The prot argument must be specified as 0.

The flags argument has the same meaning as for mmap(2), but all flags other than
MAP_NONBLOCK are ignored.

Linux man-pages 6.13 2024-07-23 735

remap_file_pages(2) System Calls Manual remap_file_pages(2)

RETURN VALUE
On success, remap_file_pages() returns 0. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
EINVAL

addr does not refer to a valid mapping created with the MAP_SHARED flag.

EINVAL
addr, size, prot, or pgoff is invalid.

STANDARDS
Linux.

HISTORY
Linux 2.5.46, glibc 2.3.3.

NOTES
Since Linux 2.6.23, remap_file_pages() creates non-linear mappings only on in-
memory filesystems such as tmpfs(5), hugetlbfs or ramfs. On filesystems with a back-
ing store, remap_file_pages() is not much more efficient than using mmap(2) to ad-
just which parts of the file are mapped to which addresses.

SEE ALSO
getpagesize(2), mmap(2), mmap2(2), mprotect(2), mremap(2), msync(2)

Linux man-pages 6.13 2024-07-23 736

removexattr(2) System Calls Manual removexattr(2)

NAME
removexattr, lremovexattr, fremovexattr - remove an extended attribute

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/xattr.h>

int removexattr(const char *path, const char *name);
int lremovexattr(const char *path, const char *name);
int fremovexattr(int fd , const char *name);

DESCRIPTION
Extended attributes are name:value pairs associated with inodes (files, directories,
symbolic links, etc.). They are extensions to the normal attributes which are associ-
ated with all inodes in the system (i.e., the stat(2) data). A complete overview of ex-
tended attributes concepts can be found in xattr(7).

removexattr() removes the extended attribute identified by name and associated with
the given path in the filesystem.

lremovexattr() is identical to removexattr(), except in the case of a symbolic link,
where the extended attribute is removed from the link itself, not the file that it refers
to.

fremovexattr() is identical to removexattr(), only the extended attribute is removed
from the open file referred to by fd (as returned by open(2)) in place of path.

An extended attribute name is a null-terminated string. The name includes a name-
space prefix; there may be several, disjoint namespaces associated with an individual
inode.

RETURN VALUE
On success, zero is returned. On failure, -1 is returned and errno is set to indicate the
error.

ERRORS
ENODATA

The named attribute does not exist.

ENOTSUP
Extended attributes are not supported by the filesystem, or are disabled.

In addition, the errors documented in stat(2) can also occur.

STANDARDS
Linux.

HISTORY
Linux 2.4, glibc 2.3.

SEE ALSO
getfattr(1), setfattr(1), getxattr(2), listxattr(2), open(2), setxattr(2), stat(2),
symlink(7), xattr(7)

Linux man-pages 6.13 2024-07-23 737

rename(2) System Calls Manual rename(2)

NAME
rename, renameat, renameat2 - change the name or location of a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int rename(const char *oldpath, const char *newpath);

#include <fcntl.h> /* Definition of AT_* constants */
#include <stdio.h>

int renameat(int olddirfd , const char *oldpath,
int newdirfd , const char *newpath);

int renameat2(int olddirfd , const char *oldpath,
int newdirfd , const char *newpath, unsigned int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

renameat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

renameat2():
_GNU_SOURCE

DESCRIPTION
rename() renames a file, moving it between directories if required. Any other hard
links to the file (as created using link(2)) are unaffected. Open file descriptors for old-
path are also unaffected.

Various restrictions determine whether or not the rename operation succeeds: see ER-
RORS below.

If newpath already exists, it will be atomically replaced, so that there is no point at
which another process attempting to access newpath will find it missing. However,
there will probably be a window in which both oldpath and newpath refer to the file
being renamed.

If oldpath and newpath are existing hard links referring to the same file, then re-
name() does nothing, and returns a success status.

If newpath exists but the operation fails for some reason, rename() guarantees to
leave an instance of newpath in place.

oldpath can specify a directory. In this case, newpath must either not exist, or it must
specify an empty directory.

If oldpath refers to a symbolic link, the link is renamed; if newpath refers to a sym-
bolic link, the link will be overwritten.

renameat()
The renameat() system call operates in exactly the same way as rename(), except for
the differences described here.

Linux man-pages 6.13 2024-07-23 738

rename(2) System Calls Manual rename(2)

If the pathname given in oldpath is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor olddirfd (rather than relative to the current work-
ing directory of the calling process, as is done by rename() for a relative pathname).

If oldpath is relative and olddirfd is the special value AT_FDCWD, then oldpath is
interpreted relative to the current working directory of the calling process (like
rename())

If oldpath is absolute, then olddirfd is ignored.

The interpretation of newpath is as for oldpath, except that a relative pathname is in-
terpreted relative to the directory referred to by the file descriptor newdirfd .

See openat(2) for an explanation of the need for renameat().

renameat2()
renameat2() has an additional flags argument. A renameat2() call with a zero flags
argument is equivalent to renameat().

The flags argument is a bit mask consisting of zero or more of the following flags:

RENAME_EXCHANGE
Atomically exchange oldpath and newpath. Both pathnames must exist but
may be of different types (e.g., one could be a non-empty directory and the
other a symbolic link).

RENAME_NOREPLACE
Don’t overwrite newpath of the rename. Return an error if newpath already
exists.

RENAME_NOREPLACE can’t be employed together with RENAME_EX-
CHANGE.

RENAME_NOREPLACE requires support from the underlying filesystem.
Support for various filesystems was added as follows:

• ext4 (Linux 3.15);

• btrfs, tmpfs, and cifs (Linux 3.17);

• xfs (Linux 4.0);

• Support for many other filesystems was added in Linux 4.9, including
ext2, minix, reiserfs, jfs, vfat, and bpf.

RENAME_WHITEOUT (since Linux 3.18)
This operation makes sense only for overlay/union filesystem implementa-
tions.

Specifying RENAME_WHITEOUT creates a "whiteout" object at the source
of the rename at the same time as performing the rename. The whole opera-
tion is atomic, so that if the rename succeeds then the whiteout will also have
been created.

A "whiteout" is an object that has special meaning in union/overlay filesystem
constructs. In these constructs, multiple layers exist and only the top one is
ever modified. A whiteout on an upper layer will effectively hide a matching
file in the lower layer, making it appear as if the file didn’t exist.

Linux man-pages 6.13 2024-07-23 739

rename(2) System Calls Manual rename(2)

When a file that exists on the lower layer is renamed, the file is first copied up
(if not already on the upper layer) and then renamed on the upper, read-write
layer. At the same time, the source file needs to be "whiteouted" (so that the
version of the source file in the lower layer is rendered invisible). The whole
operation needs to be done atomically.

When not part of a union/overlay, the whiteout appears as a character device
with a {0,0} device number. (Note that other union/overlay implementations
may employ different methods for storing whiteout entries; specifically, BSD
union mount employs a separate inode type, DT_WHT, which, while sup-
ported by some filesystems available in Linux, such as CODA and XFS, is ig-
nored by the kernel’s whiteout support code, as of Linux 4.19, at least.)

RENAME_WHITEOUT requires the same privileges as creating a device
node (i.e., the CAP_MKNOD capability).

RENAME_WHITEOUT can’t be employed together with RENAME_EX-
CHANGE.

RENAME_WHITEOUT requires support from the underlying filesystem.
Among the filesystems that support it are tmpfs (since Linux 3.18), ext4 (since
Linux 3.18), XFS (since Linux 4.1), f2fs (since Linux 4.2), btrfs (since Linux
4.7), and ubifs (since Linux 4.9).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

Write permission is denied for the directory containing oldpath or newpath,
or, search permission is denied for one of the directories in the path prefix of
oldpath or newpath, or oldpath is a directory and does not allow write permis-
sion (needed to update the .. entry). (See also path_resolution(7).)

EBUSY
The rename fails because oldpath or newpath is a directory that is in use by
some process (perhaps as current working directory, or as root directory, or be-
cause it was open for reading) or is in use by the system (for example as a
mount point), while the system considers this an error. (Note that there is no
requirement to return EBUSY in such cases—there is nothing wrong with do-
ing the rename anyway—but it is allowed to return EBUSY if the system can-
not otherwise handle such situations.)

EDQUOT
The user’s quota of disk blocks on the filesystem has been exhausted.

EFAULT
oldpath or newpath points outside your accessible address space.

EINVAL
The new pathname contained a path prefix of the old, or, more generally, an at-
tempt was made to make a directory a subdirectory of itself.

Linux man-pages 6.13 2024-07-23 740

rename(2) System Calls Manual rename(2)

EISDIR
newpath is an existing directory, but oldpath is not a directory.

ELOOP
Too many symbolic links were encountered in resolving oldpath or newpath.

EMLINK
oldpath already has the maximum number of links to it, or it was a directory
and the directory containing newpath has the maximum number of links.

ENAMETOOLONG
oldpath or newpath was too long.

ENOENT
The link named by oldpath does not exist; or, a directory component in new-
path does not exist; or, oldpath or newpath is an empty string.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing the file has no room for the new directory entry.

ENOTDIR
A component used as a directory in oldpath or newpath is not, in fact, a direc-
tory. Or, oldpath is a directory, and newpath exists but is not a directory.

ENOTEMPTY or EEXIST
newpath is a nonempty directory, that is, contains entries other than "." and
"..".

EPERM or EACCES
The directory containing oldpath has the sticky bit (S_ISVTX) set and the
process’s effective user ID is neither the user ID of the file to be deleted nor
that of the directory containing it, and the process is not privileged (Linux:
does not have the CAP_FOWNER capability); or newpath is an existing file
and the directory containing it has the sticky bit set and the process’s effective
user ID is neither the user ID of the file to be replaced nor that of the directory
containing it, and the process is not privileged (Linux: does not have the
CAP_FOWNER capability); or the filesystem containing oldpath does not
support renaming of the type requested.

EROFS
The file is on a read-only filesystem.

EXDEV
oldpath and newpath are not on the same mounted filesystem. (Linux permits
a filesystem to be mounted at multiple points, but rename() does not work
across different mount points, even if the same filesystem is mounted on both.)

The following additional errors can occur for renameat() and renameat2():

EBADF
oldpath (newpath) is relative but olddirfd (newdirfd) is not a valid file descrip-
tor.

Linux man-pages 6.13 2024-07-23 741

rename(2) System Calls Manual rename(2)

ENOTDIR
oldpath is relative and olddirfd is a file descriptor referring to a file other than
a directory; or similar for newpath and newdirfd

The following additional errors can occur for renameat2():

EEXIST
flags contains RENAME_NOREPLACE and newpath already exists.

EINVAL
An invalid flag was specified in flags.

EINVAL
Both RENAME_NOREPLACE and RENAME_EXCHANGE were speci-
fied in flags.

EINVAL
Both RENAME_WHITEOUT and RENAME_EXCHANGE were specified
in flags.

EINVAL
The filesystem does not support one of the flags in flags.

ENOENT
flags contains RENAME_EXCHANGE and newpath does not exist.

EPERM
RENAME_WHITEOUT was specified in flags, but the caller does not have
the CAP_MKNOD capability.

STANDARDS
rename()

C11, POSIX.1-2008.

renameat()
POSIX.1-2008.

renameat2()
Linux.

HISTORY
rename()

4.3BSD, C89, POSIX.1-2001.

renameat()
Linux 2.6.16, glibc 2.4.

renameat2()
Linux 3.15, glibc 2.28.

glibc notes
On older kernels where renameat() is unavailable, the glibc wrapper function falls
back to the use of rename(). When oldpath and newpath are relative pathnames,
glibc constructs pathnames based on the symbolic links in /proc/self/fd that corre-
spond to the olddirfd and newdirfd arguments.

Linux man-pages 6.13 2024-07-23 742

rename(2) System Calls Manual rename(2)

BUGS
On NFS filesystems, you can not assume that if the operation failed, the file was not
renamed. If the server does the rename operation and then crashes, the retransmitted
RPC which will be processed when the server is up again causes a failure. The appli-
cation is expected to deal with this. See link(2) for a similar problem.

SEE ALSO
mv(1), rename(1), chmod(2), link(2), symlink(2), unlink(2), path_resolution(7), sym-
link(7)

Linux man-pages 6.13 2024-07-23 743

request_key(2) System Calls Manual request_key(2)

NAME
request_key - request a key from the kernel’s key management facility

LIBRARY
Linux Key Management Utilities (libkeyutils, -lkeyutils)

SYNOPSIS
#include <keyutils.h>

key_serial_t request_key(const char *type, const char *description,
const char *_Nullable callout_info,
key_serial_t dest_keyring);

DESCRIPTION
request_key() attempts to find a key of the given type with a description (name) that
matches the specified description. If such a key could not be found, then the key is
optionally created. If the key is found or created, request_key() attaches it to the
keyring whose ID is specified in dest_keyring and returns the key’s serial number.

request_key() first recursively searches for a matching key in all of the keyrings at-
tached to the calling process. The keyrings are searched in the order: thread-specific
keyring, process-specific keyring, and then session keyring.

If request_key() is called from a program invoked by request_key() on behalf of
some other process to generate a key, then the keyrings of that other process will be
searched next, using that other process’s user ID, group ID, supplementary group IDs,
and security context to determine access.

The search of the keyring tree is breadth-first: the keys in each keyring searched are
checked for a match before any child keyrings are recursed into. Only keys for which
the caller has search permission be found, and only keyrings for which the caller has
search permission may be searched.

If the key is not found and callout is NULL, then the call fails with the error
ENOKEY.

If the key is not found and callout is not NULL, then the kernel attempts to invoke a
user-space program to instantiate the key. The details are given below.

The dest_keyring serial number may be that of a valid keyring for which the caller has
write permission, or it may be one of the following special keyring IDs:

KEY_SPEC_THREAD_KEYRING
This specifies the caller’s thread-specific keyring (see thread-keyring(7)).

KEY_SPEC_PROCESS_KEYRING
This specifies the caller’s process-specific keyring (see process-keyring(7)).

KEY_SPEC_SESSION_KEYRING
This specifies the caller’s session-specific keyring (see session-keyring(7)).

KEY_SPEC_USER_KEYRING
This specifies the caller’s UID-specific keyring (see user-keyring(7)).

KEY_SPEC_USER_SESSION_KEYRING
This specifies the caller’s UID-session keyring (see user-session-keyring(7)).

When the dest_keyring is specified as 0 and no key construction has been performed,

Linux man-pages 6.13 2024-07-23 744

request_key(2) System Calls Manual request_key(2)

then no additional linking is done.

Otherwise, if dest_keyring is 0 and a new key is constructed, the new key will be
linked to the "default" keyring. More precisely, when the kernel tries to determine to
which keyring the newly constructed key should be linked, it tries the following
keyrings, beginning with the keyring set via the keyctl(2) KEYCTL_SET_RE-
QKEY_KEYRING operation and continuing in the order shown below until it finds
the first keyring that exists:

• The requestor keyring (KEY_REQKEY_DEFL_REQUESTOR_KEYRING,
since Linux 2.6.29).

• The thread-specific keyring (KEY_REQKEY_DEFL_THREAD_KEYRING;
see thread-keyring(7)).

• The process-specific keyring (KEY_REQKEY_DEFL_PROCESS_KEYRING;
see process-keyring(7)).

• The session-specific keyring (KEY_REQKEY_DEFL_SESSION_KEYRING;
see session-keyring(7)).

• The session keyring for the process’s user ID (KEY_RE-
QKEY_DEFL_USER_SESSION_KEYRING; see user-session-keyring(7)).
This keyring is expected to always exist.

• The UID-specific keyring (KEY_REQKEY_DEFL_USER_KEYRING; see
user-keyring(7)). This keyring is also expected to always exist.

If the keyctl(2) KEYCTL_SET_REQKEY_KEYRING operation specifies
KEY_REQKEY_DEFL_DEFAULT (or no KEYCTL_SET_RE-
QKEY_KEYRING operation is performed), then the kernel looks for a keyring start-
ing from the beginning of the list.

Requesting user-space instantiation of a key
If the kernel cannot find a key matching type and description, and callout is not
NULL, then the kernel attempts to invoke a user-space program to instantiate a key
with the given type and description. In this case, the following steps are performed:

(1) The kernel creates an uninstantiated key, U, with the requested type and de-
scription.

(2) The kernel creates an authorization key, V, that refers to the key U and records
the facts that the caller of request_key() is:

(2.1) the context in which the key U should be instantiated and secured, and

(2.2) the context from which associated key requests may be satisfied.

The authorization key is constructed as follows:

• The key type is ".request_key_auth".

• The key’s UID and GID are the same as the corresponding filesystem IDs of
the requesting process.

• The key grants view, read , and search permissions to the key possessor as
well as view permission for the key user.

Linux man-pages 6.13 2024-07-23 745

request_key(2) System Calls Manual request_key(2)

• The description (name) of the key is the hexadecimal string representing the
ID of the key that is to be instantiated in the requesting program.

• The payload of the key is taken from the data specified in callout_info.

• Internally, the kernel also records the PID of the process that called re-
quest_key().

(3) The kernel creates a process that executes a user-space service such as request-
key(8) with a new session keyring that contains a link to the authorization key,
V.

This program is supplied with the following command-line arguments:

[0] The string "/sbin/request-key".

[1] The string "create" (indicating that a key is to be created).

[2] The ID of the key that is to be instantiated.

[3] The filesystem UID of the caller of request_key().

[4] The filesystem GID of the caller of request_key().

[5] The ID of the thread keyring of the caller of request_key(). This may be
zero if that keyring hasn’t been created.

[6] The ID of the process keyring of the caller of request_key(). This may
be zero if that keyring hasn’t been created.

[7] The ID of the session keyring of the caller of request_key().

Note: each of the command-line arguments that is a key ID is encoded in deci-
mal (unlike the key IDs shown in /proc/keys, which are shown as hexadecimal
values).

(4) The program spawned in the previous step:

• Assumes the authority to instantiate the key U using the keyctl(2)
KEYCTL_ASSUME_AUTHORITY operation (typically via the
keyctl_assume_authority(3) function).

• Obtains the callout data from the payload of the authorization key V (using
the keyctl(2) KEYCTL_READ operation (or, more commonly, the
keyctl_read(3) function) with a key ID value of KEY_SPEC_RE-
QKEY_AUTH_KEY).

• Instantiates the key (or execs another program that performs that task), spec-
ifying the payload and destination keyring. (The destination keyring that
the requestor specified when calling request_key() can be accessed using
the special key ID KEY_SPEC_REQUESTOR_KEYRING.) Instantia-
tion is performed using the keyctl(2) KEYCTL_INSTANTIATE operation
(or, more commonly, the keyctl_instantiate(3) function). At this point, the
request_key() call completes, and the requesting program can continue exe-
cution.

If these steps are unsuccessful, then an ENOKEY error will be returned to the caller
of request_key() and a temporary, negatively instantiated key will be installed in the
keyring specified by dest_keyring. This will expire after a few seconds, but will cause

Linux man-pages 6.13 2024-07-23 746

request_key(2) System Calls Manual request_key(2)

subsequent calls to request_key() to fail until it does. The purpose of this negatively
instantiated key is to prevent (possibly different) processes making repeated requests
(that require expensive request-key(8) upcalls) for a key that can’t (at the moment) be
positively instantiated.

Once the key has been instantiated, the authorization key (KEY_SPEC_RE-
QKEY_AUTH_KEY) is revoked, and the destination keyring (KEY_SPEC_RE-
QUESTOR_KEYRING) is no longer accessible from the request-key(8) program.

If a key is created, then—regardless of whether it is a valid key or a negatively instan-
tiated key—it will displace any other key with the same type and description from the
keyring specified in dest_keyring.

RETURN VALUE
On success, request_key() returns the serial number of the key it found or caused to
be created. On error, -1 is returned and errno is set to indicate the error.

ERRORS
EACCES

The keyring wasn’t available for modification by the user.

EDQUOT
The key quota for this user would be exceeded by creating this key or linking
it to the keyring.

EFAULT
One of type, description, or callout_info points outside the process’s accessi-
ble address space.

EINTR
The request was interrupted by a signal; see signal(7).

EINVAL
The size of the string (including the terminating null byte) specified in type or
description exceeded the limit (32 bytes and 4096 bytes respectively).

EINVAL
The size of the string (including the terminating null byte) specified in call-
out_info exceeded the system page size.

EKEYEXPIRED
An expired key was found, but no replacement could be obtained.

EKEYREJECTED
The attempt to generate a new key was rejected.

EKEYREVOKED
A revoked key was found, but no replacement could be obtained.

ENOKEY
No matching key was found.

ENOMEM
Insufficient memory to create a key.

EPERM
The type argument started with a period ('.').

Linux man-pages 6.13 2024-07-23 747

request_key(2) System Calls Manual request_key(2)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

The ability to instantiate keys upon request was added in Linux 2.6.13.

EXAMPLES
The program below demonstrates the use of request_key(). The type, description,
and callout_info arguments for the system call are taken from the values supplied in
the command-line arguments. The call specifies the session keyring as the target
keyring.

In order to demonstrate this program, we first create a suitable entry in the file /etc/re-
quest-key.conf .

$ sudo sh
echo 'create user mtk:* * /bin/keyctl instantiate %k %c %S' \

> /etc/request-key.conf
exit

This entry specifies that when a new "user" key with the prefix "mtk:" must be instan-
tiated, that task should be performed via the keyctl(1) command’s instantiate opera-
tion. The arguments supplied to the instantiate operation are: the ID of the uninstan-
tiated key (%k); the callout data supplied to the request_key() call (%c); and the ses-
sion keyring (%S) of the requestor (i.e., the caller of request_key())See request-
key.conf (5) for details of these % specifiers.

Then we run the program and check the contents of /proc/keys to verify that the re-
quested key has been instantiated:

$./t_request_key user mtk:key1 "Payload data"
$ grep '2dddaf50' /proc/keys
2dddaf50 I--Q--- 1 perm 3f010000 1000 1000 user mtk:key1: 12

For another example of the use of this program, see keyctl(2).

Program source

/* t_request_key.c */

#include <keyutils.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

key_serial_t key;

if (argc != 4) {
fprintf(stderr, "Usage: %s type description callout-data\n",

argv[0]);

Linux man-pages 6.13 2024-07-23 748

request_key(2) System Calls Manual request_key(2)

exit(EXIT_FAILURE);
}

key = request_key(argv[1], argv[2], argv[3],
KEY_SPEC_SESSION_KEYRING);

if (key == -1) {
perror("request_key");
exit(EXIT_FAILURE);

}

printf("Key ID is %jx\n", (uintmax_t) key);

exit(EXIT_SUCCESS);
}

SEE ALSO
keyctl(1), add_key(2), keyctl(2), keyctl(3), capabilities(7), keyrings(7), keyutils(7),
persistent-keyring(7), process-keyring(7), session-keyring(7), thread-keyring(7), user-
keyring(7), user-session-keyring(7), request-key(8)

The kernel source files Documentation/security/keys/core.rst and
Documentation/keys/request-key.rst (or, before Linux 4.13, in the files
Documentation/security/keys.txt and Documentation/security/keys-request-key.txt).

Linux man-pages 6.13 2024-07-23 749

restart_syscall(2) System Calls Manual restart_syscall(2)

NAME
restart_syscall - restart a system call after interruption by a stop signal

SYNOPSIS
long restart_syscall(void);

Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
The restart_syscall() system call is used to restart certain system calls after a process
that was stopped by a signal (e.g., SIGSTOP or SIGTSTP) is later resumed after re-
ceiving a SIGCONT signal. This system call is designed only for internal use by the
kernel.

restart_syscall() is used for restarting only those system calls that, when restarted,
should adjust their time-related parameters—namely poll(2) (since Linux 2.6.24),
nanosleep(2) (since Linux 2.6), clock_nanosleep(2) (since Linux 2.6), and futex(2),
when employed with the FUTEX_WAIT (since Linux 2.6.22) and FU-
TEX_WAIT_BITSET (since Linux 2.6.31) operations. restart_syscall() restarts the
interrupted system call with a time argument that is suitably adjusted to account for
the time that has already elapsed (including the time where the process was stopped
by a signal). Without the restart_syscall() mechanism, restarting these system calls
would not correctly deduct the already elapsed time when the process continued exe-
cution.

RETURN VALUE
The return value of restart_syscall() is the return value of whatever system call is be-
ing restarted.

ERRORS
errno is set as per the errors for whatever system call is being restarted by
restart_syscall().

STANDARDS
Linux.

HISTORY
Linux 2.6.

NOTES
There is no glibc wrapper for this system call, because it is intended for use only by
the kernel and should never be called by applications.

The kernel uses restart_syscall() to ensure that when a system call is restarted after a
process has been stopped by a signal and then resumed by SIGCONT, then the time
that the process spent in the stopped state is counted against the timeout interval spec-
ified in the original system call. In the case of system calls that take a timeout argu-
ment and automatically restart after a stop signal plus SIGCONT, but which do not
have the restart_syscall() mechanism built in, then, after the process resumes execu-
tion, the time that the process spent in the stop state is not counted against the timeout
value. Notable examples of system calls that suffer this problem are ppoll(2), se-
lect(2), and pselect(2).

From user space, the operation of restart_syscall() is largely invisible: to the process
that made the system call that is restarted, it appears as though that system call

Linux man-pages 6.13 2024-05-02 750

restart_syscall(2) System Calls Manual restart_syscall(2)

executed and returned in the usual fashion.

SEE ALSO
sigaction(2), sigreturn(2), signal(7)

Linux man-pages 6.13 2024-05-02 751

rmdir(2) System Calls Manual rmdir(2)

NAME
rmdir - delete a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int rmdir(const char *pathname);

DESCRIPTION
rmdir() deletes a directory, which must be empty.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

Write access to the directory containing pathname was not allowed, or one of
the directories in the path prefix of pathname did not allow search permission.
(See also path_resolution(7).)

EBUSY
pathname is currently in use by the system or some process that prevents its
removal. On Linux, this means pathname is currently used as a mount point
or is the root directory of the calling process.

EFAULT
pathname points outside your accessible address space.

EINVAL
pathname has . as last component.

ELOOP
Too many symbolic links were encountered in resolving pathname.

ENAMETOOLONG
pathname was too long.

ENOENT
A directory component in pathname does not exist or is a dangling symbolic
link.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
pathname, or a component used as a directory in pathname, is not, in fact, a
directory.

ENOTEMPTY
pathname contains entries other than . and .. ; or, pathname has .. as its final
component. POSIX.1 also allows EEXIST for this condition.

Linux man-pages 6.13 2024-07-23 752

rmdir(2) System Calls Manual rmdir(2)

EPERM
The directory containing pathname has the sticky bit (S_ISVTX) set and the
process’s effective user ID is neither the user ID of the file to be deleted nor
that of the directory containing it, and the process is not privileged (Linux:
does not have the CAP_FOWNER capability).

EPERM
The filesystem containing pathname does not support the removal of directo-
ries.

EROFS
pathname refers to a directory on a read-only filesystem.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

BUGS
Infelicities in the protocol underlying NFS can cause the unexpected disappearance of
directories which are still being used.

SEE ALSO
rm(1), rmdir(1), chdir(2), chmod(2), mkdir(2), rename(2), unlink(2), unlinkat(2)

Linux man-pages 6.13 2024-07-23 753

rt_sigqueueinfo(2) System Calls Manual rt_sigqueueinfo(2)

NAME
rt_sigqueueinfo, rt_tgsigqueueinfo - queue a signal and data

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/signal.h> /* Definition of SI_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_rt_sigqueueinfo, pid_t tgid ,
int sig, siginfo_t *info);

int syscall(SYS_rt_tgsigqueueinfo, pid_t tgid , pid_t tid ,
int sig, siginfo_t *info);

Note: There are no glibc wrappers for these system calls; see NOTES.

DESCRIPTION
The rt_sigqueueinfo() and rt_tgsigqueueinfo() system calls are the low-level inter-
faces used to send a signal plus data to a process or thread. The receiver of the signal
can obtain the accompanying data by establishing a signal handler with the sigac-
tion(2) SA_SIGINFO flag.

These system calls are not intended for direct application use; they are provided to al-
low the implementation of sigqueue(3) and pthread_sigqueue(3).

The rt_sigqueueinfo() system call sends the signal sig to the thread group with the ID
tgid . (The term "thread group" is synonymous with "process", and tgid corresponds
to the traditional UNIX process ID.) The signal will be delivered to an arbitrary
member of the thread group (i.e., one of the threads that is not currently blocking the
signal).

The info argument specifies the data to accompany the signal. This argument is a
pointer to a structure of type siginfo_t, described in sigaction(2) (and defined by in-
cluding <sigaction.h>). The caller should set the following fields in this structure:

si_code
This should be one of the SI_* codes in the Linux kernel source file in-
clude/asm-generic/siginfo.h. If the signal is being sent to any process other
than the caller itself, the following restrictions apply:

• The code can’t be a value greater than or equal to zero. In particular, it
can’t be SI_USER, which is used by the kernel to indicate a signal sent by
kill(2), and nor can it be SI_KERNEL, which is used to indicate a signal
generated by the kernel.

• The code can’t (since Linux 2.6.39) be SI_TKILL, which is used by the
kernel to indicate a signal sent using tgkill(2).

si_pid
This should be set to a process ID, typically the process ID of the sender.

si_uid
This should be set to a user ID, typically the real user ID of the sender.

Linux man-pages 6.13 2025-02-02 754

rt_sigqueueinfo(2) System Calls Manual rt_sigqueueinfo(2)

si_value
This field contains the user data to accompany the signal. For more informa-
tion, see the description of the last (union sigval) argument of sigqueue(3).

Internally, the kernel sets the si_signo field to the value specified in sig, so that the re-
ceiver of the signal can also obtain the signal number via that field.

The rt_tgsigqueueinfo() system call is like rt_sigqueueinfo(), but sends the signal
and data to the single thread specified by the combination of tgid , a thread group ID,
and tid , a thread in that thread group.

RETURN VALUE
On success, these system calls return 0. On error, they return -1 and errno is set to
indicate the error.

ERRORS
EAGAIN

The limit of signals which may be queued has been reached. (See signal(7)
for further information.)

EINVAL
sig, tgid , or tid was invalid.

EPERM
The caller does not have permission to send the signal to the target. For the re-
quired permissions, see kill(2).

EPERM
tgid specifies a process other than the caller and info->si_code is invalid.

ESRCH
rt_sigqueueinfo(): No thread group matching tgid was found.

rt_tgsigqueinfo(): No thread matching tgid and tid was found.

STANDARDS
Linux.

HISTORY
rt_sigqueueinfo()

Linux 2.2.

rt_tgsigqueueinfo()
Linux 2.6.31.

NOTES
Since these system calls are not intended for application use, there are no glibc wrap-
per functions; use syscall(2) in the unlikely case that you want to call them directly.

As with kill(2), the null signal (0) can be used to check if the specified process or
thread exists.

SEE ALSO
kill(2), pidfd_send_signal(2), sigaction(2), sigprocmask(2), tgkill(2),
pthread_sigqueue(3), sigqueue(3), signal(7)

Linux man-pages 6.13 2025-02-02 755

rt_sigqueueinfo(2) System Calls Manual rt_sigqueueinfo(2)

Linux man-pages 6.13 2025-02-02 756

s390_guarded_storage(2) System Calls Manual s390_guarded_storage(2)

NAME
s390_guarded_storage - operations with z/Architecture guarded storage facility

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/guarded_storage.h> /* Definition of GS_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_s390_guarded_storage, int command ,
struct gs_cb *gs_cb);

Note: glibc provides no wrapper for s390_guarded_storage(), necessitating the use
of syscall(2).

DESCRIPTION
The s390_guarded_storage() system call enables the use of the Guarded Storage Fa-
cility (a z/Architecture-specific feature) for user-space processes.

The guarded storage facility is a hardware feature that allows marking up to 64 mem-
ory regions (as of z14) as guarded; reading a pointer with a newly introduced "Load
Guarded" (LGG) or "Load Logical and Shift Guarded" (LLGFSG) instructions will
cause a range check on the loaded value and invoke a (previously set up) user-space
handler if one of the guarded regions is affected.

The command argument indicates which function to perform. The following com-
mands are supported:

GS_ENABLE
Enable the guarded storage facility for the calling task. The initial content of
the guarded storage control block will be all zeros. After enablement, user-
space code can use the "Load Guarded Storage Controls" (LGSC) instruction
(or the load_gs_cb() function wrapper provided in the asm/guarded_storage.h
header) to load an arbitrary control block. While a task is enabled, the kernel
will save and restore the calling content of the guarded storage registers on
context switch.

GS_DISABLE
Disables the use of the guarded storage facility for the calling task. The kernel
will cease to save and restore the content of the guarded storage registers, the
task-specific content of these registers is lost.

GS_SET_BC_CB
Set a broadcast guarded storage control block to the one provided in the gs_cb
argument. This is called per thread and associates a specific guarded storage
control block with the calling task. This control block will be used in the
broadcast command GS_BROADCAST.

GS_CLEAR_BC_CB
Clears the broadcast guarded storage control block. The guarded storage con-
trol block will no longer have the association established by the
GS_SET_BC_CB command.

Linux man-pages 6.13 2024-07-23 757

s390_guarded_storage(2) System Calls Manual s390_guarded_storage(2)

GS_BROADCAST
Sends a broadcast to all thread siblings of the calling task. Every sibling that
has established a broadcast guarded storage control block will load this control
block and will be enabled for guarded storage. The broadcast guarded storage
control block is consumed; a second broadcast without a refresh of the stored
control block with GS_SET_BC_CB will not have any effect.

The gs_cb argument specifies the address of a guarded storage control block structure
and is currently used only by the GS_SET_BC_CB command; all other aforemen-
tioned commands ignore this argument.

RETURN VALUE
On success, the return value of s390_guarded_storage() is 0.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

command was GS_SET_BC_CB and the copying of the guarded storage con-
trol block structure pointed by the gs_cb argument has failed.

EINVAL
The value provided in the command argument was not valid.

ENOMEM
command was one of GS_ENABLE or GS_SET_BC_CB, and the allocation
of a new guarded storage control block has failed.

EOPNOTSUPP
The guarded storage facility is not supported by the hardware.

STANDARDS
Linux on s390.

HISTORY
Linux 4.12. System z14.

NOTES
The description of the guarded storage facility along with related instructions and
Guarded Storage Control Block and Guarded Storage Event Parameter List structure
layouts is available in "z/Architecture Principles of Operations" beginning from the
twelfth edition.

The gs_cb structure has a field gsepla (Guarded Storage Event Parameter List Ad-
dress), which is a user-space pointer to a Guarded Storage Event Parameter List struc-
ture (that contains the address of the aforementioned event handler in the gseha field),
and its layout is available as a gs_epl structure type definition in the
asm/guarded_storage.h header.

SEE ALSO
syscall(2)

Linux man-pages 6.13 2024-07-23 758

s390_pci_mmio_write(2) System Calls Manual s390_pci_mmio_write(2)

NAME
s390_pci_mmio_write, s390_pci_mmio_read - transfer data to/from PCI MMIO
memory page

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_s390_pci_mmio_write, unsigned long mmio_addr,
const void user_buffer[.length], size_t length);

int syscall(SYS_s390_pci_mmio_read, unsigned long mmio_addr,
void user_buffer[.length], size_t length);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
The s390_pci_mmio_write() system call writes length bytes of data from the user-
space buffer user_buffer to the PCI MMIO memory location specified by mmio_addr.
The s390_pci_mmio_read() system call reads length bytes of data from the PCI
MMIO memory location specified by mmio_addr to the user-space buffer
user_buffer.

These system calls must be used instead of the simple assignment or data-transfer op-
erations that are used to access the PCI MMIO memory areas mapped to user space
on the Linux System z platform. The address specified by mmio_addr must belong to
a PCI MMIO memory page mapping in the caller’s address space, and the data being
written or read must not cross a page boundary. The length value cannot be greater
than the system page size.

RETURN VALUE
On success, s390_pci_mmio_write() and s390_pci_mmio_read() return 0. On fail-
ure, -1 is returned and errno is set to indicate the error.

ERRORS
EFAULT

The address in mmio_addr is invalid.

EFAULT
user_buffer does not point to a valid location in the caller’s address space.

EINVAL
Invalid length argument.

ENODEV
PCI support is not enabled.

ENOMEM
Insufficient memory.

STANDARDS
Linux on s390.

Linux man-pages 6.13 2024-07-23 759

s390_pci_mmio_write(2) System Calls Manual s390_pci_mmio_write(2)

HISTORY
Linux 3.19. System z EC12.

SEE ALSO
syscall(2)

Linux man-pages 6.13 2024-07-23 760

s390_runtime_instr(2) System Calls Manual s390_runtime_instr(2)

NAME
s390_runtime_instr - enable/disable s390 CPU run-time instrumentation

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/runtime_instr.h> /* Definition of S390_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_s390_runtime_instr, int command , int signum);

Note: glibc provides no wrapper for s390_runtime_instr(), necessitating the use of
syscall(2).

DESCRIPTION
The s390_runtime_instr() system call starts or stops CPU run-time instrumentation
for the calling thread.

The command argument controls whether run-time instrumentation is started
(S390_RUNTIME_INSTR_START, 1) or stopped (S390_RUNTIME_IN-
STR_STOP, 2) for the calling thread.

The signum argument specifies the number of a real-time signal. This argument was
used to specify a signal number that should be delivered to the thread if the run-time
instrumentation buffer was full or if the run-time-instrumentation-halted interrupt had
occurred. This feature was never used, and in Linux 4.4 support for this feature was
removed; thus, in current kernels, this argument is ignored.

RETURN VALUE
On success, s390_runtime_instr() returns 0 and enables the thread for run-time in-
strumentation by assigning the thread a default run-time instrumentation control
block. The caller can then read and modify the control block and start the run-time
instrumentation. On error, -1 is returned and errno is set to indicate the error.

ERRORS
EINVAL

The value specified in command is not a valid command.

EINVAL
The value specified in signum is not a real-time signal number. From Linux
4.4 onwards, the signum argument has no effect, so that an invalid signal num-
ber will not result in an error.

ENOMEM
Allocating memory for the run-time instrumentation control block failed.

EOPNOTSUPP
The run-time instrumentation facility is not available.

STANDARDS
Linux on s390.

HISTORY
Linux 3.7. System z EC12.

Linux man-pages 6.13 2024-07-23 761

s390_runtime_instr(2) System Calls Manual s390_runtime_instr(2)

NOTES
The asm/runtime_instr.h header file is available since Linux 4.16.

Starting with Linux 4.4, support for signalling was removed, as was the check
whether signum is a valid real-time signal. For backwards compatibility with older
kernels, it is recommended to pass a valid real-time signal number in signum and in-
stall a handler for that signal.

SEE ALSO
syscall(2), signal(7)

Linux man-pages 6.13 2024-07-23 762

s390_sthyi(2) System Calls Manual s390_sthyi(2)

NAME
s390_sthyi - emulate STHYI instruction

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/sthyi.h> /* Definition of STHYI_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_s390_sthyi, unsigned long function_code,
void *resp_buffer, uint64_t *return_code,
unsigned long flags);

Note: glibc provides no wrapper for s390_sthyi(), necessitating the use of syscall(2).

DESCRIPTION
The s390_sthyi() system call emulates the STHYI (Store Hypervisor Information) in-
struction. It provides hardware resource information for the machine and its virtual-
ization levels. This includes CPU type and capacity, as well as the machine model
and other metrics.

The function_code argument indicates which function to perform. The following
code(s) are supported:

STHYI_FC_CP_IFL_CAP
Return CP (Central Processor) and IFL (Integrated Facility for Linux) capacity
information.

The resp_buffer argument specifies the address of a response buffer. When the func-
tion_code is STHYI_FC_CP_IFL_CAP, the buffer must be one page (4K) in size.
If the system call returns 0, the response buffer will be filled with CPU capacity infor-
mation. Otherwise, the response buffer’s content is unchanged.

The return_code argument stores the return code of the STHYI instruction, using one
of the following values:

Success.

4 Unsupported function code.

For further details about return_code, function_code, and resp_buffer, see the refer-
ence given in NOTES.

The flags argument is provided to allow for future extensions and currently must be
set to 0.

RETURN VALUE
On success (that is: emulation succeeded), the return value of s390_sthyi() matches
the condition code of the STHYI instructions, which is a value in the range [0..3]. A
return value of 0 indicates that CPU capacity information is stored in *resp_buffer. A
return value of 3 indicates "unsupported function code" and the content of
*resp_buffer is unchanged. The return values 1 and 2 are reserved.

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.13 2024-07-23 763

s390_sthyi(2) System Calls Manual s390_sthyi(2)

ERRORS
EFAULT

The value specified in resp_buffer or return_code is not a valid address.

EINVAL
The value specified in flags is nonzero.

ENOMEM
Allocating memory for handling the CPU capacity information failed.

EOPNOTSUPP
The value specified in function_code is not valid.

STANDARDS
Linux on s390.

HISTORY
Linux 4.15.

NOTES
For details of the STHYI instruction, see the documentation page
〈https://www.ibm.com/support/knowledgecenter/SSB27U_6.3.0
/com.ibm.zvm.v630.hcpb4/hcpb4sth.htm〉.

When the system call interface is used, the response buffer doesn’t have to fulfill
alignment requirements described in the STHYI instruction definition.

The kernel caches the response (for up to one second, as of Linux 4.16). Subsequent
system call invocations may return the cached response.

SEE ALSO
syscall(2)

Linux man-pages 6.13 2024-07-23 764

sched_get_priority_max(2) System Calls Manual sched_get_priority_max(2)

NAME
sched_get_priority_max, sched_get_priority_min - get static priority range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

DESCRIPTION
sched_get_priority_max() returns the maximum priority value that can be used with
the scheduling algorithm identified by policy. sched_get_priority_min() returns the
minimum priority value that can be used with the scheduling algorithm identified by
policy. Supported policy values are SCHED_FIFO, SCHED_RR,
SCHED_OTHER, SCHED_BATCH, SCHED_IDLE, and SCHED_DEADLINE.
Further details about these policies can be found in sched(7).

Processes with numerically higher priority values are scheduled before processes with
numerically lower priority values. Thus, the value returned by sched_get_prior-
ity_max() will be greater than the value returned by sched_get_priority_min().

Linux allows the static priority range 1 to 99 for the SCHED_FIFO and
SCHED_RR policies, and the priority 0 for the remaining policies. Scheduling prior-
ity ranges for the various policies are not alterable.

The range of scheduling priorities may vary on other POSIX systems, thus it is a good
idea for portable applications to use a virtual priority range and map it to the interval
given by sched_get_priority_max() and sched_get_priority_min(). POSIX.1 re-
quires a spread of at least 32 between the maximum and the minimum values for
SCHED_FIFO and SCHED_RR.

POSIX systems on which sched_get_priority_max() and sched_get_priority_min()
are available define _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE
On success, sched_get_priority_max() and sched_get_priority_min() return the
maximum/minimum priority value for the named scheduling policy. On error, -1 is
returned, and errno is set to indicate the error.

ERRORS
EINVAL

The argument policy does not identify a defined scheduling policy.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
sched_getaffinity(2), sched_getparam(2), sched_getscheduler(2), sched_setaffinity(2),
sched_setparam(2), sched_setscheduler(2), sched(7)

Linux man-pages 6.13 2024-11-17 765

sched_get_priority_max(2) System Calls Manual sched_get_priority_max(2)

Linux man-pages 6.13 2024-11-17 766

sched_rr_get_interval(2) System Calls Manual sched_rr_get_interval(2)

NAME
sched_rr_get_interval - get the SCHED_RR interval for the named process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_rr_get_interval(pid_t pid , struct timespec *tp);

DESCRIPTION
sched_rr_get_interval() writes into the timespec(3) structure pointed to by tp the
round-robin time quantum for the process identified by pid . The specified process
should be running under the SCHED_RR scheduling policy.

If pid is zero, the time quantum for the calling process is written into *tp.

RETURN VALUE
On success, sched_rr_get_interval() returns 0. On error, -1 is returned, and errno is
set to indicate the error.

ERRORS
EFAULT

Problem with copying information to user space.

EINVAL
Invalid pid.

ENOSYS
The system call is not yet implemented (only on rather old kernels).

ESRCH
Could not find a process with the ID pid .

VERSIONS
Linux

Linux 3.9 added a new mechanism for adjusting (and viewing) the SCHED_RR
quantum: the /proc/sys/kernel/sched_rr_timeslice_ms file exposes the quantum as a
millisecond value, whose default is 100. Writing 0 to this file resets the quantum to
the default value.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Linux
POSIX does not specify any mechanism for controlling the size of the round-robin
time quantum. Older Linux kernels provide a (nonportable) method of doing this.
The quantum can be controlled by adjusting the process’s nice value (see setprior-
ity(2)). Assigning a negative (i.e., high) nice value results in a longer quantum; as-
signing a positive (i.e., low) nice value results in a shorter quantum. The default
quantum is 0.1 seconds; the degree to which changing the nice value affects the quan-
tum has varied somewhat across kernel versions. This method of adjusting the quan-
tum was removed starting with Linux 2.6.24.

Linux man-pages 6.13 2024-07-23 767

sched_rr_get_interval(2) System Calls Manual sched_rr_get_interval(2)

NOTES
POSIX systems on which sched_rr_get_interval() is available define _POSIX_PRI-
ORITY_SCHEDULING in <unistd.h>.

SEE ALSO
timespec(3), sched(7)

Linux man-pages 6.13 2024-07-23 768

sched_setaffinity(2) System Calls Manual sched_setaffinity(2)

NAME
sched_setaffinity, sched_getaffinity - set and get a thread’s CPU affinity mask

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>

int sched_setaffinity(pid_t pid , size_t cpusetsize,
const cpu_set_t *mask);

int sched_getaffinity(pid_t pid , size_t cpusetsize,
cpu_set_t *mask);

DESCRIPTION
A thread’s CPU affinity mask determines the set of CPUs on which it is eligible to
run. On a multiprocessor system, setting the CPU affinity mask can be used to obtain
performance benefits. For example, by dedicating one CPU to a particular thread (i.e.,
setting the affinity mask of that thread to specify a single CPU, and setting the affinity
mask of all other threads to exclude that CPU), it is possible to ensure maximum exe-
cution speed for that thread. Restricting a thread to run on a single CPU also avoids
the performance cost caused by the cache invalidation that occurs when a thread
ceases to execute on one CPU and then recommences execution on a different CPU.

A CPU affinity mask is represented by the cpu_set_t structure, a "CPU set", pointed
to by mask. A set of macros for manipulating CPU sets is described in CPU_SET(3).

sched_setaffinity() sets the CPU affinity mask of the thread whose ID is pid to the
value specified by mask. If pid is zero, then the calling thread is used. The argument
cpusetsize is the length (in bytes) of the data pointed to by mask. Normally this argu-
ment would be specified as sizeof(cpu_set_t).

If the thread specified by pid is not currently running on one of the CPUs specified in
mask, then that thread is migrated to one of the CPUs specified in mask.

sched_getaffinity() writes the affinity mask of the thread whose ID is pid into the
cpu_set_t structure pointed to by mask. The cpusetsize argument specifies the size (in
bytes) of mask. If pid is zero, then the mask of the calling thread is returned.

RETURN VALUE
On success, sched_setaffinity() and sched_getaffinity() return 0 (but see "C li-
brary/kernel differences" below, which notes that the underlying sched_getaffinity()
differs in its return value). On failure, -1 is returned, and errno is set to indicate the
error.

ERRORS
EFAULT

A supplied memory address was invalid.

EINVAL
The affinity bit mask mask contains no processors that are currently physically
on the system and permitted to the thread according to any restrictions that
may be imposed by cpuset cgroups or the "cpuset" mechanism described in
cpuset(7).

Linux man-pages 6.13 2024-07-23 769

sched_setaffinity(2) System Calls Manual sched_setaffinity(2)

EINVAL
(sched_getaffinity() and, before Linux 2.6.9, sched_setaffinity()) cpusetsize is
smaller than the size of the affinity mask used by the kernel.

EPERM
(sched_setaffinity()) The calling thread does not have appropriate privileges.
The caller needs an effective user ID equal to the real user ID or effective user
ID of the thread identified by pid , or it must possess the CAP_SYS_NICE ca-
pability in the user namespace of the thread pid .

ESRCH
The thread whose ID is pid could not be found.

STANDARDS
Linux.

HISTORY
Linux 2.5.8, glibc 2.3.

Initially, the glibc interfaces included a cpusetsize argument, typed as unsigned int. In
glibc 2.3.3, the cpusetsize argument was removed, but was then restored in glibc
2.3.4, with type size_t.

NOTES
After a call to sched_setaffinity(), the set of CPUs on which the thread will actually
run is the intersection of the set specified in the mask argument and the set of CPUs
actually present on the system. The system may further restrict the set of CPUs on
which the thread runs if the "cpuset" mechanism described in cpuset(7) is being used.
These restrictions on the actual set of CPUs on which the thread will run are silently
imposed by the kernel.

There are various ways of determining the number of CPUs available on the system,
including: inspecting the contents of /proc/cpuinfo; using sysconf(3) to obtain the val-
ues of the _SC_NPROCESSORS_CONF and _SC_NPROCESSORS_ONLN para-
meters; and inspecting the list of CPU directories under /sys/devices/system/cpu/ .

sched(7) has a description of the Linux scheduling scheme.

The affinity mask is a per-thread attribute that can be adjusted independently for each
of the threads in a thread group. The value returned from a call to gettid(2) can be
passed in the argument pid . Specifying pid as 0 will set the attribute for the calling
thread, and passing the value returned from a call to getpid(2) will set the attribute for
the main thread of the thread group. (If you are using the POSIX threads API, then
use pthread_setaffinity_np(3) instead of sched_setaffinity().)

The isolcpus boot option can be used to isolate one or more CPUs at boot time, so that
no processes are scheduled onto those CPUs. Following the use of this boot option,
the only way to schedule processes onto the isolated CPUs is via sched_setaffinity()
or the cpuset(7) mechanism. For further information, see the kernel source file Docu-
mentation/admin-guide/kernel-parameters.txt. As noted in that file, isolcpus is the
preferred mechanism of isolating CPUs (versus the alternative of manually setting the
CPU affinity of all processes on the system).

A child created via fork(2) inherits its parent’s CPU affinity mask. The affinity mask
is preserved across an execve(2).

Linux man-pages 6.13 2024-07-23 770

sched_setaffinity(2) System Calls Manual sched_setaffinity(2)

C library/kernel differences
This manual page describes the glibc interface for the CPU affinity calls. The actual
system call interface is slightly different, with the mask being typed as unsigned
long *, reflecting the fact that the underlying implementation of CPU sets is a simple
bit mask.

On success, the raw sched_getaffinity() system call returns the number of bytes
placed copied into the mask buffer; this will be the minimum of cpusetsize and the
size (in bytes) of the cpumask_t data type that is used internally by the kernel to rep-
resent the CPU set bit mask.

Handling systems with large CPU affinity masks
The underlying system calls (which represent CPU masks as bit masks of type un-
signed long *) impose no restriction on the size of the CPU mask. However, the
cpu_set_t data type used by glibc has a fixed size of 128 bytes, meaning that the max-
imum CPU number that can be represented is 1023. If the kernel CPU affinity mask
is larger than 1024, then calls of the form:

sched_getaffinity(pid, sizeof(cpu_set_t), &mask);

fail with the error EINVAL, the error produced by the underlying system call for the
case where the mask size specified in cpusetsize is smaller than the size of the affinity
mask used by the kernel. (Depending on the system CPU topology, the kernel affinity
mask can be substantially larger than the number of active CPUs in the system.)

When working on systems with large kernel CPU affinity masks, one must dynami-
cally allocate the mask argument (see CPU_ALLOC(3)). Currently, the only way to
do this is by probing for the size of the required mask using sched_getaffinity() calls
with increasing mask sizes (until the call does not fail with the error EINVAL).

Be aware that CPU_ALLOC(3) may allocate a slightly larger CPU set than requested
(because CPU sets are implemented as bit masks allocated in units of sizeof(long)).
Consequently, sched_getaffinity() can set bits beyond the requested allocation size,
because the kernel sees a few additional bits. Therefore, the caller should iterate over
the bits in the returned set, counting those which are set, and stop upon reaching the
value returned by CPU_COUNT(3) (rather than iterating over the number of bits re-
quested to be allocated).

EXAMPLES
The program below creates a child process. The parent and child then each assign
themselves to a specified CPU and execute identical loops that consume some CPU
time. Before terminating, the parent waits for the child to complete. The program
takes three command-line arguments: the CPU number for the parent, the CPU num-
ber for the child, and the number of loop iterations that both processes should per-
form.

As the sample runs below demonstrate, the amount of real and CPU time consumed
when running the program will depend on intra-core caching effects and whether the
processes are using the same CPU.

We first employ lscpu(1) to determine that this (x86) system has two cores, each with
two CPUs:

$ lscpu | egrep -i 'core.*:|socket'
Thread(s) per core: 2

Linux man-pages 6.13 2024-07-23 771

sched_setaffinity(2) System Calls Manual sched_setaffinity(2)

Core(s) per socket: 2
Socket(s): 1

We then time the operation of the example program for three cases: both processes
running on the same CPU; both processes running on different CPUs on the same
core; and both processes running on different CPUs on different cores.

$ time -p ./a.out 0 0 100000000
real 14.75
user 3.02
sys 11.73
$ time -p ./a.out 0 1 100000000
real 11.52
user 3.98
sys 19.06
$ time -p ./a.out 0 3 100000000
real 7.89
user 3.29
sys 12.07

Program source

#define _GNU_SOURCE
#include <err.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int parentCPU, childCPU;
cpu_set_t set;
unsigned int nloops;

if (argc != 4) {
fprintf(stderr, "Usage: %s parent-cpu child-cpu num-loops\n",

argv[0]);
exit(EXIT_FAILURE);

}

parentCPU = atoi(argv[1]);
childCPU = atoi(argv[2]);
nloops = atoi(argv[3]);

CPU_ZERO(&set);

switch (fork()) {

Linux man-pages 6.13 2024-07-23 772

sched_setaffinity(2) System Calls Manual sched_setaffinity(2)

case -1: /* Error */
err(EXIT_FAILURE, "fork");

case 0: /* Child */
CPU_SET(childCPU, &set);

if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)
err(EXIT_FAILURE, "sched_setaffinity");

for (unsigned int j = 0; j < nloops; j++)
getppid();

exit(EXIT_SUCCESS);

default: /* Parent */
CPU_SET(parentCPU, &set);

if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)
err(EXIT_FAILURE, "sched_setaffinity");

for (unsigned int j = 0; j < nloops; j++)
getppid();

wait(NULL); /* Wait for child to terminate */
exit(EXIT_SUCCESS);

}
}

SEE ALSO
lscpu(1), nproc(1), taskset(1), clone(2), getcpu(2), getpriority(2), gettid(2), nice(2),
sched_get_priority_max(2), sched_get_priority_min(2), sched_getscheduler(2),
sched_setscheduler(2), setpriority(2), CPU_SET(3), get_nprocs(3),
pthread_setaffinity_np(3), sched_getcpu(3), capabilities(7), cpuset(7), sched(7),
numactl(8)

Linux man-pages 6.13 2024-07-23 773

sched_setattr(2) System Calls Manual sched_setattr(2)

NAME
sched_setattr, sched_getattr - set and get scheduling policy and attributes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h> /* Definition of SCHED_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_sched_setattr, pid_t pid , struct sched_attr *attr,
unsigned int flags);

int syscall(SYS_sched_getattr, pid_t pid , struct sched_attr *attr,
unsigned int size, unsigned int flags);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
sched_setattr()

The sched_setattr() system call sets the scheduling policy and associated attributes
for the thread whose ID is specified in pid . If pid equals zero, the scheduling policy
and attributes of the calling thread will be set.

Currently, Linux supports the following "normal" (i.e., non-real-time) scheduling poli-
cies as values that may be specified in policy:

SCHED_OTHER
the standard round-robin time-sharing policy;

SCHED_BATCH
for "batch" style execution of processes; and

SCHED_IDLE for running very low priority background jobs.

Various "real-time" policies are also supported, for special time-critical applications
that need precise control over the way in which runnable threads are selected for exe-
cution. For the rules governing when a process may use these policies, see sched(7).
The real-time policies that may be specified in policy are:

SCHED_FIFO a first-in, first-out policy; and

SCHED_RR a round-robin policy.

Linux also provides the following policy:

SCHED_DEADLINE
a deadline scheduling policy; see sched(7) for details.

The attr argument is a pointer to a structure that defines the new scheduling policy
and attributes for the specified thread. This structure has the following form:

struct sched_attr {
u32 size; /* Size of this structure */
u32 sched_policy; /* Policy (SCHED_*) */
u64 sched_flags; /* Flags */
s32 sched_nice; /* Nice value (SCHED_OTHER,

Linux man-pages 6.13 2024-07-23 774

sched_setattr(2) System Calls Manual sched_setattr(2)

SCHED_BATCH) */
u32 sched_priority; /* Static priority (SCHED_FIFO,

SCHED_RR) */
/* For SCHED_DEADLINE */
u64 sched_runtime;
u64 sched_deadline;
u64 sched_period;

/* Utilization hints */
u32 sched_util_min;
u32 sched_util_max;

};

The fields of the sched_attr structure are as follows:

size This field should be set to the size of the structure in bytes, as in sizeof(struct
sched_attr). If the provided structure is smaller than the kernel structure, any
additional fields are assumed to be ’0’. If the provided structure is larger than
the kernel structure, the kernel verifies that all additional fields are 0; if they
are not, sched_setattr() fails with the error E2BIG and updates size to contain
the size of the kernel structure.

The above behavior when the size of the user-space sched_attr structure does
not match the size of the kernel structure allows for future extensibility of the
interface. Malformed applications that pass oversize structures won’t break in
the future if the size of the kernel sched_attr structure is increased. In the fu-
ture, it could also allow applications that know about a larger user-space
sched_attr structure to determine whether they are running on an older kernel
that does not support the larger structure.

sched_policy
This field specifies the scheduling policy, as one of the SCHED_* values
listed above.

sched_flags
This field contains zero or more of the following flags that are ORed together
to control scheduling behavior:

SCHED_FLAG_RESET_ON_FORK
Children created by fork(2) do not inherit privileged scheduling poli-
cies. See sched(7) for details.

SCHED_FLAG_RECLAIM (since Linux 4.13)
This flag allows a SCHED_DEADLINE thread to reclaim bandwidth
unused by other real-time threads.

SCHED_FLAG_DL_OVERRUN (since Linux 4.16)
This flag allows an application to get informed about run-time overruns
in SCHED_DEADLINE threads. Such overruns may be caused by
(for example) coarse execution time accounting or incorrect parameter
assignment. Notification takes the form of a SIGXCPU signal which
is generated on each overrun.

Linux man-pages 6.13 2024-07-23 775

sched_setattr(2) System Calls Manual sched_setattr(2)

This SIGXCPU signal is process-directed (see signal(7)) rather than
thread-directed. This is probably a bug. On the one hand, sched_se-
tattr() is being used to set a per-thread attribute. On the other hand, if
the process-directed signal is delivered to a thread inside the process
other than the one that had a run-time overrun, the application has no
way of knowing which thread overran.

SCHED_FLAG_UTIL_CLAMP_MIN
SCHED_FLAG_UTIL_CLAMP_MAX (both since Linux 5.3)

These flags indicate that the sched_util_min or sched_util_max fields,
respectively, are present, representing the expected minimum and max-
imum utilization of the thread.

The utilization attributes provide the scheduler with boundaries within
which it should schedule the thread, potentially informing its decisions
regarding task placement and frequency selection.

sched_nice
This field specifies the nice value to be set when specifying sched_policy as
SCHED_OTHER or SCHED_BATCH. The nice value is a number in the
range -20 (high priority) to +19 (low priority); see sched(7).

sched_priority
This field specifies the static priority to be set when specifying sched_policy as
SCHED_FIFO or SCHED_RR. The allowed range of priorities for these
policies can be determined using sched_get_priority_min(2) and
sched_get_priority_max(2). For other policies, this field must be specified as
0.

sched_runtime
This field specifies the "Runtime" parameter for deadline scheduling. The
value is expressed in nanoseconds. This field, and the next two fields, are used
only for SCHED_DEADLINE scheduling; for further details, see sched(7).

sched_deadline
This field specifies the "Deadline" parameter for deadline scheduling. The
value is expressed in nanoseconds.

sched_period
This field specifies the "Period" parameter for deadline scheduling. The value
is expressed in nanoseconds.

sched_util_min
sched_util_max (both since Linux 5.3)

These fields specify the expected minimum and maximum utilization, respec-
tively. They are ignored unless their corresponding
SCHED_FLAG_UTIL_CLAMP_MIN or
SCHED_FLAG_UTIL_CLAMP_MAX is set in sched_flags.

Utilization is a value in the range [0, 1024], representing the percentage of
CPU time used by a task when running at the maximum frequency on the
highest capacity CPU of the system. This is a fixed point representation,
where 1024 corresponds to 100%, and 0 corresponds to 0%. For example, a
20% utilization task is a task running for 2ms every 10ms at maximum

Linux man-pages 6.13 2024-07-23 776

sched_setattr(2) System Calls Manual sched_setattr(2)

frequency and is represented by a utilization value of 0.2 * 1024 = 205.

A task with a minimum utilization value larger than 0 is more likely scheduled
on a CPU with a capacity big enough to fit the specified value. A task with a
maximum utilization value smaller than 1024 is more likely scheduled on a
CPU with no more capacity than the specified value.

A task utilization boundary can be reset by setting its field to UINT32_MAX
(since Linux 5.11).

The flags argument is provided to allow for future extensions to the interface; in the
current implementation it must be specified as 0.

sched_getattr()
The sched_getattr() system call fetches the scheduling policy and the associated at-
tributes for the thread whose ID is specified in pid . If pid equals zero, the scheduling
policy and attributes of the calling thread will be retrieved.

The size argument should be set to the size of the sched_attr structure as known to
user space. The value must be at least as large as the size of the initially published
sched_attr structure, or the call fails with the error EINVAL.

The retrieved scheduling attributes are placed in the fields of the sched_attr structure
pointed to by attr. The kernel sets attr.size to the size of its sched_attr structure.

If the caller-provided attr buffer is larger than the kernel’s sched_attr structure, the
additional bytes in the user-space structure are not touched. If the caller-provided
structure is smaller than the kernel sched_attr structure, the kernel will silently not re-
turn any values which would be stored outside the provided space. As with sched_se-
tattr(), these semantics allow for future extensibility of the interface.

The flags argument is provided to allow for future extensions to the interface; in the
current implementation it must be specified as 0.

RETURN VALUE
On success, sched_setattr() and sched_getattr() return 0. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
sched_getattr() and sched_setattr() can both fail for the following reasons:

EINVAL
attr is NULL; or pid is negative; or flags is not zero.

ESRCH
The thread whose ID is pid could not be found.

In addition, sched_getattr() can fail for the following reasons:

E2BIG
The buffer specified by size and attr is too small.

EINVAL
size is invalid; that is, it is smaller than the initial version of the sched_attr
structure (48 bytes) or larger than the system page size.

In addition, sched_setattr() can fail for the following reasons:

Linux man-pages 6.13 2024-07-23 777

sched_setattr(2) System Calls Manual sched_setattr(2)

E2BIG
The buffer specified by size and attr is larger than the kernel structure, and one
or more of the excess bytes is nonzero.

EBUSY
SCHED_DEADLINE admission control failure, see sched(7).

EINVAL
attr.sched_policy is not one of the recognized policies.

EINVAL
attr.sched_flags contains a flag other than SCHED_FLAG_RE-
SET_ON_FORK.

EINVAL
attr.sched_priority is invalid.

EINVAL
attr.sched_policy is SCHED_DEADLINE, and the deadline scheduling para-
meters in attr are invalid.

EINVAL
attr.sched_flags contains SCHED_FLAG_UTIL_CLAMP_MIN or
SCHED_FLAG_UTIL_CLAMP_MAX, and attr.sched_util_min or
attr.sched_util_max are out of bounds.

EOPNOTSUPP
SCHED_FLAG_UTIL_CLAMP was provided, but the kernel was not built
with CONFIG_UCLAMP_TASK support.

EPERM
The caller does not have appropriate privileges.

EPERM
The CPU affinity mask of the thread specified by pid does not include all
CPUs in the system (see sched_setaffinity(2)).

STANDARDS
Linux.

HISTORY
Linux 3.14.

NOTES
glibc does not provide wrappers for these system calls; call them using syscall(2).

sched_setattr() provides a superset of the functionality of sched_setscheduler(2),
sched_setparam(2), nice(2), and (other than the ability to set the priority of all
processes belonging to a specified user or all processes in a specified group) setprior-
ity(2). Analogously, sched_getattr() provides a superset of the functionality of
sched_getscheduler(2), sched_getparam(2), and (partially) getpriority(2).

BUGS
In Linux versions up to 3.15, sched_setattr() failed with the error EFAULT instead of
E2BIG for the case described in ERRORS.

Up to Linux 5.3, sched_getattr() failed with the error EFBIG if the in-kernel
sched_attr structure was larger than the size passed by user space.

Linux man-pages 6.13 2024-07-23 778

sched_setattr(2) System Calls Manual sched_setattr(2)

SEE ALSO
chrt(1), nice(2), sched_get_priority_max(2), sched_get_priority_min(2),
sched_getaffinity(2), sched_getparam(2), sched_getscheduler(2),
sched_rr_get_interval(2), sched_setaffinity(2), sched_setparam(2),
sched_setscheduler(2), sched_yield(2), setpriority(2), pthread_getschedparam(3),
pthread_setschedparam(3), pthread_setschedprio(3), capabilities(7), cpuset(7),
sched(7)

Linux man-pages 6.13 2024-07-23 779

sched_setparam(2) System Calls Manual sched_setparam(2)

NAME
sched_setparam, sched_getparam - set and get scheduling parameters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_setparam(pid_t pid , const struct sched_param *param);
int sched_getparam(pid_t pid , struct sched_param *param);

struct sched_param {
...
int sched_priority;
...

};

DESCRIPTION
sched_setparam() sets the scheduling parameters associated with the scheduling pol-
icy for the thread whose thread ID is specified in pid. If pid is zero, then the parame-
ters of the calling thread are set. The interpretation of the argument param depends
on the scheduling policy of the thread identified by pid . See sched(7) for a descrip-
tion of the scheduling policies supported under Linux.

sched_getparam() retrieves the scheduling parameters for the thread identified by
pid. If pid is zero, then the parameters of the calling thread are retrieved.

sched_setparam() checks the validity of param for the scheduling policy of the
thread. The value param->sched_priority must lie within the range given by
sched_get_priority_min(2) and sched_get_priority_max(2).

For a discussion of the privileges and resource limits related to scheduling priority and
policy, see sched(7).

POSIX systems on which sched_setparam() and sched_getparam() are available de-
fine _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE
On success, sched_setparam() and sched_getparam() return 0. On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EINVAL

Invalid arguments: param is NULL or pid is negative

EINVAL
(sched_setparam()) The argument param does not make sense for the current
scheduling policy.

EPERM
(sched_setparam()) The caller does not have appropriate privileges (Linux:
does not have the CAP_SYS_NICE capability).

ESRCH
The thread whose ID is pid could not be found.

Linux man-pages 6.13 2024-07-23 780

sched_setparam(2) System Calls Manual sched_setparam(2)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
getpriority(2), gettid(2), nice(2), sched_get_priority_max(2),
sched_get_priority_min(2), sched_getaffinity(2), sched_getscheduler(2),
sched_setaffinity(2), sched_setattr(2), sched_setscheduler(2), setpriority(2),
capabilities(7), sched(7)

Linux man-pages 6.13 2024-07-23 781

sched_setscheduler(2) System Calls Manual sched_setscheduler(2)

NAME
sched_setscheduler, sched_getscheduler - set and get scheduling policy/parameters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_setscheduler(pid_t pid , int policy,
const struct sched_param *param);

int sched_getscheduler(pid_t pid);

DESCRIPTION
The sched_setscheduler() system call sets both the scheduling policy and parameters
for the thread whose ID is specified in pid. If pid equals zero, the scheduling policy
and parameters of the calling thread will be set.

The scheduling parameters are specified in the param argument, which is a pointer to
a structure of the following form:

struct sched_param {
...
int sched_priority;
...

};

In the current implementation, the structure contains only one field, sched_priority.
The interpretation of param depends on the selected policy.

Currently, Linux supports the following "normal" (i.e., non-real-time) scheduling poli-
cies as values that may be specified in policy:

SCHED_OTHER
the standard round-robin time-sharing policy;

SCHED_BATCH
for "batch" style execution of processes; and

SCHED_IDLE for running very low priority background jobs.

For each of the above policies, param->sched_priority must be 0.

Various "real-time" policies are also supported, for special time-critical applications
that need precise control over the way in which runnable threads are selected for exe-
cution. For the rules governing when a process may use these policies, see sched(7).
The real-time policies that may be specified in policy are:

SCHED_FIFO a first-in, first-out policy; and

SCHED_RR a round-robin policy.

For each of the above policies, param->sched_priority specifies a scheduling prior-
ity for the thread. This is a number in the range returned by calling sched_get_prior-
ity_min(2) and sched_get_priority_max(2) with the specified policy. On Linux, these
system calls return, respectively, 1 and 99.

Since Linux 2.6.32, the SCHED_RESET_ON_FORK flag can be ORed in policy
when calling sched_setscheduler(). As a result of including this flag, children

Linux man-pages 6.13 2024-07-23 782

sched_setscheduler(2) System Calls Manual sched_setscheduler(2)

created by fork(2) do not inherit privileged scheduling policies. See sched(7) for de-
tails.

sched_getscheduler() returns the current scheduling policy of the thread identified by
pid. If pid equals zero, the policy of the calling thread will be retrieved.

RETURN VALUE
On success, sched_setscheduler() returns zero. On success, sched_getscheduler()
returns the policy for the thread (a nonnegative integer). On error, both calls return
-1, and errno is set to indicate the error.

ERRORS
EINVAL

Invalid arguments: pid is negative or param is NULL.

EINVAL
(sched_setscheduler()) policy is not one of the recognized policies.

EINVAL
(sched_setscheduler()) param does not make sense for the specified policy.

EPERM
The calling thread does not have appropriate privileges.

ESRCH
The thread whose ID is pid could not be found.

VERSIONS
POSIX.1 does not detail the permissions that an unprivileged thread requires in order
to call sched_setscheduler(), and details vary across systems. For example, the So-
laris 7 manual page says that the real or effective user ID of the caller must match the
real user ID or the save set-user-ID of the target.

The scheduling policy and parameters are in fact per-thread attributes on Linux. The
value returned from a call to gettid(2) can be passed in the argument pid . Specifying
pid as 0 will operate on the attributes of the calling thread, and passing the value re-
turned from a call to getpid(2) will operate on the attributes of the main thread of the
thread group. (If you are using the POSIX threads API, then use pthread_setsched-
param(3), pthread_getschedparam(3), and pthread_setschedprio(3), instead of the
sched_*(2) system calls.)

STANDARDS
POSIX.1-2008 (but see BUGS below).

SCHED_BATCH and SCHED_IDLE are Linux-specific.

HISTORY
POSIX.1-2001.

NOTES
Further details of the semantics of all of the above "normal" and "real-time" schedul-
ing policies can be found in the sched(7) manual page. That page also describes an
additional policy, SCHED_DEADLINE, which is settable only via sched_setattr(2).

POSIX systems on which sched_setscheduler() and sched_getscheduler() are avail-
able define _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

Linux man-pages 6.13 2024-07-23 783

sched_setscheduler(2) System Calls Manual sched_setscheduler(2)

BUGS
POSIX.1 says that on success, sched_setscheduler() should return the previous
scheduling policy. Linux sched_setscheduler() does not conform to this requirement,
since it always returns 0 on success.

SEE ALSO
chrt(1), nice(2), sched_get_priority_max(2), sched_get_priority_min(2),
sched_getaffinity(2), sched_getattr(2), sched_getparam(2), sched_rr_get_interval(2),
sched_setaffinity(2), sched_setattr(2), sched_setparam(2), sched_yield(2),
setpriority(2), capabilities(7), cpuset(7), sched(7)

Linux man-pages 6.13 2024-07-23 784

sched_yield(2) System Calls Manual sched_yield(2)

NAME
sched_yield - yield the processor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_yield(void);

DESCRIPTION
sched_yield() causes the calling thread to relinquish the CPU. The thread is moved to
the end of the queue for its static priority and a new thread gets to run.

RETURN VALUE
On success, sched_yield() returns 0. On error, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
In the Linux implementation, sched_yield() always succeeds.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001 (but optional). POSIX.1-2008.

Before POSIX.1-2008, systems on which sched_yield() is available defined
_POSIX_PRIORITY_SCHEDULING in <unistd.h>.

CAVEATS
sched_yield() is intended for use with real-time scheduling policies (i.e.,
SCHED_FIFO or SCHED_RR). Use of sched_yield() with nondeterministic sched-
uling policies such as SCHED_OTHER is unspecified and very likely means your
application design is broken.

If the calling thread is the only thread in the highest priority list at that time, it will
continue to run after a call to sched_yield().

Avoid calling sched_yield() unnecessarily or inappropriately (e.g., when resources
needed by other schedulable threads are still held by the caller), since doing so will re-
sult in unnecessary context switches, which will degrade system performance.

SEE ALSO
sched(7)

Linux man-pages 6.13 2024-07-23 785

seccomp(2) System Calls Manual seccomp(2)

NAME
seccomp - operate on Secure Computing state of the process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/seccomp.h> /* Definition of SECCOMP_* constants */
#include <linux/filter.h> /* Definition of struct sock_fprog */
#include <linux/audit.h> /* Definition of AUDIT_* constants */
#include <linux/signal.h> /* Definition of SIG* constants */
#include <sys/ptrace.h> /* Definition of PTRACE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_seccomp, unsigned int operation, unsigned int flags,
void *args);

Note: glibc provides no wrapper for seccomp(), necessitating the use of syscall(2).

DESCRIPTION
The seccomp() system call operates on the Secure Computing (seccomp) state of the
calling process.

Currently, Linux supports the following operation values:

SECCOMP_SET_MODE_STRICT
The only system calls that the calling thread is permitted to make are read(2),
write(2), _exit(2) (but not exit_group(2)), and sigreturn(2). Other system calls
result in the termination of the calling thread, or termination of the entire
process with the SIGKILL signal when there is only one thread. Strict secure
computing mode is useful for number-crunching applications that may need to
execute untrusted byte code, perhaps obtained by reading from a pipe or
socket.

Note that although the calling thread can no longer call sigprocmask(2), it can
use sigreturn(2) to block all signals apart from SIGKILL and SIGSTOP.
This means that alarm(2) (for example) is not sufficient for restricting the
process’s execution time. Instead, to reliably terminate the process, SIGKILL
must be used. This can be done by using timer_create(2) with SIGEV_SIG-
NAL and sigev_signo set to SIGKILL, or by using setrlimit(2) to set the hard
limit for RLIMIT_CPU.

This operation is available only if the kernel is configured with CON-
FIG_SECCOMP enabled.

The value of flags must be 0, and args must be NULL.

This operation is functionally identical to the call:

prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT);

SECCOMP_SET_MODE_FILTER
The system calls allowed are defined by a pointer to a Berkeley Packet Filter
(BPF) passed via args. This argument is a pointer to a struct sock_fprog; it
can be designed to filter arbitrary system calls and system call arguments. If

Linux man-pages 6.13 2024-07-23 786

seccomp(2) System Calls Manual seccomp(2)

the filter is invalid, seccomp() fails, returning EINVAL in errno.

If fork(2) or clone(2) is allowed by the filter, any child processes will be con-
strained to the same system call filters as the parent. If execve(2) is allowed,
the existing filters will be preserved across a call to execve(2).

In order to use the SECCOMP_SET_MODE_FILTER operation, either the
calling thread must have the CAP_SYS_ADMIN capability in its user name-
space, or the thread must already have the no_new_privs bit set. If that bit was
not already set by an ancestor of this thread, the thread must make the follow-
ing call:

prctl(PR_SET_NO_NEW_PRIVS, 1);

Otherwise, the SECCOMP_SET_MODE_FILTER operation fails and re-
turns EACCES in errno. This requirement ensures that an unprivileged
process cannot apply a malicious filter and then invoke a set-user-ID or other
privileged program using execve(2), thus potentially compromising that pro-
gram. (Such a malicious filter might, for example, cause an attempt to use se-
tuid(2) to set the caller’s user IDs to nonzero values to instead return 0 without
actually making the system call. Thus, the program might be tricked into re-
taining superuser privileges in circumstances where it is possible to influence
it to do dangerous things because it did not actually drop privileges.)

If prctl(2) or seccomp() is allowed by the attached filter, further filters may be
added. This will increase evaluation time, but allows for further reduction of
the attack surface during execution of a thread.

The SECCOMP_SET_MODE_FILTER operation is available only if the
kernel is configured with CONFIG_SECCOMP_FILTER enabled.

When flags is 0, this operation is functionally identical to the call:

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, args);

The recognized flags are:

SECCOMP_FILTER_FLAG_LOG (since Linux 4.14)
All filter return actions except SECCOMP_RET_ALLOW should be
logged. An administrator may override this filter flag by preventing
specific actions from being logged via the /proc/sys/kernel/sec-
comp/actions_logged file.

SECCOMP_FILTER_FLAG_NEW_LISTENER (since Linux 5.0)
After successfully installing the filter program, return a new user-space
notification file descriptor. (The close-on-exec flag is set for the file
descriptor.) When the filter returns SECCOMP_RET_USER_NO-
TIF a notification will be sent to this file descriptor.

At most one seccomp filter using the SECCOMP_FIL-
TER_FLAG_NEW_LISTENER flag can be installed for a thread.

See seccomp_unotify(2) for further details.

SECCOMP_FILTER_FLAG_SPEC_ALLOW (since Linux 4.17)
Disable Speculative Store Bypass mitigation.

Linux man-pages 6.13 2024-07-23 787

seccomp(2) System Calls Manual seccomp(2)

SECCOMP_FILTER_FLAG_TSYNC
When adding a new filter, synchronize all other threads of the calling
process to the same seccomp filter tree. A "filter tree" is the ordered
list of filters attached to a thread. (Attaching identical filters in sepa-
rate seccomp() calls results in different filters from this perspective.)

If any thread cannot synchronize to the same filter tree, the call will not
attach the new seccomp filter, and will fail, returning the first thread ID
found that cannot synchronize. Synchronization will fail if another
thread in the same process is in SECCOMP_MODE_STRICT or if it
has attached new seccomp filters to itself, diverging from the calling
thread’s filter tree.

SECCOMP_GET_ACTION_AVAIL (since Linux 4.14)
Test to see if an action is supported by the kernel. This operation is helpful to
confirm that the kernel knows of a more recently added filter return action
since the kernel treats all unknown actions as SEC-
COMP_RET_KILL_PROCESS.

The value of flags must be 0, and args must be a pointer to an unsigned 32-bit
filter return action.

SECCOMP_GET_NOTIF_SIZES (since Linux 5.0)
Get the sizes of the seccomp user-space notification structures. Since these
structures may evolve and grow over time, this command can be used to deter-
mine how much memory to allocate for sending and receiving notifications.

The value of flags must be 0, and args must be a pointer to a struct sec-
comp_notif_sizes, which has the following form:

struct seccomp_notif_sizes
__u16 seccomp_notif; /* Size of notification structure */
__u16 seccomp_notif_resp; /* Size of response structure */
__u16 seccomp_data; /* Size of 'struct seccomp_data' */

};

See seccomp_unotify(2) for further details.

Filters
When adding filters via SECCOMP_SET_MODE_FILTER, args points to a filter
program:

struct sock_fprog {
unsigned short len; /* Number of BPF instructions */
struct sock_filter *filter; /* Pointer to array of

BPF instructions */
};

Each program must contain one or more BPF instructions:

struct sock_filter { /* Filter block */
__u16 code; /* Actual filter code */
__u8 jt; /* Jump true */
__u8 jf; /* Jump false */
__u32 k; /* Generic multiuse field */

Linux man-pages 6.13 2024-07-23 788

seccomp(2) System Calls Manual seccomp(2)

};

When executing the instructions, the BPF program operates on the system call infor-
mation made available (i.e., use the BPF_ABS addressing mode) as a (read-only)
buffer of the following form:

struct seccomp_data {
int nr; /* System call number */
__u32 arch; /* AUDIT_ARCH_* value

(see <linux/audit.h>) */
__u64 instruction_pointer; /* CPU instruction pointer */
__u64 args[6]; /* Up to 6 system call arguments */

};

Because numbering of system calls varies between architectures and some architec-
tures (e.g., x86-64) allow user-space code to use the calling conventions of multiple
architectures (and the convention being used may vary over the life of a process that
uses execve(2) to execute binaries that employ the different conventions), it is usually
necessary to verify the value of the arch field.

It is strongly recommended to use an allow-list approach whenever possible because
such an approach is more robust and simple. A deny-list will have to be updated
whenever a potentially dangerous system call is added (or a dangerous flag or option
if those are deny-listed), and it is often possible to alter the representation of a value
without altering its meaning, leading to a deny-list bypass. See also Caveats below.

The arch field is not unique for all calling conventions. The x86-64 ABI and the x32
ABI both use AUDIT_ARCH_X86_64 as arch, and they run on the same processors.
Instead, the mask __X32_SYSCALL_BIT is used on the system call number to tell
the two ABIs apart.

This means that a policy must either deny all syscalls with __X32_SYSCALL_BIT
or it must recognize syscalls with and without __X32_SYSCALL_BIT set. A list of
system calls to be denied based on nr that does not also contain nr values with
__X32_SYSCALL_BIT set can be bypassed by a malicious program that sets
__X32_SYSCALL_BIT.

Additionally, kernels prior to Linux 5.4 incorrectly permitted nr in the ranges 512-547
as well as the corresponding non-x32 syscalls ORed with __X32_SYSCALL_BIT.
For example, nr == 521 and nr == (101 | __X32_SYSCALL_BIT) would result in
invocations of ptrace(2) with potentially confused x32-vs-x86_64 semantics in the
kernel. Policies intended to work on kernels before Linux 5.4 must ensure that they
deny or otherwise correctly handle these system calls. On Linux 5.4 and newer, such
system calls will fail with the error ENOSYS, without doing anything.

The instruction_pointer field provides the address of the machine-language instruc-
tion that performed the system call. This might be useful in conjunction with the use
of /proc/ pid /maps to perform checks based on which region (mapping) of the pro-
gram made the system call. (Probably, it is wise to lock down the mmap(2) and mpro-
tect(2) system calls to prevent the program from subverting such checks.)

When checking values from args, keep in mind that arguments are often silently trun-
cated before being processed, but after the seccomp check. For example, this happens
if the i386 ABI is used on an x86-64 kernel: although the kernel will normally not

Linux man-pages 6.13 2024-07-23 789

seccomp(2) System Calls Manual seccomp(2)

look beyond the 32 lowest bits of the arguments, the values of the full 64-bit registers
will be present in the seccomp data. A less surprising example is that if the x86-64
ABI is used to perform a system call that takes an argument of type int, the more-sig-
nificant half of the argument register is ignored by the system call, but visible in the
seccomp data.

A seccomp filter returns a 32-bit value consisting of two parts: the most significant 16
bits (corresponding to the mask defined by the constant SECCOMP_RET_AC-
TION_FULL) contain one of the "action" values listed below; the least significant
16-bits (defined by the constant SECCOMP_RET_DATA) are "data" to be associ-
ated with this return value.

If multiple filters exist, they are all executed, in reverse order of their addition to the
filter tree—that is, the most recently installed filter is executed first. (Note that all fil-
ters will be called even if one of the earlier filters returns SECCOMP_RET_KILL.
This is done to simplify the kernel code and to provide a tiny speed-up in the execu-
tion of sets of filters by avoiding a check for this uncommon case.) The return value
for the evaluation of a given system call is the first-seen action value of highest prece-
dence (along with its accompanying data) returned by execution of all of the filters.

In decreasing order of precedence, the action values that may be returned by a sec-
comp filter are:

SECCOMP_RET_KILL_PROCESS (since Linux 4.14)
This value results in immediate termination of the process, with a core dump.
The system call is not executed. By contrast with SEC-
COMP_RET_KILL_THREAD below, all threads in the thread group are ter-
minated. (For a discussion of thread groups, see the description of the
CLONE_THREAD flag in clone(2).)

The process terminates as though killed by a SIGSYS signal. Even if a signal
handler has been registered for SIGSYS, the handler will be ignored in this
case and the process always terminates. To a parent process that is waiting on
this process (using waitpid(2) or similar), the returned wstatus will indicate
that its child was terminated as though by a SIGSYS signal.

SECCOMP_RET_KILL_THREAD (or SECCOMP_RET_KILL)
This value results in immediate termination of the thread that made the system
call. The system call is not executed. Other threads in the same thread group
will continue to execute.

The thread terminates as though killed by a SIGSYS signal. See SEC-
COMP_RET_KILL_PROCESS above.

Before Linux 4.11, any process terminated in this way would not trigger a
coredump (even though SIGSYS is documented in signal(7) as having a de-
fault action of termination with a core dump). Since Linux 4.11, a single-
threaded process will dump core if terminated in this way.

With the addition of SECCOMP_RET_KILL_PROCESS in Linux 4.14,
SECCOMP_RET_KILL_THREAD was added as a synonym for SEC-
COMP_RET_KILL, in order to more clearly distinguish the two actions.

Note: the use of SECCOMP_RET_KILL_THREAD to kill a single thread
in a multithreaded process is likely to leave the process in a permanently

Linux man-pages 6.13 2024-07-23 790

seccomp(2) System Calls Manual seccomp(2)

inconsistent and possibly corrupt state.

SECCOMP_RET_TRAP
This value results in the kernel sending a thread-directed SIGSYS signal to the
triggering thread. (The system call is not executed.) Various fields will be set
in the siginfo_t structure (see sigaction(2)) associated with signal:

• si_signo will contain SIGSYS.

• si_call_addr will show the address of the system call instruction.

• si_syscall and si_arch will indicate which system call was attempted.

• si_code will contain SYS_SECCOMP.

• si_errno will contain the SECCOMP_RET_DATA portion of the filter re-
turn value.

The program counter will be as though the system call happened (i.e., the pro-
gram counter will not point to the system call instruction). The return value
register will contain an architecture-dependent value; if resuming execution,
set it to something appropriate for the system call. (The architecture depen-
dency is because replacing it with ENOSYS could overwrite some useful in-
formation.)

SECCOMP_RET_ERRNO
This value results in the SECCOMP_RET_DATA portion of the filter’s return
value being passed to user space as the errno value without executing the sys-
tem call.

SECCOMP_RET_USER_NOTIF (since Linux 5.0)
Forward the system call to an attached user-space supervisor process to allow
that process to decide what to do with the system call. If there is no attached
supervisor (either because the filter was not installed with the SEC-
COMP_FILTER_FLAG_NEW_LISTENER flag or because the file descrip-
tor was closed), the filter returns ENOSYS (similar to what happens when a
filter returns SECCOMP_RET_TRACE and there is no tracer). See sec-
comp_unotify(2) for further details.

Note that the supervisor process will not be notified if another filter returns an
action value with a precedence greater than SECCOMP_RET_USER_NO-
TIF.

SECCOMP_RET_TRACE
When returned, this value will cause the kernel to attempt to notify a
ptrace(2)-based tracer prior to executing the system call. If there is no tracer
present, the system call is not executed and returns a failure status with errno
set to ENOSYS.

A tracer will be notified if it requests PTRACE_O_TRACESECCOMP us-
ing ptrace(PTRACE_SETOPTIONS). The tracer will be notified of a
PTRACE_EVENT_SECCOMP and the SECCOMP_RET_DATA portion
of the filter’s return value will be available to the tracer via
PTRACE_GETEVENTMSG.

Linux man-pages 6.13 2024-07-23 791

seccomp(2) System Calls Manual seccomp(2)

The tracer can skip the system call by changing the system call number to -1.
Alternatively, the tracer can change the system call requested by changing the
system call to a valid system call number. If the tracer asks to skip the system
call, then the system call will appear to return the value that the tracer puts in
the return value register.

Before Linux 4.8, the seccomp check will not be run again after the tracer is
notified. (This means that, on older kernels, seccomp-based sandboxes must
not allow use of ptrace(2)—even of other sandboxed processes—without ex-
treme care; ptracers can use this mechanism to escape from the seccomp sand-
box.)

Note that a tracer process will not be notified if another filter returns an action
value with a precedence greater than SECCOMP_RET_TRACE.

SECCOMP_RET_LOG (since Linux 4.14)
This value results in the system call being executed after the filter return action
is logged. An administrator may override the logging of this action via the
/proc/sys/kernel/seccomp/actions_logged file.

SECCOMP_RET_ALLOW
This value results in the system call being executed.

If an action value other than one of the above is specified, then the filter action is
treated as either SECCOMP_RET_KILL_PROCESS (since Linux 4.14) or SEC-
COMP_RET_KILL_THREAD (in Linux 4.13 and earlier).

/proc interfaces
The files in the directory /proc/sys/kernel/seccomp provide additional seccomp infor-
mation and configuration:

actions_avail (since Linux 4.14)
A read-only ordered list of seccomp filter return actions in string form. The
ordering, from left-to-right, is in decreasing order of precedence. The list rep-
resents the set of seccomp filter return actions supported by the kernel.

actions_logged (since Linux 4.14)
A read-write ordered list of seccomp filter return actions that are allowed to be
logged. Writes to the file do not need to be in ordered form but reads from the
file will be ordered in the same way as the actions_avail file.

It is important to note that the value of actions_logged does not prevent certain
filter return actions from being logged when the audit subsystem is configured
to audit a task. If the action is not found in the actions_logged file, the final
decision on whether to audit the action for that task is ultimately left up to the
audit subsystem to decide for all filter return actions other than SEC-
COMP_RET_ALLOW.

The "allow" string is not accepted in the actions_logged file as it is not possi-
ble to log SECCOMP_RET_ALLOW actions. Attempting to write "allow"
to the file will fail with the error EINVAL.

Audit logging of seccomp actions
Since Linux 4.14, the kernel provides the facility to log the actions returned by sec-
comp filters in the audit log. The kernel makes the decision to log an action based on

Linux man-pages 6.13 2024-07-23 792

seccomp(2) System Calls Manual seccomp(2)

the action type, whether or not the action is present in the actions_logged file, and
whether kernel auditing is enabled (e.g., via the kernel boot option audit=1). The
rules are as follows:

• If the action is SECCOMP_RET_ALLOW, the action is not logged.

• Otherwise, if the action is either SECCOMP_RET_KILL_PROCESS or SEC-
COMP_RET_KILL_THREAD, and that action appears in the actions_logged
file, the action is logged.

• Otherwise, if the filter has requested logging (the SECCOMP_FIL-
TER_FLAG_LOG flag) and the action appears in the actions_logged file, the ac-
tion is logged.

• Otherwise, if kernel auditing is enabled and the process is being audited (au-
trace(8)), the action is logged.

• Otherwise, the action is not logged.

RETURN VALUE
On success, seccomp() returns 0. On error, if SECCOMP_FIL-
TER_FLAG_TSYNC was used, the return value is the ID of the thread that caused
the synchronization failure. (This ID is a kernel thread ID of the type returned by
clone(2) and gettid(2).) On other errors, -1 is returned, and errno is set to indicate
the error.

ERRORS
seccomp() can fail for the following reasons:

EACCES
The caller did not have the CAP_SYS_ADMIN capability in its user name-
space, or had not set no_new_privs before using SEC-
COMP_SET_MODE_FILTER.

EBUSY
While installing a new filter, the SECCOMP_FILTER_FLAG_NEW_LIS-
TENER flag was specified, but a previous filter had already been installed
with that flag.

EFAULT
args was not a valid address.

EINVAL
operation is unknown or is not supported by this kernel version or configura-
tion.

EINVAL
The specified flags are invalid for the given operation.

EINVAL
operation included BPF_ABS, but the specified offset was not aligned to a
32-bit boundary or exceeded sizeof(struct seccomp_data).

EINVAL
A secure computing mode has already been set, and operation differs from the
existing setting.

Linux man-pages 6.13 2024-07-23 793

seccomp(2) System Calls Manual seccomp(2)

EINVAL
operation specified SECCOMP_SET_MODE_FILTER, but the filter pro-
gram pointed to by args was not valid or the length of the filter program was
zero or exceeded BPF_MAXINSNS (4096) instructions.

ENOMEM
Out of memory.

ENOMEM
The total length of all filter programs attached to the calling thread would ex-
ceed MAX_INSNS_PER_PATH (32768) instructions. Note that for the pur-
poses of calculating this limit, each already existing filter program incurs an
overhead penalty of 4 instructions.

EOPNOTSUPP
operation specified SECCOMP_GET_ACTION_AVAIL, but the kernel does
not support the filter return action specified by args.

ESRCH
Another thread caused a failure during thread sync, but its ID could not be de-
termined.

STANDARDS
Linux.

HISTORY
Linux 3.17.

NOTES
Rather than hand-coding seccomp filters as shown in the example below, you may
prefer to employ the libseccomp library, which provides a front-end for generating
seccomp filters.

The Seccomp field of the /proc/ pid /status file provides a method of viewing the sec-
comp mode of a process; see proc(5).

seccomp() provides a superset of the functionality provided by the prctl(2)
PR_SET_SECCOMP operation (which does not support flags).

Since Linux 4.4, the ptrace(2) PTRACE_SECCOMP_GET_FILTER operation can
be used to dump a process’s seccomp filters.

Architecture support for seccomp BPF
Architecture support for seccomp BPF filtering is available on the following architec-
tures:

• x86-64, i386, x32 (since Linux 3.5)
• ARM (since Linux 3.8)
• s390 (since Linux 3.8)
• MIPS (since Linux 3.16)
• ARM-64 (since Linux 3.19)
• PowerPC (since Linux 4.3)
• Tile (since Linux 4.3)
• PA-RISC (since Linux 4.6)

Linux man-pages 6.13 2024-07-23 794

seccomp(2) System Calls Manual seccomp(2)

Caveats
There are various subtleties to consider when applying seccomp filters to a program,
including the following:

• Some traditional system calls have user-space implementations in the vdso(7) on
many architectures. Notable examples include clock_gettime(2), gettimeofday(2),
and time(2). On such architectures, seccomp filtering for these system calls will
have no effect. (However, there are cases where the vdso(7) implementations may
fall back to invoking the true system call, in which case seccomp filters would see
the system call.)

• Seccomp filtering is based on system call numbers. However, applications typi-
cally do not directly invoke system calls, but instead call wrapper functions in the
C library which in turn invoke the system calls. Consequently, one must be aware
of the following:

• The glibc wrappers for some traditional system calls may actually employ sys-
tem calls with different names in the kernel. For example, the exit(2) wrapper
function actually employs the exit_group(2) system call, and the fork(2) wrap-
per function actually calls clone(2).

• The behavior of wrapper functions may vary across architectures, according to
the range of system calls provided on those architectures. In other words, the
same wrapper function may invoke different system calls on different architec-
tures.

• Finally, the behavior of wrapper functions can change across glibc versions.
For example, in older versions, the glibc wrapper function for open(2) invoked
the system call of the same name, but starting in glibc 2.26, the implementa-
tion switched to calling openat(2) on all architectures.

The consequence of the above points is that it may be necessary to filter for a system
call other than might be expected. Various manual pages in Section 2 provide helpful
details about the differences between wrapper functions and the underlying system
calls in subsections entitled C library/kernel differences.

Furthermore, note that the application of seccomp filters even risks causing bugs in an
application, when the filters cause unexpected failures for legitimate operations that
the application might need to perform. Such bugs may not easily be discovered when
testing the seccomp filters if the bugs occur in rarely used application code paths.

Seccomp-specific BPF details
Note the following BPF details specific to seccomp filters:

• The BPF_H and BPF_B size modifiers are not supported: all operations must
load and store (4-byte) words (BPF_W).

• To access the contents of the seccomp_data buffer, use the BPF_ABS addressing
mode modifier.

• The BPF_LEN addressing mode modifier yields an immediate mode operand
whose value is the size of the seccomp_data buffer.

EXAMPLES
The program below accepts four or more arguments. The first three arguments are a
system call number, a numeric architecture identifier, and an error number. The

Linux man-pages 6.13 2024-07-23 795

seccomp(2) System Calls Manual seccomp(2)

program uses these values to construct a BPF filter that is used at run time to perform
the following checks:

• If the program is not running on the specified architecture, the BPF filter causes
system calls to fail with the error ENOSYS.

• If the program attempts to execute the system call with the specified number, the
BPF filter causes the system call to fail, with errno being set to the specified error
number.

The remaining command-line arguments specify the pathname and additional argu-
ments of a program that the example program should attempt to execute using ex-
ecv(3) (a library function that employs the execve(2) system call). Some example
runs of the program are shown below.

First, we display the architecture that we are running on (x86-64) and then construct a
shell function that looks up system call numbers on this architecture:

$ uname -m
x86_64
$ syscall_nr() {

cat /usr/src/linux/arch/x86/syscalls/syscall_64.tbl | \
awk '$2 != "x32" && $3 == "'$1'" { print $1 }'

}

When the BPF filter rejects a system call (case [2] above), it causes the system call to
fail with the error number specified on the command line. In the experiments shown
here, we’ll use error number 99:

$ errno 99
EADDRNOTAVAIL 99 Cannot assign requested address

In the following example, we attempt to run the command whoami(1), but the BPF fil-
ter rejects the execve(2) system call, so that the command is not even executed:

$ syscall_nr execve
59
$./a.out
Usage: ./a.out <syscall_nr> <arch> <errno> <prog> [<args>]
Hint for <arch>: AUDIT_ARCH_I386: 0x40000003

AUDIT_ARCH_X86_64: 0xC000003E
$./a.out 59 0xC000003E 99 /bin/whoami
execv: Cannot assign requested address

In the next example, the BPF filter rejects the write(2) system call, so that, although it
is successfully started, the whoami(1) command is not able to write output:

$ syscall_nr write
1
$./a.out 1 0xC000003E 99 /bin/whoami

In the final example, the BPF filter rejects a system call that is not used by the
whoami(1) command, so it is able to successfully execute and produce output:

$ syscall_nr preadv
295

Linux man-pages 6.13 2024-07-23 796

seccomp(2) System Calls Manual seccomp(2)

$./a.out 295 0xC000003E 99 /bin/whoami
cecilia

Program source
#include <linux/audit.h>
#include <linux/filter.h>
#include <linux/seccomp.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/prctl.h>
#include <sys/syscall.h>
#include <unistd.h>

#define X32_SYSCALL_BIT 0x40000000
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))

static int
install_filter(int syscall_nr, unsigned int t_arch, int f_errno)
{

unsigned int upper_nr_limit = 0xffffffff;

/* Assume that AUDIT_ARCH_X86_64 means the normal x86-64 ABI
(in the x32 ABI, all system calls have bit 30 set in the
'nr' field, meaning the numbers are >= X32_SYSCALL_BIT). */

if (t_arch == AUDIT_ARCH_X86_64)
upper_nr_limit = X32_SYSCALL_BIT - 1;

struct sock_filter filter[] = {
/* [0] Load architecture from 'seccomp_data' buffer into

accumulator. */
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

(offsetof(struct seccomp_data, arch))),

/* [1] Jump forward 5 instructions if architecture does not
match 't_arch'. */

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, t_arch, 0, 5),

/* [2] Load system call number from 'seccomp_data' buffer into
accumulator. */

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
(offsetof(struct seccomp_data, nr))),

/* [3] Check ABI - only needed for x86-64 in deny-list use
cases. Use BPF_JGT instead of checking against the bit
mask to avoid having to reload the syscall number. */

BPF_JUMP(BPF_JMP | BPF_JGT | BPF_K, upper_nr_limit, 3, 0),

/* [4] Jump forward 1 instruction if system call number

Linux man-pages 6.13 2024-07-23 797

seccomp(2) System Calls Manual seccomp(2)

does not match 'syscall_nr'. */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, syscall_nr, 0, 1),

/* [5] Matching architecture and system call: don't execute
the system call, and return 'f_errno' in 'errno'. */

BPF_STMT(BPF_RET | BPF_K,
SECCOMP_RET_ERRNO | (f_errno & SECCOMP_RET_DATA)),

/* [6] Destination of system call number mismatch: allow other
system calls. */

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

/* [7] Destination of architecture mismatch: kill process. */
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),

};

struct sock_fprog prog = {
.len = ARRAY_SIZE(filter),
.filter = filter,

};

if (syscall(SYS_seccomp, SECCOMP_SET_MODE_FILTER, 0, &prog)) {
perror("seccomp");
return 1;

}

return 0;
}

int
main(int argc, char *argv[])
{

if (argc < 5) {
fprintf(stderr, "Usage: "

"%s <syscall_nr> <arch> <errno> <prog> [<args>]\n"
"Hint for <arch>: AUDIT_ARCH_I386: 0x%X\n"
" AUDIT_ARCH_X86_64: 0x%X\n"
"\n", argv[0], AUDIT_ARCH_I386, AUDIT_ARCH_X86_64);

exit(EXIT_FAILURE);
}

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
perror("prctl");
exit(EXIT_FAILURE);

}

if (install_filter(strtol(argv[1], NULL, 0),
strtoul(argv[2], NULL, 0),
strtol(argv[3], NULL, 0)))

Linux man-pages 6.13 2024-07-23 798

seccomp(2) System Calls Manual seccomp(2)

exit(EXIT_FAILURE);

execv(argv[4], &argv[4]);
perror("execv");
exit(EXIT_FAILURE);

}

SEE ALSO
bpfc(1), strace(1), bpf(2), prctl(2), ptrace(2), seccomp_unotify(2), sigaction(2),
proc(5), signal(7), socket(7)

Various pages from the libseccomp library, including: scmp_sys_resolver(1), sec-
comp_export_bpf (3), seccomp_init(3), seccomp_load(3), and seccomp_rule_add(3)

The kernel source files Documentation/networking/filter.txt and Documentation/user-
space-api/seccomp_filter.rst (or Documentation/prctl/seccomp_filter.txt before Linux
4.13).

McCanne, S. and Jacobson, V. (1992) The BSD Packet Filter: A New Architecture for
User-level Packet Capture, Proceedings of the USENIX Winter 1993 Conference
〈http://www.tcpdump.org/papers/bpf-usenix93.pdf〉

Linux man-pages 6.13 2024-07-23 799

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

NAME
seccomp_unotify - Seccomp user-space notification mechanism

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/seccomp.h>
#include <linux/filter.h>
#include <linux/audit.h>

int seccomp(unsigned int operation, unsigned int flags, void *args);

#include <sys/ioctl.h>

int ioctl(int fd , SECCOMP_IOCTL_NOTIF_RECV,
struct seccomp_notif *req);

int ioctl(int fd , SECCOMP_IOCTL_NOTIF_SEND,
struct seccomp_notif_resp *resp);

int ioctl(int fd , SECCOMP_IOCTL_NOTIF_ID_VALID, __u64 *id);
int ioctl(int fd , SECCOMP_IOCTL_NOTIF_ADDFD,

struct seccomp_notif_addfd *addfd);

DESCRIPTION
This page describes the user-space notification mechanism provided by the Secure
Computing (seccomp) facility. As well as the use of the SECCOMP_FIL-
TER_FLAG_NEW_LISTENER flag, the SECCOMP_RET_USER_NOTIF action
value, and the SECCOMP_GET_NOTIF_SIZES operation described in
seccomp(2), this mechanism involves the use of a number of related ioctl(2) opera-
tions (described below).

Overview
In conventional usage of a seccomp filter, the decision about how to treat a system call
is made by the filter itself. By contrast, the user-space notification mechanism allows
the seccomp filter to delegate the handling of the system call to another user-space
process. Note that this mechanism is explicitly not intended as a method implement-
ing security policy; see NOTES.

In the discussion that follows, the thread(s) on which the seccomp filter is installed is
(are) referred to as the target, and the process that is notified by the user-space notifi-
cation mechanism is referred to as the supervisor.

A suitably privileged supervisor can use the user-space notification mechanism to per-
form actions on behalf of the target. The advantage of the user-space notification
mechanism is that the supervisor will usually be able to retrieve information about the
target and the performed system call that the seccomp filter itself cannot. (A seccomp
filter is limited in the information it can obtain and the actions that it can perform be-
cause it is running on a virtual machine inside the kernel.)

An overview of the steps performed by the target and the supervisor is as follows:

(1) The target establishes a seccomp filter in the usual manner, but with two differ-
ences:

Linux man-pages 6.13 2024-11-17 800

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

• The seccomp(2) flags argument includes the flag SECCOMP_FIL-
TER_FLAG_NEW_LISTENER. Consequently, the return value of the
(successful) seccomp(2) call is a new "listening" file descriptor that can be
used to receive notifications. Only one "listening" seccomp filter can be in-
stalled for a thread.

• In cases where it is appropriate, the seccomp filter returns the action value
SECCOMP_RET_USER_NOTIF. This return value will trigger a notifi-
cation event.

(2) In order that the supervisor can obtain notifications using the listening file de-
scriptor, (a duplicate of) that file descriptor must be passed from the target to
the supervisor. One way in which this could be done is by passing the file de-
scriptor over a UNIX domain socket connection between the target and the su-
pervisor (using the SCM_RIGHTS ancillary message type described in
unix(7)). Another way to do this is through the use of pidfd_getfd(2).

(3) The supervisor will receive notification events on the listening file descriptor.
These events are returned as structures of type seccomp_notif . Because this
structure and its size may evolve over kernel versions, the supervisor must first
determine the size of this structure using the seccomp(2) SEC-
COMP_GET_NOTIF_SIZES operation, which returns a structure of type sec-
comp_notif_sizes. The supervisor allocates a buffer of size seccomp_no-
tif_sizes.seccomp_notif bytes to receive notification events. In addition,the su-
pervisor allocates another buffer of size seccomp_notif_sizes.seccomp_no-
tif_resp bytes for the response (a struct seccomp_notif_resp structure) that it
will provide to the kernel (and thus the target).

(4) The target then performs its workload, which includes system calls that will be
controlled by the seccomp filter. Whenever one of these system calls causes the
filter to return the SECCOMP_RET_USER_NOTIF action value, the kernel
does not (yet) execute the system call; instead, execution of the target is tem-
porarily blocked inside the kernel (in a sleep state that is interruptible by sig-
nals) and a notification event is generated on the listening file descriptor.

(5) The supervisor can now repeatedly monitor the listening file descriptor for
SECCOMP_RET_USER_NOTIF-triggered events. To do this, the supervisor
uses the SECCOMP_IOCTL_NOTIF_RECV ioctl(2) operation to read infor-
mation about a notification event; this operation blocks until an event is avail-
able. The operation returns a seccomp_notif structure containing information
about the system call that is being attempted by the target. (As described in
NOTES, the file descriptor can also be monitored with select(2), poll(2), or
epoll(7).)

(6) The seccomp_notif structure returned by the SECCOMP_IOCTL_NO-
TIF_RECV operation includes the same information (a seccomp_data struc-
ture) that was passed to the seccomp filter. This information allows the supervi-
sor to discover the system call number and the arguments for the target’s system
call. In addition, the notification event contains the ID of the thread that trig-
gered the notification and a unique cookie value that is used in subsequent
SECCOMP_IOCTL_NOTIF_ID_VALID and SECCOMP_IOCTL_NO-
TIF_SEND operations.

Linux man-pages 6.13 2024-11-17 801

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

The information in the notification can be used to discover the values of pointer
arguments for the target’s system call. (This is something that can’t be done
from within a seccomp filter.) One way in which the supervisor can do this is to
open the corresponding /proc/ tid /mem file (see proc(5)) and read bytes from
the location that corresponds to one of the pointer arguments whose value is
supplied in the notification event. (The supervisor must be careful to avoid a
race condition that can occur when doing this; see the description of the SEC-
COMP_IOCTL_NOTIF_ID_VALID ioctl(2) operation below.) In addition,
the supervisor can access other system information that is visible in user space
but which is not accessible from a seccomp filter.

(7) Having obtained information as per the previous step, the supervisor may then
choose to perform an action in response to the target’s system call (which, as
noted above, is not executed when the seccomp filter returns the SEC-
COMP_RET_USER_NOTIF action value).

One example use case here relates to containers. The target may be located in-
side a container where it does not have sufficient capabilities to mount a filesys-
tem in the container’s mount namespace. However, the supervisor may be a
more privileged process that does have sufficient capabilities to perform the
mount operation.

(8) The supervisor then sends a response to the notification. The information in
this response is used by the kernel to construct a return value for the target’s
system call and provide a value that will be assigned to the errno variable of the
target.

The response is sent using the SECCOMP_IOCTL_NOTIF_SEND ioctl(2)
operation, which is used to transmit a seccomp_notif_resp structure to the ker-
nel. This structure includes a cookie value that the supervisor obtained in the
seccomp_notif structure returned by the SECCOMP_IOCTL_NOTIF_RECV
operation. This cookie value allows the kernel to associate the response with
the target. This structure must include the cookie value that the supervisor ob-
tained in the seccomp_notif structure returned by the SEC-
COMP_IOCTL_NOTIF_RECV operation; the cookie allows the kernel to as-
sociate the response with the target.

(9) Once the notification has been sent, the system call in the target thread un-
blocks, returning the information that was provided by the supervisor in the no-
tification response.

As a variation on the last two steps, the supervisor can send a response that tells the
kernel that it should execute the target thread’s system call; see the discussion of
SECCOMP_USER_NOTIF_FLAG_CONTINUE, below.

IOCTL OPERATIONS
The following ioctl(2) operations are supported by the seccomp user-space notifica-
tion file descriptor. For each of these operations, the first (file descriptor) argument of
ioctl(2) is the listening file descriptor returned by a call to seccomp(2) with the SEC-
COMP_FILTER_FLAG_NEW_LISTENER flag.

Linux man-pages 6.13 2024-11-17 802

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

SECCOMP_IOCTL_NOTIF_RECV
The SECCOMP_IOCTL_NOTIF_RECV operation (available since Linux 5.0) is
used to obtain a user-space notification event. If no such event is currently pending,
the operation blocks until an event occurs. The third ioctl(2) argument is a pointer to
a structure of the following form which contains information about the event. This
structure must be zeroed out before the call.

struct seccomp_notif {
__u64 id; /* Cookie */
__u32 pid; /* TID of target thread */
__u32 flags; /* Currently unused (0) */
struct seccomp_data data; /* See seccomp(2) */

};

The fields in this structure are as follows:

id This is a cookie for the notification. Each such cookie is guaranteed to be
unique for the corresponding seccomp filter.

• The cookie can be used with the SECCOMP_IOCTL_NO-
TIF_ID_VALID ioctl(2) operation described below.

• When returning a notification response to the kernel, the supervisor must
include the cookie value in the seccomp_notif_resp structure that is speci-
fied as the argument of the SECCOMP_IOCTL_NOTIF_SEND opera-
tion.

pid This is the thread ID of the target thread that triggered the notification event.

flags This is a bit mask of flags providing further information on the event. In the
current implementation, this field is always zero.

data This is a seccomp_data structure containing information about the system call
that triggered the notification. This is the same structure that is passed to the
seccomp filter. See seccomp(2) for details of this structure.

On success, this operation returns 0; on failure, -1 is returned, and errno is set to indi-
cate the error. This operation can fail with the following errors:

EINVAL (since Linux 5.5)
The seccomp_notif structure that was passed to the call contained nonzero
fields.

ENOENT
The target thread was killed by a signal as the notification information was be-
ing generated, or the target’s (blocked) system call was interrupted by a signal
handler.

SECCOMP_IOCTL_NOTIF_ID_VALID
The SECCOMP_IOCTL_NOTIF_ID_VALID operation (available since Linux 5.0)
is used to check that a notification ID returned by an earlier SEC-
COMP_IOCTL_NOTIF_RECV operation is still valid (i.e., that the target still ex-
ists and its system call is still blocked waiting for a response).

The third ioctl(2) argument is a pointer to the cookie (id) returned by the SEC-
COMP_IOCTL_NOTIF_RECV operation.

Linux man-pages 6.13 2024-11-17 803

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

This operation is necessary to avoid race conditions that can occur when the pid re-
turned by the SECCOMP_IOCTL_NOTIF_RECV operation terminates, and that
process ID is reused by another process. An example of this kind of race is the fol-
lowing

(1) A notification is generated on the listening file descriptor. The returned sec-
comp_notif contains the TID of the target thread (in the pid field of the struc-
ture).

(2) The target terminates.

(3) Another thread or process is created on the system that by chance reuses the
TID that was freed when the target terminated.

(4) The supervisor open(2)s the /proc/ tid /mem file for the TID obtained in step 1,
with the intention of (say) inspecting the memory location(s) that containing the
argument(s) of the system call that triggered the notification in step 1.

In the above scenario, the risk is that the supervisor may try to access the memory of a
process other than the target. This race can be avoided by following the call to
open(2) with a SECCOMP_IOCTL_NOTIF_ID_VALID operation to verify that the
process that generated the notification is still alive. (Note that if the target terminates
after the latter step, a subsequent read(2) from the file descriptor may return 0, indi-
cating end of file.)

See NOTES for a discussion of other cases where SECCOMP_IOCTL_NO-
TIF_ID_VALID checks must be performed.

On success (i.e., the notification ID is still valid), this operation returns 0. On failure
(i.e., the notification ID is no longer valid), -1 is returned, and errno is set to
ENOENT.

SECCOMP_IOCTL_NOTIF_SEND
The SECCOMP_IOCTL_NOTIF_SEND operation (available since Linux 5.0) is
used to send a notification response back to the kernel. The third ioctl(2) argument of
this structure is a pointer to a structure of the following form:

struct seccomp_notif_resp {
__u64 id; /* Cookie value */
__s64 val; /* Success return value */
__s32 error; /* 0 (success) or negative error number */
__u32 flags; /* See below */

};

The fields of this structure are as follows:

id This is the cookie value that was obtained using the SEC-
COMP_IOCTL_NOTIF_RECV operation. This cookie value allows the
kernel to correctly associate this response with the system call that triggered
the user-space notification.

val This is the value that will be used for a spoofed success return for the target’s
system call; see below.

Linux man-pages 6.13 2024-11-17 804

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

error This is the value that will be used as the error number (errno) for a spoofed er-
ror return for the target’s system call; see below.

flags This is a bit mask that includes zero or more of the following flags:

SECCOMP_USER_NOTIF_FLAG_CONTINUE (since Linux 5.5)
Tell the kernel to execute the target’s system call.

Two kinds of response are possible:

• A response to the kernel telling it to execute the target’s system call. In this case,
the flags field includes SECCOMP_USER_NOTIF_FLAG_CONTINUE and
the error and val fields must be zero.

This kind of response can be useful in cases where the supervisor needs to do
deeper analysis of the target’s system call than is possible from a seccomp filter
(e.g., examining the values of pointer arguments), and, having decided that the
system call does not require emulation by the supervisor, the supervisor wants the
system call to be executed normally in the target.

The SECCOMP_USER_NOTIF_FLAG_CONTINUE flag should be used with
caution; see NOTES.

• A spoofed return value for the target’s system call. In this case, the kernel does
not execute the target’s system call, instead causing the system call to return a
spoofed value as specified by fields of the seccomp_notif_resp structure. The su-
pervisor should set the fields of this structure as follows:

• flags does not contain SECCOMP_USER_NOTIF_FLAG_CONTINUE.

• error is set either to 0 for a spoofed "success" return or to a negative error
number for a spoofed "failure" return. In the former case, the kernel causes
the target’s system call to return the value specified in the val field. In the lat-
ter case, the kernel causes the target’s system call to return -1, and errno is as-
signed the negated error value.

• val is set to a value that will be used as the return value for a spoofed "suc-
cess" return for the target’s system call. The value in this field is ignored if the
error field contains a nonzero value.

On success, this operation returns 0; on failure, -1 is returned, and errno is set to indi-
cate the error. This operation can fail with the following errors:

EINPROGRESS
A response to this notification has already been sent.

EINVAL
An invalid value was specified in the flags field.

EINVAL
The flags field contained SECCOMP_USER_NOTIF_FLAG_CONTINUE,
and the error or val field was not zero.

ENOENT
The blocked system call in the target has been interrupted by a signal handler
or the target has terminated.

Linux man-pages 6.13 2024-11-17 805

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

SECCOMP_IOCTL_NOTIF_ADDFD
The SECCOMP_IOCTL_NOTIF_ADDFD operation (available since Linux 5.9) al-
lows the supervisor to install a file descriptor into the target’s file descriptor table.
Much like the use of SCM_RIGHTS messages described in unix(7), this operation is
semantically equivalent to duplicating a file descriptor from the supervisor’s file de-
scriptor table into the target’s file descriptor table.

The SECCOMP_IOCTL_NOTIF_ADDFD operation permits the supervisor to em-
ulate a target system call (such as socket(2) or openat(2)) that generates a file descrip-
tor. The supervisor can perform the system call that generates the file descriptor (and
associated open file description) and then use this operation to allocate a file descrip-
tor that refers to the same open file description in the target. (For an explanation of
open file descriptions, see open(2).)

Once this operation has been performed, the supervisor can close its copy of the file
descriptor.

In the target, the received file descriptor is subject to the same Linux Security Module
(LSM) checks as are applied to a file descriptor that is received in an SCM_RIGHTS
ancillary message. If the file descriptor refers to a socket, it inherits the cgroup ver-
sion 1 network controller settings (classid and netprioidx) of the target.

The third ioctl(2) argument is a pointer to a structure of the following form:

struct seccomp_notif_addfd {
__u64 id; /* Cookie value */
__u32 flags; /* Flags */
__u32 srcfd; /* Local file descriptor number */
__u32 newfd; /* 0 or desired file descriptor

number in target */
__u32 newfd_flags; /* Flags to set on target file

descriptor */
};

The fields in this structure are as follows:

id This field should be set to the notification ID (cookie value) that was obtained
via SECCOMP_IOCTL_NOTIF_RECV.

flags This field is a bit mask of flags that modify the behavior of the operation. Cur-
rently, only one flag is supported:

SECCOMP_ADDFD_FLAG_SETFD
When allocating the file descriptor in the target, use the file descriptor
number specified in the newfd field.

SECCOMP_ADDFD_FLAG_SEND (since Linux 5.14)
Perform the equivalent of SECCOMP_IOCTL_NOTIF_ADDFD
plus SECCOMP_IOCTL_NOTIF_SEND as an atomic operation.
On successful invocation, the target process’s errno will be 0 and the
return value will be the file descriptor number that was allocated in the
target. If allocating the file descriptor in the target fails, the target’s
system call continues to be blocked until a successful response is sent.

Linux man-pages 6.13 2024-11-17 806

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

srcfd This field should be set to the number of the file descriptor in the supervisor
that is to be duplicated.

newfd This field determines which file descriptor number is allocated in the target. If
the SECCOMP_ADDFD_FLAG_SETFD flag is set, then this field specifies
which file descriptor number should be allocated. If this file descriptor num-
ber is already open in the target, it is atomically closed and reused. If the de-
scriptor duplication fails due to an LSM check, or if srcfd is not a valid file de-
scriptor, the file descriptor newfd will not be closed in the target process.

If the SECCOMP_ADDFD_FLAG_SETFD flag it not set, then this field
must be 0, and the kernel allocates the lowest unused file descriptor number in
the target.

newfd_flags
This field is a bit mask specifying flags that should be set on the file descriptor
that is received in the target process. Currently, only the following flag is im-
plemented:

O_CLOEXEC
Set the close-on-exec flag on the received file descriptor.

On success, this ioctl(2) call returns the number of the file descriptor that was allo-
cated in the target. Assuming that the emulated system call is one that returns a file
descriptor as its function result (e.g., socket(2)), this value can be used as the return
value (resp.val) that is supplied in the response that is subsequently sent with the
SECCOMP_IOCTL_NOTIF_SEND operation.

On error, -1 is returned and errno is set to indicate the error.

This operation can fail with the following errors:

EBADF
Allocating the file descriptor in the target would cause the target’s
RLIMIT_NOFILE limit to be exceeded (see getrlimit(2)).

EBUSY
If the flag SECCOMP_IOCTL_NOTIF_SEND is used, this means the oper-
ation can’t proceed until other SECCOMP_IOCTL_NOTIF_ADDFD re-
quests are processed.

EINPROGRESS
The user-space notification specified in the id field exists but has not yet been
fetched (by a SECCOMP_IOCTL_NOTIF_RECV) or has already been re-
sponded to (by a SECCOMP_IOCTL_NOTIF_SEND).

EINVAL
An invalid flag was specified in the flags or newfd_flags field, or the newfd
field is nonzero and the SECCOMP_ADDFD_FLAG_SETFD flag was not
specified in the flags field.

EMFILE
The file descriptor number specified in newfd exceeds the limit specified in
/proc/sys/fs/nr_open.

Linux man-pages 6.13 2024-11-17 807

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

ENOENT
The blocked system call in the target has been interrupted by a signal handler
or the target has terminated.

Here is some sample code (with error handling omitted) that uses the SEC-
COMP_ADDFD_FLAG_SETFD operation (here, to emulate a call to openat(2)):

int fd, removeFd;

fd = openat(req->data.args[0], path, req->data.args[2],
req->data.args[3]);

struct seccomp_notif_addfd addfd;
addfd.id = req->id; /* Cookie from SECCOMP_IOCTL_NOTIF_RECV */
addfd.srcfd = fd;
addfd.newfd = 0;
addfd.flags = 0;
addfd.newfd_flags = O_CLOEXEC;

targetFd = ioctl(notifyFd, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd);

close(fd); /* No longer needed in supervisor */

struct seccomp_notif_resp *resp;
/* Code to allocate ’resp’ omitted */

resp->id = req->id;
resp->error = 0; /* "Success" */
resp->val = targetFd;
resp->flags = 0;
ioctl(notifyFd, SECCOMP_IOCTL_NOTIF_SEND, resp);

NOTES
One example use case for the user-space notification mechanism is to allow a con-
tainer manager (a process which is typically running with more privilege than the
processes inside the container) to mount block devices or create device nodes for the
container. The mount use case provides an example of where the SEC-
COMP_USER_NOTIF_FLAG_CONTINUE ioctl(2) operation is useful. Upon re-
ceiving a notification for the mount(2) system call, the container manager (the "super-
visor") can distinguish a request to mount a block filesystem (which would not be
possible for a "target" process inside the container) and mount that file system. If, on
the other hand, the container manager detects that the operation could be performed
by the process inside the container (e.g., a mount of a tmpfs(5) filesystem), it can no-
tify the kernel that the target process’s mount(2) system call can continue.

select()/poll()/epoll semantics
The file descriptor returned when seccomp(2) is employed with the SECCOMP_FIL-
TER_FLAG_NEW_LISTENER flag can be monitored using poll(2), epoll(7), and
select(2). These interfaces indicate that the file descriptor is ready as follows:

• When a notification is pending, these interfaces indicate that the file descriptor is
readable. Following such an indication, a subsequent SECCOMP_IOCTL_NO-
TIF_RECV ioctl(2) will not block, returning either information about a

Linux man-pages 6.13 2024-11-17 808

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

notification or else failing with the error EINTR if the target has been killed by a
signal or its system call has been interrupted by a signal handler.

• After the notification has been received (i.e., by the SECCOMP_IOCTL_NO-
TIF_RECV ioctl(2) operation), these interfaces indicate that the file descriptor is
writable, meaning that a notification response can be sent using the SEC-
COMP_IOCTL_NOTIF_SEND ioctl(2) operation.

• After the last thread using the filter has terminated and been reaped using wait-
pid(2) (or similar), the file descriptor indicates an end-of-file condition (readable
in select(2); POLLHUP/EPOLLHUP in poll(2)/ epoll_wait(2)).

Design goals; use of SECCOMP_USER_NOTIF_FLAG_CONTINUE
The intent of the user-space notification feature is to allow system calls to be per-
formed on behalf of the target. The target’s system call should either be handled by
the supervisor or allowed to continue normally in the kernel (where standard security
policies will be applied).

Note well: this mechanism must not be used to make security policy decisions about
the system call, which would be inherently race-prone for reasons described next.

The SECCOMP_USER_NOTIF_FLAG_CONTINUE flag must be used with cau-
tion. If set by the supervisor, the target’s system call will continue. However, there is
a time-of-check, time-of-use race here, since an attacker could exploit the interval of
time where the target is blocked waiting on the "continue" response to do things such
as rewriting the system call arguments.

Note furthermore that a user-space notifier can be bypassed if the existing filters allow
the use of seccomp(2) or prctl(2) to install a filter that returns an action value with a
higher precedence than SECCOMP_RET_USER_NOTIF (see seccomp(2)).

It should thus be absolutely clear that the seccomp user-space notification mechanism
can not be used to implement a security policy! It should only ever be used in scenar-
ios where a more privileged process supervises the system calls of a lesser privileged
target to get around kernel-enforced security restrictions when the supervisor deems
this safe. In other words, in order to continue a system call, the supervisor should be
sure that another security mechanism or the kernel itself will sufficiently block the
system call if its arguments are rewritten to something unsafe.

Caveats regarding the use of /proc/tid/mem
The discussion above noted the need to use the SECCOMP_IOCTL_NO-
TIF_ID_VALID ioctl(2) when opening the /proc/ tid /mem file of the target to avoid
the possibility of accessing the memory of the wrong process in the event that the tar-
get terminates and its ID is recycled by another (unrelated) thread. However, the use
of this ioctl(2) operation is also necessary in other situations, as explained in the fol-
lowing paragraphs.

Consider the following scenario, where the supervisor tries to read the pathname argu-
ment of a target’s blocked mount(2) system call:

(1) From one of its functions (func()), the target calls mount(2), which triggers a
user-space notification and causes the target to block.

Linux man-pages 6.13 2024-11-17 809

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

(2) The supervisor receives the notification, opens /proc/ tid /mem, and (success-
fully) performs the SECCOMP_IOCTL_NOTIF_ID_VALID check.

(3) The target receives a signal, which causes the mount(2) to abort.

(4) The signal handler executes in the target, and returns.

(5) Upon return from the handler, the execution of func() resumes, and it returns
(and perhaps other functions are called, overwriting the memory that had been
used for the stack frame of func()).

(6) Using the address provided in the notification information, the supervisor reads
from the target’s memory location that used to contain the pathname.

(7) The supervisor now calls mount(2) with some arbitrary bytes obtained in the
previous step.

The conclusion from the above scenario is this: since the target’s blocked system call
may be interrupted by a signal handler, the supervisor must be written to expect that
the target may abandon its system call at any time; in such an event, any information
that the supervisor obtained from the target’s memory must be considered invalid.

To prevent such scenarios, every read from the target’s memory must be separated
from use of the bytes so obtained by a SECCOMP_IOCTL_NOTIF_ID_VALID
check. In the above example, the check would be placed between the two final steps.
An example of such a check is shown in EXAMPLES.

Following on from the above, it should be clear that a write by the supervisor into the
target’s memory can never be considered safe.

Caveats regarding blocking system calls
Suppose that the target performs a blocking system call (e.g., accept(2)) that the su-
pervisor should handle. The supervisor might then in turn execute the same blocking
system call.

In this scenario, it is important to note that if the target’s system call is now inter-
rupted by a signal, the supervisor is not informed of this. If the supervisor does not
take suitable steps to actively discover that the target’s system call has been canceled,
various difficulties can occur. Taking the example of accept(2), the supervisor might
remain blocked in its accept(2) holding a port number that the target (which, after the
interruption by the signal handler, perhaps closed its listening socket) might expect to
be able to reuse in a bind(2) call.

Therefore, when the supervisor wishes to emulate a blocking system call, it must do
so in such a way that it gets informed if the target’s system call is interrupted by a sig-
nal handler. For example, if the supervisor itself executes the same blocking system
call, then it could employ a separate thread that uses the SECCOMP_IOCTL_NO-
TIF_ID_VALID operation to check if the target is still blocked in its system call. Al-
ternatively, in the accept(2) example, the supervisor might use poll(2) to monitor both
the notification file descriptor (so as to discover when the target’s accept(2) call has
been interrupted) and the listening file descriptor (so as to know when a connection is
available).

If the target’s system call is interrupted, the supervisor must take care to release re-
sources (e.g., file descriptors) that it acquired on behalf of the target.

Linux man-pages 6.13 2024-11-17 810

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

Interaction with SA_RESTART signal handlers
Consider the following scenario:

(1) The target process has used sigaction(2) to install a signal handler with the
SA_RESTART flag.

(2) The target has made a system call that triggered a seccomp user-space notifica-
tion and the target is currently blocked until the supervisor sends a notification
response.

(3) A signal is delivered to the target and the signal handler is executed.

(4) When (if) the supervisor attempts to send a notification response, the SEC-
COMP_IOCTL_NOTIF_SEND ioctl(2)) operation will fail with the
ENOENT error.

In this scenario, the kernel will restart the target’s system call. Consequently, the su-
pervisor will receive another user-space notification. Thus, depending on how many
times the blocked system call is interrupted by a signal handler, the supervisor may re-
ceive multiple notifications for the same instance of a system call in the target.

One oddity is that system call restarting as described in this scenario will occur even
for the blocking system calls listed in signal(7) that would never normally be
restarted by the SA_RESTART flag.

Furthermore, if the supervisor response is a file descriptor added with SEC-
COMP_IOCTL_NOTIF_ADDFD, then the flag SEC-
COMP_ADDFD_FLAG_SEND can be used to atomically add the file descriptor and
return that value, making sure no file descriptors are inadvertently leaked into the tar-
get.

BUGS
If a SECCOMP_IOCTL_NOTIF_RECV ioctl(2) operation is performed after the
target terminates, then the ioctl(2) call simply blocks (rather than returning an error to
indicate that the target no longer exists).

EXAMPLES
The (somewhat contrived) program shown below demonstrates the use of the inter-
faces described in this page. The program creates a child process that serves as the
"target" process. The child process installs a seccomp filter that returns the SEC-
COMP_RET_USER_NOTIF action value if a call is made to mkdir(2). The child
process then calls mkdir(2) once for each of the supplied command-line arguments,
and reports the result returned by the call. After processing all arguments, the child
process terminates.

The parent process acts as the supervisor, listening for the notifications that are gener-
ated when the target process calls mkdir(2). When such a notification occurs, the su-
pervisor examines the memory of the target process (using /proc/ pid /mem) to dis-
cover the pathname argument that was supplied to the mkdir(2) call, and performs one
of the following actions:

• If the pathname begins with the prefix "/tmp/", then the supervisor attempts to cre-
ate the specified directory, and then spoofs a return for the target process based on
the return value of the supervisor’s mkdir(2) call. In the event that that call suc-
ceeds, the spoofed success return value is the length of the pathname.

Linux man-pages 6.13 2024-11-17 811

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

• If the pathname begins with "./" (i.e., it is a relative pathname), the supervisor
sends a SECCOMP_USER_NOTIF_FLAG_CONTINUE response to the kernel
to say that the kernel should execute the target process’s mkdir(2) call.

• If the pathname begins with some other prefix, the supervisor spoofs an error re-
turn for the target process, so that the target process’s mkdir(2) call appears to fail
with the error EOPNOTSUPP ("Operation not supported"). Additionally, if the
specified pathname is exactly "/bye", then the supervisor terminates.

This program can be used to demonstrate various aspects of the behavior of the sec-
comp user-space notification mechanism. To help aid such demonstrations, the pro-
gram logs various messages to show the operation of the target process (lines prefixed
"T:") and the supervisor (indented lines prefixed "S:").

In the following example, the target attempts to create the directory /tmp/x. Upon re-
ceiving the notification, the supervisor creates the directory on the target’s behalf, and
spoofs a success return to be received by the target process’s mkdir(2) call.

$./seccomp_unotify /tmp/x
T: PID = 23168

T: about to mkdir("/tmp/x")
S: got notification (ID 0x17445c4a0f4e0e3c) for PID 23168
S: executing: mkdir("/tmp/x", 0700)
S: success! spoofed return = 6
S: sending response (flags = 0; val = 6; error = 0)

T: SUCCESS: mkdir(2) returned 6

T: terminating
S: target has terminated; bye

In the above output, note that the spoofed return value seen by the target process is 6
(the length of the pathname /tmp/x), whereas a normal mkdir(2) call returns 0 on suc-
cess.

In the next example, the target attempts to create a directory using the relative path-
name ./sub. Since this pathname starts with "./", the supervisor sends a SEC-
COMP_USER_NOTIF_FLAG_CONTINUE response to the kernel, and the kernel
then (successfully) executes the target process’s mkdir(2) call.

$./seccomp_unotify ./sub
T: PID = 23204

T: about to mkdir("./sub")
S: got notification (ID 0xddb16abe25b4c12) for PID 23204
S: target can execute system call
S: sending response (flags = 0x1; val = 0; error = 0)

T: SUCCESS: mkdir(2) returned 0

T: terminating
S: target has terminated; bye

If the target process attempts to create a directory with a pathname that doesn’t start

Linux man-pages 6.13 2024-11-17 812

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

with "." and doesn’t begin with the prefix "/tmp/", then the supervisor spoofs an error
return (EOPNOTSUPP, "Operation not supported") for the target’s mkdir(2) call
(which is not executed):

$./seccomp_unotify /xxx
T: PID = 23178

T: about to mkdir("/xxx")
S: got notification (ID 0xe7dc095d1c524e80) for PID 23178
S: spoofing error response (Operation not supported)
S: sending response (flags = 0; val = 0; error = -95)

T: ERROR: mkdir(2): Operation not supported

T: terminating
S: target has terminated; bye

In the next example, the target process attempts to create a directory with the path-
name /tmp/nosuchdir/b. Upon receiving the notification, the supervisor attempts to
create that directory, but the mkdir(2) call fails because the directory /tmp/nosuchdir
does not exist. Consequently, the supervisor spoofs an error return that passes the er-
ror that it received back to the target process’s mkdir(2) call.

$./seccomp_unotify /tmp/nosuchdir/b
T: PID = 23199

T: about to mkdir("/tmp/nosuchdir/b")
S: got notification (ID 0x8744454293506046) for PID 23199
S: executing: mkdir("/tmp/nosuchdir/b", 0700)
S: failure! (errno = 2; No such file or directory)
S: sending response (flags = 0; val = 0; error = -2)

T: ERROR: mkdir(2): No such file or directory

T: terminating
S: target has terminated; bye

If the supervisor receives a notification and sees that the argument of the target’s
mkdir(2) is the string "/bye", then (as well as spoofing an EOPNOTSUPP error), the
supervisor terminates. If the target process subsequently executes another mkdir(2)
that triggers its seccomp filter to return the SECCOMP_RET_USER_NOTIF action
value, then the kernel causes the target process’s system call to fail with the error
ENOSYS ("Function not implemented"). This is demonstrated by the following ex-
ample:

$./seccomp_unotify /bye /tmp/y
T: PID = 23185

T: about to mkdir("/bye")
S: got notification (ID 0xa81236b1d2f7b0f4) for PID 23185
S: spoofing error response (Operation not supported)
S: sending response (flags = 0; val = 0; error = -95)
S: terminating **********

T: ERROR: mkdir(2): Operation not supported

Linux man-pages 6.13 2024-11-17 813

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

T: about to mkdir("/tmp/y")
T: ERROR: mkdir(2): Function not implemented

T: terminating

Program source
#define _GNU_SOURCE
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <linux/audit.h>
#include <linux/filter.h>
#include <linux/seccomp.h>
#include <signal.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>

#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))

/* Send the file descriptor 'fd' over the connected UNIX domain socket
'sockfd'. Returns 0 on success, or -1 on error. */

static int
sendfd(int sockfd, int fd)
{

int data;
struct iovec iov;
struct msghdr msgh;
struct cmsghdr *cmsgp;

/* Allocate a char array of suitable size to hold the ancillary data.
However, since this buffer is in reality a 'struct cmsghdr', use a
union to ensure that it is suitably aligned. */

union {
char buf[CMSG_SPACE(sizeof(int))];

Linux man-pages 6.13 2024-11-17 814

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

/* Space large enough to hold an 'int' */
struct cmsghdr align;

} controlMsg;

/* The 'msg_name' field can be used to specify the address of the
destination socket when sending a datagram. However, we do not
need to use this field because 'sockfd' is a connected socket. */

msgh.msg_name = NULL;
msgh.msg_namelen = 0;

/* On Linux, we must transmit at least one byte of real data in
order to send ancillary data. We transmit an arbitrary integer
whose value is ignored by recvfd(). */

msgh.msg_iov = &iov;
msgh.msg_iovlen = 1;
iov.iov_base = &data;
iov.iov_len = sizeof(int);
data = 12345;

/* Set 'msghdr' fields that describe ancillary data */

msgh.msg_control = controlMsg.buf;
msgh.msg_controllen = sizeof(controlMsg.buf);

/* Set up ancillary data describing file descriptor to send */

cmsgp = CMSG_FIRSTHDR(&msgh);
cmsgp->cmsg_level = SOL_SOCKET;
cmsgp->cmsg_type = SCM_RIGHTS;
cmsgp->cmsg_len = CMSG_LEN(sizeof(int));
memcpy(CMSG_DATA(cmsgp), &fd, sizeof(int));

/* Send real plus ancillary data */

if (sendmsg(sockfd, &msgh, 0) == -1)
return -1;

return 0;
}

/* Receive a file descriptor on a connected UNIX domain socket. Returns
the received file descriptor on success, or -1 on error. */

static int
recvfd(int sockfd)
{

int data, fd;

Linux man-pages 6.13 2024-11-17 815

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

ssize_t nr;
struct iovec iov;
struct msghdr msgh;

/* Allocate a char buffer for the ancillary data. See the comments
in sendfd() */

union {
char buf[CMSG_SPACE(sizeof(int))];
struct cmsghdr align;

} controlMsg;
struct cmsghdr *cmsgp;

/* The 'msg_name' field can be used to obtain the address of the
sending socket. However, we do not need this information. */

msgh.msg_name = NULL;
msgh.msg_namelen = 0;

/* Specify buffer for receiving real data */

msgh.msg_iov = &iov;
msgh.msg_iovlen = 1;
iov.iov_base = &data; /* Real data is an 'int' */
iov.iov_len = sizeof(int);

/* Set 'msghdr' fields that describe ancillary data */

msgh.msg_control = controlMsg.buf;
msgh.msg_controllen = sizeof(controlMsg.buf);

/* Receive real plus ancillary data; real data is ignored */

nr = recvmsg(sockfd, &msgh, 0);
if (nr == -1)

return -1;

cmsgp = CMSG_FIRSTHDR(&msgh);

/* Check the validity of the 'cmsghdr' */

if (cmsgp == NULL
|| cmsgp->cmsg_len != CMSG_LEN(sizeof(int))
|| cmsgp->cmsg_level != SOL_SOCKET
|| cmsgp->cmsg_type != SCM_RIGHTS)

{
errno = EINVAL;
return -1;

}

Linux man-pages 6.13 2024-11-17 816

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

/* Return the received file descriptor to our caller */

memcpy(&fd, CMSG_DATA(cmsgp), sizeof(int));
return fd;

}

static void
sigchldHandler(int sig)
{

char msg[] = "\tS: target has terminated; bye\n";

write(STDOUT_FILENO, msg, sizeof(msg) - 1);
_exit(EXIT_SUCCESS);

}

static int
seccomp(unsigned int operation, unsigned int flags, void *args)
{

return syscall(SYS_seccomp, operation, flags, args);
}

/* The following is the x86-64-specific BPF boilerplate code for checking
that the BPF program is running on the right architecture + ABI. At
completion of these instructions, the accumulator contains the system
call number. */

/* For the x32 ABI, all system call numbers have bit 30 set */

#define X32_SYSCALL_BIT 0x40000000

#define X86_64_CHECK_ARCH_AND_LOAD_SYSCALL_NR \
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, \

(offsetof(struct seccomp_data, arch))), \
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, AUDIT_ARCH_X86_64, 0, 2), \
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, \

(offsetof(struct seccomp_data, nr))), \
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, X32_SYSCALL_BIT, 0, 1), \
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS)

/* installNotifyFilter() installs a seccomp filter that generates
user-space notifications (SECCOMP_RET_USER_NOTIF) when the process
calls mkdir(2); the filter allows all other system calls.

The function return value is a file descriptor from which the
user-space notifications can be fetched. */

static int
installNotifyFilter(void)
{

Linux man-pages 6.13 2024-11-17 817

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

int notifyFd;

struct sock_filter filter[] = {
X86_64_CHECK_ARCH_AND_LOAD_SYSCALL_NR,

/* mkdir() triggers notification to user-space supervisor */

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SYS_mkdir, 0, 1),
BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_USER_NOTIF),

/* Every other system call is allowed */

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),
};

struct sock_fprog prog = {
.len = ARRAY_SIZE(filter),
.filter = filter,

};

/* Install the filter with the SECCOMP_FILTER_FLAG_NEW_LISTENER flag;
as a result, seccomp() returns a notification file descriptor. */

notifyFd = seccomp(SECCOMP_SET_MODE_FILTER,
SECCOMP_FILTER_FLAG_NEW_LISTENER, &prog);

if (notifyFd == -1)
err(EXIT_FAILURE, "seccomp-install-notify-filter");

return notifyFd;
}

/* Close a pair of sockets created by socketpair() */

static void
closeSocketPair(int sockPair[2])
{

if (close(sockPair[0]) == -1)
err(EXIT_FAILURE, "closeSocketPair-close-0");

if (close(sockPair[1]) == -1)
err(EXIT_FAILURE, "closeSocketPair-close-1");

}

/* Implementation of the target process; create a child process that:

(1) installs a seccomp filter with the
SECCOMP_FILTER_FLAG_NEW_LISTENER flag;

(2) writes the seccomp notification file descriptor returned from
the previous step onto the UNIX domain socket, 'sockPair[0]';

(3) calls mkdir(2) for each element of 'argv'.

Linux man-pages 6.13 2024-11-17 818

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

The function return value in the parent is the PID of the child
process; the child does not return from this function. */

static pid_t
targetProcess(int sockPair[2], char *argv[])
{

int notifyFd, s;
pid_t targetPid;

targetPid = fork();

if (targetPid == -1)
err(EXIT_FAILURE, "fork");

if (targetPid > 0) /* In parent, return PID of child */
return targetPid;

/* Child falls through to here */

printf("T: PID = %ld\n", (long) getpid());

/* Install seccomp filter(s) */

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
err(EXIT_FAILURE, "prctl");

notifyFd = installNotifyFilter();

/* Pass the notification file descriptor to the tracing process over
a UNIX domain socket */

if (sendfd(sockPair[0], notifyFd) == -1)
err(EXIT_FAILURE, "sendfd");

/* Notification and socket FDs are no longer needed in target */

if (close(notifyFd) == -1)
err(EXIT_FAILURE, "close-target-notify-fd");

closeSocketPair(sockPair);

/* Perform a mkdir() call for each of the command-line arguments */

for (char **ap = argv; *ap != NULL; ap++) {
printf("\nT: about to mkdir(\"%s\")\n", *ap);

s = mkdir(*ap, 0700);
if (s == -1)

Linux man-pages 6.13 2024-11-17 819

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

perror("T: ERROR: mkdir(2)");
else

printf("T: SUCCESS: mkdir(2) returned %d\n", s);
}

printf("\nT: terminating\n");
exit(EXIT_SUCCESS);

}

/* Check that the notification ID provided by a SECCOMP_IOCTL_NOTIF_RECV
operation is still valid. It will no longer be valid if the target
process has terminated or is no longer blocked in the system call that
generated the notification (because it was interrupted by a signal).

This operation can be used when doing such things as accessing
/proc/PID files in the target process in order to avoid TOCTOU race
conditions where the PID that is returned by SECCOMP_IOCTL_NOTIF_RECV
terminates and is reused by another process. */

static bool
cookieIsValid(int notifyFd, uint64_t id)
{

return ioctl(notifyFd, SECCOMP_IOCTL_NOTIF_ID_VALID, &id) == 0;
}

/* Access the memory of the target process in order to fetch the
pathname referred to by the system call argument 'argNum' in
'req->data.args[]'. The pathname is returned in 'path',
a buffer of 'size' bytes allocated by the caller.

Returns true if the pathname is successfully fetched, and false
otherwise. For possible causes of failure, see the comments below. */

static bool
getTargetPathname(struct seccomp_notif *req, int notifyFd,

int argNum, char *path, size_t size)
{

int procMemFd;
char procMemPath[PATH_MAX];
ssize_t nread;

snprintf(procMemPath, sizeof(procMemPath), "/proc/%d/mem", req->pid);

procMemFd = open(procMemPath, O_RDONLY | O_CLOEXEC);
if (procMemFd == -1)

return false;

/* Check that the process whose info we are accessing is still alive
and blocked in the system call that caused the notification.

Linux man-pages 6.13 2024-11-17 820

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

If the SECCOMP_IOCTL_NOTIF_ID_VALID operation (performed in
cookieIsValid()) succeeded, we know that the /proc/PID/mem file
descriptor that we opened corresponded to the process for which we
received a notification. If that process subsequently terminates,
then read() on that file descriptor will return 0 (EOF). */

if (!cookieIsValid(notifyFd, req->id)) {
close(procMemFd);
return false;

}

/* Read bytes at the location containing the pathname argument */

nread = pread(procMemFd, path, size, req->data.args[argNum]);

close(procMemFd);

if (nread <= 0)
return false;

/* Once again check that the notification ID is still valid. The
case we are particularly concerned about here is that just
before we fetched the pathname, the target's blocked system
call was interrupted by a signal handler, and after the handler
returned, the target carried on execution (past the interrupted
system call). In that case, we have no guarantees about what we
are reading, since the target's memory may have been arbitrarily
changed by subsequent operations. */

if (!cookieIsValid(notifyFd, req->id)) {
perror("\tS: notification ID check failed!!!");
return false;

}

/* Even if the target's system call was not interrupted by a signal,
we have no guarantees about what was in the memory of the target
process. (The memory may have been modified by another thread, or
even by an external attacking process.) We therefore treat the
buffer returned by pread() as untrusted input. The buffer should
contain a terminating null byte; if not, then we will trigger an
error for the target process. */

if (strnlen(path, nread) < nread)
return true;

return false;
}

/* Allocate buffers for the seccomp user-space notification request and

Linux man-pages 6.13 2024-11-17 821

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

response structures. It is the caller's responsibility to free the
buffers returned via 'req' and 'resp'. */

static void
allocSeccompNotifBuffers(struct seccomp_notif **req,

struct seccomp_notif_resp **resp,
struct seccomp_notif_sizes *sizes)

{
size_t resp_size;

/* Discover the sizes of the structures that are used to receive
notifications and send notification responses, and allocate
buffers of those sizes. */

if (seccomp(SECCOMP_GET_NOTIF_SIZES, 0, sizes) == -1)
err(EXIT_FAILURE, "seccomp-SECCOMP_GET_NOTIF_SIZES");

*req = malloc(sizes->seccomp_notif);
if (*req == NULL)

err(EXIT_FAILURE, "malloc-seccomp_notif");

/* When allocating the response buffer, we must allow for the fact
that the user-space binary may have been built with user-space
headers where 'struct seccomp_notif_resp' is bigger than the
response buffer expected by the (older) kernel. Therefore, we
allocate a buffer that is the maximum of the two sizes. This
ensures that if the supervisor places bytes into the response
structure that are past the response size that the kernel expects,
then the supervisor is not touching an invalid memory location. */

resp_size = sizes->seccomp_notif_resp;
if (sizeof(struct seccomp_notif_resp) > resp_size)

resp_size = sizeof(struct seccomp_notif_resp);

*resp = malloc(resp_size);
if (*resp == NULL)

err(EXIT_FAILURE, "malloc-seccomp_notif_resp");

}

/* Handle notifications that arrive via the SECCOMP_RET_USER_NOTIF file
descriptor, 'notifyFd'. */

static void
handleNotifications(int notifyFd)
{

bool pathOK;
char path[PATH_MAX];
struct seccomp_notif *req;

Linux man-pages 6.13 2024-11-17 822

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

struct seccomp_notif_resp *resp;
struct seccomp_notif_sizes sizes;

allocSeccompNotifBuffers(&req, &resp, &sizes);

/* Loop handling notifications */

for (;;) {

/* Wait for next notification, returning info in '*req' */

memset(req, 0, sizes.seccomp_notif);
if (ioctl(notifyFd, SECCOMP_IOCTL_NOTIF_RECV, req) == -1) {

if (errno == EINTR)
continue;

err(EXIT_FAILURE, "\tS: ioctl-SECCOMP_IOCTL_NOTIF_RECV");
}

printf("\tS: got notification (ID %#llx) for PID %d\n",
req->id, req->pid);

/* The only system call that can generate a notification event
is mkdir(2). Nevertheless, we check that the notified system
call is indeed mkdir() as kind of future-proofing of this
code in case the seccomp filter is later modified to
generate notifications for other system calls. */

if (req->data.nr != SYS_mkdir) {
printf("\tS: notification contained unexpected "

"system call number; bye!!!\n");
exit(EXIT_FAILURE);

}

pathOK = getTargetPathname(req, notifyFd, 0, path, sizeof(path));

/* Prepopulate some fields of the response */

resp->id = req->id; /* Response includes notification ID */
resp->flags = 0;
resp->val = 0;

/* If getTargetPathname() failed, trigger an EINVAL error
response (sending this response may yield an error if the
failure occurred because the notification ID was no longer
valid); if the directory is in /tmp, then create it on behalf
of the supervisor; if the pathname starts with '.', tell the
kernel to let the target process execute the mkdir();
otherwise, give an error for a directory pathname in any other
location. */

Linux man-pages 6.13 2024-11-17 823

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

if (!pathOK) {
resp->error = -EINVAL;
printf("\tS: spoofing error for invalid pathname (%s)\n",

strerror(-resp->error));
} else if (strncmp(path, "/tmp/", strlen("/tmp/")) == 0) {

printf("\tS: executing: mkdir(\"%s\", %#llo)\n",
path, req->data.args[1]);

if (mkdir(path, req->data.args[1]) == 0) {
resp->error = 0; /* "Success" */
resp->val = strlen(path); /* Used as return value of

mkdir() in target */
printf("\tS: success! spoofed return = %lld\n",

resp->val);
} else {

/* If mkdir() failed in the supervisor, pass the error
back to the target */

resp->error = -errno;
printf("\tS: failure! (errno = %d; %s)\n", errno,

strerror(errno));
}

} else if (strncmp(path, "./", strlen("./")) == 0) {
resp->error = resp->val = 0;
resp->flags = SECCOMP_USER_NOTIF_FLAG_CONTINUE;
printf("\tS: target can execute system call\n");

} else {
resp->error = -EOPNOTSUPP;
printf("\tS: spoofing error response (%s)\n",

strerror(-resp->error));
}

/* Send a response to the notification */

printf("\tS: sending response "
"(flags = %#x; val = %lld; error = %d)\n",
resp->flags, resp->val, resp->error);

if (ioctl(notifyFd, SECCOMP_IOCTL_NOTIF_SEND, resp) == -1) {
if (errno == ENOENT)

printf("\tS: response failed with ENOENT; "
"perhaps target process's syscall was "
"interrupted by a signal?\n");

else
perror("ioctl-SECCOMP_IOCTL_NOTIF_SEND");

}

Linux man-pages 6.13 2024-11-17 824

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

/* If the pathname is just "/bye", then the supervisor breaks out
of the loop and terminates. This allows us to see what happens
if the target process makes further calls to mkdir(2). */

if (strcmp(path, "/bye") == 0)
break;

}

free(req);
free(resp);
printf("\tS: terminating **********\n");
exit(EXIT_FAILURE);

}

/* Implementation of the supervisor process:

(1) obtains the notification file descriptor from 'sockPair[1]'
(2) handles notifications that arrive on that file descriptor. */

static void
supervisor(int sockPair[2])
{

int notifyFd;

notifyFd = recvfd(sockPair[1]);

if (notifyFd == -1)
err(EXIT_FAILURE, "recvfd");

closeSocketPair(sockPair); /* We no longer need the socket pair */

handleNotifications(notifyFd);
}

int
main(int argc, char *argv[])
{

int sockPair[2];
struct sigaction sa;

setbuf(stdout, NULL);

if (argc < 2) {
fprintf(stderr, "At least one pathname argument is required\n");
exit(EXIT_FAILURE);

}

/* Create a UNIX domain socket that is used to pass the seccomp
notification file descriptor from the target process to the

Linux man-pages 6.13 2024-11-17 825

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

supervisor process. */

if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockPair) == -1)
err(EXIT_FAILURE, "socketpair");

/* Create a child process--the "target"--that installs seccomp
filtering. The target process writes the seccomp notification
file descriptor onto 'sockPair[0]' and then calls mkdir(2) for
each directory in the command-line arguments. */

(void) targetProcess(sockPair, &argv[optind]);

/* Catch SIGCHLD when the target terminates, so that the
supervisor can also terminate. */

sa.sa_handler = sigchldHandler;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, NULL) == -1)

err(EXIT_FAILURE, "sigaction");

supervisor(sockPair);

exit(EXIT_SUCCESS);
}

SEE ALSO
ioctl(2), pidfd_getfd(2), pidfd_open(2), seccomp(2)

A further example program can be found in the kernel source file samples/sec-
comp/user-trap.c.

Linux man-pages 6.13 2024-11-17 826

select(2) System Calls Manual select(2)

NAME
select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO, fd_set - synchronous I/O
multiplexing

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/select.h>

typedef /* ... */ fd_set;

int select(int nfds, fd_set *_Nullable restrict readfds,
fd_set *_Nullable restrict writefds,
fd_set *_Nullable restrict exceptfds,
struct timeval *_Nullable restrict timeout);

void FD_CLR(int fd , fd_set *set);
int FD_ISSET(int fd , fd_set *set);
void FD_SET(int fd , fd_set *set);
void FD_ZERO(fd_set *set);

int pselect(int nfds, fd_set *_Nullable restrict readfds,
fd_set *_Nullable restrict writefds,
fd_set *_Nullable restrict exceptfds,
const struct timespec *_Nullable restrict timeout,
const sigset_t *_Nullable restrict sigmask);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pselect():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
WARNING: select() can monitor only file descriptors numbers that are less than
FD_SETSIZE (1024)—an unreasonably low limit for many modern applications—
and this limitation will not change. All modern applications should instead use
poll(2) or epoll(7), which do not suffer this limitation.

select() allows a program to monitor multiple file descriptors, waiting until one or
more of the file descriptors become "ready" for some class of I/O operation (e.g., in-
put possible). A file descriptor is considered ready if it is possible to perform a corre-
sponding I/O operation (e.g., read(2), or a sufficiently small write(2)) without block-
ing.

fd_set
A structure type that can represent a set of file descriptors. According to POSIX, the
maximum number of file descriptors in an fd_set structure is the value of the macro
FD_SETSIZE.

File descriptor sets
The principal arguments of select() are three "sets" of file descriptors (declared with
the type fd_set), which allow the caller to wait for three classes of events on the spec-
ified set of file descriptors. Each of the fd_set arguments may be specified as NULL
if no file descriptors are to be watched for the corresponding class of events.

Linux man-pages 6.13 2024-11-03 827

select(2) System Calls Manual select(2)

Note well: Upon return, each of the file descriptor sets is modified in place to indicate
which file descriptors are currently "ready". Thus, if using select() within a loop, the
sets must be reinitialized before each call.

The contents of a file descriptor set can be manipulated using the following macros:

FD_ZERO()
This macro clears (removes all file descriptors from) set. It should be em-
ployed as the first step in initializing a file descriptor set.

FD_SET()
This macro adds the file descriptor fd to set. Adding a file descriptor that is
already present in the set is a no-op, and does not produce an error.

FD_CLR()
This macro removes the file descriptor fd from set. Removing a file descrip-
tor that is not present in the set is a no-op, and does not produce an error.

FD_ISSET()
select() modifies the contents of the sets according to the rules described be-
low. After calling select(), the FD_ISSET() macro can be used to test if a file
descriptor is still present in a set. FD_ISSET() returns nonzero if the file de-
scriptor fd is present in set, and zero if it is not.

Arguments
The arguments of select() are as follows:

readfds
The file descriptors in this set are watched to see if they are ready for reading.
A file descriptor is ready for reading if a read operation will not block; in par-
ticular, a file descriptor is also ready on end-of-file.

After select() has returned, readfds will be cleared of all file descriptors except
for those that are ready for reading.

writefds
The file descriptors in this set are watched to see if they are ready for writing.
A file descriptor is ready for writing if a write operation will not block. How-
ever, even if a file descriptor indicates as writable, a large write may still
block.

After select() has returned, writefds will be cleared of all file descriptors ex-
cept for those that are ready for writing.

exceptfds
The file descriptors in this set are watched for "exceptional conditions". For
examples of some exceptional conditions, see the discussion of POLLPRI in
poll(2).

After select() has returned, exceptfds will be cleared of all file descriptors ex-
cept for those for which an exceptional condition has occurred.

nfds This argument should be set to the highest-numbered file descriptor in any of
the three sets, plus 1. The indicated file descriptors in each set are checked, up
to this limit (but see BUGS).

Linux man-pages 6.13 2024-11-03 828

select(2) System Calls Manual select(2)

timeout
The timeout argument is a timeval structure (shown below) that specifies the
interval that select() should block waiting for a file descriptor to become ready.
The call will block until either:

• a file descriptor becomes ready;

• the call is interrupted by a signal handler; or

• the timeout expires.

Note that the timeout interval will be rounded up to the system clock granular-
ity, and kernel scheduling delays mean that the blocking interval may overrun
by a small amount.

If both fields of the timeval structure are zero, then select() returns immedi-
ately. (This is useful for polling.)

If timeout is specified as NULL, select() blocks indefinitely waiting for a file
descriptor to become ready.

pselect()
The pselect() system call allows an application to safely wait until either a file de-
scriptor becomes ready or until a signal is caught.

The operation of select() and pselect() is identical, other than these three differences:

• select() uses a timeout that is a struct timeval (with seconds and microseconds),
while pselect() uses a struct timespec (with seconds and nanoseconds).

• select() may update the timeout argument to indicate how much time was left. ps-
elect() does not change this argument.

• select() has no sigmask argument, and behaves as pselect() called with NULL sig-
mask.

sigmask is a pointer to a signal mask (see sigprocmask(2)); if it is not NULL, then ps-
elect() first replaces the current signal mask by the one pointed to by sigmask, then
does the "select" function, and then restores the original signal mask. (If sigmask is
NULL, the signal mask is not modified during the pselect() call.)

Other than the difference in the precision of the timeout argument, the following pse-
lect() call:

ready = pselect(nfds, &readfds, &writefds, &exceptfds,
timeout, &sigmask);

is equivalent to atomically executing the following calls:

sigset_t origmask;

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = select(nfds, &readfds, &writefds, &exceptfds, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The reason that pselect() is needed is that if one wants to wait for either a signal or for
a file descriptor to become ready, then an atomic test is needed to prevent race condi-
tions. (Suppose the signal handler sets a global flag and returns. Then a test of this
global flag followed by a call of select() could hang indefinitely if the signal arrived

Linux man-pages 6.13 2024-11-03 829

select(2) System Calls Manual select(2)

just after the test but just before the call. By contrast, pselect() allows one to first
block signals, handle the signals that have come in, then call pselect() with the desired
sigmask, avoiding the race.)

The timeout
The timeout argument for select() is a structure of the following type:

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

The corresponding argument for pselect() is a timespec(3) structure.

On Linux, select() modifies timeout to reflect the amount of time not slept; most other
implementations do not do this. (POSIX.1 permits either behavior.) This causes
problems both when Linux code which reads timeout is ported to other operating sys-
tems, and when code is ported to Linux that reuses a struct timeval for multiple se-
lect()s in a loop without reinitializing it. Consider timeout to be undefined after se-
lect() returns.

RETURN VALUE
On success, select() and pselect() return the number of file descriptors contained in
the three returned descriptor sets (that is, the total number of bits that are set in
readfds, writefds, exceptfds). The return value may be zero if the timeout expired be-
fore any file descriptors became ready.

On error, -1 is returned, and errno is set to indicate the error; the file descriptor sets
are unmodified, and timeout becomes undefined.

ERRORS
EBADF

An invalid file descriptor was given in one of the sets. (Perhaps a file descrip-
tor that was already closed, or one on which an error has occurred.) However,
see BUGS.

EINTR
A signal was caught; see signal(7).

EINVAL
nfds is negative or exceeds the RLIMIT_NOFILE resource limit (see getr-
limit(2)).

EINVAL
The value contained within timeout is invalid.

ENOMEM
Unable to allocate memory for internal tables.

VERSIONS
On some other UNIX systems, select() can fail with the error EAGAIN if the system
fails to allocate kernel-internal resources, rather than ENOMEM as Linux does.
POSIX specifies this error for poll(2), but not for select(). Portable programs may
wish to check for EAGAIN and loop, just as with EINTR.

Linux man-pages 6.13 2024-11-03 830

select(2) System Calls Manual select(2)

STANDARDS
POSIX.1-2008.

HISTORY
select()

POSIX.1-2001, 4.4BSD (first appeared in 4.2BSD).

Generally portable to/from non-BSD systems supporting clones of the BSD
socket layer (including System V variants). However, note that the System V
variant typically sets the timeout variable before returning, but the BSD vari-
ant does not.

pselect()
Linux 2.6.16. POSIX.1g, POSIX.1-2001.

Prior to this, it was emulated in glibc (but see BUGS).

fd_set
POSIX.1-2001.

NOTES
The following header also provides the fd_set type: <sys/time.h>.

An fd_set is a fixed size buffer. Executing FD_CLR() or FD_SET() with a value of
fd that is negative or is equal to or larger than FD_SETSIZE will result in undefined
behavior. Moreover, POSIX requires fd to be a valid file descriptor.

The operation of select() and pselect() is not affected by the O_NONBLOCK flag.

The self-pipe trick
On systems that lack pselect(), reliable (and more portable) signal trapping can be
achieved using the self-pipe trick. In this technique, a signal handler writes a byte to a
pipe whose other end is monitored by select() in the main program. (To avoid possi-
bly blocking when writing to a pipe that may be full or reading from a pipe that may
be empty, nonblocking I/O is used when reading from and writing to the pipe.)

Emulating usleep(3)
Before the advent of usleep(3), some code employed a call to select() with all three
sets empty, nfds zero, and a non-NULL timeout as a fairly portable way to sleep with
subsecond precision.

Correspondence between select() and poll() notifications
Within the Linux kernel source, we find the following definitions which show the cor-
respondence between the readable, writable, and exceptional condition notifications of
select() and the event notifications provided by poll(2) and epoll(7):

#define POLLIN_SET (EPOLLRDNORM | EPOLLRDBAND | EPOLLIN |
EPOLLHUP | EPOLLERR)

/* Ready for reading */
#define POLLOUT_SET (EPOLLWRBAND | EPOLLWRNORM | EPOLLOUT |

EPOLLERR)
/* Ready for writing */

#define POLLEX_SET (EPOLLPRI)
/* Exceptional condition */

Linux man-pages 6.13 2024-11-03 831

select(2) System Calls Manual select(2)

Multithreaded applications
If a file descriptor being monitored by select() is closed in another thread, the result is
unspecified. On some UNIX systems, select() unblocks and returns, with an indica-
tion that the file descriptor is ready (a subsequent I/O operation will likely fail with an
error, unless another process reopens the file descriptor between the time select() re-
turned and the I/O operation is performed). On Linux (and some other systems), clos-
ing the file descriptor in another thread has no effect on select(). In summary, any ap-
plication that relies on a particular behavior in this scenario must be considered
buggy.

C library/kernel differences
The Linux kernel allows file descriptor sets of arbitrary size, determining the length of
the sets to be checked from the value of nfds. However, in the glibc implementation,
the fd_set type is fixed in size. See also BUGS.

The pselect() interface described in this page is implemented by glibc. The underly-
ing Linux system call is named pselect6(). This system call has somewhat different
behavior from the glibc wrapper function.

The Linux pselect6() system call modifies its timeout argument. However, the glibc
wrapper function hides this behavior by using a local variable for the timeout argu-
ment that is passed to the system call. Thus, the glibc pselect() function does not
modify its timeout argument; this is the behavior required by POSIX.1-2001.

The final argument of the pselect6() system call is not a sigset_t * pointer, but is in-
stead a structure of the form:

struct {
const kernel_sigset_t *ss; /* Pointer to signal set */
size_t ss_len; /* Size (in bytes) of object

pointed to by 'ss' */
};

This allows the system call to obtain both a pointer to the signal set and its size, while
allowing for the fact that most architectures support a maximum of 6 arguments to a
system call. See sigprocmask(2) for a discussion of the difference between the kernel
and libc notion of the signal set.

Historical glibc details
glibc 2.0 provided an incorrect version of pselect() that did not take a sigmask argu-
ment.

From glibc 2.1 to glibc 2.2.1, one must define _GNU_SOURCE in order to obtain the
declaration of pselect() from <sys/select.h>.

BUGS
POSIX allows an implementation to define an upper limit, advertised via the constant
FD_SETSIZE, on the range of file descriptors that can be specified in a file descriptor
set. The Linux kernel imposes no fixed limit, but the glibc implementation makes
fd_set a fixed-size type, with FD_SETSIZE defined as 1024, and the FD_*() macros
operating according to that limit. To monitor file descriptors greater than 1023, use
poll(2) or epoll(7) instead.

The implementation of the fd_set arguments as value-result arguments is a design er-
ror that is avoided in poll(2) and epoll(7).

Linux man-pages 6.13 2024-11-03 832

select(2) System Calls Manual select(2)

According to POSIX, select() should check all specified file descriptors in the three
file descriptor sets, up to the limit nfds-1. However, the current implementation ig-
nores any file descriptor in these sets that is greater than the maximum file descriptor
number that the process currently has open. According to POSIX, any such file de-
scriptor that is specified in one of the sets should result in the error EBADF.

Starting with glibc 2.1, glibc provided an emulation of pselect() that was implemented
using sigprocmask(2) and select(). This implementation remained vulnerable to the
very race condition that pselect() was designed to prevent. Modern versions of glibc
use the (race-free) pselect() system call on kernels where it is provided.

On Linux, select() may report a socket file descriptor as "ready for reading", while
nevertheless a subsequent read blocks. This could for example happen when data has
arrived but upon examination has the wrong checksum and is discarded. There may
be other circumstances in which a file descriptor is spuriously reported as ready. Thus
it may be safer to use O_NONBLOCK on sockets that should not block.

On Linux, select() also modifies timeout if the call is interrupted by a signal handler
(i.e., the EINTR error return). This is not permitted by POSIX.1. The Linux pse-
lect() system call has the same behavior, but the glibc wrapper hides this behavior by
internally copying the timeout to a local variable and passing that variable to the sys-
tem call.

EXAMPLES
#include <stdio.h>
#include <stdlib.h>
#include <sys/select.h>
#include <sys/time.h>

int
main(void)
{

int retval;
fd_set rfds;
struct timeval tv;

/* Watch stdin (fd 0) to see when it has input. */

FD_ZERO(&rfds);
FD_SET(0, &rfds);

/* Wait up to five seconds. */

tv.tv_sec = 5;
tv.tv_usec = 0;

retval = select(1, &rfds, NULL, NULL, &tv);
/* Don't rely on the value of tv now! */

if (retval == -1)
perror("select()");

Linux man-pages 6.13 2024-11-03 833

select(2) System Calls Manual select(2)

else if (retval)
printf("Data is available now.\n");
/* FD_ISSET(0, &rfds) will be true. */

else
printf("No data within five seconds.\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
accept(2), connect(2), poll(2), read(2), recv(2), restart_syscall(2), send(2), sigproc-
mask(2), write(2), timespec(3), epoll(7), time(7)

For a tutorial with discussion and examples, see select_tut(2).

Linux man-pages 6.13 2024-11-03 834

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

NAME
select, pselect - synchronous I/O multiplexing

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
See select(2)

DESCRIPTION
The select() and pselect() system calls are used to efficiently monitor multiple file de-
scriptors, to see if any of them is, or becomes, "ready"; that is, to see whether I/O be-
comes possible, or an "exceptional condition" has occurred on any of the file descrip-
tors.

This page provides background and tutorial information on the use of these system
calls. For details of the arguments and semantics of select() and pselect(), see se-
lect(2).

Combining signal and data events
pselect() is useful if you are waiting for a signal as well as for file descriptor(s) to be-
come ready for I/O. Programs that receive signals normally use the signal handler
only to raise a global flag. The global flag will indicate that the event must be
processed in the main loop of the program. A signal will cause the select() (or pse-
lect()) call to return with errno set to EINTR. This behavior is essential so that sig-
nals can be processed in the main loop of the program, otherwise select() would block
indefinitely.

Now, somewhere in the main loop will be a conditional to check the global flag. So
we must ask: what if a signal arrives after the conditional, but before the select() call?
The answer is that select() would block indefinitely, even though an event is actually
pending. This race condition is solved by the pselect() call. This call can be used to
set the signal mask to a set of signals that are to be received only within the pselect()
call. For instance, let us say that the event in question was the exit of a child process.
Before the start of the main loop, we would block SIGCHLD using sigprocmask(2).
Our pselect() call would enable SIGCHLD by using an empty signal mask. Our pro-
gram would look like:

static volatile sig_atomic_t got_SIGCHLD = 0;

static void
child_sig_handler(int sig)
{

got_SIGCHLD = 1;
}

int
main(int argc, char *argv[])
{

sigset_t sigmask, empty_mask;
struct sigaction sa;
fd_set readfds, writefds, exceptfds;
int r;

Linux man-pages 6.13 2024-07-23 835

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

sigemptyset(&sigmask);
sigaddset(&sigmask, SIGCHLD);
if (sigprocmask(SIG_BLOCK, &sigmask, NULL) == -1) {

perror("sigprocmask");
exit(EXIT_FAILURE);

}

sa.sa_flags = 0;
sa.sa_handler = child_sig_handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, NULL) == -1) {

perror("sigaction");
exit(EXIT_FAILURE);

}

sigemptyset(&empty_mask);

for (;;) { /* main loop */
/* Initialize readfds, writefds, and exceptfds

before the pselect() call. (Code omitted.) */

r = pselect(nfds, &readfds, &writefds, &exceptfds,
NULL, &empty_mask);

if (r == -1 && errno != EINTR) {
/* Handle error */

}

if (got_SIGCHLD) {
got_SIGCHLD = 0;

/* Handle signalled event here; e.g., wait() for all
terminated children. (Code omitted.) */

}

/* main body of program */
}

}

Practical
So what is the point of select()? Can’t I just read and write to my file descriptors
whenever I want? The point of select() is that it watches multiple descriptors at the
same time and properly puts the process to sleep if there is no activity. UNIX pro-
grammers often find themselves in a position where they have to handle I/O from
more than one file descriptor where the data flow may be intermittent. If you were to
merely create a sequence of read(2) and write(2) calls, you would find that one of
your calls may block waiting for data from/to a file descriptor, while another file de-
scriptor is unused though ready for I/O. select() efficiently copes with this situation.

Linux man-pages 6.13 2024-07-23 836

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

Select law
Many people who try to use select() come across behavior that is difficult to under-
stand and produces nonportable or borderline results. For instance, the above pro-
gram is carefully written not to block at any point, even though it does not set its file
descriptors to nonblocking mode. It is easy to introduce subtle errors that will remove
the advantage of using select(), so here is a list of essentials to watch for when using
select().

1. You should always try to use select() without a timeout. Your program should
have nothing to do if there is no data available. Code that depends on timeouts is
not usually portable and is difficult to debug.

2. The value nfds must be properly calculated for efficiency as explained above.

3. No file descriptor must be added to any set if you do not intend to check its result
after the select() call, and respond appropriately. See next rule.

4. After select() returns, all file descriptors in all sets should be checked to see if
they are ready.

5. The functions read(2), recv(2), write(2), and send(2) do not necessarily
read/write the full amount of data that you have requested. If they do read/write
the full amount, it’s because you have a low traffic load and a fast stream. This is
not always going to be the case. You should cope with the case of your functions
managing to send or receive only a single byte.

6. Never read/write only in single bytes at a time unless you are really sure that you
have a small amount of data to process. It is extremely inefficient not to
read/write as much data as you can buffer each time. The buffers in the example
below are 1024 bytes although they could easily be made larger.

7. Calls to read(2), recv(2), write(2), send(2), and select() can fail with the error
EINTR, and calls to read(2), recv(2), write(2), and send(2) can fail with errno
set to EAGAIN (EWOULDBLOCK). These results must be properly managed
(not done properly above). If your program is not going to receive any signals,
then it is unlikely you will get EINTR. If your program does not set nonblock-
ing I/O, you will not get EAGAIN.

8. Never call read(2), recv(2), write(2), or send(2) with a buffer length of zero.

9. If the functions read(2), recv(2), write(2), and send(2) fail with errors other than
those listed in 7., or one of the input functions returns 0, indicating end of file,
then you should not pass that file descriptor to select() again. In the example be-
low, I close the file descriptor immediately, and then set it to -1 to prevent it be-
ing included in a set.

10. The timeout value must be initialized with each new call to select(), since some
operating systems modify the structure. pselect() however does not modify its
timeout structure.

11. Since select() modifies its file descriptor sets, if the call is being used in a loop,
then the sets must be reinitialized before each call.

RETURN VALUE
See select(2).

Linux man-pages 6.13 2024-07-23 837

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

NOTES
Generally speaking, all operating systems that support sockets also support select().
select() can be used to solve many problems in a portable and efficient way that naive
programmers try to solve in a more complicated manner using threads, forking, IPCs,
signals, memory sharing, and so on.

The poll(2) system call has the same functionality as select(), and is somewhat more
efficient when monitoring sparse file descriptor sets. It is nowadays widely available,
but historically was less portable than select().

The Linux-specific epoll(7) API provides an interface that is more efficient than se-
lect(2) and poll(2) when monitoring large numbers of file descriptors.

EXAMPLES
Here is an example that better demonstrates the true utility of select(). The listing be-
low is a TCP forwarding program that forwards from one TCP port to another.

#include <arpa/inet.h>
#include <errno.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

static int forward_port;

#undef max
#define max(x, y) ((x) > (y) ? (x) : (y))

static int
listen_socket(int listen_port)
{

int lfd;
int yes;
struct sockaddr_in addr;

lfd = socket(AF_INET, SOCK_STREAM, 0);
if (lfd == -1) {

perror("socket");
return -1;

}

yes = 1;
if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR,

&yes, sizeof(yes)) == -1)
{

Linux man-pages 6.13 2024-07-23 838

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

perror("setsockopt");
close(lfd);
return -1;

}

memset(&addr, 0, sizeof(addr));
addr.sin_port = htons(listen_port);
addr.sin_family = AF_INET;
if (bind(lfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {

perror("bind");
close(lfd);
return -1;

}

printf("accepting connections on port %d\n", listen_port);
listen(lfd, 10);
return lfd;

}

static int
connect_socket(int connect_port, char *address)
{

int cfd;
struct sockaddr_in addr;

cfd = socket(AF_INET, SOCK_STREAM, 0);
if (cfd == -1) {

perror("socket");
return -1;

}

memset(&addr, 0, sizeof(addr));
addr.sin_port = htons(connect_port);
addr.sin_family = AF_INET;

if (!inet_aton(address, (struct in_addr *) &addr.sin_addr.s_addr)) {
fprintf(stderr, "inet_aton(): bad IP address format\n");
close(cfd);
return -1;

}

if (connect(cfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
perror("connect()");
shutdown(cfd, SHUT_RDWR);
close(cfd);
return -1;

}
return cfd;

}

Linux man-pages 6.13 2024-07-23 839

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

#define SHUT_FD1 do { \
if (fd1 >= 0) { \

shutdown(fd1, SHUT_RDWR); \
close(fd1); \
fd1 = -1; \

} \
} while (0)

#define SHUT_FD2 do { \
if (fd2 >= 0) { \

shutdown(fd2, SHUT_RDWR); \
close(fd2); \
fd2 = -1; \

} \
} while (0)

#define BUF_SIZE 1024

int
main(int argc, char *argv[])
{

int h;
int ready, nfds;
int fd1 = -1, fd2 = -1;
int buf1_avail = 0, buf1_written = 0;
int buf2_avail = 0, buf2_written = 0;
char buf1[BUF_SIZE], buf2[BUF_SIZE];
fd_set readfds, writefds, exceptfds;
ssize_t nbytes;

if (argc != 4) {
fprintf(stderr, "Usage\n\tfwd <listen-port> "

"<forward-to-port> <forward-to-ip-address>\n");
exit(EXIT_FAILURE);

}

signal(SIGPIPE, SIG_IGN);

forward_port = atoi(argv[2]);

h = listen_socket(atoi(argv[1]));
if (h == -1)

exit(EXIT_FAILURE);

for (;;) {
nfds = 0;

FD_ZERO(&readfds);

Linux man-pages 6.13 2024-07-23 840

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

FD_ZERO(&writefds);
FD_ZERO(&exceptfds);
FD_SET(h, &readfds);
nfds = max(nfds, h);

if (fd1 > 0 && buf1_avail < BUF_SIZE)
FD_SET(fd1, &readfds);
/* Note: nfds is updated below, when fd1 is added to

exceptfds. */
if (fd2 > 0 && buf2_avail < BUF_SIZE)

FD_SET(fd2, &readfds);

if (fd1 > 0 && buf2_avail - buf2_written > 0)
FD_SET(fd1, &writefds);

if (fd2 > 0 && buf1_avail - buf1_written > 0)
FD_SET(fd2, &writefds);

if (fd1 > 0) {
FD_SET(fd1, &exceptfds);
nfds = max(nfds, fd1);

}
if (fd2 > 0) {

FD_SET(fd2, &exceptfds);
nfds = max(nfds, fd2);

}

ready = select(nfds + 1, &readfds, &writefds, &exceptfds, NULL);

if (ready == -1 && errno == EINTR)
continue;

if (ready == -1) {
perror("select()");
exit(EXIT_FAILURE);

}

if (FD_ISSET(h, &readfds)) {
socklen_t addrlen;
struct sockaddr_in client_addr;
int fd;

addrlen = sizeof(client_addr);
memset(&client_addr, 0, addrlen);
fd = accept(h, (struct sockaddr *) &client_addr, &addrlen);
if (fd == -1) {

perror("accept()");
} else {

SHUT_FD1;
SHUT_FD2;

Linux man-pages 6.13 2024-07-23 841

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

buf1_avail = buf1_written = 0;
buf2_avail = buf2_written = 0;
fd1 = fd;
fd2 = connect_socket(forward_port, argv[3]);
if (fd2 == -1)

SHUT_FD1;
else

printf("connect from %s\n",
inet_ntoa(client_addr.sin_addr));

/* Skip any events on the old, closed file
descriptors. */

continue;
}

}

/* NB: read OOB data before normal reads. */

if (fd1 > 0 && FD_ISSET(fd1, &exceptfds)) {
char c;

nbytes = recv(fd1, &c, 1, MSG_OOB);
if (nbytes < 1)

SHUT_FD1;
else

send(fd2, &c, 1, MSG_OOB);
}
if (fd2 > 0 && FD_ISSET(fd2, &exceptfds)) {

char c;

nbytes = recv(fd2, &c, 1, MSG_OOB);
if (nbytes < 1)

SHUT_FD2;
else

send(fd1, &c, 1, MSG_OOB);
}
if (fd1 > 0 && FD_ISSET(fd1, &readfds)) {

nbytes = read(fd1, buf1 + buf1_avail,
BUF_SIZE - buf1_avail);

if (nbytes < 1)
SHUT_FD1;

else
buf1_avail += nbytes;

}
if (fd2 > 0 && FD_ISSET(fd2, &readfds)) {

nbytes = read(fd2, buf2 + buf2_avail,
BUF_SIZE - buf2_avail);

if (nbytes < 1)

Linux man-pages 6.13 2024-07-23 842

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

SHUT_FD2;
else

buf2_avail += nbytes;
}
if (fd1 > 0 && FD_ISSET(fd1, &writefds) && buf2_avail > 0) {

nbytes = write(fd1, buf2 + buf2_written,
buf2_avail - buf2_written);

if (nbytes < 1)
SHUT_FD1;

else
buf2_written += nbytes;

}
if (fd2 > 0 && FD_ISSET(fd2, &writefds) && buf1_avail > 0) {

nbytes = write(fd2, buf1 + buf1_written,
buf1_avail - buf1_written);

if (nbytes < 1)
SHUT_FD2;

else
buf1_written += nbytes;

}

/* Check if write data has caught read data. */

if (buf1_written == buf1_avail)
buf1_written = buf1_avail = 0;

if (buf2_written == buf2_avail)
buf2_written = buf2_avail = 0;

/* One side has closed the connection, keep
writing to the other side until empty. */

if (fd1 < 0 && buf1_avail - buf1_written == 0)
SHUT_FD2;

if (fd2 < 0 && buf2_avail - buf2_written == 0)
SHUT_FD1;

}
exit(EXIT_SUCCESS);

}

The above program properly forwards most kinds of TCP connections including OOB
signal data transmitted by telnet servers. It handles the tricky problem of having data
flow in both directions simultaneously. You might think it more efficient to use a
fork(2) call and devote a thread to each stream. This becomes more tricky than you
might suspect. Another idea is to set nonblocking I/O using fcntl(2). This also has its
problems because you end up using inefficient timeouts.

The program does not handle more than one simultaneous connection at a time, al-
though it could easily be extended to do this with a linked list of buffers—one for
each connection. At the moment, new connections cause the current connection to be
dropped.

Linux man-pages 6.13 2024-07-23 843

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

SEE ALSO
accept(2), connect(2), poll(2), read(2), recv(2), select(2), send(2), sigprocmask(2),
write(2), epoll(7)

Linux man-pages 6.13 2024-07-23 844

semctl(2) System Calls Manual semctl(2)

NAME
semctl - System V semaphore control operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sem.h>

int semctl(int semid , int semnum, int op, ...);

DESCRIPTION
semctl() performs the control operation specified by op on the System V semaphore
set identified by semid , or on the semnum-th semaphore of that set. (The semaphores
in a set are numbered starting at 0.)

This function has three or four arguments, depending on op. When there are four, the
fourth has the type union semun. The calling program must define this union as fol-
lows:

union semun {
int val; /* Value for SETVAL */
struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */
unsigned short *array; /* Array for GETALL, SETALL */
struct seminfo *__buf; /* Buffer for IPC_INFO

(Linux-specific) */
};

The semid_ds data structure is defined in <sys/sem.h> as follows:

struct semid_ds {
struct ipc_perm sem_perm; /* Ownership and permissions */
time_t sem_otime; /* Last semop time */
time_t sem_ctime; /* Creation time/time of last

modification via semctl() */
unsigned long sem_nsems; /* No. of semaphores in set */

};

The fields of the semid_ds structure are as follows:

sem_perm This is an ipc_perm structure (see below) that specifies the access per-
missions on the semaphore set.

sem_otime Time of last semop(2) system call.

sem_ctime Time of creation of semaphore set or time of last semctl() IPCSET,
SETVAL, or SETALL operation.

sem_nsems Number of semaphores in the set. Each semaphore of the set is refer-
enced by a nonnegative integer ranging from 0 to sem_nsems-1.

The ipc_perm structure is defined as follows (the highlighted fields are settable using
IPC_SET):

struct ipc_perm {
key_t __key; /* Key supplied to semget(2) */
uid_t uid; /* Effective UID of owner */
gid_t gid; /* Effective GID of owner */

Linux man-pages 6.13 2024-07-23 845

semctl(2) System Calls Manual semctl(2)

uid_t cuid; /* Effective UID of creator */
gid_t cgid; /* Effective GID of creator */
unsigned short mode; /* Permissions */
unsigned short __seq; /* Sequence number */

};

The least significant 9 bits of the mode field of the ipc_perm structure define the ac-
cess permissions for the shared memory segment. The permission bits are as follows:
0400 Read by user
0200 Write by user
0040 Read by group
0020 Write by group
0004 Read by others
0002 Write by others

In effect, "write" means "alter" for a semaphore set. Bits 0100, 0010, and 0001 (the
execute bits) are unused by the system.

Valid values for op are:

IPC_STAT
Copy information from the kernel data structure associated with semid into the
semid_ds structure pointed to by arg.buf . The argument semnum is ignored.
The calling process must have read permission on the semaphore set.

IPC_SET
Write the values of some members of the semid_ds structure pointed to by
arg.buf to the kernel data structure associated with this semaphore set, updat-
ing also its sem_ctime member.

The following members of the structure are updated: sem_perm.uid ,
sem_perm.gid , and (the least significant 9 bits of) sem_perm.mode.

The effective UID of the calling process must match the owner
(sem_perm.uid) or creator (sem_perm.cuid) of the semaphore set, or the caller
must be privileged. The argument semnum is ignored.

IPC_RMID
Immediately remove the semaphore set, awakening all processes blocked in
semop(2) calls on the set (with an error return and errno set to EIDRM). The
effective user ID of the calling process must match the creator or owner of the
semaphore set, or the caller must be privileged. The argument semnum is ig-
nored.

IPC_INFO (Linux-specific)
Return information about system-wide semaphore limits and parameters in the
structure pointed to by arg.__buf . This structure is of type seminfo, defined in
<sys/sem.h> if the _GNU_SOURCE feature test macro is defined:

struct seminfo {
int semmap; /* Number of entries in semaphore

map; unused within kernel */
int semmni; /* Maximum number of semaphore sets */
int semmns; /* Maximum number of semaphores in all

semaphore sets */

Linux man-pages 6.13 2024-07-23 846

semctl(2) System Calls Manual semctl(2)

int semmnu; /* System-wide maximum number of undo
structures; unused within kernel */

int semmsl; /* Maximum number of semaphores in a
set */

int semopm; /* Maximum number of operations for
semop(2) */

int semume; /* Maximum number of undo entries per
process; unused within kernel */

int semusz; /* Size of struct sem_undo */
int semvmx; /* Maximum semaphore value */
int semaem; /* Max. value that can be recorded for

semaphore adjustment (SEM_UNDO) */
};

The semmsl, semmns, semopm, and semmni settings can be changed via
/proc/sys/kernel/sem; see proc(5) for details.

SEM_INFO (Linux-specific)
Return a seminfo structure containing the same information as for IPC_INFO,
except that the following fields are returned with information about system re-
sources consumed by semaphores: the semusz field returns the number of sem-
aphore sets that currently exist on the system; and the semaem field returns the
total number of semaphores in all semaphore sets on the system.

SEM_STAT (Linux-specific)
Return a semid_ds structure as for IPC_STAT. However, the semid argument
is not a semaphore identifier, but instead an index into the kernel’s internal ar-
ray that maintains information about all semaphore sets on the system.

SEM_STAT_ANY (Linux-specific, since Linux 4.17)
Return a semid_ds structure as for SEM_STAT. However, sem_perm.mode is
not checked for read access for semid meaning that any user can employ this
operation (just as any user may read /proc/sysvipc/sem to obtain the same in-
formation).

GETALL
Return semval (i.e., the current value) for all semaphores of the set into
arg.array. The argument semnum is ignored. The calling process must have
read permission on the semaphore set.

GETNCNT
Return the semncnt value for the semnum-th semaphore of the set (i.e., the
number of processes waiting for the semaphore’s value to increase). The call-
ing process must have read permission on the semaphore set.

GETPID
Return the sempid value for the semnum-th semaphore of the set. This is the
PID of the process that last performed an operation on that semaphore (but see
VERSIONS). The calling process must have read permission on the sema-
phore set.

Linux man-pages 6.13 2024-07-23 847

semctl(2) System Calls Manual semctl(2)

GETVAL
Return semval (i.e., the semaphore value) for the semnum-th semaphore of the
set. The calling process must have read permission on the semaphore set.

GETZCNT
Return the semzcnt value for the semnum-th semaphore of the set (i.e., the
number of processes waiting for the semaphore value to become 0). The call-
ing process must have read permission on the semaphore set.

SETALL
Set the semval values for all semaphores of the set using arg.array, updating
also the sem_ctime member of the semid_ds structure associated with the set.
Undo entries (see semop(2)) are cleared for altered semaphores in all
processes. If the changes to semaphore values would permit blocked semop(2)
calls in other processes to proceed, then those processes are woken up. The
argument semnum is ignored. The calling process must have alter (write) per-
mission on the semaphore set.

SETVAL
Set the semaphore value (semval) to arg.val for the semnum-th semaphore of
the set, updating also the sem_ctime member of the semid_ds structure associ-
ated with the set. Undo entries are cleared for altered semaphores in all
processes. If the changes to semaphore values would permit blocked semop(2)
calls in other processes to proceed, then those processes are woken up. The
calling process must have alter permission on the semaphore set.

RETURN VALUE
On success, semctl() returns a nonnegative value depending on op as follows:

GETNCNT
the value of semncnt.

GETPID
the value of sempid.

GETVAL
the value of semval.

GETZCNT
the value of semzcnt.

IPC_INFO
the index of the highest used entry in the kernel’s internal array recording in-
formation about all semaphore sets. (This information can be used with re-
peated SEM_STAT or SEM_STAT_ANY operations to obtain information
about all semaphore sets on the system.)

SEM_INFO
as for IPC_INFO.

SEM_STAT
the identifier of the semaphore set whose index was given in semid .

SEM_STAT_ANY
as for SEM_STAT.

Linux man-pages 6.13 2024-07-23 848

semctl(2) System Calls Manual semctl(2)

All other op values return 0 on success.

On failure, semctl() returns -1 and sets errno to indicate the error.

ERRORS
EACCES

The argument op has one of the values GETALL, GETPID, GETVAL, GET-
NCNT, GETZCNT, IPC_STAT, SEM_STAT, SEM_STAT_ANY, SE-
TALL, or SETVAL and the calling process does not have the required permis-
sions on the semaphore set and does not have the CAP_IPC_OWNER capa-
bility in the user namespace that governs its IPC namespace.

EFAULT
The address pointed to by arg.buf or arg.array isn’t accessible.

EIDRM
The semaphore set was removed.

EINVAL
Invalid value for op or semid . Or: for a SEM_STAT operation, the index
value specified in semid referred to an array slot that is currently unused.

EPERM
The argument op has the value IPC_SET or IPC_RMID but the effective user
ID of the calling process is not the creator (as found in sem_perm.cuid) or the
owner (as found in sem_perm.uid) of the semaphore set, and the process does
not have the CAP_SYS_ADMIN capability.

ERANGE
The argument op has the value SETALL or SETVAL and the value to which
semval is to be set (for some semaphore of the set) is less than 0 or greater
than the implementation limit SEMVMX.

VERSIONS
POSIX.1 specifies the sem_nsems field of the semid_ds structure as having the type
unsigned short, and the field is so defined on most other systems. It was also so de-
fined on Linux 2.2 and earlier, but, since Linux 2.4, the field has the type un-
signed long.

The sempid value
POSIX.1 defines sempid as the "process ID of [the] last operation" on a semaphore,
and explicitly notes that this value is set by a successful semop(2) call, with the impli-
cation that no other interface affects the sempid value.

While some implementations conform to the behavior specified in POSIX.1, others do
not. (The fault here probably lies with POSIX.1 inasmuch as it likely failed to capture
the full range of existing implementation behaviors.) Various other implementations
also update sempid for the other operations that update the value of a semaphore: the
SETVAL and SETALL operations, as well as the semaphore adjustments performed
on process termination as a consequence of the use of the SEM_UNDO flag (see se-
mop(2)).

Linux also updates sempid for SETVAL operations and semaphore adjustments.
However, somewhat inconsistently, up to and including Linux 4.5, the kernel did not
update sempid for SETALL operations. This was rectified in Linux 4.6.

Linux man-pages 6.13 2024-07-23 849

semctl(2) System Calls Manual semctl(2)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

Various fields in a struct semid_ds were typed as short under Linux 2.2 and have be-
come long under Linux 2.4. To take advantage of this, a recompilation under
glibc-2.1.91 or later should suffice. (The kernel distinguishes old and new calls by an
IPC_64 flag in op.)

In some earlier versions of glibc, the semun union was defined in <sys/sem.h>, but
POSIX.1 requires that the caller define this union. On versions of glibc where this
union is not defined, the macro _SEM_SEMUN_UNDEFINED is defined in
<sys/sem.h>.

NOTES
The IPC_INFO, SEM_STAT, and SEM_INFO operations are used by the ipcs(1)
program to provide information on allocated resources. In the future these may modi-
fied or moved to a /proc filesystem interface.

The following system limit on semaphore sets affects a semctl() call:

SEMVMX
Maximum value for semval: implementation dependent (32767).

For greater portability, it is best to always call semctl() with four arguments.

EXAMPLES
See shmop(2).

SEE ALSO
ipc(2), semget(2), semop(2), capabilities(7), sem_overview(7), sysvipc(7)

Linux man-pages 6.13 2024-07-23 850

semget(2) System Calls Manual semget(2)

NAME
semget - get a System V semaphore set identifier

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

DESCRIPTION
The semget() system call returns the System V semaphore set identifier associated
with the argument key. It may be used either to obtain the identifier of a previously
created semaphore set (when semflg is zero and key does not have the value
IPC_PRIVATE), or to create a new set.

A new set of nsems semaphores is created if key has the value IPC_PRIVATE or if
no existing semaphore set is associated with key and IPC_CREAT is specified in
semflg.

If semflg specifies both IPC_CREAT and IPC_EXCL and a semaphore set already
exists for key, then semget() fails with errno set to EEXIST. (This is analogous to
the effect of the combination O_CREAT | O_EXCL for open(2).)

Upon creation, the least significant 9 bits of the argument semflg define the permis-
sions (for owner, group, and others) for the semaphore set. These bits have the same
format, and the same meaning, as the mode argument of open(2) (though the execute
permissions are not meaningful for semaphores, and write permissions mean permis-
sion to alter semaphore values).

When creating a new semaphore set, semget() initializes the set’s associated data
structure, semid_ds (see semctl(2)), as follows:

• sem_perm.cuid and sem_perm.uid are set to the effective user ID of the calling
process.

• sem_perm.cgid and sem_perm.gid are set to the effective group ID of the calling
process.

• The least significant 9 bits of sem_perm.mode are set to the least significant 9 bits
of semflg.

• sem_nsems is set to the value of nsems.

• sem_otime is set to 0.

• sem_ctime is set to the current time.

The argument nsems can be 0 (a don’t care) when a semaphore set is not being cre-
ated. Otherwise, nsems must be greater than 0 and less than or equal to the maximum
number of semaphores per semaphore set (SEMMSL).

If the semaphore set already exists, the permissions are verified.

RETURN VALUE
On success, semget() returns the semaphore set identifier (a nonnegative integer). On
failure, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.13 2024-07-23 851

semget(2) System Calls Manual semget(2)

ERRORS
EACCES

A semaphore set exists for key, but the calling process does not have permis-
sion to access the set, and does not have the CAP_IPC_OWNER capability in
the user namespace that governs its IPC namespace.

EEXIST
IPC_CREAT and IPC_EXCL were specified in semflg, but a semaphore set
already exists for key.

EINVAL
nsems is less than 0 or greater than the limit on the number of semaphores per
semaphore set (SEMMSL).

EINVAL
A semaphore set corresponding to key already exists, but nsems is larger than
the number of semaphores in that set.

ENOENT
No semaphore set exists for key and semflg did not specify IPC_CREAT.

ENOMEM
A semaphore set has to be created but the system does not have enough mem-
ory for the new data structure.

ENOSPC
A semaphore set has to be created but the system limit for the maximum num-
ber of semaphore sets (SEMMNI), or the system wide maximum number of
semaphores (SEMMNS), would be exceeded.

STANDARDS
POSIX.1-2008.

HISTORY
SVr4, POSIX.1-2001.

NOTES
IPC_PRIVATE isn’t a flag field but a key_t type. If this special value is used for key,
the system call ignores all but the least significant 9 bits of semflg and creates a new
semaphore set (on success).

Semaphore initialization
The values of the semaphores in a newly created set are indeterminate.
(POSIX.1-2001 and POSIX.1-2008 are explicit on this point, although POSIX.1-2008
notes that a future version of the standard may require an implementation to initialize
the semaphores to 0.) Although Linux, like many other implementations, initializes
the semaphore values to 0, a portable application cannot rely on this: it should explic-
itly initialize the semaphores to the desired values.

Initialization can be done using semctl(2) SETVAL or SETALL operation. Where
multiple peers do not know who will be the first to initialize the set, checking for a
nonzero sem_otime in the associated data structure retrieved by a semctl(2)
IPC_STAT operation can be used to avoid races.

Linux man-pages 6.13 2024-07-23 852

semget(2) System Calls Manual semget(2)

Semaphore limits
The following limits on semaphore set resources affect the semget() call:

SEMMNI
System-wide limit on the number of semaphore sets. Before Linux 3.19, the
default value for this limit was 128. Since Linux 3.19, the default value is
32,000. On Linux, this limit can be read and modified via the fourth field of
/proc/sys/kernel/sem.

SEMMSL
Maximum number of semaphores per semaphore ID. Before Linux 3.19, the
default value for this limit was 250. Since Linux 3.19, the default value is
32,000. On Linux, this limit can be read and modified via the first field of
/proc/sys/kernel/sem.

SEMMNS
System-wide limit on the number of semaphores: policy dependent (on Linux,
this limit can be read and modified via the second field of /proc/sys/ker-
nel/sem). Note that the number of semaphores system-wide is also limited by
the product of SEMMSL and SEMMNI.

BUGS
The name choice IPC_PRIVATE was perhaps unfortunate, IPC_NEW would more
clearly show its function.

EXAMPLES
The program shown below uses semget() to create a new semaphore set or retrieve the
ID of an existing set. It generates the key for semget() using ftok(3). The first two
command-line arguments are used as the pathname and proj_id arguments for
ftok(3). The third command-line argument is an integer that specifies the nsems argu-
ment for semget(). Command-line options can be used to specify the IPC_CREAT
(-c) and IPC_EXCL (-x) flags for the call to semget(). The usage of this program is
demonstrated below.

We first create two files that will be used to generate keys using ftok(3), create two
semaphore sets using those files, and then list the sets using ipcs(1):

$ touch mykey mykey2
$./t_semget -c mykey p 1
ID = 9
$./t_semget -c mykey2 p 2
ID = 10
$ ipcs -s

------ Semaphore Arrays --------
key semid owner perms nsems
0x7004136d 9 mtk 600 1
0x70041368 10 mtk 600 2

Next, we demonstrate that when semctl(2) is given the same key (as generated by the
same arguments to ftok(3)), it returns the ID of the already existing semaphore set:

$./t_semget -c mykey p 1
ID = 9

Linux man-pages 6.13 2024-07-23 853

semget(2) System Calls Manual semget(2)

Finally, we demonstrate the kind of collision that can occur when ftok(3) is given dif-
ferent pathname arguments that have the same inode number:

$ ln mykey link
$ ls -i1 link mykey
2233197 link
2233197 mykey
$./t_semget link p 1 # Generates same key as 'mykey'
ID = 9

Program source

/* t_semget.c

Licensed under GNU General Public License v2 or later.
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <unistd.h>

static void
usage(const char *pname)
{

fprintf(stderr, "Usage: %s [-cx] pathname proj-id num-sems\n",
pname);

fprintf(stderr, " -c Use IPC_CREAT flag\n");
fprintf(stderr, " -x Use IPC_EXCL flag\n");
exit(EXIT_FAILURE);

}

int
main(int argc, char *argv[])
{

int semid, nsems, flags, opt;
key_t key;

flags = 0;
while ((opt = getopt(argc, argv, "cx")) != -1) {

switch (opt) {
case 'c': flags |= IPC_CREAT; break;
case 'x': flags |= IPC_EXCL; break;
default: usage(argv[0]);
}

}

if (argc != optind + 3)
usage(argv[0]);

Linux man-pages 6.13 2024-07-23 854

semget(2) System Calls Manual semget(2)

key = ftok(argv[optind], argv[optind + 1][0]);
if (key == -1) {

perror("ftok");
exit(EXIT_FAILURE);

}

nsems = atoi(argv[optind + 2]);

semid = semget(key, nsems, flags | 0600);
if (semid == -1) {

perror("semget");
exit(EXIT_FAILURE);

}

printf("ID = %d\n", semid);

exit(EXIT_SUCCESS);
}

SEE ALSO
semctl(2), semop(2), ftok(3), capabilities(7), sem_overview(7), sysvipc(7)

Linux man-pages 6.13 2024-07-23 855

semop(2) System Calls Manual semop(2)

NAME
semop, semtimedop - System V semaphore operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sem.h>

int semop(int semid , struct sembuf *sops, size_t nsops);
int semtimedop(int semid , struct sembuf *sops, size_t nsops,

const struct timespec *_Nullable timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

semtimedop():
_GNU_SOURCE

DESCRIPTION
Each semaphore in a System V semaphore set has the following associated values:

unsigned short semval; /* semaphore value */
unsigned short semzcnt; /* # waiting for zero */
unsigned short semncnt; /* # waiting for increase */
pid_t sempid; /* PID of process that last

modified the semaphore value */

semop() performs operations on selected semaphores in the set indicated by semid .
Each of the nsops elements in the array pointed to by sops is a structure that specifies
an operation to be performed on a single semaphore. The elements of this structure
are of type struct sembuf , containing the following members:

unsigned short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Flags recognized in sem_flg are IPC_NOWAIT and SEM_UNDO. If an operation
specifies SEM_UNDO, it will be automatically undone when the process terminates.

The set of operations contained in sops is performed in array order, and atomically,
that is, the operations are performed either as a complete unit, or not at all. The be-
havior of the system call if not all operations can be performed immediately depends
on the presence of the IPC_NOWAIT flag in the individual sem_flg fields, as noted
below.

Each operation is performed on the sem_num-th semaphore of the semaphore set,
where the first semaphore of the set is numbered 0. There are three types of opera-
tion, distinguished by the value of sem_op.

If sem_op is a positive integer, the operation adds this value to the semaphore value
(semval). Furthermore, if SEM_UNDO is specified for this operation, the system
subtracts the value sem_op from the semaphore adjustment (semadj) value for this
semaphore. This operation can always proceed—it never forces a thread to wait. The
calling process must have alter permission on the semaphore set.

If sem_op is zero, the process must have read permission on the semaphore set. This
is a "wait-for-zero" operation: if semval is zero, the operation can immediately

Linux man-pages 6.13 2024-07-23 856

semop(2) System Calls Manual semop(2)

proceed. Otherwise, if IPC_NOWAIT is specified in sem_flg, semop() fails with er-
rno set to EAGAIN (and none of the operations in sops is performed). Otherwise,
semzcnt (the count of threads waiting until this semaphore’s value becomes zero) is
incremented by one and the thread sleeps until one of the following occurs:

• semval becomes 0, at which time the value of semzcnt is decremented.

• The semaphore set is removed: semop() fails, with errno set to EIDRM.

• The calling thread catches a signal: the value of semzcnt is decremented and se-
mop() fails, with errno set to EINTR.

If sem_op is less than zero, the process must have alter permission on the semaphore
set. If semval is greater than or equal to the absolute value of sem_op, the operation
can proceed immediately: the absolute value of sem_op is subtracted from semval,
and, if SEM_UNDO is specified for this operation, the system adds the absolute value
of sem_op to the semaphore adjustment (semadj) value for this semaphore. If the ab-
solute value of sem_op is greater than semval, and IPC_NOWAIT is specified in
sem_flg, semop() fails, with errno set to EAGAIN (and none of the operations in
sops is performed). Otherwise, semncnt (the counter of threads waiting for this sema-
phore’s value to increase) is incremented by one and the thread sleeps until one of the
following occurs:

• semval becomes greater than or equal to the absolute value of sem_op: the opera-
tion now proceeds, as described above.

• The semaphore set is removed from the system: semop() fails, with errno set to
EIDRM.

• The calling thread catches a signal: the value of semncnt is decremented and se-
mop() fails, with errno set to EINTR.

On successful completion, the sempid value for each semaphore specified in the array
pointed to by sops is set to the caller’s process ID. In addition, the sem_otime is set to
the current time.

semtimedop()
semtimedop() behaves identically to semop() except that in those cases where the
calling thread would sleep, the duration of that sleep is limited by the amount of
elapsed time specified by the timespec structure whose address is passed in the time-
out argument. (This sleep interval will be rounded up to the system clock granularity,
and kernel scheduling delays mean that the interval may overrun by a small amount.)
If the specified time limit has been reached, semtimedop() fails with errno set to EA-
GAIN (and none of the operations in sops is performed). If the timeout argument is
NULL, then semtimedop() behaves exactly like semop().

Note that if semtimedop() is interrupted by a signal, causing the call to fail with the
error EINTR, the contents of timeout are left unchanged.

RETURN VALUE
On success, semop() and semtimedop() return 0. On failure, they return -1, and set
errno to indicate the error.

ERRORS

Linux man-pages 6.13 2024-07-23 857

semop(2) System Calls Manual semop(2)

E2BIG
The argument nsops is greater than SEMOPM, the maximum number of oper-
ations allowed per system call.

EACCES
The calling process does not have the permissions required to perform the
specified semaphore operations, and does not have the CAP_IPC_OWNER
capability in the user namespace that governs its IPC namespace.

EAGAIN
An operation could not proceed immediately and either IPC_NOWAIT was
specified in sem_flg or the time limit specified in timeout expired.

EFAULT
An address specified in either the sops or the timeout argument isn’t accessi-
ble.

EFBIG
For some operation the value of sem_num is less than 0 or greater than or
equal to the number of semaphores in the set.

EIDRM
The semaphore set was removed.

EINTR
While blocked in this system call, the thread caught a signal; see signal(7).

EINVAL
The semaphore set doesn’t exist, or semid is less than zero, or nsops has a
nonpositive value.

ENOMEM
The sem_flg of some operation specified SEM_UNDO and the system does
not have enough memory to allocate the undo structure.

ERANGE
For some operation sem_op+semval is greater than SEMVMX, the imple-
mentation dependent maximum value for semval.

STANDARDS
POSIX.1-2008.

VERSIONS
Linux 2.5.52 (backported into Linux 2.4.22), glibc 2.3.3. POSIX.1-2001, SVr4.

NOTES
The sem_undo structures of a process aren’t inherited by the child produced by
fork(2), but they are inherited across an execve(2) system call.

semop() is never automatically restarted after being interrupted by a signal handler,
regardless of the setting of the SA_RESTART flag when establishing a signal han-
dler.

A semaphore adjustment (semadj) value is a per-process, per-semaphore integer that
is the negated sum of all operations performed on a semaphore specifying the
SEM_UNDO flag. Each process has a list of semadj values—one value for each
semaphore on which it has operated using SEM_UNDO. When a process terminates,

Linux man-pages 6.13 2024-07-23 858

semop(2) System Calls Manual semop(2)

each of its per-semaphore semadj values is added to the corresponding semaphore,
thus undoing the effect of that process’s operations on the semaphore (but see BUGS
below). When a semaphore’s value is directly set using the SETVAL or SETALL re-
quest to semctl(2), the corresponding semadj values in all processes are cleared. The
clone(2) CLONE_SYSVSEM flag allows more than one process to share a semadj
list; see clone(2) for details.

The semval, sempid, semzcnt, and semnct values for a semaphore can all be retrieved
using appropriate semctl(2) calls.

Semaphore limits
The following limits on semaphore set resources affect the semop() call:

SEMOPM
Maximum number of operations allowed for one semop() call. Before Linux
3.19, the default value for this limit was 32. Since Linux 3.19, the default
value is 500. On Linux, this limit can be read and modified via the third field
of /proc/sys/kernel/sem. Note: this limit should not be raised above 1000, be-
cause of the risk of that semop() fails due to kernel memory fragmentation
when allocating memory to copy the sops array.

SEMVMX
Maximum allowable value for semval: implementation dependent (32767).

The implementation has no intrinsic limits for the adjust on exit maximum value (SE-
MAEM), the system wide maximum number of undo structures (SEMMNU) and the
per-process maximum number of undo entries system parameters.

BUGS
When a process terminates, its set of associated semadj structures is used to undo the
effect of all of the semaphore operations it performed with the SEM_UNDO flag.
This raises a difficulty: if one (or more) of these semaphore adjustments would result
in an attempt to decrease a semaphore’s value below zero, what should an implemen-
tation do? One possible approach would be to block until all the semaphore adjust-
ments could be performed. This is however undesirable since it could force process
termination to block for arbitrarily long periods. Another possibility is that such sem-
aphore adjustments could be ignored altogether (somewhat analogously to failing
when IPC_NOWAIT is specified for a semaphore operation). Linux adopts a third
approach: decreasing the semaphore value as far as possible (i.e., to zero) and allow-
ing process termination to proceed immediately.

In Linux 2.6.x, x <= 10, there is a bug that in some circumstances prevents a thread
that is waiting for a semaphore value to become zero from being woken up when the
value does actually become zero. This bug is fixed in Linux 2.6.11.

EXAMPLES
The following code segment uses semop() to atomically wait for the value of sema-
phore 0 to become zero, and then increment the semaphore value by one.

struct sembuf sops[2];
int semid;

/* Code to set semid omitted */

Linux man-pages 6.13 2024-07-23 859

semop(2) System Calls Manual semop(2)

sops[0].sem_num = 0; /* Operate on semaphore 0 */
sops[0].sem_op = 0; /* Wait for value to equal 0 */
sops[0].sem_flg = 0;

sops[1].sem_num = 0; /* Operate on semaphore 0 */
sops[1].sem_op = 1; /* Increment value by one */
sops[1].sem_flg = 0;

if (semop(semid, sops, 2) == -1) {
perror("semop");
exit(EXIT_FAILURE);

}

A further example of the use of semop() can be found in shmop(2).

SEE ALSO
clone(2), semctl(2), semget(2), sigaction(2), capabilities(7), sem_overview(7),
sysvipc(7), time(7)

Linux man-pages 6.13 2024-07-23 860

send(2) System Calls Manual send(2)

NAME
send, sendto, sendmsg - send a message on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

ssize_t send(int sockfd , const void buf [.size], size_t size, int flags);
ssize_t sendto(int sockfd , const void buf [.size], size_t size, int flags,

const struct sockaddr *dest_addr, socklen_t addrlen);
ssize_t sendmsg(int sockfd , const struct msghdr *msg, int flags);

DESCRIPTION
The system calls send(), sendto(), and sendmsg() are used to transmit a message to
another socket.

The send() call may be used only when the socket is in a connected state (so that the
intended recipient is known). The only difference between send() and write(2) is the
presence of flags. With a zero flags argument, send() is equivalent to write(2). Also,
the following call

send(sockfd, buf, size, flags);

is equivalent to

sendto(sockfd, buf, size, flags, NULL, 0);

The argument sockfd is the file descriptor of the sending socket.

If sendto() is used on a connection-mode (SOCK_STREAM, SOCK_SEQ-
PACKET) socket, the arguments dest_addr and addrlen are ignored (and the error
EISCONN may be returned when they are not NULL and 0), and the error ENOT-
CONN is returned when the socket was not actually connected. Otherwise, the ad-
dress of the target is given by dest_addr with addrlen specifying its size. For
sendmsg(), the address of the target is given by msg.msg_name, with msg.msg_name-
len specifying its size.

For send() and sendto(), the message is found in buf and has size size. For
sendmsg(), the message is pointed to by the elements of the array msg.msg_iov. The
sendmsg() call also allows sending ancillary data (also known as control informa-
tion).

If the message is too long to pass atomically through the underlying protocol, the er-
ror EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send(). Locally detected errors are
indicated by a return value of -1.

When the message does not fit into the send buffer of the socket, send() normally
blocks, unless the socket has been placed in nonblocking I/O mode. In nonblocking
mode it would fail with the error EAGAIN or EWOULDBLOCK in this case. The
select(2) call may be used to determine when it is possible to send more data.

The flags argument
The flags argument is the bitwise OR of zero or more of the following flags.

Linux man-pages 6.13 2024-11-17 861

send(2) System Calls Manual send(2)

MSG_CONFIRM (since Linux 2.3.15)
Tell the link layer that forward progress happened: you got a successful reply
from the other side. If the link layer doesn’t get this it will regularly reprobe
the neighbor (e.g., via a unicast ARP). Valid only on SOCK_DGRAM and
SOCK_RAW sockets and currently implemented only for IPv4 and IPv6. See
arp(7) for details.

MSG_DONTROUTE
Don’t use a gateway to send out the packet, send to hosts only on directly con-
nected networks. This is usually used only by diagnostic or routing programs.
This is defined only for protocol families that route; packet sockets don’t.

MSG_DONTWAIT (since Linux 2.2)
Enables nonblocking operation; if the operation would block, EAGAIN or
EWOULDBLOCK is returned. This provides similar behavior to setting the
O_NONBLOCK flag (via the fcntl(2) F_SETFL operation), but differs in that
MSG_DONTWAIT is a per-call option, whereas O_NONBLOCK is a set-
ting on the open file description (see open(2)), which will affect all threads in
the calling process as well as other processes that hold file descriptors refer-
ring to the same open file description.

MSG_EOR (since Linux 2.2)
Terminates a record (when this notion is supported, as for sockets of type
SOCK_SEQPACKET).

MSG_MORE (since Linux 2.4.4)
The caller has more data to send. This flag is used with TCP sockets to obtain
the same effect as the TCP_CORK socket option (see tcp(7)), with the differ-
ence that this flag can be set on a per-call basis.

Since Linux 2.6, this flag is also supported for UDP sockets, and informs the
kernel to package all of the data sent in calls with this flag set into a single
datagram which is transmitted only when a call is performed that does not
specify this flag. (See also the UDP_CORK socket option described in
udp(7).)

MSG_NOSIGNAL (since Linux 2.2)
Don’t generate a SIGPIPE signal if the peer on a stream-oriented socket has
closed the connection. The EPIPE error is still returned. This provides simi-
lar behavior to using sigaction(2) to ignore SIGPIPE, but, whereas
MSG_NOSIGNAL is a per-call feature, ignoring SIGPIPE sets a process at-
tribute that affects all threads in the process.

MSG_OOB
Sends out-of-band data on sockets that support this notion (e.g., of type
SOCK_STREAM); the underlying protocol must also support out-of-band
data.

MSG_FASTOPEN (since Linux 3.7)
Attempts TCP Fast Open (RFC7413) and sends data in the SYN like a combi-
nation of connect(2) and write(2), by performing an implicit connect(2) opera-
tion. It blocks until the data is buffered and the handshake has completed. For
a non-blocking socket, it returns the number of bytes buffered and sent in the

Linux man-pages 6.13 2024-11-17 862

send(2) System Calls Manual send(2)

SYN packet. If the cookie is not available locally, it returns EINPROGRESS,
and sends a SYN with a Fast Open cookie request automatically. The caller
needs to write the data again when the socket is connected. On errors, it sets
the same errno as connect(2) if the handshake fails. This flag requires en-
abling TCP Fast Open client support on sysctl net.ipv4.tcp_fastopen.

Refer to TCP_FASTOPEN_CONNECT socket option in tcp(7) for an alter-
native approach.

sendmsg()
The definition of the msghdr structure employed by sendmsg() is as follows:

struct msghdr {
void *msg_name; /* Optional address */
socklen_t msg_namelen; /* Size of address */
struct iovec *msg_iov; /* Scatter/gather array */
size_t msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* Ancillary data, see below */
size_t msg_controllen; /* Ancillary data buffer size */
int msg_flags; /* Flags (unused) */

};

The msg_name field is used on an unconnected socket to specify the target address for
a datagram. It points to a buffer containing the address; the msg_namelen field should
be set to the size of the address. For a connected socket, these fields should be speci-
fied as NULL and 0, respectively.

The msg_iov and msg_iovlen fields specify scatter-gather locations, as for writev(2).

You may send control information (ancillary data) using the msg_control and
msg_controllen members. The maximum control buffer size the kernel can process is
limited per socket by the value in /proc/sys/net/core/optmem_max; see socket(7). For
further information on the use of ancillary data in various socket domains, see unix(7)
and ip(7).

The msg_flags field is ignored.

RETURN VALUE
On success, these calls return the number of bytes sent. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
These are some standard errors generated by the socket layer. Additional errors may
be generated and returned from the underlying protocol modules; see their respective
manual pages.

EACCES
(For UNIX domain sockets, which are identified by pathname) Write permis-
sion is denied on the destination socket file, or search permission is denied for
one of the directories the path prefix. (See path_resolution(7).)

(For UDP sockets) An attempt was made to send to a network/broadcast ad-
dress as though it was a unicast address.

Linux man-pages 6.13 2024-11-17 863

send(2) System Calls Manual send(2)

EAGAIN or EWOULDBLOCK
The socket is marked nonblocking and the requested operation would block.
POSIX.1-2001 allows either error to be returned for this case, and does not re-
quire these constants to have the same value, so a portable application should
check for both possibilities.

EAGAIN
(Internet domain datagram sockets) The socket referred to by sockfd had not
previously been bound to an address and, upon attempting to bind it to an
ephemeral port, it was determined that all port numbers in the ephemeral port
range are currently in use. See the discussion of /proc/sys/net/ipv4/ip_lo-
cal_port_range in ip(7).

EALREADY
Another Fast Open is in progress.

EBADF
sockfd is not a valid open file descriptor.

ECONNRESET
Connection reset by peer.

EDESTADDRREQ
The socket is not connection-mode, and no peer address is set.

EFAULT
An invalid user space address was specified for an argument.

EINTR
A signal occurred before any data was transmitted; see signal(7).

EINVAL
Invalid argument passed.

EISCONN
The connection-mode socket was connected already but a recipient was speci-
fied. (Now either this error is returned, or the recipient specification is ig-
nored.)

EMSGSIZE
The socket type requires that message be sent atomically, and the size of the
message to be sent made this impossible.

ENOBUFS
The output queue for a network interface was full. This generally indicates
that the interface has stopped sending, but may be caused by transient conges-
tion. (Normally, this does not occur in Linux. Packets are just silently
dropped when a device queue overflows.)

ENOMEM
No memory available.

ENOTCONN
The socket is not connected, and no target has been given.

Linux man-pages 6.13 2024-11-17 864

send(2) System Calls Manual send(2)

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EOPNOTSUPP
Some bit in the flags argument is inappropriate for the socket type.

EPIPE
The local end has been shut down on a connection oriented socket. In this
case, the process will also receive a SIGPIPE unless MSG_NOSIGNAL is
set.

VERSIONS
According to POSIX.1-2001, the msg_controllen field of the msghdr structure should
be typed as socklen_t, and the msg_iovlen field should be typed as int, but glibc cur-
rently types both as size_t.

STANDARDS
POSIX.1-2008.

MSG_CONFIRM is a Linux extension.

HISTORY
4.4BSD, SVr4, POSIX.1-2001. (first appeared in 4.2BSD).

POSIX.1-2001 describes only the MSG_OOB and MSG_EOR flags. POSIX.1-2008
adds a specification of MSG_NOSIGNAL.

NOTES
See sendmmsg(2) for information about a Linux-specific system call that can be used
to transmit multiple datagrams in a single call.

BUGS
Linux may return EPIPE instead of ENOTCONN.

EXAMPLES
An example of the use of sendto() is shown in getaddrinfo(3).

SEE ALSO
fcntl(2), getsockopt(2), recv(2), select(2), sendfile(2), sendmmsg(2), shutdown(2),
socket(2), write(2), cmsg(3), ip(7), ipv6(7), socket(7), tcp(7), udp(7), unix(7)

Linux man-pages 6.13 2024-11-17 865

sendfile(2) System Calls Manual sendfile(2)

NAME
sendfile - transfer data between file descriptors

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sendfile.h>

ssize_t sendfile(int out_fd , int in_fd , off_t *_Nullable offset,
size_t count);

DESCRIPTION
sendfile() copies data between one file descriptor and another. Because this copying
is done within the kernel, sendfile() is more efficient than the combination of read(2)
and write(2), which would require transferring data to and from user space.

in_fd should be a file descriptor opened for reading and out_fd should be a descriptor
opened for writing.

If offset is not NULL, then it points to a variable holding the file offset from which
sendfile() will start reading data from in_fd . When sendfile() returns, this variable
will be set to the offset of the byte following the last byte that was read. If offset is
not NULL, then sendfile() does not modify the file offset of in_fd; otherwise the file
offset is adjusted to reflect the number of bytes read from in_fd .

If offset is NULL, then data will be read from in_fd starting at the file offset, and the
file offset will be updated by the call.

count is the number of bytes to copy between the file descriptors.

The in_fd argument must correspond to a file which supports mmap(2)-like operations
(i.e., it cannot be a socket). Except since Linux 5.12 and if out_fd is a pipe, in which
case sendfile() desugars to a splice(2) and its restrictions apply.

Before Linux 2.6.33, out_fd must refer to a socket. Since Linux 2.6.33 it can be any
file. If it’s seekable, then sendfile() changes the file offset appropriately.

RETURN VALUE
If the transfer was successful, the number of bytes written to out_fd is returned. Note
that a successful call to sendfile() may write fewer bytes than requested; the caller
should be prepared to retry the call if there were unsent bytes. See also NOTES.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

Nonblocking I/O has been selected using O_NONBLOCK and the write
would block.

EBADF
The input file was not opened for reading or the output file was not opened for
writing.

EFAULT
Bad address.

Linux man-pages 6.13 2024-07-23 866

sendfile(2) System Calls Manual sendfile(2)

EINVAL
Descriptor is not valid or locked, or an mmap(2)-like operation is not available
for in_fd , or count is negative.

EINVAL
out_fd has the O_APPEND flag set. This is not currently supported by send-
file().

EIO Unspecified error while reading from in_fd .

ENOMEM
Insufficient memory to read from in_fd .

EOVERFLOW
count is too large, the operation would result in exceeding the maximum size
of either the input file or the output file.

ESPIPE
offset is not NULL but the input file is not seekable.

VERSIONS
Other UNIX systems implement sendfile() with different semantics and prototypes. It
should not be used in portable programs.

STANDARDS
None.

HISTORY
Linux 2.2, glibc 2.1.

In Linux 2.4 and earlier, out_fd could also refer to a regular file; this possibility went
away in the Linux 2.6.x kernel series, but was restored in Linux 2.6.33.

The original Linux sendfile() system call was not designed to handle large file offsets.
Consequently, Linux 2.4 added sendfile64(), with a wider type for the offset argu-
ment. The glibc sendfile() wrapper function transparently deals with the kernel differ-
ences.

NOTES
sendfile() will transfer at most 0x7ffff000 (2,147,479,552) bytes, returning the num-
ber of bytes actually transferred. (This is true on both 32-bit and 64-bit systems.)

If you plan to use sendfile() for sending files to a TCP socket, but need to send some
header data in front of the file contents, you will find it useful to employ the
TCP_CORK option, described in tcp(7), to minimize the number of packets and to
tune performance.

Applications may wish to fall back to read(2) and write(2) in the case where send-
file() fails with EINVAL or ENOSYS.

If out_fd refers to a socket or pipe with zero-copy support, callers must ensure the
transferred portions of the file referred to by in_fd remain unmodified until the reader
on the other end of out_fd has consumed the transferred data.

The Linux-specific splice(2) call supports transferring data between arbitrary file de-
scriptors provided one (or both) of them is a pipe.

Linux man-pages 6.13 2024-07-23 867

sendfile(2) System Calls Manual sendfile(2)

SEE ALSO
copy_file_range(2), mmap(2), open(2), socket(2), splice(2)

Linux man-pages 6.13 2024-07-23 868

sendmmsg(2) System Calls Manual sendmmsg(2)

NAME
sendmmsg - send multiple messages on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/socket.h>

int sendmmsg(int sockfd , struct mmsghdr msgvec[.n], unsigned int n,
int flags);

DESCRIPTION
The sendmmsg() system call is an extension of sendmsg(2) that allows the caller to
transmit multiple messages on a socket using a single system call. (This has perfor-
mance benefits for some applications.)

The sockfd argument is the file descriptor of the socket on which data is to be trans-
mitted.

The msgvec argument is a pointer to an array of mmsghdr structures. The size of this
array is specified in n.

The mmsghdr structure is defined in <sys/socket.h> as:

struct mmsghdr {
struct msghdr msg_hdr; /* Message header */
unsigned int msg_len; /* Number of bytes transmitted */

};

The msg_hdr field is a msghdr structure, as described in sendmsg(2). The msg_len
field is used to return the number of bytes sent from the message in msg_hdr (i.e., the
same as the return value from a single sendmsg(2) call).

The flags argument contains flags ORed together. The flags are the same as for
sendmsg(2).

A blocking sendmmsg() call blocks until n messages have been sent. A nonblocking
call sends as many messages as possible (up to the limit specified by n) and returns
immediately.

On return from sendmmsg(), the msg_len fields of successive elements of msgvec are
updated to contain the number of bytes transmitted from the corresponding msg_hdr.
The return value of the call indicates the number of elements of msgvec that have
been updated.

RETURN VALUE
On success, sendmmsg() returns the number of messages sent from msgvec; if this is
less than n, the caller can retry with a further sendmmsg() call to send the remaining
messages.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
Errors are as for sendmsg(2). An error is returned only if no datagrams could be sent.
See also BUGS.

Linux man-pages 6.13 2024-11-17 869

sendmmsg(2) System Calls Manual sendmmsg(2)

STANDARDS
Linux.

HISTORY
Linux 3.0, glibc 2.14.

NOTES
The value specified in n is capped to UIO_MAXIOV (1024).

BUGS
If an error occurs after at least one message has been sent, the call succeeds, and re-
turns the number of messages sent. The error code is lost. The caller can retry the
transmission, starting at the first failed message, but there is no guarantee that, if an
error is returned, it will be the same as the one that was lost on the previous call.

EXAMPLES
The example below uses sendmmsg() to send onetwo and three in two distinct UDP
datagrams using one system call. The contents of the first datagram originates from a
pair of buffers.

#define _GNU_SOURCE
#include <arpa/inet.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>

int
main(void)
{

int retval;
int sockfd;
struct iovec msg1[2], msg2;
struct mmsghdr msg[2];
struct sockaddr_in addr;

sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if (sockfd == -1) {

perror("socket()");
exit(EXIT_FAILURE);

}

addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
addr.sin_port = htons(1234);
if (connect(sockfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {

perror("connect()");
exit(EXIT_FAILURE);

}

Linux man-pages 6.13 2024-11-17 870

sendmmsg(2) System Calls Manual sendmmsg(2)

memset(msg1, 0, sizeof(msg1));
msg1[0].iov_base = "one";
msg1[0].iov_len = 3;
msg1[1].iov_base = "two";
msg1[1].iov_len = 3;

memset(&msg2, 0, sizeof(msg2));
msg2.iov_base = "three";
msg2.iov_len = 5;

memset(msg, 0, sizeof(msg));
msg[0].msg_hdr.msg_iov = msg1;
msg[0].msg_hdr.msg_iovlen = 2;

msg[1].msg_hdr.msg_iov = &msg2;
msg[1].msg_hdr.msg_iovlen = 1;

retval = sendmmsg(sockfd, msg, 2, 0);
if (retval == -1)

perror("sendmmsg()");
else

printf("%d messages sent\n", retval);

exit(0);
}

SEE ALSO
recvmmsg(2), sendmsg(2), socket(2), socket(7)

Linux man-pages 6.13 2024-11-17 871

set_mempolicy(2) System Calls Manual set_mempolicy(2)

NAME
set_mempolicy - set default NUMA memory policy for a thread and its children

LIBRARY
NUMA (Non-Uniform Memory Access) policy library (libnuma, -lnuma)

SYNOPSIS
#include <numaif.h>

long set_mempolicy(int mode, const unsigned long *nodemask,
unsigned long maxnode);

DESCRIPTION
set_mempolicy() sets the NUMA memory policy of the calling thread, which consists
of a policy mode and zero or more nodes, to the values specified by the mode, node-
mask, and maxnode arguments.

A NUMA machine has different memory controllers with different distances to spe-
cific CPUs. The memory policy defines from which node memory is allocated for the
thread.

This system call defines the default policy for the thread. The thread policy governs
allocation of pages in the process’s address space outside of memory ranges con-
trolled by a more specific policy set by mbind(2). The thread default policy also con-
trols allocation of any pages for memory-mapped files mapped using the mmap(2) call
with the MAP_PRIVATE flag and that are only read (loaded) from by the thread and
of memory-mapped files mapped using the mmap(2) call with the MAP_SHARED
flag, regardless of the access type. The policy is applied only when a new page is al-
located for the thread. For anonymous memory this is when the page is first touched
by the thread.

The mode argument must specify one of MPOL_DEFAULT, MPOL_BIND,
MPOL_INTERLEAVE, MPOL_WEIGHTED_INTERLEAVE, MPOL_PRE-
FERRED, MPOL_PREFERRED_MANY, or MPOL_LOCAL (which are de-
scribed in detail below). All modes except MPOL_DEFAULT require the caller to
specify the node or nodes to which the mode applies, via the nodemask argument.

The mode argument may also include an optional mode flag. The supported mode
flags are:

MPOL_F_NUMA_BALANCING (since Linux 5.12)
When mode is MPOL_BIND, enable the kernel NUMA balancing for the task
if it is supported by the kernel. If the flag isn’t supported by the kernel, or is
used with mode other than MPOL_BIND, -1 is returned and errno is set to
EINVAL.

MPOL_F_RELATIVE_NODES (since Linux 2.6.26)
A nonempty nodemask specifies node IDs that are relative to the set of node
IDs allowed by the process’s current cpuset.

MPOL_F_STATIC_NODES (since Linux 2.6.26)
A nonempty nodemask specifies physical node IDs. Linux will not remap the
nodemask when the process moves to a different cpuset context, nor when the
set of nodes allowed by the process’s current cpuset context changes.

nodemask points to a bit mask of node IDs that contains up to maxnode bits. The bit

Linux man-pages 6.13 2025-02-21 872

set_mempolicy(2) System Calls Manual set_mempolicy(2)

mask size is rounded to the next multiple of sizeof(unsigned long), but the kernel will
use bits only up to maxnode. A NULL value of nodemask or a maxnode value of zero
specifies the empty set of nodes. If the value of maxnode is zero, the nodemask argu-
ment is ignored.

Where a nodemask is required, it must contain at least one node that is on-line, al-
lowed by the process’s current cpuset context, (unless the MPOL_F_STA-
TIC_NODES mode flag is specified), and contains memory. If the MPOL_F_STA-
TIC_NODES is set in mode and a required nodemask contains no nodes that are al-
lowed by the process’s current cpuset context, the memory policy reverts to local allo-
cation. This effectively overrides the specified policy until the process’s cpuset con-
text includes one or more of the nodes specified by nodemask.

The mode argument must include one of the following values:

MPOL_DEFAULT
This mode specifies that any nondefault thread memory policy be removed, so
that the memory policy "falls back" to the system default policy. The system
default policy is "local allocation"—that is, allocate memory on the node of
the CPU that triggered the allocation. nodemask must be specified as NULL.
If the "local node" contains no free memory, the system will attempt to allo-
cate memory from a "near by" node.

MPOL_BIND
This mode defines a strict policy that restricts memory allocation to the nodes
specified in nodemask. If nodemask specifies more than one node, page allo-
cations will come from the node with the lowest numeric node ID first, until
that node contains no free memory. Allocations will then come from the node
with the next highest node ID specified in nodemask and so forth, until none
of the specified nodes contain free memory. Pages will not be allocated from
any node not specified in the nodemask.

MPOL_INTERLEAVE
This mode interleaves page allocations across the nodes specified in nodemask
in numeric node ID order. This optimizes for bandwidth instead of latency by
spreading out pages and memory accesses to those pages across multiple
nodes. However, accesses to a single page will still be limited to the memory
bandwidth of a single node.

MPOL_WEIGHTED_INTERLEAVE (since Linux 6.9)
This mode interleaves page allocations across the nodes specified in nodemask
according to the weights in /sys/kernel/mm/mempolicy/weighted_interleave.
For example, if bits 0, 2, and 5 are set in nodemask, and the contents of
/sys/kernel/mm/mempolicy/weighted_interleave/node0, /sys/ . . . /node2, and
/sys/ . . . /node5 are 4, 7, and 9, respectively, then pages in this region will be
allocated on nodes 0, 2, and 5 in a 4:7:9 ratio.

MPOL_PREFERRED
This mode sets the preferred node for allocation. The kernel will try to allo-
cate pages from this node first and fall back to "near by" nodes if the preferred
node is low on free memory. If nodemask specifies more than one node ID,
the first node in the mask will be selected as the preferred node. If the node-
mask and maxnode arguments specify the empty set, then the policy specifies

Linux man-pages 6.13 2025-02-21 873

set_mempolicy(2) System Calls Manual set_mempolicy(2)

"local allocation" (like the system default policy discussed above).

MPOL_PREFERRED_MANY (since Linux 5.15)
This mode specifies a preference for nodes from which the kernel will try to
allocate from. This differs from MPOL_PREFERRED in that it accepts a set
of nodes versus a single node. This policy is intended to benefit page alloca-
tions where specific memory types (i.e. non-volatile, high-bandwidth, or accel-
erator memory) are of greater importance than node location.

MPOL_LOCAL (since Linux 3.8)
This mode specifies "local allocation"; the memory is allocated on the node of
the CPU that triggered the allocation (the "local node"). The nodemask and
maxnode arguments must specify the empty set. If the "local node" is low on
free memory, the kernel will try to allocate memory from other nodes. The
kernel will allocate memory from the "local node" whenever memory for this
node is available. If the "local node" is not allowed by the process’s current
cpuset context, the kernel will try to allocate memory from other nodes. The
kernel will allocate memory from the "local node" whenever it becomes al-
lowed by the process’s current cpuset context.

The thread memory policy is preserved across an execve(2), and is inherited by child
threads created using fork(2) or clone(2).

RETURN VALUE
On success, set_mempolicy() returns 0; on error, -1 is returned and errno is set to in-
dicate the error.

ERRORS
EFAULT

Part of all of the memory range specified by nodemask and maxnode points
outside your accessible address space.

EINVAL
mode is invalid. Or, mode is MPOL_DEFAULT and nodemask is nonempty,
or mode is MPOL_BIND or MPOL_INTERLEAVE and nodemask is
empty. Or, maxnode specifies more than a page worth of bits. Or, nodemask
specifies one or more node IDs that are greater than the maximum supported
node ID. Or, none of the node IDs specified by nodemask are on-line and al-
lowed by the process’s current cpuset context, or none of the specified nodes
contain memory. Or, the mode argument specified both MPOL_F_STA-
TIC_NODES and MPOL_F_RELATIVE_NODES. Or, the
MPOL_F_NUMA_BALANCING isn’t supported by the kernel, or is used
with mode other than MPOL_BIND.

ENOMEM
Insufficient kernel memory was available.

STANDARDS
Linux.

HISTORY
Linux 2.6.7.

Linux man-pages 6.13 2025-02-21 874

set_mempolicy(2) System Calls Manual set_mempolicy(2)

NOTES
Memory policy is not remembered if the page is swapped out. When such a page is
paged back in, it will use the policy of the thread or memory range that is in effect at
the time the page is allocated.

For information on library support, see numa(7).

SEE ALSO
get_mempolicy(2), getcpu(2), mbind(2), mmap(2), numa(3), cpuset(7), numa(7), nu-
mactl(8)

Linux man-pages 6.13 2025-02-21 875

set_thread_area(2) System Calls Manual set_thread_area(2)

NAME
get_thread_area, set_thread_area - manipulate thread-local storage information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

#if defined __i386__ || defined __x86_64__
include <asm/ldt.h> /* Definition of struct user_desc */

int syscall(SYS_get_thread_area, struct user_desc *u_info);
int syscall(SYS_set_thread_area, struct user_desc *u_info);

#elif defined __m68k__

int syscall(SYS_get_thread_area);
int syscall(SYS_set_thread_area, unsigned long tp);

#elif defined __mips__ || defined __csky__

int syscall(SYS_set_thread_area, unsigned long addr);

#endif

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
These calls provide architecture-specific support for a thread-local storage implemen-
tation. At the moment, set_thread_area() is available on m68k, MIPS, C-SKY, and
x86 (both 32-bit and 64-bit variants); get_thread_area() is available on m68k and
x86.

On m68k, MIPS and C-SKY, set_thread_area() allows storing an arbitrary pointer
(provided in the tp argument on m68k and in the addr argument on MIPS and C-
SKY) in the kernel data structure associated with the calling thread; this pointer can
later be retrieved using get_thread_area() (see also NOTES for information regard-
ing obtaining the thread pointer on MIPS).

On x86, Linux dedicates three global descriptor table (GDT) entries for thread-local
storage. For more information about the GDT, see the Intel Software Developer’s
Manual or the AMD Architecture Programming Manual.

Both of these system calls take an argument that is a pointer to a structure of the fol-
lowing type:

struct user_desc {
unsigned int entry_number;
unsigned int base_addr;
unsigned int limit;
unsigned int seg_32bit:1;
unsigned int contents:2;
unsigned int read_exec_only:1;
unsigned int limit_in_pages:1;
unsigned int seg_not_present:1;

Linux man-pages 6.13 2024-07-23 876

set_thread_area(2) System Calls Manual set_thread_area(2)

unsigned int useable:1;
#ifdef __x86_64__

unsigned int lm:1;
#endif
};

get_thread_area() reads the GDT entry indicated by u_info->entry_number and fills
in the rest of the fields in u_info.

set_thread_area() sets a TLS entry in the GDT.

The TLS array entry set by set_thread_area() corresponds to the value of
u_info->entry_number passed in by the user. If this value is in bounds,
set_thread_area() writes the TLS descriptor pointed to by u_info into the thread’s
TLS array.

When set_thread_area() is passed an entry_number of -1, it searches for a free TLS
entry. If set_thread_area() finds a free TLS entry, the value of u_info->entry_num-
ber is set upon return to show which entry was changed.

A user_desc is considered "empty" if read_exec_only and seg_not_present are set to
1 and all of the other fields are 0. If an "empty" descriptor is passed to
set_thread_area(), the corresponding TLS entry will be cleared. See BUGS for addi-
tional details.

Since Linux 3.19, set_thread_area() cannot be used to write non-present segments,
16-bit segments, or code segments, although clearing a segment is still acceptable.

RETURN VALUE
On x86, these system calls return 0 on success, and -1 on failure, with errno set to in-
dicate the error.

On C-SKY, MIPS and m68k, set_thread_area() always returns 0. On m68k,
get_thread_area() returns the thread area pointer value (previously set via
set_thread_area())

ERRORS
EFAULT

u_info is an invalid pointer.

EINVAL
u_info->entry_number is out of bounds.

ENOSYS
get_thread_area() or set_thread_area() was invoked as a 64-bit system call.

ESRCH
(set_thread_area()) A free TLS entry could not be located.

STANDARDS
Linux.

HISTORY
set_thread_area()

Linux 2.5.29.

Linux man-pages 6.13 2024-07-23 877

set_thread_area(2) System Calls Manual set_thread_area(2)

get_thread_area()
Linux 2.5.32.

NOTES
These system calls are generally intended for use only by threading libraries.

arch_prctl(2) can interfere with set_thread_area() on x86. See arch_prctl(2) for
more details. This is not normally a problem, as arch_prctl(2) is normally used only
by 64-bit programs.

On MIPS, the current value of the thread area pointer can be obtained using the in-
struction:

rdhwr dest, $29

This instruction traps and is handled by kernel.

BUGS
On 64-bit kernels before Linux 3.19, one of the padding bits in user_desc, if set,
would prevent the descriptor from being considered empty (see modify_ldt(2)). As a
result, the only reliable way to clear a TLS entry is to use memset(3) to zero the entire
user_desc structure, including padding bits, and then to set the read_exec_only and
seg_not_present bits. On Linux 3.19, a user_desc consisting entirely of zeros except
for entry_number will also be interpreted as a request to clear a TLS entry, but this
behaved differently on older kernels.

Prior to Linux 3.19, the DS and ES segment registers must not reference TLS entries.

SEE ALSO
arch_prctl(2), modify_ldt(2), ptrace(2) (PTRACE_GET_THREAD_AREA and
PTRACE_SET_THREAD_AREA)

Linux man-pages 6.13 2024-07-23 878

set_tid_address(2) System Calls Manual set_tid_address(2)

NAME
set_tid_address - set pointer to thread ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

pid_t syscall(SYS_set_tid_address, int *tidptr);

Note: glibc provides no wrapper for set_tid_address(), necessitating the use of
syscall(2).

DESCRIPTION
For each thread, the kernel maintains two attributes (addresses) called set_child_tid
and clear_child_tid . These two attributes contain the value NULL by default.

set_child_tid
If a thread is started using clone(2) with the CLONE_CHILD_SETTID flag,
set_child_tid is set to the value passed in the ctid argument of that system call.

When set_child_tid is set, the very first thing the new thread does is to write
its thread ID at this address.

clear_child_tid
If a thread is started using clone(2) with the CLONE_CHILD_CLEARTID
flag, clear_child_tid is set to the value passed in the ctid argument of that sys-
tem call.

The system call set_tid_address() sets the clear_child_tid value for the calling thread
to tidptr.

When a thread whose clear_child_tid is not NULL terminates, then, if the thread is
sharing memory with other threads, then 0 is written at the address specified in
clear_child_tid and the kernel performs the following operation:

futex(clear_child_tid, FUTEX_WAKE, 1, NULL, NULL, 0);

The effect of this operation is to wake a single thread that is performing a futex wait
on the memory location. Errors from the futex wake operation are ignored.

RETURN VALUE
set_tid_address() always returns the caller’s thread ID.

ERRORS
set_tid_address() always succeeds.

STANDARDS
Linux.

HISTORY
Linux 2.5.48.

Details as given here are valid since Linux 2.5.49.

Linux man-pages 6.13 2024-07-23 879

set_tid_address(2) System Calls Manual set_tid_address(2)

SEE ALSO
clone(2), futex(2), gettid(2)

Linux man-pages 6.13 2024-07-23 880

seteuid(2) System Calls Manual seteuid(2)

NAME
seteuid, setegid - set effective user or group ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int seteuid(uid_t euid);
int setegid(gid_t egid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

seteuid(), setegid():
_POSIX_C_SOURCE >= 200112L

|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
seteuid() sets the effective user ID of the calling process. Unprivileged processes
may only set the effective user ID to the real user ID, the effective user ID or the
saved set-user-ID.

Precisely the same holds for setegid() with "group" instead of "user".

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

Note: there are cases where seteuid() can fail even when the caller is UID 0; it is a
grave security error to omit checking for a failure return from seteuid().

ERRORS
EINVAL

The target user or group ID is not valid in this user namespace.

EPERM
In the case of seteuid(): the calling process is not privileged (does not have the
CAP_SETUID capability in its user namespace) and euid does not match the
current real user ID, current effective user ID, or current saved set-user-ID.

In the case of setegid(): the calling process is not privileged (does not have the
CAP_SETGID capability in its user namespace) and egid does not match the
current real group ID, current effective group ID, or current saved set-group-
ID.

VERSIONS
Setting the effective user (group) ID to the saved set-user-ID (saved set-group-ID) is
possible since Linux 1.1.37 (1.1.38). On an arbitrary system one should check
_POSIX_SAVED_IDS.

Under glibc 2.0, seteuid(euid) is equivalent to setreuid(-1, euid) and hence may
change the saved set-user-ID. Under glibc 2.1 and later, it is equivalent to setre-
suid(-1, euid , -1) and hence does not change the saved set-user-ID. Analogous re-
marks hold for setegid(), with the difference that the change in implementation from
setregid(-1, egid) to setresgid(-1, egid , -1) occurred in glibc 2.2 or 2.3 (depending
on the hardware architecture).

Linux man-pages 6.13 2024-07-23 881

seteuid(2) System Calls Manual seteuid(2)

According to POSIX.1, seteuid() (setegid()) need not permit euid (egid) to be the
same value as the current effective user (group) ID, and some implementations do not
permit this.

C library/kernel differences
On Linux, seteuid() and setegid() are implemented as library functions that call, re-
spectively, setresuid(2) and setresgid(2).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

SEE ALSO
geteuid(2), setresuid(2), setreuid(2), setuid(2), capabilities(7), credentials(7),
user_namespaces(7)

Linux man-pages 6.13 2024-07-23 882

setfsgid(2) System Calls Manual setfsgid(2)

NAME
setfsgid - set group identity used for filesystem checks

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/fsuid.h>

[[deprecated]] int setfsgid(gid_t fsgid);

DESCRIPTION
On Linux, a process has both a filesystem group ID and an effective group ID. The
(Linux-specific) filesystem group ID is used for permissions checking when accessing
filesystem objects, while the effective group ID is used for some other kinds of per-
missions checks (see credentials(7)).

Normally, the value of the process’s filesystem group ID is the same as the value of its
effective group ID. This is so, because whenever a process’s effective group ID is
changed, the kernel also changes the filesystem group ID to be the same as the new
value of the effective group ID. A process can cause the value of its filesystem group
ID to diverge from its effective group ID by using setfsgid() to change its filesystem
group ID to the value given in fsgid .

setfsgid() will succeed only if the caller is the superuser or if fsgid matches either the
caller’s real group ID, effective group ID, saved set-group-ID, or current the filesys-
tem user ID.

RETURN VALUE
On both success and failure, this call returns the previous filesystem group ID of the
caller.

STANDARDS
Linux.

HISTORY
Linux 1.2.

C library/kernel differences
In glibc 2.15 and earlier, when the wrapper for this system call determines that the ar-
gument can’t be passed to the kernel without integer truncation (because the kernel is
old and does not support 32-bit group IDs), it will return -1 and set errno to EINVAL
without attempting the system call.

NOTES
The filesystem group ID concept and the setfsgid() system call were invented for his-
torical reasons that are no longer applicable on modern Linux kernels. See setfsuid(2)
for a discussion of why the use of both setfsuid(2) and setfsgid() is nowadays un-
needed.

The original Linux setfsgid() system call supported only 16-bit group IDs. Subse-
quently, Linux 2.4 added setfsgid32() supporting 32-bit IDs. The glibc setfsgid()
wrapper function transparently deals with the variation across kernel versions.

Linux man-pages 6.13 2024-07-23 883

setfsgid(2) System Calls Manual setfsgid(2)

BUGS
No error indications of any kind are returned to the caller, and the fact that both suc-
cessful and unsuccessful calls return the same value makes it impossible to directly
determine whether the call succeeded or failed. Instead, the caller must resort to look-
ing at the return value from a further call such as setfsgid(-1) (which will always
fail), in order to determine if a preceding call to setfsgid() changed the filesystem
group ID. At the very least, EPERM should be returned when the call fails (because
the caller lacks the CAP_SETGID capability).

SEE ALSO
kill(2), setfsuid(2), capabilities(7), credentials(7)

Linux man-pages 6.13 2024-07-23 884

setfsuid(2) System Calls Manual setfsuid(2)

NAME
setfsuid - set user identity used for filesystem checks

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/fsuid.h>

[[deprecated]] int setfsuid(uid_t fsuid);

DESCRIPTION
On Linux, a process has both a filesystem user ID and an effective user ID. The
(Linux-specific) filesystem user ID is used for permissions checking when accessing
filesystem objects, while the effective user ID is used for various other kinds of per-
missions checks (see credentials(7)).

Normally, the value of the process’s filesystem user ID is the same as the value of its
effective user ID. This is so, because whenever a process’s effective user ID is
changed, the kernel also changes the filesystem user ID to be the same as the new
value of the effective user ID. A process can cause the value of its filesystem user ID
to diverge from its effective user ID by using setfsuid() to change its filesystem user
ID to the value given in fsuid .

Explicit calls to setfsuid() and setfsgid(2) are (were) usually used only by programs
such as the Linux NFS server that need to change what user and group ID is used for
file access without a corresponding change in the real and effective user and group
IDs. A change in the normal user IDs for a program such as the NFS server is (was) a
security hole that can expose it to unwanted signals. (However, this issue is historical;
see below.)

setfsuid() will succeed only if the caller is the superuser or if fsuid matches either the
caller’s real user ID, effective user ID, saved set-user-ID, or current filesystem user
ID.

RETURN VALUE
On both success and failure, this call returns the previous filesystem user ID of the
caller.

STANDARDS
Linux.

HISTORY
Linux 1.2.

At the time when this system call was introduced, one process could send a signal to
another process with the same effective user ID. This meant that if a privileged
process changed its effective user ID for the purpose of file permission checking, then
it could become vulnerable to receiving signals sent by another (unprivileged) process
with the same user ID. The filesystem user ID attribute was thus added to allow a
process to change its user ID for the purposes of file permission checking without at
the same time becoming vulnerable to receiving unwanted signals. Since Linux 2.0,
signal permission handling is different (see kill(2)), with the result that a process can
change its effective user ID without being vulnerable to receiving signals from un-
wanted processes. Thus, setfsuid() is nowadays unneeded and should be avoided in

Linux man-pages 6.13 2024-07-23 885

setfsuid(2) System Calls Manual setfsuid(2)

new applications (likewise for setfsgid(2)).

The original Linux setfsuid() system call supported only 16-bit user IDs. Subse-
quently, Linux 2.4 added setfsuid32() supporting 32-bit IDs. The glibc setfsuid()
wrapper function transparently deals with the variation across kernel versions.

C library/kernel differences
In glibc 2.15 and earlier, when the wrapper for this system call determines that the ar-
gument can’t be passed to the kernel without integer truncation (because the kernel is
old and does not support 32-bit user IDs), it will return -1 and set errno to EINVAL
without attempting the system call.

BUGS
No error indications of any kind are returned to the caller, and the fact that both suc-
cessful and unsuccessful calls return the same value makes it impossible to directly
determine whether the call succeeded or failed. Instead, the caller must resort to look-
ing at the return value from a further call such as setfsuid(-1) (which will always
fail), in order to determine if a preceding call to setfsuid() changed the filesystem user
ID. At the very least, EPERM should be returned when the call fails (because the
caller lacks the CAP_SETUID capability).

SEE ALSO
kill(2), setfsgid(2), capabilities(7), credentials(7)

Linux man-pages 6.13 2024-07-23 886

setgid(2) System Calls Manual setgid(2)

NAME
setgid - set group identity

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int setgid(gid_t gid);

DESCRIPTION
setgid() sets the effective group ID of the calling process. If the calling process is
privileged (more precisely: has the CAP_SETGID capability in its user namespace),
the real GID and saved set-group-ID are also set.

Under Linux, setgid() is implemented like the POSIX version with the
_POSIX_SAVED_IDS feature. This allows a set-group-ID program that is not set-
user-ID-root to drop all of its group privileges, do some un-privileged work, and then
reengage the original effective group ID in a secure manner.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EINVAL

The group ID specified in gid is not valid in this user namespace.

EPERM
The calling process is not privileged (does not have the CAP_SETGID capa-
bility in its user namespace), and gid does not match the real group ID or
saved set-group-ID of the calling process.

VERSIONS
C library/kernel differences

At the kernel level, user IDs and group IDs are a per-thread attribute. However,
POSIX requires that all threads in a process share the same credentials. The NPTL
threading implementation handles the POSIX requirements by providing wrapper
functions for the various system calls that change process UIDs and GIDs. These
wrapper functions (including the one for setgid()) employ a signal-based technique to
ensure that when one thread changes credentials, all of the other threads in the process
also change their credentials. For details, see nptl(7).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

The original Linux setgid() system call supported only 16-bit group IDs. Subse-
quently, Linux 2.4 added setgid32() supporting 32-bit IDs. The glibc setgid() wrap-
per function transparently deals with the variation across kernel versions.

Linux man-pages 6.13 2024-07-23 887

setgid(2) System Calls Manual setgid(2)

SEE ALSO
getgid(2), setegid(2), setregid(2), capabilities(7), credentials(7), user_namespaces(7)

Linux man-pages 6.13 2024-07-23 888

setns(2) System Calls Manual setns(2)

NAME
setns - reassociate thread with a namespace

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>

int setns(int fd , int nstype);

DESCRIPTION
The setns() system call allows the calling thread to move into different namespaces.
The fd argument is one of the following:

• a file descriptor referring to one of the magic links in a /proc/ pid /ns/ directory (or
a bind mount to such a link);

• a PID file descriptor (see pidfd_open(2)).

The nstype argument is interpreted differently in each case.

fd refers to a /proc/pid/ns/ link
If fd refers to a /proc/ pid /ns/ link, then setns() reassociates the calling thread with
the namespace associated with that link, subject to any constraints imposed by the
nstype argument. In this usage, each call to setns() changes just one of the caller’s
namespace memberships.

The nstype argument specifies which type of namespace the calling thread may be re-
associated with. This argument can have one of the following values:

0 Allow any type of namespace to be joined.

CLONE_NEWCGROUP (since Linux 4.6)
fd must refer to a cgroup namespace.

CLONE_NEWIPC (since Linux 3.0)
fd must refer to an IPC namespace.

CLONE_NEWNET (since Linux 3.0)
fd must refer to a network namespace.

CLONE_NEWNS (since Linux 3.8)
fd must refer to a mount namespace.

CLONE_NEWPID (since Linux 3.8)
fd must refer to a descendant PID namespace.

CLONE_NEWTIME (since Linux 5.8)
fd must refer to a time namespace.

CLONE_NEWUSER (since Linux 3.8)
fd must refer to a user namespace.

CLONE_NEWUTS (since Linux 3.0)
fd must refer to a UTS namespace.

Specifying nstype as 0 suffices if the caller knows (or does not care) what type of
namespace is referred to by fd . Specifying a nonzero value for nstype is useful if the

Linux man-pages 6.13 2025-01-07 889

setns(2) System Calls Manual setns(2)

caller does not know what type of namespace is referred to by fd and wants to ensure
that the namespace is of a particular type. (The caller might not know the type of the
namespace referred to by fd if the file descriptor was opened by another process and,
for example, passed to the caller via a UNIX domain socket.)

fd is a PID file descriptor
Since Linux 5.8, fd may refer to a PID file descriptor obtained from pidfd_open(2) or
clone(2). In this usage, setns() atomically moves the calling thread into one or more
of the same namespaces as the thread referred to by fd .

The nstype argument is a bit mask specified by ORing together one or more of the
CLONE_NEW* namespace constants listed above. The caller is moved into each of
the target thread’s namespaces that is specified in nstype; the caller’s memberships in
the remaining namespaces are left unchanged.

For example, the following code would move the caller into the same user, network,
and UTS namespaces as PID 1234, but would leave the caller’s other namespace
memberships unchanged:

int fd = pidfd_open(1234, 0);
setns(fd, CLONE_NEWUSER | CLONE_NEWNET | CLONE_NEWUTS);

Details for specific namespace types
Note the following details and restrictions when reassociating with specific name-
space types:

User namespaces
A process reassociating itself with a user namespace must have the
CAP_SYS_ADMIN capability in the target user namespace. (This necessar-
ily implies that it is only possible to join a descendant user namespace.) Upon
successfully joining a user namespace, a process is granted all capabilities in
that namespace, regardless of its user and group IDs.

A multithreaded process may not change user namespace with setns().

It is not permitted to use setns() to reenter the caller’s current user namespace.
This prevents a caller that has dropped capabilities from regaining those capa-
bilities via a call to setns().

For security reasons, a process can’t join a new user namespace if it is sharing
filesystem-related attributes (the attributes whose sharing is controlled by the
clone(2) CLONE_FS flag) with another process.

For further details on user namespaces, see user_namespaces(7).

Mount namespaces
Changing the mount namespace requires that the caller possess both
CAP_SYS_CHROOT and CAP_SYS_ADMIN capabilities in its own user
namespace and CAP_SYS_ADMIN in the user namespace that owns the tar-
get mount namespace.

A process can’t join a new mount namespace if it is sharing filesystem-related
attributes (the attributes whose sharing is controlled by the clone(2)
CLONE_FS flag) with another process.

Linux man-pages 6.13 2025-01-07 890

setns(2) System Calls Manual setns(2)

See user_namespaces(7) for details on the interaction of user namespaces and
mount namespaces.

PID namespaces
In order to reassociate itself with a new PID namespace, the caller must have
the CAP_SYS_ADMIN capability both in its own user namespace and in the
user namespace that owns the target PID namespace.

Reassociating the PID namespace has somewhat different from other name-
space types. Reassociating the calling thread with a PID namespace changes
only the PID namespace that subsequently created child processes of the caller
will be placed in; it does not change the PID namespace of the caller itself.

Reassociating with a PID namespace is allowed only if the target PID name-
space is a descendant (child, grandchild, etc.) of, or is the same as, the current
PID namespace of the caller.

For further details on PID namespaces, see pid_namespaces(7).

Cgroup namespaces
In order to reassociate itself with a new cgroup namespace, the caller must
have the CAP_SYS_ADMIN capability both in its own user namespace and
in the user namespace that owns the target cgroup namespace.

Using setns() to change the caller’s cgroup namespace does not change the
caller’s cgroup memberships.

Time namespaces
In order to reassociate itself with a new time namespace, the caller must have
the CAP_SYS_ADMIN capability both in its own user namespace and in the
user namespace that owns the target namespace.

A multithreaded process may not change time namespace with setns().

Network, IPC, and UTS namespaces
In order to reassociate itself with a new network, IPC, time, or UTS name-
space, the caller must have the CAP_SYS_ADMIN capability both in its own
user namespace and in the user namespace that owns the target namespace.

RETURN VALUE
On success, setns() returns 0. On failure, -1 is returned and errno is set to indicate
the error.

ERRORS
EBADF

fd is not a valid file descriptor.

EINVAL
fd refers to a namespace whose type does not match that specified in nstype.

EINVAL
There is problem with reassociating the thread with the specified namespace.

EINVAL
The caller tried to join an ancestor (parent, grandparent, and so on) PID name-
space.

Linux man-pages 6.13 2025-01-07 891

setns(2) System Calls Manual setns(2)

EINVAL
The caller attempted to join the user namespace in which it is already a mem-
ber.

EINVAL
The caller shares filesystem (CLONE_FS) state (in particular, the root direc-
tory) with other processes and tried to join a new user namespace.

EINVAL
The caller is multithreaded and tried to join a new user namespace.

EINVAL
fd is a PID file descriptor and nstype is invalid (e.g., it is 0).

ENOMEM
Cannot allocate sufficient memory to change the specified namespace.

EPERM
The calling thread did not have the required capability for this operation.

ESRCH
fd is a PID file descriptor but the process it refers to no longer exists (i.e., it
has terminated and been waited on).

STANDARDS
Linux.

VERSIONS
Linux 3.0, glibc 2.14.

NOTES
For further information on the /proc/ pid /ns/ magic links, see namespaces(7).

Not all of the attributes that can be shared when a new thread is created using clone(2)
can be changed using setns().

EXAMPLES
The program below takes two or more arguments. The first argument specifies the
pathname of a namespace file in an existing /proc/ pid /ns/ directory. The remaining
arguments specify a command and its arguments. The program opens the namespace
file, joins that namespace using setns(), and executes the specified command inside
that namespace.

The following shell session demonstrates the use of this program (compiled as a bi-
nary named ns_exec) in conjunction with the CLONE_NEWUTS example program
in the clone(2) man page (complied as a binary named newuts).

We begin by executing the example program in clone(2) in the background. That pro-
gram creates a child in a separate UTS namespace. The child changes the hostname
in its namespace, and then both processes display the hostnames in their UTS name-
spaces, so that we can see that they are different.

$ su # Need privilege for namespace operations
Password:
./newuts bizarro &
[1] 3549
clone() returned 3550

Linux man-pages 6.13 2025-01-07 892

setns(2) System Calls Manual setns(2)

uts.nodename in child: bizarro
uts.nodename in parent: antero
uname -n # Verify hostname in the shell
antero

We then run the program shown below, using it to execute a shell. Inside that shell,
we verify that the hostname is the one set by the child created by the first program:

./ns_exec /proc/3550/ns/uts /bin/bash
uname -n # Executed in shell started by ns_exec
bizarro

Program source
#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd;

if (argc < 3) {
fprintf(stderr, "%s /proc/PID/ns/FILE cmd args...\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Get file descriptor for namespace; the file descriptor is opened
with O_CLOEXEC so as to ensure that it is not inherited by the
program that is later executed. */

fd = open(argv[1], O_RDONLY | O_CLOEXEC);
if (fd == -1)

err(EXIT_FAILURE, "open");

if (setns(fd, 0) == -1) /* Join that namespace */
err(EXIT_FAILURE, "setns");

execvp(argv[2], &argv[2]); /* Execute a command in namespace */
err(EXIT_FAILURE, "execvp");

}

SEE ALSO
nsenter(1), clone(2), fork(2), unshare(2), vfork(2), namespaces(7), unix(7)

Linux man-pages 6.13 2025-01-07 893

setpgid(2) System Calls Manual setpgid(2)

NAME
setpgid, getpgid, setpgrp, getpgrp - set/get process group

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int setpgid(pid_t pid , pid_t pgid);
pid_t getpgid(pid_t pid);

pid_t getpgrp(void); /* POSIX.1 version */
[[deprecated]] pid_t getpgrp(pid_t pid); /* BSD version */

int setpgrp(void); /* System V version */
[[deprecated]] int setpgrp(pid_t pid , pid_t pgid); /* BSD version */

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpgid():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

setpgrp() (POSIX.1):
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

setpgrp() (BSD), getpgrp() (BSD):
[These are available only before glibc 2.19]
_BSD_SOURCE &&

! (_POSIX_SOURCE || _POSIX_C_SOURCE || _XOPEN_SOURCE
|| _GNU_SOURCE || _SVID_SOURCE)

DESCRIPTION
All of these interfaces are available on Linux, and are used for getting and setting the
process group ID (PGID) of a process. The preferred, POSIX.1-specified ways of do-
ing this are: getpgrp(void), for retrieving the calling process’s PGID; and setpgid(),
for setting a process’s PGID.

setpgid() sets the PGID of the process specified by pid to pgid . If pid is zero, then
the process ID of the calling process is used. If pgid is zero, then the PGID of the
process specified by pid is made the same as its process ID. If setpgid() is used to
move a process from one process group to another (as is done by some shells when
creating pipelines), both process groups must be part of the same session (see set-
sid(2) and credentials(7)). In this case, the pgid specifies an existing process group to
be joined and the session ID of that group must match the session ID of the joining
process.

The POSIX.1 version of getpgrp(), which takes no arguments, returns the PGID of
the calling process.

getpgid() returns the PGID of the process specified by pid . If pid is zero, the process
ID of the calling process is used. (Retrieving the PGID of a process other than the
caller is rarely necessary, and the POSIX.1 getpgrp() is preferred for that task.)

Linux man-pages 6.13 2024-07-23 894

setpgid(2) System Calls Manual setpgid(2)

The System V-style setpgrp(), which takes no arguments, is equivalent to
setpgid(0, 0).

The BSD-specific setpgrp() call, which takes arguments pid and pgid , is a wrapper
function that calls

setpgid(pid, pgid)

Since glibc 2.19, the BSD-specific setpgrp() function is no longer exposed by
<unistd.h>; calls should be replaced with the setpgid() call shown above.

The BSD-specific getpgrp() call, which takes a single pid argument, is a wrapper
function that calls

getpgid(pid)

Since glibc 2.19, the BSD-specific getpgrp() function is no longer exposed by
<unistd.h>; calls should be replaced with calls to the POSIX.1 getpgrp() which takes
no arguments (if the intent is to obtain the caller’s PGID), or with the getpgid() call
shown above.

RETURN VALUE
On success, setpgid() and setpgrp() return zero. On error, -1 is returned, and errno
is set to indicate the error.

The POSIX.1 getpgrp() always returns the PGID of the caller.

getpgid(), and the BSD-specific getpgrp() return a process group on success. On er-
ror, -1 is returned, and errno is set to indicate the error.

ERRORS
EACCES

An attempt was made to change the process group ID of one of the children of
the calling process and the child had already performed an execve(2)
(setpgid(), setpgrp())

EINVAL
pgid is less than 0 (setpgid(), setpgrp())

EPERM
An attempt was made to move a process into a process group in a different
session, or to change the process group ID of one of the children of the calling
process and the child was in a different session, or to change the process group
ID of a session leader (setpgid(), setpgrp())

EPERM
The target process group does not exist. (setpgid(), setpgrp())

ESRCH
For getpgid(): pid does not match any process. For setpgid(): pid is not the
calling process and not a child of the calling process.

STANDARDS
getpgid()
setpgid()
getpgrp() (no args)

Linux man-pages 6.13 2024-07-23 895

setpgid(2) System Calls Manual setpgid(2)

setpgrp() (no args)
POSIX.1-2008 (but see HISTORY).

setpgrp() (2 args)
getpgrp() (1 arg)

None.

HISTORY
getpgid()
setpgid()
getpgrp() (no args)

POSIX.1-2001.

setpgrp() (no args)
POSIX.1-2001. POSIX.1-2008 marks it as obsolete.

setpgrp() (2 args)
getpgrp() (1 arg)

4.2BSD.

NOTES
A child created via fork(2) inherits its parent’s process group ID. The PGID is pre-
served across an execve(2).

Each process group is a member of a session and each process is a member of the ses-
sion of which its process group is a member. (See credentials(7).)

A session can have a controlling terminal. At any time, one (and only one) of the
process groups in the session can be the foreground process group for the terminal;
the remaining process groups are in the background. If a signal is generated from the
terminal (e.g., typing the interrupt key to generate SIGINT), that signal is sent to the
foreground process group. (See termios(3) for a description of the characters that
generate signals.) Only the foreground process group may read(2) from the terminal;
if a background process group tries to read(2) from the terminal, then the group is
sent a SIGTTIN signal, which suspends it. The tcgetpgrp(3) and tcsetpgrp(3) func-
tions are used to get/set the foreground process group of the controlling terminal.

The setpgid() and getpgrp() calls are used by programs such as bash(1) to create
process groups in order to implement shell job control.

If the termination of a process causes a process group to become orphaned, and if any
member of the newly orphaned process group is stopped, then a SIGHUP signal fol-
lowed by a SIGCONT signal will be sent to each process in the newly orphaned
process group. An orphaned process group is one in which the parent of every mem-
ber of process group is either itself also a member of the process group or is a member
of a process group in a different session (see also credentials(7)).

SEE ALSO
getuid(2), setsid(2), tcgetpgrp(3), tcsetpgrp(3), termios(3), credentials(7)

Linux man-pages 6.13 2024-07-23 896

setresuid(2) System Calls Manual setresuid(2)

NAME
setresuid, setresgid - set real, effective, and saved user or group ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

int setresuid(uid_t ruid , uid_t euid , uid_t suid);
int setresgid(gid_t rgid , gid_t egid , gid_t sgid);

DESCRIPTION
setresuid() sets the real user ID, the effective user ID, and the saved set-user-ID of the
calling process.

An unprivileged process may change its real UID, effective UID, and saved set-user-
ID, each to one of: the current real UID, the current effective UID, or the current
saved set-user-ID.

A privileged process (on Linux, one having the CAP_SETUID capability) may set its
real UID, effective UID, and saved set-user-ID to arbitrary values.

If one of the arguments equals -1, the corresponding value is not changed.

Regardless of what changes are made to the real UID, effective UID, and saved set-
user-ID, the filesystem UID is always set to the same value as the (possibly new) ef-
fective UID.

Completely analogously, setresgid() sets the real GID, effective GID, and saved set-
group-ID of the calling process (and always modifies the filesystem GID to be the
same as the effective GID), with the same restrictions for unprivileged processes.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

Note: there are cases where setresuid() can fail even when the caller is UID 0; it is a
grave security error to omit checking for a failure return from setresuid().

ERRORS
EAGAIN

The call would change the caller’s real UID (i.e., ruid does not match the
caller’s real UID), but there was a temporary failure allocating the necessary
kernel data structures.

EAGAIN
ruid does not match the caller’s real UID and this call would bring the number
of processes belonging to the real user ID ruid over the caller’s
RLIMIT_NPROC resource limit. Since Linux 3.1, this error case no longer
occurs (but robust applications should check for this error); see the description
of EAGAIN in execve(2).

EINVAL
One or more of the target user or group IDs is not valid in this user namespace.

Linux man-pages 6.13 2024-07-23 897

setresuid(2) System Calls Manual setresuid(2)

EPERM
The calling process is not privileged (did not have the necessary capability in
its user namespace) and tried to change the IDs to values that are not permit-
ted. For setresuid(), the necessary capability is CAP_SETUID; for setres-
gid(), it is CAP_SETGID.

VERSIONS
C library/kernel differences

At the kernel level, user IDs and group IDs are a per-thread attribute. However,
POSIX requires that all threads in a process share the same credentials. The NPTL
threading implementation handles the POSIX requirements by providing wrapper
functions for the various system calls that change process UIDs and GIDs. These
wrapper functions (including those for setresuid() and setresgid()) employ a signal-
based technique to ensure that when one thread changes credentials, all of the other
threads in the process also change their credentials. For details, see nptl(7).

STANDARDS
None.

HISTORY
Linux 2.1.44, glibc 2.3.2. HP-UX, FreeBSD.

The original Linux setresuid() and setresgid() system calls supported only 16-bit user
and group IDs. Subsequently, Linux 2.4 added setresuid32() and setresgid32(), sup-
porting 32-bit IDs. The glibc setresuid() and setresgid() wrapper functions transpar-
ently deal with the variations across kernel versions.

SEE ALSO
getresuid(2), getuid(2), setfsgid(2), setfsuid(2), setreuid(2), setuid(2), capabilities(7),
credentials(7), user_namespaces(7)

Linux man-pages 6.13 2024-07-23 898

setreuid(2) System Calls Manual setreuid(2)

NAME
setreuid, setregid - set real and/or effective user or group ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int setreuid(uid_t ruid , uid_t euid);
int setregid(gid_t rgid , gid_t egid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setreuid(), setregid():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
setreuid() sets real and effective user IDs of the calling process.

Supplying a value of -1 for either the real or effective user ID forces the system to
leave that ID unchanged.

Unprivileged processes may only set the effective user ID to the real user ID, the ef-
fective user ID, or the saved set-user-ID.

Unprivileged users may only set the real user ID to the real user ID or the effective
user ID.

If the real user ID is set (i.e., ruid is not -1) or the effective user ID is set to a value
not equal to the previous real user ID, the saved set-user-ID will be set to the new ef-
fective user ID.

Completely analogously, setregid() sets real and effective group ID’s of the calling
process, and all of the above holds with "group" instead of "user".

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

Note: there are cases where setreuid() can fail even when the caller is UID 0; it is a
grave security error to omit checking for a failure return from setreuid().

ERRORS
EAGAIN

The call would change the caller’s real UID (i.e., ruid does not match the
caller’s real UID), but there was a temporary failure allocating the necessary
kernel data structures.

EAGAIN
ruid does not match the caller’s real UID and this call would bring the number
of processes belonging to the real user ID ruid over the caller’s
RLIMIT_NPROC resource limit. Since Linux 3.1, this error case no longer
occurs (but robust applications should check for this error); see the description
of EAGAIN in execve(2).

Linux man-pages 6.13 2024-07-23 899

setreuid(2) System Calls Manual setreuid(2)

EINVAL
One or more of the target user or group IDs is not valid in this user namespace.

EPERM
The calling process is not privileged (on Linux, does not have the necessary
capability in its user namespace: CAP_SETUID in the case of setreuid(), or
CAP_SETGID in the case of setregid()) and a change other than (i) swapping
the effective user (group) ID with the real user (group) ID, or (ii) setting one to
the value of the other or (iii) setting the effective user (group) ID to the value
of the saved set-user-ID (saved set-group-ID) was specified.

VERSIONS
POSIX.1 does not specify all of the UID changes that Linux permits for an unprivi-
leged process. For setreuid(), the effective user ID can be made the same as the real
user ID or the saved set-user-ID, and it is unspecified whether unprivileged processes
may set the real user ID to the real user ID, the effective user ID, or the saved set-user-
ID. For setregid(), the real group ID can be changed to the value of the saved set-
group-ID, and the effective group ID can be changed to the value of the real group ID
or the saved set-group-ID. The precise details of what ID changes are permitted vary
across implementations.

POSIX.1 makes no specification about the effect of these calls on the saved set-user-
ID and saved set-group-ID.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD (first appeared in 4.2BSD).

Setting the effective user (group) ID to the saved set-user-ID (saved set-group-ID) is
possible since Linux 1.1.37 (1.1.38).

The original Linux setreuid() and setregid() system calls supported only 16-bit user
and group IDs. Subsequently, Linux 2.4 added setreuid32() and setregid32(), sup-
porting 32-bit IDs. The glibc setreuid() and setregid() wrapper functions transpar-
ently deal with the variations across kernel versions.

C library/kernel differences
At the kernel level, user IDs and group IDs are a per-thread attribute. However,
POSIX requires that all threads in a process share the same credentials. The NPTL
threading implementation handles the POSIX requirements by providing wrapper
functions for the various system calls that change process UIDs and GIDs. These
wrapper functions (including those for setreuid() and setregid()) employ a signal-
based technique to ensure that when one thread changes credentials, all of the other
threads in the process also change their credentials. For details, see nptl(7).

SEE ALSO
getgid(2), getuid(2), seteuid(2), setgid(2), setresuid(2), setuid(2), capabilities(7), cre-
dentials(7), user_namespaces(7)

Linux man-pages 6.13 2024-07-23 900

setsid(2) System Calls Manual setsid(2)

NAME
setsid - creates a session and sets the process group ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t setsid(void);

DESCRIPTION
setsid() creates a new session if the calling process is not a process group leader. The
calling process is the leader of the new session (i.e., its session ID is made the same as
its process ID). The calling process also becomes the process group leader of a new
process group in the session (i.e., its process group ID is made the same as its process
ID).

The calling process will be the only process in the new process group and in the new
session.

Initially, the new session has no controlling terminal. For details of how a session ac-
quires a controlling terminal, see credentials(7).

RETURN VALUE
On success, the (new) session ID of the calling process is returned. On error,
(pid_t) -1 is returned, and errno is set to indicate the error.

ERRORS
EPERM

The process group ID of any process equals the PID of the calling process.
Thus, in particular, setsid() fails if the calling process is already a process
group leader.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

NOTES
A child created via fork(2) inherits its parent’s session ID. The session ID is pre-
served across an execve(2).

A process group leader is a process whose process group ID equals its PID. Disallow-
ing a process group leader from calling setsid() prevents the possibility that a process
group leader places itself in a new session while other processes in the process group
remain in the original session; such a scenario would break the strict two-level hierar-
chy of sessions and process groups. In order to be sure that setsid() will succeed, call
fork(2) and have the parent _exit(2), while the child (which by definition can’t be a
process group leader) calls setsid().

If a session has a controlling terminal, and the CLOCAL flag for that terminal is not
set, and a terminal hangup occurs, then the session leader is sent a SIGHUP signal.

If a process that is a session leader terminates, then a SIGHUP signal is sent to each
process in the foreground process group of the controlling terminal.

Linux man-pages 6.13 2024-07-23 901

setsid(2) System Calls Manual setsid(2)

SEE ALSO
setsid(1), getsid(2), setpgid(2), setpgrp(2), tcgetsid(3), credentials(7), sched(7)

Linux man-pages 6.13 2024-07-23 902

setuid(2) System Calls Manual setuid(2)

NAME
setuid - set user identity

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int setuid(uid_t uid);

DESCRIPTION
setuid() sets the effective user ID of the calling process. If the calling process is privi-
leged (more precisely: if the process has the CAP_SETUID capability in its user
namespace), the real UID and saved set-user-ID are also set.

Under Linux, setuid() is implemented like the POSIX version with the
_POSIX_SAVED_IDS feature. This allows a set-user-ID (other than root) program
to drop all of its user privileges, do some un-privileged work, and then reengage the
original effective user ID in a secure manner.

If the user is root or the program is set-user-ID-root, special care must be taken: se-
tuid() checks the effective user ID of the caller and if it is the superuser, all process-
related user ID’s are set to uid . After this has occurred, it is impossible for the pro-
gram to regain root privileges.

Thus, a set-user-ID-root program wishing to temporarily drop root privileges, assume
the identity of an unprivileged user, and then regain root privileges afterward cannot
use setuid(). You can accomplish this with seteuid(2).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

Note: there are cases where setuid() can fail even when the caller is UID 0; it is a
grave security error to omit checking for a failure return from setuid().

ERRORS
EAGAIN

The call would change the caller’s real UID (i.e., uid does not match the
caller’s real UID), but there was a temporary failure allocating the necessary
kernel data structures.

EAGAIN
uid does not match the real user ID of the caller and this call would bring the
number of processes belonging to the real user ID uid over the caller’s
RLIMIT_NPROC resource limit. Since Linux 3.1, this error case no longer
occurs (but robust applications should check for this error); see the description
of EAGAIN in execve(2).

EINVAL
The user ID specified in uid is not valid in this user namespace.

EPERM
The user is not privileged (Linux: does not have the CAP_SETUID capability
in its user namespace) and uid does not match the real UID or saved set-user-

Linux man-pages 6.13 2024-07-23 903

setuid(2) System Calls Manual setuid(2)

ID of the calling process.

VERSIONS
C library/kernel differences

At the kernel level, user IDs and group IDs are a per-thread attribute. However,
POSIX requires that all threads in a process share the same credentials. The NPTL
threading implementation handles the POSIX requirements by providing wrapper
functions for the various system calls that change process UIDs and GIDs. These
wrapper functions (including the one for setuid()) employ a signal-based technique to
ensure that when one thread changes credentials, all of the other threads in the process
also change their credentials. For details, see nptl(7).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

Not quite compatible with the 4.4BSD call, which sets all of the real, saved, and effec-
tive user IDs.

The original Linux setuid() system call supported only 16-bit user IDs. Subsequently,
Linux 2.4 added setuid32() supporting 32-bit IDs. The glibc setuid() wrapper func-
tion transparently deals with the variation across kernel versions.

NOTES
Linux has the concept of the filesystem user ID, normally equal to the effective user
ID. The setuid() call also sets the filesystem user ID of the calling process. See setf-
suid(2).

If uid is different from the old effective UID, the process will be forbidden from leav-
ing core dumps.

SEE ALSO
getuid(2), seteuid(2), setfsuid(2), setreuid(2), capabilities(7), credentials(7),
user_namespaces(7)

Linux man-pages 6.13 2024-07-23 904

setup(2) System Calls Manual setup(2)

NAME
setup - setup devices and filesystems, mount root filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

[[deprecated]] int setup(void);

DESCRIPTION
setup() is called once from within linux/init/main.c. It calls initialization functions
for devices and filesystems configured into the kernel and then mounts the root
filesystem.

No user process may call setup(). Any user process, even a process with superuser
permission, will receive EPERM.

RETURN VALUE
setup() always returns -1 for a user process.

ERRORS
EPERM

Always, for a user process.

STANDARDS
Linux.

VERSIONS
Removed in Linux 2.1.121.

The calling sequence varied: at some times setup() has had a single argument
void *BIOS and at other times a single argument int magic.

Linux man-pages 6.13 2024-07-23 905

setxattr(2) System Calls Manual setxattr(2)

NAME
setxattr, lsetxattr, fsetxattr - set an extended attribute value

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/xattr.h>

int setxattr(const char *path, const char *name,
const void value[.size], size_t size, int flags);

int lsetxattr(const char *path, const char *name,
const void value[.size], size_t size, int flags);

int fsetxattr(int fd , const char *name,
const void value[.size], size_t size, int flags);

DESCRIPTION
Extended attributes are name:value pairs associated with inodes (files, directories,
symbolic links, etc.). They are extensions to the normal attributes which are associ-
ated with all inodes in the system (i.e., the stat(2) data). A complete overview of ex-
tended attributes concepts can be found in xattr(7).

setxattr() sets the value of the extended attribute identified by name and associated
with the given path in the filesystem. The size argument specifies the size (in bytes)
of value; a zero-length value is permitted.

lsetxattr() is identical to setxattr(), except in the case of a symbolic link, where the
extended attribute is set on the link itself, not the file that it refers to.

fsetxattr() is identical to setxattr(), only the extended attribute is set on the open file
referred to by fd (as returned by open(2)) in place of path.

An extended attribute name is a null-terminated string. The name includes a name-
space prefix; there may be several, disjoint namespaces associated with an individual
inode. The value of an extended attribute is a chunk of arbitrary textual or binary data
of specified length.

By default (i.e., flags is zero), the extended attribute will be created if it does not ex-
ist, or the value will be replaced if the attribute already exists. To modify these se-
mantics, one of the following values can be specified in flags:

XATTR_CREATE
Perform a pure create, which fails if the named attribute exists already.

XATTR_REPLACE
Perform a pure replace operation, which fails if the named attribute does not
already exist.

RETURN VALUE
On success, zero is returned. On failure, -1 is returned and errno is set to indicate the
error.

ERRORS
EDQUOT

Disk quota limits meant that there is insufficient space remaining to store the
extended attribute.

Linux man-pages 6.13 2024-07-23 906

setxattr(2) System Calls Manual setxattr(2)

EEXIST
XATTR_CREATE was specified, and the attribute exists already.

ENODATA
XATTR_REPLACE was specified, and the attribute does not exist.

ENOSPC
There is insufficient space remaining to store the extended attribute.

ENOTSUP
The namespace prefix of name is not valid.

ENOTSUP
Extended attributes are not supported by the filesystem, or are disabled,

EPERM
The file is marked immutable or append-only. (See FS_IOC_SET-
FLAGS(2const).)

In addition, the errors documented in stat(2) can also occur.

ERANGE
The size of name or value exceeds a filesystem-specific limit.

STANDARDS
Linux.

HISTORY
Linux 2.4, glibc 2.3.

SEE ALSO
getfattr(1), setfattr(1), getxattr(2), listxattr(2), open(2), removexattr(2), stat(2), sym-
link(7), xattr(7)

Linux man-pages 6.13 2024-07-23 907

sgetmask(2) System Calls Manual sgetmask(2)

NAME
sgetmask, ssetmask - manipulation of signal mask (obsolete)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[deprecated]] long syscall(SYS_sgetmask, void);
[[deprecated]] long syscall(SYS_ssetmask, long newmask);

DESCRIPTION
These system calls are obsolete. Do not use them; use sigprocmask(2) instead.

sgetmask() returns the signal mask of the calling process.

ssetmask() sets the signal mask of the calling process to the value given in newmask.
The previous signal mask is returned.

The signal masks dealt with by these two system calls are plain bit masks (unlike the
sigset_t used by sigprocmask(2)); use sigmask(3) to create and inspect these masks.

RETURN VALUE
sgetmask() always successfully returns the signal mask. ssetmask() always succeeds,
and returns the previous signal mask.

ERRORS
These system calls always succeed.

STANDARDS
Linux.

HISTORY
Since Linux 3.16, support for these system calls is optional, depending on whether the
kernel was built with the CONFIG_SGETMASK_SYSCALL option.

NOTES
These system calls are unaware of signal numbers greater than 31 (i.e., real-time sig-
nals).

These system calls do not exist on x86-64.

It is not possible to block SIGSTOP or SIGKILL.

SEE ALSO
sigprocmask(2), signal(7)

Linux man-pages 6.13 2024-07-23 908

shmctl(2) System Calls Manual shmctl(2)

NAME
shmctl - System V shared memory control

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/shm.h>

int shmctl(int shmid , int op, struct shmid_ds *buf);

DESCRIPTION
shmctl() performs the control operation specified by op on the System V shared
memory segment whose identifier is given in shmid .

The buf argument is a pointer to a shmid_ds structure, defined in <sys/shm.h> as fol-
lows:

struct shmid_ds {
struct ipc_perm shm_perm; /* Ownership and permissions */
size_t shm_segsz; /* Size of segment (bytes) */
time_t shm_atime; /* Last attach time */
time_t shm_dtime; /* Last detach time */
time_t shm_ctime; /* Creation time/time of last

modification via shmctl() */
pid_t shm_cpid; /* PID of creator */
pid_t shm_lpid; /* PID of last shmat(2)/shmdt(2) */
shmatt_t shm_nattch; /* No. of current attaches */
...

};

The fields of the shmid_ds structure are as follows:

shm_perm This is an ipc_perm structure (see below) that specifies the access per-
missions on the shared memory segment.

shm_segsz Size in bytes of the shared memory segment.

shm_atime Time of the last shmat(2) system call that attached this segment.

shm_dtime Time of the last shmdt(2) system call that detached tgis segment.

shm_ctime Time of creation of segment or time of the last shmctl() IPC_SET op-
eration.

shm_cpid ID of the process that created the shared memory segment.

shm_lpid ID of the last process that executed a shmat(2) or shmdt(2) system call
on this segment.

shm_nattch Number of processes that have this segment attached.

The ipc_perm structure is defined as follows (the highlighted fields are settable using
IPC_SET):

struct ipc_perm {
key_t __key; /* Key supplied to shmget(2) */
uid_t uid; /* Effective UID of owner */
gid_t gid; /* Effective GID of owner */

Linux man-pages 6.13 2024-07-23 909

shmctl(2) System Calls Manual shmctl(2)

uid_t cuid; /* Effective UID of creator */
gid_t cgid; /* Effective GID of creator */
unsigned short mode; /* Permissions + SHM_DEST and

SHM_LOCKED flags */
unsigned short __seq; /* Sequence number */

};

The least significant 9 bits of the mode field of the ipc_perm structure define the ac-
cess permissions for the shared memory segment. The permission bits are as follows:
0400 Read by user
0200 Write by user
0040 Read by group
0020 Write by group
0004 Read by others
0002 Write by others

Bits 0100, 0010, and 0001 (the execute bits) are unused by the system. (It is not nec-
essary to have execute permission on a segment in order to perform a shmat(2) call
with the SHM_EXEC flag.)

Valid values for op are:

IPC_STAT
Copy information from the kernel data structure associated with shmid into
the shmid_ds structure pointed to by buf. The caller must have read permis-
sion on the shared memory segment.

IPC_SET
Write the values of some members of the shmid_ds structure pointed to by buf
to the kernel data structure associated with this shared memory segment, up-
dating also its shm_ctime member.

The following fields are updated: shm_perm.uid, shm_perm.gid, and (the least
significant 9 bits of) shm_perm.mode.

The effective UID of the calling process must match the owner
(shm_perm.uid) or creator (shm_perm.cuid) of the shared memory segment,
or the caller must be privileged.

IPC_RMID
Mark the segment to be destroyed. The segment will actually be destroyed
only after the last process detaches it (i.e., when the shm_nattch member of
the associated structure shmid_ds is zero). The caller must be the owner or
creator of the segment, or be privileged. The buf argument is ignored.

If a segment has been marked for destruction, then the (nonstandard)
SHM_DEST flag of the shm_perm.mode field in the associated data structure
retrieved by IPC_STAT will be set.

The caller must ensure that a segment is eventually destroyed; otherwise its
pages that were faulted in will remain in memory or swap.

See also the description of /proc/sys/kernel/shm_rmid_forced in proc(5).

Linux man-pages 6.13 2024-07-23 910

shmctl(2) System Calls Manual shmctl(2)

IPC_INFO (Linux-specific)
Return information about system-wide shared memory limits and parameters
in the structure pointed to by buf . This structure is of type shminfo (thus, a
cast is required), defined in <sys/shm.h> if the _GNU_SOURCE feature test
macro is defined:

struct shminfo {
unsigned long shmmax; /* Maximum segment size */
unsigned long shmmin; /* Minimum segment size;

always 1 */
unsigned long shmmni; /* Maximum number of segments */
unsigned long shmseg; /* Maximum number of segments

that a process can attach;
unused within kernel */

unsigned long shmall; /* Maximum number of pages of
shared memory, system-wide */

};

The shmmni, shmmax, and shmall settings can be changed via /proc files of
the same name; see proc(5) for details.

SHM_INFO (Linux-specific)
Return a shm_info structure whose fields contain information about system re-
sources consumed by shared memory. This structure is defined in
<sys/shm.h> if the _GNU_SOURCE feature test macro is defined:

struct shm_info {
int used_ids; /* # of currently existing

segments */
unsigned long shm_tot; /* Total number of shared

memory pages */
unsigned long shm_rss; /* # of resident shared

memory pages */
unsigned long shm_swp; /* # of swapped shared

memory pages */
unsigned long swap_attempts;

/* Unused since Linux 2.4 */
unsigned long swap_successes;

/* Unused since Linux 2.4 */
};

SHM_STAT (Linux-specific)
Return a shmid_ds structure as for IPC_STAT. However, the shmid argument
is not a segment identifier, but instead an index into the kernel’s internal array
that maintains information about all shared memory segments on the system.

SHM_STAT_ANY (Linux-specific, since Linux 4.17)
Return a shmid_ds structure as for SHM_STAT. However, shm_perm.mode is
not checked for read access for shmid , meaning that any user can employ this
operation (just as any user may read /proc/sysvipc/shm to obtain the same in-
formation).

The caller can prevent or allow swapping of a shared memory segment with the

Linux man-pages 6.13 2024-07-23 911

shmctl(2) System Calls Manual shmctl(2)

following op values:

SHM_LOCK (Linux-specific)
Prevent swapping of the shared memory segment. The caller must fault in any
pages that are required to be present after locking is enabled. If a segment has
been locked, then the (nonstandard) SHM_LOCKED flag of the
shm_perm.mode field in the associated data structure retrieved by IPC_STAT
will be set.

SHM_UNLOCK (Linux-specific)
Unlock the segment, allowing it to be swapped out.

Before Linux 2.6.10, only a privileged process could employ SHM_LOCK and
SHM_UNLOCK. Since Linux 2.6.10, an unprivileged process can employ these op-
erations if its effective UID matches the owner or creator UID of the segment, and
(for SHM_LOCK) the amount of memory to be locked falls within the
RLIMIT_MEMLOCK resource limit (see setrlimit(2)).

RETURN VALUE
A successful IPC_INFO or SHM_INFO operation returns the index of the highest
used entry in the kernel’s internal array recording information about all shared mem-
ory segments. (This information can be used with repeated SHM_STAT or
SHM_STAT_ANY operations to obtain information about all shared memory seg-
ments on the system.) A successful SHM_STAT operation returns the identifier of
the shared memory segment whose index was given in shmid . Other operations return
0 on success.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EACCES

IPC_STAT or SHM_STAT is requested and shm_perm.mode does not allow
read access for shmid , and the calling process does not have the
CAP_IPC_OWNER capability in the user namespace that governs its IPC
namespace.

EFAULT
The argument op has value IPC_SET or IPC_STAT but the address pointed
to by buf isn’t accessible.

EIDRM
shmid points to a removed identifier.

EINVAL
shmid is not a valid identifier, or op is not a valid operation. Or: for a
SHM_STAT or SHM_STAT_ANY operation, the index value specified in
shmid referred to an array slot that is currently unused.

ENOMEM
(Since Linux 2.6.9), SHM_LOCK was specified and the size of the to-be-
locked segment would mean that the total bytes in locked shared memory seg-
ments would exceed the limit for the real user ID of the calling process. This
limit is defined by the RLIMIT_MEMLOCK soft resource limit (see setr-
limit(2)).

Linux man-pages 6.13 2024-07-23 912

shmctl(2) System Calls Manual shmctl(2)

EOVERFLOW
IPC_STAT is attempted, and the GID or UID value is too large to be stored in
the structure pointed to by buf .

EPERM
IPC_SET or IPC_RMID is attempted, and the effective user ID of the calling
process is not that of the creator (found in shm_perm.cuid), or the owner
(found in shm_perm.uid), and the process was not privileged (Linux: did not
have the CAP_SYS_ADMIN capability).

Or (before Linux 2.6.9), SHM_LOCK or SHM_UNLOCK was specified, but
the process was not privileged (Linux: did not have the CAP_IPC_LOCK ca-
pability). (Since Linux 2.6.9, this error can also occur if the RLIMIT_MEM-
LOCK is 0 and the caller is not privileged.)

VERSIONS
Linux permits a process to attach (shmat(2)) a shared memory segment that has al-
ready been marked for deletion using shmctl(IPC_RMID). This feature is not avail-
able on other UNIX implementations; portable applications should avoid relying on it.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

Various fields in a struct shmid_ds were typed as short under Linux 2.2 and have be-
come long under Linux 2.4. To take advantage of this, a recompilation under
glibc-2.1.91 or later should suffice. (The kernel distinguishes old and new calls by an
IPC_64 flag in op.)

NOTES
The IPC_INFO, SHM_STAT, and SHM_INFO operations are used by the ipcs(1)
program to provide information on allocated resources. In the future, these may mod-
ified or moved to a /proc filesystem interface.

SEE ALSO
mlock(2), setrlimit(2), shmget(2), shmop(2), capabilities(7), sysvipc(7)

Linux man-pages 6.13 2024-07-23 913

shmget(2) System Calls Manual shmget(2)

NAME
shmget - allocates a System V shared memory segment

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

DESCRIPTION
shmget() returns the identifier of the System V shared memory segment associated
with the value of the argument key. It may be used either to obtain the identifier of a
previously created shared memory segment (when shmflg is zero and key does not
have the value IPC_PRIVATE), or to create a new set.

A new shared memory segment, with size equal to the value of size rounded up to a
multiple of PAGE_SIZE, is created if key has the value IPC_PRIVATE or key isn’t
IPC_PRIVATE, no shared memory segment corresponding to key exists, and
IPC_CREAT is specified in shmflg.

If shmflg specifies both IPC_CREAT and IPC_EXCL and a shared memory segment
already exists for key, then shmget() fails with errno set to EEXIST. (This is analo-
gous to the effect of the combination O_CREAT | O_EXCL for open(2).)

The value shmflg is composed of:

IPC_CREAT
Create a new segment. If this flag is not used, then shmget() will find the seg-
ment associated with key and check to see if the user has permission to access
the segment.

IPC_EXCL
This flag is used with IPC_CREAT to ensure that this call creates the seg-
ment. If the segment already exists, the call fails.

SHM_HUGETLB (since Linux 2.6)
Allocate the segment using "huge" pages. See the Linux kernel source file
Documentation/admin-guide/mm/hugetlbpage.rst for further information.

SHM_HUGE_2MB
SHM_HUGE_1GB (since Linux 3.8)

Used in conjunction with SHM_HUGETLB to select alternative hugetlb page
sizes (respectively, 2 MB and 1 GB) on systems that support multiple hugetlb
page sizes.

More generally, the desired huge page size can be configured by encoding the
base-2 logarithm of the desired page size in the six bits at the offset
SHM_HUGE_SHIFT. Thus, the above two constants are defined as:

#define SHM_HUGE_2MB (21 << SHM_HUGE_SHIFT)
#define SHM_HUGE_1GB (30 << SHM_HUGE_SHIFT)

For some additional details, see the discussion of the similarly named con-
stants in mmap(2).

Linux man-pages 6.13 2024-07-23 914

shmget(2) System Calls Manual shmget(2)

SHM_NORESERVE (since Linux 2.6.15)
This flag serves the same purpose as the mmap(2) MAP_NORESERVE flag.
Do not reserve swap space for this segment. When swap space is reserved,
one has the guarantee that it is possible to modify the segment. When swap
space is not reserved one might get SIGSEGV upon a write if no physical
memory is available. See also the discussion of the file /proc/sys/vm/overcom-
mit_memory in proc(5).

In addition to the above flags, the least significant 9 bits of shmflg specify the permis-
sions granted to the owner, group, and others. These bits have the same format, and
the same meaning, as the mode argument of open(2). Presently, execute permissions
are not used by the system.

When a new shared memory segment is created, its contents are initialized to zero val-
ues, and its associated data structure, shmid_ds (see shmctl(2)), is initialized as fol-
lows:

• shm_perm.cuid and shm_perm.uid are set to the effective user ID of the calling
process.

• shm_perm.cgid and shm_perm.gid are set to the effective group ID of the calling
process.

• The least significant 9 bits of shm_perm.mode are set to the least significant 9 bit
of shmflg.

• shm_segsz is set to the value of size.

• shm_lpid , shm_nattch, shm_atime, and shm_dtime are set to 0.

• shm_ctime is set to the current time.

If the shared memory segment already exists, the permissions are verified, and a check
is made to see if it is marked for destruction.

RETURN VALUE
On success, a valid shared memory identifier is returned. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
EACCES

The user does not have permission to access the shared memory segment, and
does not have the CAP_IPC_OWNER capability in the user namespace that
governs its IPC namespace.

EEXIST
IPC_CREAT and IPC_EXCL were specified in shmflg, but a shared memory
segment already exists for key.

EINVAL
A new segment was to be created and size is less than SHMMIN or greater
than SHMMAX.

EINVAL
A segment for the given key exists, but size is greater than the size of that seg-
ment.

Linux man-pages 6.13 2024-07-23 915

shmget(2) System Calls Manual shmget(2)

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
No segment exists for the given key, and IPC_CREAT was not specified.

ENOMEM
No memory could be allocated for segment overhead.

ENOSPC
All possible shared memory IDs have been taken (SHMMNI), or allocating a
segment of the requested size would cause the system to exceed the system-
wide limit on shared memory (SHMALL).

EPERM
The SHM_HUGETLB flag was specified, but the caller was not privileged
(did not have the CAP_IPC_LOCK capability) and is not a member of the
sysctl_hugetlb_shm_group group; see the description of
/proc/sys/vm/sysctl_hugetlb_shm_group in proc(5).

STANDARDS
POSIX.1-2008.

SHM_HUGETLB and SHM_NORESERVE are Linux extensions.

HISTORY
POSIX.1-2001, SVr4.

NOTES
IPC_PRIVATE isn’t a flag field but a key_t type. If this special value is used for key,
the system call ignores all but the least significant 9 bits of shmflg and creates a new
shared memory segment.

Shared memory limits
The following limits on shared memory segment resources affect the shmget() call:

SHMALL
System-wide limit on the total amount of shared memory, measured in units of
the system page size.

On Linux, this limit can be read and modified via /proc/sys/kernel/shmall.
Since Linux 3.16, the default value for this limit is:

ULONG_MAX - 2^24

The effect of this value (which is suitable for both 32-bit and 64-bit systems)
is to impose no limitation on allocations. This value, rather than
ULONG_MAX, was chosen as the default to prevent some cases where his-
torical applications simply raised the existing limit without first checking its
current value. Such applications would cause the value to overflow if the limit
was set at ULONG_MAX.

From Linux 2.4 up to Linux 3.15, the default value for this limit was:

SHMMAX / PAGE_SIZE * (SHMMNI / 16)

If SHMMAX and SHMMNI were not modified, then multiplying the result of
this formula by the page size (to get a value in bytes) yielded a value of 8 GB

Linux man-pages 6.13 2024-07-23 916

shmget(2) System Calls Manual shmget(2)

as the limit on the total memory used by all shared memory segments.

SHMMAX
Maximum size in bytes for a shared memory segment.

On Linux, this limit can be read and modified via /proc/sys/kernel/shmmax.
Since Linux 3.16, the default value for this limit is:

ULONG_MAX - 2^24

The effect of this value (which is suitable for both 32-bit and 64-bit systems)
is to impose no limitation on allocations. See the description of SHMALL for
a discussion of why this default value (rather than ULONG_MAX) is used.

From Linux 2.2 up to Linux 3.15, the default value of this limit was
0x2000000 (32 MiB).

Because it is not possible to map just part of a shared memory segment, the
amount of virtual memory places another limit on the maximum size of a us-
able segment: for example, on i386 the largest segments that can be mapped
have a size of around 2.8 GB, and on x86-64 the limit is around 127 TB.

SHMMIN
Minimum size in bytes for a shared memory segment: implementation depen-
dent (currently 1 byte, though PAGE_SIZE is the effective minimum size).

SHMMNI
System-wide limit on the number of shared memory segments. In Linux 2.2,
the default value for this limit was 128; since Linux 2.4, the default value is
4096.

On Linux, this limit can be read and modified via /proc/sys/kernel/shmmni.

The implementation has no specific limits for the per-process maximum number of
shared memory segments (SHMSEG).

Linux notes
Until Linux 2.3.30, Linux would return EIDRM for a shmget() on a shared memory
segment scheduled for deletion.

BUGS
The name choice IPC_PRIVATE was perhaps unfortunate, IPC_NEW would more
clearly show its function.

EXAMPLES
See shmop(2).

SEE ALSO
memfd_create(2), shmat(2), shmctl(2), shmdt(2), ftok(3), capabilities(7),
shm_overview(7), sysvipc(7)

Linux man-pages 6.13 2024-07-23 917

SHMOP(2) System Calls Manual SHMOP(2)

NAME
shmat, shmdt - System V shared memory operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/shm.h>

void *shmat(int shmid , const void *_Nullable shmaddr, int shmflg);
int shmdt(const void *shmaddr);

DESCRIPTION
shmat()

shmat() attaches the System V shared memory segment identified by shmid to the ad-
dress space of the calling process. The attaching address is specified by shmaddr
with one of the following criteria:

• If shmaddr is NULL, the system chooses a suitable (unused) page-aligned address
to attach the segment.

• If shmaddr isn’t NULL and SHM_RND is specified in shmflg, the attach occurs
at the address equal to shmaddr rounded down to the nearest multiple of
SHMLBA.

• Otherwise, shmaddr must be a page-aligned address at which the attach occurs.

In addition to SHM_RND, the following flags may be specified in the shmflg bit-
mask argument:

SHM_EXEC (Linux-specific; since Linux 2.6.9)
Allow the contents of the segment to be executed. The caller must have exe-
cute permission on the segment.

SHM_RDONLY
Attach the segment for read-only access. The process must have read permis-
sion for the segment. If this flag is not specified, the segment is attached for
read and write access, and the process must have read and write permission for
the segment. There is no notion of a write-only shared memory segment.

SHM_REMAP (Linux-specific)
This flag specifies that the mapping of the segment should replace any existing
mapping in the range starting at shmaddr and continuing for the size of the
segment. (Normally, an EINVAL error would result if a mapping already ex-
ists in this address range.) In this case, shmaddr must not be NULL.

The brk(2) value of the calling process is not altered by the attach. The segment will
automatically be detached at process exit. The same segment may be attached as a
read and as a read-write one, and more than once, in the process’s address space.

A successful shmat() call updates the members of the shmid_ds structure (see shm-
ctl(2)) associated with the shared memory segment as follows:

• shm_atime is set to the current time.

• shm_lpid is set to the process-ID of the calling process.

Linux man-pages 6.13 2024-11-17 918

SHMOP(2) System Calls Manual SHMOP(2)

• shm_nattch is incremented by one.

shmdt()
shmdt() detaches the shared memory segment located at the address specified by
shmaddr from the address space of the calling process. The to-be-detached segment
must be currently attached with shmaddr equal to the value returned by the attaching
shmat() call.

On a successful shmdt() call, the system updates the members of the shmid_ds struc-
ture associated with the shared memory segment as follows:

• shm_dtime is set to the current time.

• shm_lpid is set to the process-ID of the calling process.

• shm_nattch is decremented by one. If it becomes 0 and the segment is marked for
deletion, the segment is deleted.

RETURN VALUE
On success, shmat() returns the address of the attached shared memory segment; on
error, (void *) -1 is returned, and errno is set to indicate the error.

On success, shmdt() returns 0; on error -1 is returned, and errno is set to indicate the
error.

ERRORS
shmat() can fail with one of the following errors:

EACCES
The calling process does not have the required permissions for the requested
attach type, and does not have the CAP_IPC_OWNER capability in the user
namespace that governs its IPC namespace.

EIDRM
shmid points to a removed identifier.

EINVAL
Invalid shmid value, unaligned (i.e., not page-aligned and SHM_RND was not
specified) or invalid shmaddr value, or can’t attach segment at shmaddr, or
SHM_REMAP was specified and shmaddr was NULL.

ENOMEM
Could not allocate memory for the descriptor or for the page tables.

shmdt() can fail with one of the following errors:

EINVAL
There is no shared memory segment attached at shmaddr; or, shmaddr is not
aligned on a page boundary.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

In SVID 3 (or perhaps earlier), the type of the shmaddr argument was changed from
char * into const void *, and the returned type of shmat() from char * into void *.

Linux man-pages 6.13 2024-11-17 919

SHMOP(2) System Calls Manual SHMOP(2)

NOTES
After a fork(2), the child inherits the attached shared memory segments.

After an execve(2), all attached shared memory segments are detached from the
process.

Upon _exit(2), all attached shared memory segments are detached from the process.

Using shmat() with shmaddr equal to NULL is the preferred, portable way of attach-
ing a shared memory segment. Be aware that the shared memory segment attached in
this way may be attached at different addresses in different processes. Therefore, any
pointers maintained within the shared memory must be made relative (typically to the
starting address of the segment), rather than absolute.

On Linux, it is possible to attach a shared memory segment even if it is already
marked to be deleted. However, POSIX.1 does not specify this behavior and many
other implementations do not support it.

The following system parameter affects shmat():

SHMLBA
Segment low boundary address multiple. When explicitly specifying an attach
address in a call to shmat(), the caller should ensure that the address is a mul-
tiple of this value. This is necessary on some architectures, in order either to
ensure good CPU cache performance or to ensure that different attaches of the
same segment have consistent views within the CPU cache. SHMLBA is nor-
mally some multiple of the system page size. (On many Linux architectures,
SHMLBA is the same as the system page size.)

The implementation places no intrinsic per-process limit on the number of shared
memory segments (SHMSEG).

EXAMPLES
The two programs shown below exchange a string using a shared memory segment.
Further details about the programs are given below. First, we show a shell session
demonstrating their use.

In one terminal window, we run the "reader" program, which creates a System V
shared memory segment and a System V semaphore set. The program prints out the
IDs of the created objects, and then waits for the semaphore to change value.

$./svshm_string_read
shmid = 1114194; semid = 15

In another terminal window, we run the "writer" program. The "writer" program takes
three command-line arguments: the IDs of the shared memory segment and sema-
phore set created by the "reader", and a string. It attaches the existing shared memory
segment, copies the string to the shared memory, and modifies the semaphore value.

$./svshm_string_write 1114194 15 'Hello, world'

Returning to the terminal where the "reader" is running, we see that the program has
ceased waiting on the semaphore and has printed the string that was copied into the
shared memory segment by the writer:

Hello, world

Linux man-pages 6.13 2024-11-17 920

SHMOP(2) System Calls Manual SHMOP(2)

Program source: svshm_string.h
The following header file is included by the "reader" and "writer" programs:

/* svshm_string.h

Licensed under GNU General Public License v2 or later.
*/
#ifndef SVSHM_STRING_H
#define SVSHM_STRING_H

#include <stdio.h>
#include <stdlib.h>
#include <sys/sem.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

union semun { /* Used in calls to semctl() */
int val;
struct semid_ds *buf;
unsigned short *array;

#if defined(__linux__)
struct seminfo *__buf;

#endif
};

#define MEM_SIZE 4096

#endif // include guard

Program source: svshm_string_read.c
The "reader" program creates a shared memory segment and a semaphore set contain-
ing one semaphore. It then attaches the shared memory object into its address space
and initializes the semaphore value to 1. Finally, the program waits for the semaphore
value to become 0, and afterwards prints the string that has been copied into the
shared memory segment by the "writer".

/* svshm_string_read.c

Licensed under GNU General Public License v2 or later.
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>

#include "svshm_string.h"

int

Linux man-pages 6.13 2024-11-17 921

SHMOP(2) System Calls Manual SHMOP(2)

main(void)
{

int semid, shmid;
char *addr;
union semun arg, dummy;
struct sembuf sop;

/* Create shared memory and semaphore set containing one
semaphore. */

shmid = shmget(IPC_PRIVATE, MEM_SIZE, IPC_CREAT | 0600);
if (shmid == -1)

errExit("shmget");

semid = semget(IPC_PRIVATE, 1, IPC_CREAT | 0600);
if (semid == -1)

errExit("semget");

/* Attach shared memory into our address space. */

addr = shmat(shmid, NULL, SHM_RDONLY);
if (addr == (void *) -1)

errExit("shmat");

/* Initialize semaphore 0 in set with value 1. */

arg.val = 1;
if (semctl(semid, 0, SETVAL, arg) == -1)

errExit("semctl");

printf("shmid = %d; semid = %d\n", shmid, semid);

/* Wait for semaphore value to become 0. */

sop.sem_num = 0;
sop.sem_op = 0;
sop.sem_flg = 0;

if (semop(semid, &sop, 1) == -1)
errExit("semop");

/* Print the string from shared memory. */

printf("%s\n", addr);

/* Remove shared memory and semaphore set. */

if (shmctl(shmid, IPC_RMID, NULL) == -1)
errExit("shmctl");

Linux man-pages 6.13 2024-11-17 922

SHMOP(2) System Calls Manual SHMOP(2)

if (semctl(semid, 0, IPC_RMID, dummy) == -1)
errExit("semctl");

exit(EXIT_SUCCESS);
}

Program source: svshm_string_write.c
The writer program takes three command-line arguments: the IDs of the shared mem-
ory segment and semaphore set that have already been created by the "reader", and a
string. It attaches the shared memory segment into its address space, and then decre-
ments the semaphore value to 0 in order to inform the "reader" that it can now exam-
ine the contents of the shared memory.

/* svshm_string_write.c

Licensed under GNU General Public License v2 or later.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/sem.h>
#include <sys/shm.h>

#include "svshm_string.h"

int
main(int argc, char *argv[])
{

int semid, shmid;
char *addr;
size_t size;
struct sembuf sop;

if (argc != 4) {
fprintf(stderr, "Usage: %s shmid semid string\n", argv[0]);
exit(EXIT_FAILURE);

}

size = strlen(argv[3]) + 1; /* +1 to include trailing '\0' */
if (size > MEM_SIZE) {

fprintf(stderr, "String is too big!\n");
exit(EXIT_FAILURE);

}

/* Get object IDs from command-line. */

shmid = atoi(argv[1]);
semid = atoi(argv[2]);

/* Attach shared memory into our address space and copy string

Linux man-pages 6.13 2024-11-17 923

SHMOP(2) System Calls Manual SHMOP(2)

(including trailing null byte) into memory. */

addr = shmat(shmid, NULL, 0);
if (addr == (void *) -1)

errExit("shmat");

memcpy(addr, argv[3], size);

/* Decrement semaphore to 0. */

sop.sem_num = 0;
sop.sem_op = -1;
sop.sem_flg = 0;

if (semop(semid, &sop, 1) == -1)
errExit("semop");

exit(EXIT_SUCCESS);
}

SEE ALSO
brk(2), mmap(2), shmctl(2), shmget(2), capabilities(7), shm_overview(7), sysvipc(7)

Linux man-pages 6.13 2024-11-17 924

shutdown(2) System Calls Manual shutdown(2)

NAME
shutdown - shut down part of a full-duplex connection

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int shutdown(int sockfd , int how);

DESCRIPTION
The shutdown() call causes all or part of a full-duplex connection on the socket asso-
ciated with sockfd to be shut down. If how is SHUT_RD, further receptions will be
disallowed. If how is SHUT_WR, further transmissions will be disallowed. If how is
SHUT_RDWR, further receptions and transmissions will be disallowed.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EBADF

sockfd is not a valid file descriptor.

EINVAL
An invalid value was specified in how (but see BUGS).

ENOTCONN
The specified socket is not connected.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.4BSD (first appeared in 4.2BSD).

NOTES
The constants SHUT_RD, SHUT_WR, SHUT_RDWR have the value 0, 1, 2, re-
spectively, and are defined in <sys/socket.h> since glibc-2.1.91.

BUGS
Checks for the validity of how are done in domain-specific code, and before Linux 3.7
not all domains performed these checks. Most notably, UNIX domain sockets simply
ignored invalid values. This problem was fixed for UNIX domain sockets in Linux
3.7.

SEE ALSO
close(2), connect(2), socket(2), socket(7)

Linux man-pages 6.13 2024-07-23 925

sigaction(2) System Calls Manual sigaction(2)

NAME
sigaction, rt_sigaction - examine and change a signal action

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigaction(int signum,
const struct sigaction *_Nullable restrict act,
struct sigaction *_Nullable restrict oldact);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigaction():
_POSIX_C_SOURCE

siginfo_t:
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
The sigaction() system call is used to change the action taken by a process on receipt
of a specific signal. (See signal(7) for an overview of signals.)

signum specifies the signal and can be any valid signal except SIGKILL and
SIGSTOP.

If act is non-NULL, the new action for signal signum is installed from act. If oldact
is non-NULL, the previous action is saved in oldact.

The sigaction structure is defined as something like:

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

};

On some architectures a union is involved: do not assign to both sa_handler and
sa_sigaction.

The sa_restorer field is not intended for application use. (POSIX does not specify a
sa_restorer field.) Some further details of the purpose of this field can be found in si-
greturn(2).

sa_handler specifies the action to be associated with signum and can be one of the
following:

• SIG_DFL for the default action.

• SIG_IGN to ignore this signal.

• A pointer to a signal handling function. This function receives the signal number
as its only argument.

If SA_SIGINFO is specified in sa_flags, then sa_sigaction (instead of sa_handler)

Linux man-pages 6.13 2024-08-21 926

sigaction(2) System Calls Manual sigaction(2)

specifies the signal-handling function for signum. This function receives three argu-
ments, as described below.

sa_mask specifies a mask of signals which should be blocked (i.e., added to the signal
mask of the thread in which the signal handler is invoked) during execution of the sig-
nal handler. In addition, the signal which triggered the handler will be blocked, unless
the SA_NODEFER flag is used.

sa_flags specifies a set of flags which modify the behavior of the signal. It is formed
by the bitwise OR of zero or more of the following:

SA_NOCLDSTOP
If signum is SIGCHLD, do not receive notification when child processes stop
(i.e., when they receive one of SIGSTOP, SIGTSTP, SIGTTIN, or SIGT-
TOU) or resume (i.e., they receive SIGCONT) (see wait(2)). This flag is
meaningful only when establishing a handler for SIGCHLD.

SA_NOCLDWAIT (since Linux 2.6)
If signum is SIGCHLD, do not transform children into zombies when they
terminate. See also waitpid(2). This flag is meaningful only when establish-
ing a handler for SIGCHLD, or when setting that signal’s disposition to
SIG_DFL.

If the SA_NOCLDWAIT flag is set when establishing a handler for
SIGCHLD, POSIX.1 leaves it unspecified whether a SIGCHLD signal is
generated when a child process terminates. On Linux, a SIGCHLD signal is
generated in this case; on some other implementations, it is not.

SA_NODEFER
Do not add the signal to the thread’s signal mask while the handler is execut-
ing, unless the signal is specified in act.sa_mask. Consequently, a further in-
stance of the signal may be delivered to the thread while it is executing the
handler. This flag is meaningful only when establishing a signal handler.

SA_NOMASK is an obsolete, nonstandard synonym for this flag.

SA_ONSTACK
Call the signal handler on an alternate signal stack provided by sigaltstack(2).
If an alternate stack is not available, the default stack will be used. This flag is
meaningful only when establishing a signal handler.

SA_RESETHAND
Restore the signal action to the default upon entry to the signal handler. This
flag is meaningful only when establishing a signal handler.

SA_ONESHOT is an obsolete, nonstandard synonym for this flag.

SA_RESTART
Provide behavior compatible with BSD signal semantics by making certain
system calls restartable across signals. This flag is meaningful only when es-
tablishing a signal handler. See signal(7) for a discussion of system call
restarting.

SA_RESTORER
Not intended for application use. This flag is used by C libraries to indicate
that the sa_restorer field contains the address of a "signal trampoline". See

Linux man-pages 6.13 2024-08-21 927

sigaction(2) System Calls Manual sigaction(2)

sigreturn(2) for more details.

SA_SIGINFO (since Linux 2.2)
The signal handler takes three arguments, not one. In this case, sa_sigaction
should be set instead of sa_handler. This flag is meaningful only when estab-
lishing a signal handler.

SA_UNSUPPORTED (since Linux 5.11)
Used to dynamically probe for flag bit support.

If an attempt to register a handler succeeds with this flag set in act->sa_flags
alongside other flags that are potentially unsupported by the kernel, and an im-
mediately subsequent sigaction() call specifying the same signal number and
with a non-NULL oldact argument yields SA_UNSUPPORTED clear in
oldact->sa_flags, then oldact->sa_flags may be used as a bitmask describing
which of the potentially unsupported flags are, in fact, supported. See the sec-
tion "Dynamically probing for flag bit support" below for more details.

SA_EXPOSE_TAGBITS (since Linux 5.11)
Normally, when delivering a signal, an architecture-specific set of tag bits are
cleared from the si_addr field of siginfo_t. If this flag is set, an architecture-
specific subset of the tag bits will be preserved in si_addr.

Programs that need to be compatible with Linux versions older than 5.11 must
use SA_UNSUPPORTED to probe for support.

The siginfo_t argument to a SA_SIGINFO handler
When the SA_SIGINFO flag is specified in act.sa_flags, the signal handler address is
passed via the act.sa_sigaction field. This handler takes three arguments, as follows:

void
handler(int sig, siginfo_t *info, void *ucontext)
{

...
}

These three arguments are as follows

sig The number of the signal that caused invocation of the handler.

info A pointer to a siginfo_t, which is a structure containing further information
about the signal, as described below.

ucontext
This is a pointer to a ucontext_t structure, cast to void *. The structure pointed
to by this field contains signal context information that was saved on the user-
space stack by the kernel; for details, see sigreturn(2). Further information
about the ucontext_t structure can be found in getcontext(3) and signal(7).
Commonly, the handler function doesn’t make any use of the third argument.

The siginfo_t data type is a structure with the following fields:

siginfo_t {
int si_signo; /* Signal number */
int si_errno; /* An errno value */
int si_code; /* Signal code */

Linux man-pages 6.13 2024-08-21 928

sigaction(2) System Calls Manual sigaction(2)

int si_trapno; /* Trap number that caused
hardware-generated signal
(unused on most architectures) */

pid_t si_pid; /* Sending process ID */
uid_t si_uid; /* Real user ID of sending process */
int si_status; /* Exit value or signal */
clock_t si_utime; /* User time consumed */
clock_t si_stime; /* System time consumed */
union sigval si_value; /* Signal value */
int si_int; /* POSIX.1b signal */
void *si_ptr; /* POSIX.1b signal */
int si_overrun; /* Timer overrun count;

POSIX.1b timers */
int si_timerid; /* Timer ID; POSIX.1b timers */
void *si_addr; /* Memory location which caused fault */
long si_band; /* Band event (was int in

glibc 2.3.2 and earlier) */
int si_fd; /* File descriptor */
short si_addr_lsb; /* Least significant bit of address

(since Linux 2.6.32) */
void *si_lower; /* Lower bound when address violation

occurred (since Linux 3.19) */
void *si_upper; /* Upper bound when address violation

occurred (since Linux 3.19) */
int si_pkey; /* Protection key on PTE that caused

fault (since Linux 4.6) */
void *si_call_addr; /* Address of system call instruction

(since Linux 3.5) */
int si_syscall; /* Number of attempted system call

(since Linux 3.5) */
unsigned int si_arch; /* Architecture of attempted system call

(since Linux 3.5) */
}

si_signo, si_errno and si_code are defined for all signals. (si_errno is generally un-
used on Linux.) The rest of the struct may be a union, so that one should read only
the fields that are meaningful for the given signal:

• Signals sent with kill(2) and sigqueue(3) fill in si_pid and si_uid . In addition, sig-
nals sent with sigqueue(3) fill in si_int and si_ptr with the values specified by the
sender of the signal; see sigqueue(3) for more details.

• Signals sent by POSIX.1b timers (since Linux 2.6) fill in si_overrun and
si_timerid . The si_timerid field is an internal ID used by the kernel to identify the
timer; it is not the same as the timer ID returned by timer_create(2). The si_over-
run field is the timer overrun count; this is the same information as is obtained by
a call to timer_getoverrun(2). These fields are nonstandard Linux extensions.

• Signals sent for message queue notification (see the description of SIGEV_SIG-
NAL in mq_notify(3)) fill in si_int/si_ptr, with the sigev_value supplied to
mq_notify(3); si_pid , with the process ID of the message sender; and si_uid , with

Linux man-pages 6.13 2024-08-21 929

sigaction(2) System Calls Manual sigaction(2)

the real user ID of the message sender.

• SIGCHLD fills in si_pid , si_uid , si_status, si_utime, and si_stime, providing in-
formation about the child. The si_pid field is the process ID of the child; si_uid is
the child’s real user ID. The si_status field contains the exit status of the child (if
si_code is CLD_EXITED), or the signal number that caused the process to
change state. The si_utime and si_stime contain the user and system CPU time
used by the child process; these fields do not include the times used by waited-for
children (unlike getrusage(2) and times(2)). Up to Linux 2.6, and since Linux
2.6.27, these fields report CPU time in units of sysconf(_SC_CLK_TCK). In
Linux 2.6 kernels before Linux 2.6.27, a bug meant that these fields reported time
in units of the (configurable) system jiffy (see time(7)).

• SIGILL, SIGFPE, SIGSEGV, SIGBUS, and SIGTRAP fill in si_addr with the
address of the fault. On some architectures, these signals also fill in the si_trapno
field.

Some suberrors of SIGBUS, in particular BUS_MCEERR_AO and
BUS_MCEERR_AR, also fill in si_addr_lsb. This field indicates the least sig-
nificant bit of the reported address and therefore the extent of the corruption. For
example, if a full page was corrupted, si_addr_lsb contains log2(sysconf(_SC_PA-
GESIZE)). When SIGTRAP is delivered in response to a ptrace(2) event
(PTRACE_EVENT_foo), si_addr is not populated, but si_pid and si_uid are pop-
ulated with the respective process ID and user ID responsible for delivering the
trap. In the case of seccomp(2), the tracee will be shown as delivering the event.
BUS_MCEERR_* and si_addr_lsb are Linux-specific extensions.

The SEGV_BNDERR suberror of SIGSEGV populates si_lower and si_upper.

The SEGV_PKUERR suberror of SIGSEGV populates si_pkey.

• SIGIO/SIGPOLL (the two names are synonyms on Linux) fills in si_band and
si_fd . The si_band event is a bit mask containing the same values as are filled in
the revents field by poll(2). The si_fd field indicates the file descriptor for which
the I/O event occurred; for further details, see the description of F_SETSIG in fc-
ntl(2).

• SIGSYS, generated (since Linux 3.5) when a seccomp filter returns SEC-
COMP_RET_TRAP, fills in si_call_addr, si_syscall, si_arch, si_errno, and
other fields as described in seccomp(2).

The si_code field
The si_code field inside the siginfo_t argument that is passed to a SA_SIGINFO sig-
nal handler is a value (not a bit mask) indicating why this signal was sent. For a
ptrace(2) event, si_code will contain SIGTRAP and have the ptrace event in the high
byte:

(SIGTRAP | PTRACE_EVENT_foo << 8).

For a non-ptrace(2) event, the values that can appear in si_code are described in the
remainder of this section. Since glibc 2.20, the definitions of most of these symbols
are obtained from <signal.h> by defining feature test macros (before including any
header file) as follows:

Linux man-pages 6.13 2024-08-21 930

sigaction(2) System Calls Manual sigaction(2)

• _XOPEN_SOURCE with the value 500 or greater;

• _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED; or

• _POSIX_C_SOURCE with the value 200809L or greater.

For the TRAP_* constants, the symbol definitions are provided only in the first two
cases. Before glibc 2.20, no feature test macros were required to obtain these sym-
bols.

For a regular signal, the following list shows the values which can be placed in
si_code for any signal, along with the reason that the signal was generated.

SI_USER
kill(2).

SI_KERNEL
Sent by the kernel.

SI_QUEUE
sigqueue(3).

SI_TIMER
POSIX, or setitimer(2) or alarm(2) timer expired.

SI_MESGQ (since Linux 2.6.6)
POSIX message queue state changed; see mq_notify(3).

SI_ASYNCIO
AIO completed.

SI_SIGIO
Queued SIGIO (only up to Linux 2.2; from Linux 2.4 onward SI-
GIO/SIGPOLL fills in si_code as described below).

SI_TKILL (since Linux 2.4.19)
tkill(2) or tgkill(2).

The following values can be placed in si_code for a SIGILL signal:

ILL_ILLOPC
Illegal opcode.

ILL_ILLOPN
Illegal operand.

ILL_ILLADR
Illegal addressing mode.

ILL_ILLTRP
Illegal trap.

ILL_PRVOPC
Privileged opcode.

ILL_PRVREG
Privileged register.

ILL_COPROC
Coprocessor error.

Linux man-pages 6.13 2024-08-21 931

sigaction(2) System Calls Manual sigaction(2)

ILL_BADSTK
Internal stack error.

The following values can be placed in si_code for a SIGFPE signal:

FPE_INTDIV
Integer divide by zero.

FPE_INTOVF
Integer overflow.

FPE_FLTDIV
Floating-point divide by zero.

FPE_FLTOVF
Floating-point overflow.

FPE_FLTUND
Floating-point underflow.

FPE_FLTRES
Floating-point inexact result.

FPE_FLTINV
Floating-point invalid operation.

FPE_FLTSUB
Subscript out of range.

The following values can be placed in si_code for a SIGSEGV signal:

SEGV_MAPERR
Address not mapped to object.

SEGV_ACCERR
Invalid permissions for mapped object.

SEGV_BNDERR (since Linux 3.19)
Failed address bound checks.

SEGV_PKUERR (since Linux 4.6)
Access was denied by memory protection keys. See pkeys(7). The pro-
tection key which applied to this access is available via si_pkey.

The following values can be placed in si_code for a SIGBUS signal:

BUS_ADRALN
Invalid address alignment.

BUS_ADRERR
Nonexistent physical address.

BUS_OBJERR
Object-specific hardware error.

BUS_MCEERR_AR (since Linux 2.6.32)
Hardware memory error consumed on a machine check; action required.

BUS_MCEERR_AO (since Linux 2.6.32)
Hardware memory error detected in process but not consumed; action op-
tional.

Linux man-pages 6.13 2024-08-21 932

sigaction(2) System Calls Manual sigaction(2)

The following values can be placed in si_code for a SIGTRAP signal:

TRAP_BRKPT
Process breakpoint.

TRAP_TRACE
Process trace trap.

TRAP_BRANCH (since Linux 2.4, IA64 only)
Process taken branch trap.

TRAP_HWBKPT (since Linux 2.4, IA64 only)
Hardware breakpoint/watchpoint.

The following values can be placed in si_code for a SIGCHLD signal:

CLD_EXITED
Child has exited.

CLD_KILLED
Child was killed.

CLD_DUMPED
Child terminated abnormally.

CLD_TRAPPED
Traced child has trapped.

CLD_STOPPED
Child has stopped.

CLD_CONTINUED (since Linux 2.6.9)
Stopped child has continued.

The following values can be placed in si_code for a SIGIO/SIGPOLL signal:

POLL_IN
Data input available.

POLL_OUT
Output buffers available.

POLL_MSG
Input message available.

POLL_ERR
I/O error.

POLL_PRI
High priority input available.

POLL_HUP
Device disconnected.

The following value can be placed in si_code for a SIGSYS signal:

SYS_SECCOMP (since Linux 3.5)
Triggered by a seccomp(2) filter rule.

Linux man-pages 6.13 2024-08-21 933

sigaction(2) System Calls Manual sigaction(2)

Dynamically probing for flag bit support
The sigaction() call on Linux accepts unknown bits set in act->sa_flags without er-
ror. The behavior of the kernel starting with Linux 5.11 is that a second sigaction()
will clear unknown bits from oldact->sa_flags. However, historically, a second sigac-
tion() call would typically leave those bits set in oldact->sa_flags.

This means that support for new flags cannot be detected simply by testing for a flag
in sa_flags, and a program must test that SA_UNSUPPORTED has been cleared be-
fore relying on the contents of sa_flags.

Since the behavior of the signal handler cannot be guaranteed unless the check passes,
it is wise to either block the affected signal while registering the handler and perform-
ing the check in this case, or where this is not possible, for example if the signal is
synchronous, to issue the second sigaction() in the signal handler itself.

In kernels that do not support a specific flag, the kernel’s behavior is as if the flag was
not set, even if the flag was set in act->sa_flags.

The flags SA_NOCLDSTOP, SA_NOCLDWAIT, SA_SIGINFO, SA_ONSTACK,
SA_RESTART, SA_NODEFER, SA_RESETHAND, and, if defined by the archi-
tecture, SA_RESTORER may not be reliably probed for using this mechanism, be-
cause they were introduced before Linux 5.11. However, in general, programs may
assume that these flags are supported, since they have all been supported since Linux
2.6, which was released in the year 2003.

See EXAMPLES below for a demonstration of the use of SA_UNSUPPORTED.

RETURN VALUE
sigaction() returns 0 on success; on error, -1 is returned, and errno is set to indicate
the error.

ERRORS
EFAULT

act or oldact points to memory which is not a valid part of the process address
space.

EINVAL
An invalid signal was specified. This will also be generated if an attempt is
made to change the action for SIGKILL or SIGSTOP, which cannot be
caught or ignored.

VERSIONS
C library/kernel differences

The glibc wrapper function for sigaction() gives an error (EINVAL) on attempts to
change the disposition of the two real-time signals used internally by the NPTL
threading implementation. See nptl(7) for details.

On architectures where the signal trampoline resides in the C library, the glibc wrap-
per function for sigaction() places the address of the trampoline code in the act.sa_re-
storer field and sets the SA_RESTORER flag in the act.sa_flags field. See sigre-
turn(2).

The original Linux system call was named sigaction(). However, with the addition of
real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t type supported by that
system call was no longer fit for purpose. Consequently, a new system call,

Linux man-pages 6.13 2024-08-21 934

sigaction(2) System Calls Manual sigaction(2)

rt_sigaction(), was added to support an enlarged sigset_t type. The new system call
takes a fourth argument, size_t sigsetsize, which specifies the size in bytes of the sig-
nal sets in act.sa_mask and oldact.sa_mask. This argument is currently required to
have the value sizeof(sigset_t) (or the error EINVAL results). The glibc sigaction()
wrapper function hides these details from us, transparently calling rt_sigaction()
when the kernel provides it.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

POSIX.1-1990 disallowed setting the action for SIGCHLD to SIG_IGN.
POSIX.1-2001 and later allow this possibility, so that ignoring SIGCHLD can be
used to prevent the creation of zombies (see wait(2)). Nevertheless, the historical
BSD and System V behaviors for ignoring SIGCHLD differ, so that the only com-
pletely portable method of ensuring that terminated children do not become zombies
is to catch the SIGCHLD signal and perform a wait(2) or similar.

POSIX.1-1990 specified only SA_NOCLDSTOP. POSIX.1-2001 added SA_NO-
CLDWAIT, SA_NODEFER, SA_ONSTACK, SA_RESETHAND, SA_RESTART,
and SA_SIGINFO as XSI extensions. POSIX.1-2008 moved SA_NODEFER,
SA_RESETHAND, SA_RESTART, and SA_SIGINFO to the base specifications.
Use of these latter values in sa_flags may be less portable in applications intended for
older UNIX implementations.

The SA_RESETHAND flag is compatible with the SVr4 flag of the same name.

The SA_NODEFER flag is compatible with the SVr4 flag of the same name under
kernels 1.3.9 and later. On older kernels the Linux implementation allowed the re-
ceipt of any signal, not just the one we are installing (effectively overriding any
sa_mask settings).

NOTES
A child created via fork(2) inherits a copy of its parent’s signal dispositions. During
an execve(2), the dispositions of handled signals are reset to the default; the disposi-
tions of ignored signals are left unchanged.

According to POSIX, the behavior of a process is undefined after it ignores a
SIGFPE, SIGILL, or SIGSEGV signal that was not generated by kill(2) or raise(3).
Integer division by zero has undefined result. On some architectures it will generate a
SIGFPE signal. (Also dividing the most negative integer by -1 may generate
SIGFPE.) Ignoring this signal might lead to an endless loop.

sigaction() can be called with a NULL second argument to query the current signal
handler. It can also be used to check whether a given signal is valid for the current
machine by calling it with NULL second and third arguments.

It is not possible to block SIGKILL or SIGSTOP (by specifying them in sa_mask).
Attempts to do so are silently ignored.

See sigsetops(3) for details on manipulating signal sets.

See signal-safety(7) for a list of the async-signal-safe functions that can be safely
called inside from inside a signal handler.

Linux man-pages 6.13 2024-08-21 935

sigaction(2) System Calls Manual sigaction(2)

POSIX only guarantees SI_TIMER for signals created by timer_create(2). Imple-
mentations are free to also provide it for other types of timers. The Linux behaviour
matches NetBSD.

Undocumented
Before the introduction of SA_SIGINFO, it was also possible to get some additional
information about the signal. This was done by providing an sa_handler signal han-
dler with a second argument of type struct sigcontext, which is the same structure as
the one that is passed in the uc_mcontext field of the ucontext structure that is passed
(via a pointer) in the third argument of the sa_sigaction handler. See the relevant
Linux kernel sources for details. This use is obsolete now.

BUGS
When delivering a signal resulting from a hardware exception with a SA_SIGINFO
handler, the kernel does not always provide meaningful values for all of the fields of
the siginfo_t that are relevant for that signal. For example, when the x86 int instruc-
tion is called with a forbidden argument (any number other than 3 or 128), a
SIGSEGV signal is delivered, but the siginfo_t passed to the signal handler has all its
fields besides si_signo and si_code set to zero, even if other fields should be set (as an
example, si_addr should be non-zero for all SIGSEGV signals).

Up to and including Linux 2.6.13, specifying SA_NODEFER in sa_flags prevents
not only the delivered signal from being masked during execution of the handler, but
also the signals specified in sa_mask. This bug was fixed in Linux 2.6.14.

EXAMPLES
See mprotect(2).

Probing for flag support
The following example program exits with status EXIT_SUCCESS if SA_EX-
POSE_TAGBITS is determined to be supported, and EXIT_FAILURE otherwise.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void
handler(int signo, siginfo_t *info, void *context)
{

struct sigaction oldact;

if (sigaction(SIGSEGV, NULL, &oldact) == -1
|| (oldact.sa_flags & SA_UNSUPPORTED)
|| !(oldact.sa_flags & SA_EXPOSE_TAGBITS))

{
_exit(EXIT_FAILURE);

}
_exit(EXIT_SUCCESS);

}

int

Linux man-pages 6.13 2024-08-21 936

sigaction(2) System Calls Manual sigaction(2)

main(void)
{

struct sigaction act = { 0 };

act.sa_flags = SA_SIGINFO | SA_UNSUPPORTED | SA_EXPOSE_TAGBITS;
act.sa_sigaction = &handler;
if (sigaction(SIGSEGV, &act, NULL) == -1) {

perror("sigaction");
exit(EXIT_FAILURE);

}

raise(SIGSEGV);
}

SEE ALSO
kill(1), kill(2), pause(2), pidfd_send_signal(2), restart_syscall(2), seccomp(2), sigalt-
stack(2), signal(2), signalfd(2), sigpending(2), sigprocmask(2), sigreturn(2), sigsus-
pend(2), wait(2), killpg(3), raise(3), siginterrupt(3), sigqueue(3), sigsetops(3),
sigvec(3), core(5), signal(7)

Linux man-pages 6.13 2024-08-21 937

sigaltstack(2) System Calls Manual sigaltstack(2)

NAME
sigaltstack - set and/or get signal stack context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigaltstack(const stack_t *_Nullable restrict ss,
stack_t *_Nullable restrict old_ss);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigaltstack():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
sigaltstack() allows a thread to define a new alternate signal stack and/or retrieve the
state of an existing alternate signal stack. An alternate signal stack is used during the
execution of a signal handler if the establishment of that handler (see sigaction(2)) re-
quested it.

The normal sequence of events for using an alternate signal stack is the following:

1. Allocate an area of memory to be used for the alternate signal stack.

2. Use sigaltstack() to inform the system of the existence and location of the alter-
nate signal stack.

3. When establishing a signal handler using sigaction(2), inform the system that the
signal handler should be executed on the alternate signal stack by specifying the
SA_ONSTACK flag.

The ss argument is used to specify a new alternate signal stack, while the old_ss argu-
ment is used to retrieve information about the currently established signal stack. If we
are interested in performing just one of these tasks, then the other argument can be
specified as NULL.

The stack_t type used to type the arguments of this function is defined as follows:

typedef struct {
void *ss_sp; /* Base address of stack */
int ss_flags; /* Flags */
size_t ss_size; /* Number of bytes in stack */

} stack_t;

To establish a new alternate signal stack, the fields of this structure are set as follows:

ss.ss_flags
This field contains either 0, or the following flag:

SS_AUTODISARM (since Linux 4.7)
Clear the alternate signal stack settings on entry to the signal handler.
When the signal handler returns, the previous alternate signal stack set-
tings are restored.

Linux man-pages 6.13 2024-07-23 938

sigaltstack(2) System Calls Manual sigaltstack(2)

This flag was added in order to make it safe to switch away from the
signal handler with swapcontext(3). Without this flag, a subsequently
handled signal will corrupt the state of the switched-away signal han-
dler. On kernels where this flag is not supported, sigaltstack() fails
with the error EINVAL when this flag is supplied.

ss.ss_sp
This field specifies the starting address of the stack. When a signal handler is
invoked on the alternate stack, the kernel automatically aligns the address
given in ss.ss_sp to a suitable address boundary for the underlying hardware
architecture.

ss.ss_size
This field specifies the size of the stack. The constant SIGSTKSZ is defined
to be large enough to cover the usual size requirements for an alternate signal
stack, and the constant MINSIGSTKSZ defines the minimum size required to
execute a signal handler.

To disable an existing stack, specify ss.ss_flags as SS_DISABLE. In this case, the
kernel ignores any other flags in ss.ss_flags and the remaining fields in ss.

If old_ss is not NULL, then it is used to return information about the alternate signal
stack which was in effect prior to the call to sigaltstack(). The old_ss.ss_sp and
old_ss.ss_size fields return the starting address and size of that stack. The
old_ss.ss_flags may return either of the following values:

SS_ONSTACK
The thread is currently executing on the alternate signal stack. (Note that it is
not possible to change the alternate signal stack if the thread is currently exe-
cuting on it.)

SS_DISABLE
The alternate signal stack is currently disabled.

Alternatively, this value is returned if the thread is currently executing on an
alternate signal stack that was established using the SS_AUTODISARM flag.
In this case, it is safe to switch away from the signal handler with swapcon-
text(3). It is also possible to set up a different alternative signal stack using a
further call to sigaltstack().

SS_AUTODISARM
The alternate signal stack has been marked to be autodisarmed as described
above.

By specifying ss as NULL, and old_ss as a non-NULL value, one can obtain the cur-
rent settings for the alternate signal stack without changing them.

RETURN VALUE
sigaltstack() returns 0 on success, or -1 on failure with errno set to indicate the error.

ERRORS
EFAULT

Either ss or old_ss is not NULL and points to an area outside of the process’s
address space.

Linux man-pages 6.13 2024-07-23 939

sigaltstack(2) System Calls Manual sigaltstack(2)

EINVAL
ss is not NULL and the ss_flags field contains an invalid flag.

ENOMEM
The specified size of the new alternate signal stack ss.ss_size was less than
MINSIGSTKSZ.

EPERM
An attempt was made to change the alternate signal stack while it was active
(i.e., the thread was already executing on the current alternate signal stack).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigaltstack()

STANDARDS
POSIX.1-2008.

SS_AUTODISARM is a Linux extension.

HISTORY
POSIX.1-2001, SUSv2, SVr4.

NOTES
The most common usage of an alternate signal stack is to handle the SIGSEGV sig-
nal that is generated if the space available for the standard stack is exhausted: in this
case, a signal handler for SIGSEGV cannot be invoked on the standard stack; if we
wish to handle it, we must use an alternate signal stack.

Establishing an alternate signal stack is useful if a thread expects that it may exhaust
its standard stack. This may occur, for example, because the stack grows so large that
it encounters the upwardly growing heap, or it reaches a limit established by a call to
setrlimit(RLIMIT_STACK, &rlim). If the standard stack is exhausted, the kernel
sends the thread a SIGSEGV signal. In these circumstances the only way to catch
this signal is on an alternate signal stack.

On most hardware architectures supported by Linux, stacks grow downward. sigalt-
stack() automatically takes account of the direction of stack growth.

Functions called from a signal handler executing on an alternate signal stack will also
use the alternate signal stack. (This also applies to any handlers invoked for other sig-
nals while the thread is executing on the alternate signal stack.) Unlike the standard
stack, the system does not automatically extend the alternate signal stack. Exceeding
the allocated size of the alternate signal stack will lead to unpredictable results.

A successful call to execve(2) removes any existing alternate signal stack. A child
process created via fork(2) inherits a copy of its parent’s alternate signal stack set-
tings. The same is also true for a child process created using clone(2), unless the
clone flags include CLONE_VM and do not include CLONE_VFORK, in which
case any alternate signal stack that was established in the parent is disabled in the
child process.

sigaltstack() supersedes the older sigstack() call. For backward compatibility, glibc
also provides sigstack(). All new applications should be written using sigaltstack().

Linux man-pages 6.13 2024-07-23 940

sigaltstack(2) System Calls Manual sigaltstack(2)

History
4.2BSD had a sigstack() system call. It used a slightly different struct, and had the
major disadvantage that the caller had to know the direction of stack growth.

BUGS
In Linux 2.2 and earlier, the only flag that could be specified in ss.sa_flags was
SS_DISABLE. In the lead up to the release of the Linux 2.4 kernel, a change was
made to allow sigaltstack() to allow ss.ss_flags==SS_ONSTACK with the same
meaning as ss.ss_flags==0 (i.e., the inclusion of SS_ONSTACK in ss.ss_flags is a
no-op). On other implementations, and according to POSIX.1, SS_ONSTACK ap-
pears only as a reported flag in old_ss.ss_flags. On Linux, there is no need ever to
specify SS_ONSTACK in ss.ss_flags, and indeed doing so should be avoided on
portability grounds: various other systems give an error if SS_ONSTACK is specified
in ss.ss_flags.

EXAMPLES
The following code segment demonstrates the use of sigaltstack() (and sigaction(2))
to install an alternate signal stack that is employed by a handler for the SIGSEGV
signal:

stack_t ss;

ss.ss_sp = malloc(SIGSTKSZ);
if (ss.ss_sp == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

ss.ss_size = SIGSTKSZ;
ss.ss_flags = 0;
if (sigaltstack(&ss, NULL) == -1) {

perror("sigaltstack");
exit(EXIT_FAILURE);

}

sa.sa_flags = SA_ONSTACK;
sa.sa_handler = handler(); /* Address of a signal handler */
sigemptyset(&sa.sa_mask);
if (sigaction(SIGSEGV, &sa, NULL) == -1) {

perror("sigaction");
exit(EXIT_FAILURE);

}

SEE ALSO
execve(2), setrlimit(2), sigaction(2), siglongjmp(3), sigsetjmp(3), signal(7)

Linux man-pages 6.13 2024-07-23 941

signal(2) System Calls Manual signal(2)

NAME
signal - ANSI C signal handling

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

typedef typeof(void (int)) *sighandler_t;

sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION
WARNING: the behavior of signal() varies across UNIX versions, and has also var-
ied historically across different versions of Linux. Avoid its use: use sigaction(2) in-
stead. See Portability below.

signal() sets the disposition of the signal signum to handler, which is either
SIG_IGN, SIG_DFL, or the address of a programmer-defined function (a "signal
handler").

If the signal signum is delivered to the process, then one of the following happens:

* If the disposition is set to SIG_IGN, then the signal is ignored.

* If the disposition is set to SIG_DFL, then the default action associated with the
signal (see signal(7)) occurs.

* If the disposition is set to a function, then first either the disposition is reset to
SIG_DFL, or the signal is blocked (see Portability below), and then handler is
called with argument signum. If invocation of the handler caused the signal to be
blocked, then the signal is unblocked upon return from the handler.

The signals SIGKILL and SIGSTOP cannot be caught or ignored.

RETURN VALUE
signal() returns the previous value of the signal handler. On failure, it returns
SIG_ERR, and errno is set to indicate the error.

ERRORS
EINVAL

signum is invalid.

VERSIONS
The use of sighandler_t is a GNU extension, exposed if _GNU_SOURCE is defined;
glibc also defines (the BSD-derived) sig_t if _BSD_SOURCE (glibc 2.19 and earlier)
or _DEFAULT_SOURCE (glibc 2.19 and later) is defined. The standard definition
of signal() is:

typeof(void (int)) *signal(int signum, typeof(void (int)) *handler);

Portability
The only portable use of signal() is to set a signal’s disposition to SIG_DFL or
SIG_IGN. The semantics when using signal() to establish a signal handler vary
across systems (and POSIX.1 explicitly permits this variation); do not use it for this
purpose.

POSIX.1 solved the portability mess by specifying sigaction(2), which provides

Linux man-pages 6.13 2025-01-05 942

signal(2) System Calls Manual signal(2)

explicit control of the semantics when a signal handler is invoked; use that interface
instead of signal().

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

In the original UNIX systems, when a handler that was established using signal() was
invoked by the delivery of a signal, the disposition of the signal would be reset to
SIG_DFL, and the system did not block delivery of further instances of the signal.
This is equivalent to calling sigaction(2) with the following flags:

sa.sa_flags = SA_RESETHAND | SA_NODEFER;

System V also provides these semantics for signal(). This was bad because the signal
might be delivered again before the handler had a chance to reestablish itself. Fur-
thermore, rapid deliveries of the same signal could result in recursive invocations of
the handler.

BSD improved on this situation, but unfortunately also changed the semantics of the
existing signal() interface while doing so. On BSD, when a signal handler is invoked,
the signal disposition is not reset, and further instances of the signal are blocked from
being delivered while the handler is executing. Furthermore, certain blocking system
calls are automatically restarted if interrupted by a signal handler (see signal(7)). The
BSD semantics are equivalent to calling sigaction(2) with the following flags:

sa.sa_flags = SA_RESTART;

The situation on Linux is as follows:

• The kernel’s signal() system call provides System V semantics.

• By default, in glibc 2 and later, the signal() wrapper function does not invoke the
kernel system call. Instead, it calls sigaction(2) using flags that supply BSD se-
mantics. This default behavior is provided as long as a suitable feature test macro
is defined: _BSD_SOURCE on glibc 2.19 and earlier or _DEFAULT_SOURCE
in glibc 2.19 and later. (By default, these macros are defined; see fea-
ture_test_macros(7) for details.) If such a feature test macro is not defined, then
signal() provides System V semantics.

NOTES
The effects of signal() in a multithreaded process are unspecified.

According to POSIX, the behavior of a process is undefined after it ignores a
SIGFPE, SIGILL, or SIGSEGV signal that was not generated by kill(2) or raise(3).
Integer division by zero has undefined result. On some architectures it will generate a
SIGFPE signal. (Also dividing the most negative integer by -1 may generate
SIGFPE.) Ignoring this signal might lead to an endless loop.

See sigaction(2) for details on what happens when the disposition SIGCHLD is set to
SIG_IGN.

See signal-safety(7) for a list of the async-signal-safe functions that can be safely
called from inside a signal handler.

Linux man-pages 6.13 2025-01-05 943

signal(2) System Calls Manual signal(2)

SEE ALSO
kill(1), alarm(2), kill(2), pause(2), sigaction(2), signalfd(2), sigpending(2), sigproc-
mask(2), sigsuspend(2), bsd_signal(3), killpg(3), raise(3), siginterrupt(3),
sigqueue(3), sigsetops(3), sigvec(3), sysv_signal(3), signal(7)

Linux man-pages 6.13 2025-01-05 944

signalfd(2) System Calls Manual signalfd(2)

NAME
signalfd - create a file descriptor for accepting signals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/signalfd.h>

int signalfd(int fd , const sigset_t *mask, int flags);

DESCRIPTION
signalfd() creates a file descriptor that can be used to accept signals targeted at the
caller. This provides an alternative to the use of a signal handler or sigwaitinfo(2),
and has the advantage that the file descriptor may be monitored by select(2), poll(2),
and epoll(7).

The mask argument specifies the set of signals that the caller wishes to accept via the
file descriptor. This argument is a signal set whose contents can be initialized using
the macros described in sigsetops(3). Normally, the set of signals to be received via
the file descriptor should be blocked using sigprocmask(2), to prevent the signals be-
ing handled according to their default dispositions. It is not possible to receive
SIGKILL or SIGSTOP signals via a signalfd file descriptor; these signals are silently
ignored if specified in mask.

If the fd argument is -1, then the call creates a new file descriptor and associates the
signal set specified in mask with that file descriptor. If fd is not -1, then it must spec-
ify a valid existing signalfd file descriptor, and mask is used to replace the signal set
associated with that file descriptor.

Starting with Linux 2.6.27, the following values may be bitwise ORed in flags to
change the behavior of signalfd():

SFD_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description
(see open(2)) referred to by the new file descriptor. Using this flag
saves extra calls to fcntl(2) to achieve the same result.

SFD_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descrip-
tor. See the description of the O_CLOEXEC flag in open(2) for
reasons why this may be useful.

Up to Linux 2.6.26, the flags argument is unused, and must be specified as zero.

signalfd() returns a file descriptor that supports the following operations:

read(2)
If one or more of the signals specified in mask is pending for the process, then
the buffer supplied to read(2) is used to return one or more signalfd_siginfo
structures (see below) that describe the signals. The read(2) returns informa-
tion for as many signals as are pending and will fit in the supplied buffer. The
buffer must be at least sizeof(struct signalfd_siginfo) bytes. The return value
of the read(2) is the total number of bytes read.

Linux man-pages 6.13 2024-07-23 945

signalfd(2) System Calls Manual signalfd(2)

As a consequence of the read(2), the signals are consumed, so that they are no
longer pending for the process (i.e., will not be caught by signal handlers, and
cannot be accepted using sigwaitinfo(2)).

If none of the signals in mask is pending for the process, then the read(2) ei-
ther blocks until one of the signals in mask is generated for the process, or
fails with the error EAGAIN if the file descriptor has been made nonblocking.

poll(2)
select(2)
(and similar)

The file descriptor is readable (the select(2) readfds argument; the poll(2)
POLLIN flag) if one or more of the signals in mask is pending for the
process.

The signalfd file descriptor also supports the other file-descriptor multiplexing
APIs: pselect(2), ppoll(2), and epoll(7).

close(2)
When the file descriptor is no longer required it should be closed. When all
file descriptors associated with the same signalfd object have been closed, the
resources for object are freed by the kernel.

The signalfd_siginfo structure
The format of the signalfd_siginfo structure(s) returned by read(2)s from a signalfd
file descriptor is as follows:

struct signalfd_siginfo {
uint32_t ssi_signo; /* Signal number */
int32_t ssi_errno; /* Error number (unused) */
int32_t ssi_code; /* Signal code */
uint32_t ssi_pid; /* PID of sender */
uint32_t ssi_uid; /* Real UID of sender */
int32_t ssi_fd; /* File descriptor (SIGIO) */
uint32_t ssi_tid; /* Kernel timer ID (POSIX timers)
uint32_t ssi_band; /* Band event (SIGIO) */
uint32_t ssi_overrun; /* POSIX timer overrun count */
uint32_t ssi_trapno; /* Trap number that caused signal */
int32_t ssi_status; /* Exit status or signal (SIGCHLD) */
int32_t ssi_int; /* Integer sent by sigqueue(3) */
uint64_t ssi_ptr; /* Pointer sent by sigqueue(3) */
uint64_t ssi_utime; /* User CPU time consumed (SIGCHLD) */
uint64_t ssi_stime; /* System CPU time consumed

(SIGCHLD) */
uint64_t ssi_addr; /* Address that generated signal

(for hardware-generated signals) */
uint16_t ssi_addr_lsb; /* Least significant bit of address

(SIGBUS; since Linux 2.6.37) */
uint8_t pad[X]; /* Pad size to 128 bytes (allow for

additional fields in the future) */
};

Each of the fields in this structure is analogous to the similarly named field in the

Linux man-pages 6.13 2024-07-23 946

signalfd(2) System Calls Manual signalfd(2)

siginfo_t structure. The siginfo_t structure is described in sigaction(2). Not all fields
in the returned signalfd_siginfo structure will be valid for a specific signal; the set of
valid fields can be determined from the value returned in the ssi_code field. This field
is the analog of the siginfo_t si_code field; see sigaction(2) for details.

fork(2) semantics
After a fork(2), the child inherits a copy of the signalfd file descriptor. A read(2) from
the file descriptor in the child will return information about signals queued to the
child.

Semantics of file descriptor passing
As with other file descriptors, signalfd file descriptors can be passed to another
process via a UNIX domain socket (see unix(7)). In the receiving process, a read(2)
from the received file descriptor will return information about signals queued to that
process.

execve(2) semantics
Just like any other file descriptor, a signalfd file descriptor remains open across an ex-
ecve(2), unless it has been marked for close-on-exec (see fcntl(2)). Any signals that
were available for reading before the execve(2) remain available to the newly loaded
program. (This is analogous to traditional signal semantics, where a blocked signal
that is pending remains pending across an execve(2).)

Thread semantics
The semantics of signalfd file descriptors in a multithreaded program mirror the stan-
dard semantics for signals. In other words, when a thread reads from a signalfd file
descriptor, it will read the signals that are directed to the thread itself and the signals
that are directed to the process (i.e., the entire thread group). (A thread will not be
able to read signals that are directed to other threads in the process.)

epoll(7) semantics
If a process adds (via epoll_ctl(2)) a signalfd file descriptor to an epoll(7) instance,
then epoll_wait(2) returns events only for signals sent to that process. In particular, if
the process then uses fork(2) to create a child process, then the child will be able to
read(2) signals that are sent to it using the signalfd file descriptor, but epoll_wait(2)
will not indicate that the signalfd file descriptor is ready. In this scenario, a possible
workaround is that after the fork(2), the child process can close the signalfd file de-
scriptor that it inherited from the parent process and then create another signalfd file
descriptor and add it to the epoll instance. Alternatively, the parent and the child
could delay creating their (separate) signalfd file descriptors and adding them to the
epoll instance until after the call to fork(2).

RETURN VALUE
On success, signalfd() returns a signalfd file descriptor; this is either a new file de-
scriptor (if fd was -1), or fd if fd was a valid signalfd file descriptor. On error, -1 is
returned and errno is set to indicate the error.

ERRORS
EBADF

The fd file descriptor is not a valid file descriptor.

Linux man-pages 6.13 2024-07-23 947

signalfd(2) System Calls Manual signalfd(2)

EINVAL
fd is not a valid signalfd file descriptor.

EINVAL
flags is invalid; or, in Linux 2.6.26 or earlier, flags is nonzero.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
Could not mount (internal) anonymous inode device.

ENOMEM
There was insufficient memory to create a new signalfd file descriptor.

VERSIONS
C library/kernel differences

The underlying Linux system call requires an additional argument, size_t sizemask,
which specifies the size of the mask argument. The glibc signalfd() wrapper function
does not include this argument, since it provides the required value for the underlying
system call.

There are two underlying Linux system calls: signalfd() and the more recent sig-
nalfd4(). The former system call does not implement a flags argument. The latter
system call implements the flags values described above. Starting with glibc 2.9, the
signalfd() wrapper function will use signalfd4() where it is available.

STANDARDS
Linux.

HISTORY
signalfd()

Linux 2.6.22, glibc 2.8.

signalfd4()
Linux 2.6.27.

NOTES
A process can create multiple signalfd file descriptors. This makes it possible to ac-
cept different signals on different file descriptors. (This may be useful if monitoring
the file descriptors using select(2), poll(2), or epoll(7): the arrival of different signals
will make different file descriptors ready.) If a signal appears in the mask of more
than one of the file descriptors, then occurrences of that signal can be read (once)
from any one of the file descriptors.

Attempts to include SIGKILL and SIGSTOP in mask are silently ignored.

The signal mask employed by a signalfd file descriptor can be viewed via the entry for
the corresponding file descriptor in the process’s /proc/ pid /fdinfo directory. See
proc(5) for further details.

Limitations
The signalfd mechanism can’t be used to receive signals that are synchronously gener-
ated, such as the SIGSEGV signal that results from accessing an invalid memory

Linux man-pages 6.13 2024-07-23 948

signalfd(2) System Calls Manual signalfd(2)

address or the SIGFPE signal that results from an arithmetic error. Such signals can
be caught only via signal handler.

As described above, in normal usage one blocks the signals that will be accepted via
signalfd(). If spawning a child process to execute a helper program (that does not
need the signalfd file descriptor), then, after the call to fork(2), you will normally want
to unblock those signals before calling execve(2), so that the helper program can see
any signals that it expects to see. Be aware, however, that this won’t be possible in the
case of a helper program spawned behind the scenes by any library function that the
program may call. In such cases, one must fall back to using a traditional signal han-
dler that writes to a file descriptor monitored by select(2), poll(2), or epoll(7).

BUGS
Before Linux 2.6.25, the ssi_ptr and ssi_int fields are not filled in with the data ac-
companying a signal sent by sigqueue(3).

EXAMPLES
The program below accepts the signals SIGINT and SIGQUIT via a signalfd file de-
scriptor. The program terminates after accepting a SIGQUIT signal. The following
shell session demonstrates the use of the program:

$./signalfd_demo
^C # Control-C generates SIGINT
Got SIGINT
^C
Got SIGINT
^\ # Control-\ generates SIGQUIT
Got SIGQUIT
$

Program source

#include <err.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/signalfd.h>
#include <sys/types.h>
#include <unistd.h>

int
main(void)
{

int sfd;
ssize_t s;
sigset_t mask;
struct signalfd_siginfo fdsi;

sigemptyset(&mask);
sigaddset(&mask, SIGINT);
sigaddset(&mask, SIGQUIT);

Linux man-pages 6.13 2024-07-23 949

signalfd(2) System Calls Manual signalfd(2)

/* Block signals so that they aren't handled
according to their default dispositions. */

if (sigprocmask(SIG_BLOCK, &mask, NULL) == -1)
err(EXIT_FAILURE, "sigprocmask");

sfd = signalfd(-1, &mask, 0);
if (sfd == -1)

err(EXIT_FAILURE, "signalfd");

for (;;) {
s = read(sfd, &fdsi, sizeof(fdsi));
if (s != sizeof(fdsi))

err(EXIT_FAILURE, "read");

if (fdsi.ssi_signo == SIGINT) {
printf("Got SIGINT\n");

} else if (fdsi.ssi_signo == SIGQUIT) {
printf("Got SIGQUIT\n");
exit(EXIT_SUCCESS);

} else {
printf("Read unexpected signal\n");

}
}

}

SEE ALSO
eventfd(2), poll(2), read(2), select(2), sigaction(2), sigprocmask(2), sigwaitinfo(2),
timerfd_create(2), sigsetops(3), sigwait(3), epoll(7), signal(7)

Linux man-pages 6.13 2024-07-23 950

sigpending(2) System Calls Manual sigpending(2)

NAME
sigpending, rt_sigpending - examine pending signals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigpending(sigset_t *set);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigpending():
_POSIX_C_SOURCE

DESCRIPTION
sigpending() returns the set of signals that are pending for delivery to the calling
thread (i.e., the signals which have been raised while blocked). The mask of pending
signals is returned in set.

RETURN VALUE
sigpending() returns 0 on success. On failure, -1 is returned and errno is set to indi-
cate the error.

ERRORS
EFAULT

set points to memory which is not a valid part of the process address space.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

C library/kernel differences
The original Linux system call was named sigpending(). However, with the addition
of real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t argument supported by
that system call was no longer fit for purpose. Consequently, a new system call,
rt_sigpending(), was added to support an enlarged sigset_t type. The new system
call takes a second argument, size_t sigsetsize, which specifies the size in bytes of the
signal set in set. The glibc sigpending() wrapper function hides these details from us,
transparently calling rt_sigpending() when the kernel provides it.

NOTES
See sigsetops(3) for details on manipulating signal sets.

If a signal is both blocked and has a disposition of "ignored", it is not added to the
mask of pending signals when generated.

The set of signals that is pending for a thread is the union of the set of signals that is
pending for that thread and the set of signals that is pending for the process as a
whole; see signal(7).

A child created via fork(2) initially has an empty pending signal set; the pending sig-
nal set is preserved across an execve(2).

Linux man-pages 6.13 2024-07-23 951

sigpending(2) System Calls Manual sigpending(2)

BUGS
Up to and including glibc 2.2.1, there is a bug in the wrapper function for sigpend-
ing() which means that information about pending real-time signals is not correctly
returned.

SEE ALSO
kill(2), sigaction(2), signal(2), sigprocmask(2), sigsuspend(2), sigsetops(3), signal(7)

Linux man-pages 6.13 2024-07-23 952

sigprocmask(2) System Calls Manual sigprocmask(2)

NAME
sigprocmask, rt_sigprocmask - examine and change blocked signals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

/* Prototype for the glibc wrapper function */
int sigprocmask(int how, const sigset_t *_Nullable restrict set,

sigset_t *_Nullable restrict oldset);

#include <signal.h> /* Definition of SIG_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

/* Prototype for the underlying system call */
int syscall(SYS_rt_sigprocmask, int how,

const kernel_sigset_t *_Nullable set,
kernel_sigset_t *_Nullable oldset,
size_t sigsetsize);

/* Prototype for the legacy system call */
[[deprecated]] int syscall(SYS_sigprocmask, int how,

const old_kernel_sigset_t *_Nullable set,
old_kernel_sigset_t *_Nullable oldset);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigprocmask():
_POSIX_C_SOURCE

DESCRIPTION
sigprocmask() is used to fetch and/or change the signal mask of the calling thread.
The signal mask is the set of signals whose delivery is currently blocked for the caller
(see also signal(7) for more details).

The behavior of the call is dependent on the value of how, as follows.

SIG_BLOCK
The set of blocked signals is the union of the current set and the set argument.

SIG_UNBLOCK
The signals in set are removed from the current set of blocked signals. It is
permissible to attempt to unblock a signal which is not blocked.

SIG_SETMASK
The set of blocked signals is set to the argument set.

If oldset is non-NULL, the previous value of the signal mask is stored in oldset.

If set is NULL, then the signal mask is unchanged (i.e., how is ignored), but the cur-
rent value of the signal mask is nevertheless returned in oldset (if it is not NULL).

A set of functions for modifying and inspecting variables of type sigset_t ("signal
sets") is described in sigsetops(3).

The use of sigprocmask() is unspecified in a multithreaded process; see

Linux man-pages 6.13 2024-07-23 953

sigprocmask(2) System Calls Manual sigprocmask(2)

pthread_sigmask(3).

RETURN VALUE
sigprocmask() returns 0 on success. On failure, -1 is returned and errno is set to in-
dicate the error.

ERRORS
EFAULT

The set or oldset argument points outside the process’s allocated address
space.

EINVAL
Either the value specified in how was invalid or the kernel does not support the
size passed in sigsetsize.

VERSIONS
C library/kernel differences

The kernel’s definition of sigset_t differs in size from that used by the C library. In
this manual page, the former is referred to as kernel_sigset_t (it is nevertheless named
sigset_t in the kernel sources).

The glibc wrapper function for sigprocmask() silently ignores attempts to block the
two real-time signals that are used internally by the NPTL threading implementation.
See nptl(7) for details.

The original Linux system call was named sigprocmask(). However, with the addi-
tion of real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t (referred to as
old_kernel_sigset_t in this manual page) type supported by that system call was no
longer fit for purpose. Consequently, a new system call, rt_sigprocmask(), was
added to support an enlarged sigset_t type (referred to as kernel_sigset_t in this man-
ual page). The new system call takes a fourth argument, size_t sigsetsize, which spec-
ifies the size in bytes of the signal sets in set and oldset. This argument is currently
required to have a fixed architecture specific value (equal to sizeof(kernel_sigset_t)).

The glibc sigprocmask() wrapper function hides these details from us, transparently
calling rt_sigprocmask() when the kernel provides it.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
It is not possible to block SIGKILL or SIGSTOP. Attempts to do so are silently ig-
nored.

Each of the threads in a process has its own signal mask.

A child created via fork(2) inherits a copy of its parent’s signal mask; the signal mask
is preserved across execve(2).

If SIGBUS, SIGFPE, SIGILL, or SIGSEGV are generated while they are blocked,
the result is undefined, unless the signal was generated by kill(2), sigqueue(3), or
raise(3).

See sigsetops(3) for details on manipulating signal sets.

Linux man-pages 6.13 2024-07-23 954

sigprocmask(2) System Calls Manual sigprocmask(2)

Note that it is permissible (although not very useful) to specify both set and oldset as
NULL.

SEE ALSO
kill(2), pause(2), sigaction(2), signal(2), sigpending(2), sigsuspend(2), pthread_sig-
mask(3), sigqueue(3), sigsetops(3), signal(7)

Linux man-pages 6.13 2024-07-23 955

sigreturn(2) System Calls Manual sigreturn(2)

NAME
sigreturn, rt_sigreturn - return from signal handler and cleanup stack frame

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
int sigreturn(...);

DESCRIPTION
If the Linux kernel determines that an unblocked signal is pending for a process, then,
at the next transition back to user mode in that process (e.g., upon return from a sys-
tem call or when the process is rescheduled onto the CPU), it creates a new frame on
the user-space stack where it saves various pieces of process context (processor status
word, registers, signal mask, and signal stack settings).

The kernel also arranges that, during the transition back to user mode, the signal han-
dler is called, and that, upon return from the handler, control passes to a piece of user-
space code commonly called the "signal trampoline". The signal trampoline code in
turn calls sigreturn().

This sigreturn() call undoes everything that was done—changing the process’s signal
mask, switching signal stacks (see sigaltstack(2))—in order to invoke the signal han-
dler. Using the information that was earlier saved on the user-space stack sigreturn()
restores the process’s signal mask, switches stacks, and restores the process’s context
(processor flags and registers, including the stack pointer and instruction pointer), so
that the process resumes execution at the point where it was interrupted by the signal.

RETURN VALUE
sigreturn() never returns.

VERSIONS
Many UNIX-type systems have a sigreturn() system call or near equivalent. How-
ever, this call is not specified in POSIX, and details of its behavior vary across sys-
tems.

STANDARDS
None.

NOTES
sigreturn() exists only to allow the implementation of signal handlers. It should
never be called directly. (Indeed, a simple sigreturn() wrapper in the GNU C library
simply returns -1, with errno set to ENOSYS.) Details of the arguments (if any)
passed to sigreturn() vary depending on the architecture. (On some architectures,
such as x86-64, sigreturn() takes no arguments, since all of the information that it re-
quires is available in the stack frame that was previously created by the kernel on the
user-space stack.)

Once upon a time, UNIX systems placed the signal trampoline code onto the user
stack. Nowadays, pages of the user stack are protected so as to disallow code execu-
tion. Thus, on contemporary Linux systems, depending on the architecture, the signal
trampoline code lives either in the vdso(7) or in the C library. In the latter case, the C
library’s sigaction(2) wrapper function informs the kernel of the location of the tram-
poline code by placing its address in the sa_restorer field of the sigaction structure,
and sets the SA_RESTORER flag in the sa_flags field.

Linux man-pages 6.13 2024-07-23 956

sigreturn(2) System Calls Manual sigreturn(2)

The saved process context information is placed in a ucontext_t structure (see
<sys/ucontext.h>). That structure is visible within the signal handler as the third ar-
gument of a handler established via sigaction(2) with the SA_SIGINFO flag.

On some other UNIX systems, the operation of the signal trampoline differs a little.
In particular, on some systems, upon transitioning back to user mode, the kernel
passes control to the trampoline (rather than the signal handler), and the trampoline
code calls the signal handler (and then calls sigreturn() once the handler returns).

C library/kernel differences
The original Linux system call was named sigreturn(). However, with the addition of
real-time signals in Linux 2.2, a new system call, rt_sigreturn() was added to support
an enlarged sigset_t type. The GNU C library hides these details from us, transpar-
ently employing rt_sigreturn() when the kernel provides it.

SEE ALSO
kill(2), restart_syscall(2), sigaltstack(2), signal(2), getcontext(3), signal(7), vdso(7)

Linux man-pages 6.13 2024-07-23 957

sigsuspend(2) System Calls Manual sigsuspend(2)

NAME
sigsuspend, rt_sigsuspend - wait for a signal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigsuspend(const sigset_t *mask);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigsuspend():
_POSIX_C_SOURCE

DESCRIPTION
sigsuspend() temporarily replaces the signal mask of the calling thread with the mask
given by mask and then suspends the thread until delivery of a signal whose action is
to invoke a signal handler or to terminate a process.

If the signal terminates the process, then sigsuspend() does not return. If the signal is
caught, then sigsuspend() returns after the signal handler returns, and the signal mask
is restored to the state before the call to sigsuspend().

It is not possible to block SIGKILL or SIGSTOP; specifying these signals in mask,
has no effect on the thread’s signal mask.

RETURN VALUE
sigsuspend() always returns -1, with errno set to indicate the error (normally,
EINTR).

ERRORS
EFAULT

mask points to memory which is not a valid part of the process address space.

EINTR
The call was interrupted by a signal; signal(7).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

C library/kernel differences
The original Linux system call was named sigsuspend(). However, with the addition
of real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t type supported by that
system call was no longer fit for purpose. Consequently, a new system call, rt_sigsus-
pend(), was added to support an enlarged sigset_t type. The new system call takes a
second argument, size_t sigsetsize, which specifies the size in bytes of the signal set in
mask. This argument is currently required to have the value sizeof(sigset_t) (or the er-
ror EINVAL results). The glibc sigsuspend() wrapper function hides these details
from us, transparently calling rt_sigsuspend() when the kernel provides it.

NOTES
Normally, sigsuspend() is used in conjunction with sigprocmask(2) in order to pre-
vent delivery of a signal during the execution of a critical code section. The caller

Linux man-pages 6.13 2024-07-23 958

sigsuspend(2) System Calls Manual sigsuspend(2)

first blocks the signals with sigprocmask(2). When the critical code has completed,
the caller then waits for the signals by calling sigsuspend() with the signal mask that
was returned by sigprocmask(2) (in the oldset argument).

See sigsetops(3) for details on manipulating signal sets.

SEE ALSO
kill(2), pause(2), sigaction(2), signal(2), sigprocmask(2), sigwaitinfo(2), sigsetops(3),
sigwait(3), signal(7)

Linux man-pages 6.13 2024-07-23 959

sigwaitinfo(2) System Calls Manual sigwaitinfo(2)

NAME
sigwaitinfo, sigtimedwait, rt_sigtimedwait - synchronously wait for queued signals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigwaitinfo(const sigset_t *restrict set,
siginfo_t *_Nullable restrict info);

int sigtimedwait(const sigset_t *restrict set,
siginfo_t *_Nullable restrict info,
const struct timespec *restrict timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigwaitinfo(), sigtimedwait():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
sigwaitinfo() suspends execution of the calling thread until one of the signals in set is
pending (If one of the signals in set is already pending for the calling thread, sigwait-
info() will return immediately.)

sigwaitinfo() removes the signal from the set of pending signals and returns the signal
number as its function result. If the info argument is not NULL, then the buffer that it
points to is used to return a structure of type siginfo_t (see sigaction(2)) containing in-
formation about the signal.

If multiple signals in set are pending for the caller, the signal that is retrieved by sig-
waitinfo() is determined according to the usual ordering rules; see signal(7) for fur-
ther details.

sigtimedwait() operates in exactly the same way as sigwaitinfo() except that it has an
additional argument, timeout, which specifies the interval for which the thread is sus-
pended waiting for a signal. (This interval will be rounded up to the system clock
granularity, and kernel scheduling delays mean that the interval may overrun by a
small amount.) This argument is a timespec(3) structure.

If both fields of this structure are specified as 0, a poll is performed: sigtimedwait()
returns immediately, either with information about a signal that was pending for the
caller, or with an error if none of the signals in set was pending.

RETURN VALUE
On success, both sigwaitinfo() and sigtimedwait() return a signal number (i.e., a
value greater than zero). On failure both calls return -1, with errno set to indicate the
error.

ERRORS
EAGAIN

No signal in set became pending within the timeout period specified to sig-
timedwait().

Linux man-pages 6.13 2024-07-23 960

sigwaitinfo(2) System Calls Manual sigwaitinfo(2)

EINTR
The wait was interrupted by a signal handler; see signal(7). (This handler was
for a signal other than one of those in set.)

EINVAL
timeout was invalid.

VERSIONS
C library/kernel differences

On Linux, sigwaitinfo() is a library function implemented on top of sigtimedwait().

The glibc wrapper functions for sigwaitinfo() and sigtimedwait() silently ignore at-
tempts to wait for the two real-time signals that are used internally by the NPTL
threading implementation. See nptl(7) for details.

The original Linux system call was named sigtimedwait(). However, with the addi-
tion of real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t type supported by
that system call was no longer fit for purpose. Consequently, a new system call,
rt_sigtimedwait(), was added to support an enlarged sigset_t type. The new system
call takes a fourth argument, size_t sigsetsize, which specifies the size in bytes of the
signal set in set. This argument is currently required to have the value sizeof(sigset_t)
(or the error EINVAL results). The glibc sigtimedwait() wrapper function hides
these details from us, transparently calling rt_sigtimedwait() when the kernel pro-
vides it.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
In normal usage, the calling program blocks the signals in set via a prior call to sig-
procmask(2) (so that the default disposition for these signals does not occur if they be-
come pending between successive calls to sigwaitinfo() or sigtimedwait()) and does
not establish handlers for these signals. In a multithreaded program, the signal should
be blocked in all threads, in order to prevent the signal being treated according to its
default disposition in a thread other than the one calling sigwaitinfo() or sigtimed-
wait())

The set of signals that is pending for a given thread is the union of the set of signals
that is pending specifically for that thread and the set of signals that is pending for the
process as a whole (see signal(7)).

Attempts to wait for SIGKILL and SIGSTOP are silently ignored.

If multiple threads of a process are blocked waiting for the same signal(s) in sigwait-
info() or sigtimedwait(), then exactly one of the threads will actually receive the sig-
nal if it becomes pending for the process as a whole; which of the threads receives the
signal is indeterminate.

sigwaitinfo() or sigtimedwait(), can’t be used to receive signals that are synchro-
nously generated, such as the SIGSEGV signal that results from accessing an invalid
memory address or the SIGFPE signal that results from an arithmetic error. Such sig-
nals can be caught only via signal handler.

Linux man-pages 6.13 2024-07-23 961

sigwaitinfo(2) System Calls Manual sigwaitinfo(2)

POSIX leaves the meaning of a NULL value for the timeout argument of sigtimed-
wait() unspecified, permitting the possibility that this has the same meaning as a call
to sigwaitinfo(), and indeed this is what is done on Linux.

SEE ALSO
kill(2), sigaction(2), signal(2), signalfd(2), sigpending(2), sigprocmask(2),
sigqueue(3), sigsetops(3), sigwait(3), timespec(3), signal(7), time(7)

Linux man-pages 6.13 2024-07-23 962

socket(2) System Calls Manual socket(2)

NAME
socket - create an endpoint for communication

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a file descriptor that
refers to that endpoint. The file descriptor returned by a successful call will be the
lowest-numbered file descriptor not currently open for the process.

The domain argument specifies a communication domain; this selects the protocol
family which will be used for communication. These families are defined in
<sys/socket.h>. The formats currently understood by the Linux kernel include:
Name Purpose Man page
AF_UNIX Local communication unix(7)
AF_LOCAL Synonym for AF_UNIX

IPv4 Internet protocolsAF_INET ip(7)
AF_AX25 Amateur radio AX.25 protocol ax25(4)

IPX - Novell protocolsAF_IPX
AppleTalkAF_APPLETALK ddp(7)
ITU-T X.25 / ISO/IEC 8208 protocolAF_X25 x25(7)
IPv6 Internet protocolsAF_INET6 ipv6(7)

AF_DECnet DECet protocol sockets
AF_KEY Key management protocol, originally developed

for usage with IPsec
AF_NETLINK Kernel user interface device netlink(7)
AF_PACKET Low-level packet interface packet(7)
AF_RDS Reliable Datagram Sockets (RDS) protocol rds(7)

rds-rdma(7)
AF_PPPOX Generic PPP transport layer, for setting up L2

tunnels (L2TP and PPPoE)
AF_LLC Logical link control (IEEE 802.2 LLC) protocol
AF_IB InfiniBand native addressing
AF_MPLS Multiprotocol Label Switching
AF_CAN Controller Area Network automotive bus protocol
AF_TIPC TIPC, "cluster domain sockets" protocol
AF_BLUETOOTH Bluetooth low-level socket protocol
AF_ALG Interface to kernel crypto API
AF_VSOCK VSOCK (originally "VMWare VSockets") proto-

col for hypervisor-guest communication
vsock(7)

AF_KCM KCM (kernel connection multiplexer) interface
AF_XDP XDP (express data path) interface

Further details of the above address families, as well as information on several other
address families, can be found in address_families(7).

The socket has the indicated type, which specifies the communication semantics.

Linux man-pages 6.13 2024-07-23 963

socket(2) System Calls Manual socket(2)

Currently defined types are:

SOCK_STREAM
Provides sequenced, reliable, two-way, connection-based byte
streams. An out-of-band data transmission mechanism may be
supported.

SOCK_DGRAM Supports datagrams (connectionless, unreliable messages of a
fixed maximum length).

SOCK_SEQPACKET
Provides a sequenced, reliable, two-way connection-based data
transmission path for datagrams of fixed maximum length; a con-
sumer is required to read an entire packet with each input system
call.

SOCK_RAW Provides raw network protocol access.

SOCK_RDM Provides a reliable datagram layer that does not guarantee order-
ing.

SOCK_PACKET Obsolete and should not be used in new programs; see packet(7).

Some socket types may not be implemented by all protocol families.

Since Linux 2.6.27, the type argument serves a second purpose: in addition to specify-
ing a socket type, it may include the bitwise OR of any of the following values, to
modify the behavior of socket():

SOCK_NONBLOCK
Set the O_NONBLOCK file status flag on the open file descrip-
tion (see open(2)) referred to by the new file descriptor. Using
this flag saves extra calls to fcntl(2) to achieve the same result.

SOCK_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file de-
scriptor. See the description of the O_CLOEXEC flag in open(2)
for reasons why this may be useful.

The protocol specifies a particular protocol to be used with the socket. Normally only
a single protocol exists to support a particular socket type within a given protocol
family, in which case protocol can be specified as 0. However, it is possible that
many protocols may exist, in which case a particular protocol must be specified in this
manner. The protocol number to use is specific to the “communication domain” in
which communication is to take place; see protocols(5). See getprotoent(3) on how to
map protocol name strings to protocol numbers.

Sockets of type SOCK_STREAM are full-duplex byte streams. They do not pre-
serve record boundaries. A stream socket must be in a connected state before any
data may be sent or received on it. A connection to another socket is created with a
connect(2) call. Once connected, data may be transferred using read(2) and write(2)
calls or some variant of the send(2) and recv(2) calls. When a session has been com-
pleted a close(2) may be performed. Out-of-band data may also be transmitted as de-
scribed in send(2) and received as described in recv(2).

The communications protocols which implement a SOCK_STREAM ensure that

Linux man-pages 6.13 2024-07-23 964

socket(2) System Calls Manual socket(2)

data is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, then the
connection is considered to be dead. When SO_KEEPALIVE is enabled on the
socket the protocol checks in a protocol-specific manner if the other end is still alive.
A SIGPIPE signal is raised if a process sends or receives on a broken stream; this
causes naive processes, which do not handle the signal, to exit. SOCK_SEQ-
PACKET sockets employ the same system calls as SOCK_STREAM sockets. The
only difference is that read(2) calls will return only the amount of data requested, and
any data remaining in the arriving packet will be discarded. Also all message bound-
aries in incoming datagrams are preserved.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to corre-
spondents named in sendto(2) calls. Datagrams are generally received with
recvfrom(2), which returns the next datagram along with the address of its sender.

SOCK_PACKET is an obsolete socket type to receive raw packets directly from the
device driver. Use packet(7) instead.

An fcntl(2) F_SETOWN operation can be used to specify a process or process group
to receive a SIGURG signal when the out-of-band data arrives or SIGPIPE signal
when a SOCK_STREAM connection breaks unexpectedly. This operation may also
be used to set the process or process group that receives the I/O and asynchronous no-
tification of I/O events via SIGIO. Using F_SETOWN is equivalent to an ioctl(2)
call with the FIOSETOWN or SIOCSPGRP argument.

When the network signals an error condition to the protocol module (e.g., using an
ICMP message for IP) the pending error flag is set for the socket. The next operation
on this socket will return the error code of the pending error. For some protocols it is
possible to enable a per-socket error queue to retrieve detailed information about the
error; see IP_RECVERR in ip(7).

The operation of sockets is controlled by socket level options. These options are de-
fined in <sys/socket.h>. The functions setsockopt(2) and getsockopt(2) are used to set
and get options.

RETURN VALUE
On success, a file descriptor for the new socket is returned. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
EACCES

Permission to create a socket of the specified type and/or protocol is denied.

EAFNOSUPPORT
The implementation does not support the specified address family.

EINVAL
Unknown protocol, or protocol family not available.

EINVAL
Invalid flags in type.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

Linux man-pages 6.13 2024-07-23 965

socket(2) System Calls Manual socket(2)

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOBUFS or ENOMEM
Insufficient memory is available. The socket cannot be created until sufficient
resources are freed.

EPROTONOSUPPORT
The protocol type or the specified protocol is not supported within this do-
main.

Other errors may be generated by the underlying protocol modules.

STANDARDS
POSIX.1-2008.

SOCK_NONBLOCK and SOCK_CLOEXEC are Linux-specific.

HISTORY
POSIX.1-2001, 4.4BSD.

socket() appeared in 4.2BSD. It is generally portable to/from non-BSD systems sup-
porting clones of the BSD socket layer (including System V variants).

The manifest constants used under 4.x BSD for protocol families are PF_UNIX,
PF_INET, and so on, while AF_UNIX, AF_INET, and so on are used for address
families. However, already the BSD man page promises: "The protocol family gener-
ally is the same as the address family", and subsequent standards use AF_* every-
where.

EXAMPLES
An example of the use of socket() is shown in getaddrinfo(3).

SEE ALSO
accept(2), bind(2), close(2), connect(2), fcntl(2), getpeername(2), getsockname(2),
getsockopt(2), ioctl(2), listen(2), read(2), recv(2), select(2), send(2), shutdown(2),
socketpair(2), write(2), getprotoent(3), address_families(7), ip(7), socket(7), tcp(7),
udp(7), unix(7)

“An Introductory 4.3BSD Interprocess Communication Tutorial” and “BSD Inter-
process Communication Tutorial”, reprinted in UNIX Programmer’s Supplementary
Documents Volume 1.

Linux man-pages 6.13 2024-07-23 966

socketcall(2) System Calls Manual socketcall(2)

NAME
socketcall - socket system calls

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/net.h> /* Definition of SYS_* constants */
#include <sys/syscall.h> /* Definition of SYS_socketcall */
#include <unistd.h>

int syscall(SYS_socketcall, int call, unsigned long *args);

Note: glibc provides no wrapper for socketcall(), necessitating the use of syscall(2).

DESCRIPTION
socketcall() is a common kernel entry point for the socket system calls. call deter-
mines which socket function to invoke. args points to a block containing the actual
arguments, which are passed through to the appropriate call.

User programs should call the appropriate functions by their usual names. Only stan-
dard library implementors and kernel hackers need to know about socketcall().

call Man page
SYS_SOCKET socket(2)
SYS_BIND bind(2)
SYS_CONNECT connect(2)
SYS_LISTEN listen(2)
SYS_ACCEPT accept(2)
SYS_GETSOCKNAME getsockname(2)
SYS_GETPEERNAME getpeername(2)
SYS_SOCKETPAIR socketpair(2)
SYS_SEND send(2)
SYS_RECV recv(2)
SYS_SENDTO sendto(2)
SYS_RECVFROM recvfrom(2)
SYS_SHUTDOWN shutdown(2)
SYS_SETSOCKOPT setsockopt(2)
SYS_GETSOCKOPT getsockopt(2)
SYS_SENDMSG sendmsg(2)
SYS_RECVMSG recvmsg(2)
SYS_ACCEPT4 accept4(2)
SYS_RECVMMSG recvmmsg(2)
SYS_SENDMMSG sendmmsg(2)

VERSIONS
On some architectures—for example, x86-64 and ARM—there is no socketcall() sys-
tem call; instead socket(2), accept(2), bind(2), and so on really are implemented as
separate system calls.

STANDARDS
Linux.

On x86-32, socketcall() was historically the only entry point for the sockets API.
However, starting in Linux 4.3, direct system calls are provided on x86-32 for the

Linux man-pages 6.13 2024-07-23 967

socketcall(2) System Calls Manual socketcall(2)

sockets API. This facilitates the creation of seccomp(2) filters that filter sockets sys-
tem calls (for new user-space binaries that are compiled to use the new entry points)
and also provides a (very) small performance improvement.

SEE ALSO
accept(2), bind(2), connect(2), getpeername(2), getsockname(2), getsockopt(2), lis-
ten(2), recv(2), recvfrom(2), recvmsg(2), send(2), sendmsg(2), sendto(2),
setsockopt(2), shutdown(2), socket(2), socketpair(2)

Linux man-pages 6.13 2024-07-23 968

socketpair(2) System Calls Manual socketpair(2)

NAME
socketpair - create a pair of connected sockets

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);

DESCRIPTION
The socketpair() call creates an unnamed pair of connected sockets in the specified
domain, of the specified type, and using the optionally specified protocol. For further
details of these arguments, see socket(2).

The file descriptors used in referencing the new sockets are returned in sv[0] and
sv[1]. The two sockets are indistinguishable.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, errno is set to indicate the er-
ror, and sv is left unchanged

On Linux (and other systems), socketpair() does not modify sv on failure. A require-
ment standardizing this behavior was added in POSIX.1-2008 TC2.

ERRORS
EAFNOSUPPORT

The specified address family is not supported on this machine.

EFAULT
The address sv does not specify a valid part of the process address space.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

EOPNOTSUPP
The specified protocol does not support creation of socket pairs.

EPROTONOSUPPORT
The specified protocol is not supported on this machine.

VERSIONS
On Linux, the only supported domains for this call are AF_UNIX (or synonymously,
AF_LOCAL) and AF_TIPC (since Linux 4.12).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.4BSD.

socketpair() first appeared in 4.2BSD. It is generally portable to/from non-BSD sys-
tems supporting clones of the BSD socket layer (including System V variants).

Since Linux 2.6.27, socketpair() supports the SOCK_NONBLOCK and

Linux man-pages 6.13 2024-07-23 969

socketpair(2) System Calls Manual socketpair(2)

SOCK_CLOEXEC flags in the type argument, as described in socket(2).

SEE ALSO
pipe(2), read(2), socket(2), write(2), socket(7), unix(7)

Linux man-pages 6.13 2024-07-23 970

splice(2) System Calls Manual splice(2)

NAME
splice - splice data to/from a pipe

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#define _FILE_OFFSET_BITS 64
#include <fcntl.h>

ssize_t splice(int fd_in, off_t *_Nullable off_in,
int fd_out, off_t *_Nullable off_out,
size_t size, unsigned int flags);

DESCRIPTION
splice() moves data between two file descriptors without copying between kernel ad-
dress space and user address space. It transfers up to size bytes of data from the file
descriptor fd_in to the file descriptor fd_out, where one of the file descriptors must
refer to a pipe.

The following semantics apply for fd_in and off_in:

• If fd_in refers to a pipe, then off_in must be NULL.

• If fd_in does not refer to a pipe and off_in is NULL, then bytes are read from
fd_in starting from the file offset, and the file offset is adjusted appropriately.

• If fd_in does not refer to a pipe and off_in is not NULL, then off_in must point to
a buffer which specifies the starting offset from which bytes will be read from
fd_in; in this case, the file offset of fd_in is not changed, and the offset pointed to
by off_in is adjusted appropriately instead.

Analogous statements apply for fd_out and off_out.

The flags argument is a bit mask that is composed by ORing together zero or more of
the following values:

SPLICE_F_MOVE
Attempt to move pages instead of copying. This is only a hint to the kernel:
pages may still be copied if the kernel cannot move the pages from the pipe, or
if the pipe buffers don’t refer to full pages. The initial implementation of this
flag was buggy: therefore starting in Linux 2.6.21 it is a no-op (but is still per-
mitted in a splice() call); in the future, a correct implementation may be re-
stored.

SPLICE_F_NONBLOCK
Do not block on I/O. This makes the splice pipe operations nonblocking, but
splice() may nevertheless block because the file descriptors that are spliced
to/from may block (unless they have the O_NONBLOCK flag set).

SPLICE_F_MORE
More data will be coming in a subsequent splice. This is a helpful hint when
the fd_out refers to a socket (see also the description of MSG_MORE in
send(2), and the description of TCP_CORK in tcp(7)).

Linux man-pages 6.13 2024-11-17 971

splice(2) System Calls Manual splice(2)

SPLICE_F_GIFT
Unused for splice(); see vmsplice(2).

RETURN VALUE
Upon successful completion, splice() returns the number of bytes spliced to or from
the pipe.

A return value of 0 means end of input. If fd_in refers to a pipe, then this means that
there was no data to transfer, and it would not make sense to block because there are
no writers connected to the write end of the pipe.

On error, splice() returns -1 and errno is set to indicate the error.

ERRORS
EAGAIN

SPLICE_F_NONBLOCK was specified in flags or one of the file descriptors
had been marked as nonblocking (O_NONBLOCK), and the operation would
block.

EBADF
One or both file descriptors are not valid, or do not have proper read-write
mode.

EINVAL
The target filesystem doesn’t support splicing.

EINVAL
The target file is opened in append mode.

EINVAL
Neither of the file descriptors refers to a pipe.

EINVAL
An offset was given for nonseekable device (e.g., a pipe).

EINVAL
fd_in and fd_out refer to the same pipe.

ENOMEM
Out of memory.

ESPIPE
Either off_in or off_out was not NULL, but the corresponding file descriptor
refers to a pipe.

STANDARDS
Linux.

HISTORY
Linux 2.6.17, glibc 2.5.

In Linux 2.6.30 and earlier, exactly one of fd_in and fd_out was required to be a
pipe. Since Linux 2.6.31, both arguments may refer to pipes.

NOTES
The three system calls splice(), vmsplice(2), and tee(2), provide user-space programs
with full control over an arbitrary kernel buffer, implemented within the kernel using
the same type of buffer that is used for a pipe. In overview, these system calls

Linux man-pages 6.13 2024-11-17 972

splice(2) System Calls Manual splice(2)

perform the following tasks:

splice()
moves data from the buffer to an arbitrary file descriptor, or vice versa, or from
one buffer to another.

tee(2) "copies" the data from one buffer to another.

vmsplice(2)
"copies" data from user space into the buffer.

Though we talk of copying, actual copies are generally avoided. The kernel does this
by implementing a pipe buffer as a set of reference-counted pointers to pages of ker-
nel memory. The kernel creates "copies" of pages in a buffer by creating new pointers
(for the output buffer) referring to the pages, and increasing the reference counts for
the pages: only pointers are copied, not the pages of the buffer.

_FILE_OFFSET_BITS should be defined to be 64 in code that uses non-null off_in
or off_out or that takes the address of splice, if the code is intended to be portable to
traditional 32-bit x86 and ARM platforms where off_t’s width defaults to 32 bits.

EXAMPLES
See tee(2) for another example.

#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <err.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int
main(void)
{

int fd;
int pfd[2];
off_t off;
const char s[12] = "Hello, world";

fd = open("out", O_WRONLY | O_CREAT | O_EXCL, 0666);
if (fd == -1)

err(EXIT_FAILURE, "open");

if (pipe(pfd) == -1)
err(EXIT_FAILURE, "pipe");

if (write(pfd[1], s, sizeof(s)) != sizeof(s))
err(EXIT_FAILURE, "write");

if (close(pfd[1]) == -1)

Linux man-pages 6.13 2024-11-17 973

splice(2) System Calls Manual splice(2)

err(EXIT_FAILURE, "close");

off = 10;
if (splice(pfd[0], NULL, fd, &off, sizeof(s), 0) != sizeof(s))

err(EXIT_FAILURE, "splice");
if (close(pfd[0]) == -1)

err(EXIT_FAILURE, "close");

printf("New offset is %jd\n", (intmax_t) off);

if (close(fd) == -1)
err(EXIT_FAILURE, "close");

exit(EXIT_SUCCESS);
}

SEE ALSO
copy_file_range(2), sendfile(2), tee(2), vmsplice(2), pipe(7)

Linux man-pages 6.13 2024-11-17 974

spu_create(2) System Calls Manual spu_create(2)

NAME
spu_create - create a new spu context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/spu.h> /* Definition of SPU_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_spu_create, const char *pathname, unsigned int flags,
mode_t mode, int neighbor_fd);

Note: glibc provides no wrapper for spu_create(), necessitating the use of syscall(2).

DESCRIPTION
The spu_create() system call is used on PowerPC machines that implement the Cell
Broadband Engine Architecture in order to access Synergistic Processor Units
(SPUs). It creates a new logical context for an SPU in pathname and returns a file de-
scriptor associated with it. pathname must refer to a nonexistent directory in the
mount point of the SPU filesystem (spufs). If spu_create() is successful, a directory
is created at pathname and it is populated with the files described in spufs(7).

When a context is created, the returned file descriptor can only be passed to
spu_run(2), used as the dirfd argument to the *at family of system calls (e.g., ope-
nat(2)), or closed; other operations are not defined. A logical SPU context is de-
stroyed (along with all files created within the context’s pathname directory) once the
last reference to the context has gone; this usually occurs when the file descriptor re-
turned by spu_create() is closed.

The mode argument (minus any bits set in the process’s umask(2)) specifies the per-
missions used for creating the new directory in spufs. See stat(2) for a full list of the
possible mode values.

The neighbor_fd is used only when the SPU_CREATE_AFFINITY_SPU flag is
specified; see below.

The flags argument can be zero or any bitwise OR-ed combination of the following
constants:

SPU_CREATE_EVENTS_ENABLED
Rather than using signals for reporting DMA errors, use the event argument to
spu_run(2).

SPU_CREATE_GANG
Create an SPU gang instead of a context. (A gang is a group of SPU contexts
that are functionally related to each other and which share common scheduling
parameters—priority and policy. In the future, gang scheduling may be imple-
mented causing the group to be switched in and out as a single unit.)

A new directory will be created at the location specified by the pathname ar-
gument. This gang may be used to hold other SPU contexts, by providing a
pathname that is within the gang directory to further calls to spu_create().

Linux man-pages 6.13 2024-07-23 975

spu_create(2) System Calls Manual spu_create(2)

SPU_CREATE_NOSCHED
Create a context that is not affected by the SPU scheduler. Once the context is
run, it will not be scheduled out until it is destroyed by the creating process.

Because the context cannot be removed from the SPU, some functionality is
disabled for SPU_CREATE_NOSCHED contexts. Only a subset of the files
will be available in this context directory in spufs. Additionally, SPU_CRE-
ATE_NOSCHED contexts cannot dump a core file when crashing.

Creating SPU_CREATE_NOSCHED contexts requires the
CAP_SYS_NICE capability.

SPU_CREATE_ISOLATE
Create an isolated SPU context. Isolated contexts are protected from some
PPE (PowerPC Processing Element) operations, such as access to the SPU lo-
cal store and the NPC register.

Creating SPU_CREATE_ISOLATE contexts also requires the SPU_CRE-
ATE_NOSCHED flag.

SPU_CREATE_AFFINITY_SPU (since Linux 2.6.23)
Create a context with affinity to another SPU context. This affinity informa-
tion is used within the SPU scheduling algorithm. Using this flag requires that
a file descriptor referring to the other SPU context be passed in the neigh-
bor_fd argument.

SPU_CREATE_AFFINITY_MEM (since Linux 2.6.23)
Create a context with affinity to system memory. This affinity information is
used within the SPU scheduling algorithm.

RETURN VALUE
On success, spu_create() returns a new file descriptor. On failure, -1 is returned, and
errno is set to indicate the error.

ERRORS
EACCES

The current user does not have write access to the spufs(7) mount point.

EEXIST
An SPU context already exists at the given pathname.

EFAULT
pathname is not a valid string pointer in the calling process’s address space.

EINVAL
pathname is not a directory in the spufs(7) mount point, or invalid flags have
been provided.

ELOOP
Too many symbolic links were found while resolving pathname.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG
pathname is too long.

Linux man-pages 6.13 2024-07-23 976

spu_create(2) System Calls Manual spu_create(2)

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
An isolated context was requested, but the hardware does not support SPU iso-
lation.

ENOENT
Part of pathname could not be resolved.

ENOMEM
The kernel could not allocate all resources required.

ENOSPC
There are not enough SPU resources available to create a new context or the
user-specific limit for the number of SPU contexts has been reached.

ENOSYS
The functionality is not provided by the current system, because either the
hardware does not provide SPUs or the spufs module is not loaded.

ENOTDIR
A part of pathname is not a directory.

EPERM
The SPU_CREATE_NOSCHED flag has been given, but the user does not
have the CAP_SYS_NICE capability.

FILES
pathname must point to a location beneath the mount point of spufs. By convention,
it gets mounted in /spu.

STANDARDS
Linux on PowerPC.

HISTORY
Linux 2.6.16.

Prior to the addition of the SPU_CREATE_AFFINITY_SPU flag in Linux 2.6.23,
the spu_create() system call took only three arguments (i.e., there was no neigh-
bor_fd argument).

NOTES
spu_create() is meant to be used from libraries that implement a more abstract inter-
face to SPUs, not to be used from regular applications. See 〈http://www.bsc.es
/projects/deepcomputing/linuxoncell/〉 for the recommended libraries.

EXAMPLES
See spu_run(2) for an example of the use of spu_create()

SEE ALSO
close(2), spu_run(2), capabilities(7), spufs(7)

Linux man-pages 6.13 2024-07-23 977

spu_run(2) System Calls Manual spu_run(2)

NAME
spu_run - execute an SPU context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/spu.h> /* Definition of SPU_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_spu_run, int fd , uint32_t *npc, uint32_t *event);

Note: glibc provides no wrapper for spu_run(), necessitating the use of syscall(2).

DESCRIPTION
The spu_run() system call is used on PowerPC machines that implement the Cell
Broadband Engine Architecture in order to access Synergistic Processor Units
(SPUs). The fd argument is a file descriptor returned by spu_create(2) that refers to a
specific SPU context. When the context gets scheduled to a physical SPU, it starts ex-
ecution at the instruction pointer passed in npc.

Execution of SPU code happens synchronously, meaning that spu_run() blocks while
the SPU is still running. If there is a need to execute SPU code in parallel with other
code on either the main CPU or other SPUs, a new thread of execution must be cre-
ated first (e.g., using pthread_create(3)).

When spu_run() returns, the current value of the SPU program counter is written to
npc, so successive calls to spu_run() can use the same npc pointer.

The event argument provides a buffer for an extended status code. If the SPU context
was created with the SPU_CREATE_EVENTS_ENABLED flag, then this buffer is
populated by the Linux kernel before spu_run() returns.

The status code may be one (or more) of the following constants:

SPE_EVENT_DMA_ALIGNMENT
A DMA alignment error occurred.

SPE_EVENT_INVALID_DMA
An invalid MFC DMA command was attempted.

SPE_EVENT_SPE_DATA_STORAGE
A DMA storage error occurred.

SPE_EVENT_SPE_ERROR
An illegal instruction was executed.

NULL is a valid value for the event argument. In this case, the events will not be re-
ported to the calling process.

RETURN VALUE
On success, spu_run() returns the value of the spu_status register. On failure, it re-
turns -1 and sets errno is set to indicate the error.

The spu_status register value is a bit mask of status codes and optionally a 14-bit code
returned from the stop-and-signal instruction on the SPU. The bit masks for the sta-
tus codes are:

Linux man-pages 6.13 2024-07-23 978

spu_run(2) System Calls Manual spu_run(2)

0x02 SPU was stopped by a stop-and-signal instruction.

0x04 SPU was stopped by a halt instruction.

0x08 SPU is waiting for a channel.

0x10 SPU is in single-step mode.

0x20 SPU has tried to execute an invalid instruction.

0x40 SPU has tried to access an invalid channel.

0x3fff0000
The bits masked with this value contain the code returned from a stop-and-
signal instruction. These bits are valid only if the 0x02 bit is set.

If spu_run() has not returned an error, one or more bits among the lower eight ones
are always set.

ERRORS
EBADF

fd is not a valid file descriptor.

EFAULT
npc is not a valid pointer, or event is non-NULL and an invalid pointer.

EINTR
A signal occurred while spu_run() was in progress; see signal(7). The npc
value has been updated to the new program counter value if necessary.

EINVAL
fd is not a valid file descriptor returned from spu_create(2).

ENOMEM
There was not enough memory available to handle a page fault resulting from
a Memory Flow Controller (MFC) direct memory access.

ENOSYS
The functionality is not provided by the current system, because either the
hardware does not provide SPUs or the spufs module is not loaded.

STANDARDS
Linux on PowerPC.

HISTORY
Linux 2.6.16.

NOTES
spu_run() is meant to be used from libraries that implement a more abstract interface
to SPUs, not to be used from regular applications. See 〈http://www.bsc.es/projects
/deepcomputing/linuxoncell/〉 for the recommended libraries.

EXAMPLES
The following is an example of running a simple, one-instruction SPU program with
the spu_run() system call.

#include <err.h>
#include <fcntl.h>
#include <stdint.h>

Linux man-pages 6.13 2024-07-23 979

spu_run(2) System Calls Manual spu_run(2)

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{

int context, fd, spu_status;
uint32_t instruction, npc;

context = syscall(SYS_spu_create, "/spu/example-context", 0, 0755);
if (context == -1)

err(EXIT_FAILURE, "spu_create");

/*
* Write a 'stop 0x1234' instruction to the SPU's
* local store memory.
*/

instruction = 0x00001234;

fd = open("/spu/example-context/mem", O_RDWR);
if (fd == -1)

err(EXIT_FAILURE, "open");
write(fd, &instruction, sizeof(instruction));

/*
* set npc to the starting instruction address of the
* SPU program. Since we wrote the instruction at the
* start of the mem file, the entry point will be 0x0.
*/

npc = 0;

spu_status = syscall(SYS_spu_run, context, &npc, NULL);
if (spu_status == -1)

err(EXIT_FAILURE, "open");

/*
* We should see a status code of 0x12340002:
* 0x00000002 (spu was stopped due to stop-and-signal)
* | 0x12340000 (the stop-and-signal code)
*/

printf("SPU Status: %#08x\n", spu_status);

exit(EXIT_SUCCESS);
}

SEE ALSO
close(2), spu_create(2), capabilities(7), spufs(7)

Linux man-pages 6.13 2024-07-23 980

stat(2) System Calls Manual stat(2)

NAME
stat, fstat, lstat, fstatat - get file status

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

int stat(const char *restrict pathname,
struct stat *restrict statbuf);

int fstat(int fd , struct stat *statbuf);
int lstat(const char *restrict pathname,

struct stat *restrict statbuf);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int fstatat(int dirfd , const char *restrict pathname,
struct stat *restrict statbuf , int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lstat():
/* Since glibc 2.20 */ _DEFAULT_SOURCE

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200112L
|| /* glibc 2.19 and earlier */ _BSD_SOURCE

fstatat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
These functions return information about a file, in the buffer pointed to by statbuf .
No permissions are required on the file itself, but—in the case of stat(), fstatat(), and
lstat()—execute (search) permission is required on all of the directories in pathname
that lead to the file.

stat() and fstatat() retrieve information about the file pointed to by pathname; the dif-
ferences for fstatat() are described below.

lstat() is identical to stat(), except that if pathname is a symbolic link, then it returns
information about the link itself, not the file that the link refers to.

fstat() is identical to stat(), except that the file about which information is to be re-
trieved is specified by the file descriptor fd .

The stat structure
All of these system calls return a stat structure (see stat(3type)).

Note: for performance and simplicity reasons, different fields in the stat structure may
contain state information from different moments during the execution of the system
call. For example, if st_mode or st_uid is changed by another process by calling
chmod(2) or chown(2), stat() might return the old st_mode together with the new

Linux man-pages 6.13 2025-01-09 981

stat(2) System Calls Manual stat(2)

st_uid , or the old st_uid together with the new st_mode.

fstatat()
The fstatat() system call is a more general interface for accessing file information
which can still provide exactly the behavior of each of stat(), lstat(), and fstat().

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by stat() and lstat() for a relative path-
name).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like stat()
and lstat())

If pathname is absolute, then dirfd is ignored.

flags can either be 0, or include one or more of the following flags ORed:

AT_EMPTY_PATH (since Linux 2.6.39)
If pathname is an empty string (or NULL, since Linux 6.11) operate on the
file referred to by dirfd (which may have been obtained using the open(2)
O_PATH flag). In this case, dirfd can refer to any type of file, not just a direc-
tory, and the behavior of fstatat() is similar to that of fstat(). If dirfd is
AT_FDCWD, the call operates on the current working directory. This flag is
Linux-specific; define _GNU_SOURCE to obtain its definition.

AT_NO_AUTOMOUNT (since Linux 2.6.38)
Don’t automount the terminal ("basename") component of pathname. Since
Linux 3.1 this flag is ignored. Since Linux 4.11 this flag is implied.

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead return informa-
tion about the link itself, like lstat(). (By default, fstatat() dereferences sym-
bolic links, like stat().)

See openat(2) for an explanation of the need for fstatat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of
pathname. (See also path_resolution(7).)

EBADF
fd is not a valid open file descriptor.

EBADF
(fstatat()) pathname is relative but dirfd is neither AT_FDCWD nor a valid
file descriptor.

EFAULT
Bad address.

Linux man-pages 6.13 2025-01-09 982

stat(2) System Calls Manual stat(2)

EINVAL
(fstatat()) Invalid flag specified in flags.

ELOOP
Too many symbolic links encountered while traversing the path.

ENAMETOOLONG
pathname is too long.

ENOENT
A component of pathname does not exist or is a dangling symbolic link.

ENOENT
pathname is an empty string and AT_EMPTY_PATH was not specified in
flags.

ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path prefix of pathname is not a directory.

ENOTDIR
(fstatat()) pathname is relative and dirfd is a file descriptor referring to a file
other than a directory.

EOVERFLOW
pathname or fd refers to a file whose size, inode number, or number of blocks
cannot be represented in, respectively, the types off_t, ino_t, or blkcnt_t. This
error can occur when, for example, an application compiled on a 32-bit plat-
form without -D_FILE_OFFSET_BITS=64 calls stat() on a file whose size
exceeds (1<<31)-1 bytes.

STANDARDS
POSIX.1-2008.

HISTORY
stat()
fstat()
lstat() SVr4, 4.3BSD, POSIX.1-2001.

fstatat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

According to POSIX.1-2001, lstat() on a symbolic link need return valid information
only in the st_size field and the file type of the st_mode field of the stat structure.
POSIX.1-2008 tightens the specification, requiring lstat() to return valid information
in all fields except the mode bits in st_mode.

Use of the st_blocks and st_blksize fields may be less portable. (They were intro-
duced in BSD. The interpretation differs between systems, and possibly on a single
system when NFS mounts are involved.)

C library/kernel differences
Over time, increases in the size of the stat structure have led to three successive ver-
sions of stat(): sys_stat() (slot __NR_oldstat), sys_newstat() (slot __NR_stat), and
sys_stat64() (slot __NR_stat64) on 32-bit platforms such as i386. The first two

Linux man-pages 6.13 2025-01-09 983

stat(2) System Calls Manual stat(2)

versions were already present in Linux 1.0 (albeit with different names); the last was
added in Linux 2.4. Similar remarks apply for fstat() and lstat().

The kernel-internal versions of the stat structure dealt with by the different versions
are, respectively:

__old_kernel_stat
The original structure, with rather narrow fields, and no padding.

stat Larger st_ino field and padding added to various parts of the structure to allow
for future expansion.

stat64
Even larger st_ino field, larger st_uid and st_gid fields to accommodate the
Linux-2.4 expansion of UIDs and GIDs to 32 bits, and various other enlarged
fields and further padding in the structure. (Various padding bytes were even-
tually consumed in Linux 2.6, with the advent of 32-bit device IDs and
nanosecond components for the timestamp fields.)

The glibc stat() wrapper function hides these details from applications, invoking the
most recent version of the system call provided by the kernel, and repacking the re-
turned information if required for old binaries.

On modern 64-bit systems, life is simpler: there is a single stat() system call and the
kernel deals with a stat structure that contains fields of a sufficient size.

The underlying system call employed by the glibc fstatat() wrapper function is actu-
ally called fstatat64() or, on some architectures, newfstatat().

EXAMPLES
The following program calls lstat() and displays selected fields in the returned stat
structure.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <time.h>

int
main(int argc, char *argv[])
{

struct stat sb;

if (argc != 2) {
fprintf(stderr, "Usage: %s <pathname>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (lstat(argv[1], &sb) == -1) {
perror("lstat");
exit(EXIT_FAILURE);

}

Linux man-pages 6.13 2025-01-09 984

stat(2) System Calls Manual stat(2)

printf("ID of containing device: [%x,%x]\n",
major(sb.st_dev),
minor(sb.st_dev));

printf("File type: ");

switch (sb.st_mode & S_IFMT) {
case S_IFBLK: printf("block device\n"); break;
case S_IFCHR: printf("character device\n"); break;
case S_IFDIR: printf("directory\n"); break;
case S_IFIFO: printf("FIFO/pipe\n"); break;
case S_IFLNK: printf("symlink\n"); break;
case S_IFREG: printf("regular file\n"); break;
case S_IFSOCK: printf("socket\n"); break;
default: printf("unknown?\n"); break;
}

printf("I-node number: %ju\n", (uintmax_t) sb.st_ino);

printf("Mode: %jo (octal)\n",
(uintmax_t) sb.st_mode);

printf("Link count: %ju\n", (uintmax_t) sb.st_nlink);
printf("Ownership: UID=%ju GID=%ju\n",

(uintmax_t) sb.st_uid, (uintmax_t) sb.st_gid);

printf("Preferred I/O block size: %jd bytes\n",
(intmax_t) sb.st_blksize);

printf("File size: %jd bytes\n",
(intmax_t) sb.st_size);

printf("Blocks allocated: %jd\n",
(intmax_t) sb.st_blocks);

printf("Last status change: %s", ctime(&sb.st_ctime));
printf("Last file access: %s", ctime(&sb.st_atime));
printf("Last file modification: %s", ctime(&sb.st_mtime));

exit(EXIT_SUCCESS);
}

SEE ALSO
ls(1), stat(1), access(2), chmod(2), chown(2), readlink(2), statx(2), utime(2),
stat(3type), capabilities(7), inode(7), symlink(7)

Linux man-pages 6.13 2025-01-09 985

statfs(2) System Calls Manual statfs(2)

NAME
statfs, fstatfs - get filesystem statistics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/vfs.h> /* or <sys/statfs.h> */

int statfs(const char *path, struct statfs *buf);
int fstatfs(int fd , struct statfs *buf);

Unless you need the f_type field, you should use the standard statvfs(3) interface in-
stead.

DESCRIPTION
The statfs() system call returns information about a mounted filesystem. path is the
pathname of any file within the mounted filesystem. buf is a pointer to a statfs struc-
ture defined approximately as follows:

struct statfs {
__fsword_t f_type; /* Type of filesystem (see below) */
__fsword_t f_bsize; /* Optimal transfer block size */
fsblkcnt_t f_blocks; /* Total data blocks in filesystem */
fsblkcnt_t f_bfree; /* Free blocks in filesystem */
fsblkcnt_t f_bavail; /* Free blocks available to

unprivileged user */
fsfilcnt_t f_files; /* Total inodes in filesystem */
fsfilcnt_t f_ffree; /* Free inodes in filesystem */
fsid_t f_fsid; /* Filesystem ID */
__fsword_t f_namelen; /* Maximum length of filenames */
__fsword_t f_frsize; /* Fragment size (since Linux 2.6) */
__fsword_t f_flags; /* Mount flags of filesystem

(since Linux 2.6.36) */
__fsword_t f_spare[xxx];

/* Padding bytes reserved for future use */
};

The following filesystem types may appear in f_type:

ADFS_SUPER_MAGIC 0xadf5
AFFS_SUPER_MAGIC 0xadff
AFS_SUPER_MAGIC 0x5346414f
ANON_INODE_FS_MAGIC 0x09041934 /* Anonymous inode FS (for

pseudofiles that have no name;
e.g., epoll, signalfd, bpf) */

AUTOFS_SUPER_MAGIC 0x0187
BDEVFS_MAGIC 0x62646576
BEFS_SUPER_MAGIC 0x42465331
BFS_MAGIC 0x1badface
BINFMTFS_MAGIC 0x42494e4d
BPF_FS_MAGIC 0xcafe4a11
BTRFS_SUPER_MAGIC 0x9123683e

Linux man-pages 6.13 2024-07-23 986

statfs(2) System Calls Manual statfs(2)

BTRFS_TEST_MAGIC 0x73727279
CGROUP_SUPER_MAGIC 0x27e0eb /* Cgroup pseudo FS */
CGROUP2_SUPER_MAGIC 0x63677270 /* Cgroup v2 pseudo FS */
CIFS_MAGIC_NUMBER 0xff534d42
CODA_SUPER_MAGIC 0x73757245
COH_SUPER_MAGIC 0x012ff7b7
CRAMFS_MAGIC 0x28cd3d45
DEBUGFS_MAGIC 0x64626720
DEVFS_SUPER_MAGIC 0x1373 /* Linux 2.6.17 and earlier */
DEVPTS_SUPER_MAGIC 0x1cd1
ECRYPTFS_SUPER_MAGIC 0xf15f
EFIVARFS_MAGIC 0xde5e81e4
EFS_SUPER_MAGIC 0x00414a53
EXT_SUPER_MAGIC 0x137d /* Linux 2.0 and earlier */
EXT2_OLD_SUPER_MAGIC 0xef51
EXT2_SUPER_MAGIC 0xef53
EXT3_SUPER_MAGIC 0xef53
EXT4_SUPER_MAGIC 0xef53
F2FS_SUPER_MAGIC 0xf2f52010
FUSE_SUPER_MAGIC 0x65735546
FUTEXFS_SUPER_MAGIC 0xbad1dea /* Unused */
HFS_SUPER_MAGIC 0x4244
HOSTFS_SUPER_MAGIC 0x00c0ffee
HPFS_SUPER_MAGIC 0xf995e849
HUGETLBFS_MAGIC 0x958458f6
ISOFS_SUPER_MAGIC 0x9660
JFFS2_SUPER_MAGIC 0x72b6
JFS_SUPER_MAGIC 0x3153464a
MINIX_SUPER_MAGIC 0x137f /* original minix FS */
MINIX_SUPER_MAGIC2 0x138f /* 30 char minix FS */
MINIX2_SUPER_MAGIC 0x2468 /* minix V2 FS */
MINIX2_SUPER_MAGIC2 0x2478 /* minix V2 FS, 30 char names */
MINIX3_SUPER_MAGIC 0x4d5a /* minix V3 FS, 60 char names */
MQUEUE_MAGIC 0x19800202 /* POSIX message queue FS */
MSDOS_SUPER_MAGIC 0x4d44
MTD_INODE_FS_MAGIC 0x11307854
NCP_SUPER_MAGIC 0x564c
NFS_SUPER_MAGIC 0x6969
NILFS_SUPER_MAGIC 0x3434
NSFS_MAGIC 0x6e736673
NTFS_SB_MAGIC 0x5346544e
OCFS2_SUPER_MAGIC 0x7461636f
OPENPROM_SUPER_MAGIC 0x9fa1
OVERLAYFS_SUPER_MAGIC 0x794c7630
PIPEFS_MAGIC 0x50495045
PROC_SUPER_MAGIC 0x9fa0 /* /proc FS */
PSTOREFS_MAGIC 0x6165676c
QNX4_SUPER_MAGIC 0x002f
QNX6_SUPER_MAGIC 0x68191122

Linux man-pages 6.13 2024-07-23 987

statfs(2) System Calls Manual statfs(2)

RAMFS_MAGIC 0x858458f6
REISERFS_SUPER_MAGIC 0x52654973
ROMFS_MAGIC 0x7275
SECURITYFS_MAGIC 0x73636673
SELINUX_MAGIC 0xf97cff8c
SMACK_MAGIC 0x43415d53
SMB_SUPER_MAGIC 0x517b
SMB2_MAGIC_NUMBER 0xfe534d42
SOCKFS_MAGIC 0x534f434b
SQUASHFS_MAGIC 0x73717368
SYSFS_MAGIC 0x62656572
SYSV2_SUPER_MAGIC 0x012ff7b6
SYSV4_SUPER_MAGIC 0x012ff7b5
TMPFS_MAGIC 0x01021994
TRACEFS_MAGIC 0x74726163
UDF_SUPER_MAGIC 0x15013346
UFS_MAGIC 0x00011954
USBDEVICE_SUPER_MAGIC 0x9fa2
V9FS_MAGIC 0x01021997
VXFS_SUPER_MAGIC 0xa501fcf5
XENFS_SUPER_MAGIC 0xabba1974
XENIX_SUPER_MAGIC 0x012ff7b4
XFS_SUPER_MAGIC 0x58465342
_XIAFS_SUPER_MAGIC 0x012fd16d /* Linux 2.0 and earlier */

Most of these MAGIC constants are defined in /usr/include/linux/magic.h, and some
are hardcoded in kernel sources.

The f_flags field is a bit mask indicating mount options for the filesystem. It contains
zero or more of the following bits:

ST_MANDLOCK
Mandatory locking is permitted on the filesystem (see fcntl(2)).

ST_NOATIME
Do not update access times; see mount(2).

ST_NODEV
Disallow access to device special files on this filesystem.

ST_NODIRATIME
Do not update directory access times; see mount(2).

ST_NOEXEC
Execution of programs is disallowed on this filesystem.

ST_NOSUID
The set-user-ID and set-group-ID bits are ignored by exec(3) for executable
files on this filesystem

ST_RDONLY
This filesystem is mounted read-only.

Linux man-pages 6.13 2024-07-23 988

statfs(2) System Calls Manual statfs(2)

ST_RELATIME
Update atime relative to mtime/ctime; see mount(2).

ST_SYNCHRONOUS
Writes are synched to the filesystem immediately (see the description of
O_SYNC in open(2)).

ST_NOSYMFOLLOW (since Linux 5.10)
Symbolic links are not followed when resolving paths; see mount(2).

Nobody knows what f_fsid is supposed to contain (but see below).

Fields that are undefined for a particular filesystem are set to 0.

fstatfs() returns the same information about an open file referenced by descriptor fd .

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

(statfs()) Search permission is denied for a component of the path prefix of
path. (See also path_resolution(7).)

EBADF
(fstatfs()) fd is not a valid open file descriptor.

EFAULT
buf or path points to an invalid address.

EINTR
The call was interrupted by a signal; see signal(7).

EIO An I/O error occurred while reading from the filesystem.

ELOOP
(statfs()) Too many symbolic links were encountered in translating path.

ENAMETOOLONG
(statfs()) path is too long.

ENOENT
(statfs()) The file referred to by path does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOSYS
The filesystem does not support this call.

ENOTDIR
(statfs()) A component of the path prefix of path is not a directory.

EOVERFLOW
Some values were too large to be represented in the returned struct.

VERSIONS

Linux man-pages 6.13 2024-07-23 989

statfs(2) System Calls Manual statfs(2)

The f_fsid field
Solaris, Irix, and POSIX have a system call statvfs(2) that returns a struct statvfs (de-
fined in <sys/statvfs.h>) containing an unsigned long f_fsid . Linux, SunOS, HP-UX,
4.4BSD have a system call statfs() that returns a struct statfs (defined in <sys/vfs.h>)
containing a fsid_t f_fsid , where fsid_t is defined as struct { int val[2]; }. The same
holds for FreeBSD, except that it uses the include file <sys/mount.h>.

The general idea is that f_fsid contains some random stuff such that the pair
(f_fsid ,ino) uniquely determines a file. Some operating systems use (a variation on)
the device number, or the device number combined with the filesystem type. Several
operating systems restrict giving out the f_fsid field to the superuser only (and zero it
for unprivileged users), because this field is used in the filehandle of the filesystem
when NFS-exported, and giving it out is a security concern.

Under some operating systems, the fsid can be used as the second argument to the
sysfs(2) system call.

STANDARDS
Linux.

HISTORY
The Linux statfs() was inspired by the 4.4BSD one (but they do not use the same
structure).

The original Linux statfs() and fstatfs() system calls were not designed with ex-
tremely large file sizes in mind. Subsequently, Linux 2.6 added new statfs64() and fs-
tatfs64() system calls that employ a new structure, statfs64. The new structure con-
tains the same fields as the original statfs structure, but the sizes of various fields are
increased, to accommodate large file sizes. The glibc statfs() and fstatfs() wrapper
functions transparently deal with the kernel differences.

LSB has deprecated the library calls statfs() and fstatfs() and tells us to use statvfs(3)
and fstatvfs(3) instead.

NOTES
The __fsword_t type used for various fields in the statfs structure definition is a glibc
internal type, not intended for public use. This leaves the programmer in a bit of a co-
nundrum when trying to copy or compare these fields to local variables in a program.
Using unsigned int for such variables suffices on most systems.

Some systems have only <sys/vfs.h>, other systems also have <sys/statfs.h>, where
the former includes the latter. So it seems including the former is the best choice.

BUGS
From Linux 2.6.38 up to and including Linux 3.1, fstatfs() failed with the error
ENOSYS for file descriptors created by pipe(2).

SEE ALSO
stat(2), statvfs(3), path_resolution(7)

Linux man-pages 6.13 2024-07-23 990

statmount(2) System Calls Manual statmount(2)

NAME
statmount - get a mount status

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/mount.h> /* Definition of STATMOUNT_* constants */
#include <unistd.h>

int syscall(SYS_statmount, struct mnt_id_req *req,
struct statmount *smbuf , size_t bufsize,
unsigned long flags);

#include <linux/mount.h>

struct mnt_id_req {
__u32 size; /* sizeof(struct mnt_id_req) */
__u64 mnt_id; /* The mnt_id being queried */
__u64 param; /* An ORed combination of the STATMOUNT_ constants */

};

struct statmount {
__u32 size;
__u64 mask;
__u32 sb_dev_major;
__u32 sb_dev_minor;
__u64 sb_magic;
__u32 sb_flags;
__u32 fs_type;
__u64 mnt_id;
__u64 mnt_parent_id;
__u32 mnt_id_old;
__u32 mnt_parent_id_old;
__u64 mnt_attr;
__u64 mnt_propagation;
__u64 mnt_peer_group;
__u64 mnt_master;
__u64 propagate_from;
__u32 mnt_root;
__u32 mnt_point;
char str[];

};

Note: glibc provides no wrapper for statmount(), necessitating the use of syscall(2).

DESCRIPTION
To access a mount’s status, the caller must have CAP_SYS_ADMIN in the user name-
space.

This function returns information about a mount, storing it in the buffer pointed to by
smbuf . The returned buffer is a struct statmount which is of size bufsize with the
fields filled in as described below.

Linux man-pages 6.13 2024-07-23 991

statmount(2) System Calls Manual statmount(2)

(Note that reserved space and padding is omitted.)

The mnt_id_req structure
req.size is used by the kernel to determine which struct mnt_id_req is being passed in;
it should always be set to sizeof(struct mnt_id_req).

req.mnt_id can be obtained from either statx(2) using STATX_MNT_ID_UNIQUE
or from listmount(2) and is used as the identifier to query the status of the desired
mount point.

req.param is used to tell the kernel which fields the caller is interested in. It is an
ORed combination of the following constants

STATMOUNT_SB_BASIC /* Want/got sb_* */
STATMOUNT_MNT_BASIC /* Want/got mnt_* */
STATMOUNT_PROPAGATE_FROM /* Want/got propagate_from */
STATMOUNT_MNT_ROOT /* Want/got mnt_root */
STATMOUNT_MNT_POINT /* Want/got mnt_point */
STATMOUNT_FS_TYPE /* Want/got fs_type */

In general, the kernel does not reject values in req.param other than the above. (For
an exception, see EINVAL in errors.) Instead, it simply informs the caller which val-
ues are supported by this kernel and filesystem via the statmount.mask field. There-
fore, do not simply set req.param to UINT_MAX (all bits set), as one or more bits
may, in the future, be used to specify an extension to the buffer.

The returned information
The status information for the target mount is returned in the statmount structure
pointed to by smbuf .

The fields in the statmount structure are:

smbuf.size
The size of the returned smbuf structure, including any of the strings fields
that were filled.

smbuf.mask
The ORed combination of STATMOUNT_* flags indicating which fields
were filled in and thus valid. The kernel may return fields that weren’t re-
quested, and may fail to return fields that were requested, depending on what
the backing file system and kernel supports. In either case, req.param will not
be equal to mask.

smbuf.sb_dev_major
smbuf.sb_dev_minor

The device that is mounted at this mount point.

smbuf.sb_magic
The file system specific super block magic.

smbuf.sb_flags
The flags that are set on the super block, an ORed combination of
SB_RDONLY, SB_SYNCHRONOUS, SB_DIRSYNC, SB_LAZYTIME.

Linux man-pages 6.13 2024-07-23 992

statmount(2) System Calls Manual statmount(2)

smbuf.fs_type
The offset to the location in the smbuf.str buffer that contains the string repre-
sentation of the mounted file system. It is a null-terminated string.

smbuf.mnt_id
The unique mount ID of the mount.

smbuf.mnt_parent_id
The unique mount ID of the parent mount point of this mount. If this is the
root mount point then smbuf.mnt_id == smbuf.parent_mount_id .

smbuf.mnt_id_old
This corresponds to the mount ID that is exported by /proc/ pid /mountinfo.

smbuf.mnt_parent_id_old
This corresponds to the parent mount ID that is exported by
/proc/ pid /mountinfo.

smbuf.mnt_attr
The MOUNT_ATTR_* flags set on this mount point.

smbuf.mnt_propagation
The mount propagation flags, which can be one of MS_SHARED,
MS_SLAVE, MS_PRIVATE, MS_UNBINDABLE.

smbuf.mnt_peer_group
The ID of the shared peer group.

smbuf.mnt_master
The mount point receives its propagation from this mount ID.

smbuf.propagate_from
The ID from the namespace we propagated from.

smbuf.mnt_root
The offset to the location in the smbuf.str buffer that contains the string repre-
sentation of the mount relative to the root of the file system. It is a null-termi-
nated string.

smbuf.mnt_point
The offset to the location in the smbuf.str buffer that contains the string repre-
sentation of the mount relative to the current root (ie if you are in a chroot). It
is a null-terminated string.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EPERM

Permission is denied for accessing this mount.

EFAULT
req or smbuf points to a location outside the process’s accessible address
space.

Linux man-pages 6.13 2024-07-23 993

statmount(2) System Calls Manual statmount(2)

EINVAL
Invalid flag specified in flags.

EINVAL
req is of insufficient size to be utilized.

E2BIG
req is too large.

EOVERFLOW
The size of smbuf is too small to contain either the smbuf.fs_type, sm-
buf.mnt_root, or smbuf.mnt_point. Allocate a larger buffer and retry the call.

ENOENT
The specified req.mnt_id doesn’t exist.

ENOMEM
Out of memory (i.e., kernel memory).

STANDARDS
Linux.

SEE ALSO
listmount(2), statx(2)

Linux man-pages 6.13 2024-07-23 994

statx(2) System Calls Manual statx(2)

NAME
statx - get file status (extended)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int statx(int dirfd , const char *_Nullable restrict pathname,
int flags, unsigned int mask,
struct statx *restrict statxbuf);

DESCRIPTION
This function returns information about a file, storing it in the buffer pointed to by
statxbuf . The returned buffer is a structure of the following type:

struct statx {
__u32 stx_mask; /* Mask of bits indicating

filled fields */
__u32 stx_blksize; /* Block size for filesystem I/O */
__u64 stx_attributes; /* Extra file attribute indicators */
__u32 stx_nlink; /* Number of hard links */
__u32 stx_uid; /* User ID of owner */
__u32 stx_gid; /* Group ID of owner */
__u16 stx_mode; /* File type and mode */
__u64 stx_ino; /* Inode number */
__u64 stx_size; /* Total size in bytes */
__u64 stx_blocks; /* Number of 512B blocks allocated */
__u64 stx_attributes_mask;

/* Mask to show what's supported
in stx_attributes */

/* The following fields are file timestamps */
struct statx_timestamp stx_atime; /* Last access */
struct statx_timestamp stx_btime; /* Creation */
struct statx_timestamp stx_ctime; /* Last status change */
struct statx_timestamp stx_mtime; /* Last modification */

/* If this file represents a device, then the next two
fields contain the ID of the device */

__u32 stx_rdev_major; /* Major ID */
__u32 stx_rdev_minor; /* Minor ID */

/* The next two fields contain the ID of the device
containing the filesystem where the file resides */

__u32 stx_dev_major; /* Major ID */
__u32 stx_dev_minor; /* Minor ID */

__u64 stx_mnt_id; /* Mount ID */

Linux man-pages 6.13 2025-01-11 995

statx(2) System Calls Manual statx(2)

/* Direct I/O alignment restrictions */
__u32 stx_dio_mem_align;
__u32 stx_dio_offset_align;

__u64 stx_subvol; /* Subvolume identifier */

/* Direct I/O atomic write limits */
__u32 stx_atomic_write_unit_min;
__u32 stx_atomic_write_unit_max;
__u32 stx_atomic_write_segments_max;

/* File offset alignment for direct I/O reads */
__u32 stx_dio_read_offset_align;

};

The file timestamps are structures of the following type:

struct statx_timestamp {
__s64 tv_sec; /* Seconds since the Epoch (UNIX time) */
__u32 tv_nsec; /* Nanoseconds since tv_sec */

};

(Note that reserved space and padding is omitted.)

Invoking statx():
To access a file’s status, no permissions are required on the file itself, but in the case
of statx() with a pathname, execute (search) permission is required on all of the direc-
tories in pathname that lead to the file.

statx() uses pathname, dirfd , and flags to identify the target file in one of the follow-
ing ways:

An absolute pathname
If pathname begins with a slash, then it is an absolute pathname that identifies
the target file. In this case, dirfd is ignored.

A relative pathname
If pathname is a string that begins with a character other than a slash and dirfd
is AT_FDCWD, then pathname is a relative pathname that is interpreted rela-
tive to the process’s current working directory.

A directory-relative pathname
If pathname is a string that begins with a character other than a slash and dirfd
is a file descriptor that refers to a directory, then pathname is a relative path-
name that is interpreted relative to the directory referred to by dirfd . (See ope-
nat(2) for an explanation of why this is useful.)

By file descriptor
If pathname is an empty string (or NULL since Linux 6.11) and the
AT_EMPTY_PATH flag is specified in flags (see below), then the target file
is the one referred to by the file descriptor dirfd .

flags can be used to influence a pathname-based lookup. A value for flags is con-
structed by ORing together zero or more of the following constants:

Linux man-pages 6.13 2025-01-11 996

statx(2) System Calls Manual statx(2)

AT_EMPTY_PATH
If pathname is an empty string (or NULL since Linux 6.11), operate on the
file referred to by dirfd (which may have been obtained using the open(2)
O_PATH flag). In this case, dirfd can refer to any type of file, not just a direc-
tory.

If dirfd is AT_FDCWD, the call operates on the current working directory.

AT_NO_AUTOMOUNT
Don’t automount the terminal ("basename") component of pathname if it is a
directory that is an automount point. This allows the caller to gather attributes
of an automount point (rather than the location it would mount). This flag has
no effect if the mount point has already been mounted over.

The AT_NO_AUTOMOUNT flag can be used in tools that scan directories to
prevent mass-automounting of a directory of automount points.

All of stat(2), lstat(2), and fstatat(2) act as though AT_NO_AUTOMOUNT
was set.

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead return informa-
tion about the link itself, like lstat(2).

flags can also be used to control what sort of synchronization the kernel will do when
querying a file on a remote filesystem. This is done by ORing in one of the following
values:

AT_STATX_SYNC_AS_STAT
Do whatever stat(2) does. This is the default and is very much filesystem-spe-
cific.

AT_STATX_FORCE_SYNC
Force the attributes to be synchronized with the server. This may require that
a network filesystem perform a data writeback to get the timestamps correct.

AT_STATX_DONT_SYNC
Don’t synchronize anything, but rather just take whatever the system has
cached if possible. This may mean that the information returned is approxi-
mate, but, on a network filesystem, it may not involve a round trip to the server
- even if no lease is held.

The mask argument to statx() is used to tell the kernel which fields the caller is inter-
ested in. mask is an ORed combination of the following constants:

STATX_TYPE Want stx_mode & S_IFMT
STATX_MODE Want stx_mode & ~S_IFMT
STATX_NLINK Want stx_nlink
STATX_UID Want stx_uid
STATX_GID Want stx_gid
STATX_ATIME Want stx_atime
STATX_MTIME Want stx_mtime
STATX_CTIME Want stx_ctime
STATX_INO Want stx_ino

Linux man-pages 6.13 2025-01-11 997

statx(2) System Calls Manual statx(2)

STATX_SIZE Want stx_size
STATX_BLOCKS Want stx_blocks
STATX_BASIC_STATS [All of the above]
STATX_BTIME Want stx_btime
STATX_ALL The same as STATX_BASIC_STATS | STATX_BTIME.

It is deprecated and should not be used.
STATX_MNT_ID Want stx_mnt_id (since Linux 5.8)
STATX_DIOALIGN Want stx_dio_mem_align and stx_dio_offset_align.

(since Linux 6.1; support varies by filesystem)
STATX_MNT_ID_UNIQUE Want unique stx_mnt_id (since Linux 6.8)
STATX_SUBVOL Want stx_subvol

(since Linux 6.10; support varies by filesystem)
STATX_WRITE_ATOMIC Want stx_atomic_write_unit_min,

stx_atomic_write_unit_max,
and stx_atomic_write_segments_max.
(since Linux 6.11; support varies by filesystem)

STATX_DIO_READ_ALIGN Want stx_dio_read_offset_align.
(since Linux 6.14; support varies by filesystem)

Note that, in general, the kernel does not reject values in mask other than the above.
(For an exception, see EINVAL in errors.) Instead, it simply informs the caller which
values are supported by this kernel and filesystem via the statx.stx_mask field. There-
fore, do not simply set mask to UINT_MAX (all bits set), as one or more bits may, in
the future, be used to specify an extension to the buffer.

The returned information
The status information for the target file is returned in the statx structure pointed to by
statxbuf . Included in this is stx_mask which indicates what other information has
been returned. stx_mask has the same format as the mask argument and bits are set in
it to indicate which fields have been filled in.

It should be noted that the kernel may return fields that weren’t requested and may fail
to return fields that were requested, depending on what the backing filesystem sup-
ports. (Fields that are given values despite being unrequested can just be ignored.) In
either case, stx_mask will not be equal mask.

If a filesystem does not support a field or if it has an unrepresentable value (for in-
stance, a file with an exotic type), then the mask bit corresponding to that field will be
cleared in stx_mask even if the user asked for it and a dummy value will be filled in
for compatibility purposes if one is available (e.g., a dummy UID and GID may be
specified to mount under some circumstances).

A filesystem may also fill in fields that the caller didn’t ask for if it has values for
them available and the information is available at no extra cost. If this happens, the
corresponding bits will be set in stx_mask.

Note: for performance and simplicity reasons, different fields in the statx structure
may contain state information from different moments during the execution of the
system call. For example, if stx_mode or stx_uid is changed by another process by
calling chmod(2) or chown(2), stat() might return the old stx_mode together with the
new stx_uid , or the old stx_uid together with the new stx_mode.

Apart from stx_mask (which is described above), the fields in the statx structure are:

Linux man-pages 6.13 2025-01-11 998

statx(2) System Calls Manual statx(2)

stx_blksize
The "preferred" block size for efficient filesystem I/O. (Writing to a file in
smaller chunks may cause an inefficient read-modify-rewrite.)

stx_attributes
Further status information about the file (see below for more information).

stx_nlink
The number of hard links on a file.

stx_uid
This field contains the user ID of the owner of the file.

stx_gid
This field contains the ID of the group owner of the file.

stx_mode
The file type and mode. See inode(7) for details.

stx_ino
The inode number of the file.

stx_size
The size of the file (if it is a regular file or a symbolic link) in bytes. The size
of a symbolic link is the length of the pathname it contains, without a termi-
nating null byte.

stx_blocks
The number of blocks allocated to the file on the medium, in 512-byte units.
(This may be smaller than stx_size/512 when the file has holes.)

stx_attributes_mask
A mask indicating which bits in stx_attributes are supported by the VFS and
the filesystem.

stx_atime
The file’s last access timestamp.

stx_btime
The file’s creation timestamp.

stx_ctime
The file’s last status change timestamp.

stx_mtime
The file’s last modification timestamp.

stx_dev_major
stx_dev_minor

The device on which this file (inode) resides.

stx_rdev_major
stx_rdev_minor

The device that this file (inode) represents if the file is of block or character
device type.

Linux man-pages 6.13 2025-01-11 999

statx(2) System Calls Manual statx(2)

stx_mnt_id
If using STATX_MNT_ID, this is the mount ID of the mount containing the
file. This is the same number reported by name_to_handle_at(2) and corre-
sponds to the number in the first field in one of the records in
/proc/self/mountinfo.

If using STATX_MNT_ID_UNIQUE, this is the unique mount ID of the
mount containing the file. This is the number reported by listmount(2) and is
the ID used to query the mount with statmount(2). It is guaranteed to not be
reused while the system is running.

stx_dio_mem_align
The alignment (in bytes) required for user memory buffers for direct I/O
(O_DIRECT) on this file, or 0 if direct I/O is not supported on this file.

STATX_DIOALIGN (stx_dio_mem_align and stx_dio_offset_align) is sup-
ported on block devices since Linux 6.1. The support on regular files varies by
filesystem; it is supported by ext4, f2fs, and xfs since Linux 6.1.

stx_dio_offset_align
The alignment (in bytes) required for file offsets and I/O segment lengths for
direct I/O (O_DIRECT) on this file, or 0 if direct I/O is not supported on this
file. This will only be nonzero if stx_dio_mem_align is nonzero, and vice
versa.

stx_dio_read_offset_align
The alignment (in bytes) required for file offsets and I/O segment lengths for
direct I/O reads (O_DIRECT) on this file. If zero, the limit in stx_dio_off-
set_align applies for reads as well. If non-zero, this value must be smaller
than or equal to stx_dio_offset_align which must be provided by the file sys-
tem if requested by the application. The memory alignment in
stx_dio_mem_align is not affected by this value.

STATX_DIO_READ_ALIGN (stx_dio_offset_align) is supported by xfs on
regular files since Linux 6.14.

stx_subvol
Subvolume number of the current file.

Subvolumes are fancy directories, i.e. they form a tree structure that may be
walked recursively. Support varies by filesystem; it is supported by bcachefs
and btrfs since Linux 6.10.

stx_atomic_write_unit_min
stx_atomic_write_unit_max

The minimum and maximum sizes (in bytes) supported for direct I/O (O_DI-
RECT) on the file to be written with torn-write protection. These values are
each guaranteed to be a power-of-2.

STATX_WRITE_ATOMIC (stx_atomic_write_unit_min,
stx_atomic_write_unit_max, and stx_atomic_write_segments_max) is sup-
ported on block devices since Linux 6.11. The support on regular files varies
by filesystem; it is supported by xfs and ext4 since Linux 6.13.

Linux man-pages 6.13 2025-01-11 1000

statx(2) System Calls Manual statx(2)

stx_atomic_write_segments_max
The maximum number of elements in an array of vectors for a write with torn-
write protection enabled. See RWF_ATOMIC flag for pwritev2(2).

For further information on the above fields, see inode(7).

File attributes
The stx_attributes field contains a set of ORed flags that indicate additional attributes
of the file. Note that any attribute that is not indicated as supported by stx_attrib-
utes_mask has no usable value here. The bits in stx_attributes_mask correspond bit-
by-bit to stx_attributes.

The flags are as follows:

STATX_ATTR_COMPRESSED
The file is compressed by the filesystem and may take extra resources to ac-
cess.

STATX_ATTR_IMMUTABLE
The file cannot be modified: it cannot be deleted or renamed, no hard links can
be created to this file and no data can be written to it. See chattr(1)

STATX_ATTR_APPEND
The file can only be opened in append mode for writing. Random access writ-
ing is not permitted. See chattr(1)

STATX_ATTR_NODUMP
File is not a candidate for backup when a backup program such as dump(8) is
run. See chattr(1)

STATX_ATTR_ENCRYPTED
A key is required for the file to be encrypted by the filesystem.

STATX_ATTR_VERITY (since Linux 5.5)
The file has fs-verity enabled. It cannot be written to, and all reads from it will
be verified against a cryptographic hash that covers the entire file (e.g., via a
Merkle tree).

STATX_ATTR_WRITE_ATOMIC (since Linux 6.11)
The file supports torn-write protection.

STATX_ATTR_DAX (since Linux 5.8)
The file is in the DAX (cpu direct access) state. DAX state attempts to mini-
mize software cache effects for both I/O and memory mappings of this file. It
requires a file system which has been configured to support DAX.

DAX generally assumes all accesses are via CPU load / store instructions
which can minimize overhead for small accesses, but may adversely affect
CPU utilization for large transfers.

File I/O is done directly to/from user-space buffers and memory mapped I/O
may be performed with direct memory mappings that bypass the kernel page
cache.

While the DAX property tends to result in data being transferred synchro-
nously, it does not give the same guarantees as the O_SYNC flag (see
open(2)), where data and the necessary metadata are transferred together.

Linux man-pages 6.13 2025-01-11 1001

statx(2) System Calls Manual statx(2)

A DAX file may support being mapped with the MAP_SYNC flag, which en-
ables a program to use CPU cache flush instructions to persist CPU store oper-
ations without an explicit fsync(2). See mmap(2) for more information.

STATX_ATTR_MOUNT_ROOT (since Linux 5.8)
The file is the root of a mount.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of
pathname. (See also path_resolution(7).)

EBADF
pathname is relative but dirfd is neither AT_FDCWD nor a valid file descrip-
tor.

EFAULT
pathname or statxbuf points to a location outside the process’s accessible ad-
dress space or is NULL (except since Linux 6.11 if AT_EMPTY_PATH is
specified in flags, pathname is allowed to be NULL).

EINVAL
Invalid flag specified in flags.

EINVAL
Reserved flag specified in mask. (Currently, there is one such flag, designated
by the constant STATX__RESERVED, with the value 0x80000000U.)

ELOOP
Too many symbolic links encountered while traversing the pathname.

ENAMETOOLONG
pathname is too long.

ENOENT
A component of pathname does not exist, or pathname is an empty string and
AT_EMPTY_PATH was not specified in flags.

ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path prefix of pathname is not a directory or pathname is
relative and dirfd is a file descriptor referring to a file other than a directory.

STANDARDS
Linux.

HISTORY
Linux 4.11, glibc 2.28.

SEE ALSO
ls(1), stat(1), access(2), chmod(2), chown(2), name_to_handle_at(2), readlink(2),
stat(2), utime(2), proc(5), capabilities(7), inode(7), symlink(7)

Linux man-pages 6.13 2025-01-11 1002

stime(2) System Calls Manual stime(2)

NAME
stime - set time

SYNOPSIS
#include <time.h>

[[deprecated]] int stime(const time_t *t);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

stime():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
NOTE: This function is deprecated; use clock_settime(2) instead.

stime() sets the system’s idea of the time and date. The time, pointed to by t, is mea-
sured in seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). stime() may
be executed only by the superuser.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EFAULT

Error in getting information from user space.

EPERM
The calling process has insufficient privilege. Under Linux, the
CAP_SYS_TIME privilege is required.

STANDARDS
None.

HISTORY
SVr4.

Starting with glibc 2.31, this function is no longer available to newly linked applica-
tions and is no longer declared in <time.h>.

SEE ALSO
date(1), settimeofday(2), capabilities(7)

Linux man-pages 6.13 2024-05-02 1003

subpage_prot(2) System Calls Manual subpage_prot(2)

NAME
subpage_prot - define a subpage protection for an address range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_subpage_prot, unsigned long addr, unsigned long size,
uint32_t *map);

Note: glibc provides no wrapper for subpage_prot(), necessitating the use of
syscall(2).

DESCRIPTION
The PowerPC-specific subpage_prot() system call provides the facility to control the
access permissions on individual 4 kB subpages on systems configured with a page
size of 64 kB.

The protection map is applied to the memory pages in the region starting at addr and
continuing for size bytes. Both of these arguments must be aligned to a 64-kB bound-
ary.

The protection map is specified in the buffer pointed to by map. The map has 2 bits
per 4 kB subpage; thus each 32-bit word specifies the protections of 16 4 kB subpages
inside a 64 kB page (so, the number of 32-bit words pointed to by map should equate
to the number of 64-kB pages specified by size). Each 2-bit field in the protection
map is either 0 to allow any access, 1 to prevent writes, or 2 or 3 to prevent all ac-
cesses.

RETURN VALUE
On success, subpage_prot() returns 0. Otherwise, one of the error codes specified
below is returned.

ERRORS
EFAULT

The buffer referred to by map is not accessible.

EINVAL
The addr or size arguments are incorrect. Both of these arguments must be
aligned to a multiple of the system page size, and they must not refer to a re-
gion outside of the address space of the process or to a region that consists of
huge pages.

ENOMEM
Out of memory.

STANDARDS
Linux.

HISTORY
Linux 2.6.25 (PowerPC).

The system call is provided only if the kernel is configured with CON-
FIG_PPC_64K_PAGES.

Linux man-pages 6.13 2024-11-17 1004

subpage_prot(2) System Calls Manual subpage_prot(2)

NOTES
Normal page protections (at the 64-kB page level) also apply; the subpage protection
mechanism is an additional constraint, so putting 0 in a 2-bit field won’t allow writes
to a page that is otherwise write-protected.

Rationale
This system call is provided to assist writing emulators that operate using 64-kB
pages on PowerPC systems. When emulating systems such as x86, which uses a
smaller page size, the emulator can no longer use the memory-management unit
(MMU) and normal system calls for controlling page protections. (The emulator
could emulate the MMU by checking and possibly remapping the address for each
memory access in software, but that is slow.) The idea is that the emulator supplies an
array of protection masks to apply to a specified range of virtual addresses. These
masks are applied at the level where hardware page-table entries (PTEs) are inserted
into the hardware page table based on the Linux PTEs, so the Linux PTEs are not af-
fected. Implicit in this is that the regions of the address space that are protected are
switched to use 4-kB hardware pages rather than 64-kB hardware pages (on machines
with hardware 64-kB page support).

SEE ALSO
mprotect(2), syscall(2)

Documentation/admin-guide/mm/hugetlbpage.rst in the Linux kernel source tree

Linux man-pages 6.13 2024-11-17 1005

swapon(2) System Calls Manual swapon(2)

NAME
swapon, swapoff - start/stop swapping to file/device

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/swap.h>

int swapon(const char *path, int swapflags);
int swapoff(const char *path);

DESCRIPTION
swapon() sets the swap area to the file or block device specified by path. swapoff()
stops swapping to the file or block device specified by path.

If the SWAP_FLAG_PREFER flag is specified in the swapon() swapflags argument,
the new swap area will have a higher priority than default. The priority is encoded
within swapflags as:

(prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK

If the SWAP_FLAG_DISCARD flag is specified in the swapon() swapflags argu-
ment, freed swap pages will be discarded before they are reused, if the swap device
supports the discard or trim operation. (This may improve performance on some
Solid State Devices, but often it does not.) See also NOTES.

These functions may be used only by a privileged process (one having the
CAP_SYS_ADMIN capability).

Priority
Each swap area has a priority, either high or low. The default priority is low. Within
the low-priority areas, newer areas are even lower priority than older areas.

All priorities set with swapflags are high-priority, higher than default. They may have
any nonnegative value chosen by the caller. Higher numbers mean higher priority.

Swap pages are allocated from areas in priority order, highest priority first. For areas
with different priorities, a higher-priority area is exhausted before using a lower-prior-
ity area. If two or more areas have the same priority, and it is the highest priority
available, pages are allocated on a round-robin basis between them.

As of Linux 1.3.6, the kernel usually follows these rules, but there are exceptions.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EBUSY

(for swapon()) The specified path is already being used as a swap area.

EINVAL
The file path exists, but refers neither to a regular file nor to a block device;

EINVAL
(swapon()) The indicated path does not contain a valid swap signature or re-
sides on an in-memory filesystem such as tmpfs(5).

Linux man-pages 6.13 2024-07-23 1006

swapon(2) System Calls Manual swapon(2)

EINVAL (since Linux 3.4)
(swapon()) An invalid flag value was specified in swapflags.

EINVAL
(swapoff()) path is not currently a swap area.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The file path does not exist.

ENOMEM
The system has insufficient memory to start swapping.

EPERM
The caller does not have the CAP_SYS_ADMIN capability. Alternatively,
the maximum number of swap files are already in use; see NOTES below.

STANDARDS
Linux.

HISTORY
The swapflags argument was introduced in Linux 1.3.2.

NOTES
The partition or path must be prepared with mkswap(8)

There is an upper limit on the number of swap files that may be used, defined by the
kernel constant MAX_SWAPFILES. Before Linux 2.4.10, MAX_SWAPFILES has
the value 8; since Linux 2.4.10, it has the value 32. Since Linux 2.6.18, the limit is
decreased by 2 (thus 30), since Linux 5.19, the limit is decreased by 3 (thus: 29) if the
kernel is built with the CONFIG_MIGRATION option (which reserves two swap ta-
ble entries for the page migration features of mbind(2) and migrate_pages(2)). Since
Linux 2.6.32, the limit is further decreased by 1 if the kernel is built with the CON-
FIG_MEMORY_FAILURE option. Since Linux 5.14, the limit is further decreased
by 4 if the kernel is built with the CONFIG_DEVICE_PRIVATE option. Since
Linux 5.19, the limit is further decreased by 1 if the kernel is built with the CON-
FIG_PTE_MARKER option.

Discard of swap pages was introduced in Linux 2.6.29, then made conditional on the
SWAP_FLAG_DISCARD flag in Linux 2.6.36, which still discards the entire swap
area when swapon() is called, even if that flag bit is not set.

SEE ALSO
mkswap(8), swapoff (8), swapon(8)

Linux man-pages 6.13 2024-07-23 1007

symlink(2) System Calls Manual symlink(2)

NAME
symlink, symlinkat - make a new name for a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int symlink(const char *target, const char *linkpath);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int symlinkat(const char *target, int newdirfd , const char *linkpath);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

symlink():
_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200112L

|| /* glibc <= 2.19: */ _BSD_SOURCE

symlinkat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
symlink() creates a symbolic link named linkpath which contains the string target.

Symbolic links are interpreted at run time as if the contents of the link had been sub-
stituted into the path being followed to find a file or directory.

Symbolic links may contain .. path components, which (if used at the start of the link)
refer to the parent directories of that in which the link resides.

A symbolic link (also known as a soft link) may point to an existing file or to a nonex-
istent one; the latter case is known as a dangling link.

The permissions of a symbolic link are irrelevant; the ownership is ignored when fol-
lowing the link (except when the protected_symlinks feature is enabled, as explained
in proc(5)), but is checked when removal or renaming of the link is requested and the
link is in a directory with the sticky bit (S_ISVTX) set.

If linkpath exists, it will not be overwritten.

symlinkat()
The symlinkat() system call operates in exactly the same way as symlink(), except
for the differences described here.

If the pathname given in linkpath is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor newdirfd (rather than relative to the current
working directory of the calling process, as is done by symlink() for a relative path-
name).

If linkpath is relative and newdirfd is the special value AT_FDCWD, then linkpath is
interpreted relative to the current working directory of the calling process (like sym-
link())

Linux man-pages 6.13 2024-07-23 1008

symlink(2) System Calls Manual symlink(2)

If linkpath is absolute, then newdirfd is ignored.

See openat(2) for an explanation of the need for symlinkat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

Write access to the directory containing linkpath is denied, or one of the direc-
tories in the path prefix of linkpath did not allow search permission. (See also
path_resolution(7).)

EBADF
(symlinkat()) linkpath is relative but newdirfd is neither AT_FDCWD nor a
valid file descriptor.

EDQUOT
The user’s quota of resources on the filesystem has been exhausted. The re-
sources could be inodes or disk blocks, depending on the filesystem imple-
mentation.

EEXIST
linkpath already exists.

EFAULT
target or linkpath points outside your accessible address space.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving linkpath.

ENAMETOOLONG
target or linkpath was too long.

ENOENT
A directory component in linkpath does not exist or is a dangling symbolic
link, or target or linkpath is an empty string.

ENOENT
(symlinkat()) linkpath is a relative pathname and newdirfd refers to a direc-
tory that has been deleted.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing the file has no room for the new directory entry.

ENOTDIR
A component used as a directory in linkpath is not, in fact, a directory.

ENOTDIR
(symlinkat()) linkpath is relative and newdirfd is a file descriptor referring to
a file other than a directory.

Linux man-pages 6.13 2024-07-23 1009

symlink(2) System Calls Manual symlink(2)

EPERM
The filesystem containing linkpath does not support the creation of symbolic
links.

EROFS
linkpath is on a read-only filesystem.

STANDARDS
POSIX.1-2008.

HISTORY
symlink()

SVr4, 4.3BSD, POSIX.1-2001.

symlinkat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

glibc notes
On older kernels where symlinkat() is unavailable, the glibc wrapper function falls
back to the use of symlink(). When linkpath is a relative pathname, glibc constructs a
pathname based on the symbolic link in /proc/self/fd that corresponds to the newdirfd
argument.

NOTES
No checking of target is done.

Deleting the name referred to by a symbolic link will actually delete the file (unless it
also has other hard links). If this behavior is not desired, use link(2).

SEE ALSO
ln(1), namei(1), lchown(2), link(2), lstat(2), open(2), readlink(2), rename(2), un-
link(2), path_resolution(7), symlink(7)

Linux man-pages 6.13 2024-07-23 1010

sync(2) System Calls Manual sync(2)

NAME
sync, syncfs - commit filesystem caches to disk

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

void sync(void);

int syncfs(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sync():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

syncfs():
_GNU_SOURCE

DESCRIPTION
sync() causes all pending modifications to filesystem metadata and cached file data to
be written to the underlying filesystems.

syncfs() is like sync(), but synchronizes just the filesystem containing file referred to
by the open file descriptor fd .

RETURN VALUE
syncfs() returns 0 on success; on error, it returns -1 and sets errno to indicate the er-
ror.

ERRORS
sync() is always successful.

syncfs() can fail for at least the following reasons:

EBADF
fd is not a valid file descriptor.

EIO An error occurred during synchronization. This error may relate to data writ-
ten to any file on the filesystem, or on metadata related to the filesystem itself.

ENOSPC
Disk space was exhausted while synchronizing.

ENOSPC
EDQUOT

Data was written to a file on NFS or another filesystem which does not allo-
cate space at the time of a write(2) system call, and some previous write failed
due to insufficient storage space.

VERSIONS
According to the standard specification (e.g., POSIX.1-2001), sync() schedules the
writes, but may return before the actual writing is done. However Linux waits for I/O
completions, and thus sync() or syncfs() provide the same guarantees as fsync()
called on every file in the system or filesystem respectively.

Linux man-pages 6.13 2024-07-23 1011

sync(2) System Calls Manual sync(2)

STANDARDS
sync()

POSIX.1-2008.

syncfs()
Linux.

HISTORY
sync()

POSIX.1-2001, SVr4, 4.3BSD.

syncfs()
Linux 2.6.39, glibc 2.14.

Since glibc 2.2.2, the Linux prototype for sync() is as listed above, following the vari-
ous standards. In glibc 2.2.1 and earlier, it was "int sync(void)", and sync() always re-
turned 0.

In mainline kernel versions prior to Linux 5.8, syncfs() will fail only when passed a
bad file descriptor (EBADF). Since Linux 5.8, syncfs() will also report an error if
one or more inodes failed to be written back since the last syncfs() call.

BUGS
Before Linux 1.3.20, Linux did not wait for I/O to complete before returning.

SEE ALSO
sync(1), fdatasync(2), fsync(2)

Linux man-pages 6.13 2024-07-23 1012

sync_file_range(2) System Calls Manual sync_file_range(2)

NAME
sync_file_range - sync a file segment with disk

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#define _FILE_OFFSET_BITS 64
#include <fcntl.h>

int sync_file_range(int fd , off_t offset, off_t nbytes,
unsigned int flags);

DESCRIPTION
sync_file_range() permits fine control when synchronizing the open file referred to by
the file descriptor fd with disk.

offset is the starting byte of the file range to be synchronized. nbytes specifies the
length of the range to be synchronized, in bytes; if nbytes is zero, then all bytes from
offset through to the end of file are synchronized. Synchronization is in units of the
system page size: offset is rounded down to a page boundary; (offset+nbytes-1) is
rounded up to a page boundary.

The flags bit-mask argument can include any of the following values:

SYNC_FILE_RANGE_WAIT_BEFORE
Wait upon write-out of all pages in the specified range that have already been
submitted to the device driver for write-out before performing any write.

SYNC_FILE_RANGE_WRITE
Initiate write-out of all dirty pages in the specified range which are not
presently submitted write-out. Note that even this may block if you attempt to
write more than request queue size.

SYNC_FILE_RANGE_WAIT_AFTER
Wait upon write-out of all pages in the range after performing any write.

Specifying flags as 0 is permitted, as a no-op.

Warning
This system call is extremely dangerous and should not be used in portable programs.
None of these operations writes out the file’s metadata. Therefore, unless the applica-
tion is strictly performing overwrites of already-instantiated disk blocks, there are no
guarantees that the data will be available after a crash. There is no user interface to
know if a write is purely an overwrite. On filesystems using copy-on-write semantics
(e.g., btrfs) an overwrite of existing allocated blocks is impossible. When writing into
preallocated space, many filesystems also require calls into the block allocator, which
this system call does not sync out to disk. This system call does not flush disk write
caches and thus does not provide any data integrity on systems with volatile disk write
caches.

Some details
SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AF-
TER will detect any I/O errors or ENOSPC conditions and will return these to the
caller.

Linux man-pages 6.13 2024-07-23 1013

sync_file_range(2) System Calls Manual sync_file_range(2)

Useful combinations of the flags bits are:

SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE
Ensures that all pages in the specified range which were dirty when
sync_file_range() was called are placed under write-out. This is a start-write-
for-data-integrity operation.

SYNC_FILE_RANGE_WRITE
Start write-out of all dirty pages in the specified range which are not presently
under write-out. This is an asynchronous flush-to-disk operation. This is not
suitable for data integrity operations.

SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AF-
TER)

Wait for completion of write-out of all pages in the specified range. This can
be used after an earlier SYNC_FILE_RANGE_WAIT_BEFORE |
SYNC_FILE_RANGE_WRITE operation to wait for completion of that op-
eration, and obtain its result.

SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE |
SYNC_FILE_RANGE_WAIT_AFTER

This is a write-for-data-integrity operation that will ensure that all pages in the
specified range which were dirty when sync_file_range() was called are com-
mitted to disk.

RETURN VALUE
On success, sync_file_range() returns 0; on failure -1 is returned and errno is set to
indicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

EINVAL
flags specifies an invalid bit; or offset or nbytes is invalid.

EIO I/O error.

ENOMEM
Out of memory.

ENOSPC
Out of disk space.

ESPIPE
fd refers to something other than a regular file, a block device, or a directory.

VERSIONS
sync_file_range2()

Some architectures (e.g., PowerPC, ARM) need 64-bit arguments to be aligned in a
suitable pair of registers. On such architectures, the call signature of
sync_file_range() shown in the SYNOPSIS would force a register to be wasted as
padding between the fd and offset arguments. (See syscall(2) for details.) Therefore,
these architectures define a different system call that orders the arguments suitably:

int sync_file_range2(int fd, unsigned int flags,

Linux man-pages 6.13 2024-07-23 1014

sync_file_range(2) System Calls Manual sync_file_range(2)

off_t offset, off_t nbytes);

The behavior of this system call is otherwise exactly the same as sync_file_range().

STANDARDS
Linux.

HISTORY
Linux 2.6.17.

sync_file_range2()
A system call with this signature first appeared on the ARM architecture in Linux
2.6.20, with the name arm_sync_file_range(). It was renamed in Linux 2.6.22, when
the analogous system call was added for PowerPC. On architectures where glibc sup-
port is provided, glibc transparently wraps sync_file_range2() under the name
sync_file_range().

NOTES
_FILE_OFFSET_BITS should be defined to be 64 in code that takes the address of
sync_file_range, if the code is intended to be portable to traditional 32-bit x86 and
ARM platforms where off_t’s width defaults to 32 bits.

SEE ALSO
fdatasync(2), fsync(2), msync(2), sync(2)

Linux man-pages 6.13 2024-07-23 1015

syscall(2) System Calls Manual syscall(2)

NAME
syscall - indirect system call

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(long number, ...);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

syscall():
Since glibc 2.19:

_DEFAULT_SOURCE
Before glibc 2.19:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
syscall() is a small library function that invokes the system call whose assembly lan-
guage interface has the specified number with the specified arguments. Employing
syscall() is useful, for example, when invoking a system call that has no wrapper
function in the C library.

syscall() saves CPU registers before making the system call, restores the registers
upon return from the system call, and stores any error returned by the system call in
errno(3).

Symbolic constants for system call numbers can be found in the header file
<sys/syscall.h>.

RETURN VALUE
The return value is defined by the system call being invoked. In general, a 0 return
value indicates success. A -1 return value indicates an error, and an error number is
stored in errno.

ERRORS
ENOSYS

The requested system call number is not implemented.

Other errors are specific to the invoked system call.

NOTES
syscall() first appeared in 4BSD.

Architecture-specific requirements
Each architecture ABI has its own requirements on how system call arguments are
passed to the kernel. For system calls that have a glibc wrapper (e.g., most system
calls), glibc handles the details of copying arguments to the right registers in a manner
suitable for the architecture. However, when using syscall() to make a system call,
the caller might need to handle architecture-dependent details; this requirement is
most commonly encountered on certain 32-bit architectures.

For example, on the ARM architecture Embedded ABI (EABI), a 64-bit value (e.g.,
long long) must be aligned to an even register pair. Thus, using syscall() instead of

Linux man-pages 6.13 2024-07-23 1016

syscall(2) System Calls Manual syscall(2)

the wrapper provided by glibc, the readahead(2) system call would be invoked as fol-
lows on the ARM architecture with the EABI in little endian mode:

syscall(SYS_readahead, fd, 0,
(unsigned int) (offset & 0xFFFFFFFF),
(unsigned int) (offset >> 32),
count);

Since the offset argument is 64 bits, and the first argument (fd) is passed in r0, the
caller must manually split and align the 64-bit value so that it is passed in the r2/r3
register pair. That means inserting a dummy value into r1 (the second argument of 0).
Care also must be taken so that the split follows endian conventions (according to the
C ABI for the platform).

Similar issues can occur on MIPS with the O32 ABI, on PowerPC and parisc with the
32-bit ABI, and on Xtensa.

Note that while the parisc C ABI also uses aligned register pairs, it uses a shim layer
to hide the issue from user space.

The affected system calls are fadvise64_64(2), ftruncate64(2), posix_fadvise(2),
pread64(2), pwrite64(2), readahead(2), sync_file_range(2), and truncate64(2).

This does not affect syscalls that manually split and assemble 64-bit values such as
_llseek(2), preadv(2), preadv2(2), pwritev(2), and pwritev2(2). Welcome to the won-
derful world of historical baggage.

Architecture calling conventions
Every architecture has its own way of invoking and passing arguments to the kernel.
The details for various architectures are listed in the two tables below.

The first table lists the instruction used to transition to kernel mode (which might not
be the fastest or best way to transition to the kernel, so you might have to refer to
vdso(7)), the register used to indicate the system call number, the register(s) used to
return the system call result, and the register used to signal an error.
Arch/ABI Instruction System Ret Ret Error Notes

call # val val2

alpha callsys v0 v0 a4 a3 1, 6
arc trap0 r8 r0 - -
arm/OABI swi NR - r0 - - 2
arm/EABI swi 0x0 r7 r0 r1 -
arm64 svc #0 w8 x0 x1 -
blackfin excpt 0x0 P0 R0 - -
i386 int $0x80 eax eax edx -
ia64 break 0x100000 r15 r8 r9 r10 1, 6
loongarch syscall 0 a7 a0 - -
m68k trap #0 d0 d0 - -
microblaze brki r14,8 r12 r3 - -
mips syscall v0 v0 v1 a3 1, 6
nios2 trap r2 r2 - r7
parisc ble 0x100(%sr2, %r0) r20 r28 - -
powerpc sc r0 r3 - r0 1

Linux man-pages 6.13 2024-07-23 1017

syscall(2) System Calls Manual syscall(2)

powerpc64 sc r0 r3 - cr0.SO 1
riscv ecall a7 a0 a1 -
s390 svc 0 r1 r2 r3 - 3
s390x svc 0 r1 r2 r3 - 3
superh trapa #31 r3 r0 r1 - 4, 6
sparc/32 t 0x10 g1 o0 o1 psr/csr 1, 6
sparc/64 t 0x6d g1 o0 o1 psr/csr 1, 6
tile swint1 R10 R00 - R01 1
x86-64 syscall rax rax rdx - 5
x32 syscall rax rax rdx - 5
xtensa syscall a2 a2 - -

Notes:

• On a few architectures, a register is used as a boolean (0 indicating no error, and
-1 indicating an error) to signal that the system call failed. The actual error value
is still contained in the return register. On sparc, the carry bit (csr) in the proces-
sor status register (psr) is used instead of a full register. On powerpc64, the sum-
mary overflow bit (SO) in field 0 of the condition register (cr0) is used.

• NR is the system call number.

• For s390 and s390x, NR (the system call number) may be passed directly with
svc NR if it is less than 256.

• On SuperH additional trap numbers are supported for historic reasons, but
trapa#31 is the recommended "unified" ABI.

• The x32 ABI shares syscall table with x86-64 ABI, but there are some nuances:

• In order to indicate that a system call is called under the x32 ABI, an addi-
tional bit, __X32_SYSCALL_BIT, is bitwise ORed with the system call
number. The ABI used by a process affects some process behaviors, including
signal handling or system call restarting.

• Since x32 has different sizes for long and pointer types, layouts of some (but
not all; struct timeval or struct rlimit are 64-bit, for example) structures are
different. In order to handle this, additional system calls are added to the sys-
tem call table, starting from number 512 (without the
__X32_SYSCALL_BIT). For example, __NR_readv is defined as 19 for the
x86-64 ABI and as __X32_SYSCALL_BIT | 515 for the x32 ABI. Most of
these additional system calls are actually identical to the system calls used for
providing i386 compat. There are some notable exceptions, however, such as
preadv2(2), which uses struct iovec entities with 4-byte pointers and sizes
("compat_iovec" in kernel terms), but passes an 8-byte pos argument in a sin-
gle register and not two, as is done in every other ABI.

• Some architectures (namely, Alpha, IA-64, MIPS, SuperH, sparc/32, and
sparc/64) use an additional register ("Retval2" in the above table) to pass back a
second return value from the pipe(2) system call; Alpha uses this technique in the
architecture-specific getxpid(2), getxuid(2), and getxgid(2) system calls as well.
Other architectures do not use the second return value register in the system call
interface, even if it is defined in the System V ABI.

Linux man-pages 6.13 2024-07-23 1018

syscall(2) System Calls Manual syscall(2)

The second table shows the registers used to pass the system call arguments.
Arch/ABI arg1 arg2 arg3 arg4 arg5 arg6 arg7 Notes

alpha a0 a1 a2 a3 a4 a5 -
arc r0 r1 r2 r3 r4 r5 -
arm/OABI r0 r1 r2 r3 r4 r5 r6
arm/EABI r0 r1 r2 r3 r4 r5 r6
arm64 x0 x1 x2 x3 x4 x5 -
blackfin R0 R1 R2 R3 R4 R5 -
i386 ebx ecx edx esi edi ebp -
ia64 out0 out1 out2 out3 out4 out5 -
loongarch a0 a1 a2 a3 a4 a5 a6
m68k d1 d2 d3 d4 d5 a0 -
microblaze r5 r6 r7 r8 r9 r10 -
mips/o32 a0 a1 a2 a3 - - - 1
mips/n32,64 a0 a1 a2 a3 a4 a5 -
nios2 r4 r5 r6 r7 r8 r9 -
parisc r26 r25 r24 r23 r22 r21 -
powerpc r3 r4 r5 r6 r7 r8 r9
powerpc64 r3 r4 r5 r6 r7 r8 -
riscv a0 a1 a2 a3 a4 a5 -
s390 r2 r3 r4 r5 r6 r7 -
s390x r2 r3 r4 r5 r6 r7 -
superh r4 r5 r6 r7 r0 r1 r2
sparc/32 o0 o1 o2 o3 o4 o5 -
sparc/64 o0 o1 o2 o3 o4 o5 -
tile R00 R01 R02 R03 R04 R05 -
x86-64 rdi rsi rdx r10 r8 r9 -
x32 rdi rsi rdx r10 r8 r9 -
xtensa a6 a3 a4 a5 a8 a9 -

Notes:

• The mips/o32 system call convention passes arguments 5 through 8 on the user
stack.

Note that these tables don’t cover the entire calling convention—some architectures
may indiscriminately clobber other registers not listed here.

EXAMPLES
#define _GNU_SOURCE
#include <signal.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>

int
main(void)
{

pid_t tid;

Linux man-pages 6.13 2024-07-23 1019

syscall(2) System Calls Manual syscall(2)

tid = syscall(SYS_gettid);
syscall(SYS_tgkill, getpid(), tid, SIGHUP);

}

SEE ALSO
_syscall(2), intro(2), syscalls(2), errno(3), vdso(7)

Linux man-pages 6.13 2024-07-23 1020

_syscall(2) System Calls Manual _syscall(2)

NAME
_syscall - invoking a system call without library support (OBSOLETE)

SYNOPSIS
#include <linux/unistd.h>

A _syscall macro

desired system call

DESCRIPTION
The important thing to know about a system call is its prototype. You need to know
how many arguments, their types, and the function return type. There are seven
macros that make the actual call into the system easier. They have the form:

_syscallX(type,name,type1,arg1,type2,arg2,...)

where

X is 0–6, which are the number of arguments taken by the system call

type is the return type of the system call

name is the name of the system call

typeN is the Nth argument’s type

argN is the name of the Nth argument

These macros create a function called name with the arguments you specify. Once
you include the _syscall() in your source file, you call the system call by name.

FILES
/usr/include/linux/unistd.h

STANDARDS
Linux.

HISTORY
Starting around Linux 2.6.18, the _syscall macros were removed from header files
supplied to user space. Use syscall(2) instead. (Some architectures, notably ia64,
never provided the _syscall macros; on those architectures, syscall(2) was always re-
quired.)

NOTES
The _syscall() macros do not produce a prototype. You may have to create one, espe-
cially for C++ users.

System calls are not required to return only positive or negative error codes. You need
to read the source to be sure how it will return errors. Usually, it is the negative of a
standard error code, for example, -EPERM . The _syscall() macros will return the re-
sult r of the system call when r is nonnegative, but will return -1 and set the variable
errno to -r when r is negative. For the error codes, see errno(3).

When defining a system call, the argument types must be passed by-value or by-
pointer (for aggregates like structs).

EXAMPLES
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.13 2024-06-15 1021

_syscall(2) System Calls Manual _syscall(2)

#include <errno.h>
#include <linux/unistd.h> /* for _syscallX macros/related stuff */
#include <linux/kernel.h> /* for struct sysinfo */

_syscall1(int, sysinfo, struct sysinfo *, info);

int
main(void)
{

struct sysinfo s_info;
int error;

error = sysinfo(&s_info);
printf("code error = %d\n", error);
printf("Uptime = %lds\nLoad: 1 min %lu / 5 min %lu / 15 min %lu\n"

"RAM: total %lu / free %lu / shared %lu\n"
"Memory in buffers = %lu\nSwap: total %lu / free %lu\n"
"Number of processes = %d\n",
s_info.uptime, s_info.loads[0],
s_info.loads[1], s_info.loads[2],
s_info.totalram, s_info.freeram,
s_info.sharedram, s_info.bufferram,
s_info.totalswap, s_info.freeswap,
s_info.procs);

exit(EXIT_SUCCESS);
}

Sample output
code error = 0
uptime = 502034s
Load: 1 min 13376 / 5 min 5504 / 15 min 1152
RAM: total 15343616 / free 827392 / shared 8237056
Memory in buffers = 5066752
Swap: total 27881472 / free 24698880
Number of processes = 40

SEE ALSO
intro(2), syscall(2), errno(3)

Linux man-pages 6.13 2024-06-15 1022

syscalls(2) System Calls Manual syscalls(2)

NAME
syscalls - Linux system calls

SYNOPSIS
Linux system calls.

DESCRIPTION
The system call is the fundamental interface between an application and the Linux
kernel.

System calls and library wrapper functions
System calls are generally not invoked directly, but rather via wrapper functions in
glibc (or perhaps some other library). For details of direct invocation of a system call,
see intro(2). Often, but not always, the name of the wrapper function is the same as
the name of the system call that it invokes. For example, glibc contains a function
chdir() which invokes the underlying "chdir" system call.

Often the glibc wrapper function is quite thin, doing little work other than copying ar-
guments to the right registers before invoking the system call, and then setting errno
appropriately after the system call has returned. (These are the same steps that are
performed by syscall(2), which can be used to invoke system calls for which no wrap-
per function is provided.) Note: system calls indicate a failure by returning a negative
error number to the caller on architectures without a separate error register/flag, as
noted in syscall(2); when this happens, the wrapper function negates the returned er-
ror number (to make it positive), copies it to errno, and returns -1 to the caller of the
wrapper.

Sometimes, however, the wrapper function does some extra work before invoking the
system call. For example, nowadays there are (for reasons described below) two re-
lated system calls, truncate(2) and truncate64(2), and the glibc truncate() wrapper
function checks which of those system calls are provided by the kernel and deter-
mines which should be employed.

System call list
Below is a list of the Linux system calls. In the list, the Kernel column indicates the
kernel version for those system calls that were new in Linux 2.2, or have appeared
since that kernel version. Note the following points:

• Where no kernel version is indicated, the system call appeared in Linux 1.0 or ear-
lier.

• Where a system call is marked "1.2" this means the system call probably appeared
in a Linux 1.1.x kernel version, and first appeared in a stable kernel with 1.2. (De-
velopment of the Linux 1.2 kernel was initiated from a branch of Linux 1.0.6 via
the Linux 1.1.x unstable kernel series.)

• Where a system call is marked "2.0" this means the system call probably appeared
in a Linux 1.3.x kernel version, and first appeared in a stable kernel with Linux
2.0. (Development of the Linux 2.0 kernel was initiated from a branch of Linux
1.2.x, somewhere around Linux 1.2.10, via the Linux 1.3.x unstable kernel series.)

• Where a system call is marked "2.2" this means the system call probably appeared
in a Linux 2.1.x kernel version, and first appeared in a stable kernel with Linux
2.2.0. (Development of the Linux 2.2 kernel was initiated from a branch of Linux
2.0.21 via the Linux 2.1.x unstable kernel series.)

Linux man-pages 6.13 2024-11-17 1023

syscalls(2) System Calls Manual syscalls(2)

• Where a system call is marked "2.4" this means the system call probably appeared
in a Linux 2.3.x kernel version, and first appeared in a stable kernel with Linux
2.4.0. (Development of the Linux 2.4 kernel was initiated from a branch of Linux
2.2.8 via the Linux 2.3.x unstable kernel series.)

• Where a system call is marked "2.6" this means the system call probably appeared
in a Linux 2.5.x kernel version, and first appeared in a stable kernel with Linux
2.6.0. (Development of Linux 2.6 was initiated from a branch of Linux 2.4.15 via
the Linux 2.5.x unstable kernel series.)

• Starting with Linux 2.6.0, the development model changed, and new system calls
may appear in each Linux 2.6.x release. In this case, the exact version number
where the system call appeared is shown. This convention continues with the
Linux 3.x kernel series, which followed on from Linux 2.6.39; and the Linux 4.x
kernel series, which followed on from Linux 3.19; and the Linux 5.x kernel series,
which followed on from Linux 4.20; and the Linux 6.x kernel series, which fol-
lowed on from Linux 5.19.

• In some cases, a system call was added to a stable kernel series after it branched
from the previous stable kernel series, and then backported into the earlier stable
kernel series. For example some system calls that appeared in Linux 2.6.x were
also backported into a Linux 2.4.x release after Linux 2.4.15. When this is so, the
version where the system call appeared in both of the major kernel series is listed.

The list of system calls that are available as at Linux 5.14 (or in a few cases only on
older kernels) is as follows:

System call Kernel Notes
1.2_llseek(2)
2.0_newselect(2)
2.0 Removed in 5.5_sysctl(2)
2.0accept(2) See notes on socketcall(2)
2.6.28accept4(2)
1.0access(2)
1.0acct(2)
2.6.10add_key(2)
1.0adjtimex(2)
1.0alarm(2)
2.5.36 Removed in 2.5.44alloc_hugepages(2)
3.9 ARC onlyarc_gettls(2)
3.9 ARC onlyarc_settls(2)
4.9 ARC onlyarc_usr_cmpxchg(2)
2.6arch_prctl(2) x86_64, x86 since 4.12
2.6.34 m68k onlyatomic_barrier(2)
2.6.34 m68k onlyatomic_cmpxchg_32(2)
1.2bdflush(2) Deprecated (does nothing) since 2.6,

removed in 5.15
2.0bind(2) See notes on socketcall(2)
3.18bpf(2)
1.0brk(2)

Linux man-pages 6.13 2024-11-17 1024

syscalls(2) System Calls Manual syscalls(2)

2.2breakpoint(2) ARM OABI only, defined with
__ARM_NR prefix

1.2 Not on x86cacheflush(2)
2.2capget(2)
2.2capset(2)
1.0chdir(2)
1.0chmod(2)
2.2chown(2) See chown(2) for version details
2.4chown32(2)
1.0chroot(2)
2.6.39clock_adjtime(2)
2.6clock_getres(2)
2.6clock_gettime(2)
2.6clock_nanosleep(2)
2.6clock_settime(2)
2.4 IA-64 onlyclone2(2)
1.0clone(2)
5.3clone3(2)
1.0close(2)
5.9close_range(2)
2.0connect(2) See notes on socketcall(2)
4.5copy_file_range(2)
1.0creat(2)
1.0 Removed in 2.6create_module(2)
1.0delete_module(2)
1.0dup(2)
1.0dup2(2)
2.6.27dup3(2)
2.6epoll_create(2)
2.6.27epoll_create1(2)
2.6epoll_ctl(2)
2.6.19epoll_pwait(2)
5.11epoll_pwait2(2)
2.6epoll_wait(2)
2.6.22eventfd(2)
2.6.27eventfd2(2)
2.0execv(2) SPARC/SPARC64 only, for compat-

ibility with SunOS
1.0execve(2)
3.19execveat(2)
1.0exit(2)
2.6exit_group(2)
2.6.16faccessat(2)
5.8faccessat2(2)
2.6fadvise64(2)
2.6fadvise64_64(2)
2.6.23fallocate(2)
2.6.37fanotify_init(2)

Linux man-pages 6.13 2024-11-17 1025

syscalls(2) System Calls Manual syscalls(2)

2.6.37fanotify_mark(2)
1.0fchdir(2)
1.0fchmod(2)
2.6.16fchmodat(2)
1.0fchown(2)
2.4fchown32(2)
2.6.16fchownat(2)
1.0fcntl(2)
2.4fcntl64(2)
2.0fdatasync(2)
2.6; 2.4.18fgetxattr(2)
3.8finit_module(2)
2.6; 2.4.18flistxattr(2)
2.0flock(2)
1.0fork(2)
2.5.36 Removed in 2.5.44free_hugepages(2)
2.6; 2.4.18fremovexattr(2)
5.2fsconfig(2)
2.6; 2.4.18fsetxattr(2)
5.2fsmount(2)
5.2fsopen(2)
5.2fspick(2)
1.0fstat(2)
2.4fstat64(2)
2.6.16fstatat64(2)
1.0fstatfs(2)
2.6fstatfs64(2)
1.0fsync(2)
1.0ftruncate(2)
2.4ftruncate64(2)
2.6futex(2)
2.6.16futimesat(2)
1.0 Removed in 2.6get_kernel_syms(2)
2.6.6get_mempolicy(2)
2.6.17get_robust_list(2)
2.6get_thread_area(2)
4.15get_tls(2) ARM OABI only, has __ARM_NR

prefix
2.6.19getcpu(2)
2.2getcwd(2)
2.0getdents(2)
2.4getdents64(2)
2.2getdomainname(2) SPARC, SPARC64; available

asosf_getdomainname(2) on Alpha
since Linux 2.0

2.0getdtablesize(2) SPARC (removed in 2.6.26), avail-
able on Alpha as osf_getdtable-
size(2)

Linux man-pages 6.13 2024-11-17 1026

syscalls(2) System Calls Manual syscalls(2)

1.0getegid(2)
2.4getegid32(2)
1.0geteuid(2)
2.4geteuid32(2)
1.0getgid(2)
2.4getgid32(2)
1.0getgroups(2)
2.4getgroups32(2)
2.0gethostname(2) Alpha, was available on SPARC up

to Linux 2.6.26
1.0getitimer(2)
2.0getpeername(2) See notes on socketcall(2)
2.0getpagesize(2) Alpha, SPARC/SPARC64 only
1.0getpgid(2)
1.0getpgrp(2)
1.0getpid(2)
1.0getppid(2)
1.0getpriority(2)
3.17getrandom(2)
2.2getresgid(2)
2.4getresgid32(2)
2.2getresuid(2)
2.4getresuid32(2)
1.0getrlimit(2)
1.0getrusage(2)
2.0getsid(2)
2.0getsockname(2) See notes on socketcall(2)
2.0getsockopt(2) See notes on socketcall(2)
2.4.11gettid(2)
1.0gettimeofday(2)
1.0getuid(2)
2.4getuid32(2)
2.4.8getunwind(2) IA-64 only; deprecated
2.6; 2.4.18getxattr(2)
2.0getxgid(2) Alpha only; see NOTES
2.0getxpid(2) Alpha only; see NOTES
2.0getxuid(2) Alpha only; see NOTES
1.0init_module(2)
2.6.13inotify_add_watch(2)
2.6.13inotify_init(2)
2.6.27inotify_init1(2)
2.6.13inotify_rm_watch(2)
2.6io_cancel(2)
2.6io_destroy(2)
2.6io_getevents(2)
4.18io_pgetevents(2)
2.6io_setup(2)
2.6io_submit(2)

Linux man-pages 6.13 2024-11-17 1027

syscalls(2) System Calls Manual syscalls(2)

5.1io_uring_enter(2)
5.1io_uring_register(2)
5.1io_uring_setup(2)
1.0ioctl(2)
1.0ioperm(2)
1.0iopl(2)
2.6.13ioprio_get(2)
2.6.13ioprio_set(2)
1.0ipc(2)
3.5kcmp(2)
3.7 SPARC64 onlykern_features(2)
3.17kexec_file_load(2)
2.6.13kexec_load(2)
2.6.10keyctl(2)
1.0kill(2)
5.13landlock_add_rule(2)
5.13landlock_create_ruleset(2)
5.13landlock_restrict_self(2)
1.0lchown(2) See chown(2) for version details
2.4lchown32(2)
2.6; 2.4.18lgetxattr(2)
1.0link(2)
2.6.16linkat(2)
2.0listen(2) See notes on socketcall(2)
2.6; 2.4.18listxattr(2)
2.6; 2.4.18llistxattr(2)
2.6lookup_dcookie(2)
2.6; 2.4.18lremovexattr(2)
1.0lseek(2)
2.6; 2.4.18lsetxattr(2)
1.0lstat(2)
2.4lstat64(2)
2.4madvise(2)
2.6.6mbind(2)
2.2 SPARC64 onlymemory_ordering(2)
3.17membarrier(2)
3.17memfd_create(2)
5.14memfd_secret(2)
2.6.16migrate_pages(2)
2.4mincore(2)
1.0mkdir(2)
2.6.16mkdirat(2)
1.0mknod(2)
2.6.16mknodat(2)
2.0mlock(2)
4.4mlock2(2)
2.0mlockall(2)
1.0mmap(2)

Linux man-pages 6.13 2024-11-17 1028

syscalls(2) System Calls Manual syscalls(2)

2.4mmap2(2)
1.0modify_ldt(2)
1.0mount(2)
5.2move_mount(2)
2.6.18move_pages(2)
1.0mprotect(2)
2.6.6mq_getsetattr(2)
2.6.6mq_notify(2)
2.6.6mq_open(2)
2.6.6mq_timedreceive(2)
2.6.6mq_timedsend(2)
2.6.6mq_unlink(2)
2.0mremap(2)
2.0msgctl(2) See notes on ipc(2)
2.0msgget(2) See notes on ipc(2)
2.0msgrcv(2) See notes on ipc(2)
2.0msgsnd(2) See notes on ipc(2)
2.0msync(2)
2.0munlock(2)
2.0munlockall(2)
1.0munmap(2)
2.6.39name_to_handle_at(2)
2.0nanosleep(2)
2.6.16newfstatat(2) See stat(2)
2.2 Removed in 3.1nfsservctl(2)
1.0nice(2)
2.0old_adjtimex(2) Alpha only; see NOTES
2.4old_getrlimit(2) Old variant of getrlimit(2) that used

a different value for RLIM_INFIN-
ITY

1.0oldfstat(2)
1.0oldlstat(2)
1.0oldolduname(2)
1.0oldstat(2)
2.4.116oldumount(2) Name of the old umount(2) syscall

on Alpha
1.0olduname(2)
1.0open(2)
2.6.39open_by_handle_at(2)
5.2open_tree(2)
2.6.16openat(2)
5.6openat2(2)
3.1or1k_atomic(2) OpenRISC 1000 only
1.0pause(2)
2.2.15; 2.4 Not on x86pciconfig_iobase(2)
2.0.26; 2.2 Not on x86pciconfig_read(2)
2.0.26; 2.2 Not on x86pciconfig_write(2)

Linux man-pages 6.13 2024-11-17 1029

syscalls(2) System Calls Manual syscalls(2)

2.6.31perf_event_open(2) Was perf_counter_open() in 2.6.31;
renamed in 2.6.32

1.2personality(2)
2.2perfctr(2) SPARC only; removed in 2.6.34
2.4 IA-64 only; removed in 5.10perfmonctl(2)
5.6pidfd_getfd(2)
5.1pidfd_send_signal(2)
5.3pidfd_open(2)
1.0pipe(2)
2.6.27pipe2(2)
2.4pivot_root(2)
4.8pkey_alloc(2)
4.8pkey_free(2)
4.8pkey_mprotect(2)
2.0.36; 2.2poll(2)
2.6.16ppoll(2)
2.2prctl(2)

pread64(2) Added as "pread" in 2.2; renamed
"pread64" in 2.6

2.6.30preadv(2)
4.6preadv2(2)
2.6.36prlimit64(2)
5.10process_madvise(2)
3.2process_vm_readv(2)
3.2process_vm_writev(2)
2.6.16pselect6(2)
1.0ptrace(2)

pwrite64(2) Added as "pwrite" in 2.2; renamed
"pwrite64" in 2.6

2.6.30pwritev(2)
4.6pwritev2(2)
2.2 Removed in 2.6query_module(2)
1.0quotactl(2)
5.14quotactl_fd(2)
1.0read(2)
2.4.13readahead(2)
1.0readdir(2)
1.0readlink(2)
2.6.16readlinkat(2)
2.0readv(2)
1.0reboot(2)
2.0recv(2) See notes on socketcall(2)
2.0recvfrom(2) See notes on socketcall(2)
2.0recvmsg(2) See notes on socketcall(2)
2.6.33recvmmsg(2)
2.6remap_file_pages(2) Deprecated since 3.16
2.6; 2.4.18removexattr(2)
1.0rename(2)

Linux man-pages 6.13 2024-11-17 1030

syscalls(2) System Calls Manual syscalls(2)

2.6.16renameat(2)
3.15renameat2(2)
2.6.10request_key(2)
2.6restart_syscall(2)
4.15 RISC-V onlyriscv_flush_icache(2)
1.0rmdir(2)
4.18rseq(2)
2.2rt_sigaction(2)
2.2rt_sigpending(2)
2.2rt_sigprocmask(2)
2.2rt_sigqueueinfo(2)
2.2rt_sigreturn(2)
2.2rt_sigsuspend(2)
2.2rt_sigtimedwait(2)
2.6.31rt_tgsigqueueinfo(2)
2.6.2rtas(2) PowerPC/PowerPC64 only
3.7 s390 onlys390_runtime_instr(2)
3.19 s390 onlys390_pci_mmio_read(2)
3.19 s390 onlys390_pci_mmio_write(2)
4.15 s390 onlys390_sthyi(2)
4.12 s390 onlys390_guarded_storage(2)
2.6sched_get_affinity(2) Name of sched_getaffinity(2) on

SPARC and SPARC64
2.0sched_get_priority_max(2)
2.0sched_get_priority_min(2)
2.6sched_getaffinity(2)
3.14sched_getattr(2)
2.0sched_getparam(2)
2.0sched_getscheduler(2)
2.0sched_rr_get_interval(2)
2.6sched_set_affinity(2) Name of sched_setaffinity(2) on

SPARC and SPARC64
2.6sched_setaffinity(2)
3.14sched_setattr(2)
2.0sched_setparam(2)
2.0sched_setscheduler(2)
2.0sched_yield(2)
3.17seccomp(2)
1.0select(2)
2.0semctl(2) See notes on ipc(2)
2.0semget(2) See notes on ipc(2)
2.0semop(2) See notes on ipc(2)
2.6; 2.4.22semtimedop(2)
2.0send(2) See notes on socketcall(2)
2.2sendfile(2)
2.6; 2.4.19sendfile64(2)
3.0sendmmsg(2)
2.0sendmsg(2) See notes on socketcall(2)

Linux man-pages 6.13 2024-11-17 1031

syscalls(2) System Calls Manual syscalls(2)

2.0sendto(2) See notes on socketcall(2)
2.6.6set_mempolicy(2)
2.6.17set_robust_list(2)
2.6set_thread_area(2)
2.6set_tid_address(2)
2.6.11set_tls(2) ARM OABI/EABI only (constant

has __ARM_NR prefix)
1.0setdomainname(2)
1.2setfsgid(2)
2.4setfsgid32(2)
1.2setfsuid(2)
2.4setfsuid32(2)
1.0setgid(2)
2.4setgid32(2)
1.0setgroups(2)
2.4setgroups32(2)
2.0sethae(2) Alpha only; see NOTES
1.0sethostname(2)
1.0setitimer(2)
3.0setns(2)
1.0setpgid(2)
2.0setpgrp(2) Alternative name for setpgid(2) on

Alpha
1.0setpriority(2)
1.0setregid(2)
2.4setregid32(2)
2.2setresgid(2)
2.4setresgid32(2)
2.2setresuid(2)
2.4setresuid32(2)
1.0setreuid(2)
2.4setreuid32(2)
1.0setrlimit(2)
1.0setsid(2)
2.0setsockopt(2) See notes on socketcall(2)
1.0settimeofday(2)
1.0setuid(2)
2.4setuid32(2)
1.0 Removed in 2.2setup(2)
2.6; 2.4.18setxattr(2)
1.0sgetmask(2)
2.0shmat(2) See notes on ipc(2)
2.0shmctl(2) See notes on ipc(2)
2.0shmdt(2) See notes on ipc(2)
2.0shmget(2) See notes on ipc(2)
2.0shutdown(2) See notes on socketcall(2)
1.0sigaction(2)
2.2sigaltstack(2)

Linux man-pages 6.13 2024-11-17 1032

syscalls(2) System Calls Manual syscalls(2)

1.0signal(2)
2.6.22signalfd(2)
2.6.27signalfd4(2)
1.0sigpending(2)
1.0sigprocmask(2)
1.0sigreturn(2)
1.0sigsuspend(2)
2.0socket(2) See notes on socketcall(2)
1.0socketcall(2)
2.0socketpair(2) See notes on socketcall(2)
2.6.13 Xtensa onlyspill(2)
2.6.17splice(2)
2.6.16spu_create(2) PowerPC/PowerPC64 only
2.6.16spu_run(2) PowerPC/PowerPC64 only
1.0ssetmask(2)
1.0stat(2)
2.4stat64(2)
1.0statfs(2)
2.6statfs64(2)
4.11statx(2)
1.0stime(2)
2.6.25subpage_prot(2) PowerPC/PowerPC64 only
2.6.3swapcontext(2) PowerPC/PowerPC64 only
4.1 PowerPC64 onlyswitch_endian(2)
1.0swapoff(2)
1.0swapon(2)
1.0symlink(2)
2.6.16symlinkat(2)
1.0sync(2)
2.6.17sync_file_range(2)
2.6.22sync_file_range2(2)
2.6.39syncfs(2)
2.6.11 PowerPC onlysys_debug_setcontext(2)
1.0syscall(2) Still available on ARM OABI and

MIPS O32 ABI
1.2sysfs(2)
1.0sysinfo(2)
1.0syslog(2)
2.6.0 MIPS onlysysmips(2)
2.6.17tee(2)
2.6tgkill(2)
1.0time(2)
2.6timer_create(2)
2.6timer_delete(2)
2.6timer_getoverrun(2)
2.6timer_gettime(2)
2.6timer_settime(2)
2.6.25timerfd_create(2)

Linux man-pages 6.13 2024-11-17 1033

syscalls(2) System Calls Manual syscalls(2)

2.6.25timerfd_gettime(2)
2.6.25timerfd_settime(2)
1.0times(2)
2.6; 2.4.22tkill(2)
1.0truncate(2)
2.4truncate64(2)
2.4ugetrlimit(2)
1.0umask(2)
1.0umount(2)
2.2umount2(2)
1.0uname(2)
1.0unlink(2)
2.6.16unlinkat(2)
2.6.16unshare(2)
1.0uselib(2)
1.0ustat(2)
4.3userfaultfd(2)
2.4.8.1 ARM OABI onlyusr26(2)
2.4.8.1 ARM OABI onlyusr32(2)
1.0utime(2)
2.6.22utimensat(2)
2.2utimes(2)
2.2 SPARC64 onlyutrap_install(2)
2.2vfork(2)
1.0vhangup(2)
1.0vm86old(2) Was "vm86"; renamed in 2.0.28/2.2
2.0.28; 2.2vm86(2)
2.6.17vmsplice(2)
1.0wait4(2)
2.6.10waitid(2)
1.0waitpid(2)
1.0write(2)
2.0writev(2)
2.6.13 Xtensa onlyxtensa(2)

On many platforms, including x86-32, socket calls are all multiplexed (via glibc
wrapper functions) through socketcall(2) and similarly System V IPC calls are multi-
plexed through ipc(2).

Although slots are reserved for them in the system call table, the following system
calls are not implemented in the standard kernel: afs_syscall(2), break(2), ftime(2),
getpmsg(2), gtty(2), idle(2), lock(2), madvise1(2), mpx(2), phys(2), prof(2), profil(2),
putpmsg(2), security(2), stty(2), tuxcall(2), ulimit(2), and vserver(2) (see also unim-
plemented(2)). However, ftime(3), profil(3), and ulimit(3) exist as library routines.
The slot for phys(2) is in use since Linux 2.1.116 for umount(2); phys(2) will never be
implemented. The getpmsg(2) and putpmsg(2) calls are for kernels patched to support
STREAMS, and may never be in the standard kernel.

There was briefly set_zone_reclaim(2), added in Linux 2.6.13, and removed in Linux
2.6.16; this system call was never available to user space.

Linux man-pages 6.13 2024-11-17 1034

syscalls(2) System Calls Manual syscalls(2)

System calls on removed ports
Some system calls only ever existed on Linux architectures that have since been re-
moved from the kernel:

AVR32 (port removed in Linux 4.12)
• pread(2)
• pwrite(2)

Blackfin (port removed in Linux 4.17)
• bfin_spinlock(2) (added in Linux 2.6.22)
• dma_memcpy(2) (added in Linux 2.6.22)
• pread(2) (added in Linux 2.6.22)
• pwrite(2) (added in Linux 2.6.22)
• sram_alloc(2) (added in Linux 2.6.22)
• sram_free(2) (added in Linux 2.6.22)

Metag (port removed in Linux 4.17)
• metag_get_tls(2) (add in Linux 3.9)
• metag_set_fpu_flags(2) (add in Linux 3.9)
• metag_set_tls(2) (add in Linux 3.9)
• metag_setglobalbit(2) (add in Linux 3.9)

Tile (port removed in Linux 4.17)
• cmpxchg_badaddr(2) (added in Linux 2.6.36)

NOTES
Roughly speaking, the code belonging to the system call with number __NR_xxx de-
fined in /usr/include/asm/unistd.h can be found in the Linux kernel source in the rou-
tine sys_xxx(). There are many exceptions, however, mostly because older system
calls were superseded by newer ones, and this has been treated somewhat unsystemat-
ically. On platforms with proprietary operating-system emulation, such as sparc,
sparc64, and alpha, there are many additional system calls; mips64 also contains a full
set of 32-bit system calls.

Over time, changes to the interfaces of some system calls have been necessary. One
reason for such changes was the need to increase the size of structures or scalar values
passed to the system call. Because of these changes, certain architectures (notably,
longstanding 32-bit architectures such as i386) now have various groups of related
system calls (e.g., truncate(2) and truncate64(2)) which perform similar tasks, but
which vary in details such as the size of their arguments. (As noted earlier, applica-
tions are generally unaware of this: the glibc wrapper functions do some work to en-
sure that the right system call is invoked, and that ABI compatibility is preserved for
old binaries.) Examples of system calls that exist in multiple versions are the follow-
ing:

• By now there are three different versions of stat(2): sys_stat() (slot __NR_old-
stat), sys_newstat() (slot __NR_stat), and sys_stat64() (slot __NR_stat64), with
the last being the most current. A similar story applies for lstat(2) and fstat(2).

• Similarly, the defines __NR_oldolduname, __NR_olduname, and __NR_uname
refer to the routines sys_olduname(), sys_uname(), and sys_newuname().

Linux man-pages 6.13 2024-11-17 1035

syscalls(2) System Calls Manual syscalls(2)

• In Linux 2.0, a new version of vm86(2) appeared, with the old and the new kernel
routines being named sys_vm86old() and sys_vm86().

• In Linux 2.4, a new version of getrlimit(2) appeared, with the old and the new ker-
nel routines being named sys_old_getrlimit() (slot __NR_getrlimit) and sys_getr-
limit() (slot __NR_ugetrlimit).

• Linux 2.4 increased the size of user and group IDs from 16 to 32 bits. To support
this change, a range of system calls were added (e.g., chown32(2), getuid32(2),
getgroups32(2), setresuid32(2)), superseding earlier calls of the same name with-
out the "32" suffix.

• Linux 2.4 added support for applications on 32-bit architectures to access large
files (i.e., files for which the sizes and file offsets can’t be represented in 32 bits.)
To support this change, replacements were required for system calls that deal with
file offsets and sizes. Thus the following system calls were added: fcntl64(2), get-
dents64(2), stat64(2), statfs64(2), truncate64(2), and their analogs that work with
file descriptors or symbolic links. These system calls supersede the older system
calls which, except in the case of the "stat" calls, have the same name without the
"64" suffix.

On newer platforms that only have 64-bit file access and 32-bit UIDs/GIDs (e.g.,
alpha, ia64, s390x, x86-64), there is just a single version of the UID/GID and file
access system calls. On platforms (typically, 32-bit platforms) where the *64 and
*32 calls exist, the other versions are obsolete.

• The rt_sig* calls were added in Linux 2.2 to support the addition of real-time sig-
nals (see signal(7)). These system calls supersede the older system calls of the
same name without the "rt_" prefix.

• The select(2) and mmap(2) system calls use five or more arguments, which caused
problems in the way argument passing on the i386 used to be set up. Thus, while
other architectures have sys_select() and sys_mmap() corresponding to __NR_se-
lect and __NR_mmap, on i386 one finds old_select() and old_mmap() (routines
that use a pointer to an argument block) instead. These days passing five argu-
ments is not a problem any more, and there is a __NR__newselect that corre-
sponds directly to sys_select() and similarly __NR_mmap2. s390x is the only
64-bit architecture that has old_mmap().

Architecture-specific details: Alpha
getxgid(2)

returns a pair of GID and effective GID via registers r0 and r20; it is provided
instead of getgid(2) and getegid(2).

getxpid(2)
returns a pair of PID and parent PID via registers r0 and r20; it is provided in-
stead of getpid(2) and getppid(2).

old_adjtimex(2)
is a variant of adjtimex(2) that uses struct timeval32, for compatibility with
OSF/1.

getxuid(2)
returns a pair of GID and effective GID via registers r0 and r20; it is provided
instead of getuid(2) and geteuid(2).

Linux man-pages 6.13 2024-11-17 1036

syscalls(2) System Calls Manual syscalls(2)

sethae(2)
is used for configuring the Host Address Extension register on low-cost Al-
phas in order to access address space beyond first 27 bits.

SEE ALSO
intro(2), syscall(2), unimplemented(2), errno(3), libc(7), vdso(7), ausyscall(8)

Linux man-pages 6.13 2024-11-17 1037

sysctl(2) System Calls Manual sysctl(2)

NAME
sysctl - read/write system parameters

SYNOPSIS
#include <unistd.h>
#include <linux/sysctl.h>

[[deprecated]] int _sysctl(struct __sysctl_args *args);

DESCRIPTION
This system call no longer exists on current kernels! See NOTES.

The _sysctl() call reads and/or writes kernel parameters. For example, the hostname,
or the maximum number of open files. The argument has the form

struct __sysctl_args {
int *name; /* integer vector describing variable */
int nlen; /* number of elements of this vector */
void *oldval; /* 0 or address where to store old value */
size_t *oldlenp; /* available room for old value,

overwritten by actual size of old value */
void *newval; /* 0 or address of new value */
size_t newlen; /* size of new value */

};

This call does a search in a tree structure, possibly resembling a directory tree under
/proc/sys, and if the requested item is found calls some appropriate routine to read or
modify the value.

RETURN VALUE
Upon successful completion, _sysctl() returns 0. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
EACCES
EPERM

No search permission for one of the encountered "directories", or no read per-
mission where oldval was nonzero, or no write permission where newval was
nonzero.

EFAULT
The invocation asked for the previous value by setting oldval non-NULL, but
allowed zero room in oldlenp.

ENOTDIR
name was not found.

STANDARDS
Linux.

HISTORY
Linux 1.3.57. Removed in Linux 5.5, glibc 2.32.

It originated in 4.4BSD. Only Linux has the /proc/sys mirror, and the object naming
schemes differ between Linux and 4.4BSD, but the declaration of the sysctl() function
is the same in both.

Linux man-pages 6.13 2024-11-17 1038

sysctl(2) System Calls Manual sysctl(2)

NOTES
Use of this system call was long discouraged: since Linux 2.6.24, uses of this system
call result in warnings in the kernel log, and in Linux 5.5, the system call was finally
removed. Use the /proc/sys interface instead.

Note that on older kernels where this system call still exists, it is available only if the
kernel was configured with the CONFIG_SYSCTL_SYSCALL option. Further-
more, glibc does not provide a wrapper for this system call, necessitating the use of
syscall(2).

BUGS
The object names vary between kernel versions, making this system call worthless for
applications.

Not all available objects are properly documented.

It is not yet possible to change operating system by writing to /proc/sys/kernel/ostype.

EXAMPLES
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/syscall.h>
#include <unistd.h>

#include <linux/sysctl.h>

#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))

int _sysctl(struct __sysctl_args *args);

#define OSNAMESZ 100

int
main(void)
{

int name[] = { CTL_KERN, KERN_OSTYPE };
char osname[OSNAMESZ];
size_t osnamelth;
struct __sysctl_args args;

memset(&args, 0, sizeof(args));
args.name = name;
args.nlen = ARRAY_SIZE(name);
args.oldval = osname;
args.oldlenp = &osnamelth;

osnamelth = sizeof(osname);

if (syscall(SYS__sysctl, &args) == -1) {
perror("_sysctl");

Linux man-pages 6.13 2024-11-17 1039

sysctl(2) System Calls Manual sysctl(2)

exit(EXIT_FAILURE);
}
printf("This machine is running %*s\n", (int) osnamelth, osname);
exit(EXIT_SUCCESS);

}

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-11-17 1040

sysfs(2) System Calls Manual sysfs(2)

NAME
sysfs - get filesystem type information

SYNOPSIS
[[deprecated]] int sysfs(int option, const char * fsname);
[[deprecated]] int sysfs(int option, unsigned int fs_index, char *buf);
[[deprecated]] int sysfs(int option);

DESCRIPTION
Note: if you are looking for information about the sysfs filesystem that is normally
mounted at /sys, see sysfs(5).

The (obsolete) sysfs() system call returns information about the filesystem types cur-
rently present in the kernel. The specific form of the sysfs() call and the information
returned depends on the option in effect:

1 Translate the filesystem identifier string fsname into a filesystem type index.

2 Translate the filesystem type index fs_index into a null-terminated filesystem
identifier string. This string will be written to the buffer pointed to by buf . Make
sure that buf has enough space to accept the string.

3 Return the total number of filesystem types currently present in the kernel.

The numbering of the filesystem type indexes begins with zero.

RETURN VALUE
On success, sysfs() returns the filesystem index for option 1, zero for option 2, and the
number of currently configured filesystems for option 3. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
EFAULT

Either fsname or buf is outside your accessible address space.

EINVAL
fsname is not a valid filesystem type identifier; fs_index is out-of-bounds; op-
tion is invalid.

STANDARDS
None.

HISTORY
SVr4.

This System-V derived system call is obsolete; don’t use it. On systems with /proc,
the same information can be obtained via /proc; use that interface instead.

BUGS
There is no libc or glibc support. There is no way to guess how large buf should be.

SEE ALSO
proc(5), sysfs(5)

Linux man-pages 6.13 2024-05-02 1041

sysinfo(2) System Calls Manual sysinfo(2)

NAME
sysinfo - return system information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sysinfo.h>

int sysinfo(struct sysinfo *info);

DESCRIPTION
sysinfo() returns certain statistics on memory and swap usage, as well as the load av-
erage.

Until Linux 2.3.16, sysinfo() returned information in the following structure:

struct sysinfo {
long uptime; /* Seconds since boot */
unsigned long loads[3]; /* 1, 5, and 15 minute load averages */
unsigned long totalram; /* Total usable main memory size */
unsigned long freeram; /* Available memory size */
unsigned long sharedram; /* Amount of shared memory */
unsigned long bufferram; /* Memory used by buffers */
unsigned long totalswap; /* Total swap space size */
unsigned long freeswap; /* Swap space still available */
unsigned short procs; /* Number of current processes */
char _f[22]; /* Pads structure to 64 bytes */

};

In the above structure, the sizes of the memory and swap fields are given in bytes.

Since Linux 2.3.23 (i386) and Linux 2.3.48 (all architectures) the structure is:

struct sysinfo {
long uptime; /* Seconds since boot */
unsigned long loads[3]; /* 1, 5, and 15 minute load averages */
unsigned long totalram; /* Total usable main memory size */
unsigned long freeram; /* Available memory size */
unsigned long sharedram; /* Amount of shared memory */
unsigned long bufferram; /* Memory used by buffers */
unsigned long totalswap; /* Total swap space size */
unsigned long freeswap; /* Swap space still available */
unsigned short procs; /* Number of current processes */
unsigned long totalhigh; /* Total high memory size */
unsigned long freehigh; /* Available high memory size */
unsigned int mem_unit; /* Memory unit size in bytes */
char _f[20-2*sizeof(long)-sizeof(int)];

/* Padding to 64 bytes */
};

In the above structure, sizes of the memory and swap fields are given as multiples of
mem_unit bytes.

Linux man-pages 6.13 2024-07-23 1042

sysinfo(2) System Calls Manual sysinfo(2)

RETURN VALUE
On success, sysinfo() returns zero. On error, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
EFAULT

info is not a valid address.

STANDARDS
Linux.

HISTORY
Linux 0.98.pl6.

NOTES
All of the information provided by this system call is also available via /proc/meminfo
and /proc/loadavg.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-07-23 1043

syslog(2) System Calls Manual syslog(2)

NAME
syslog, klogctl - read and/or clear kernel message ring buffer; set console_loglevel

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/klog.h> /* Definition of SYSLOG_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_syslog, int type, char *bufp, int size);

/* The glibc interface */
#include <sys/klog.h>

int klogctl(int type, char *bufp, int size);

DESCRIPTION
Note: Probably, you are looking for the C library function syslog(), which talks to sys-
logd(8); see syslog(3) for details.

This page describes the kernel syslog() system call, which is used to control the kernel
printk() buffer; the glibc wrapper function for the system call is called klogctl().

The kernel log buffer
The kernel has a cyclic buffer of size LOG_BUF_LEN in which messages given as
arguments to the kernel function printk() are stored (regardless of their log level). In
early kernels, LOG_BUF_LEN had the value 4096; from Linux 1.3.54, it was 8192;
from Linux 2.1.113, it was 16384; since Linux 2.4.23/2.6, the value is a kernel config-
uration option (CONFIG_LOG_BUF_SHIFT, default value dependent on the archi-
tecture). Since Linux 2.6.6, the size can be queried with command type 10 (see be-
low).

Commands
The type argument determines the action taken by this function. The list below speci-
fies the values for type. The symbolic names are defined in the kernel source, but are
not exported to user space; you will either need to use the numbers, or define the
names yourself.

SYSLOG_ACTION_CLOSE (0)
Close the log. Currently a NOP.

SYSLOG_ACTION_OPEN (1)
Open the log. Currently a NOP.

SYSLOG_ACTION_READ (2)
Read from the log. The call waits until the kernel log buffer is nonempty, and
then reads at most len bytes into the buffer pointed to by bufp. The call returns
the number of bytes read. Bytes read from the log disappear from the log
buffer: the information can be read only once. This is the function executed
by the kernel when a user program reads /proc/kmsg.

SYSLOG_ACTION_READ_ALL (3)
Read all messages remaining in the ring buffer, placing them in the buffer
pointed to by bufp. The call reads the last len bytes from the log buffer

Linux man-pages 6.13 2024-11-17 1044

syslog(2) System Calls Manual syslog(2)

(nondestructively), but will not read more than was written into the buffer
since the last "clear ring buffer" command (see command 5 below)). The call
returns the number of bytes read.

SYSLOG_ACTION_READ_CLEAR (4)
Read and clear all messages remaining in the ring buffer. The call does pre-
cisely the same as for a type of 3, but also executes the "clear ring buffer"
command.

SYSLOG_ACTION_CLEAR (5)
The call executes just the "clear ring buffer" command. The bufp and size ar-
guments are ignored.

This command does not really clear the ring buffer. Rather, it sets a kernel
bookkeeping variable that determines the results returned by commands 3
(SYSLOG_ACTION_READ_ALL) and 4 (SYSLOG_AC-
TION_READ_CLEAR). This command has no effect on commands 2
(SYSLOG_ACTION_READ) and 9 (SYSLOG_ACTION_SIZE_UN-
READ).

SYSLOG_ACTION_CONSOLE_OFF (6)
The command saves the current value of console_loglevel and then sets con-
sole_loglevel to minimum_console_loglevel, so that no messages are printed to
the console. Before Linux 2.6.32, the command simply sets console_loglevel
to minimum_console_loglevel. See the discussion of /proc/sys/kernel/printk,
below.

The bufp and size arguments are ignored.

SYSLOG_ACTION_CONSOLE_ON (7)
If a previous SYSLOG_ACTION_CONSOLE_OFF command has been per-
formed, this command restores console_loglevel to the value that was saved by
that command. Before Linux 2.6.32, this command simply sets con-
sole_loglevel to default_console_loglevel. See the discussion of /proc/sys/ker-
nel/printk, below.

The bufp and size arguments are ignored.

SYSLOG_ACTION_CONSOLE_LEVEL (8)
The call sets console_loglevel to the value given in size, which must be an in-
teger between 1 and 8 (inclusive). The kernel silently enforces a minimum
value of minimum_console_loglevel for size. See the log level section for de-
tails. The bufp argument is ignored.

SYSLOG_ACTION_SIZE_UNREAD (9) (since Linux 2.4.10)
The call returns the number of bytes currently available to be read from the
kernel log buffer via command 2 (SYSLOG_ACTION_READ). The bufp
and size arguments are ignored.

SYSLOG_ACTION_SIZE_BUFFER (10) (since Linux 2.6.6)
This command returns the total size of the kernel log buffer. The bufp and size
arguments are ignored.

All commands except 3 and 10 require privilege. In Linux kernels before Linux
2.6.37, command types 3 and 10 are allowed to unprivileged processes; since Linux

Linux man-pages 6.13 2024-11-17 1045

syslog(2) System Calls Manual syslog(2)

2.6.37, these commands are allowed to unprivileged processes only if /proc/sys/ker-
nel/dmesg_restrict has the value 0. Before Linux 2.6.37, "privileged" means that the
caller has the CAP_SYS_ADMIN capability. Since Linux 2.6.37, "privileged" means
that the caller has either the CAP_SYS_ADMIN capability (now deprecated for this
purpose) or the (new) CAP_SYSLOG capability.

/proc/sys/kernel/printk
/proc/sys/kernel/printk is a writable file containing four integer values that influence
kernel printk() behavior when printing or logging error messages. The four values
are:

console_loglevel
Only messages with a log level lower than this value will be printed to the con-
sole. The default value for this field is DEFAULT_CON-
SOLE_LOGLEVEL (7), but it is set to 4 if the kernel command line contains
the word "quiet", 10 if the kernel command line contains the word "debug",
and to 15 in case of a kernel fault (the 10 and 15 are just silly, and equivalent
to 8). The value of console_loglevel can be set (to a value in the range 1–8) by
a syslog() call with a type of 8.

default_message_loglevel
This value will be used as the log level for printk() messages that do not have
an explicit level. Up to and including Linux 2.6.38, the hard-coded default
value for this field was 4 (KERN_WARNING); since Linux 2.6.39, the de-
fault value is defined by the kernel configuration option CONFIG_DE-
FAULT_MESSAGE_LOGLEVEL, which defaults to 4.

minimum_console_loglevel
The value in this field is the minimum value to which console_loglevel can be
set.

default_console_loglevel
This is the default value for console_loglevel.

The log level
Every printk() message has its own log level. If the log level is not explicitly speci-
fied as part of the message, it defaults to default_message_loglevel. The conventional
meaning of the log level is as follows:
Kernel constant Level value Meaning
KERN_EMERG 0 System is unusable
KERN_ALERT 1 Action must be taken

immediately
KERN_CRIT 2 Critical conditions
KERN_ERR 3 Error conditions
KERN_WARNING 4 Warning conditions
KERN_NOTICE 5 Normal but significant

condition
KERN_INFO 6 Informational
KERN_DEBUG 7 Debug-level messages

The kernel printk() routine will print a message on the console only if it has a log
level less than the value of console_loglevel.

Linux man-pages 6.13 2024-11-17 1046

syslog(2) System Calls Manual syslog(2)

RETURN VALUE
For type equal to 2, 3, or 4, a successful call to syslog() returns the number of bytes
read. For type 9, syslog() returns the number of bytes currently available to be read on
the kernel log buffer. For type 10, syslog() returns the total size of the kernel log
buffer. For other values of type, 0 is returned on success.

In case of error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

Bad arguments (e.g., bad type; or for type 2, 3, or 4, buf is NULL, or size is
less than zero; or for type 8, the level is outside the range 1 to 8).

ENOSYS
This syslog() system call is not available, because the kernel was compiled
with the CONFIG_PRINTK kernel-configuration option disabled.

EPERM
An attempt was made to change console_loglevel or clear the kernel message
ring buffer by a process without sufficient privilege (more precisely: without
the CAP_SYS_ADMIN or CAP_SYSLOG capability).

ERESTARTSYS
System call was interrupted by a signal; nothing was read. (This can be seen
only during a trace.)

STANDARDS
Linux.

HISTORY
From the very start, people noted that it is unfortunate that a system call and a library
routine of the same name are entirely different animals.

SEE ALSO
dmesg(1), syslog(3), capabilities(7)

Linux man-pages 6.13 2024-11-17 1047

tee(2) System Calls Manual tee(2)

NAME
tee - duplicating pipe content

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h>

ssize_t tee(int fd_in, int fd_out, size_t size, unsigned int flags);

DESCRIPTION
tee() duplicates up to size bytes of data from the pipe referred to by the file descriptor
fd_in to the pipe referred to by the file descriptor fd_out. It does not consume the
data that is duplicated from fd_in; therefore, that data can be copied by a subsequent
splice(2).

flags is a bit mask that is composed by ORing together zero or more of the following
values:

SPLICE_F_MOVE Currently has no effect for tee(); see splice(2).

SPLICE_F_NONBLOCK
Do not block on I/O; see splice(2) for further details.

SPLICE_F_MORE Currently has no effect for tee(), but may be implemented
in the future; see splice(2).

SPLICE_F_GIFT Unused for tee(); see vmsplice(2).

RETURN VALUE
Upon successful completion, tee() returns the number of bytes that were duplicated
between the input and output. A return value of 0 means that there was no data to
transfer, and it would not make sense to block, because there are no writers connected
to the write end of the pipe referred to by fd_in.

On error, tee() returns -1 and errno is set to indicate the error.

ERRORS
EAGAIN

SPLICE_F_NONBLOCK was specified in flags or one of the file descriptors
had been marked as nonblocking (O_NONBLOCK), and the operation would
block.

EINVAL
fd_in or fd_out does not refer to a pipe; or fd_in and fd_out refer to the same
pipe.

ENOMEM
Out of memory.

STANDARDS
Linux.

HISTORY
Linux 2.6.17, glibc 2.5.

Linux man-pages 6.13 2024-11-17 1048

tee(2) System Calls Manual tee(2)

NOTES
Conceptually, tee() copies the data between the two pipes. In reality no real data
copying takes place though: under the covers, tee() assigns data to the output by
merely grabbing a reference to the input.

EXAMPLES
The example below implements a basic tee(1) program using the tee() system call.
Here is an example of its use:

$ date | ./a.out out.log | cat
Tue Oct 28 10:06:00 CET 2014
$ cat out.log
Tue Oct 28 10:06:00 CET 2014

Program source

#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd;
ssize_t size, ssize;

if (argc != 2) {
fprintf(stderr, "Usage: %s <file>\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

for (;;) {
/*

* tee stdin to stdout.
*/

size = tee(STDIN_FILENO, STDOUT_FILENO,
INT_MAX, SPLICE_F_NONBLOCK);

if (size < 0) {
if (errno == EAGAIN)

Linux man-pages 6.13 2024-11-17 1049

tee(2) System Calls Manual tee(2)

continue;
perror("tee");
exit(EXIT_FAILURE);

}
if (size == 0)

break;

/*
* Consume stdin by splicing it to a file.
*/

while (size > 0) {
ssize = splice(STDIN_FILENO, NULL, fd, NULL,

size, SPLICE_F_MOVE);
if (ssize < 0) {

perror("splice");
exit(EXIT_FAILURE);

}
size -= ssize;

}
}

close(fd);
exit(EXIT_SUCCESS);

}

SEE ALSO
splice(2), vmsplice(2), pipe(7)

Linux man-pages 6.13 2024-11-17 1050

time(2) System Calls Manual time(2)

NAME
time - get time in seconds

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

time_t time(time_t *_Nullable tloc);

DESCRIPTION
time() returns the time as the number of seconds since the Epoch, 1970-01-01
00:00:00 +0000 (UTC).

If tloc is non-NULL, the return value is also stored in the memory pointed to by tloc.

RETURN VALUE
On success, the value of time in seconds since the Epoch is returned. On error,
((time_t) -1) is returned, and errno is set to indicate the error.

ERRORS
EOVERFLOW

The time cannot be represented as a time_t value. This can happen if an exe-
cutable with 32-bit time_t is run on a 64-bit kernel when the time is
2038-01-19 03:14:08 UTC or later. However, when the system time is out of
time_t range in other situations, the behavior is undefined.

EFAULT
tloc points outside your accessible address space (but see BUGS).

On systems where the C library time() wrapper function invokes an imple-
mentation provided by the vdso(7) (so that there is no trap into the kernel), an
invalid address may instead trigger a SIGSEGV signal.

VERSIONS
POSIX.1 defines seconds since the Epoch using a formula that approximates the num-
ber of seconds between a specified time and the Epoch. This formula takes account of
the facts that all years that are evenly divisible by 4 are leap years, but years that are
evenly divisible by 100 are not leap years unless they are also evenly divisible by 400,
in which case they are leap years. This value is not the same as the actual number of
seconds between the time and the Epoch, because of leap seconds and because system
clocks are not required to be synchronized to a standard reference. Linux systems
normally follow the POSIX requirement that this value ignore leap seconds, so that
conforming systems interpret it consistently; see POSIX.1-2018 Rationale A.4.16.

Applications intended to run after 2038 should use ABIs with time_t wider than 32
bits; see time_t(3type).

C library/kernel differences
On some architectures, an implementation of time() is provided in the vdso(7).

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 1051

time(2) System Calls Manual time(2)

HISTORY
SVr4, 4.3BSD, C89, POSIX.1-2001.

BUGS
Error returns from this system call are indistinguishable from successful reports that
the time is a few seconds before the Epoch, so the C library wrapper function never
sets errno as a result of this call.

The tloc argument is obsolescent and should always be NULL in new code. When
tloc is NULL, the call cannot fail.

SEE ALSO
date(1), gettimeofday(2), ctime(3), ftime(3), time(7), vdso(7)

Linux man-pages 6.13 2024-07-23 1052

timer_create(2) System Calls Manual timer_create(2)

NAME
timer_create - create a POSIX per-process timer

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <signal.h> /* Definition of SIGEV_* constants */
#include <time.h>

int timer_create(clockid_t clockid ,
struct sigevent *_Nullable restrict sevp,
timer_t *restrict timerid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timer_create():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
timer_create() creates a new per-process interval timer. The ID of the new timer is
returned in the buffer pointed to by timerid , which must be a non-null pointer. This
ID is unique within the process, until the timer is deleted. The new timer is initially
disarmed.

The clockid argument specifies the clock that the new timer uses to measure time. It
can be specified as one of the following values:

CLOCK_REALTIME
A settable system-wide real-time clock.

CLOCK_MONOTONIC
A nonsettable monotonically increasing clock that measures time from some
unspecified point in the past that does not change after system startup.

CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)
A clock that measures (user and system) CPU time consumed by (all of the
threads in) the calling process.

CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)
A clock that measures (user and system) CPU time consumed by the calling
thread.

CLOCK_BOOTTIME (Since Linux 2.6.39)
Like CLOCK_MONOTONIC, this is a monotonically increasing clock.
However, whereas the CLOCK_MONOTONIC clock does not measure the
time while a system is suspended, the CLOCK_BOOTTIME clock does in-
clude the time during which the system is suspended. This is useful for appli-
cations that need to be suspend-aware. CLOCK_REALTIME is not suitable
for such applications, since that clock is affected by discontinuous changes to
the system clock.

CLOCK_REALTIME_ALARM (since Linux 3.0)
This clock is like CLOCK_REALTIME, but will wake the system if it is sus-
pended. The caller must have the CAP_WAKE_ALARM capability in order
to set a timer against this clock.

Linux man-pages 6.13 2024-07-23 1053

timer_create(2) System Calls Manual timer_create(2)

CLOCK_BOOTTIME_ALARM (since Linux 3.0)
This clock is like CLOCK_BOOTTIME, but will wake the system if it is
suspended. The caller must have the CAP_WAKE_ALARM capability in or-
der to set a timer against this clock.

CLOCK_TAI (since Linux 3.10)
A system-wide clock derived from wall-clock time but counting leap seconds.

See clock_getres(2) for some further details on the above clocks.

As well as the above values, clockid can be specified as the clockid returned by a call
to clock_getcpuclockid(3) or pthread_getcpuclockid(3).

The sevp argument points to a sigevent structure that specifies how the caller should
be notified when the timer expires. For the definition and general details of this struc-
ture, see sigevent(3type).

The sevp.sigev_notify field can have the following values:

SIGEV_NONE
Don’t asynchronously notify when the timer expires. Progress of the timer can
be monitored using timer_gettime(2).

SIGEV_SIGNAL
Upon timer expiration, generate the signal sigev_signo for the process. See
sigevent(3type) for general details. The si_code field of the siginfo_t structure
will be set to SI_TIMER. At any point in time, at most one signal is queued
to the process for a given timer; see timer_getoverrun(2) for more details.

SIGEV_THREAD
Upon timer expiration, invoke sigev_notify_function as if it were the start
function of a new thread. See sigevent(3type) for details.

SIGEV_THREAD_ID (Linux-specific)
As for SIGEV_SIGNAL, but the signal is targeted at the thread whose ID is
given in sigev_notify_thread_id , which must be a thread in the same process
as the caller. The sigev_notify_thread_id field specifies a kernel thread ID,
that is, the value returned by clone(2) or gettid(2). This flag is intended only
for use by threading libraries.

Specifying sevp as NULL is equivalent to specifying a pointer to a sigevent structure
in which sigev_notify is SIGEV_SIGNAL, sigev_signo is SIGALRM, and
sigev_value.sival_int is the timer ID.

RETURN VALUE
On success, timer_create() returns 0, and the ID of the new timer is placed in
*timerid . On failure, -1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

Temporary error during kernel allocation of timer structures.

EINVAL
Clock ID, sigev_notify, sigev_signo, or sigev_notify_thread_id is invalid.

Linux man-pages 6.13 2024-07-23 1054

timer_create(2) System Calls Manual timer_create(2)

ENOMEM
Could not allocate memory.

ENOTSUP
The kernel does not support creating a timer against this clockid .

EPERM
clockid was CLOCK_REALTIME_ALARM or CLOCK_BOOT-
TIME_ALARM but the caller did not have the CAP_WAKE_ALARM capa-
bility.

VERSIONS
C library/kernel differences

Part of the implementation of the POSIX timers API is provided by glibc. In particu-
lar:

• Much of the functionality for SIGEV_THREAD is implemented within glibc,
rather than the kernel. (This is necessarily so, since the thread involved in han-
dling the notification is one that must be managed by the C library POSIX threads
implementation.) Although the notification delivered to the process is via a
thread, internally the NPTL implementation uses a sigev_notify value of
SIGEV_THREAD_ID along with a real-time signal that is reserved by the imple-
mentation (see nptl(7)).

• The implementation of the default case where evp is NULL is handled inside
glibc, which invokes the underlying system call with a suitably populated sigevent
structure.

• The timer IDs presented at user level are maintained by glibc, which maps these
IDs to the timer IDs employed by the kernel.

STANDARDS
POSIX.1-2008.

HISTORY
Linux 2.6. POSIX.1-2001.

Prior to Linux 2.6, glibc provided an incomplete user-space implementation
(CLOCK_REALTIME timers only) using POSIX threads, and before glibc 2.17, the
implementation falls back to this technique on systems running kernels older than
Linux 2.6.

NOTES
A program may create multiple interval timers using timer_create().

Timers are not inherited by the child of a fork(2), and are disarmed and deleted during
an execve(2).

The kernel preallocates a "queued real-time signal" for each timer created using
timer_create(). Consequently, the number of timers is limited by the RLIMIT_SIG-
PENDING resource limit (see setrlimit(2)).

The timers created by timer_create() are commonly known as "POSIX (interval)
timers". The POSIX timers API consists of the following interfaces:

Linux man-pages 6.13 2024-07-23 1055

timer_create(2) System Calls Manual timer_create(2)

timer_create()
Create a timer.

timer_settime(2)
Arm (start) or disarm (stop) a timer.

timer_gettime(2)
Fetch the time remaining until the next expiration of a timer, along with the in-
terval setting of the timer.

timer_getoverrun(2)
Return the overrun count for the last timer expiration.

timer_delete(2)
Disarm and delete a timer.

Since Linux 3.10, the /proc/ pid /timers file can be used to list the POSIX timers for
the process with PID pid . See proc(5) for further information.

Since Linux 4.10, support for POSIX timers is a configurable option that is enabled
by default. Kernel support can be disabled via the CONFIG_POSIX_TIMERS op-
tion.

EXAMPLES
The program below takes two arguments: a sleep period in seconds, and a timer fre-
quency in nanoseconds. The program establishes a handler for the signal it uses for
the timer, blocks that signal, creates and arms a timer that expires with the given fre-
quency, sleeps for the specified number of seconds, and then unblocks the timer sig-
nal. Assuming that the timer expired at least once while the program slept, the signal
handler will be invoked, and the handler displays some information about the timer
notification. The program terminates after one invocation of the signal handler.

In the following example run, the program sleeps for 1 second, after creating a timer
that has a frequency of 100 nanoseconds. By the time the signal is unblocked and de-
livered, there have been around ten million overruns.

$./a.out 1 100
Establishing handler for signal 34
Blocking signal 34
timer ID is 0x804c008
Sleeping for 1 seconds
Unblocking signal 34
Caught signal 34

sival_ptr = 0xbfb174f4; *sival_ptr = 0x804c008
overrun count = 10004886

Program source

#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

Linux man-pages 6.13 2024-07-23 1056

timer_create(2) System Calls Manual timer_create(2)

#define CLOCKID CLOCK_REALTIME
#define SIG SIGRTMIN

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

static void
print_siginfo(siginfo_t *si)
{

int or;
timer_t *tidp;

tidp = si->si_value.sival_ptr;

printf(" sival_ptr = %p; ", si->si_value.sival_ptr);
printf(" *sival_ptr = %#jx\n", (uintmax_t) *tidp);

or = timer_getoverrun(*tidp);
if (or == -1)

errExit("timer_getoverrun");
else

printf(" overrun count = %d\n", or);
}

static void
handler(int sig, siginfo_t *si, void *uc)
{

/* Note: calling printf() from a signal handler is not safe
(and should not be done in production programs), since
printf() is not async-signal-safe; see signal-safety(7).
Nevertheless, we use printf() here as a simple way of
showing that the handler was called. */

printf("Caught signal %d\n", sig);
print_siginfo(si);
signal(sig, SIG_IGN);

}

int
main(int argc, char *argv[])
{

timer_t timerid;
sigset_t mask;
long long freq_nanosecs;
struct sigevent sev;
struct sigaction sa;
struct itimerspec its;

if (argc != 3) {

Linux man-pages 6.13 2024-07-23 1057

timer_create(2) System Calls Manual timer_create(2)

fprintf(stderr, "Usage: %s <sleep-secs> <freq-nanosecs>\n",
argv[0]);

exit(EXIT_FAILURE);
}

/* Establish handler for timer signal. */

printf("Establishing handler for signal %d\n", SIG);
sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIG, &sa, NULL) == -1)

errExit("sigaction");

/* Block timer signal temporarily. */

printf("Blocking signal %d\n", SIG);
sigemptyset(&mask);
sigaddset(&mask, SIG);
if (sigprocmask(SIG_SETMASK, &mask, NULL) == -1)

errExit("sigprocmask");

/* Create the timer. */

sev.sigev_notify = SIGEV_SIGNAL;
sev.sigev_signo = SIG;
sev.sigev_value.sival_ptr = &timerid;
if (timer_create(CLOCKID, &sev, &timerid) == -1)

errExit("timer_create");

printf("timer ID is %#jx\n", (uintmax_t) timerid);

/* Start the timer. */

freq_nanosecs = atoll(argv[2]);
its.it_value.tv_sec = freq_nanosecs / 1000000000;
its.it_value.tv_nsec = freq_nanosecs % 1000000000;
its.it_interval.tv_sec = its.it_value.tv_sec;
its.it_interval.tv_nsec = its.it_value.tv_nsec;

if (timer_settime(timerid, 0, &its, NULL) == -1)
errExit("timer_settime");

/* Sleep for a while; meanwhile, the timer may expire
multiple times. */

printf("Sleeping for %d seconds\n", atoi(argv[1]));
sleep(atoi(argv[1]));

Linux man-pages 6.13 2024-07-23 1058

timer_create(2) System Calls Manual timer_create(2)

/* Unlock the timer signal, so that timer notification
can be delivered. */

printf("Unblocking signal %d\n", SIG);
if (sigprocmask(SIG_UNBLOCK, &mask, NULL) == -1)

errExit("sigprocmask");

exit(EXIT_SUCCESS);
}

SEE ALSO
clock_gettime(2), setitimer(2), timer_delete(2), timer_getoverrun(2), timer_settime(2),
timerfd_create(2), clock_getcpuclockid(3), pthread_getcpuclockid(3), pthreads(7),
sigevent(3type), signal(7), time(7)

Linux man-pages 6.13 2024-07-23 1059

timer_delete(2) System Calls Manual timer_delete(2)

NAME
timer_delete - delete a POSIX per-process timer

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int timer_delete(timer_t timerid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timer_delete():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
timer_delete() deletes the timer whose ID is given in timerid . If the timer was armed
at the time of this call, it is disarmed before being deleted. The treatment of any
pending signal generated by the deleted timer is unspecified.

RETURN VALUE
On success, timer_delete() returns 0. On failure, -1 is returned, and errno is set to
indicate the error.

ERRORS
EINVAL

timerid is not a valid timer ID.

STANDARDS
POSIX.1-2008.

HISTORY
Linux 2.6. POSIX.1-2001.

SEE ALSO
clock_gettime(2), timer_create(2), timer_getoverrun(2), timer_settime(2), time(7)

Linux man-pages 6.13 2024-07-23 1060

timer_getoverrun(2) System Calls Manual timer_getoverrun(2)

NAME
timer_getoverrun - get overrun count for a POSIX per-process timer

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int timer_getoverrun(timer_t timerid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timer_getoverrun():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
timer_getoverrun() returns the "overrun count" for the timer referred to by timerid .
An application can use the overrun count to accurately calculate the number of timer
expirations that would have occurred over a given time interval. Timer overruns can
occur both when receiving expiration notifications via signals (SIGEV_SIGNAL),
and via threads (SIGEV_THREAD).

When expiration notifications are delivered via a signal, overruns can occur as fol-
lows. Regardless of whether or not a real-time signal is used for timer notifications,
the system queues at most one signal per timer. (This is the behavior specified by
POSIX.1. The alternative, queuing one signal for each timer expiration, could easily
result in overflowing the allowed limits for queued signals on the system.) Because of
system scheduling delays, or because the signal may be temporarily blocked, there
can be a delay between the time when the notification signal is generated and the time
when it is delivered (e.g., caught by a signal handler) or accepted (e.g., using sigwait-
info(2)). In this interval, further timer expirations may occur. The timer overrun
count is the number of additional timer expirations that occurred between the time
when the signal was generated and when it was delivered or accepted.

Timer overruns can also occur when expiration notifications are delivered via invoca-
tion of a thread, since there may be an arbitrary delay between an expiration of the
timer and the invocation of the notification thread, and in that delay interval, addi-
tional timer expirations may occur.

RETURN VALUE
On success, timer_getoverrun() returns the overrun count of the specified timer; this
count may be 0 if no overruns have occurred. On failure, -1 is returned, and errno is
set to indicate the error.

ERRORS
EINVAL

timerid is not a valid timer ID.

VERSIONS
When timer notifications are delivered via signals (SIGEV_SIGNAL), on Linux it is
also possible to obtain the overrun count via the si_overrun field of the siginfo_t
structure (see sigaction(2)). This allows an application to avoid the overhead of mak-
ing a system call to obtain the overrun count, but is a nonportable extension to
POSIX.1.

Linux man-pages 6.13 2024-07-23 1061

timer_getoverrun(2) System Calls Manual timer_getoverrun(2)

POSIX.1 discusses timer overruns only in the context of timer notifications using sig-
nals.

STANDARDS
POSIX.1-2008.

HISTORY
Linux 2.6. POSIX.1-2001.

BUGS
POSIX.1 specifies that if the timer overrun count is equal to or greater than an imple-
mentation-defined maximum, DELAYTIMER_MAX, then timer_getoverrun()
should return DELAYTIMER_MAX. However, before Linux 4.19, if the timer over-
run value exceeds the maximum representable integer, the counter cycles, starting
once more from low values. Since Linux 4.19, timer_getoverrun() returns DELAY-
TIMER_MAX (defined as INT_MAX in <limits.h>) in this case (and the overrun
value is reset to 0).

EXAMPLES
See timer_create(2).

SEE ALSO
clock_gettime(2), sigaction(2), signalfd(2), sigwaitinfo(2), timer_create(2),
timer_delete(2), timer_settime(2), signal(7), time(7)

Linux man-pages 6.13 2024-07-23 1062

timer_settime(2) System Calls Manual timer_settime(2)

NAME
timer_settime, timer_gettime - arm/disarm and fetch state of POSIX per-process
timer

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int timer_gettime(timer_t timerid , struct itimerspec *curr_value);
int timer_settime(timer_t timerid , int flags,

const struct itimerspec *restrict new_value,
struct itimerspec *_Nullable restrict old_value);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timer_settime(), timer_gettime():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
timer_settime() arms or disarms the timer identified by timerid . The new_value ar-
gument is pointer to an itimerspec structure that specifies the new initial value and the
new interval for the timer. The itimerspec structure is described in itimerspec(3type).

Each of the substructures of the itimerspec structure is a timespec(3) structure that al-
lows a time value to be specified in seconds and nanoseconds. These time values are
measured according to the clock that was specified when the timer was created by
timer_create(2).

If new_value->it_value specifies a nonzero value (i.e., either subfield is nonzero),
then timer_settime() arms (starts) the timer, setting it to initially expire at the given
time. (If the timer was already armed, then the previous settings are overwritten.) If
new_value->it_value specifies a zero value (i.e., both subfields are zero), then the
timer is disarmed.

The new_value->it_interval field specifies the period of the timer, in seconds and
nanoseconds. If this field is nonzero, then each time that an armed timer expires, the
timer is reloaded from the value specified in new_value->it_interval. If
new_value->it_interval specifies a zero value, then the timer expires just once, at the
time specified by it_value.

By default, the initial expiration time specified in new_value->it_value is interpreted
relative to the current time on the timer’s clock at the time of the call. This can be
modified by specifying TIMER_ABSTIME in flags, in which case
new_value->it_value is interpreted as an absolute value as measured on the timer’s
clock; that is, the timer will expire when the clock value reaches the value specified by
new_value->it_value. If the specified absolute time has already passed, then the timer
expires immediately, and the overrun count (see timer_getoverrun(2)) will be set cor-
rectly.

If the value of the CLOCK_REALTIME clock is adjusted while an absolute timer
based on that clock is armed, then the expiration of the timer will be appropriately ad-
justed. Adjustments to the CLOCK_REALTIME clock have no effect on relative
timers based on that clock.

Linux man-pages 6.13 2024-07-23 1063

timer_settime(2) System Calls Manual timer_settime(2)

If old_value is not NULL, then it points to a buffer that is used to return the previous
interval of the timer (in old_value->it_interval) and the amount of time until the timer
would previously have next expired (in old_value->it_value).

timer_gettime() returns the time until next expiration, and the interval, for the timer
specified by timerid , in the buffer pointed to by curr_value. The time remaining until
the next timer expiration is returned in curr_value->it_value; this is always a relative
value, regardless of whether the TIMER_ABSTIME flag was used when arming the
timer. If the value returned in curr_value->it_value is zero, then the timer is cur-
rently disarmed. The timer interval is returned in curr_value->it_interval. If the
value returned in curr_value->it_interval is zero, then this is a "one-shot" timer.

RETURN VALUE
On success, timer_settime() and timer_gettime() return 0. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
These functions may fail with the following errors:

EFAULT
new_value, old_value, or curr_value is not a valid pointer.

EINVAL
timerid is invalid.

timer_settime() may fail with the following errors:

EINVAL
new_value.it_value is negative; or new_value.it_value.tv_nsec is negative or
greater than 999,999,999.

STANDARDS
POSIX.1-2008.

HISTORY
Linux 2.6. POSIX.1-2001.

EXAMPLES
See timer_create(2).

SEE ALSO
timer_create(2), timer_getoverrun(2), timespec(3), time(7)

Linux man-pages 6.13 2024-07-23 1064

timerfd_create(2) System Calls Manual timerfd_create(2)

NAME
timerfd_create, timerfd_settime, timerfd_gettime - timers that notify via file descrip-
tors

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/timerfd.h>

int timerfd_create(int clockid , int flags);

int timerfd_settime(int fd , int flags,
const struct itimerspec *new_value,
struct itimerspec *_Nullable old_value);

int timerfd_gettime(int fd , struct itimerspec *curr_value);

DESCRIPTION
These system calls create and operate on a timer that delivers timer expiration notifi-
cations via a file descriptor. They provide an alternative to the use of setitimer(2) or
timer_create(2), with the advantage that the file descriptor may be monitored by se-
lect(2), poll(2), and epoll(7).

The use of these three system calls is analogous to the use of timer_create(2),
timer_settime(2), and timer_gettime(2). (There is no analog of timer_getoverrun(2),
since that functionality is provided by read(2), as described below.)

timerfd_create()
timerfd_create() creates a new timer object, and returns a file descriptor that refers to
that timer. The clockid argument specifies the clock that is used to mark the progress
of the timer, and must be one of the following:

CLOCK_REALTIME
A settable system-wide real-time clock.

CLOCK_MONOTONIC
A nonsettable monotonically increasing clock that measures time from some
unspecified point in the past that does not change after system startup.

CLOCK_BOOTTIME (Since Linux 3.15)
Like CLOCK_MONOTONIC, this is a monotonically increasing clock.
However, whereas the CLOCK_MONOTONIC clock does not measure the
time while a system is suspended, the CLOCK_BOOTTIME clock does in-
clude the time during which the system is suspended. This is useful for appli-
cations that need to be suspend-aware. CLOCK_REALTIME is not suitable
for such applications, since that clock is affected by discontinuous changes to
the system clock.

CLOCK_REALTIME_ALARM (since Linux 3.11)
This clock is like CLOCK_REALTIME, but will wake the system if it is sus-
pended. The caller must have the CAP_WAKE_ALARM capability in order
to set a timer against this clock.

CLOCK_BOOTTIME_ALARM (since Linux 3.11)
This clock is like CLOCK_BOOTTIME, but will wake the system if it is
suspended. The caller must have the CAP_WAKE_ALARM capability in

Linux man-pages 6.13 2024-07-23 1065

timerfd_create(2) System Calls Manual timerfd_create(2)

order to set a timer against this clock.

See clock_getres(2) for some further details on the above clocks.

The current value of each of these clocks can be retrieved using clock_gettime(2).

Starting with Linux 2.6.27, the following values may be bitwise ORed in flags to
change the behavior of timerfd_create():

TFD_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description
(see open(2)) referred to by the new file descriptor. Using this flag
saves extra calls to fcntl(2) to achieve the same result.

TFD_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descrip-
tor. See the description of the O_CLOEXEC flag in open(2) for
reasons why this may be useful.

In Linux versions up to and including 2.6.26, flags must be specified as zero.

timerfd_settime()
timerfd_settime() arms (starts) or disarms (stops) the timer referred to by the file de-
scriptor fd .

The new_value argument specifies the initial expiration and interval for the timer.
The itimerspec structure used for this argument is described in itimerspec(3type).

new_value.it_value specifies the initial expiration of the timer, in seconds and
nanoseconds. Setting either field of new_value.it_value to a nonzero value arms the
timer. Setting both fields of new_value.it_value to zero disarms the timer.

Setting one or both fields of new_value.it_interval to nonzero values specifies the pe-
riod, in seconds and nanoseconds, for repeated timer expirations after the initial expi-
ration. If both fields of new_value.it_interval are zero, the timer expires just once, at
the time specified by new_value.it_value.

By default, the initial expiration time specified in new_value is interpreted relative to
the current time on the timer’s clock at the time of the call (i.e., new_value.it_value
specifies a time relative to the current value of the clock specified by clockid). An ab-
solute timeout can be selected via the flags argument.

The flags argument is a bit mask that can include the following values:

TFD_TIMER_ABSTIME
Interpret new_value.it_value as an absolute value on the timer’s clock. The
timer will expire when the value of the timer’s clock reaches the value speci-
fied in new_value.it_value.

TFD_TIMER_CANCEL_ON_SET
If this flag is specified along with TFD_TIMER_ABSTIME and the clock for
this timer is CLOCK_REALTIME or CLOCK_REALTIME_ALARM,
then mark this timer as cancelable if the real-time clock undergoes a discontin-
uous change (settimeofday(2), clock_settime(2), or similar). When such
changes occur, a current or future read(2) from the file descriptor will fail with
the error ECANCELED.

If the old_value argument is not NULL, then the itimerspec structure that it points to

Linux man-pages 6.13 2024-07-23 1066

timerfd_create(2) System Calls Manual timerfd_create(2)

is used to return the setting of the timer that was current at the time of the call; see the
description of timerfd_gettime() following.

timerfd_gettime()
timerfd_gettime() returns, in curr_value, an itimerspec structure that contains the
current setting of the timer referred to by the file descriptor fd .

The it_value field returns the amount of time until the timer will next expire. If both
fields of this structure are zero, then the timer is currently disarmed. This field always
contains a relative value, regardless of whether the TFD_TIMER_ABSTIME flag
was specified when setting the timer.

The it_interval field returns the interval of the timer. If both fields of this structure are
zero, then the timer is set to expire just once, at the time specified by
curr_value.it_value.

Operating on a timer file descriptor
The file descriptor returned by timerfd_create() supports the following additional op-
erations:

read(2)
If the timer has already expired one or more times since its settings were last
modified using timerfd_settime(), or since the last successful read(2), then
the buffer given to read(2) returns an unsigned 8-byte integer (uint64_t) con-
taining the number of expirations that have occurred. (The returned value is in
host byte order—that is, the native byte order for integers on the host ma-
chine.)

If no timer expirations have occurred at the time of the read(2), then the call
either blocks until the next timer expiration, or fails with the error EAGAIN if
the file descriptor has been made nonblocking (via the use of the fcntl(2)
F_SETFL operation to set the O_NONBLOCK flag).

A read(2) fails with the error EINVAL if the size of the supplied buffer is less
than 8 bytes.

If the associated clock is either CLOCK_REALTIME or CLOCK_REAL-
TIME_ALARM, the timer is absolute (TFD_TIMER_ABSTIME), and the
flag TFD_TIMER_CANCEL_ON_SET was specified when calling
timerfd_settime(), then read(2) fails with the error ECANCELED if the real-
time clock undergoes a discontinuous change. (This allows the reading appli-
cation to discover such discontinuous changes to the clock.)

If the associated clock is either CLOCK_REALTIME or CLOCK_REAL-
TIME_ALARM, the timer is absolute (TFD_TIMER_ABSTIME), and the
flag TFD_TIMER_CANCEL_ON_SET was not specified when calling
timerfd_settime(), then a discontinuous negative change to the clock (e.g.,
clock_settime(2)) may cause read(2) to unblock, but return a value of 0 (i.e.,
no bytes read), if the clock change occurs after the time expired, but before the
read(2) on the file descriptor.

poll(2)
select(2)

Linux man-pages 6.13 2024-07-23 1067

timerfd_create(2) System Calls Manual timerfd_create(2)

(and similar)
The file descriptor is readable (the select(2) readfds argument; the poll(2)
POLLIN flag) if one or more timer expirations have occurred.

The file descriptor also supports the other file-descriptor multiplexing APIs:
pselect(2), ppoll(2), and epoll(7).

ioctl(2)
The following timerfd-specific command is supported:

TFD_IOC_SET_TICKS (since Linux 3.17)
Adjust the number of timer expirations that have occurred. The argu-
ment is a pointer to a nonzero 8-byte integer (uint64_t*) containing the
new number of expirations. Once the number is set, any waiter on the
timer is woken up. The only purpose of this command is to restore the
expirations for the purpose of checkpoint/restore. This operation is
available only if the kernel was configured with the CON-
FIG_CHECKPOINT_RESTORE option.

close(2)
When the file descriptor is no longer required it should be closed. When all
file descriptors associated with the same timer object have been closed, the
timer is disarmed and its resources are freed by the kernel.

fork(2) semantics
After a fork(2), the child inherits a copy of the file descriptor created by timerfd_cre-
ate(). The file descriptor refers to the same underlying timer object as the correspond-
ing file descriptor in the parent, and read(2)s in the child will return information about
expirations of the timer.

execve(2) semantics
A file descriptor created by timerfd_create() is preserved across execve(2), and con-
tinues to generate timer expirations if the timer was armed.

RETURN VALUE
On success, timerfd_create() returns a new file descriptor. On error, -1 is returned
and errno is set to indicate the error.

timerfd_settime() and timerfd_gettime() return 0 on success; on error they return
-1, and set errno to indicate the error.

ERRORS
timerfd_create() can fail with the following errors:

EINVAL
The clockid is not valid.

EINVAL
flags is invalid; or, in Linux 2.6.26 or earlier, flags is nonzero.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

Linux man-pages 6.13 2024-07-23 1068

timerfd_create(2) System Calls Manual timerfd_create(2)

ENODEV
Could not mount (internal) anonymous inode device.

ENOMEM
There was insufficient kernel memory to create the timer.

EPERM
clockid was CLOCK_REALTIME_ALARM or CLOCK_BOOT-
TIME_ALARM but the caller did not have the CAP_WAKE_ALARM capa-
bility.

timerfd_settime() and timerfd_gettime() can fail with the following errors:

EBADF
fd is not a valid file descriptor.

EFAULT
new_value, old_value, or curr_value is not a valid pointer.

EINVAL
fd is not a valid timerfd file descriptor.

timerfd_settime() can also fail with the following errors:

ECANCELED
See NOTES.

EINVAL
new_value is not properly initialized (one of the tv_nsec falls outside the range
zero to 999,999,999).

EINVAL
flags is invalid.

STANDARDS
Linux.

HISTORY
Linux 2.6.25, glibc 2.8.

NOTES
Suppose the following scenario for CLOCK_REALTIME or CLOCK_REAL-
TIME_ALARM timer that was created with timerfd_create():

(1) The timer has been started (timerfd_settime()) with the TFD_TIMER_AB-
STIME and TFD_TIMER_CANCEL_ON_SET flags;

(2) A discontinuous change (e.g., settimeofday(2)) is subsequently made to the
CLOCK_REALTIME clock; and

(3) the caller once more calls timerfd_settime() to rearm the timer (without first
doing a read(2) on the file descriptor).

In this case the following occurs:

• The timerfd_settime() returns -1 with errno set to ECANCELED. (This en-
ables the caller to know that the previous timer was affected by a discontinuous
change to the clock.)

Linux man-pages 6.13 2024-07-23 1069

timerfd_create(2) System Calls Manual timerfd_create(2)

• The timer is successfully rearmed with the settings provided in the second
timerfd_settime() call. (This was probably an implementation accident, but
won’t be fixed now, in case there are applications that depend on this behaviour.)

BUGS
Currently, timerfd_create() supports fewer types of clock IDs than timer_create(2).

EXAMPLES
The following program creates a timer and then monitors its progress. The program
accepts up to three command-line arguments. The first argument specifies the number
of seconds for the initial expiration of the timer. The second argument specifies the
interval for the timer, in seconds. The third argument specifies the number of times
the program should allow the timer to expire before terminating. The second and
third command-line arguments are optional.

The following shell session demonstrates the use of the program:

$ a.out 3 1 100
0.000: timer started
3.000: read: 1; total=1
4.000: read: 1; total=2
^Z # type control-Z to suspend the program
[1]+ Stopped ./timerfd3_demo 3 1 100
$ fg # Resume execution after a few seconds
a.out 3 1 100
9.660: read: 5; total=7
10.000: read: 1; total=8
11.000: read: 1; total=9
^C # type control-C to suspend the program

Program source

#include <err.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/timerfd.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>

static void
print_elapsed_time(void)
{

int secs, nsecs;
static int first_call = 1;
struct timespec curr;
static struct timespec start;

if (first_call) {
first_call = 0;
if (clock_gettime(CLOCK_MONOTONIC, &start) == -1)

Linux man-pages 6.13 2024-07-23 1070

timerfd_create(2) System Calls Manual timerfd_create(2)

err(EXIT_FAILURE, "clock_gettime");
}

if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1)
err(EXIT_FAILURE, "clock_gettime");

secs = curr.tv_sec - start.tv_sec;
nsecs = curr.tv_nsec - start.tv_nsec;
if (nsecs < 0) {

secs--;
nsecs += 1000000000;

}
printf("%d.%03d: ", secs, (nsecs + 500000) / 1000000);

}

int
main(int argc, char *argv[])
{

int fd;
ssize_t s;
uint64_t exp, tot_exp, max_exp;
struct timespec now;
struct itimerspec new_value;

if (argc != 2 && argc != 4) {
fprintf(stderr, "%s init-secs [interval-secs max-exp]\n",

argv[0]);
exit(EXIT_FAILURE);

}

if (clock_gettime(CLOCK_REALTIME, &now) == -1)
err(EXIT_FAILURE, "clock_gettime");

/* Create a CLOCK_REALTIME absolute timer with initial
expiration and interval as specified in command line. */

new_value.it_value.tv_sec = now.tv_sec + atoi(argv[1]);
new_value.it_value.tv_nsec = now.tv_nsec;
if (argc == 2) {

new_value.it_interval.tv_sec = 0;
max_exp = 1;

} else {
new_value.it_interval.tv_sec = atoi(argv[2]);
max_exp = atoi(argv[3]);

}
new_value.it_interval.tv_nsec = 0;

fd = timerfd_create(CLOCK_REALTIME, 0);
if (fd == -1)

Linux man-pages 6.13 2024-07-23 1071

timerfd_create(2) System Calls Manual timerfd_create(2)

err(EXIT_FAILURE, "timerfd_create");

if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == -1)
err(EXIT_FAILURE, "timerfd_settime");

print_elapsed_time();
printf("timer started\n");

for (tot_exp = 0; tot_exp < max_exp;) {
s = read(fd, &exp, sizeof(uint64_t));
if (s != sizeof(uint64_t))

err(EXIT_FAILURE, "read");

tot_exp += exp;
print_elapsed_time();
printf("read: %" PRIu64 "; total=%" PRIu64 "\n", exp, tot_exp);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
eventfd(2), poll(2), read(2), select(2), setitimer(2), signalfd(2), timer_create(2),
timer_gettime(2), timer_settime(2), timespec(3), epoll(7), time(7)

Linux man-pages 6.13 2024-07-23 1072

times(2) System Calls Manual times(2)

NAME
times - get process times

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/times.h>

clock_t times(struct tms *buf);

DESCRIPTION
times() stores the current process times in the struct tms that buf points to. The struct
tms is as defined in <sys/times.h>:

struct tms {
clock_t tms_utime; /* user time */
clock_t tms_stime; /* system time */
clock_t tms_cutime; /* user time of children */
clock_t tms_cstime; /* system time of children */

};

The tms_utime field contains the CPU time spent executing instructions of the calling
process. The tms_stime field contains the CPU time spent executing inside the kernel
while performing tasks on behalf of the calling process.

The tms_cutime field contains the sum of the tms_utime and tms_cutime values for all
waited-for terminated children. The tms_cstime field contains the sum of the
tms_stime and tms_cstime values for all waited-for terminated children.

Times for terminated children (and their descendants) are added in at the moment
wait(2) or waitpid(2) returns their process ID. In particular, times of grandchildren
that the children did not wait for are never seen.

All times reported are in clock ticks.

RETURN VALUE
times() returns the number of clock ticks that have elapsed since an arbitrary point in
the past. The return value may overflow the possible range of type clock_t. On error,
(clock_t) -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

tms points outside the process’s address space.

VERSIONS
On Linux, the buf argument can be specified as NULL, with the result that times()
just returns a function result. However, POSIX does not specify this behavior, and
most other UNIX implementations require a non-NULL value for buf .

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

In POSIX.1-1996 the symbol CLK_TCK (defined in <time.h>) is mentioned as ob-
solescent. It is obsolete now.

Linux man-pages 6.13 2024-07-23 1073

times(2) System Calls Manual times(2)

Before Linux 2.6.9, if the disposition of SIGCHLD is set to SIG_IGN, then the times
of terminated children are automatically included in the tms_cstime and tms_cutime
fields, although POSIX.1-2001 says that this should happen only if the calling process
wait(2)s on its children. This nonconformance is rectified in Linux 2.6.9 and later.

On Linux, the “arbitrary point in the past” from which the return value of times() is
measured has varied across kernel versions. On Linux 2.4 and earlier, this point is the
moment the system was booted. Since Linux 2.6, this point is (2^32/HZ) - 300 sec-
onds before system boot time. This variability across kernel versions (and across
UNIX implementations), combined with the fact that the returned value may overflow
the range of clock_t, means that a portable application would be wise to avoid using
this value. To measure changes in elapsed time, use clock_gettime(2) instead.

SVr1-3 returns long and the struct members are of type time_t although they store
clock ticks, not seconds since the Epoch. V7 used long for the struct members, be-
cause it had no type time_t yet.

NOTES
The number of clock ticks per second can be obtained using:

sysconf(_SC_CLK_TCK);

Note that clock(3) also returns a value of type clock_t, but this value is measured in
units of CLOCKS_PER_SEC, not the clock ticks used by times().

BUGS
A limitation of the Linux system call conventions on some architectures (notably
i386) means that on Linux 2.6 there is a small time window (41 seconds) soon after
boot when times() can return -1, falsely indicating that an error occurred. The same
problem can occur when the return value wraps past the maximum value that can be
stored in clock_t.

SEE ALSO
time(1), getrusage(2), wait(2), clock(3), sysconf(3), time(7)

Linux man-pages 6.13 2024-07-23 1074

tkill(2) System Calls Manual tkill(2)

NAME
tkill, tgkill - send a signal to a thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h> /* Definition of SIG* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[deprecated]] int syscall(SYS_tkill, pid_t tid , int sig);

#include <signal.h>

int tgkill(pid_t tgid , pid_t tid , int sig);

Note: glibc provides no wrapper for tkill(), necessitating the use of syscall(2).

DESCRIPTION
tgkill() sends the signal sig to the thread with the thread ID tid in the thread group
tgid . (By contrast, kill(2) can be used to send a signal only to a process (i.e., thread
group) as a whole, and the signal will be delivered to an arbitrary thread within that
process.)

tkill() is an obsolete predecessor to tgkill(). It allows only the target thread ID to be
specified, which may result in the wrong thread being signaled if a thread terminates
and its thread ID is recycled. Avoid using this system call.

These are the raw system call interfaces, meant for internal thread library use.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EAGAIN

The RLIMIT_SIGPENDING resource limit was reached and sig is a real-
time signal.

EAGAIN
Insufficient kernel memory was available and sig is a real-time signal.

EINVAL
An invalid thread ID, thread group ID, or signal was specified.

EPERM
Permission denied. For the required permissions, see kill(2).

ESRCH
No process with the specified thread ID (and thread group ID) exists.

STANDARDS
Linux.

HISTORY
tkill() Linux 2.4.19 / 2.5.4.

Linux man-pages 6.13 2024-07-23 1075

tkill(2) System Calls Manual tkill(2)

tgkill()
Linux 2.5.75, glibc 2.30.

NOTES
See the description of CLONE_THREAD in clone(2) for an explanation of thread
groups.

SEE ALSO
clone(2), gettid(2), kill(2), rt_sigqueueinfo(2)

Linux man-pages 6.13 2024-07-23 1076

truncate(2) System Calls Manual truncate(2)

NAME
truncate, ftruncate - truncate a file to a specified length

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int truncate(const char *path, off_t length);
int ftruncate(int fd , off_t length);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

truncate():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE

ftruncate():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.3.5: */ _POSIX_C_SOURCE >= 200112L
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
The truncate() and ftruncate() functions cause the regular file named by path or ref-
erenced by fd to be truncated to a size of precisely length bytes.

If the file previously was larger than this size, the extra data is lost. If the file previ-
ously was shorter, it is extended, and the extended part reads as null bytes ('\0').

The file offset is not changed.

If the size changed, then the st_ctime and st_mtime fields (respectively, time of last
status change and time of last modification; see inode(7)) for the file are updated, and
the set-user-ID and set-group-ID mode bits may be cleared.

With ftruncate(), the file must be open for writing; with truncate(), the file must be
writable.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
For truncate():

EACCES
Search permission is denied for a component of the path prefix, or the named
file is not writable by the user. (See also path_resolution(7).)

EFAULT
The argument path points outside the process’s allocated address space.

EFBIG
The argument length is larger than the maximum file size. (XSI)

Linux man-pages 6.13 2024-07-23 1077

truncate(2) System Calls Manual truncate(2)

EINTR
While blocked waiting to complete, the call was interrupted by a signal han-
dler; see fcntl(2) and signal(7).

EINVAL
The argument length is negative or larger than the maximum file size.

EIO An I/O error occurred updating the inode.

EISDIR
The named file is a directory.

ELOOP
Too many symbolic links were encountered in translating the pathname.

ENAMETOOLONG
A component of a pathname exceeded 255 characters, or an entire pathname
exceeded 1023 characters.

ENOENT
The named file does not exist.

ENOTDIR
A component of the path prefix is not a directory.

EPERM
The underlying filesystem does not support extending a file beyond its current
size.

EPERM
The operation was prevented by a file seal; see fcntl(2).

EROFS
The named file resides on a read-only filesystem.

ETXTBSY
The file is an executable file that is being executed.

For ftruncate() the same errors apply, but instead of things that can be wrong with
path, we now have things that can be wrong with the file descriptor, fd:

EBADF
fd is not a valid file descriptor.

EBADF or EINVAL
fd is not open for writing.

EINVAL
fd does not reference a regular file or a POSIX shared memory object.

EINVAL or EBADF
The file descriptor fd is not open for writing. POSIX permits, and portable
applications should handle, either error for this case. (Linux produces EIN-
VAL.)

VERSIONS
The details in DESCRIPTION are for XSI-compliant systems. For non-XSI-compli-
ant systems, the POSIX standard allows two behaviors for ftruncate() when length
exceeds the file length (note that truncate() is not specified at all in such an

Linux man-pages 6.13 2024-07-23 1078

truncate(2) System Calls Manual truncate(2)

environment): either returning an error, or extending the file. Like most UNIX imple-
mentations, Linux follows the XSI requirement when dealing with native filesystems.
However, some nonnative filesystems do not permit truncate() and ftruncate() to be
used to extend a file beyond its current length: a notable example on Linux is VFAT.

On some 32-bit architectures, the calling signature for these system calls differ, for the
reasons described in syscall(2).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.4BSD, SVr4 (first appeared in 4.2BSD).

The original Linux truncate() and ftruncate() system calls were not designed to han-
dle large file offsets. Consequently, Linux 2.4 added truncate64() and ftruncate64()
system calls that handle large files. However, these details can be ignored by applica-
tions using glibc, whose wrapper functions transparently employ the more recent sys-
tem calls where they are available.

NOTES
ftruncate() can also be used to set the size of a POSIX shared memory object; see
shm_open(3).

BUGS
A header file bug in glibc 2.12 meant that the minimum value of
_POSIX_C_SOURCE required to expose the declaration of ftruncate() was
200809L instead of 200112L. This has been fixed in later glibc versions.

SEE ALSO
truncate(1), open(2), stat(2), path_resolution(7)

Linux man-pages 6.13 2024-07-23 1079

umask(2) System Calls Manual umask(2)

NAME
umask - set file mode creation mask

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

mode_t umask(mode_t mask);

DESCRIPTION
umask() sets the calling process’s file mode creation mask (umask) to mask & 0777
(i.e., only the file permission bits of mask are used), and returns the previous value of
the mask.

The umask is used by open(2), mkdir(2), and other system calls that create files to
modify the permissions placed on newly created files or directories. Specifically, per-
missions in the umask are turned off from the mode argument to open(2) and
mkdir(2).

Alternatively, if the parent directory has a default ACL (see acl(5)), the umask is ig-
nored, the default ACL is inherited, the permission bits are set based on the inherited
ACL, and permission bits absent in the mode argument are turned off. For example,
the following default ACL is equivalent to a umask of 022:

u::rwx,g::r-x,o::r-x

Combining the effect of this default ACL with a mode argument of 0666 (rw-rw-rw-),
the resulting file permissions would be 0644 (rw-r--r--).

The constants that should be used to specify mask are described in inode(7).

The typical default value for the process umask is S_IWGRP | S_IWOTH (octal
022). In the usual case where the mode argument to open(2) is specified as:

S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH

(octal 0666) when creating a new file, the permissions on the resulting file will be:

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH

(because 0666 & ~022 = 0644; i.e. rw-r--r--).

RETURN VALUE
This system call always succeeds and the previous value of the mask is returned.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
A child process created via fork(2) inherits its parent’s umask. The umask is left un-
changed by execve(2).

It is impossible to use umask() to fetch a process’s umask without at the same time
changing it. A second call to umask() would then be needed to restore the umask.
The nonatomicity of these two steps provides the potential for races in multithreaded

Linux man-pages 6.13 2024-07-23 1080

umask(2) System Calls Manual umask(2)

programs.

Since Linux 4.7, the umask of any process can be viewed via the Umask field of
/proc/ pid /status. Inspecting this field in /proc/self/status allows a process to retrieve
its umask without at the same time changing it.

The umask setting also affects the permissions assigned to POSIX IPC objects
(mq_open(3), sem_open(3), shm_open(3)), FIFOs (mkfifo(3)), and UNIX domain
sockets (unix(7)) created by the process. The umask does not affect the permissions
assigned to System V IPC objects created by the process (using msgget(2), semget(2),
shmget(2)).

SEE ALSO
chmod(2), mkdir(2), open(2), stat(2), acl(5)

Linux man-pages 6.13 2024-07-23 1081

umount(2) System Calls Manual umount(2)

NAME
umount, umount2 - unmount filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mount.h>

int umount(const char *target);
int umount2(const char *target, int flags);

DESCRIPTION
umount() and umount2() remove the attachment of the (topmost) filesystem mounted
on target.

Appropriate privilege (Linux: the CAP_SYS_ADMIN capability) is required to un-
mount filesystems.

Linux 2.1.116 added the umount2() system call, which, like umount(), unmounts a
target, but allows additional flags controlling the behavior of the operation:

MNT_FORCE (since Linux 2.1.116)
Ask the filesystem to abort pending requests before attempting the unmount.
This may allow the unmount to complete without waiting for an inaccessible
server, but could cause data loss. If, after aborting requests, some processes
still have active references to the filesystem, the unmount will still fail. As at
Linux 4.12, MNT_FORCE is supported only on the following filesystems: 9p
(since Linux 2.6.16), ceph (since Linux 2.6.34), cifs (since Linux 2.6.12), fuse
(since Linux 2.6.16), lustre (since Linux 3.11), and NFS (since Linux 2.1.116).

MNT_DETACH (since Linux 2.4.11)
Perform a lazy unmount: make the mount unavailable for new accesses, imme-
diately disconnect the filesystem and all filesystems mounted below it from
each other and from the mount table, and actually perform the unmount when
the mount ceases to be busy.

MNT_EXPIRE (since Linux 2.6.8)
Mark the mount as expired. If a mount is not currently in use, then an initial
call to umount2() with this flag fails with the error EAGAIN, but marks the
mount as expired. The mount remains expired as long as it isn’t accessed by
any process. A second umount2() call specifying MNT_EXPIRE unmounts
an expired mount. This flag cannot be specified with either MNT_FORCE or
MNT_DETACH.

UMOUNT_NOFOLLOW (since Linux 2.6.34)
Don’t dereference target if it is a symbolic link. This flag allows security
problems to be avoided in set-user-ID-root programs that allow unprivileged
users to unmount filesystems.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

Linux man-pages 6.13 2024-07-23 1082

umount(2) System Calls Manual umount(2)

ERRORS
The error values given below result from filesystem type independent errors. Each
filesystem type may have its own special errors and its own special behavior. See the
Linux kernel source code for details.

EAGAIN
A call to umount2() specifying MNT_EXPIRE successfully marked an un-
busy filesystem as expired.

EBUSY
target could not be unmounted because it is busy.

EFAULT
target points outside the user address space.

EINVAL
target is not a mount point.

EINVAL
target is locked; see mount_namespaces(7).

EINVAL
umount2() was called with MNT_EXPIRE and either MNT_DETACH or
MNT_FORCE.

EINVAL (since Linux 2.6.34)
umount2() was called with an invalid flag value in flags.

ENAMETOOLONG
A pathname was longer than MAXPATHLEN.

ENOENT
A pathname was empty or had a nonexistent component.

ENOMEM
The kernel could not allocate a free page to copy filenames or data into.

EPERM
The caller does not have the required privileges.

STANDARDS
Linux.

HISTORY
MNT_DETACH and MNT_EXPIRE are available since glibc 2.11.

The original umount() function was called as umount(device) and would return
ENOTBLK when called with something other than a block device. In Linux 0.98p4,
a call umount(dir) was added, in order to support anonymous devices. In Linux
2.3.99-pre7, the call umount(device) was removed, leaving only umount(dir) (since
now devices can be mounted in more than one place, so specifying the device does not
suffice).

NOTES
umount() and shared mounts

Shared mounts cause any mount activity on a mount, including umount() operations,
to be forwarded to every shared mount in the peer group and every slave mount of that
peer group. This means that umount() of any peer in a set of shared mounts will

Linux man-pages 6.13 2024-07-23 1083

umount(2) System Calls Manual umount(2)

cause all of its peers to be unmounted and all of their slaves to be unmounted as well.

This propagation of unmount activity can be particularly surprising on systems where
every mount is shared by default. On such systems, recursively bind mounting the
root directory of the filesystem onto a subdirectory and then later unmounting that
subdirectory with MNT_DETACH will cause every mount in the mount namespace
to be lazily unmounted.

To ensure umount() does not propagate in this fashion, the mount may be remounted
using a mount(2) call with a mount_flags argument that includes both MS_REC and
MS_PRIVATE prior to umount() being called.

SEE ALSO
mount(2), mount_namespaces(7), path_resolution(7), mount(8), umount(8)

Linux man-pages 6.13 2024-07-23 1084

uname(2) System Calls Manual uname(2)

NAME
uname - get name and information about current kernel

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *buf);

DESCRIPTION
uname() returns system information in the structure pointed to by buf . The utsname
struct is defined in <sys/utsname.h>:

struct utsname {
char sysname[]; /* Operating system name (e.g., "Linux") */
char nodename[]; /* Name within communications network

to which the node is attached, if any */
char release[]; /* Operating system release

(e.g., "2.6.28") */
char version[]; /* Operating system version */
char machine[]; /* Hardware type identifier */

#ifdef _GNU_SOURCE
char domainname[]; /* NIS or YP domain name */

#endif
};

The length of the arrays in a struct utsname is unspecified (see VERSIONS and HIS-
TORY); the fields are terminated by a null byte ('\0').

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EFAULT

buf is not valid.

VERSIONS
The domainname member (the NIS or YP domain name) is a GNU extension.

The length of the fields in the struct varies. Some operating systems or libraries use a
hardcoded 9 or 33 or 65 or 257. Other systems use SYS_NMLN or _SYS_NMLN or
UTSLEN or _UTSNAME_LENGTH. Clearly, it is a bad idea to use any of these
constants; just use sizeof(...). SVr4 uses 257, "to support Internet hostnames" — this
is the largest value likely to be encountered in the wild.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD.

Linux man-pages 6.13 2024-07-23 1085

uname(2) System Calls Manual uname(2)

C library/kernel differences
Over time, increases in the size of the utsname structure have led to three successive
versions of uname(): sys_olduname() (slot __NR_oldolduname), sys_uname() (slot
__NR_olduname), and sys_newuname() (slot __NR_uname). The first one used
length 9 for all fields; the second used 65; the third also uses 65 but adds the domain-
name field. The glibc uname() wrapper function hides these details from applica-
tions, invoking the most recent version of the system call provided by the kernel.

NOTES
The kernel has the name, release, version, and supported machine type built in. Con-
versely, the nodename field is configured by the administrator to match the network
(this is what the BSD historically calls the "hostname", and is set via sethostname(2)).
Similarly, the domainname field is set via setdomainname(2).

Part of the utsname information is also accessible via /proc/sys/kernel/ {ostype, host-
name, osrelease, version, domainname}.

SEE ALSO
uname(1), getdomainname(2), gethostname(2), uts_namespaces(7)

Linux man-pages 6.13 2024-07-23 1086

UNIMPLEMENTED(2) System Calls Manual UNIMPLEMENTED(2)

NAME
afs_syscall, break, fattach, fdetach, ftime, getmsg, getpmsg, gtty, isastream, lock,
madvise1, mpx, prof, profil, putmsg, putpmsg, security, stty, tuxcall, ulimit, vserver -
unimplemented system calls

SYNOPSIS
Unimplemented system calls.

DESCRIPTION
These system calls are not implemented in the Linux kernel.

RETURN VALUE
These system calls always return -1 and set errno to ENOSYS.

NOTES
Note that ftime(3), profil(3), and ulimit(3) are implemented as library functions.

Some system calls, like alloc_hugepages(2), free_hugepages(2), ioperm(2), iopl(2),
and vm86(2) exist only on certain architectures.

Some system calls, like ipc(2), create_module(2), init_module(2), and delete_mod-
ule(2) exist only when the Linux kernel was built with support for them.

SEE ALSO
syscalls(2)

Linux man-pages 6.13 2024-05-02 1087

unlink(2) System Calls Manual unlink(2)

NAME
unlink, unlinkat - delete a name and possibly the file it refers to

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int unlink(const char *pathname);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int unlinkat(int dirfd , const char *pathname, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

unlinkat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
unlink() deletes a name from the filesystem. If that name was the last link to a file
and no processes have the file open, the file is deleted and the space it was using is
made available for reuse.

If the name was the last link to a file but any processes still have the file open, the file
will remain in existence until the last file descriptor referring to it is closed.

If the name referred to a symbolic link, the link is removed.

If the name referred to a socket, FIFO, or device, the name for it is removed but
processes which have the object open may continue to use it.

unlinkat()
The unlinkat() system call operates in exactly the same way as either unlink() or
rmdir(2) (depending on whether or not flags includes the AT_REMOVEDIR flag)
except for the differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by unlink() and rmdir(2) for a relative
pathname).

If the pathname given in pathname is relative and dirfd is the special value AT_FD-
CWD, then pathname is interpreted relative to the current working directory of the
calling process (like unlink() and rmdir(2)).

If the pathname given in pathname is absolute, then dirfd is ignored.

flags is a bit mask that can either be specified as 0, or by ORing together flag values
that control the operation of unlinkat(). Currently, only one such flag is defined:

AT_REMOVEDIR
By default, unlinkat() performs the equivalent of unlink() on pathname. If
the AT_REMOVEDIR flag is specified, it performs the equivalent of rmdir(2)

Linux man-pages 6.13 2024-07-23 1088

unlink(2) System Calls Manual unlink(2)

on pathname.

See openat(2) for an explanation of the need for unlinkat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

Write access to the directory containing pathname is not allowed for the
process’s effective UID, or one of the directories in pathname did not allow
search permission. (See also path_resolution(7).)

EBUSY
The file pathname cannot be unlinked because it is being used by the system
or another process; for example, it is a mount point or the NFS client software
created it to represent an active but otherwise nameless inode ("NFS silly re-
named").

EFAULT
pathname points outside your accessible address space.

EIO An I/O error occurred.

EISDIR
pathname refers to a directory. (This is the non-POSIX value returned since
Linux 2.1.132.)

ELOOP
Too many symbolic links were encountered in translating pathname.

ENAMETOOLONG
pathname was too long.

ENOENT
A component in pathname does not exist or is a dangling symbolic link, or
pathname is empty.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component used as a directory in pathname is not, in fact, a directory.

EPERM
The system does not allow unlinking of directories, or unlinking of directories
requires privileges that the calling process doesn’t have. (This is the POSIX
prescribed error return; as noted above, Linux returns EISDIR for this case.)

EPERM (Linux only)
The filesystem does not allow unlinking of files.

EPERM or EACCES
The directory containing pathname has the sticky bit (S_ISVTX) set and the
process’s effective UID is neither the UID of the file to be deleted nor that of
the directory containing it, and the process is not privileged (Linux: does not
have the CAP_FOWNER capability).

Linux man-pages 6.13 2024-07-23 1089

unlink(2) System Calls Manual unlink(2)

EPERM
The file to be unlinked is marked immutable or append-only. (See
FS_IOC_SETFLAGS(2const).)

EROFS
pathname refers to a file on a read-only filesystem.

The same errors that occur for unlink() and rmdir(2) can also occur for unlinkat().
The following additional errors can occur for unlinkat():

EBADF
pathname is relative but dirfd is neither AT_FDCWD nor a valid file descrip-
tor.

EINVAL
An invalid flag value was specified in flags.

EISDIR
pathname refers to a directory, and AT_REMOVEDIR was not specified in
flags.

ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than a
directory.

STANDARDS
POSIX.1-2008.

HISTORY
unlink()

SVr4, 4.3BSD, POSIX.1-2001.

unlinkat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

glibc
On older kernels where unlinkat() is unavailable, the glibc wrapper function falls
back to the use of unlink() or rmdir(2). When pathname is a relative pathname, glibc
constructs a pathname based on the symbolic link in /proc/self/fd that corresponds to
the dirfd argument.

BUGS
Infelicities in the protocol underlying NFS can cause the unexpected disappearance of
files which are still being used.

SEE ALSO
rm(1), unlink(1), chmod(2), link(2), mknod(2), open(2), rename(2), rmdir(2), mk-
fifo(3), remove(3), path_resolution(7), symlink(7)

Linux man-pages 6.13 2024-07-23 1090

unshare(2) System Calls Manual unshare(2)

NAME
unshare - disassociate parts of the process execution context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE
#include <sched.h>

int unshare(int flags);

DESCRIPTION
unshare() allows a process (or thread) to disassociate parts of its execution context
that are currently being shared with other processes (or threads). Part of the execution
context, such as the mount namespace, is shared implicitly when a new process is cre-
ated using fork(2) or vfork(2), while other parts, such as virtual memory, may be
shared by explicit request when creating a process or thread using clone(2).

The main use of unshare() is to allow a process to control its shared execution context
without creating a new process.

The flags argument is a bit mask that specifies which parts of the execution context
should be unshared. This argument is specified by ORing together zero or more of the
following constants:

CLONE_FILES
Reverse the effect of the clone(2) CLONE_FILES flag. Unshare the file de-
scriptor table, so that the calling process no longer shares its file descriptors
with any other process.

CLONE_FS
Reverse the effect of the clone(2) CLONE_FS flag. Unshare filesystem attrib-
utes, so that the calling process no longer shares its root directory (chroot(2)),
current directory (chdir(2)), or umask (umask(2)) attributes with any other
process.

CLONE_NEWCGROUP (since Linux 4.6)
This flag has the same effect as the clone(2) CLONE_NEWCGROUP flag.
Unshare the cgroup namespace. Use of CLONE_NEWCGROUP requires
the CAP_SYS_ADMIN capability.

CLONE_NEWIPC (since Linux 2.6.19)
This flag has the same effect as the clone(2) CLONE_NEWIPC flag. Un-
share the IPC namespace, so that the calling process has a private copy of the
IPC namespace which is not shared with any other process. Specifying this
flag automatically implies CLONE_SYSVSEM as well. Use of
CLONE_NEWIPC requires the CAP_SYS_ADMIN capability.

CLONE_NEWNET (since Linux 2.6.24)
This flag has the same effect as the clone(2) CLONE_NEWNET flag. Un-
share the network namespace, so that the calling process is moved into a new
network namespace which is not shared with any previously existing process.
Use of CLONE_NEWNET requires the CAP_SYS_ADMIN capability.

Linux man-pages 6.13 2024-07-23 1091

unshare(2) System Calls Manual unshare(2)

CLONE_NEWNS
This flag has the same effect as the clone(2) CLONE_NEWNS flag. Unshare
the mount namespace, so that the calling process has a private copy of its
namespace which is not shared with any other process. Specifying this flag
automatically implies CLONE_FS as well. Use of CLONE_NEWNS re-
quires the CAP_SYS_ADMIN capability. For further information, see
mount_namespaces(7).

CLONE_NEWPID (since Linux 3.8)
This flag has the same effect as the clone(2) CLONE_NEWPID flag. Un-
share the PID namespace, so that the calling process has a new PID namespace
for its children which is not shared with any previously existing process. The
calling process is not moved into the new namespace. The first child created
by the calling process will have the process ID 1 and will assume the role of
init(1) in the new namespace. CLONE_NEWPID automatically implies
CLONE_THREAD as well. Use of CLONE_NEWPID requires the
CAP_SYS_ADMIN capability. For further information, see pid_name-
spaces(7).

CLONE_NEWTIME (since Linux 5.6)
Unshare the time namespace, so that the calling process has a new time name-
space for its children which is not shared with any previously existing process.
The calling process is not moved into the new namespace. Use of
CLONE_NEWTIME requires the CAP_SYS_ADMIN capability. For fur-
ther information, see time_namespaces(7).

CLONE_NEWUSER (since Linux 3.8)
This flag has the same effect as the clone(2) CLONE_NEWUSER flag. Un-
share the user namespace, so that the calling process is moved into a new user
namespace which is not shared with any previously existing process. As with
the child process created by clone(2) with the CLONE_NEWUSER flag, the
caller obtains a full set of capabilities in the new namespace.

CLONE_NEWUSER requires that the calling process is not threaded; speci-
fying CLONE_NEWUSER automatically implies CLONE_THREAD.
Since Linux 3.9, CLONE_NEWUSER also automatically implies
CLONE_FS. CLONE_NEWUSER requires that the user ID and group ID
of the calling process are mapped to user IDs and group IDs in the user name-
space of the calling process at the time of the call.

For further information on user namespaces, see user_namespaces(7).

CLONE_NEWUTS (since Linux 2.6.19)
This flag has the same effect as the clone(2) CLONE_NEWUTS flag. Un-
share the UTS IPC namespace, so that the calling process has a private copy of
the UTS namespace which is not shared with any other process. Use of
CLONE_NEWUTS requires the CAP_SYS_ADMIN capability.

CLONE_SYSVSEM (since Linux 2.6.26)
This flag reverses the effect of the clone(2) CLONE_SYSVSEM flag. Un-
share System V semaphore adjustment (semadj) values, so that the calling
process has a new empty semadj list that is not shared with any other process.
If this is the last process that has a reference to the process’s current semadj

Linux man-pages 6.13 2024-07-23 1092

unshare(2) System Calls Manual unshare(2)

list, then the adjustments in that list are applied to the corresponding sema-
phores, as described in semop(2).

In addition, CLONE_THREAD, CLONE_SIGHAND, and CLONE_VM can be
specified in flags if the caller is single threaded (i.e., it is not sharing its address space
with another process or thread). In this case, these flags have no effect. (Note also
that specifying CLONE_THREAD automatically implies CLONE_VM, and speci-
fying CLONE_VM automatically implies CLONE_SIGHAND.) If the process is
multithreaded, then the use of these flags results in an error.

If flags is specified as zero, then unshare() is a no-op; no changes are made to the
calling process’s execution context.

RETURN VALUE
On success, zero returned. On failure, -1 is returned and errno is set to indicate the
error.

ERRORS
EINVAL

An invalid bit was specified in flags.

EINVAL
CLONE_THREAD, CLONE_SIGHAND, or CLONE_VM was specified in
flags, and the caller is multithreaded.

EINVAL
CLONE_NEWIPC was specified in flags, but the kernel was not configured
with the CONFIG_SYSVIPC and CONFIG_IPC_NS options.

EINVAL
CLONE_NEWNET was specified in flags, but the kernel was not configured
with the CONFIG_NET_NS option.

EINVAL
CLONE_NEWPID was specified in flags, but the kernel was not configured
with the CONFIG_PID_NS option.

EINVAL
CLONE_NEWUSER was specified in flags, but the kernel was not config-
ured with the CONFIG_USER_NS option.

EINVAL
CLONE_NEWUTS was specified in flags, but the kernel was not configured
with the CONFIG_UTS_NS option.

EINVAL
CLONE_NEWPID was specified in flags, but the process has previously
called unshare() with the CLONE_NEWPID flag.

ENOMEM
Cannot allocate sufficient memory to copy parts of caller’s context that need to
be unshared.

ENOSPC (since Linux 3.7)
CLONE_NEWPID was specified in flags, but the limit on the nesting depth
of PID namespaces would have been exceeded; see pid_namespaces(7).

Linux man-pages 6.13 2024-07-23 1093

unshare(2) System Calls Manual unshare(2)

ENOSPC (since Linux 4.9; beforehand EUSERS)
CLONE_NEWUSER was specified in flags, and the call would cause the
limit on the number of nested user namespaces to be exceeded. See
user_namespaces(7).

From Linux 3.11 to Linux 4.8, the error diagnosed in this case was EUSERS.

ENOSPC (since Linux 4.9)
One of the values in flags specified the creation of a new user namespace, but
doing so would have caused the limit defined by the corresponding file in
/proc/sys/user to be exceeded. For further details, see namespaces(7).

EPERM
The calling process did not have the required privileges for this operation.

EPERM
CLONE_NEWUSER was specified in flags, but either the effective user ID
or the effective group ID of the caller does not have a mapping in the parent
namespace (see user_namespaces(7)).

EPERM (since Linux 3.9)
CLONE_NEWUSER was specified in flags and the caller is in a chroot envi-
ronment (i.e., the caller’s root directory does not match the root directory of
the mount namespace in which it resides).

EUSERS (from Linux 3.11 to Linux 4.8)
CLONE_NEWUSER was specified in flags, and the limit on the number of
nested user namespaces would be exceeded. See the discussion of the
ENOSPC error above.

STANDARDS
Linux.

HISTORY
Linux 2.6.16.

NOTES
Not all of the process attributes that can be shared when a new process is created us-
ing clone(2) can be unshared using unshare(). In particular, as at kernel 3.8, un-
share() does not implement flags that reverse the effects of CLONE_SIGHAND,
CLONE_THREAD, or CLONE_VM. Such functionality may be added in the fu-
ture, if required.

Creating all kinds of namespace, except user namespaces, requires the
CAP_SYS_ADMIN capability. However, since creating a user namespace automati-
cally confers a full set of capabilities, creating both a user namespace and any other
type of namespace in the same unshare() call does not require the CAP_SYS_AD-
MIN capability in the original namespace.

EXAMPLES
The program below provides a simple implementation of the unshare(1) command,
which unshares one or more namespaces and executes the command supplied in its
command-line arguments. Here’s an example of the use of this program, running a
shell in a new mount namespace, and verifying that the original shell and the new
shell are in separate mount namespaces:

Linux man-pages 6.13 2024-07-23 1094

unshare(2) System Calls Manual unshare(2)

$ readlink /proc/$$/ns/mnt
mnt:[4026531840]
$ sudo ./unshare -m /bin/bash
readlink /proc/$$/ns/mnt
mnt:[4026532325]

The differing output of the two readlink(1) commands shows that the two shells are in
different mount namespaces.

Program source

/* unshare.c

A simple implementation of the unshare(1) command: unshare
namespaces and execute a command.

*/
#define _GNU_SOURCE
#include <err.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void
usage(char *pname)
{

fprintf(stderr, "Usage: %s [options] program [arg...]\n", pname);
fprintf(stderr, "Options can be:\n");
fprintf(stderr, " -C unshare cgroup namespace\n");
fprintf(stderr, " -i unshare IPC namespace\n");
fprintf(stderr, " -m unshare mount namespace\n");
fprintf(stderr, " -n unshare network namespace\n");
fprintf(stderr, " -p unshare PID namespace\n");
fprintf(stderr, " -t unshare time namespace\n");
fprintf(stderr, " -u unshare UTS namespace\n");
fprintf(stderr, " -U unshare user namespace\n");
exit(EXIT_FAILURE);

}

int
main(int argc, char *argv[])
{

int flags, opt;

flags = 0;

while ((opt = getopt(argc, argv, "CimnptuU")) != -1) {
switch (opt) {
case 'C': flags |= CLONE_NEWCGROUP; break;
case 'i': flags |= CLONE_NEWIPC; break;

Linux man-pages 6.13 2024-07-23 1095

unshare(2) System Calls Manual unshare(2)

case 'm': flags |= CLONE_NEWNS; break;
case 'n': flags |= CLONE_NEWNET; break;
case 'p': flags |= CLONE_NEWPID; break;
case 't': flags |= CLONE_NEWTIME; break;
case 'u': flags |= CLONE_NEWUTS; break;
case 'U': flags |= CLONE_NEWUSER; break;
default: usage(argv[0]);
}

}

if (optind >= argc)
usage(argv[0]);

if (unshare(flags) == -1)
err(EXIT_FAILURE, "unshare");

execvp(argv[optind], &argv[optind]);
err(EXIT_FAILURE, "execvp");

}

SEE ALSO
unshare(1), clone(2), fork(2), kcmp(2), setns(2), vfork(2), namespaces(7)

Documentation/userspace-api/unshare.rst in the Linux kernel source tree (or Docu-
mentation/unshare.txt before Linux 4.12)

Linux man-pages 6.13 2024-07-23 1096

uretprobe(2) System Calls Manual uretprobe(2)

NAME
uretprobe - execute pending return uprobes

SYNOPSIS
int uretprobe(void);

DESCRIPTION
uretprobe() is an alternative to breakpoint instructions for triggering return uprobe
consumers.

Calls to uretprobe() are only made from the user-space trampoline provided by the
kernel. Calls from any other place result in a SIGILL.

RETURN VALUE
The return value is architecture-specific.

ERRORS
SIGILL

uretprobe() was called by a user-space program.

VERSIONS
The behavior varies across systems.

STANDARDS
None.

HISTORY
Linux 6.11.

uretprobe() was initially introduced for the x86_64 architecture where it was shown
to be faster than breakpoint traps. It might be extended to other architectures.

CAVEATS
uretprobe() exists only to allow the invocation of return uprobe consumers. It should
never be called directly.

Linux man-pages 6.13 2024-08-21 1097

uselib(2) System Calls Manual uselib(2)

NAME
uselib - load shared library

SYNOPSIS
#include <unistd.h>

[[deprecated]] int uselib(const char *library);

DESCRIPTION
The system call uselib() serves to load a shared library to be used by the calling
process. It is given a pathname. The address where to load is found in the library it-
self. The library can have any recognized binary format.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
In addition to all of the error codes returned by open(2) and mmap(2), the following
may also be returned:

EACCES
The library specified by library does not have read or execute permission, or
the caller does not have search permission for one of the directories in the path
prefix. (See also path_resolution(7).)

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOEXEC
The file specified by library is not an executable of a known type; for example,
it does not have the correct magic numbers.

STANDARDS
Linux.

HISTORY
This obsolete system call is not supported by glibc. No declaration is provided in
glibc headers, but, through a quirk of history, glibc before glibc 2.23 did export an
ABI for this system call. Therefore, in order to employ this system call, it was suffi-
cient to manually declare the interface in your code; alternatively, you could invoke
the system call using syscall(2).

In ancient libc versions (before glibc 2.0), uselib() was used to load the shared li-
braries with names found in an array of names in the binary.

Since Linux 3.15, this system call is available only when the kernel is configured with
the CONFIG_USELIB option.

SEE ALSO
ar(1), gcc(1), ld(1), ldd(1), mmap(2), open(2), dlopen(3), capabilities(7), ld.so(8)

Linux man-pages 6.13 2024-05-02 1098

userfaultfd(2) System Calls Manual userfaultfd(2)

NAME
userfaultfd - create a file descriptor for handling page faults in user space

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of O_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <linux/userfaultfd.h> /* Definition of UFFD_* constants */
#include <unistd.h>

int syscall(SYS_userfaultfd, int flags);

Note: glibc provides no wrapper for userfaultfd(), necessitating the use of syscall(2).

DESCRIPTION
userfaultfd() creates a new userfaultfd object that can be used for delegation of page-
fault handling to a user-space application, and returns a file descriptor that refers to
the new object. The new userfaultfd object is configured using ioctl(2).

Once the userfaultfd object is configured, the application can use read(2) to receive
userfaultfd notifications. The reads from userfaultfd may be blocking or non-block-
ing, depending on the value of flags used for the creation of the userfaultfd or subse-
quent calls to fcntl(2).

The following values may be bitwise ORed in flags to change the behavior of user-
faultfd():

O_CLOEXEC
Enable the close-on-exec flag for the new userfaultfd file descriptor. See the
description of the O_CLOEXEC flag in open(2).

O_NONBLOCK
Enables non-blocking operation for the userfaultfd object. See the description
of the O_NONBLOCK flag in open(2).

UFFD_USER_MODE_ONLY
This is an userfaultfd-specific flag that was introduced in Linux 5.11. When
set, the userfaultfd object will only be able to handle page faults originated
from the user space on the registered regions. When a kernel-originated fault
was triggered on the registered range with this userfaultfd, a SIGBUS signal
will be delivered.

When the last file descriptor referring to a userfaultfd object is closed, all memory
ranges that were registered with the object are unregistered and unread events are
flushed.

Userfaultfd supports three modes of registration:

UFFDIO_REGISTER_MODE_MISSING (since Linux 4.10)
When registered with UFFDIO_REGISTER_MODE_MISSING mode,
user-space will receive a page-fault notification when a missing page is ac-
cessed. The faulted thread will be stopped from execution until the page fault
is resolved from user-space by either an UFFDIO_COPY or an UFF-
DIO_ZEROPAGE ioctl.

Linux man-pages 6.13 2024-11-17 1099

userfaultfd(2) System Calls Manual userfaultfd(2)

UFFDIO_REGISTER_MODE_MINOR (since Linux 5.13)
When registered with UFFDIO_REGISTER_MODE_MINOR mode, user-
space will receive a page-fault notification when a minor page fault occurs.
That is, when a backing page is in the page cache, but page table entries don’t
yet exist. The faulted thread will be stopped from execution until the page
fault is resolved from user-space by an UFFDIO_CONTINUE ioctl.

UFFDIO_REGISTER_MODE_WP (since Linux 5.7)
When registered with UFFDIO_REGISTER_MODE_WP mode, user-space
will receive a page-fault notification when a write-protected page is written.
The faulted thread will be stopped from execution until user-space write-un-
protects the page using an UFFDIO_WRITEPROTECT ioctl.

Multiple modes can be enabled at the same time for the same memory range.

Since Linux 4.14, a userfaultfd page-fault notification can selectively embed faulting
thread ID information into the notification. One needs to enable this feature explicitly
using the UFFD_FEATURE_THREAD_ID feature bit when initializing the user-
faultfd context. By default, thread ID reporting is disabled.

Usage
The userfaultfd mechanism is designed to allow a thread in a multithreaded program
to perform user-space paging for the other threads in the process. When a page fault
occurs for one of the regions registered to the userfaultfd object, the faulting thread is
put to sleep and an event is generated that can be read via the userfaultfd file descrip-
tor. The fault-handling thread reads events from this file descriptor and services them
using the operations described in ioctl_userfaultfd(2). When servicing the page fault
events, the fault-handling thread can trigger a wake-up for the sleeping thread.

It is possible for the faulting threads and the fault-handling threads to run in the con-
text of different processes. In this case, these threads may belong to different pro-
grams, and the program that executes the faulting threads will not necessarily cooper-
ate with the program that handles the page faults. In such non-cooperative mode, the
process that monitors userfaultfd and handles page faults needs to be aware of the
changes in the virtual memory layout of the faulting process to avoid memory corrup-
tion.

Since Linux 4.11, userfaultfd can also notify the fault-handling threads about changes
in the virtual memory layout of the faulting process. In addition, if the faulting
process invokes fork(2), the userfaultfd objects associated with the parent may be du-
plicated into the child process and the userfaultfd monitor will be notified (via the
UFFD_EVENT_FORK described below) about the file descriptor associated with
the userfault objects created for the child process, which allows the userfaultfd moni-
tor to perform user-space paging for the child process. Unlike page faults which have
to be synchronous and require an explicit or implicit wakeup, all other events are de-
livered asynchronously and the non-cooperative process resumes execution as soon as
the userfaultfd manager executes read(2). The userfaultfd manager should carefully
synchronize calls to UFFDIO_COPY with the processing of events.

The current asynchronous model of the event delivery is optimal for single threaded
non-cooperative userfaultfd manager implementations.

Since Linux 5.7, userfaultfd is able to do synchronous page dirty tracking using the

Linux man-pages 6.13 2024-11-17 1100

userfaultfd(2) System Calls Manual userfaultfd(2)

new write-protect register mode. One should check against the feature bit
UFFD_FEATURE_PAGEFAULT_FLAG_WP before using this feature. Similar to
the original userfaultfd missing mode, the write-protect mode will generate a user-
faultfd notification when the protected page is written. The user needs to resolve the
page fault by unprotecting the faulted page and kicking the faulted thread to continue.
For more information, please refer to the "Userfaultfd write-protect mode" section.

Userfaultfd operation
After the userfaultfd object is created with userfaultfd(), the application must enable
it using the UFFDIO_API ioctl(2) operation. This operation allows a two-step hand-
shake between the kernel and user space to determine what API version and features
the kernel supports, and then to enable those features user space wants. This opera-
tion must be performed before any of the other ioctl(2) operations described below (or
those operations fail with the EINVAL error).

After a successful UFFDIO_API operation, the application then registers memory
address ranges using the UFFDIO_REGISTER ioctl(2) operation. After successful
completion of a UFFDIO_REGISTER operation, a page fault occurring in the re-
quested memory range, and satisfying the mode defined at the registration time, will
be forwarded by the kernel to the user-space application. The application can then use
various (e.g., UFFDIO_COPY, UFFDIO_ZEROPAGE, or UFFDIO_CONTINUE)
ioctl(2) operations to resolve the page fault.

Since Linux 4.14, if the application sets the UFFD_FEATURE_SIGBUS feature bit
using the UFFDIO_API ioctl(2), no page-fault notification will be forwarded to user
space. Instead a SIGBUS signal is delivered to the faulting process. With this fea-
ture, userfaultfd can be used for robustness purposes to simply catch any access to ar-
eas within the registered address range that do not have pages allocated, without hav-
ing to listen to userfaultfd events. No userfaultfd monitor will be required for dealing
with such memory accesses. For example, this feature can be useful for applications
that want to prevent the kernel from automatically allocating pages and filling holes in
sparse files when the hole is accessed through a memory mapping.

The UFFD_FEATURE_SIGBUS feature is implicitly inherited through fork(2) if
used in combination with UFFD_FEATURE_FORK.

Details of the various ioctl(2) operations can be found in ioctl_userfaultfd(2).

Since Linux 4.11, events other than page-fault may enabled during UFFDIO_API op-
eration.

Up to Linux 4.11, userfaultfd can be used only with anonymous private memory map-
pings. Since Linux 4.11, userfaultfd can be also used with hugetlbfs and shared mem-
ory mappings.

Userfaultfd write-protect mode (since Linux 5.7)
Since Linux 5.7, userfaultfd supports write-protect mode for anonymous memory.
The user needs to first check availability of this feature using UFFDIO_API ioctl
against the feature bit UFFD_FEATURE_PAGEFAULT_FLAG_WP before using
this feature.

Since Linux 5.19, the write-protection mode was also supported on shmem and
hugetlbfs memory types. It can be detected with the feature bit UFFD_FEA-
TURE_WP_HUGETLBFS_SHMEM.

Linux man-pages 6.13 2024-11-17 1101

userfaultfd(2) System Calls Manual userfaultfd(2)

To register with userfaultfd write-protect mode, the user needs to initiate the UFF-
DIO_REGISTER ioctl with mode UFFDIO_REGISTER_MODE_WP set. Note
that it is legal to monitor the same memory range with multiple modes. For example,
the user can do UFFDIO_REGISTER with the mode set to UFFDIO_REGIS-
TER_MODE_MISSING | UFFDIO_REGISTER_MODE_WP. When there is
only UFFDIO_REGISTER_MODE_WP registered, user-space will not receive any
notification when a missing page is written. Instead, user-space will receive a write-
protect page-fault notification only when an existing but write-protected page got
written.

After the UFFDIO_REGISTER ioctl completed with UFFDIO_REGIS-
TER_MODE_WP mode set, the user can write-protect any existing memory within
the range using the ioctl UFFDIO_WRITEPROTECT where uffdio_writepro-
tect.mode should be set to UFFDIO_WRITEPROTECT_MODE_WP.

When a write-protect event happens, user-space will receive a page-fault notification
whose uffd_msg.pagefault.flags will be with UFFD_PAGEFAULT_FLAG_WP flag
set. Note: since only writes can trigger this kind of fault, write-protect notifications
will always have the UFFD_PAGEFAULT_FLAG_WRITE bit set along with the
UFFD_PAGEFAULT_FLAG_WP bit.

To resolve a write-protection page fault, the user should initiate another UFF-
DIO_WRITEPROTECT ioctl, whose uffd_msg.pagefault.flags should have the flag
UFFDIO_WRITEPROTECT_MODE_WP cleared upon the faulted page or range.

Userfaultfd minor fault mode (since Linux 5.13)
Since Linux 5.13, userfaultfd supports minor fault mode. In this mode, fault messages
are produced not for major faults (where the page was missing), but rather for minor
faults, where a page exists in the page cache, but the page table entries are not yet
present. The user needs to first check availability of this feature using the UFF-
DIO_API ioctl with the appropriate feature bits set before using this feature:
UFFD_FEATURE_MINOR_HUGETLBFS since Linux 5.13, or UFFD_FEA-
TURE_MINOR_SHMEM since Linux 5.14.

To register with userfaultfd minor fault mode, the user needs to initiate the UFF-
DIO_REGISTER ioctl with mode UFFD_REGISTER_MODE_MINOR set.

When a minor fault occurs, user-space will receive a page-fault notification whose
uffd_msg.pagefault.flags will have the UFFD_PAGEFAULT_FLAG_MINOR flag
set.

To resolve a minor page fault, the handler should decide whether or not the existing
page contents need to be modified first. If so, this should be done in-place via a sec-
ond, non-userfaultfd-registered mapping to the same backing page (e.g., by mapping
the shmem or hugetlbfs file twice). Once the page is considered "up to date", the fault
can be resolved by initiating an UFFDIO_CONTINUE ioctl, which installs the page
table entries and (by default) wakes up the faulting thread(s).

Minor fault mode supports only hugetlbfs-backed (since Linux 5.13) and shmem-
backed (since Linux 5.14) memory.

Reading from the userfaultfd structure
Each read(2) from the userfaultfd file descriptor returns one or more uffd_msg struc-
tures, each of which describes a page-fault event or an event required for the non-

Linux man-pages 6.13 2024-11-17 1102

userfaultfd(2) System Calls Manual userfaultfd(2)

cooperative userfaultfd usage:

struct uffd_msg {
__u8 event; /* Type of event */
...
union {

struct {
__u64 flags; /* Flags describing fault */
__u64 address; /* Faulting address */
union {

__u32 ptid; /* Thread ID of the fault */
} feat;

} pagefault;

struct { /* Since Linux 4.11 */
__u32 ufd; /* Userfault file descriptor

of the child process */
} fork;

struct { /* Since Linux 4.11 */
__u64 from; /* Old address of remapped area */
__u64 to; /* New address of remapped area */
__u64 len; /* Original mapping size */

} remap;

struct { /* Since Linux 4.11 */
__u64 start; /* Start address of removed area */
__u64 end; /* End address of removed area */

} remove;
...

} arg;

/* Padding fields omitted */
} __packed;

If multiple events are available and the supplied buffer is large enough, read(2) returns
as many events as will fit in the supplied buffer. If the buffer supplied to read(2) is
smaller than the size of the uffd_msg structure, the read(2) fails with the error EIN-
VAL.

The fields set in the uffd_msg structure are as follows:

event The type of event. Depending of the event type, different fields of the arg
union represent details required for the event processing. The non-page-fault
events are generated only when appropriate feature is enabled during API
handshake with UFFDIO_API ioctl(2).

The following values can appear in the event field:

UFFD_EVENT_PAGEFAULT (since Linux 4.3)
A page-fault event. The page-fault details are available in the page-
fault field.

Linux man-pages 6.13 2024-11-17 1103

userfaultfd(2) System Calls Manual userfaultfd(2)

UFFD_EVENT_FORK (since Linux 4.11)
Generated when the faulting process invokes fork(2) (or clone(2) with-
out the CLONE_VM flag). The event details are available in the fork
field.

UFFD_EVENT_REMAP (since Linux 4.11)
Generated when the faulting process invokes mremap(2). The event
details are available in the remap field.

UFFD_EVENT_REMOVE (since Linux 4.11)
Generated when the faulting process invokes madvise(2) with
MADV_DONTNEED or MADV_REMOVE advice. The event de-
tails are available in the remove field.

UFFD_EVENT_UNMAP (since Linux 4.11)
Generated when the faulting process unmaps a memory range, either
explicitly using munmap(2) or implicitly during mmap(2) or
mremap(2). The event details are available in the remove field.

pagefault.address
The address that triggered the page fault.

pagefault.flags
A bit mask of flags that describe the event. For UFFD_EVENT_PAGE-
FAULT, the following flag may appear:

UFFD_PAGEFAULT_FLAG_WP
If this flag is set, then the fault was a write-protect fault.

UFFD_PAGEFAULT_FLAG_MINOR
If this flag is set, then the fault was a minor fault.

UFFD_PAGEFAULT_FLAG_WRITE
If this flag is set, then the fault was a write fault.

If neither UFFD_PAGEFAULT_FLAG_WP nor UFFD_PAGE-
FAULT_FLAG_MINOR are set, then the fault was a missing fault.

pagefault.feat.pid
The thread ID that triggered the page fault.

fork.ufd
The file descriptor associated with the userfault object created for the child
created by fork(2).

remap.from
The original address of the memory range that was remapped using
mremap(2).

remap.to
The new address of the memory range that was remapped using mremap(2).

remap.len
The original size of the memory range that was remapped using mremap(2).

remove.start
The start address of the memory range that was freed using madvise(2) or un-
mapped

Linux man-pages 6.13 2024-11-17 1104

userfaultfd(2) System Calls Manual userfaultfd(2)

remove.end
The end address of the memory range that was freed using madvise(2) or un-
mapped

A read(2) on a userfaultfd file descriptor can fail with the following errors:

EINVAL
The userfaultfd object has not yet been enabled using the UFFDIO_API
ioctl(2) operation

If the O_NONBLOCK flag is enabled in the associated open file description, the
userfaultfd file descriptor can be monitored with poll(2), select(2), and epoll(7).
When events are available, the file descriptor indicates as readable. If the O_NON-
BLOCK flag is not enabled, then poll(2) (always) indicates the file as having a
POLLERR condition, and select(2) indicates the file descriptor as both readable and
writable.

RETURN VALUE
On success, userfaultfd() returns a new file descriptor that refers to the userfaultfd
object. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

An unsupported value was specified in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient kernel memory was available.

EPERM (since Linux 5.2)
The caller is not privileged (does not have the CAP_SYS_PTRACE capabil-
ity in the initial user namespace), and /proc/sys/vm/unprivileged_userfaultfd
has the value 0.

STANDARDS
Linux.

HISTORY
Linux 4.3.

Support for hugetlbfs and shared memory areas and non-page-fault events was added
in Linux 4.11

NOTES
The userfaultfd mechanism can be used as an alternative to traditional user-space pag-
ing techniques based on the use of the SIGSEGV signal and mmap(2). It can also be
used to implement lazy restore for checkpoint/restore mechanisms, as well as post-
copy migration to allow (nearly) uninterrupted execution when transferring virtual
machines and Linux containers from one host to another.

Linux man-pages 6.13 2024-11-17 1105

userfaultfd(2) System Calls Manual userfaultfd(2)

BUGS
If the UFFD_FEATURE_EVENT_FORK is enabled and a system call from the
fork(2) family is interrupted by a signal or failed, a stale userfaultfd descriptor might
be created. In this case, a spurious UFFD_EVENT_FORK will be delivered to the
userfaultfd monitor.

EXAMPLES
The program below demonstrates the use of the userfaultfd mechanism. The program
creates two threads, one of which acts as the page-fault handler for the process, for the
pages in a demand-page zero region created using mmap(2).

The program takes one command-line argument, which is the number of pages that
will be created in a mapping whose page faults will be handled via userfaultfd. After
creating a userfaultfd object, the program then creates an anonymous private mapping
of the specified size and registers the address range of that mapping using the UFF-
DIO_REGISTER ioctl(2) operation. The program then creates a second thread that
will perform the task of handling page faults.

The main thread then walks through the pages of the mapping fetching bytes from
successive pages. Because the pages have not yet been accessed, the first access of a
byte in each page will trigger a page-fault event on the userfaultfd file descriptor.

Each of the page-fault events is handled by the second thread, which sits in a loop
processing input from the userfaultfd file descriptor. In each loop iteration, the second
thread first calls poll(2) to check the state of the file descriptor, and then reads an
event from the file descriptor. All such events should be UFFD_EVENT_PAGE-
FAULT events, which the thread handles by copying a page of data into the faulting
region using the UFFDIO_COPY ioctl(2) operation.

The following is an example of what we see when running the program:

$./userfaultfd_demo 3
Address returned by mmap() = 0x7fd30106c000

fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106c00f

(uffdio_copy.copy returned 4096)
Read address 0x7fd30106c00f in main(): A
Read address 0x7fd30106c40f in main(): A
Read address 0x7fd30106c80f in main(): A
Read address 0x7fd30106cc0f in main(): A

fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106d00f

(uffdio_copy.copy returned 4096)
Read address 0x7fd30106d00f in main(): B
Read address 0x7fd30106d40f in main(): B
Read address 0x7fd30106d80f in main(): B
Read address 0x7fd30106dc0f in main(): B

Linux man-pages 6.13 2024-11-17 1106

userfaultfd(2) System Calls Manual userfaultfd(2)

fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106e00f

(uffdio_copy.copy returned 4096)
Read address 0x7fd30106e00f in main(): C
Read address 0x7fd30106e40f in main(): C
Read address 0x7fd30106e80f in main(): C
Read address 0x7fd30106ec0f in main(): C

Program source

/* userfaultfd_demo.c

Licensed under the GNU General Public License version 2 or later.
*/
#define _GNU_SOURCE
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <linux/userfaultfd.h>
#include <poll.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <unistd.h>

static int page_size;

static void *
fault_handler_thread(void *arg)
{

int nready;
long uffd; /* userfaultfd file descriptor */
ssize_t nread;
struct pollfd pollfd;
struct uffdio_copy uffdio_copy;

static int fault_cnt = 0; /* Number of faults so far handled */
static char *page = NULL;
static struct uffd_msg msg; /* Data read from userfaultfd */

uffd = (long) arg;

/* Create a page that will be copied into the faulting region. */

Linux man-pages 6.13 2024-11-17 1107

userfaultfd(2) System Calls Manual userfaultfd(2)

if (page == NULL) {
page = mmap(NULL, page_size, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (page == MAP_FAILED)

err(EXIT_FAILURE, "mmap");
}

/* Loop, handling incoming events on the userfaultfd
file descriptor. */

for (;;) {

/* See what poll() tells us about the userfaultfd. */

pollfd.fd = uffd;
pollfd.events = POLLIN;
nready = poll(&pollfd, 1, -1);
if (nready == -1)

err(EXIT_FAILURE, "poll");

printf("\nfault_handler_thread():\n");
printf(" poll() returns: nready = %d; "

"POLLIN = %d; POLLERR = %d\n", nready,
(pollfd.revents & POLLIN) != 0,
(pollfd.revents & POLLERR) != 0);

/* Read an event from the userfaultfd. */

nread = read(uffd, &msg, sizeof(msg));
if (nread == 0) {

printf("EOF on userfaultfd!\n");
exit(EXIT_FAILURE);

}

if (nread == -1)
err(EXIT_FAILURE, "read");

/* We expect only one kind of event; verify that assumption. */

if (msg.event != UFFD_EVENT_PAGEFAULT) {
fprintf(stderr, "Unexpected event on userfaultfd\n");
exit(EXIT_FAILURE);

}

/* Display info about the page-fault event. */

printf(" UFFD_EVENT_PAGEFAULT event: ");
printf("flags = %"PRIx64"; ", msg.arg.pagefault.flags);

Linux man-pages 6.13 2024-11-17 1108

userfaultfd(2) System Calls Manual userfaultfd(2)

printf("address = %"PRIx64"\n", msg.arg.pagefault.address);

/* Copy the page pointed to by 'page' into the faulting
region. Vary the contents that are copied in, so that it
is more obvious that each fault is handled separately. */

memset(page, 'A' + fault_cnt % 20, page_size);
fault_cnt++;

uffdio_copy.src = (unsigned long) page;

/* We need to handle page faults in units of pages(!).
So, round faulting address down to page boundary. */

uffdio_copy.dst = (unsigned long) msg.arg.pagefault.address &
~(page_size - 1);

uffdio_copy.len = page_size;
uffdio_copy.mode = 0;
uffdio_copy.copy = 0;
if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1)

err(EXIT_FAILURE, "ioctl-UFFDIO_COPY");

printf(" (uffdio_copy.copy returned %"PRId64")\n",
uffdio_copy.copy);

}
}

int
main(int argc, char *argv[])
{

int s;
char c;
char *addr; /* Start of region handled by userfaultfd */
long uffd; /* userfaultfd file descriptor */
size_t size, i; /* Size of region handled by userfaultfd */
pthread_t thr; /* ID of thread that handles page faults */
struct uffdio_api uffdio_api;
struct uffdio_register uffdio_register;

if (argc != 2) {
fprintf(stderr, "Usage: %s num-pages\n", argv[0]);
exit(EXIT_FAILURE);

}

page_size = sysconf(_SC_PAGE_SIZE);
size = strtoull(argv[1], NULL, 0) * page_size;

/* Create and enable userfaultfd object. */

Linux man-pages 6.13 2024-11-17 1109

userfaultfd(2) System Calls Manual userfaultfd(2)

uffd = syscall(SYS_userfaultfd, O_CLOEXEC | O_NONBLOCK);
if (uffd == -1)

err(EXIT_FAILURE, "userfaultfd");

/* NOTE: Two-step feature handshake is not needed here, since this
example doesn’t require any specific features.

Programs that *do* should call UFFDIO_API twice: once with
‘features = 0‘ to detect features supported by this kernel, and
again with the subset of features the program actually wants to
enable. */

uffdio_api.api = UFFD_API;
uffdio_api.features = 0;
if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1)

err(EXIT_FAILURE, "ioctl-UFFDIO_API");

/* Create a private anonymous mapping. The memory will be
demand-zero paged--that is, not yet allocated. When we
actually touch the memory, it will be allocated via
the userfaultfd. */

addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

if (addr == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

printf("Address returned by mmap() = %p\n", addr);

/* Register the memory range of the mapping we just created for
handling by the userfaultfd object. In mode, we request to track
missing pages (i.e., pages that have not yet been faulted in). */

uffdio_register.range.start = (unsigned long) addr;
uffdio_register.range.len = size;
uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1)

err(EXIT_FAILURE, "ioctl-UFFDIO_REGISTER");

/* Create a thread that will process the userfaultfd events. */

s = pthread_create(&thr, NULL, fault_handler_thread, (void *) uffd);
if (s != 0) {

errc(EXIT_FAILURE, s, "pthread_create");
}

/* Main thread now touches memory in the mapping, touching
locations 1024 bytes apart. This will trigger userfaultfd
events for all pages in the region. */

Linux man-pages 6.13 2024-11-17 1110

userfaultfd(2) System Calls Manual userfaultfd(2)

i = 0xf; /* Ensure that faulting address is not on a page
boundary, in order to test that we correctly
handle that case in fault_handling_thread(). */

while (i < size) {
c = addr[i];
printf("Read address %p in %s(): ", addr + i, __func__);
printf("%c\n", c);
i += 1024;
usleep(100000); /* Slow things down a little */

}

exit(EXIT_SUCCESS);
}

SEE ALSO
fcntl(2), ioctl(2), ioctl_userfaultfd(2), madvise(2), mmap(2)

Documentation/admin-guide/mm/userfaultfd.rst in the Linux kernel source tree

Linux man-pages 6.13 2024-11-17 1111

ustat(2) System Calls Manual ustat(2)

NAME
ustat - get filesystem statistics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <unistd.h> /* libc[45] */
#include <ustat.h> /* glibc2 */

[[deprecated]] int ustat(dev_t dev, struct ustat *ubuf);

DESCRIPTION
ustat() returns information about a mounted filesystem. dev is a device number iden-
tifying a device containing a mounted filesystem. ubuf is a pointer to a ustat structure
that contains the following members:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Filsys name */
char f_fpack[6]; /* Filsys pack name */

The last two fields, f_fname and f_fpack, are not implemented and will always be
filled with null bytes ('\0').

RETURN VALUE
On success, zero is returned and the ustat structure pointed to by ubuf will be filled
in. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

ubuf points outside of your accessible address space.

EINVAL
dev does not refer to a device containing a mounted filesystem.

ENOSYS
The mounted filesystem referenced by dev does not support this operation, or
any version of Linux before Linux 1.3.16.

STANDARDS
None.

HISTORY
SVr4. Removed in glibc 2.28.

ustat() is deprecated and has been provided only for compatibility. All new programs
should use statfs(2) instead.

HP-UX notes
The HP-UX version of the ustat structure has an additional field, f_blksize, that is un-
known elsewhere. HP-UX warns: For some filesystems, the number of free inodes
does not change. Such filesystems will return -1 in the field f_tinode. For some
filesystems, inodes are dynamically allocated. Such filesystems will return the current
number of free inodes.

Linux man-pages 6.13 2024-07-23 1112

ustat(2) System Calls Manual ustat(2)

SEE ALSO
stat(2), statfs(2)

Linux man-pages 6.13 2024-07-23 1113

utime(2) System Calls Manual utime(2)

NAME
utime, utimes - change file last access and modification times

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <utime.h>

int utime(const char * filename,
const struct utimbuf *_Nullable times);

#include <sys/time.h>

int utimes(const char * filename,
const struct timeval times[_Nullable 2]);

DESCRIPTION
Note: modern applications may prefer to use the interfaces described in utimensat(2).

The utime() system call changes the access and modification times of the inode speci-
fied by filename to the actime and modtime fields of times respectively. The status
change time (ctime) will be set to the current time, even if the other time stamps don’t
actually change.

If times is NULL, then the access and modification times of the file are set to the cur-
rent time.

Changing timestamps is permitted when: either the process has appropriate privileges,
or the effective user ID equals the user ID of the file, or times is NULL and the
process has write permission for the file.

The utimbuf structure is:

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */

};

The utime() system call allows specification of timestamps with a resolution of 1 sec-
ond.

The utimes() system call is similar, but the times argument refers to an array rather
than a structure. The elements of this array are timeval structures, which allow a pre-
cision of 1 microsecond for specifying timestamps. The timeval structure is:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

};

times[0] specifies the new access time, and times[1] specifies the new modification
time. If times is NULL, then analogously to utime(), the access and modification
times of the file are set to the current time.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

Linux man-pages 6.13 2024-07-23 1114

utime(2) System Calls Manual utime(2)

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of
path (see also path_resolution(7)).

EACCES
times is NULL, the caller’s effective user ID does not match the owner of the
file, the caller does not have write access to the file, and the caller is not privi-
leged (Linux: does not have either the CAP_DAC_OVERRIDE or the
CAP_FOWNER capability).

EFAULT
filename points to an invalid address.

ENOENT
filename does not exist.

EPERM
times is not NULL, the caller’s effective UID does not match the owner of the
file, and the caller is not privileged (Linux: does not have the CAP_FOWNER
capability).

EROFS
path resides on a read-only filesystem.

STANDARDS
POSIX.1-2008.

HISTORY
utime()

SVr4, POSIX.1-2001. POSIX.1-2008 marks it as obsolete.

utimes()
4.3BSD, POSIX.1-2001.

NOTES
Linux does not allow changing the timestamps on an immutable file, or setting the
timestamps to something other than the current time on an append-only file.

SEE ALSO
chattr(1), touch(1), futimesat(2), stat(2), utimensat(2), futimens(3), futimes(3), in-
ode(7)

Linux man-pages 6.13 2024-07-23 1115

utimensat(2) System Calls Manual utimensat(2)

NAME
utimensat, futimens - change file timestamps with nanosecond precision

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int utimensat(int dirfd , const char *pathname,
const struct timespec times[_Nullable 2], int flags);

int futimens(int fd , const struct timespec times[_Nullable 2]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

utimensat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

futimens():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
utimensat() and futimens() update the timestamps of a file with nanosecond preci-
sion. This contrasts with the historical utime(2) and utimes(2), which permit only sec-
ond and microsecond precision, respectively, when setting file timestamps.

With utimensat() the file is specified via the pathname given in pathname. With futi-
mens() the file whose timestamps are to be updated is specified via an open file de-
scriptor, fd .

For both calls, the new file timestamps are specified in the array times: times[0] speci-
fies the new "last access time" (atime); times[1] specifies the new "last modification
time" (mtime). Each of the elements of times specifies a time as the number of sec-
onds and nanoseconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). This in-
formation is conveyed in a timespec(3) structure.

Updated file timestamps are set to the greatest value supported by the filesystem that
is not greater than the specified time.

If the tv_nsec field of one of the timespec structures has the special value
UTIME_NOW, then the corresponding file timestamp is set to the current time. If
the tv_nsec field of one of the timespec structures has the special value
UTIME_OMIT, then the corresponding file timestamp is left unchanged. In both of
these cases, the value of the corresponding tv_sec field is ignored.

If times is NULL, then both timestamps are set to the current time.

The status change time (ctime) will be set to the current time, even if the other time
stamps don’t actually change.

Linux man-pages 6.13 2024-07-23 1116

utimensat(2) System Calls Manual utimensat(2)

Permissions requirements
To set both file timestamps to the current time (i.e., times is NULL, or both tv_nsec
fields specify UTIME_NOW), either:

• the caller must have write access to the file;

• the caller’s effective user ID must match the owner of the file; or

• the caller must have appropriate privileges.

To make any change other than setting both timestamps to the current time (i.e., times
is not NULL, and neither tv_nsec field is UTIME_NOW and neither tv_nsec field is
UTIME_OMIT), either condition 2 or 3 above must apply.

If both tv_nsec fields are specified as UTIME_OMIT, then no file ownership or per-
mission checks are performed, and the file timestamps are not modified, but other er-
ror conditions may still be detected.

utimensat() specifics
If pathname is relative, then by default it is interpreted relative to the directory re-
ferred to by the open file descriptor, dirfd (rather than relative to the current working
directory of the calling process, as is done by utimes(2) for a relative pathname). See
openat(2) for an explanation of why this can be useful.

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like
utimes(2)).

If pathname is absolute, then dirfd is ignored.

The flags argument is a bit mask created by ORing together zero or more of the fol-
lowing values defined in <fcntl.h>:

AT_EMPTY_PATH (since Linux 5.8)
If pathname is an empty string, operate on the file referred to by dirfd (which
may have been obtained using the open(2) O_PATH flag). In this case, dirfd
can refer to any type of file, not just a directory. If dirfd is AT_FDCWD, the
call operates on the current working directory. This flag is Linux-specific; de-
fine _GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If pathname specifies a symbolic link, then update the timestamps of the link,
rather than the file to which it refers.

RETURN VALUE
On success, utimensat() and futimens() return 0. On error, -1 is returned and errno
is set to indicate the error.

ERRORS
EACCES

times is NULL, or both tv_nsec values are UTIME_NOW, and the effective
user ID of the caller does not match the owner of the file, the caller does not
have write access to the file, and the caller is not privileged (Linux: does not
have either the CAP_FOWNER or the CAP_DAC_OVERRIDE capability).

Linux man-pages 6.13 2024-07-23 1117

utimensat(2) System Calls Manual utimensat(2)

EBADF
(futimens()) fd is not a valid file descriptor.

EBADF
(utimensat()) pathname is relative but dirfd is neither AT_FDCWD nor a
valid file descriptor.

EFAULT
times pointed to an invalid address; or, dirfd was AT_FDCWD, and path-
name is NULL or an invalid address.

EINVAL
Invalid value in flags.

EINVAL
Invalid value in one of the tv_nsec fields (value outside range [0,
999,999,999], and not UTIME_NOW or UTIME_OMIT); or an invalid
value in one of the tv_sec fields.

EINVAL
pathname is NULL, dirfd is not AT_FDCWD, and flags contains AT_SYM-
LINK_NOFOLLOW.

ELOOP
(utimensat()) Too many symbolic links were encountered in resolving path-
name.

ENAMETOOLONG
(utimensat()) pathname is too long.

ENOENT
(utimensat()) A component of pathname does not refer to an existing direc-
tory or file, or pathname is an empty string.

ENOTDIR
(utimensat()) pathname is a relative pathname, but dirfd is neither AT_FD-
CWD nor a file descriptor referring to a directory; or, one of the prefix compo-
nents of pathname is not a directory.

EPERM
The caller attempted to change one or both timestamps to a value other than
the current time, or to change one of the timestamps to the current time while
leaving the other timestamp unchanged, (i.e., times is not NULL, neither
tv_nsec field is UTIME_NOW, and neither tv_nsec field is UTIME_OMIT)
and either:

• the caller’s effective user ID does not match the owner of file, and the
caller is not privileged (Linux: does not have the CAP_FOWNER capabil-
ity); or,

• the file is marked append-only or immutable (see chattr(1)).

EROFS
The file is on a read-only filesystem.

Linux man-pages 6.13 2024-07-23 1118

utimensat(2) System Calls Manual utimensat(2)

ESRCH
(utimensat()) Search permission is denied for one of the prefix components of
pathname.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeutimensat(), futimens()

VERSIONS
C library/kernel ABI differences

On Linux, futimens() is a library function implemented on top of the utimensat()
system call. To support this, the Linux utimensat() system call implements a non-
standard feature: if pathname is NULL, then the call modifies the timestamps of the
file referred to by the file descriptor dirfd (which may refer to any type of file). Using
this feature, the call futimens(fd, times) is implemented as:

utimensat(fd, NULL, times, 0);

Note, however, that the glibc wrapper for utimensat() disallows passing NULL as the
value for pathname: the wrapper function returns the error EINVAL in this case.

STANDARDS
POSIX.1-2008.

VERSIONS
utimensat()

Linux 2.6.22, glibc 2.6. POSIX.1-2008.

futimens()
glibc 2.6. POSIX.1-2008.

NOTES
utimensat() obsoletes futimesat(2).

On Linux, timestamps cannot be changed for a file marked immutable, and the only
change permitted for files marked append-only is to set the timestamps to the current
time. (This is consistent with the historical behavior of utime(2) and utimes(2) on
Linux.)

If both tv_nsec fields are specified as UTIME_OMIT, then the Linux implementation
of utimensat() succeeds even if the file referred to by dirfd and pathname does not
exist.

BUGS
Several bugs afflict utimensat() and futimens() before Linux 2.6.26. These bugs are
either nonconformances with the POSIX.1 draft specification or inconsistencies with
historical Linux behavior.

• POSIX.1 specifies that if one of the tv_nsec fields has the value UTIME_NOW or
UTIME_OMIT, then the value of the corresponding tv_sec field should be ig-
nored. Instead, the value of the tv_sec field is required to be 0 (or the error EIN-
VAL results).

Linux man-pages 6.13 2024-07-23 1119

utimensat(2) System Calls Manual utimensat(2)

• Various bugs mean that for the purposes of permission checking, the case where
both tv_nsec fields are set to UTIME_NOW isn’t always treated the same as
specifying times as NULL, and the case where one tv_nsec value is
UTIME_NOW and the other is UTIME_OMIT isn’t treated the same as specify-
ing times as a pointer to an array of structures containing arbitrary time values.
As a result, in some cases: a) file timestamps can be updated by a process that
shouldn’t have permission to perform updates; b) file timestamps can’t be updated
by a process that should have permission to perform updates; and c) the wrong er-
rno value is returned in case of an error.

• POSIX.1 says that a process that has write access to the file can make a call with
times as NULL, or with times pointing to an array of structures in which both
tv_nsec fields are UTIME_NOW, in order to update both timestamps to the cur-
rent time. However, futimens() instead checks whether the access mode of the file
descriptor allows writing.

SEE ALSO
chattr(1), touch(1), futimesat(2), openat(2), stat(2), utimes(2), futimes(3), time-
spec(3), inode(7), path_resolution(7), symlink(7)

Linux man-pages 6.13 2024-07-23 1120

vfork(2) System Calls Manual vfork(2)

NAME
vfork - create a child process and block parent

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t vfork(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vfork():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
Standard description

(From POSIX.1) The vfork() function has the same effect as fork(2), except that the
behavior is undefined if the process created by vfork() either modifies any data other
than a variable of type pid_t used to store the return value from vfork(), or returns
from the function in which vfork() was called, or calls any other function before suc-
cessfully calling _exit(2) or one of the exec(3) family of functions.

Linux description
vfork(), just like fork(2), creates a child process of the calling process. For details
and return value and errors, see fork(2).

vfork() is a special case of clone(2). It is used to create new processes without copy-
ing the page tables of the parent process. It may be useful in performance-sensitive
applications where a child is created which then immediately issues an execve(2).

vfork() differs from fork(2) in that the calling thread is suspended until the child ter-
minates (either normally, by calling _exit(2), or abnormally, after delivery of a fatal
signal), or it makes a call to execve(2). Until that point, the child shares all memory
with its parent, including the stack. The child must not return from the current func-
tion or call exit(3) (which would have the effect of calling exit handlers established by
the parent process and flushing the parent’s stdio(3) buffers), but may call _exit(2).

As with fork(2), the child process created by vfork() inherits copies of various of the
caller’s process attributes (e.g., file descriptors, signal dispositions, and current work-
ing directory); the vfork() call differs only in the treatment of the virtual address
space, as described above.

Signals sent to the parent arrive after the child releases the parent’s memory (i.e., after
the child terminates or calls execve(2)).

Historic description
Under Linux, fork(2) is implemented using copy-on-write pages, so the only penalty
incurred by fork(2) is the time and memory required to duplicate the parent’s page ta-
bles, and to create a unique task structure for the child. However, in the bad old days

Linux man-pages 6.13 2024-07-23 1121

vfork(2) System Calls Manual vfork(2)

a fork(2) would require making a complete copy of the caller’s data space, often need-
lessly, since usually immediately afterward an exec(3) is done. Thus, for greater effi-
ciency, BSD introduced the vfork() system call, which did not fully copy the address
space of the parent process, but borrowed the parent’s memory and thread of control
until a call to execve(2) or an exit occurred. The parent process was suspended while
the child was using its resources. The use of vfork() was tricky: for example, not
modifying data in the parent process depended on knowing which variables were held
in a register.

VERSIONS
The requirements put on vfork() by the standards are weaker than those put on
fork(2), so an implementation where the two are synonymous is compliant. In partic-
ular, the programmer cannot rely on the parent remaining blocked until the child ei-
ther terminates or calls execve(2), and cannot rely on any specific behavior with re-
spect to shared memory.

Some consider the semantics of vfork() to be an architectural blemish, and the
4.2BSD man page stated: “This system call will be eliminated when proper system
sharing mechanisms are implemented. Users should not depend on the memory shar-
ing semantics of vfork as it will, in that case, be made synonymous to fork.” How-
ever, even though modern memory management hardware has decreased the perfor-
mance difference between fork(2) and vfork(), there are various reasons why Linux
and other systems have retained vfork():

• Some performance-critical applications require the small performance advantage
conferred by vfork().

• vfork() can be implemented on systems that lack a memory-management unit
(MMU), but fork(2) can’t be implemented on such systems. (POSIX.1-2008 re-
moved vfork() from the standard; the POSIX rationale for the posix_spawn(3)
function notes that that function, which provides functionality equivalent to
fork(2)+exec(3), is designed to be implementable on systems that lack an MMU.)

• On systems where memory is constrained, vfork() avoids the need to temporarily
commit memory (see the description of /proc/sys/vm/overcommit_memory in
proc(5)) in order to execute a new program. (This can be especially beneficial
where a large parent process wishes to execute a small helper program in a child
process.) By contrast, using fork(2) in this scenario requires either committing an
amount of memory equal to the size of the parent process (if strict overcommitting
is in force) or overcommitting memory with the risk that a process is terminated
by the out-of-memory (OOM) killer.

Linux notes
Fork handlers established using pthread_atfork(3) are not called when a multithreaded
program employing the NPTL threading library calls vfork(). Fork handlers are
called in this case in a program using the LinuxThreads threading library. (See
pthreads(7) for a description of Linux threading libraries.)

A call to vfork() is equivalent to calling clone(2) with flags specified as:

CLONE_VM | CLONE_VFORK | SIGCHLD

Linux man-pages 6.13 2024-07-23 1122

vfork(2) System Calls Manual vfork(2)

STANDARDS
None.

HISTORY
4.3BSD; POSIX.1-2001 (but marked OBSOLETE). POSIX.1-2008 removes the
specification of vfork().

The vfork() system call appeared in 3.0BSD. In 4.4BSD it was made synonymous to
fork(2) but NetBSD introduced it again; see 〈http://www.netbsd.org/Documentation
/kernel/vfork.html〉. In Linux, it has been equivalent to fork(2) until Linux 2.2.0-pre6
or so. Since Linux 2.2.0-pre9 (on i386, somewhat later on other architectures) it is an
independent system call. Support was added in glibc 2.0.112.

CAVEATS
The child process should take care not to modify the memory in unintended ways,
since such changes will be seen by the parent process once the child terminates or ex-
ecutes another program. In this regard, signal handlers can be especially problematic:
if a signal handler that is invoked in the child of vfork() changes memory, those
changes may result in an inconsistent process state from the perspective of the parent
process (e.g., memory changes would be visible in the parent, but changes to the state
of open file descriptors would not be visible).

When vfork() is called in a multithreaded process, only the calling thread is sus-
pended until the child terminates or executes a new program. This means that the
child is sharing an address space with other running code. This can be dangerous if
another thread in the parent process changes credentials (using setuid(2) or similar),
since there are now two processes with different privilege levels running in the same
address space. As an example of the dangers, suppose that a multithreaded program
running as root creates a child using vfork(). After the vfork(), a thread in the parent
process drops the process to an unprivileged user in order to run some untrusted code
(e.g., perhaps via plug-in opened with dlopen(3)). In this case, attacks are possible
where the parent process uses mmap(2) to map in code that will be executed by the
privileged child process.

BUGS
Details of the signal handling are obscure and differ between systems. The BSD man
page states: "To avoid a possible deadlock situation, processes that are children in the
middle of a vfork() are never sent SIGTTOU or SIGTTIN signals; rather, output or
ioctls are allowed and input attempts result in an end-of-file indication."

SEE ALSO
clone(2), execve(2), _exit(2), fork(2), unshare(2), wait(2)

Linux man-pages 6.13 2024-07-23 1123

vhangup(2) System Calls Manual vhangup(2)

NAME
vhangup - virtually hangup the current terminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int vhangup(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vhangup():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
vhangup() simulates a hangup on the current terminal. This call arranges for other
users to have a “clean” terminal at login time.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EPERM

The calling process has insufficient privilege to call vhangup(); the
CAP_SYS_TTY_CONFIG capability is required.

STANDARDS
Linux.

SEE ALSO
init(1), capabilities(7)

Linux man-pages 6.13 2024-07-23 1124

vm86(2) System Calls Manual vm86(2)

NAME
vm86old, vm86 - enter virtual 8086 mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/vm86.h>

int vm86old(struct vm86_struct *info);
int vm86(unsigned long fn, struct vm86plus_struct *v86);

DESCRIPTION
The system call vm86() was introduced in Linux 0.97p2. In Linux 2.1.15 and 2.0.28,
it was renamed to vm86old(), and a new vm86() was introduced. The definition of
struct vm86_struct was changed in 1.1.8 and 1.1.9.

These calls cause the process to enter VM86 mode (virtual-8086 in Intel literature),
and are used by dosemu.

VM86 mode is an emulation of real mode within a protected mode task.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EFAULT

This return value is specific to i386 and indicates a problem with getting user-
space data.

ENOSYS
This return value indicates the call is not implemented on the present architec-
ture.

EPERM
Saved kernel stack exists. (This is a kernel sanity check; the saved stack
should exist only within vm86 mode itself.)

STANDARDS
Linux on 32-bit Intel processors.

Linux man-pages 6.13 2024-07-23 1125

vmsplice(2) System Calls Manual vmsplice(2)

NAME
vmsplice - splice user pages to/from a pipe

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h>

ssize_t vmsplice(int fd , const struct iovec *iov,
size_t nr_segs, unsigned int flags);

DESCRIPTION
If fd is opened for writing, the vmsplice() system call maps nr_segs ranges of user
memory described by iov into a pipe. If fd is opened for reading, the vmsplice() sys-
tem call fills nr_segs ranges of user memory described by iov from a pipe. The file
descriptor fd must refer to a pipe.

The pointer iov points to an array of iovec structures as described in iovec(3type).

The flags argument is a bit mask that is composed by ORing together zero or more of
the following values:

SPLICE_F_MOVE
Unused for vmsplice(); see splice(2).

SPLICE_F_NONBLOCK
Do not block on I/O; see splice(2) for further details.

SPLICE_F_MORE
Currently has no effect for vmsplice(), but may be implemented in the future;
see splice(2).

SPLICE_F_GIFT
The user pages are a gift to the kernel. The application may not modify this
memory ever, otherwise the page cache and on-disk data may differ. Gifting
pages to the kernel means that a subsequent splice(2) SPLICE_F_MOVE can
successfully move the pages; if this flag is not specified, then a subsequent
splice(2) SPLICE_F_MOVE must copy the pages. Data must also be prop-
erly page aligned, both in memory and length.

RETURN VALUE
Upon successful completion, vmsplice() returns the number of bytes transferred to the
pipe. On error, vmsplice() returns -1 and errno is set to indicate the error.

ERRORS
EAGAIN

SPLICE_F_NONBLOCK was specified in flags, and the operation would
block.

EBADF
fd either not valid, or doesn’t refer to a pipe.

EINVAL
nr_segs is greater than IOV_MAX; or memory not aligned if
SPLICE_F_GIFT set.

Linux man-pages 6.13 2024-07-23 1126

vmsplice(2) System Calls Manual vmsplice(2)

ENOMEM
Out of memory.

STANDARDS
Linux.

HISTORY
Linux 2.6.17, glibc 2.5.

NOTES
vmsplice() follows the other vectorized read/write type functions when it comes to
limitations on the number of segments being passed in. This limit is IOV_MAX as
defined in <limits.h>. Currently, this limit is 1024.

vmsplice() really supports true splicing only from user memory to a pipe. In the op-
posite direction, it actually just copies the data to user space. But this makes the inter-
face nice and symmetric and enables people to build on vmsplice() with room for fu-
ture improvement in performance.

SEE ALSO
splice(2), tee(2), pipe(7)

Linux man-pages 6.13 2024-07-23 1127

wait(2) System Calls Manual wait(2)

NAME
wait, waitpid, waitid - wait for process to change state

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/wait.h>

pid_t wait(int *_Nullable wstatus);
pid_t waitpid(pid_t pid , int *_Nullable wstatus, int options);

int waitid(idtype_t idtype, id_t id , siginfo_t *infop, int options);
/* This is the glibc and POSIX interface; see

VERSIONS for information on the raw system call. */

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

waitid():
Since glibc 2.26:

_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200809L
glibc 2.25 and earlier:

_XOPEN_SOURCE
|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
All of these system calls are used to wait for state changes in a child of the calling
process, and obtain information about the child whose state has changed. A state
change is considered to be: the child terminated; the child was stopped by a signal; or
the child was resumed by a signal. In the case of a terminated child, performing a
wait allows the system to release the resources associated with the child; if a wait is
not performed, then the terminated child remains in a "zombie" state (see NOTES be-
low).

If a child has already changed state, then these calls return immediately. Otherwise,
they block until either a child changes state or a signal handler interrupts the call (as-
suming that system calls are not automatically restarted using the SA_RESTART flag
of sigaction(2)). In the remainder of this page, a child whose state has changed and
which has not yet been waited upon by one of these system calls is termed waitable.

wait() and waitpid()
The wait() system call suspends execution of the calling thread until one of its chil-
dren terminates. The call wait(&wstatus) is equivalent to:

waitpid(-1, &wstatus, 0);

The waitpid() system call suspends execution of the calling thread until a child speci-
fied by pid argument has changed state. By default, waitpid() waits only for termi-
nated children, but this behavior is modifiable via the options argument, as described
below.

The value of pid can be:

Linux man-pages 6.13 2024-07-23 1128

wait(2) System Calls Manual wait(2)

< -1 meaning wait for any child process whose process group ID is equal to the ab-
solute value of pid .

-1 meaning wait for any child process.

0 meaning wait for any child process whose process group ID is equal to that of
the calling process at the time of the call to waitpid().

> 0 meaning wait for the child whose process ID is equal to the value of pid .

The value of options is an OR of zero or more of the following constants:

WNOHANG
return immediately if no child has exited.

WUNTRACED
also return if a child has stopped (but not traced via ptrace(2)). Status for
traced children which have stopped is provided even if this option is not speci-
fied.

WCONTINUED (since Linux 2.6.10)
also return if a stopped child has been resumed by delivery of SIGCONT.

(For Linux-only options, see below.)

If wstatus is not NULL, wait() and waitpid() store status information in the int to
which it points. This integer can be inspected with the following macros (which take
the integer itself as an argument, not a pointer to it, as is done in wait() and wait-
pid()!):

WIFEXITED(wstatus)
returns true if the child terminated normally, that is, by calling exit(3) or
_exit(2), or by returning from main().

WEXITSTATUS(wstatus)
returns the exit status of the child. This consists of the least significant 8 bits
of the status argument that the child specified in a call to exit(3) or _exit(2) or
as the argument for a return statement in main(). This macro should be em-
ployed only if WIFEXITED returned true.

WIFSIGNALED(wstatus)
returns true if the child process was terminated by a signal.

WTERMSIG(wstatus)
returns the number of the signal that caused the child process to terminate.
This macro should be employed only if WIFSIGNALED returned true.

WCOREDUMP(wstatus)
returns true if the child produced a core dump (see core(5)). This macro
should be employed only if WIFSIGNALED returned true.

This macro is not specified in POSIX.1-2001 and is not available on some
UNIX implementations (e.g., AIX, SunOS). Therefore, enclose its use inside
#ifdef WCOREDUMP ... #endif .

WIFSTOPPED(wstatus)
returns true if the child process was stopped by delivery of a signal; this is pos-
sible only if the call was done using WUNTRACED or when the child is

Linux man-pages 6.13 2024-07-23 1129

wait(2) System Calls Manual wait(2)

being traced (see ptrace(2)).

WSTOPSIG(wstatus)
returns the number of the signal which caused the child to stop. This macro
should be employed only if WIFSTOPPED returned true.

WIFCONTINUED(wstatus)
(since Linux 2.6.10) returns true if the child process was resumed by delivery
of SIGCONT.

waitid()
The waitid() system call (available since Linux 2.6.9) provides more precise control
over which child state changes to wait for.

The idtype and id arguments select the child(ren) to wait for, as follows:

idtype == P_PID
Wait for the child whose process ID matches id .

idtype == P_PIDFD (since Linux 5.4)
Wait for the child referred to by the PID file descriptor specified in id . (See
pidfd_open(2) for further information on PID file descriptors.)

idtype == P_PGID
Wait for any child whose process group ID matches id . Since Linux 5.4, if id
is zero, then wait for any child that is in the same process group as the caller’s
process group at the time of the call.

idtype == P_ALL
Wait for any child; id is ignored.

The child state changes to wait for are specified by ORing one or more of the follow-
ing flags in options:

WEXITED
Wait for children that have terminated.

WSTOPPED
Wait for children that have been stopped by delivery of a signal.

WCONTINUED
Wait for (previously stopped) children that have been resumed by delivery of
SIGCONT.

The following flags may additionally be ORed in options:

WNOHANG
As for waitpid().

WNOWAIT
Leave the child in a waitable state; a later wait call can be used to again re-
trieve the child status information.

Upon successful return, waitid() fills in the following fields of the siginfo_t structure
pointed to by infop:

si_pid The process ID of the child.

Linux man-pages 6.13 2024-07-23 1130

wait(2) System Calls Manual wait(2)

si_uid The real user ID of the child. (This field is not set on most other implementa-
tions.)

si_signo
Always set to SIGCHLD.

si_status
Either the exit status of the child, as given to _exit(2) (or exit(3)), or the signal
that caused the child to terminate, stop, or continue. The si_code field can be
used to determine how to interpret this field.

si_code
Set to one of: CLD_EXITED (child called _exit(2)); CLD_KILLED (child
killed by signal); CLD_DUMPED (child killed by signal, and dumped core);
CLD_STOPPED (child stopped by signal); CLD_TRAPPED (traced child
has trapped); or CLD_CONTINUED (child continued by SIGCONT).

If WNOHANG was specified in options and there were no children in a waitable
state, then waitid() returns 0 immediately and the state of the siginfo_t structure
pointed to by infop depends on the implementation. To (portably) distinguish this
case from that where a child was in a waitable state, zero out the si_pid field before
the call and check for a nonzero value in this field after the call returns.

POSIX.1-2008 Technical Corrigendum 1 (2013) adds the requirement that when
WNOHANG is specified in options and there were no children in a waitable state,
then waitid() should zero out the si_pid and si_signo fields of the structure. On
Linux and other implementations that adhere to this requirement, it is not necessary to
zero out the si_pid field before calling waitid(). However, not all implementations
follow the POSIX.1 specification on this point.

RETURN VALUE
wait(): on success, returns the process ID of the terminated child; on failure, -1 is re-
turned.

waitpid(): on success, returns the process ID of the child whose state has changed; if
WNOHANG was specified and one or more child(ren) specified by pid exist, but
have not yet changed state, then 0 is returned. On failure, -1 is returned.

waitid(): returns 0 on success or if WNOHANG was specified and no child(ren)
specified by id has yet changed state; on failure, -1 is returned.

On failure, each of these calls sets errno to indicate the error.

ERRORS
EAGAIN

The PID file descriptor specified in id is nonblocking and the process that it
refers to has not terminated.

ECHILD
(for wait()) The calling process does not have any unwaited-for children.

ECHILD
(for waitpid() or waitid()) The process specified by pid (waitpid()) or idtype
and id (waitid()) does not exist or is not a child of the calling process. (This
can happen for one’s own child if the action for SIGCHLD is set to
SIG_IGN. See also the Linux Notes section about threads.)

Linux man-pages 6.13 2024-07-23 1131

wait(2) System Calls Manual wait(2)

EINTR
WNOHANG was not set and an unblocked signal or a SIGCHLD was
caught; see signal(7).

EINVAL
The options argument was invalid.

ESRCH
(for wait() or waitpid()) pid is equal to INT_MIN.

VERSIONS
C library/kernel differences

wait() is actually a library function that (in glibc) is implemented as a call to wait4(2).

On some architectures, there is no waitpid() system call; instead, this interface is im-
plemented via a C library wrapper function that calls wait4(2).

The raw waitid() system call takes a fifth argument, of type struct rusage *. If this ar-
gument is non-NULL, then it is used to return resource usage information about the
child, in the same manner as wait4(2). See getrusage(2) for details.

STANDARDS
POSIX.1-2008.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

NOTES
A child that terminates, but has not been waited for becomes a "zombie". The kernel
maintains a minimal set of information about the zombie process (PID, termination
status, resource usage information) in order to allow the parent to later perform a wait
to obtain information about the child. As long as a zombie is not removed from the
system via a wait, it will consume a slot in the kernel process table, and if this table
fills, it will not be possible to create further processes. If a parent process terminates,
then its "zombie" children (if any) are adopted by init(1), (or by the nearest "sub-
reaper" process as defined through the use of the prctl(2) PR_SET_CHILD_SUB-
REAPER operation); init(1) automatically performs a wait to remove the zombies.

POSIX.1-2001 specifies that if the disposition of SIGCHLD is set to SIG_IGN or the
SA_NOCLDWAIT flag is set for SIGCHLD (see sigaction(2)), then children that
terminate do not become zombies and a call to wait() or waitpid() will block until all
children have terminated, and then fail with errno set to ECHILD. (The original
POSIX standard left the behavior of setting SIGCHLD to SIG_IGN unspecified.
Note that even though the default disposition of SIGCHLD is "ignore", explicitly set-
ting the disposition to SIG_IGN results in different treatment of zombie process chil-
dren.)

Linux 2.6 conforms to the POSIX requirements. However, Linux 2.4 (and earlier)
does not: if a wait() or waitpid() call is made while SIGCHLD is being ignored, the
call behaves just as though SIGCHLD were not being ignored, that is, the call blocks
until the next child terminates and then returns the process ID and status of that child.

Linux notes
In the Linux kernel, a kernel-scheduled thread is not a distinct construct from a
process. Instead, a thread is simply a process that is created using the Linux-unique

Linux man-pages 6.13 2024-07-23 1132

wait(2) System Calls Manual wait(2)

clone(2) system call; other routines such as the portable pthread_create(3) call are im-
plemented using clone(2). Before Linux 2.4, a thread was just a special case of a
process, and as a consequence one thread could not wait on the children of another
thread, even when the latter belongs to the same thread group. However, POSIX pre-
scribes such functionality, and since Linux 2.4 a thread can, and by default will, wait
on children of other threads in the same thread group.

The following Linux-specific options are for use with children created using clone(2);
they can also, since Linux 4.7, be used with waitid():

__WCLONE
Wait for "clone" children only. If omitted, then wait for "non-clone" children
only. (A "clone" child is one which delivers no signal, or a signal other than
SIGCHLD to its parent upon termination.) This option is ignored if
__WALL is also specified.

__WALL (since Linux 2.4)
Wait for all children, regardless of type ("clone" or "non-clone").

__WNOTHREAD (since Linux 2.4)
Do not wait for children of other threads in the same thread group. This was
the default before Linux 2.4.

Since Linux 4.7, the __WALL flag is automatically implied if the child is being
ptraced.

BUGS
According to POSIX.1-2008, an application calling waitid() must ensure that infop
points to a siginfo_t structure (i.e., that it is a non-null pointer). On Linux, if infop is
NULL, waitid() succeeds, and returns the process ID of the waited-for child. Appli-
cations should avoid relying on this inconsistent, nonstandard, and unnecessary fea-
ture.

EXAMPLES
The following program demonstrates the use of fork(2) and waitpid(). The program
creates a child process. If no command-line argument is supplied to the program, then
the child suspends its execution using pause(2), to allow the user to send signals to the
child. Otherwise, if a command-line argument is supplied, then the child exits imme-
diately, using the integer supplied on the command line as the exit status. The parent
process executes a loop that monitors the child using waitpid(), and uses the W*()
macros described above to analyze the wait status value.

The following shell session demonstrates the use of the program:

$./a.out &
Child PID is 32360
[1] 32359
$ kill -STOP 32360
stopped by signal 19
$ kill -CONT 32360
continued
$ kill -TERM 32360
killed by signal 15
[1]+ Done ./a.out

Linux man-pages 6.13 2024-07-23 1133

wait(2) System Calls Manual wait(2)

$

Program source

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int wstatus;
pid_t cpid, w;

cpid = fork();
if (cpid == -1) {

perror("fork");
exit(EXIT_FAILURE);

}

if (cpid == 0) { /* Code executed by child */
printf("Child PID is %jd\n", (intmax_t) getpid());
if (argc == 1)

pause(); /* Wait for signals */
_exit(atoi(argv[1]));

} else { /* Code executed by parent */
do {

w = waitpid(cpid, &wstatus, WUNTRACED | WCONTINUED);
if (w == -1) {

perror("waitpid");
exit(EXIT_FAILURE);

}

if (WIFEXITED(wstatus)) {
printf("exited, status=%d\n", WEXITSTATUS(wstatus));

} else if (WIFSIGNALED(wstatus)) {
printf("killed by signal %d\n", WTERMSIG(wstatus));

} else if (WIFSTOPPED(wstatus)) {
printf("stopped by signal %d\n", WSTOPSIG(wstatus));

} else if (WIFCONTINUED(wstatus)) {
printf("continued\n");

}
} while (!WIFEXITED(wstatus) && !WIFSIGNALED(wstatus));
exit(EXIT_SUCCESS);

}

Linux man-pages 6.13 2024-07-23 1134

wait(2) System Calls Manual wait(2)

}

SEE ALSO
_exit(2), clone(2), fork(2), kill(2), ptrace(2), sigaction(2), signal(2), wait4(2),
pthread_create(3), core(5), credentials(7), signal(7)

Linux man-pages 6.13 2024-07-23 1135

wait4(2) System Calls Manual wait4(2)

NAME
wait3, wait4 - wait for process to change state, BSD style

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/wait.h>

pid_t wait3(int *_Nullable wstatus, int options,
struct rusage *_Nullable rusage);

pid_t wait4(pid_t pid , int *_Nullable wstatus, int options,
struct rusage *_Nullable rusage);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wait3():
Since glibc 2.26:

_DEFAULT_SOURCE
|| (_XOPEN_SOURCE >= 500 &&

! (_POSIX_C_SOURCE >= 200112L
|| _XOPEN_SOURCE >= 600))

From glibc 2.19 to glibc 2.25:
_DEFAULT_SOURCE || _XOPEN_SOURCE >= 500

glibc 2.19 and earlier:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

wait4():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
These functions are nonstandard; in new programs, the use of waitpid(2) or waitid(2)
is preferable.

The wait3() and wait4() system calls are similar to waitpid(2), but additionally return
resource usage information about the child in the structure pointed to by rusage.

Other than the use of the rusage argument, the following wait3() call:

wait3(wstatus, options, rusage);

is equivalent to:

waitpid(-1, wstatus, options);

Similarly, the following wait4() call:

wait4(pid, wstatus, options, rusage);

is equivalent to:

waitpid(pid, wstatus, options);

In other words, wait3() waits of any child, while wait4() can be used to select a spe-
cific child, or children, on which to wait. See wait(2) for further details.

Linux man-pages 6.13 2024-07-23 1136

wait4(2) System Calls Manual wait4(2)

If rusage is not NULL, the struct rusage to which it points will be filled with account-
ing information about the child. See getrusage(2) for details.

RETURN VALUE
As for waitpid(2).

ERRORS
As for waitpid(2).

STANDARDS
None.

HISTORY
4.3BSD.

SUSv1 included a specification of wait3(); SUSv2 included wait3(), but marked it
LEGACY; SUSv3 removed it.

Including <sys/time.h> is not required these days, but increases portability. (Indeed,
<sys/resource.h> defines the rusage structure with fields of type struct timeval de-
fined in <sys/time.h>.)

C library/kernel differences
On Linux, wait3() is a library function implemented on top of the wait4() system call.

SEE ALSO
fork(2), getrusage(2), sigaction(2), signal(2), wait(2), signal(7)

Linux man-pages 6.13 2024-07-23 1137

write(2) System Calls Manual write(2)

NAME
write - write to a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

ssize_t write(int fd , const void buf [.count], size_t count);

DESCRIPTION
write() writes up to count bytes from the buffer starting at buf to the file referred to
by the file descriptor fd .

The number of bytes written may be less than count if, for example, there is insuffi-
cient space on the underlying physical medium, or the RLIMIT_FSIZE resource
limit is encountered (see setrlimit(2)), or the call was interrupted by a signal handler
after having written less than count bytes. (See also pipe(7).)

For a seekable file (i.e., one to which lseek(2) may be applied, for example, a regular
file) writing takes place at the file offset, and the file offset is incremented by the num-
ber of bytes actually written. If the file was open(2)ed with O_APPEND, the file off-
set is first set to the end of the file before writing. The adjustment of the file offset
and the write operation are performed as an atomic step.

POSIX requires that a read(2) that can be proved to occur after a write() has returned
will return the new data. Note that not all filesystems are POSIX conforming.

According to POSIX.1, if count is greater than SSIZE_MAX, the result is implemen-
tation-defined; see NOTES for the upper limit on Linux.

RETURN VALUE
On success, the number of bytes written is returned. On error, -1 is returned, and er-
rno is set to indicate the error.

Note that a successful write() may transfer fewer than count bytes. Such partial
writes can occur for various reasons; for example, because there was insufficient
space on the disk device to write all of the requested bytes, or because a blocked
write() to a socket, pipe, or similar was interrupted by a signal handler after it had
transferred some, but before it had transferred all of the requested bytes. In the event
of a partial write, the caller can make another write() call to transfer the remaining
bytes. The subsequent call will either transfer further bytes or may result in an error
(e.g., if the disk is now full).

If count is zero and fd refers to a regular file, then write() may return a failure status
if one of the errors below is detected. If no errors are detected, or error detection is
not performed, 0 is returned without causing any other effect. If count is zero and fd
refers to a file other than a regular file, the results are not specified.

ERRORS
EAGAIN

The file descriptor fd refers to a file other than a socket and has been marked
nonblocking (O_NONBLOCK), and the write would block. See open(2) for
further details on the O_NONBLOCK flag.

Linux man-pages 6.13 2024-07-23 1138

write(2) System Calls Manual write(2)

EAGAIN or EWOULDBLOCK
The file descriptor fd refers to a socket and has been marked nonblocking
(O_NONBLOCK), and the write would block. POSIX.1-2001 allows either
error to be returned for this case, and does not require these constants to have
the same value, so a portable application should check for both possibilities.

EBADF
fd is not a valid file descriptor or is not open for writing.

EDESTADDRREQ
fd refers to a datagram socket for which a peer address has not been set using
connect(2).

EDQUOT
The user’s quota of disk blocks on the filesystem containing the file referred to
by fd has been exhausted.

EFAULT
buf is outside your accessible address space.

EFBIG
An attempt was made to write a file that exceeds the implementation-defined
maximum file size or the process’s file size limit, or to write at a position past
the maximum allowed offset.

EINTR
The call was interrupted by a signal before any data was written; see signal(7).

EINVAL
fd is attached to an object which is unsuitable for writing; or the file was
opened with the O_DIRECT flag, and either the address specified in buf , the
value specified in count, or the file offset is not suitably aligned.

EIO A low-level I/O error occurred while modifying the inode. This error may re-
late to the write-back of data written by an earlier write(), which may have
been issued to a different file descriptor on the same file. Since Linux 4.13, er-
rors from write-back come with a promise that they may be reported by subse-
quent. write() requests, and will be reported by a subsequent fsync(2)
(whether or not they were also reported by write())An alternate cause of EIO
on networked filesystems is when an advisory lock had been taken out on the
file descriptor and this lock has been lost. See the Lost locks section of fc-
ntl(2) for further details.

ENOSPC
The device containing the file referred to by fd has no room for the data.

EPERM
The operation was prevented by a file seal; see fcntl(2).

EPIPE
fd is connected to a pipe or socket whose reading end is closed. When this
happens the writing process will also receive a SIGPIPE signal. (Thus, the
write return value is seen only if the program catches, blocks or ignores this
signal.)

Other errors may occur, depending on the object connected to fd .

Linux man-pages 6.13 2024-07-23 1139

write(2) System Calls Manual write(2)

STANDARDS
POSIX.1-2008.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

Under SVr4 a write may be interrupted and return EINTR at any point, not just be-
fore any data is written.

NOTES
A successful return from write() does not make any guarantee that data has been com-
mitted to disk. On some filesystems, including NFS, it does not even guarantee that
space has successfully been reserved for the data. In this case, some errors might be
delayed until a future write(), fsync(2), or even close(2). The only way to be sure is
to call fsync(2) after you are done writing all your data.

If a write() is interrupted by a signal handler before any bytes are written, then the
call fails with the error EINTR; if it is interrupted after at least one byte has been
written, the call succeeds, and returns the number of bytes written.

On Linux, write() (and similar system calls) will transfer at most 0x7ffff000
(2,147,479,552) bytes, returning the number of bytes actually transferred. (This is
true on both 32-bit and 64-bit systems.)

An error return value while performing write() using direct I/O does not mean the en-
tire write has failed. Partial data may be written and the data at the file offset on
which the write() was attempted should be considered inconsistent.

BUGS
According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions with
Regular File Operations"):

All of the following functions shall be atomic with respect to each other in the
effects specified in POSIX.1-2008 when they operate on regular files or symbolic
links: ...

Among the APIs subsequently listed are write() and writev(2). And among the ef-
fects that should be atomic across threads (and processes) are updates of the file off-
set. However, before Linux 3.14, this was not the case: if two processes that share an
open file description (see open(2)) perform a write() (or writev(2)) at the same time,
then the I/O operations were not atomic with respect to updating the file offset, with
the result that the blocks of data output by the two processes might (incorrectly) over-
lap. This problem was fixed in Linux 3.14.

SEE ALSO
close(2), fcntl(2), fsync(2), ioctl(2), lseek(2), open(2), pwrite(2), read(2), select(2),
writev(2), fwrite(3)

Linux man-pages 6.13 2024-07-23 1140

FAT_IOCTL_GET_VOLUME_ID(2const) FAT_IOCTL_GET_VOLUME_ID(2const)

NAME
FAT_IOCTL_GET_VOLUME_ID - read the volume ID in a FAT filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/msdos_fs.h> /* Definition of FAT_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , FAT_IOCTL_GET_VOLUME_ID, uint32_t *id);

DESCRIPTION
FAT filesystems are identified by a volume ID. The volume ID can be read with
FAT_IOCTL_GET_VOLUME_ID.

The fd argument can be a file descriptor for any file or directory of the filesystem. It
is sufficient to create the file descriptor by calling open(2) with the O_RDONLY flag.

The id argument is a pointer to the field that will be filled with the volume ID. Typi-
cally the volume ID is displayed to the user as a group of two 16-bit fields:

printf("Volume ID %04x-%04x\n", id >> 16, id & 0xFFFF);

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

STANDARDS
Linux.

HISTORY
Linux 3.11.

EXAMPLES
The following program demonstrates the use of ioctl(2) to display the volume ID of a
FAT filesystem.

The following output was recorded when applying the program for directory
/mnt/user:

$./display_fat_volume_id /mnt/user
Volume ID 6443-6241

Program source (display_fat_volume_id.c)

#include <fcntl.h>
#include <linux/msdos_fs.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

Linux man-pages 6.13 2024-07-23 1141

FAT_IOCTL_GET_VOLUME_ID(2const) FAT_IOCTL_GET_VOLUME_ID(2const)

int fd;
int ret;
uint32_t id;

if (argc != 2) {
printf("Usage: %s FILENAME\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDONLY);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

/*
* Read volume ID.
*/

ret = ioctl(fd, FAT_IOCTL_GET_VOLUME_ID, &id);
if (ret == -1) {

perror("ioctl");
exit(EXIT_FAILURE);

}

/*
* Format the output as two groups of 16 bits each.
*/

printf("Volume ID %04x-%04x\n", id >> 16, id & 0xFFFF);

close(fd);

exit(EXIT_SUCCESS);
}

SEE ALSO
ioctl(2), ioctl_fat(2)

Linux man-pages 6.13 2024-07-23 1142

FAT_IOCTL_SET_ATTRIBUTES(2const) FAT_IOCTL_SET_ATTRIBUTES(2const)

NAME
FAT_IOCTL_GET_ATTRIBUTES, FAT_IOCTL_SET_ATTRIBUTES - get and set
file attributes in a FAT filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/msdos_fs.h> /* Definition of FAT_* and

ATTR_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , FAT_IOCTL_GET_ATTRIBUTES, uint32_t *attr);
int ioctl(int fd , FAT_IOCTL_SET_ATTRIBUTES, uint32_t *attr);

DESCRIPTION
Files and directories in the FAT filesystem possess an attribute bit mask that can be
read with FAT_IOCTL_GET_ATTRIBUTES and written with
FAT_IOCTL_SET_ATTRIBUTES.

The fd argument contains a file descriptor for a file or directory. It is sufficient to cre-
ate the file descriptor by calling open(2) with the O_RDONLY flag.

The attr argument contains a pointer to a bit mask. The bits of the bit mask are:

ATTR_RO
This bit specifies that the file or directory is read-only.

ATTR_HIDDEN
This bit specifies that the file or directory is hidden.

ATTR_SYS
This bit specifies that the file is a system file.

ATTR_VOLUME
This bit specifies that the file is a volume label. This attribute is read-only.

ATTR_DIR
This bit specifies that this is a directory. This attribute is read-only.

ATTR_ARCH
This bit indicates that this file or directory should be archived. It is set when a
file is created or modified. It is reset by an archiving system.

The zero value ATTR_NONE can be used to indicate that no attribute bit is set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

STANDARDS
Linux.

HISTORY
Linux 2.6.12.

EXAMPLES
The following program demonstrates the usage of ioctl(2) to manipulate file attributes.
The program reads and displays the archive attribute of a file. After inverting the

Linux man-pages 6.13 2024-07-23 1143

FAT_IOCTL_SET_ATTRIBUTES(2const) FAT_IOCTL_SET_ATTRIBUTES(2const)

value of the attribute, the program reads and displays the attribute again.

The following was recorded when applying the program for the file /mnt/user/foo:

./toggle_fat_archive_flag /mnt/user/foo
Archive flag is set
Toggling archive flag
Archive flag is not set

Program source (toggle_fat_archive_flag.c)

#include <fcntl.h>
#include <linux/msdos_fs.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>

/*
* Read file attributes of a file on a FAT filesystem.
* Output the state of the archive flag.
*/

static uint32_t
readattr(int fd)
{

int ret;
uint32_t attr;

ret = ioctl(fd, FAT_IOCTL_GET_ATTRIBUTES, &attr);
if (ret == -1) {

perror("ioctl");
exit(EXIT_FAILURE);

}

if (attr & ATTR_ARCH)
printf("Archive flag is set\n");

else
printf("Archive flag is not set\n");

return attr;
}

int
main(int argc, char *argv[])
{

int fd;
int ret;
uint32_t attr;

Linux man-pages 6.13 2024-07-23 1144

FAT_IOCTL_SET_ATTRIBUTES(2const) FAT_IOCTL_SET_ATTRIBUTES(2const)

if (argc != 2) {
printf("Usage: %s FILENAME\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDONLY);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

/*
* Read and display the FAT file attributes.
*/

attr = readattr(fd);

/*
* Invert archive attribute.
*/

printf("Toggling archive flag\n");
attr ^= ATTR_ARCH;

/*
* Write the changed FAT file attributes.
*/

ret = ioctl(fd, FAT_IOCTL_SET_ATTRIBUTES, &attr);
if (ret == -1) {

perror("ioctl");
exit(EXIT_FAILURE);

}

/*
* Read and display the FAT file attributes.
*/

readattr(fd);

close(fd);

exit(EXIT_SUCCESS);
}

SEE ALSO
ioctl(2), ioctl_fat(2)

Linux man-pages 6.13 2024-07-23 1145

FICLONE(2const) FICLONE(2const)

NAME
FICLONE, FICLONERANGE - share some the data of one file with another file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fs.h> /* Definition of FICLONE* constants */
#include <sys/ioctl.h>

int ioctl(int dest_fd , FICLONERANGE, struct file_clone_range *arg);
int ioctl(int dest_fd , FICLONE, int src_fd);

DESCRIPTION
If a filesystem supports files sharing physical storage between multiple files ("re-
flink"), this ioctl(2) operation can be used to make some of the data in the src_fd file
appear in the dest_fd file by sharing the underlying storage, which is faster than mak-
ing a separate physical copy of the data. Both files must reside within the same
filesystem. If a file write should occur to a shared region, the filesystem must ensure
that the changes remain private to the file being written. This behavior is commonly
referred to as "copy on write".

This ioctl reflinks up to src_length bytes from file descriptor src_fd at offset src_off-
set into the file dest_fd at offset dest_offset, provided that both are files. If src_length
is zero, the ioctl reflinks to the end of the source file. This information is conveyed in
a structure of the following form:

struct file_clone_range {
__s64 src_fd;
__u64 src_offset;
__u64 src_length;
__u64 dest_offset;

};

Clones are atomic with regards to concurrent writes, so no locks need to be taken to
obtain a consistent cloned copy.

The FICLONE ioctl clones entire files.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
Error codes can be one of, but are not limited to, the following:

EBADF
src_fd is not open for reading; dest_fd is not open for writing or is open for
append-only writes; or the filesystem which src_fd resides on does not support
reflink.

EINVAL
The filesystem does not support reflinking the ranges of the given files. This
error can also appear if either file descriptor represents a device, FIFO, or
socket. Disk filesystems generally require the offset and length arguments to
be aligned to the fundamental block size. XFS and Btrfs do not support over-
lapping reflink ranges in the same file.

Linux man-pages 6.13 2024-07-23 1146

FICLONE(2const) FICLONE(2const)

EISDIR
One of the files is a directory and the filesystem does not support shared re-
gions in directories.

EOPNOTSUPP
This can appear if the filesystem does not support reflinking either file descrip-
tor, or if either file descriptor refers to special inodes.

EPERM
dest_fd is immutable.

ETXTBSY
One of the files is a swap file. Swap files cannot share storage.

EXDEV
dest_fd and src_fd are not on the same mounted filesystem.

STANDARDS
Linux.

HISTORY
Linux 4.5.

They were previously known as BTRFS_IOC_CLONE and
BTRFS_IOC_CLONE_RANGE, and were private to Btrfs.

CAVEATS
Because a copy-on-write operation requires the allocation of new storage, the fallo-
cate(2) operation may unshare shared blocks to guarantee that subsequent writes will
not fail because of lack of disk space.

SEE ALSO
ioctl(2)

Linux man-pages 6.13 2024-07-23 1147

FIDEDUPERANGE(2const) FIDEDUPERANGE(2const)

NAME
FIDEDUPERANGE - share some the data of one file with another file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fs.h> /* Definition of FIDEDUPERANGE and

FILE_DEDUPE_* constants*/
#include <sys/ioctl.h>

int ioctl(int src_fd , FIDEDUPERANGE, struct file_dedupe_range *arg);

DESCRIPTION
If a filesystem supports files sharing physical storage between multiple files, this
ioctl(2) operation can be used to make some of the data in the src_fd file appear in the
dest_fd file by sharing the underlying storage if the file data is identical ("deduplica-
tion"). Both files must reside within the same filesystem. This reduces storage con-
sumption by allowing the filesystem to store one shared copy of the data. If a file
write should occur to a shared region, the filesystem must ensure that the changes re-
main private to the file being written. This behavior is commonly referred to as "copy
on write".

This ioctl performs the "compare and share if identical" operation on up to src_length
bytes from file descriptor src_fd at offset src_offset. This information is conveyed in
a structure of the following form:

struct file_dedupe_range {
__u64 src_offset;
__u64 src_length;
__u16 dest_count;
__u16 reserved1;
__u32 reserved2;
struct file_dedupe_range_info info[0];

};

Deduplication is atomic with regards to concurrent writes, so no locks need to be
taken to obtain a consistent deduplicated copy.

The fields reserved1 and reserved2 must be zero.

Destinations for the deduplication operation are conveyed in the array at the end of the
structure. The number of destinations is given in dest_count, and the destination in-
formation is conveyed in the following form:

struct file_dedupe_range_info {
__s64 dest_fd;
__u64 dest_offset;
__u64 bytes_deduped;
__s32 status;
__u32 reserved;

};

Each deduplication operation targets src_length bytes in file descriptor dest_fd at off-
set dest_offset. The field reserved must be zero. During the call, src_fd must be open

Linux man-pages 6.13 2024-07-23 1148

FIDEDUPERANGE(2const) FIDEDUPERANGE(2const)

for reading and dest_fd must be open for writing. The combined size of the struct
file_dedupe_range and the struct file_dedupe_range_info array must not exceed the
system page size. The maximum size of src_length is filesystem dependent and is
typically 16 MiB. This limit will be enforced silently by the filesystem. By conven-
tion, the storage used by src_fd is mapped into dest_fd and the previous contents in
dest_fd are freed.

Upon successful completion of this ioctl, the number of bytes successfully dedupli-
cated is returned in bytes_deduped and a status code for the deduplication operation is
returned in status. If even a single byte in the range does not match, the deduplication
operation request will be ignored and status set to FILE_DEDUPE_RANGE_DIF-
FERS. The status code is set to FILE_DEDUPE_RANGE_SAME for success, a
negative error code in case of error, or FILE_DEDUPE_RANGE_DIFFERS if the
data did not match.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
Possible errors include (but are not limited to) the following:

EBADF
src_fd is not open for reading; dest_fd is not open for writing or is open for
append-only writes; or the filesystem which src_fd resides on does not support
deduplication.

EINVAL
The filesystem does not support deduplicating the ranges of the given files.
This error can also appear if either file descriptor represents a device, FIFO, or
socket. Disk filesystems generally require the offset and length arguments to
be aligned to the fundamental block size. Neither Btrfs nor XFS support over-
lapping deduplication ranges in the same file.

EISDIR
One of the files is a directory and the filesystem does not support shared re-
gions in directories.

ENOMEM
The kernel was unable to allocate sufficient memory to perform the operation
or dest_count is so large that the input argument description spans more than a
single page of memory.

EOPNOTSUPP
This can appear if the filesystem does not support deduplicating either file de-
scriptor, or if either file descriptor refers to special inodes.

EPERM
dest_fd is immutable.

ETXTBSY
One of the files is a swap file. Swap files cannot share storage.

EXDEV
dest_fd and src_fd are not on the same mounted filesystem.

Linux man-pages 6.13 2024-07-23 1149

FIDEDUPERANGE(2const) FIDEDUPERANGE(2const)

VERSIONS
Some filesystems may limit the amount of data that can be deduplicated in a single
call.

STANDARDS
Linux.

HISTORY
Linux 4.5.

It was previously known as BTRFS_IOC_FILE_EXTENT_SAME and was private
to Btrfs.

NOTES
Because a copy-on-write operation requires the allocation of new storage, the fallo-
cate(2) operation may unshare shared blocks to guarantee that subsequent writes will
not fail because of lack of disk space.

SEE ALSO
ioctl(2)

Linux man-pages 6.13 2024-07-23 1150

FIONREAD(2const) FIONREAD(2const)

NAME
FIONREAD, TIOCINQ, TIOCOUTQ, TCFLSH, TIOCSERGETLSR - buffer count
and flushing

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of constants */
#include <sys/ioctl.h>

int ioctl(int fd , FIONREAD, int *argp);
int ioctl(int fd , TIOCINQ, int *argp);
int ioctl(int fd , TIOCOUTQ, int *argp);
int ioctl(int fd , TCFLSH, int arg);
int ioctl(int fd , TIOCSERGETLSR, int *argp);

DESCRIPTION
FIONREAD

Get the number of bytes in the input buffer.

TIOCINQ
Same as FIONREAD.

TIOCOUTQ
Get the number of bytes in the output buffer.

TCFLSH
Equivalent to tcflush(fd, arg).

See tcflush(3) for the argument values TCIFLUSH, TCOFLUSH,
TCIOFLUSH.

TIOCSERGETLSR
Get line status register. Status register has TIOCSER_TEMT bit set when
output buffer is empty and also hardware transmitter is physically empty.

Does not have to be supported by all serial tty drivers.

tcdrain(3) does not wait and returns immediately when TIOCSER_TEMT bit
is set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

SEE ALSO
ioctl(2), ioctl_tty(2), tcflush(3), termios(3)

Linux man-pages 6.13 2024-07-23 1151

FS_IOC_SETFLAGS(2const) FS_IOC_SETFLAGS(2const)

NAME
FS_IOC_GETFLAGS, FS_IOC_SETFLAGS - ioctl() operations for inode flags

SYNOPSIS
#include <linux/fs.h> /* Definition of FS_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , FS_IOC_GETFLAGS, int *attr);
int ioctl(int fd , FS_IOC_SETFLAGS, const int *attr);

DESCRIPTION
Various Linux filesystems support the notion of inode flags—attributes that modify
the semantics of files and directories. These flags can be retrieved and modified using
two ioctl(2) operations:

int attr;
fd = open("pathname", ...);

ioctl(fd, FS_IOC_GETFLAGS, &attr); /* Place current flags
in 'attr' */

attr |= FS_NOATIME_FL; /* Tweak returned bit mask */
ioctl(fd, FS_IOC_SETFLAGS, &attr); /* Update flags for inode

referred to by 'fd' */

The lsattr(1) and chattr(1) shell commands provide interfaces to these two operations,
allowing a user to view and modify the inode flags associated with a file.

The following flags are supported (shown along with the corresponding letter used to
indicate the flag by lsattr(1) and chattr(1)):

FS_APPEND_FL 'a'
The file can be opened only with the O_APPEND flag. If applied to a direc-
tory, forbids removing files from the directory (via unlink(), rename(), and
the like). (This restriction applies even to the superuser.) Only a privileged
process (CAP_LINUX_IMMUTABLE) can set or clear this attribute.

FS_COMPR_FL 'c'
Store the file in a compressed format on disk. This flag is not supported by
most of the mainstream filesystem implementations; one exception is btrfs(5)

FS_DIRSYNC_FL 'D' (since Linux 2.6.0)
Write directory changes synchronously to disk. This flag provides semantics
equivalent to the mount(2) MS_DIRSYNC option, but on a per-directory ba-
sis. This flag can be applied only to directories.

FS_IMMUTABLE_FL 'i'
The file is immutable: no changes are permitted to the file contents or meta-
data (permissions, timestamps, ownership, link count, and so on). (This re-
striction applies even to the superuser.) Only a privileged process
(CAP_LINUX_IMMUTABLE) can set or clear this attribute.

FS_JOURNAL_DATA_FL 'j'
Enable journaling of file data on ext3(5) and ext4(5) filesystems. On a filesys-
tem that is journaling in ordered or writeback mode, a privileged
(CAP_SYS_RESOURCE) process can set this flag to enable journaling of

Linux man-pages 6.13 2024-06-13 1152

FS_IOC_SETFLAGS(2const) FS_IOC_SETFLAGS(2const)

data updates on a per-file basis.

FS_NOATIME_FL 'A'
Don’t update the file last access time when the file is accessed. This can pro-
vide I/O performance benefits for applications that do not care about the accu-
racy of this timestamp. This flag provides functionality similar to the
mount(2) MS_NOATIME flag, but on a per-file basis.

FS_NOCOW_FL 'C' (since Linux 2.6.39)
The file will not be subject to copy-on-write updates. This flag has an effect
only on filesystems that support copy-on-write semantics, such as Btrfs. See
chattr(1) and btrfs(5)

FS_NODUMP_FL 'd'
Don’t include this file in backups made using dump(8)

FS_NOTAIL_FL 't'
This flag is supported only on Reiserfs. It disables the Reiserfs tail-packing
feature, which tries to pack small files (and the final fragment of larger files)
into the same disk block as the file metadata.

FS_PROJINHERIT_FL 'P' (since Linux 4.5)
Inherit the quota project ID. Files and subdirectories will inherit the project
ID of the directory. This flag can be applied only to directories.

FS_SECRM_FL 's'
Mark the file for secure deletion. This feature is not implemented by any
filesystem, since the task of securely erasing a file from a recording medium is
surprisingly difficult.

FS_SYNC_FL 'S'
Make file updates synchronous. For files, this makes all writes synchronous
(as though all opens of the file were with the O_SYNC flag). For directories,
this has the same effect as the FS_DIRSYNC_FL flag.

FS_TOPDIR_FL 'T'
Mark a directory for special treatment under the Orlov block-allocation strat-
egy. See chattr(1) for details. This flag can be applied only to directories and
has an effect only for ext2, ext3, and ext4.

FS_UNRM_FL 'u'
Allow the file to be undeleted if it is deleted. This feature is not implemented
by any filesystem, since it is possible to implement file-recovery mechanisms
outside the kernel.

In most cases, when any of the above flags is set on a directory, the flag is inherited by
files and subdirectories created inside that directory. Exceptions include
FS_TOPDIR_FL, which is not inheritable, and FS_DIRSYNC_FL, which is inher-
ited only by subdirectories.

STANDARDS
Linux.

NOTES
In order to change the inode flags of a file using the FS_IOC_SETFLAGS operation,
the effective user ID of the caller must match the owner of the file, or the caller must

Linux man-pages 6.13 2024-06-13 1153

FS_IOC_SETFLAGS(2const) FS_IOC_SETFLAGS(2const)

have the CAP_FOWNER capability.

SEE ALSO
ioctl(2), chattr(1), lsattr(1), mount(2), btrfs(5), ext4(5), xfs(5), xattr(7), mount(8)

Linux man-pages 6.13 2024-06-13 1154

FS_IOC_SETFSLABEL(2const) FS_IOC_SETFSLABEL(2const)

NAME
FS_IOC_GETFSLABEL, FS_IOC_SETFSLABEL - get or set a filesystem label

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fs.h> /* Definition of *FSLABEL* constants */
#include <sys/ioctl.h>

int ioctl(int fd , FS_IOC_GETFSLABEL, char label[FSLABEL_MAX]);
int ioctl(int fd , FS_IOC_SETFSLABEL, char label[FSLABEL_MAX]);

DESCRIPTION
If a filesystem supports online label manipulation, these ioctl(2) operations can be
used to get or set the filesystem label for the filesystem on which fd resides. The
FS_IOC_SETFSLABEL operation requires privilege (CAP_SYS_ADMIN).

RETURN VALUE
On success zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
Possible errors include (but are not limited to) the following:

EFAULT
label references an inaccessible memory area.

EINVAL
The specified label exceeds the maximum label length for the filesystem.

ENOTTY
This can appear if the filesystem does not support online label manipulation.

EPERM
The calling process does not have sufficient permissions to set the label.

STANDARDS
Linux.

HISTORY
Linux 4.18.

They were previously known as BTRFS_IOC_GET_FSLABEL and
BTRFS_IOC_SET_FSLABEL and were private to Btrfs.

NOTES
The maximum string length for this interface is FSLABEL_MAX, including the ter-
minating null byte ('\0'). Filesystems have differing maximum label lengths, which
may or may not include the terminating null. The string provided to FS_IOC_SETF-
SLABEL must always be null-terminated, and the string returned by
FS_IOC_GETFSLABEL will always be null-terminated.

SEE ALSO
ioctl(2), blkid(8)

Linux man-pages 6.13 2024-07-23 1155

FS_IOC_SETFSLABEL(2const) FS_IOC_SETFSLABEL(2const)

Linux man-pages 6.13 2024-07-23 1156

KEYCTL_ASSUME_AUTHORITY (2const) KEYCTL_ASSUME_AUTHORITY (2const)

NAME
KEYCTL_ASSUME_AUTHORITY - assume the authority to instantiate a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_ASSUME_AUTHORITY, key_serial_t key);

DESCRIPTION
Assume (or divest) the authority for the calling thread to instantiate a key.

The key argument specifies either a nonzero key ID to assume authority, or the value 0
to divest authority.

If key is nonzero, then it specifies the ID of an uninstantiated key for which authority
is to be assumed. That key can then be instantiated using one of KEYCTL_INSTANTI-
ATE(2const), KEYCTL_INSTANTIATE_IOV(2const), KEYCTL_REJECT(2const), or
KEYCTL_NEGATE(2const). Once the key has been instantiated, the thread is auto-
matically divested of authority to instantiate the key.

Authority over a key can be assumed only if the calling thread has present in its
keyrings the authorization key that is associated with the specified key. (In other
words, the KEYCTL_ASSUME_AUTHORITY operation is available only from a
request-key(8)-style program; see request_key(2) for an explanation of how this opera-
tion is used.) The caller must have search permission on the authorization key.

If the specified key has a matching authorization key, then the ID of that key is re-
turned. The authorization key can be read (KEYCTL_READ(2const)) to obtain the
callout information passed to request_key(2).

If the ID given in key is 0, then the currently assumed authority is cleared (divested),
and the value 0 is returned.

The KEYCTL_ASSUME_AUTHORITY mechanism allows a program such as
request-key(8) to assume the necessary authority to instantiate a new uninstantiated
key that was created as a consequence of a call to request_key(2). For further infor-
mation, see request_key(2) and the kernel source file Documentation/security/keys-re-
quest-key.txt.

RETURN VALUE
On success, either 0, if the ID given was 0, or the ID of the authorization key match-
ing the specified key, if a nonzero key ID was provided.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_assume_authority(3)

STANDARDS
Linux.

Linux man-pages 6.13 2024-08-21 1157

KEYCTL_ASSUME_AUTHORITY (2const) KEYCTL_ASSUME_AUTHORITY (2const)

HISTORY
Linux 2.6.16.

SEE ALSO
keyctl(2), keyctl_assume_authority(3)

Linux man-pages 6.13 2024-08-21 1158

KEYCTL_CHOWN (2const) KEYCTL_CHOWN (2const)

NAME
KEYCTL_CHOWN - change the ownership of a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_CHOWN, key_serial_t key,
uid_t uid , gid_t gid);

DESCRIPTION
Change the ownership (user and group ID) of a key.

key contains the key ID. uid contains the new user ID (or -1 in case the user ID
shouldn’t be changed). gid contains the new group ID (or -1 in case the group ID
shouldn’t be changed).

The key must grant the caller setattr permission.

For the UID to be changed, or for the GID to be changed to a group the caller is not a
member of, the caller must have the CAP_SYS_ADMIN capability (see capabili-
ties(7)).

If the UID is to be changed, the new user must have sufficient quota to accept the key.
The quota deduction will be removed from the old user to the new user should the
UID be changed.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_chown(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_chown(3)

Linux man-pages 6.13 2024-08-21 1159

KEYCTL_CLEAR(2const) KEYCTL_CLEAR(2const)

NAME
KEYCTL_CLEAR - clear a keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_CLEAR, key_serial_t key);

DESCRIPTION
Clear the contents of (i.e., unlink all keys from) a keyring.

The ID of the key (which must be of keyring type) is provided in key.

The caller must have write permission on the keyring.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_clear(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_clear(3)

Linux man-pages 6.13 2024-08-21 1160

KEYCTL_DESCRIBE(2const) KEYCTL_DESCRIBE(2const)

NAME
KEYCTL_DESCRIBE - describe a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_DESCRIBE, key_serial_t key,
char desc[_Nullable .size], size_t size);

DESCRIPTION
Obtain a string describing the attributes of a specified key.

The ID of the key to be described is specified in key. The descriptive string is re-
turned in the buffer pointed to by desc; size specifies the size of that buffer in bytes.

The key must grant the caller view permission.

The returned string is null-terminated and contains the following information about
the key:

type;uid;gid;perm;description

In the above, type and description are strings, uid and gid are decimal strings, and
perm is a hexadecimal permissions mask. The descriptive string is written with the
following format:

%s;%d;%d;%08x;%s

Note: the intention is that the descriptive string should be extensible in future
kernel versions. In particular, the description field will not contain semicolons; it
should be parsed by working backwards from the end of the string to find the last
semicolon. This allows future semicolon-delimited fields to be inserted in the de-
scriptive string in the future.

Writing to the buffer is attempted only when desc is non-NULL and the specified
buffer size is large enough to accept the descriptive string (including the terminating
null byte). In order to determine whether the buffer size was too small, check to see if
the return value of the operation is greater than size.

RETURN VALUE
On success, the size of the description (including the terminating null byte), irrespec-
tive of the provided buffer size.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_describe(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

Linux man-pages 6.13 2024-08-21 1161

KEYCTL_DESCRIBE(2const) KEYCTL_DESCRIBE(2const)

SEE ALSO
keyctl(2), keyctl_describe(3), keyctl_describe_alloc(3)

Linux man-pages 6.13 2024-08-21 1162

KEYCTL_DH_COMPUTE(2const) KEYCTL_DH_COMPUTE(2const)

NAME
KEYCTL_DH_COMPUTE - compute a Diffie-Hellman shared secret or public key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_DH_COMPUTE,
struct keyctl_dh_params *dh_params,
char buf [.n], size_t n,
struct keyctl_kdf_params *_Nullable kdf_params);

DESCRIPTION
Compute a Diffie-Hellman shared secret or public key, optionally applying key deriva-
tion function (KDF) to the result.

The dh_params argument is a pointer to a set of parameters containing serial numbers
for three "user" keys used in the Diffie-Hellman calculation, packaged in a structure
of the following form:

struct keyctl_dh_params {
int32_t private; /* The local private key */
int32_t prime; /* The prime, known to both parties */
int32_t base; /* The base integer: either a shared

generator or the remote public key */
};

Each of the three keys specified in this structure must grant the caller read permission.
The payloads of these keys are used to calculate the Diffie-Hellman result as:

base ^ private mod prime

If the base is the shared generator, the result is the local public key. If the base is the
remote public key, the result is the shared secret.

The buf argument points to a buffer where the result of the calculation is placed. The
size of that buffer is specified in n.

The buffer must be large enough to accommodate the output data, otherwise an error
is returned. If n is specified zero, in which case the buffer is not used and the opera-
tion returns the minimum required buffer size (i.e., the length of the prime).

Diffie-Hellman computations can be performed in user space, but require a multiple-
precision integer (MPI) library. Moving the implementation into the kernel gives ac-
cess to the kernel MPI implementation, and allows access to secure or acceleration
hardware.

Adding support for DH computation to the keyctl() system call was considered a
good fit due to the DH algorithm’s use for deriving shared keys; it also allows the type
of the key to determine which DH implementation (software or hardware) is appropri-
ate.

If the kdf_params argument is NULL, then the DH result itself is returned. Otherwise

Linux man-pages 6.13 2024-08-21 1163

KEYCTL_DH_COMPUTE(2const) KEYCTL_DH_COMPUTE(2const)

(since Linux 4.12), it is a pointer to a structure which specifies parameters of the KDF
operation to be applied:

struct keyctl_kdf_params {
char *hashname; /* Hash algorithm name */
char *otherinfo; /* SP800-56A OtherInfo */
__u32 otherinfolen; /* Length of otherinfo data */
__u32 __spare[8]; /* Reserved */

};

The hashname field is a null-terminated string which specifies a hash name (available
in the kernel’s crypto API; the list of the hashes available is rather tricky to observe;
please refer to the "Kernel Crypto API Architecture" 〈https://www.kernel.org/doc
/html/latest/crypto/architecture.html〉 documentation for the information regarding
how hash names are constructed and your kernel’s source and configuration regarding
what ciphers and templates with type CRYPTO_ALG_TYPE_SHASH are avail-
able) to be applied to DH result in KDF operation.

The otherinfo field is an OtherInfo data as described in SP800-56A section 5.8.1.2
and is algorithm-specific. This data is concatenated with the result of DH operation
and is provided as an input to the KDF operation. Its size is provided in the otherin-
folen field and is limited by KEYCTL_KDF_MAX_OI_LEN constant that defined
in security/keys/internal.h to a value of 64.

The __spare field is currently unused. It was ignored until Linux 4.13 (but still
should be user-addressable since it is copied to the kernel), and should contain zeros
since Linux 4.13.

The KDF implementation complies with SP800-56A as well as with SP800-108 (the
counter KDF).

This operation is exposed by libkeyutils (from libkeyutils 1.5.10 onwards) via the
functions keyctl_dh_compute(3) and keyctl_dh_compute_alloc(3)

RETURN VALUE
On success, the number of bytes copied to the buffer, or, if n is 0, the required buffer
size.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

There was an error during crypto module initialization.

EFAULT
One of the following has failed:

• copying of the struct keyctl_dh_params, provided in the dh_params argu-
ment, from user space;

• copying of the struct keyctl_kdf_params, provided in the non-NULL
kdf_params argument, from user space (in case kernel supports performing
KDF operation on DH operation result);

Linux man-pages 6.13 2024-08-21 1164

KEYCTL_DH_COMPUTE(2const) KEYCTL_DH_COMPUTE(2const)

• copying of data pointed by the hashname field of the struct
keyctl_kdf_params from user space;

• copying of data pointed by the otherinfo field of the struct
keyctl_kdf_params from user space if the otherinfolen field was nonzero;

• copying of the result to user space.

EINVAL (before Linux 4.12)
Argument kdf_params was non-NULL.

EINVAL
The digest size of the hashing algorithm supplied is zero.

EINVAL
The buffer size provided is not enough to hold the result. Provide 0 as a buffer
size in order to obtain the minimum buffer size.

EINVAL
The hash name provided in the hashname field of the struct
keyctl_kdf_params pointed by kdf_params argument is too big (the limit is im-
plementation-specific and varies between kernel versions, but it is deemed big
enough for all valid algorithm names).

EINVAL
The __spare field of the struct keyctl_kdf_params provided in the kdf_params
argument contains nonzero values.

EMSGSIZE
The buffer length exceeds KEYCTL_KDF_MAX_OUTPUT_LEN (which is
1024 currently) or the otherinfolen field of the struct keyctl_kdf_parms passed
in kdf_params exceeds KEYCTL_KDF_MAX_OI_LEN (which is 64 cur-
rently).

ENOENT
The hashing algorithm specified in the hashname field of the struct
keyctl_kdf_params pointed by kdf_params argument hasn’t been found.

ETIMEDOUT
The initialization of crypto modules has timed out.

STANDARDS
Linux.

HISTORY
Linux 4.7.

SEE ALSO
keyctl(2), keyctl_dh_compute(3), keyctl_dh_compute_alloc(3), keyctl_dh_com-
pute_kdf (3)

Linux man-pages 6.13 2024-08-21 1165

KEYCTL_GET_KEYRING_ID(2const) KEYCTL_GET_KEYRING_ID(2const)

NAME
KEYCTL_GET_KEYRING_ID - map a special key ID to a real key ID for this
process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_GET_KEYRING_ID, key_serial_t key,
int arg3);

DESCRIPTION
Map a special key ID to a real key ID for this process.

This operation looks up the special key whose ID is provided in key. If the special
key is found, the ID of the corresponding real key is returned as the function result.
The following values may be specified in key:

KEY_SPEC_THREAD_KEYRING
This specifies the calling thread’s thread-specific keyring. See thread-
keyring(7).

KEY_SPEC_PROCESS_KEYRING
This specifies the caller’s process-specific keyring. See process-keyring(7).

KEY_SPEC_SESSION_KEYRING
This specifies the caller’s session-specific keyring. See session-keyring(7).

KEY_SPEC_USER_KEYRING
This specifies the caller’s UID-specific keyring. See user-keyring(7).

KEY_SPEC_USER_SESSION_KEYRING
This specifies the caller’s UID-session keyring. See user-session-keyring(7).

KEY_SPEC_REQKEY_AUTH_KEY (since Linux 2.6.16)
This specifies the authorization key created by request_key(2) and passed to
the process it spawns to generate a key. This key is available only in a request-
key(8)-style program that was passed an authorization key by the kernel and
ceases to be available once the requested key has been instantiated; see re-
quest_key(2).

KEY_SPEC_REQUESTOR_KEYRING (since Linux 2.6.29)
This specifies the key ID for the request_key(2) destination keyring. This
keyring is available only in a request-key(8)-style program that was passed an
authorization key by the kernel and ceases to be available once the requested
key has been instantiated; see request_key(2).

The behavior if the key specified in key does not exist depends on the value of arg3.
If arg3 contains a nonzero value, then —if it is appropriate to do so (e.g., when look-
ing up the user, user-session, or session key)— a new key is created and its real key
ID returned as the function result. Otherwise, the operation fails with the error
ENOKEY.

Linux man-pages 6.13 2024-08-21 1166

KEYCTL_GET_KEYRING_ID(2const) KEYCTL_GET_KEYRING_ID(2const)

If a valid key ID is specified in key, and the key exists, then this operation simply re-
turns the key ID. If the key does not exist, the call fails with error ENOKEY.

The caller must have search permission on a keyring in order for it to be found.

RETURN VALUE
On success, the ID of the requested keyring.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENOKEY

The key specified in key did not exist, and arg3 was zero (meaning don’t cre-
ate the key if it didn’t exist).

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_get_keyring_ID(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_get_keyring_ID(3)

Linux man-pages 6.13 2024-08-21 1167

KEYCTL_GET_PERSISTENT (2const) KEYCTL_GET_PERSISTENT (2const)

NAME
KEYCTL_GET_PERSISTENT - get the persistent keyring for a user

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_GET_PERSISTENT, uid_t uid ,
key_serial_t keyring);

DESCRIPTION
Get the persistent keyring (persistent-keyring(7)) for a specified user and link it to a
specified keyring.

The user ID is specified in uid . If the value -1 is specified, the caller’s real user ID is
used. The ID of the destination keyring is specified in keyring.

The caller must have the CAP_SETUID capability in its user namespace in order to
fetch the persistent keyring for a user ID that does not match either the real or effec-
tive user ID of the caller.

If the call is successful, a link to the persistent keyring is added to the keyring whose
ID was specified in keyring.

The caller must have write permission on the keyring.

The persistent keyring will be created by the kernel if it does not yet exist.

Each time the KEYCTL_GET_PERSISTENT operation is performed, the persistent
keyring will have its expiration timeout reset to the value in:

/proc/sys/kernel/keys/persistent_keyring_expiry

Should the timeout be reached, the persistent keyring will be removed and everything
it pins can then be garbage collected.

Persistent keyrings were added in Linux 3.13.

RETURN VALUE
On success, the ID of the persistent keyring.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EPERM

uid specified a UID other than the calling thread’s real or effective UID, and
the caller did not have the CAP_SETUID capability.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_get_persistent(3)

STANDARDS
Linux.

Linux man-pages 6.13 2024-08-21 1168

KEYCTL_GET_PERSISTENT (2const) KEYCTL_GET_PERSISTENT (2const)

HISTORY
Linux 3.13.

SEE ALSO
keyctl(2), keyctl_get_persistent(3)

Linux man-pages 6.13 2024-08-21 1169

KEYCTL_GET_SECURITY (2const) KEYCTL_GET_SECURITY (2const)

NAME
KEYCTL_GET_SECURITY - manipulate the kernel’s key management facility

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_GET_SECURITY, key_serial_t key,
char buf [_Nullable .n], size_t n);

DESCRIPTION
KEYCTL_GET_SECURITY (since Linux 2.6.26)

Get the LSM (Linux Security Module) security label of the specified key.

The ID of the key whose security label is to be fetched is specified in key. The secu-
rity label (terminated by a null byte) will be placed in the buffer pointed to by buf ar-
gument; the size of the buffer must be provided in n.

If buf is specified as NULL or the buffer size specified in n is too small, the full size
of the security label string (including the terminating null byte) is returned as the
function result, and nothing is copied to the buffer.

The caller must have view permission on the specified key.

The returned security label string will be rendered in a form appropriate to the LSM in
force. For example, with SELinux, it may look like:

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

If no LSM is currently in force, then an empty string is placed in the buffer.

RETURN VALUE
On success, the size of the LSM security label string (including the terminating null
byte), irrespective of the provided buffer size.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_get_security(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.26.

SEE ALSO
keyctl(2), keyctl_get_security(3), keyctl_get_security_alloc(3)

Linux man-pages 6.13 2024-08-21 1170

KEYCTL_INSTANTIATE(2const) KEYCTL_INSTANTIATE(2const)

NAME
KEYCTL_INSTANTIATE, KEYCTL_INSTANTIATE_IOV, KEYCTL_NEGATE,
KEYCTL_REJECT - key instantiation functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_INSTANTIATE, key_serial_t key,
const void payload[.n], size_t n,
key_serial_t keyring);

long syscall(SYS_keyctl, KEYCTL_INSTANTIATE_IOV, key_serial_t key,
const struct iovec payload[.n], unsigned int n,
key_serial_t keyring);

long syscall(SYS_keyctl, KEYCTL_NEGATE, key_serial_t key,
unsigned int timeout, key_serial_t keyring);

long syscall(SYS_keyctl, KEYCTL_REJECT, key_serial_t key,
unsigned int timeout, int error, key_serial_t keyring);

DESCRIPTION
KEYCTL_INSTANTIATE

(Positively) instantiate an uninstantiated key with a specified payload.

The ID of the key to be instantiated is provided in key.

The key payload is specified in the buffer pointed to by payload; the size of
that buffer is specified in n.

The payload may be a null pointer and the buffer size may be 0 if this is sup-
ported by the key type (e.g., it is a keyring).

The operation may be fail if the payload data is in the wrong format or is oth-
erwise invalid.

If keyring is nonzero, then, subject to the same constraints and rules as
KEYCTL_LINK(2const), the instantiated key is linked into the keyring whose
ID specified in keyring.

The caller must have the appropriate authorization key, and once the uninstan-
tiated key has been instantiated, the authorization key is revoked. In other
words, this operation is available only from a request-key(8)-style program.
See request_key(2) for an explanation of uninstantiated keys and key instantia-
tion.

KEYCTL_INSTANTIATE_IOV
Instantiate an uninstantiated key with a payload specified via a vector of
buffers.

This operation is the same as KEYCTL_INSTANTIATE, but the payload
data is specified as an array of iovec structures (see iovec(3type)).

Linux man-pages 6.13 2024-08-21 1171

KEYCTL_INSTANTIATE(2const) KEYCTL_INSTANTIATE(2const)

The pointer to the payload vector is specified in payload . The number of
items in the vector is specified in n.

The key and keyring are interpreted as for KEYCTL_INSTANTIATE.

KEYCTL_NEGATE
Negatively instantiate an uninstantiated key.

This operation is equivalent to the call:

keyctl(KEYCTL_REJECT, key, timeout, ENOKEY, keyring);

KEYCTL_REJECT
Mark a key as negatively instantiated and set an expiration timer on the key.
This operation provides a superset of the functionality of the earlier
KEYCTL_NEGATE operation.

The ID of the key that is to be negatively instantiated is specified in key. The
timeout argument specifies the lifetime of the key, in seconds. The error argu-
ment specifies the error to be returned when a search hits this key; typically,
this is one of EKEYREJECTED, EKEYREVOKED, or EKEYEXPIRED.

If keyring is nonzero, then, subject to the same constraints and rules as
KEYCTL_LINK(2const), the negatively instantiated key is linked into the
keyring whose ID is specified in keyring.

The caller must have the appropriate authorization key. In other words, this
operation is available only from a request-key(8)-style program. See re-
quest_key(2).

The caller must have the appropriate authorization key, and once the uninstan-
tiated key has been instantiated, the authorization key is revoked. In other
words, this operation is available only from a request-key(8)-style program.
See request_key(2) for an explanation of uninstantiated keys and key instantia-
tion.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
Wrappers are provided in the libkeyutils library: keyctl_instantiate(3), keyctl_instanti-
ate_iov(3), keyctl_negate(3), and keyctl_reject(3)

STANDARDS
Linux.

HISTORY
KEYCTL_INSTANTIATE
KEYCTL_NEGATE

Linux 2.6.10.

KEYCTL_INSTANTIATE_IOV
KEYCTL_REJECT

Linux 2.6.39.

Linux man-pages 6.13 2024-08-21 1172

KEYCTL_INSTANTIATE(2const) KEYCTL_INSTANTIATE(2const)

SEE ALSO
keyctl(2), keyctl_instantiate(3), keyctl_instantiate_iov(3), keyctl_negate(3), keyctl_re-
ject(3)

Linux man-pages 6.13 2024-08-21 1173

KEYCTL_INVALIDATE(2const) KEYCTL_INVALIDATE(2const)

NAME
KEYCTL_INVALIDATE - invalidate a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_INVALIDATE, key_serial_t key);

DESCRIPTION
Mark a key as invalid.

The ID of the key to be invalidated is specified in key.

To invalidate a key, the caller must have search permission on the key.

This operation marks the key as invalid and schedules immediate garbage collection.
The garbage collector removes the invalidated key from all keyrings and deletes the
key when its reference count reaches zero. After this operation, the key will be ig-
nored by all searches, even if it is not yet deleted.

Keys that are marked invalid become invisible to normal key operations immediately,
though they are still visible in /proc/keys (marked with an ’i’ flag) until they are actu-
ally removed.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_invalidate(3)

STANDARDS
Linux.

HISTORY
Linux 3.5.

SEE ALSO
keyctl(2), keyctl_invalidate(3)

Linux man-pages 6.13 2024-08-21 1174

KEYCTL_JOIN . . . SION_KEYRING(2const) KEYCTL_JOIN . . . SION_KEYRING(2const)

NAME
KEYCTL_JOIN_SESSION_KEYRING - replace the session keyring this process
subscribes to with a new one

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_JOIN_SESSION_KEYRING,
char *_Nullable desc);

DESCRIPTION
Replace the session keyring this process subscribes to with a new session keyring.

If desc is NULL, an anonymous keyring with the description "_ses" is created and the
process is subscribed to that keyring as its session keyring, displacing the previous
session keyring.

Otherwise, desc is treated as the description (name) of a keyring, and the behavior is
as follows:

• If a keyring with a matching description exists, the process will attempt to sub-
scribe to that keyring as its session keyring if possible; if that is not possible, an
error is returned. In order to subscribe to the keyring, the caller must have search
permission on the keyring.

• If a keyring with a matching description does not exist, then a new keyring with
the specified description is created, and the process is subscribed to that keyring as
its session keyring.

RETURN VALUE
On success, the ID of the joined session keyring.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_join_session_keyring(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_join_session_keyring(3)

Linux man-pages 6.13 2024-08-21 1175

KEYCTL_LINK (2const) KEYCTL_LINK (2const)

NAME
KEYCTL_LINK - link a key to a keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_LINK, key_serial_t key,
key_serial_t keyring);

DESCRIPTION
Create a link from a keyring to a key.

The key to be linked is specified in key; the keyring is specified in keyring.

If a key with the same type and description is already linked in the keyring, then that
key is displaced from the keyring.

Before creating the link, the kernel checks the nesting of the keyrings and returns ap-
propriate errors if the link would produce a cycle or if the nesting of keyrings would
be too deep (The limit on the nesting of keyrings is determined by the kernel constant
KEYRING_SEARCH_MAX_DEPTH, defined with the value 6, and is necessary to
prevent overflows on the kernel stack when recursively searching keyrings).

The caller must have link permission on the key being added and write permission on
the keyring.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EDEADLK

The requested link would result in a cycle.

ELOOP
The requested link would cause the maximum nesting depth for keyrings to be
exceeded.

ENFILE (before Linux 3.13)
The keyring is full. (Before Linux 3.13, the available space for storing keyring
links was limited to a single page of memory; since Linux 3.13, there is no
fixed limit.)

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_link(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

Linux man-pages 6.13 2024-08-21 1176

KEYCTL_LINK (2const) KEYCTL_LINK (2const)

SEE ALSO
keyctl(2), keyctl_link(3), KEYCTL_UNLINK(2const)

Linux man-pages 6.13 2024-08-21 1177

KEYCTL_READ(2const) KEYCTL_READ(2const)

NAME
KEYCTL_READ - read a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_READ, key_serial_t key,
char buf [_Nullable .size], size_t size);

DESCRIPTION
Read the payload data of a key.

The ID of the key whose payload is to be read is specified in key. This can be the ID
of an existing key, or any of the special key IDs listed for
KEYCTL_GET_KEYRING_ID(2const).

The payload is placed in the buffer pointed by buf ; the size of that buffer must be
specified in size.

The returned data will be processed for presentation according to the key type. For
example, a keyring will return an array of key_serial_t entries representing the IDs of
all the keys that are linked to it. The user key type will return its data as is.

If buf is not NULL, as much of the payload data as will fit is copied into the buffer.
On a successful return, the return value is always the total size of the payload data. To
determine whether the buffer was of sufficient size, check to see that the return value
is less than or equal to the value supplied in size.

The key must either grant the caller read permission, or grant the caller search per-
mission when searched for from the process keyrings (i.e., the key is possessed).

RETURN VALUE
On success, the amount of data that is available in the key, irrespective of the provided
buffer size.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EOPNOTSUPP

The key type does not support reading (e.g., the type is "login").

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_read(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_read(3), keyctl_read_alloc(3)

Linux man-pages 6.13 2024-08-21 1178

KEYCTL_RESTRICT_KEYRING(2const) KEYCTL_RESTRICT_KEYRING(2const)

NAME
KEYCTL_RESTRICT_KEYRING - restrict keys that may be linked to a keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_RESTRICT_KEYRING, key_serial_t keyring,
const char *_Nullable type, const char *restriction);

DESCRIPTION
Apply a key-linking restriction to the keyring with the ID provided in keyring. The
caller must have setattr permission on the key. If type is NULL, any attempt to add a
key to the keyring is blocked; otherwise it contains a pointer to a string with a key
type name and restriction contains a pointer to string that describes the type-specific
restriction. As of Linux 4.12, only the type "asymmetric" has restrictions defined:

builtin_trusted
Allows only keys that are signed by a key linked to the built-in keyring
(".builtin_trusted_keys").

builtin_and_secondary_trusted
Allows only keys that are signed by a key linked to the secondary keyring
(".secondary_trusted_keys") or, by extension, a key in a built-in keyring, as the
latter is linked to the former.

key_or_keyring:key
key_or_keyring:key:chain

If key specifies the ID of a key of type "asymmetric", then only keys that are
signed by this key are allowed.

If key specifies the ID of a keyring, then only keys that are signed by a key
linked to this keyring are allowed.

If ":chain" is specified, keys that are signed by a keys linked to the destination
keyring (that is, the keyring with the ID specified in the keyring argument) are
also allowed.

Note that a restriction can be configured only once for the specified keyring; once a
restriction is set, it can’t be overridden.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EDEADLK

The requested keyring restriction would result in a cycle.

EEXIST
keyring already has a restriction set.

Linux man-pages 6.13 2024-08-21 1179

KEYCTL_RESTRICT_KEYRING(2const) KEYCTL_RESTRICT_KEYRING(2const)

ENOENT
The type provided in type argument doesn’t support setting key linking restric-
tions.

EOPNOTSUPP
type was "asymmetric", and the key specified in the restriction specification
provided in restriction has type other than "asymmetric" or "keyring".

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_restrict_keyring(3)

STANDARDS
Linux.

HISTORY
Linux 4.12.

SEE ALSO
keyctl(2), keyctl_restrict_keyring(3)

Linux man-pages 6.13 2024-08-21 1180

KEYCTL_REVOKE(2const) KEYCTL_REVOKE(2const)

NAME
KEYCTL_REVOKE - revoke a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_REVOKE, key_serial_t key);

DESCRIPTION
Revoke the key with the ID provided in key. The key is scheduled for garbage collec-
tion; it will no longer be findable, and will be unavailable for further operations. Fur-
ther attempts to use the key will fail with the error EKEYREVOKED.

The caller must have write or setattr permission on the key.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_revoke(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_revoke(3)

Linux man-pages 6.13 2024-08-21 1181

KEYCTL_SEARCH(2const) KEYCTL_SEARCH(2const)

NAME
KEYCTL_SEARCH - search a keyring for a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_SEARCH, key_serial_t src,
char *type, char *desc,
unsigned long dst);

DESCRIPTION
Search for a key in a keyring tree, returning its ID and optionally linking it to a speci-
fied keyring.

The tree to be searched is specified by passing the ID of the head keyring in src. The
search is performed breadth-first and recursively.

The type and desc arguments specify the key to be searched for: type contains the key
type (a null-terminated character string up to 32 bytes in size, including the terminat-
ing null byte), and desc contains the description of the key (a null-terminated charac-
ter string up to 4096 bytes in size, including the terminating null byte).

The source keyring must grant search permission to the caller. When performing the
recursive search, only keyrings that grant the caller search permission will be
searched. Only keys with for which the caller has search permission can be found.

If the key is found, its ID is returned as the function result.

If the key is found and dst is nonzero, then, subject to the same constraints and rules
as KEYCTL_LINK(2const), the key is linked into the keyring whose ID is specified in
dst. If the destination keyring specified in dst already contains a link to a key that has
the same type and description, then that link will be displaced by a link to the key
found by this operation.

Instead of valid existing keyring IDs, the source (src) and destination (dst) keyrings
can be one of the special keyring IDs listed under
KEYCTL_GET_KEYRING_ID(2const).

RETURN VALUE
On success, the ID of the key that was found.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

The size of the description in desc (including the terminating null byte) ex-
ceeded 4096 bytes.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_search(3)

Linux man-pages 6.13 2024-08-21 1182

KEYCTL_SEARCH(2const) KEYCTL_SEARCH(2const)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_search(3)

Linux man-pages 6.13 2024-08-21 1183

KEYCTL_SESSION_TO_PARENT (2const) KEYCTL_SESSION_TO_PARENT (2const)

NAME
KEYCTL_SESSION_TO_PARENT - set the parent process’s session keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

longsyscall(SYS_keyctl,KEYCTL_SESSION_TO_PARENT);

DESCRIPTION
Replace the session keyring to which the parent of the calling process subscribes with
the session keyring of the calling process.

The keyring will be replaced in the parent process at the point where the parent next
transitions from kernel space to user space.

The keyring must exist and must grant the caller link permission. The parent process
must be single-threaded and have the same effective ownership as this process and
must not be set-user-ID or set-group-ID. The UID of the parent process’s existing
session keyring (f it has one), as well as the UID of the caller’s session keyring much
match the caller’s effective UID.

The fact that it is the parent process that is affected by this operation allows a program
such as the shell to start a child process that uses this operation to change the shell’s
session keyring. (This is what the keyctl(1) new_session command does.)

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EPERM

All of the UIDs (GIDs) of the parent process do not match the effective UID
(GID) of the calling process.

EPERM
The UID of the parent’s existing session keyring or the UID of the caller’s ses-
sion keyring did not match the effective UID of the caller.

EPERM
The parent process is not single-threaded.

EPERM
The parent process is init(1) or a kernel thread.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_session_to_parent(3)

STANDARDS
Linux.

Linux man-pages 6.13 2024-08-21 1184

KEYCTL_SESSION_TO_PARENT (2const) KEYCTL_SESSION_TO_PARENT (2const)

HISTORY
Linux 2.6.32.

SEE ALSO
keyctl(2), keyctl_session_to_parent(3)

Linux man-pages 6.13 2024-08-21 1185

KEYCTL_SET . . . KEY_KEYRING(2const) KEYCTL_SET . . . KEY_KEYRING(2const)

NAME
KEYCTL_SET_REQKEY_KEYRING - set the implicit destination keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_SET_REQKEY_KEYRING, int op);

DESCRIPTION
Set the default keyring to which implicitly requested keys will be linked for this
thread, and return the previous setting. Implicit key requests are those made by inter-
nal kernel components, such as can occur when, for example, opening files on an AFS
or NFS filesystem. Setting the default keyring also has an effect when requesting a
key from user space; see request_key(2) for details.

The op argument should contain one of the following values, to specify the new de-
fault keyring:

KEY_REQKEY_DEFL_NO_CHANGE
Don’t change the default keyring. This can be used to discover the current de-
fault keyring (without changing it).

KEY_REQKEY_DEFL_DEFAULT
This selects the default behaviour, which is to use the thread-specific keyring if
there is one, otherwise the process-specific keyring if there is one, otherwise
the session keyring if there is one, otherwise the UID-specific session keyring,
otherwise the user-specific keyring.

KEY_REQKEY_DEFL_THREAD_KEYRING
Use the thread-specific keyring (thread-keyring(7)) as the new default
keyring.

KEY_REQKEY_DEFL_PROCESS_KEYRING
Use the process-specific keyring (process-keyring(7)) as the new default
keyring.

KEY_REQKEY_DEFL_SESSION_KEYRING
Use the session-specific keyring (session-keyring(7)) as the new default
keyring.

KEY_REQKEY_DEFL_USER_KEYRING
Use the UID-specific keyring (user-keyring(7)) as the new default keyring.

KEY_REQKEY_DEFL_USER_SESSION_KEYRING
Use the UID-specific session keyring (user-session-keyring(7)) as the new
default keyring.

KEY_REQKEY_DEFL_REQUESTOR_KEYRING (since Linux 2.6.29)
Use the requestor keyring.

All other values are invalid.

The setting controlled by this operation is inherited by the child of fork(2) and

Linux man-pages 6.13 2024-08-21 1186

KEYCTL_SET . . . KEY_KEYRING(2const) KEYCTL_SET . . . KEY_KEYRING(2const)

preserved across execve(2).

RETURN VALUE
On success, the ID of the previous default keyring to which implicitly requested keys
were linked (one of KEY_REQKEY_DEFL_USER_*).

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_set_reqkey_keyring(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

SEE ALSO
keyctl(2), keyctl_set_reqkey_keyring(3)

Linux man-pages 6.13 2024-08-21 1187

KEYCTL_SET_TIMEOUT (2const) KEYCTL_SET_TIMEOUT (2const)

NAME
KEYCTL_SET_TIMEOUT - set the expiration timer on a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_SET_TIMEOUT, key_serial_t key, time_t t);

DESCRIPTION
Set a timeout on a key.

The ID of the key is specified in key. The timeout value, in seconds from the current
time, is specified in t. The timeout is measured against the realtime clock.

Specifying the timeout value as 0 clears any existing timeout on the key.

The /proc/keys file displays the remaining time until each key will expire. (This is the
only method of discovering the timeout on a key.)

The caller must either have the setattr permission on the key or hold an instantiation
authorization token for the key (see request_key(2)).

The key and any links to the key will be automatically garbage collected after the
timeout expires. Subsequent attempts to access the key will then fail with the error
EKEYEXPIRED.

This operation cannot be used to set timeouts on revoked, expired, or negatively in-
stantiated keys.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_set_timeout(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.16.

SEE ALSO
keyctl(2), keyctl_set_timeout(3)

Linux man-pages 6.13 2024-08-21 1188

KEYCTL_SETPERM(2const) KEYCTL_SETPERM(2const)

NAME
KEYCTL_SETPERM - change the permissions mask on a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_SETPERM, key_serial_t key,
key_perm_t perms);

DESCRIPTION
Change the permissions of the key with the ID provided in the key argument to the
permissions provided in the perms argument.

If the caller doesn’t have the CAP_SYS_ADMIN capability, it can change permis-
sions only for the keys it owns. (More precisely: the caller’s filesystem UID must
match the UID of the key.)

The key must grant setattr permission to the caller regardless of the caller’s capabili-
ties.

The permissions in perms specify masks of available operations for each of the fol-
lowing user categories:

possessor (since Linux 2.6.14)
This is the permission granted to a process that possesses the key (has it at-
tached searchably to one of the process’s keyrings); see keyrings(7).

user This is the permission granted to a process whose filesystem UID matches the
UID of the key.

group This is the permission granted to a process whose filesystem GID or any of its
supplementary GIDs matches the GID of the key.

other This is the permission granted to other processes that do not match the user
and group categories.

The user, group, and other categories are exclusive: if a process matches the user cat-
egory, it will not receive permissions granted in the group category; if a process
matches the user or group category, then it will not receive permissions granted in the
other category.

The possessor category grants permissions that are cumulative with the grants from
the user, group, or other category.

Each permission mask is eight bits in size, with only six bits currently used. The
available permissions are:

view This permission allows reading attributes of a key.

This permission is required for the KEYCTL_DESCRIBE(2const) operation.

The permission bits for each category are:

Linux man-pages 6.13 2024-08-21 1189

KEYCTL_SETPERM(2const) KEYCTL_SETPERM(2const)

KEY_POS_VIEW
KEY_USR_VIEW
KEY_GRP_VIEW
KEY_OTH_VIEW

read This permission allows reading a key’s payload.

This permission is required for the KEYCTL_READ(2const) operation.

The permission bits for each category are

KEY_POS_READ
KEY_USR_READ
KEY_GRP_READ
KEY_OTH_READ

write This permission allows update or instantiation of a key’s payload. For a
keyring, it allows keys to be linked and unlinked from the keyring,

This permission is required for the KEYCTL_UPDATE(2const), KEYCTL_RE-
VOKE(2const), KEYCTL_CLEAR(2const), KEYCTL_LINK(2const), and
KEYCTL_UNLINK(2const) operations.

The permission bits for each category are:

KEY_POS_WRITE
KEY_USR_WRITE
KEY_GRP_WRITE
KEY_OTH_WRITE

search
This permission allows keyrings to be searched and keys to be found.
Searches can recurse only into nested keyrings that have search permission
set.

This permission is required for the KEYCTL_GET_KEYRING_ID(2const),
KEYCTL_JOIN_SESSION_KEYRING(2const), KEYCTL_SEARCH(2const),
and KEYCTL_INVALIDATE (2const) operations.

The permission bits for each category are:

KEY_POS_SEARCH
KEY_USR_SEARCH
KEY_GRP_SEARCH
KEY_OTH_SEARCH

link This permission allows a key or keyring to be linked to.

This permission is required for the KEYCTL_LINK(2const) and
KEYCTL_SESSION_TO_PARENT(2const) operations.

The permission bits for each category are:

KEY_POS_LINK
KEY_USR_LINK
KEY_GRP_LINK

Linux man-pages 6.13 2024-08-21 1190

KEYCTL_SETPERM(2const) KEYCTL_SETPERM(2const)

KEY_OTH_LINK

setattr (since Linux 2.6.15)
This permission allows a key’s UID, GID, and permissions mask to be
changed.

This permission is required for the KEYCTL_REVOKE(2const),
KEYCTL_CHOWN(2const), and KEYCTL_SETPERM (2const) operations.

The permission bits for each category are:

KEY_POS_SETATTR
KEY_USR_SETATTR
KEY_GRP_SETATTR
KEY_OTH_SETATTR

As a convenience, the following macros are defined as masks for all of the permission
bits in each of the user categories:

KEY_POS_ALL
KEY_USR_ALL
KEY_GRP_ALL
KEY_OTH_ALL

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

operation was KEYCTL_SETPERM and an invalid permission bit was spec-
ified in perms.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_setperm(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_setperm(3)

Linux man-pages 6.13 2024-08-21 1191

KEYCTL_UNLINK (2const) KEYCTL_UNLINK (2const)

NAME
KEYCTL_UNLINK - unlink a key from a keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_UNLINK, key_serial_t key,
key_serial_t keyring);

DESCRIPTION
Unlink a key from a keyring.

The ID of the key to be unlinked is specified in key; the ID of the keyring from which
it is to be unlinked is specified in keyring.

If the key is not currently linked into the keyring, an error results.

The caller must have write permission on the keyring from which the key is being re-
moved.

If the last link to a key is removed, then that key will be scheduled for destruction.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENOENT

The key to be unlinked isn’t linked to the keyring.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_unlink(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_unlink(3), KEYCTL_LINK(2const)

Linux man-pages 6.13 2024-08-21 1192

KEYCTL_UPDATE(2const) KEYCTL_UPDATE(2const)

NAME
KEYCTL_UPDATE - update a key’s data payload

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_UPDATE, key_serial_t key,
void payload[.size], size_t size);

DESCRIPTION
Update a key’s data payload.

key specifies the ID of the key to be updated. payload points to the new payload and
size contains the new payload size in bytes.

The caller must have write permission on the key specified and the key type must sup-
port updating.

A negatively instantiated key (see KEYCTL_REJECT(2const)) can be positively in-
stantiated with this operation.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
The key type does not support updating.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_update(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_update(3)

Linux man-pages 6.13 2024-08-21 1193

NS_GET_NSTYPE(2const) NS_GET_NSTYPE(2const)

NAME
NS_GET_NSTYPE - discovering the namespace type

SYNOPSIS
#include <linux/nsfs.h> /* Definition of NS_GET_NSTYPE */
#include <sys/ioctl.h>

int ioctl(int fd , NS_GET_NSTYPE);

DESCRIPTION
The NS_GET_NSTYPE operation can be used to discover the type of namespace re-
ferred to by the file descriptor fd .

fd refers to a /proc/ pid /ns/* file.

RETURN VALUE
On success, the return value is one of the CLONE_NEW* values that can be speci-
fied to clone(2) or unshare(2) in order to create a namespace.

On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 4.11.

SEE ALSO
ioctl(2), ioctl_nsfs(2)

Linux man-pages 6.13 2024-06-13 1194

NS_GET_OWNER_UID(2const) NS_GET_OWNER_UID(2const)

NAME
NS_GET_OWNER_UID - discovering the owner of a user namespace

SYNOPSIS
#include <linux/nsfs.h> /* Definition of NS_GET_OWNER_UID */
#include <sys/ioctl.h>

int ioctl(int fd , NS_GET_OWNER_UID, uid_t *uid);

DESCRIPTION
The NS_GET_OWNER_UID operation can be used to discover the owner user ID of
a user namespace (i.e., the effective user ID of the process that created the user name-
space).

fd refers to a /proc/ pid /ns/user file.

The owner user ID is returned in the uid_t pointed to by the third argument.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

fd does not refer to a user namespace.

STANDARDS
Linux.

HISTORY
Linux 4.11.

SEE ALSO
ioctl(2), ioctl_nsfs(2)

Linux man-pages 6.13 2024-06-13 1195

NS_GET_USERNS(2const) NS_GET_USERNS(2const)

NAME
NS_GET_USERNS, NS_GET_PARENT - discovering namespace relationships

SYNOPSIS
#include <linux/nsfs.h> /* Definition of NS_GET_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op);

DESCRIPTION
The following ioctl(2) operations are provided to allow discovery of namespace rela-
tionships (see user_namespaces(7) and pid_namespaces(7)).

In each case, fd refers to a /proc/ pid /ns/* file. Both operations return a new file de-
scriptor on success.

NS_GET_USERNS
Returns a file descriptor that refers to the owning user namespace for the
namespace referred to by fd .

NS_GET_PARENT
Returns a file descriptor that refers to the parent namespace of the namespace
referred to by fd . This operation is valid only for hierarchical namespaces
(i.e., PID and user namespaces). For user namespaces, NS_GET_PARENT is
synonymous with NS_GET_USERNS.

The new file descriptor returned by these operations is opened with the O_RDONLY
and O_CLOEXEC (close-on-exec; see fcntl(2)) flags.

By applying fstat(2) to the returned file descriptor, one obtains a stat structure whose
st_dev (resident device) and st_ino (inode number) fields together identify the own-
ing/parent namespace. This inode number can be matched with the inode number of
another /proc/ pid /ns/ {pid ,user} file to determine whether that is the owning/parent
namespace.

RETURN VALUE
On success, a file descriptor is returned. Or error, -1 is returned, and errno is set to
indicate the error.

ERRORS
EPERM

The requested namespace is outside of the caller’s namespace scope. This er-
ror can occur if, for example, the owning user namespace is an ancestor of the
caller’s current user namespace. It can also occur on attempts to obtain the
parent of the initial user or PID namespace.

ENOTTY
The operation is not supported by this kernel version.

Additionally, the NS_GET_PARENT operation can fail with the following error:

EINVAL
fd refers to a nonhierarchical namespace.

STANDARDS
Linux.

Linux man-pages 6.13 2024-06-15 1196

NS_GET_USERNS(2const) NS_GET_USERNS(2const)

HISTORY
NS_GET_USERNS

Linux 4.9.

NS_GET_PARENT
Linux 4.9.

EXAMPLES
The example shown below uses the ioctl(2) operations described above to perform
simple discovery of namespace relationships. The following shell sessions show vari-
ous examples of the use of this program.

Trying to get the parent of the initial user namespace fails, since it has no parent:

$./ns_show /proc/self/ns/user p
The parent namespace is outside your namespace scope

Create a process running sleep(1) that resides in new user and UTS namespaces, and
show that the new UTS namespace is associated with the new user namespace:

$ unshare -Uu sleep 1000 &
[1] 23235
$./ns_show /proc/23235/ns/uts u
Device/Inode of owning user namespace is: [0,3] / 4026532448
$ readlink /proc/23235/ns/user
user:[4026532448]

Then show that the parent of the new user namespace in the preceding example is the
initial user namespace:

$ readlink /proc/self/ns/user
user:[4026531837]
$./ns_show /proc/23235/ns/user p
Device/Inode of parent namespace is: [0,3] / 4026531837

Start a shell in a new user namespace, and show that from within this shell, the parent
user namespace can’t be discovered. Similarly, the UTS namespace (which is associ-
ated with the initial user namespace) can’t be discovered.

$ PS1="sh2$ " unshare -U bash
sh2$./ns_show /proc/self/ns/user p
The parent namespace is outside your namespace scope
sh2$./ns_show /proc/self/ns/uts u
The owning user namespace is outside your namespace scope

Program source

/* ns_show.c

Licensed under the GNU General Public License v2 or later.
*/
#include <errno.h>
#include <fcntl.h>
#include <linux/nsfs.h>
#include <stdint.h>

Linux man-pages 6.13 2024-06-15 1197

NS_GET_USERNS(2const) NS_GET_USERNS(2const)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd, userns_fd, parent_fd;
struct stat sb;

if (argc < 2) {
fprintf(stderr, "Usage: %s /proc/[pid]/ns/[file] [p|u]\n",

argv[0]);
fprintf(stderr, "\nDisplay the result of one or both "

"of NS_GET_USERNS (u) or NS_GET_PARENT (p)\n"
"for the specified /proc/[pid]/ns/[file]. If neither "
"'p' nor 'u' is specified,\n"
"NS_GET_USERNS is the default.\n");

exit(EXIT_FAILURE);
}

/* Obtain a file descriptor for the 'ns' file specified
in argv[1]. */

fd = open(argv[1], O_RDONLY);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

/* Obtain a file descriptor for the owning user namespace and
then obtain and display the inode number of that namespace. */

if (argc < 3 || strchr(argv[2], 'u')) {
userns_fd = ioctl(fd, NS_GET_USERNS);

if (userns_fd == -1) {
if (errno == EPERM)

printf("The owning user namespace is outside "
"your namespace scope\n");

else
perror("ioctl-NS_GET_USERNS");

exit(EXIT_FAILURE);
}

Linux man-pages 6.13 2024-06-15 1198

NS_GET_USERNS(2const) NS_GET_USERNS(2const)

if (fstat(userns_fd, &sb) == -1) {
perror("fstat-userns");
exit(EXIT_FAILURE);

}
printf("Device/Inode of owning user namespace is: "

"[%x,%x] / %ju\n",
major(sb.st_dev),
minor(sb.st_dev),
(uintmax_t) sb.st_ino);

close(userns_fd);
}

/* Obtain a file descriptor for the parent namespace and
then obtain and display the inode number of that namespace. */

if (argc > 2 && strchr(argv[2], 'p')) {
parent_fd = ioctl(fd, NS_GET_PARENT);

if (parent_fd == -1) {
if (errno == EINVAL)

printf("Can' get parent namespace of a "
"nonhierarchical namespace\n");

else if (errno == EPERM)
printf("The parent namespace is outside "

"your namespace scope\n");
else

perror("ioctl-NS_GET_PARENT");
exit(EXIT_FAILURE);

}

if (fstat(parent_fd, &sb) == -1) {
perror("fstat-parentns");
exit(EXIT_FAILURE);

}
printf("Device/Inode of parent namespace is: [%x,%x] / %ju\n",

major(sb.st_dev),
minor(sb.st_dev),
(uintmax_t) sb.st_ino);

close(parent_fd);
}

exit(EXIT_SUCCESS);
}

SEE ALSO
ioctl(2), ioctl_nsfs(2)

Linux man-pages 6.13 2024-06-15 1199

PAGEMAP_SCAN (2const) PAGEMAP_SCAN (2const)

NAME
PAGEMAP_SCAN - get and/or clear page flags

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fs.h> /* Definition of PAGE* and PM_* constants */
#include <sys/ioctl.h>

int ioctl(int pagemap_fd , PAGEMAP_SCAN, struct pm_scan_arg *arg);

#include <linux/fs.h>

struct pm_scan_arg {
__u64 size;
__u64 flags;
__u64 start;
__u64 end;
__u64 walk_end;
__u64 vec;
__u64 vec_len;
__u64 max_pages;
__u64 category_inverted;
__u64 category_mask;
__u64 category_anyof_mask;
__u64 return_mask;

};

struct page_region {
__u64 start;
__u64 end;
__u64 categories;

};

DESCRIPTION
This ioctl(2) is used to get and optionally clear some specific flags from page table en-
tries. The information is returned with PAGE_SIZE granularity.

To start tracking the written state (flag) of a page or range of memory, the
UFFD_FEATURE_WP_ASYNC must be enabled by UFFDIO_API ioctl(2) on
userfaultfd and memory range must be registered with UFFDIO_REGISTER
ioctl(2) in UFFDIO_REGISTER_MODE_WP mode.

Supported page flags
The following page table entry flags are supported:

PAGE_IS_WPALLOWED
The page has asynchronous write-protection enabled.

PAGE_IS_WRITTEN
The page has been written to from the time it was write protected.

Linux man-pages 6.13 2024-07-23 1200

PAGEMAP_SCAN (2const) PAGEMAP_SCAN (2const)

PAGE_IS_FILE
The page is file backed.

PAGE_IS_PRESENT
The page is present in the memory.

PAGE_IS_SWAPPED
The page is swapped.

PAGE_IS_PFNZERO
The page has zero PFN.

PAGE_IS_HUGE
The page is THP or Hugetlb backed.

Supported operations
The get operation is always performed if the output buffer is specified. The other op-
erations are as following:

PM_SCAN_WP_MATCHING
Write protect the matched pages.

PM_SCAN_CHECK_WPASYNC
Abort the scan when a page is found which doesn’t have the Userfaultfd Asyn-
chronous Write protection enabled.

The struct pm_scan_arg argument
size This field should be set to the size of the structure in bytes, as in

sizeof(struct pm_scan_arg).

flags The operations to be performed are specified in it.

start The starting address of the scan is specified in it.

end The ending address of the scan is specified in it.

walk_end
The kernel returns the scan’s ending address in it. The walk_end equal to end
means that scan has completed on the entire range.

vec The address of page_region array for output.

vec_len
The length of the page_region struct array.

max_pages
It is the optional limit for the number of output pages required.

category_inverted
PAGE_IS_* categories which values match if 0 instead of 1.

category_mask
Skip pages for which any PAGE_IS_* category doesn’t match.

category_anyof_mask
Skip pages for which no PAGE_IS_* category matches.

return_mask
PAGE_IS_* categories that are to be reported in page_region.

Linux man-pages 6.13 2024-07-23 1201

PAGEMAP_SCAN (2const) PAGEMAP_SCAN (2const)

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
Error codes can be one of, but are not limited to, the following:

EINVAL
Invalid arguments i.e., invalid size of the argument, invalid flags, invalid cate-
gories, the start address isn’t aligned with PAGE_SIZE, or vec_len is speci-
fied when vec is NULL.

EFAULT
Invalid arg pointer, invalid vec pointer, or invalid address range specified by
start and end .

ENOMEM
No memory is available.

EINTR
Fetal signal is pending.

STANDARDS
Linux.

HISTORY
Linux 6.7.

SEE ALSO
ioctl(2)

Linux man-pages 6.13 2024-07-23 1202

PR_CAP_AMBIENT (2const) PR_CAP_AMBIENT (2const)

NAME
PR_CAP_AMBIENT - read or change the ambient capability set of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAP_AMBIENT, long op, ...);

DESCRIPTION
Reads or changes the ambient capability set of the calling thread, according to the
value of op, which must be one of the following:

PR_CAP_AMBIENT_RAISE
PR_CAP_AMBIENT_LOWER
PR_CAP_AMBIENT_IS_SET
PR_CAP_AMBIENT_CLEAR_ALL

RETURN VALUE
On success, a nonnegative value is returned. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
EINVAL

op is not a valid value.

VERSIONS
Higher-level interfaces layered on top of the above operations are provided in the lib-
cap(3) library in the form of cap_get_ambient(3), cap_set_ambient(3), and cap_re-
set_ambient(3)

STANDARDS
Linux.

HISTORY
Linux 4.3.

SEE ALSO
prctl(2), PR_CAP_AMBIENT_RAISE(2const), PR_CAP_AMBIENT_LOWER(2const),
PR_CAP_AMBIENT_IS_SET(2const), PR_CAP_AMBIENT_CLEAR_ALL(2const),
libcap(3), cap_get_ambient(3), cap_set_ambient(3), cap_reset_ambient(3)

Linux man-pages 6.13 2024-07-23 1203

PR_CAP_AMBIENT_CLEAR_ALL(2const) PR_CAP_AMBIENT_CLEAR_ALL(2const)

NAME
PR_CAP_AMBIENT_CLEAR_ALL - clear the ambient capability set of the calling
thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_CLEAR_ALL, 0L, 0L, 0L);

DESCRIPTION
All capabilities will be removed from the ambient capability set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

VERSIONS
See PR_CAP_AMBIENT(2const).

STANDARDS
Linux.

HISTORY
Linux 4.3.

SEE ALSO
prctl(2), PR_CAP_AMBIENT(2const), libcap(3)

Linux man-pages 6.13 2024-07-23 1204

PR_CAP_AMBIENT_IS_SET (2const) PR_CAP_AMBIENT_IS_SET (2const)

NAME
PR_CAP_AMBIENT_IS_SET - read the ambient capability set of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_IS_SET, long cap, 0L, 0L);

DESCRIPTION
This call returns 1 if the capability in cap is in the ambient capability set and 0 if it is
not.

RETURN VALUE
On success, this call returns the boolean value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EINVAL

cap does not specify a valid capability.

VERSIONS
See PR_CAP_AMBIENT(2const).

STANDARDS
Linux.

HISTORY
Linux 4.3.

SEE ALSO
prctl(2), PR_CAP_AMBIENT(2const), libcap(3)

Linux man-pages 6.13 2024-07-23 1205

PR_CAP_AMBIENT_LOWER(2const) PR_CAP_AMBIENT_LOWER(2const)

NAME
PR_CAP_AMBIENT_LOWER - lower the ambient capability set of the calling
thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_LOWER, long cap, 0L, 0L);

DESCRIPTION
The capability specified in cap is removed from the ambient capability set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

cap does not specify a valid capability.

VERSIONS
See PR_CAP_AMBIENT(2const).

STANDARDS
Linux.

HISTORY
Linux 4.3.

SEE ALSO
prctl(2), PR_CAP_AMBIENT(2const), libcap(3)

Linux man-pages 6.13 2024-07-23 1206

PR_CAP_AMBIENT_RAISE(2const) PR_CAP_AMBIENT_RAISE(2const)

NAME
PR_CAP_AMBIENT_RAISE - add to the ambient capability set of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, long cap, 0L, 0L);

DESCRIPTION
The capability specified in cap is added to the ambient capability set. The specified
capability must already be present in both the permitted and the inheritable sets of the
process. This operation is not permitted if the SECBIT_NO_CAP_AMBI-
ENT_RAISE securebit is set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

cap does not specify a valid capability.

EPERM
either the capability specified in cap is not present in the process’s permitted
and inheritable capability sets, or the PR_CAP_AMBIENT_LOWER se-
curebit has been set.

VERSIONS
See PR_CAP_AMBIENT(2const).

STANDARDS
Linux.

HISTORY
Linux 4.3.

SEE ALSO
prctl(2), PR_CAP_AMBIENT(2const), libcap(3)

Linux man-pages 6.13 2024-07-23 1207

PR_CAPBSET_DROP(2const) PR_CAPBSET_DROP(2const)

NAME
PR_CAPBSET_DROP - drop a capability from the calling thread’s capability bound-
ing set

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAPBSET_DROP, long cap);

DESCRIPTION
Drop the capability specified by cap from the calling thread’s capability bounding set.
Any children of the calling thread will inherit the newly reduced bounding set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

File capabilities are not enabled in the kernel.

EINVAL
cap does not specify a valid capability.

EPERM
The caller does not have the CAP_SETPCAP capability.

VERSIONS
A higher-level interface layered on top of this operation is provided in the libcap(3) li-
brary in the form of cap_drop_bound(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.25.

SEE ALSO
prctl(2), PR_CAPBSET_READ(2const) libcap(3), cap_drop_bound(3)

Linux man-pages 6.13 2024-07-23 1208

PR_CAPBSET_READ(2const) PR_CAPBSET_READ(2const)

NAME
PR_CAPBSET_READ - read the calling thread’s capability bounding set

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAPBSET_READ, long cap);

DESCRIPTION
Return 1 if the capability specified in cap is in the calling thread’s capability bounding
set, or 0 if it is not.

The capability constants are defined in <linux/capability.h>.

The capability bounding set dictates whether the process can receive the capability
through a file’s permitted capability set on a subsequent call to execve(2).

RETURN VALUE
On success, this call returns the boolean value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EINVAL

cap does not specify a valid capability.

VERSIONS
A higher-level interface layered on top of this operation is provided in the libcap(3) li-
brary in the form of cap_get_bound(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.25.

SEE ALSO
prctl(2), PR_CAPBSET_DROP(2const), libcap(3), cap_get_bound(3)

Linux man-pages 6.13 2024-07-23 1209

PR_GET_AUXV (2const) PR_GET_AUXV (2const)

NAME
PR_GET_AUXV - get the auxiliary vector

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_AUXV, void auxv[.size], unsigned long size, 0L, 0L);

DESCRIPTION
Get the auxiliary vector (auxv) into the buffer pointed to by auxv, whose size is given
by size.

If the buffer is not long enough for the full auxiliary vector, the copy will be truncated.

RETURN VALUE
On success, this call returns the full size of the auxiliary vector. On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EFAULT

auxv is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 6.4.

SEE ALSO
prctl(2)

Linux man-pages 6.13 2024-07-23 1210

PR_GET_CHILD_SUBREAPER(2const) PR_GET_CHILD_SUBREAPER(2const)

NAME
PR_GET_CHILD_SUBREAPER - get the "child subreaper" attribute of the calling
process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_CHILD_SUBREAPER, int *isset);

DESCRIPTION
Return the "child subreaper" setting of the caller, in the location pointed to by isset.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

isset is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 3.4.

SEE ALSO
prctl(2), PR_SET_CHILD_SUBREAPER(2const)

Linux man-pages 6.13 2024-07-23 1211

PR_GET_DUMPABLE(2const) PR_GET_DUMPABLE(2const)

NAME
PR_GET_DUMPABLE - get the "dumpable" attribute of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_DUMPABLE);

DESCRIPTION
Return the current state of the calling process’s "dumpable" attribute. See
PR_SET_DUMPABLE(2const).

RETURN VALUE
On success, return the value described above. On error, -1 is returned, and errno is
set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.3.20.

SEE ALSO
prctl(2), PR_SET_DUMPABLE(2const)

Linux man-pages 6.13 2024-07-23 1212

PR_GET_ENDIAN (2const) PR_GET_ENDIAN (2const)

NAME
PR_GET_ENDIAN - get the endian-ness of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_ENDIAN, int *endianness);

DESCRIPTION
Return the endian-ness of the calling process, in the location pointed to by endian-
ness.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

endianness is an invalid address.

STANDARDS
Linux. PowerPC only.

HISTORY
Linux 2.6.18 (PowerPC).

SEE ALSO
prctl(2), PR_SET_ENDIAN(2const)

Linux man-pages 6.13 2024-07-23 1213

PR_GET_FP_MODE(2const) PR_GET_FP_MODE(2const)

NAME
PR_GET_FP_MODE - get the floating point mode of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_FP_MODE);

DESCRIPTION
Return a bit mask which represents the current floating-point mode (see
PR_SET_FP_MODE(2const) for details).

RETURN VALUE
On success, this call returns the nonnegative value described above. On error, -1 is
returned, and errno is set to indicate the error.

STANDARDS
Linux. MIPS only.

HISTORY
Linux 4.0 (MIPS).

SEE ALSO
prctl(2), PR_GET_FP_MODE(2const)

Linux man-pages 6.13 2024-07-23 1214

PR_GET_FPEMU(2const) PR_GET_FPEMU(2const)

NAME
PR_GET_FPEMU - get the floating-point emulation control bits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_FPEMU, int * fpemu);

DESCRIPTION
Return floating-point emulation control bits, in the location pointed to by fpemu.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

fpemu is an invalid address.

STANDARDS
Linux. ia64 only.

HISTORY
Linux 2.4.18, 2.5.9. (ia64)

SEE ALSO
prctl(2), PR_SET_FPEMU(2const)

Linux man-pages 6.13 2024-07-23 1215

PR_GET_FPEXC(2const) PR_GET_FPEXC(2const)

NAME
PR_GET_FPEXC - get the floating-point exception mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_FPEXC, unsigned int *mode);

DESCRIPTION
Return floating-point exception mode, in the location pointed to by mode.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

mode is an invalid address.

STANDARDS
Linux. PowerPC only.

HISTORY
Linux 2.4.21, 2.5.32. (PowerPC)

SEE ALSO
prctl(2), PR_SET_FPEXC(2const)

Linux man-pages 6.13 2024-07-23 1216

PR_GET_IO_FLUSHER(2const) PR_GET_IO_FLUSHER(2const)

NAME
PR_GET_IO_FLUSHER - get the IO_FLUSHER state

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_IO_FLUSHER, 0L, 0L, 0L, 0L);

DESCRIPTION
Return the IO_FLUSHER state of the caller. A value of 1 indicates that the caller is
in the IO_FLUSHER state; 0 indicates that the caller is not in the IO_FLUSHER
state.

The calling process must have the CAP_SYS_RESOURCE capability.

RETURN VALUE
On success, this call returns the boolean value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 5.6.

SEE ALSO
prctl(2), PR_SET_IO_FLUSHER(2const)

Linux man-pages 6.13 2024-07-23 1217

PR_GET_KEEPCAPS(2const) PR_GET_KEEPCAPS(2const)

NAME
PR_GET_KEEPCAPS - get the state of the "keep capabilities" flag

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_KEEPCAPS);

DESCRIPTION
Return the current state of the calling thread’s "keep capabilities" flag. See capabili-
ties(7) for a description of this flag.

RETURN VALUE
On success, this call returns the boolean value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.2.18.

SEE ALSO
signal(2), PR_SET_KEEPCAPS(2const)

Linux man-pages 6.13 2024-07-23 1218

PR_GET_MDWE(2const) PR_GET_MDWE(2const)

NAME
PR_GET_MDWE - get the Memory-Deny-Write-Execute protection mask for the
calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_MDWE, 0L, 0L, 0L, 0L);

DESCRIPTION
Return the Memory-Deny-Write-Execute protection mask of the calling process. See
PR_SET_MDWE(2const) for information on the protection mask bits.

RETURN VALUE
On success, a nonnegative value is returned. On error, -1 is returned, and errno is set
to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 6.3.

SEE ALSO
prctl(2), PR_SET_MDWE(2const)

Linux man-pages 6.13 2024-07-23 1219

PR_GET_NO_NEW_PRIVS(2const) PR_GET_NO_NEW_PRIVS(2const)

NAME
PR_GET_NO_NEW_PRIVS - get the calling thread’s no_new_privs attribute

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_NO_NEW_PRIVS, 0L, 0L, 0L, 0L);

DESCRIPTION
Return the value of the no_new_privs attribute for the calling thread. A value of 0 in-
dicates the regular execve(2) behavior. A value of 1 indicates execve(2) will operate
in the privilege-restricting mode described in PR_SET_NO_NEW_PRIVS(2const).

RETURN VALUE
On success, PR_GET_NO_NEW_PRIVS returns the boolean value described above.
On error, -1 is returned, and errno is set to indicate the error.

FILES
/proc/ pid /status

Since Linux 4.10, the value of a thread’s no_new_privs attribute can be viewed
via the NoNewPrivs field in this file.

STANDARDS
Linux.

HISTORY
Linux 3.5.

SEE ALSO
prctl(2), PR_SET_NO_NEW_PRIVS(2const)

Linux man-pages 6.13 2024-07-23 1220

PR_GET_PDEATHSIG(2const) PR_GET_PDEATHSIG(2const)

NAME
PR_GET_PDEATHSIG - get the parent-death signal number of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_PDEATHSIG, int *sig);

DESCRIPTION
Return the parent-death signal number of the calling process, in the location pointed
to by sig.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

sig is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 2.3.15.

SEE ALSO
signal(2), PR_SET_PDEATHSIG(2const)

Linux man-pages 6.13 2024-07-23 1221

PR_GET_SECCOMP(2) System Calls Manual PR_GET_SECCOMP(2)

NAME
PR_GET_SECCOMP - get the secure computing mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_SECCOMP);

DESCRIPTION
Return the secure computing mode of the calling thread.

If the caller is not in secure computing mode, this operation returns 0; if the caller is
in strict secure computing mode, then the prctl() call will cause a SIGKILL signal to
be sent to the process. If the caller is in filter mode, and this system call is allowed by
the seccomp filters, it returns 2; otherwise, the process is killed with a SIGKILL sig-
nal.

This operation is available only if the kernel is configured with CONFIG_SEC-
COMP enabled.

RETURN VALUE
On success, this call returns the nonnegative value described above. On error, -1 is
returned, and errno is set to indicate the error; or the process is killed.

ERRORS
EINVAL

The kernel was not configured with CONFIG_SECCOMP.

SIGKILL
The caller is in strict secure computing mode.

SIGKILL
The caller is in filter mode, and this system call is not allowed by the seccomp
filters.

FILES
/proc/ pid /status

Since Linux 3.8, the Seccomp field of this file provides a method of obtaining
the same information, without the risk that the process is killed; see
proc_pid_status(5).

STANDARDS
Linux.

HISTORY
Linux 2.6.23.

SEE ALSO
prctl(2), PR_SET_SECCOMP(2const), seccomp(2)

Linux man-pages 6.13 2024-07-23 1222

PR_GET_SECUREBITS(2const) PR_GET_SECUREBITS(2const)

NAME
PR_GET_SECUREBITS - get the "securebits" flags of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_SECUREBITS);

DESCRIPTION
Return the "securebits" flags of the calling thread. See capabilities(7).

RETURN VALUE
On success, PR_GET_SECUREBITS, returns the nonnegative value described
above. On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.6.26.

SEE ALSO
prctl(2), PR_SET_SECUREBITS(2const), capabilities(7)

Linux man-pages 6.13 2024-07-23 1223

PR_GET_SPECULATION_CTRL(2const) PR_GET_SPECULATION_CTRL(2const)

NAME
PR_GET_SPECULATION_CTRL - get the state of a speculation misfeature for the
calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_SPECULATION_CTRL, long misfeature, 0L, 0L, 0L);

DESCRIPTION
Return the state of the speculation misfeature specified in misfeature.

Currently, misfeature must be one of:

PR_SPEC_STORE_BYPASS
Get the state of the speculative store bypass misfeature.

PR_SPEC_INDIRECT_BRANCH (since Linux 4.20)
Get the state of the indirect branch speculation misfeature.

The return value uses bits 0-4 with the following meaning:

PR_SPEC_PRCTL
Mitigation can be controlled per thread by PR_SET_SPECULA-
TION_CTRL(2const).

PR_SPEC_ENABLE
The speculation feature is enabled, mitigation is disabled.

PR_SPEC_DISABLE
The speculation feature is disabled, mitigation is enabled.

PR_SPEC_FORCE_DISABLE
Same as PR_SPEC_DISABLE but cannot be undone.

PR_SPEC_DISABLE_NOEXEC (since Linux 5.1)
Same as PR_SPEC_DISABLE, but the state will be cleared on execve(2).

If all bits are 0, then the CPU is not affected by the speculation misfeature.

If PR_SPEC_PRCTL is set, then per-thread control of the mitigation is available. If
not set, PR_SET_SPECULATION_CTRL(2const) for the speculation misfeature will
fail.

RETURN VALUE
On success, PR_GET_SPECULATION_CTRL returns the nonnegative value de-
scribed above. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENODEV

The kernel or CPU does not support the requested speculation misfeature.

STANDARDS
Linux.

Linux man-pages 6.13 2024-07-23 1224

PR_GET_SPECULATION_CTRL(2const) PR_GET_SPECULATION_CTRL(2const)

HISTORY
Linux 4.17.

SEE ALSO
prctl(2), PR_SET_SPECULATION_CTRL(2const)

Linux man-pages 6.13 2024-07-23 1225

PR_GET_TAGGED_ADDR_CTRL(2const) PR_GET_TAGGED_ADDR_CTRL(2const)

NAME
PR_GET_TAGGED_ADDR_CTRL - get the tagged address mode for the calling
thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_TAGGED_ADDR_CTRL, 0L, 0L, 0L, 0L);

DESCRIPTION
Returns the current tagged address mode for the calling thread.

The call returns a nonnegative value describing the current tagged address mode, en-
coded in the same way as the mode argument of
PR_SET_TAGGED_ADDR_CTRL(2const).

RETURN VALUE
On success, this call returns the nonnegative value described above. On error, -1 is
returned, and errno is set to indicate the error.

ERRORS
This feature is disabled or unsupported by the kernel, or disabled via /proc/sys/abi/
tagged_addr_disabled .

FILES
/proc/sys/abi/tagged_addr_disabled

STANDARDS
Linux. arm64 only.

HISTORY
Linux 5.4 (arm64).

SEE ALSO
prctl(2), PR_SET_TAGGED_ADDR_CTRL(2const)

For more information, see the kernel source file Documentation/arm64/
tagged-address-abi.rst.

Linux man-pages 6.13 2024-07-23 1226

PR_GET_THP_DISABLE(2const) PR_GET_THP_DISABLE(2const)

NAME
PR_GET_THP_DISABLE - get the state of the "THP disable" flag for the calling
thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_THP_DISABLE, 0L, 0L, 0L, 0L);

DESCRIPTION
Return the current setting of the "THP disable" flag for the calling thread: either 1, if
the flag is set, or 0, if it is not.

RETURN VALUE
On success, PR_GET_THP_DISABLE, returns the boolean value described above.
On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 3.15.

SEE ALSO
prctl(2), PR_SET_THP_DISABLE(2const)

Linux man-pages 6.13 2024-07-23 1227

PR_GET_TID_ADDRESS(2const) PR_GET_TID_ADDRESS(2const)

NAME
PR_GET_TID_ADDRESS - get the clear_child_tid address

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_TID_ADDRESS, int **addrp);

DESCRIPTION
Return the clear_child_tid address set by set_tid_address(2) and the clone(2)
CLONE_CHILD_CLEARTID flag, in the location pointed to by addrp.

This feature is available only if the kernel is built with the CONFIG_CHECK-
POINT_RESTORE option enabled.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

addrp is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 3.5.

CAVEATS
Note that since the prctl() system call does not have a compat implementation for the
AMD64 x32 and MIPS n32 ABIs, and the kernel writes out a pointer using the ker-
nel’s pointer size, this operation expects a user-space buffer of 8 (not 4) bytes on these
ABIs.

SEE ALSO
prctl(2)

Linux man-pages 6.13 2024-07-23 1228

PR_GET_TIMERSLACK (2const) PR_GET_TIMERSLACK (2const)

NAME
PR_GET_TIMERSLACK - get the "current" timer slack value for the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_TIMERSLACK);

DESCRIPTION
Return the "current" timer slack value of the calling thread.

RETURN VALUE
On success, this call returns the nonnegative value described above. On error, -1 is
returned, and errno is set to indicate the error.

FILES
/proc/pid /timerslack_ns

STANDARDS
Linux.

HISTORY
Linux 2.6.28.

SEE ALSO
signal(2), PR_SET_TIMERSLACK(2const), proc_pid_timerslack_ns(5)

Linux man-pages 6.13 2024-07-23 1229

PR_GET_TIMING(2const) PR_GET_TIMING(2const)

NAME
PR_GET_TIMING - get the process timing mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_TIMING);

DESCRIPTION
Return which process timing method is currently in use.

RETURN VALUE
On success, PR_GET_TIMING returns the nonnegative value described above. On
error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

SEE ALSO
prctl(2), PR_SET_TIMING(2const)

Linux man-pages 6.13 2024-07-23 1230

PR_GET_TSC(2const) PR_GET_TSC(2const)

NAME
PR_GET_TSC - get wether the timestamp counter can be read

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_TSC, int * flag);

DESCRIPTION
Return the state of the flag determining whether the timestamp counter can be read, in
the location pointed to by flag.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

arg2 is an invalid address.

STANDARDS
Linux. x86 only.

HISTORY
Linux 2.6.26 (x86).

SEE ALSO
prctl(2), PR_SET_TSC(2const)

Linux man-pages 6.13 2024-07-23 1231

PR_GET_UNALIGN (2const) PR_GET_UNALIGN (2const)

NAME
PR_GET_UNALIGN - get unaligned access control bits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_UNALIGN, unsigned int *bits);

DESCRIPTION
Return unaligned access control bits, in the location pointed to by bits.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

bits is an invalid address.

STANDARDS
Linux.

HISTORY
See PR_SET_UNALIGN(2const).

SEE ALSO
prctl(2), PR_SET_UNALIGN(2const)

Linux man-pages 6.13 2024-07-23 1232

PR_MCE_KILL(2const) PR_MCE_KILL(2const)

NAME
PR_MCE_KILL - set the machine check memory corruption kill policy

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_MCE_KILL, long op, ...);

DESCRIPTION
Set the machine check memory corruption kill policy for the calling thread.

op is one of the following operations:

PR_MCE_KILL_CLEAR
PR_MCE_KILL_SET

The policy is inherited by children.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

op is not a valid value.

STANDARDS
Linux.

HISTORY
Linux 2.6.32.

SEE ALSO
prctl(2), PR_MCE_KILL_CLEAR(2const), PR_MCE_KILL_SET(2const),
PR_MCE_KILL_GET(2const)

Linux man-pages 6.13 2024-07-23 1233

PR_MCE_KILL_CLEAR(2const) PR_MCE_KILL_CLEAR(2const)

NAME
PR_MCE_KILL_CLEAR - clear the machine check memory corruption kill policy

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_MCE_KILL, PR_MCE_KILL_CLEAR, 0L, 0L, 0L);

DESCRIPTION
Clear the thread memory corruption kill policy and use the system-wide default.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

FILES
/proc/sys/vm/memory_failure_early_kill

This file defines the system-wide default.

STANDARDS
Linux.

HISTORY
Linux 2.6.32.

SEE ALSO
prctl(2), PR_MCE_KILL(2const), proc_sys_vm(5)

Linux man-pages 6.13 2024-07-23 1234

PR_MCE_KILL_GET (2const) PR_MCE_KILL_GET (2const)

NAME
PR_MCE_KILL_GET - get the machine check memory corruption kill policy

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_MCE_KILL_GET, 0L, 0L, 0L, 0L);

DESCRIPTION
Return the current per-process machine check kill policy; see
PR_MCE_KILL_SET(2const).

RETURN VALUE
On success, this call returns the nonnegative value described above. On error, -1 is
returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.6.32.

SEE ALSO
prctl(2), PR_MCE_KILL(2const), PR_MCE_KILL_SET(2const)

Linux man-pages 6.13 2024-07-23 1235

PR_MCE_KILL_SET (2const) PR_MCE_KILL_SET (2const)

NAME
PR_MCE_KILL_SET - set the machine check memory corruption kill policy

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_MCE_KILL, PR_MCE_KILL_SET, long pol, 0L, 0L);

DESCRIPTION
Use a thread-specific memory corruption kill policy.

pol defines whether the policy is early kill (PR_MCE_KILL_EARLY), late kill
(PR_MCE_KILL_LATE), or the system-wide default (PR_MCE_KILL_DE-
FAULT).

Early kill means that the thread receives a SIGBUS signal as soon as hardware mem-
ory corruption is detected inside its address space.

In late kill mode, the process is killed only when it accesses a corrupted page. See
sigaction(2) for more information on the SIGBUS signal.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

pol is not a valid value.

STANDARDS
Linux.

HISTORY
Linux 2.6.32.

SEE ALSO
prctl(2), PR_MCE_KILL(2const)

Linux man-pages 6.13 2024-07-23 1236

PR_MPX_E . . . NAGEMENT (2) System Calls Manual PR_MPX_E . . . NAGEMENT (2)

NAME
PR_MPX_ENABLE_MANAGEMENT, PR_MPX_DISABLE_MANAGEMENT -
enable or disable kernel management of Memory Protection eXtensions (MPX)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

[[deprecated]] int prctl(PR_MPX_ENABLE_MANAGEMENT, 0L, 0L, 0L, 0L);
[[deprecated]] int prctl(PR_MPX_DISABLE_MANAGEMENT, 0L, 0L, 0L, 0L);

DESCRIPTION
Enable or disable kernel management of Memory Protection eXtensions (MPX)
bounds tables.

MPX is a hardware-assisted mechanism for performing bounds checking on pointers.
It consists of a set of registers storing bounds information and a set of special instruc-
tion prefixes that tell the CPU on which instructions it should do bounds enforcement.
There is a limited number of these registers and when there are more pointers than
registers, their contents must be "spilled" into a set of tables. These tables are called
"bounds tables" and the MPX prctl() operations control whether the kernel manages
their allocation and freeing.

When management is enabled, the kernel will take over allocation and freeing of the
bounds tables. It does this by trapping the #BR exceptions that result at first use of
missing bounds tables and instead of delivering the exception to user space, it allo-
cates the table and populates the bounds directory with the location of the new table.
For freeing, the kernel checks to see if bounds tables are present for memory which is
not allocated, and frees them if so.

Before enabling MPX management using PR_MPX_ENABLE_MANAGEMENT,
the application must first have allocated a user-space buffer for the bounds directory
and placed the location of that directory in the bndcfgu register.

These calls fail if the CPU or kernel does not support MPX. Kernel support for MPX
is enabled via the CONFIG_X86_INTEL_MPX configuration option. You can
check whether the CPU supports MPX by looking for the mpx CPUID bit, like with
the following command:

cat /proc/cpuinfo | grep ' mpx '

A thread may not switch in or out of long (64-bit) mode while MPX is enabled.

All threads in a process are affected by these calls.

The child of a fork(2) inherits the state of MPX management. During execve(2), MPX
management is reset to a state as if PR_MPX_DISABLE_MANAGEMENT had
been called.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

Linux man-pages 6.13 2024-07-23 1237

PR_MPX_E . . . NAGEMENT (2) System Calls Manual PR_MPX_E . . . NAGEMENT (2)

ERRORS
ENXIO

The kernel or the CPU does not support MPX management. Check that the
kernel and processor have MPX support.

STANDARDS
None.

HISTORY
Linux 3.19. Removed in Linux 5.4. Only on x86.

Due to a lack of toolchain support, PR_MPX_ENABLE_MANAGEMENT and
PR_MPX_DISABLE_MANAGEMENT are not supported in Linux 5.4 and later.

SEE ALSO
prctl(2)

For further information on Intel MPX, see the kernel source file Documentation/x86/
intel_mpx.txt.

Linux man-pages 6.13 2024-07-23 1238

PR_PAC_RESET_KEYS(2const) PR_PAC_RESET_KEYS(2const)

NAME
PR_PAC_RESET_KEYS - reset the calling thread’s pointer authentication code keys

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_PAC_RESET_KEYS, unsigned long keys, 0L, 0L, 0L);

DESCRIPTION
Securely reset the thread’s pointer authentication keys to fresh random values gener-
ated by the kernel.

The set of keys to be reset is specified by keys, which must be a logical OR of zero or
more of the following:

PR_PAC_APIAKEY
instruction authentication key A

PR_PAC_APIBKEY
instruction authentication key B

PR_PAC_APDAKEY
data authentication key A

PR_PAC_APDBKEY
data authentication key B

PR_PAC_APGAKEY
generic authentication “A” key.

(Yes folks, there really is no generic B key.)

As a special case, if keys is zero, then all the keys are reset. Since new keys could be
added in future, this is the recommended way to completely wipe the existing keys
when establishing a clean execution context.

There is no need to use PR_PAC_RESET_KEYS in preparation for calling
execve(2), since execve(2) resets all the pointer authentication keys.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

keys contains set bits that are invalid or unsupported on this platform.

STANDARDS
Linux. arm64 only.

HISTORY
Linux 5.0 (arm64).

Linux man-pages 6.13 2024-07-23 1239

PR_PAC_RESET_KEYS(2const) PR_PAC_RESET_KEYS(2const)

CAVEATS
Because the compiler or run-time environment may be using some or all of the keys, a
successful PR_PAC_RESET_KEYS may crash the calling process. The conditions
for using it safely are complex and system-dependent. Don’t use it unless you know
what you are doing.

SEE ALSO
prctl(2)

For more information, see the kernel source file Documentation/arm64/pointer-au-
thentication.rst (or Documentation/arm64/pointer-authentication.txt before Linux
5.3).

Linux man-pages 6.13 2024-07-23 1240

PR_RISCV_SE . . . HE_FLUSH_CTX(2const) PR_RISCV_SE . . . HE_FLUSH_CTX(2const)

NAME
PR_RISCV_SET_ICACHE_FLUSH_CTX - Enable/disable icache flushing instruc-
tions in userspace.

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_RISCV_SET_ICACHE_FLUSH_CTX, unsigned long ctx,
unsigned long scope);

DESCRIPTION
The context and the scope can be provided using ctx and scope respectively.

When scope is set to PR_RISCV_SCOPE_PER_PROCESS all threads in the
process are permitted to emit icache flushing instructions. Whenever any thread in the
process is migrated, the corresponding hart’s icache will be guaranteed to be consis-
tent with instruction storage. This does not enforce any guarantees outside of migra-
tion. If a thread modifies an instruction that another thread may attempt to execute,
the other thread must still emit an icache flushing instruction before attempting to exe-
cute the potentially modified instruction. This must be performed by the user-space
program.

In per-thread context (eg. scope is set to PR_RISCV_SCOPE_PER_THREAD)
only the thread calling this function is permitted to emit icache flushing instructions.
When the thread is migrated, the corresponding hart’s icache will be guaranteed to be
consistent with instruction storage.

On kernels configured without SMP, this prctl
PR_RISCV_SET_ICACHE_FLUSH_CTX is a nop as migrations across harts will
not occur.

The following values for ctx can be specified:

PR_RISCV_CTX_SW_FENCEI_ON (since Linux 6.10)
Allow fence.i in user space.

PR_RISCV_CTX_SW_FENCEI_OFF (since Linux 6.10)
Disallow fence.i in user space. All threads in a process will be affected when
scope is set to PR_RISCV_SCOPE_PER_PROCESS. Therefore, caution
must be taken; use this flag only when you can guarantee that no thread in the
process will emit fence.i from this point onward.

The following values for scope can be specified:

PR_RISCV_SCOPE_PER_PROCESS (since Linux 6.10)
Ensure the icache of any thread in this process is coherent with instruction
storage upon migration.

PR_RISCV_SCOPE_PER_THREAD (since Linux 6.10)
Ensure the icache of the current thread is coherent with instruction storage
upon migration.

Linux man-pages 6.13 2024-07-23 1241

PR_RISCV_SE . . . HE_FLUSH_CTX(2const) PR_RISCV_SE . . . HE_FLUSH_CTX(2const)

EXAMPLES
The following files are meant to be compiled and linked with each other. The mod-
ify_instruction() function replaces an add with zero with an add with one, causing the
instruction sequence in get_value() to change from returning a zero to returning a one.

Program source: cmodx.c
#include <stdio.h>
#include <sys/prctl.h>

extern int get_value(void);
extern void modify_instruction(void);

int
main(void)
{

int value = get_value();

printf("Value before cmodx: %d\n", value);

// Call prctl before first fence.i is called
prctl(PR_RISCV_SET_ICACHE_FLUSH_CTX, PR_RISCV_CTX_SW_FENCEI_ON,

PR_RISCV_SCOPE_PER_PROCESS);

modify_instruction();

// Call prctl after final fence.i is called in process
prctl(PR_RISCV_SET_ICACHE_FLUSH_CTX, PR_RISCV_CTX_SW_FENCEI_OFF,

PR_RISCV_SCOPE_PER_PROCESS);

value = get_value();
printf("Value after cmodx: %d\n", value);
return 0;

}

Program source: cmodx.S
.option norvc

.text

.global modify_instruction
modify_instruction:
lw a0, new_insn
lui a5,%hi(old_insn)
sw a0,%lo(old_insn)(a5)
fence.i
ret

.section modifiable, "awx"

.global get_value
get_value:
li a0, 0

Linux man-pages 6.13 2024-07-23 1242

PR_RISCV_SE . . . HE_FLUSH_CTX(2const) PR_RISCV_SE . . . HE_FLUSH_CTX(2const)

old_insn:
addi a0, a0, 0
ret

.data
new_insn:
addi a0, a0, 1

Expected result
Value before cmodx: 0
Value after cmodx: 1

STANDARDS
Linux. RISC-V only.

HISTORY
Linux 6.10 (RISC-V).

SEE ALSO
prctl(2)

Linux man-pages 6.13 2024-07-23 1243

PR_SET_CHILD_SUBREAPER(2const) PR_SET_CHILD_SUBREAPER(2const)

NAME
PR_SET_CHILD_SUBREAPER - set/unset the "child subreaper" attribute of the
calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_CHILD_SUBREAPER, long set);

DESCRIPTION
If set is nonzero, set the "child subreaper" attribute of the calling process; if set is
zero, unset the attribute.

A subreaper fulfills the role of init(1) for its descendant processes. When a process
becomes orphaned (i.e., its immediate parent terminates), then that process will be re-
parented to the nearest still living ancestor subreaper. Subsequently, calls to getp-
pid(2) in the orphaned process will now return the PID of the subreaper process, and
when the orphan terminates, it is the subreaper process that will receive a SIGCHLD
signal and will be able to wait(2) on the process to discover its termination status.

The setting of the "child subreaper" attribute is not inherited by children created by
fork(2) and clone(2). The setting is preserved across execve(2).

Establishing a subreaper process is useful in session management frameworks where a
hierarchical group of processes is managed by a subreaper process that needs to be in-
formed when one of the processes—for example, a double-forked daemon—termi-
nates (perhaps so that it can restart that process). Some init(1) frameworks (e.g., sys-
temd(1)) employ a subreaper process for similar reasons.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

STANDARDS
Linux.

HISTORY
Linux 3.4.

SEE ALSO
prctl(2), PR_GET_CHILD_SUBREAPER(2const)

Linux man-pages 6.13 2024-07-23 1244

PR_SET_DUMPABLE(2const) PR_SET_DUMPABLE(2const)

NAME
PR_SET_DUMPABLE - set the "dumpable" attribute of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_DUMPABLE, long dumpable);

DESCRIPTION
Set the state of the "dumpable" attribute, which determines whether core dumps are
produced for the calling process upon delivery of a signal whose default behavior is to
produce a core dump.

dumpable must be either 0L (SUID_DUMP_DISABLE, process is not dumpable) or
1L (SUID_DUMP_USER, process is dumpable).

Normally, the "dumpable" attribute is set to 1. However, it is reset to the current value
contained in the file /proc/sys/fs/suid_dumpable (which by default has the value 0), in
the following circumstances:

• The process’s effective user or group ID is changed.

• The process’s filesystem user or group ID is changed (see credentials(7)).

• The process executes (execve(2)) a set-user-ID or set-group-ID program, resulting
in a change of either the effective user ID or the effective group ID.

• The process executes (execve(2)) a program that has file capabilities (see capabili-
ties(7)), but only if the permitted capabilities gained exceed those already permit-
ted for the process.

Processes that are not dumpable can not be attached via ptrace(2) PTRACE_AT-
TACH; see ptrace(2) for further details.

If a process is not dumpable, the ownership of files in the process’s /proc/ pid direc-
tory is affected as described in proc_pid(5).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

arg2 is neither SUID_DUMP_DISABLE nor SUID_DUMP_USER.

FILES
/proc/sys/fs/suid_dumpable

/proc/ pid /

STANDARDS
Linux.

Linux man-pages 6.13 2024-07-23 1245

PR_SET_DUMPABLE(2const) PR_SET_DUMPABLE(2const)

HISTORY
Linux 2.3.20.

Between Linux 2.6.13 and Linux 2.6.17, the value 2L was also permitted, which
caused any binary which normally would not be dumped to be dumped readable by
root only; for security reasons, this feature has been removed. (See also the descrip-
tion of /proc/sys/fs/suid_dumpable in proc_sys_fs(5).)

SEE ALSO
prctl(2), PR_SET_DUMPABLE(2const)

Linux man-pages 6.13 2024-07-23 1246

PR_SET_ENDIAN (2const) PR_SET_ENDIAN (2const)

NAME
PR_SET_ENDIAN - set endianness of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_ENDIAN, long endianness);

DESCRIPTION
Set the endian-ness of the calling process to the value given in endianness, which
should be one of the following: PR_ENDIAN_BIG, PR_ENDIAN_LITTLE, or
PR_ENDIAN_PPC_LITTLE (PowerPC pseudo little endian).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

endianness is not a valid value.

STANDARDS
Linux. PowerPC only.

HISTORY
Linux 2.6.18 (PowerPC).

SEE ALSO
prctl(2), PR_GET_ENDIAN(2const)

Linux man-pages 6.13 2024-07-23 1247

PR_SET_FP_MODE(2const) PR_SET_FP_MODE(2const)

NAME
PR_SET_FP_MODE - set the floating point mode of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_FP_MODE, unsigned long mode);

DESCRIPTION
On the MIPS architecture, user-space code can be built using an ABI which permits
linking with code that has more restrictive floating-point (FP) requirements. For ex-
ample, user-space code may be built to target the O32 FPXX ABI and linked with
code built for either one of the more restrictive FP32 or FP64 ABIs. When more re-
strictive code is linked in, the overall requirement for the process is to use the more
restrictive floating-point mode.

Because the kernel has no means of knowing in advance which mode the process
should be executed in, and because these restrictions can change over the lifetime of
the process, the PR_SET_FP_MODE operation is provided to allow control of the
floating-point mode from user space.

The mode argument is a bit mask describing the floating-point mode used:

PR_FP_MODE_FR
When this bit is unset (so called FR=0 or FR0 mode), the 32 floating-point
registers are 32 bits wide, and 64-bit registers are represented as a pair of reg-
isters (even- and odd- numbered, with the even-numbered register containing
the lower 32 bits, and the odd-numbered register containing the higher 32
bits).

When this bit is set (on supported hardware), the 32 floating-point registers are
64 bits wide (so called FR=1 or FR1 mode). Note that modern MIPS imple-
mentations (MIPS R6 and newer) support FR=1 mode only.

Applications that use the O32 FP32 ABI can operate only when this bit is un-
set (FR=0; or they can be used with FRE enabled, see below). Applications
that use the O32 FP64 ABI (and the O32 FP64A ABI, which exists to provide
the ability to operate with existing FP32 code; see below) can operate only
when this bit is set (FR=1). Applications that use the O32 FPXX ABI can op-
erate with either FR=0 or FR=1.

PR_FP_MODE_FRE
Enable emulation of 32-bit floating-point mode. When this mode is enabled, it
emulates 32-bit floating-point operations by raising a reserved-instruction ex-
ception on every instruction that uses 32-bit formats and the kernel then han-
dles the instruction in software. (The problem lies in the discrepancy of han-
dling odd-numbered registers which are the high 32 bits of 64-bit registers
with even numbers in FR=0 mode and the lower 32-bit parts of odd-numbered
64-bit registers in FR=1 mode.) Enabling this bit is necessary when code with
the O32 FP32 ABI should operate with code with compatible the O32 FPXX
or O32 FP64A ABIs (which require FR=1 FPU mode) or when it is executed

Linux man-pages 6.13 2024-07-23 1248

PR_SET_FP_MODE(2const) PR_SET_FP_MODE(2const)

on newer hardware (MIPS R6 onwards) which lacks FR=0 mode support
when a binary with the FP32 ABI is used.

Note that this mode makes sense only when the FPU is in 64-bit mode
(FR=1).

Note that the use of emulation inherently has a significant performance hit and
should be avoided if possible.

In the N32/N64 ABI, 64-bit floating-point mode is always used, so FPU emulation is
not required and the FPU always operates in FR=1 mode.

This operation is mainly intended for use by the dynamic linker (ld.so(8)).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EOPNOTSUPP

mode has an invalid or unsupported value.

STANDARDS
Linux. MIPS only.

HISTORY
Linux 4.0 (MIPS).

SEE ALSO
prctl(2), PR_GET_FP_MODE(2const)

Linux man-pages 6.13 2024-07-23 1249

PR_SET_FPEMU(2const) PR_SET_FPEMU(2const)

NAME
PR_SET_FPEMU - set floating-point emulation control bits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_FPEMU, long fpemu);

DESCRIPTION
Set floating-point emulation control bits to fpemu. Pass PR_FPEMU_NOPRINT to
silently emulate floating-point operation accesses, or PR_FPEMU_SIGFPE to not
emulate floating-point operations and send SIGFPE instead.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

fpemu is not a valid value.

STANDARDS
Linux. ia64 only.

HISTORY
Linux 2.4.18, 2.5.9. (ia64)

SEE ALSO
prctl(2), PR_GET_FPEMU(2const)

Linux man-pages 6.13 2024-07-23 1250

PR_SET_FPEXC(2const) PR_SET_FPEXC(2const)

NAME
PR_SET_FPEXC - set the floating-point exception mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_FPEXC, unsigned long mode);

DESCRIPTION
Set floating-point exception mode to mode. Pass PR_FP_EXC_SW_ENABLE to
use FPEXC for FP exception enables, PR_FP_EXC_DIV for floating-point divide by
zero, PR_FP_EXC_OVF for floating-point overflow, PR_FP_EXC_UND for float-
ing-point underflow, PR_FP_EXC_RES for floating-point inexact result,
PR_FP_EXC_INV for floating-point invalid operation, PR_FP_EXC_DISABLED
for FP exceptions disabled, PR_FP_EXC_NONRECOV for async nonrecoverable
exception mode, PR_FP_EXC_ASYNC for async recoverable exception mode,
PR_FP_EXC_PRECISE for precise exception mode.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

mode is not a valid value.

STANDARDS
Linux. PowerPC only.

HISTORY
Linux 2.4.21, 2.5.32. (PowerPC)

SEE ALSO
prctl(2), PR_GET_FPEXC(2const)

Linux man-pages 6.13 2024-07-23 1251

PR_SET_IO_FLUSHER(2const) PR_SET_IO_FLUSHER(2const)

NAME
PR_SET_IO_FLUSHER - change the IO_FLUSHER state

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_IO_FLUSHER, long state, 0L, 0L, 0L);

DESCRIPTION
If a user process is involved in the block layer or filesystem I/O path, and can allocate
memory while processing I/O requests it must set state to 1. This will put the process
in the IO_FLUSHER state, which allows it special treatment to make progress when
allocating memory. If state is 0, the process will clear the IO_FLUSHER state, and
the default behavior will be used.

The calling process must have the CAP_SYS_RESOURCE capability.

The IO_FLUSHER state is inherited by a child process created via fork(2) and is pre-
served across execve(2).

Examples of IO_FLUSHER applications are FUSE daemons, SCSI device emulation
daemons, and daemons that perform error handling like multipath path recovery appli-
cations.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

state is not a valid value.

STANDARDS
Linux.

HISTORY
Linux 5.6.

SEE ALSO
prctl(2), PR_GET_IO_FLUSHER(2const)

Linux man-pages 6.13 2024-07-23 1252

PR_SET_KEEPCAPS(2const) PR_SET_KEEPCAPS(2const)

NAME
PR_SET_KEEPCAPS - set the state of the "keep capabilities" flag

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_KEEPCAPS, long state);

DESCRIPTION
Set the state of the calling thread’s "keep capabilities" flag. The effect of this flag is
described in capabilities(7). state must be either 0L (clear the flag) or 1L (set the
flag). The "keep capabilities" value will be reset to 0 on subsequent calls to execve(2).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

state is not a valid value.

EPERM
The caller’s SECBIT_KEEP_CAPS_LOCKED flag is set (see capabili-
ties(7)).

STANDARDS
Linux.

HISTORY
Linux 2.2.18.

SEE ALSO
prctl(2), PR_GET_KEEPCAPS(2const)

Linux man-pages 6.13 2024-07-23 1253

PR_SET_MDWE(2const) PR_SET_MDWE(2const)

NAME
PR_SET_MDWE - set the Memory-Deny-Write-Execute protection mask for the
calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MDWE, unsigned long mask, 0L, 0L, 0L);

DESCRIPTION
Set the calling process’ Memory-Deny-Write-Execute protection mask. Once protec-
tion bits are set, they can not be changed.

mask must be a bit mask of:

PR_MDWE_REFUSE_EXEC_GAIN
New memory mapping protections can’t be writable and executable. Non-exe-
cutable mappings can’t become executable.

PR_MDWE_NO_INHERIT (since Linux 6.6)
Do not propagate MDWE protection to child processes on fork(2). Setting this
bit requires setting PR_MDWE_REFUSE_EXEC_GAIN too.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

mask is not a valid value.

STANDARDS
Linux.

HISTORY
Linux 6.3.

SEE ALSO
prctl(2), PR_GET_MDWE(2const)

Linux man-pages 6.13 2024-07-23 1254

PR_SET_MM(2const) PR_SET_MM(2const)

NAME
PR_SET_MM - modify kernel memory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, long op, ...);

DESCRIPTION
Modify certain kernel memory map descriptor fields of the calling process. Usually
these fields are set by the kernel and dynamic loader (see ld.so(8) for more informa-
tion) and a regular application should not use this feature. However, there are cases,
such as self-modifying programs, where a program might find it useful to change its
own memory map.

The calling process must have the CAP_SYS_RESOURCE capability. The value in
op is one of the options below.

PR_SET_MM_START_CODE
PR_SET_MM_END_CODE
PR_SET_MM_START_DATA
PR_SET_MM_END_DATA
PR_SET_MM_START_STACK
PR_SET_MM_START_BRK
PR_SET_MM_BRK
PR_SET_MM_ARG_START
PR_SET_MM_ARG_END
PR_SET_MM_ENV_START
PR_SET_MM_ENV_END
PR_SET_MM_AUXV
PR_SET_MM_EXE_FILE
PR_SET_MM_MAP
PR_SET_MM_MAP_SIZE

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

op is not a valid value.

EPERM
The caller does not have the CAP_SYS_RESOURCE capability.

STANDARDS
Linux.

HISTORY
Linux 3.3.

Before Linux 3.10, this feature is available only if the kernel is built with the

Linux man-pages 6.13 2024-07-23 1255

PR_SET_MM(2const) PR_SET_MM(2const)

CONFIG_CHECKPOINT_RESTORE option enabled.

SEE ALSO
prctl(2), PR_SET_MM_START_CODE(2const), PR_SET_MM_END_CODE(2const),
PR_SET_MM_START_DATA(2const), PR_SET_MM_END_DATA(2const),
PR_SET_MM_START_STACK(2const), PR_SET_MM_START_BRK(2const),
PR_SET_MM_BRK(2const), PR_SET_MM_ARG_START(2const),
PR_SET_MM_ARG_END(2const), PR_SET_MM_ENV_START(2const),
PR_SET_MM_ENV_END(2const), PR_SET_MM_EXE_FILE(2const),
PR_SET_MM_MAP(2const), PR_SET_MM_MAP_SIZE(2const)

Linux man-pages 6.13 2024-07-23 1256

PR_SET_MM_ARG_START (2const) PR_SET_MM_ARG_START (2const)

NAME
PR_SET_MM_ARG_START, PR_SET_MM_ARG_END,
PR_SET_MM_ENV_START, PR_SET_MM_ENV_END - modify kernel memory
map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_ARG_START, unsigned long addr, 0L, 0L);
int prctl(PR_SET_MM, PR_SET_MM_ARG_END, unsigned long addr, 0L, 0L);
int prctl(PR_SET_MM, PR_SET_MM_ENV_START, unsigned long addr, 0L, 0L);
int prctl(PR_SET_MM, PR_SET_MM_ENV_END, unsigned long addr, 0L, 0L);

DESCRIPTION
PR_SET_MM_ARG_START

Set the address above which the program command line is placed.

PR_SET_MM_ARG_END
Set the address below which the program command line is placed.

PR_SET_MM_ENV_START
Set the address above which the program environment is placed.

PR_SET_MM_ENV_END
Set the address below which the program environment is placed.

The address passed with these calls should belong to a process stack area. Thus, the
corresponding memory area must be readable, writable, and (depending on the kernel
configuration) have the MAP_GROWSDOWN attribute set (see mmap(2)).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address
space for this architecture).

STANDARDS
Linux.

HISTORY
Linux 3.5.

SEE ALSO
prctl(2), PR_SET_MM(2const)

Linux man-pages 6.13 2024-07-23 1257

PR_SET_MM_AUXV (2const) PR_SET_MM_AUXV (2const)

NAME
PR_SET_MM_AUXV - set a new auxiliary vector

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/prctl.h>

#include <linux/prctl.h> /* Definition of PR_* constants */
int prctl(PR_SET_MM, PR_SET_MM_AUXV,

unsigned long addr, unsigned long size, 0L);

DESCRIPTION
Set a new auxiliary vector.

addr should provide the address of the vector. size is the size of the vector.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address
space for this architecture).

STANDARDS
Linux.

HISTORY
Linux 3.5.

SEE ALSO
prctl(2), PR_SET_MM(2const)

Linux man-pages 6.13 2024-07-23 1258

PR_SET_MM_BRK (2const) PR_SET_MM_BRK (2const)

NAME
PR_SET_MM_BRK - modify kernel memory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_BRK, unsigned long addr, 0L, 0L);

DESCRIPTION
Set the current brk(2) value.

The requirements for the address are the same as for the
PR_SET_MM_START_BRK option.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address
space for this architecture).

EINVAL
addr is less than or equal to the end of the data segment or specifies a value
that would cause the RLIMIT_DATA resource limit to be exceeded.

STANDARDS
Linux.

HISTORY
Linux 3.3.

SEE ALSO
prctl(2), PR_SET_MM(2const), PR_SET_MM_START_BRK(2const)

Linux man-pages 6.13 2024-07-23 1259

PR_SET_MM_EXE_FILE(2const) PR_SET_MM_EXE_FILE(2const)

NAME
PR_SET_MM_EXE_FILE - modify kernel memory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_EXE_FILE, long fd , 0L, 0L);

DESCRIPTION
Supersede the /proc/ pid /exe symbolic link with a new one pointing to a new exe-
cutable file identified by the file descriptor provided in the fd argument. The file de-
scriptor should be obtained with a regular open(2) call.

To change the symbolic link, one needs to unmap all existing executable memory ar-
eas, including those created by the kernel itself (for example the kernel usually creates
at least one executable memory area for the ELF .text section).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

The file is not executable.

EBADF
The file descriptor passed in fd is not valid.

EBUSY
This the second attempt to change the /proc/ pid /exe symbolic link.

FILES
/proc/ pid /exe

STANDARDS
Linux.

HISTORY
Linux 3.5.

In Linux 4.9 and earlier, the PR_SET_MM_EXE_FILE operation can be performed
only once in a process’s lifetime; attempting to perform the operation a second time
results in the error EPERM. This restriction was enforced for security reasons that
were subsequently deemed specious, and the restriction was removed in Linux 4.10
because some user-space applications needed to perform this operation more than
once.

SEE ALSO
prctl(2), PR_SET_MM(2const), proc_pid_exe(5)

Linux man-pages 6.13 2024-07-23 1260

PR_SET_MM_MAP(2const) PR_SET_MM_MAP(2const)

NAME
PR_SET_MM_MAP, PR_SET_MM_MAP_SIZE - modify kernel memory map de-
scriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_MAP,
struct prctl_mm_map *map, unsigned long size, 0L);

int prctl(PR_SET_MM, PR_SET_MM_MAP_SIZE, unsigned int *size, 0L, 0L);

DESCRIPTION
PR_SET_MM_MAP

Provides one-shot access to all the addresses modifyable with
PR_SET_MM(2const) by passing in a struct prctl_mm_map (as defined in
<linux/prctl.h>). The size argument should provide the size of the struct.

PR_SET_MM_MAP_SIZE
Returns (via the size argument) the size of the struct prctl_mm_map the kernel
expects. This allows user space to find a compatible struct.

These features are available only if the kernel is built with the CONFIG_CHECK-
POINT_RESTORE option enabled.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

The third argument is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 3.18.

SEE ALSO
prctl(2), PR_SET_MM(2const), PR_SET_MM_START_CODE(2const),
PR_SET_MM_END_CODE(2const), PR_SET_MM_START_DATA(2const),
PR_SET_MM_END_DATA(2const), PR_SET_MM_START_STACK(2const),
PR_SET_MM_START_BRK(2const), PR_SET_MM_BRK(2const),
PR_SET_MM_ARG_START(2const), PR_SET_MM_ARG_END(2const),
PR_SET_MM_ENV_START(2const), PR_SET_MM_ENV_END(2const),
PR_SET_MM_EXE_FILE(2const)

Linux man-pages 6.13 2024-07-23 1261

PR_SET_MM_START_BRK (2const) PR_SET_MM_START_BRK (2const)

NAME
PR_SET_MM_START_BRK - modify kernel memory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_START_BRK, unsigned long addr, 0L, 0L);

DESCRIPTION
Set the address above which the program heap can be expanded with brk(2) call.

The address must be greater than the ending address of the current program data seg-
ment. In addition, the combined size of the resulting heap and the data segment can’t
exceed the RLIMIT_DATA resource limit (see setrlimit(2)).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address
space for this architecture).

EINVAL
addr is less than or equal to the end of the data segment or specifies a value
that would cause the RLIMIT_DATA resource limit to be exceeded.

STANDARDS
Linux.

HISTORY
Linux 3.3.

SEE ALSO
prctl(2), PR_SET_MM(2const)

Linux man-pages 6.13 2024-07-23 1262

PR_SET_MM_START_CODE(2const) PR_SET_MM_START_CODE(2const)

NAME
PR_SET_MM_START_CODE, PR_SET_MM_END_CODE - modify kernel mem-
ory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_START_CODE, unsigned long addr, 0L, 0L);
int prctl(PR_SET_MM, PR_SET_MM_END_CODE, unsigned long addr, 0L, 0L);

DESCRIPTION
PR_SET_MM_START_CODE

Set the address above which the program text can run. The corresponding
memory area must be readable and executable, but not writable or shareable
(see mprotect(2) and mmap(2) for more information).

PR_SET_MM_END_CODE
Set the address below which the program text can run. The corresponding
memory area must be readable and executable, but not writable or shareable.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address
space for this architecture).

EINVAL
The permissions of the corresponding memory area are not as required.

STANDARDS
Linux.

HISTORY
Linux 3.3.

SEE ALSO
prctl(2)

Linux man-pages 6.13 2024-07-23 1263

PR_SET_MM_START_DATA(2const) PR_SET_MM_START_DATA(2const)

NAME
PR_SET_MM_START_DATA, PR_SET_MM_END_DATA - modify kernel memory
map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_START_DATA, unsigned long addr, 0L, 0L);
int prctl(PR_SET_MM, PR_SET_MM_END_DATA, unsigned long addr, 0L, 0L);

DESCRIPTION
PR_SET_MM_START_DATA

Set the address above which initialized and uninitialized (bss) data are placed.
The corresponding memory area must be readable and writable, but not exe-
cutable or shareable.

PR_SET_MM_END_DATA
Set the address below which initialized and uninitialized (bss) data are placed.
The corresponding memory area must be readable and writable, but not exe-
cutable or shareable.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address
space for this architecture).

EINVAL
The permissions of the corresponding memory area are not as required.

STANDARDS
Linux.

HISTORY
Linux 3.3.

SEE ALSO
prctl(2)

Linux man-pages 6.13 2024-07-23 1264

PR_SET_MM_START_STACK (2const) PR_SET_MM_START_STACK (2const)

NAME
PR_SET_MM_START_STACK - modify kernel memory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_START_STACK, unsigned long addr, 0L, 0L);

DESCRIPTION
Set the start address of the stack. The corresponding memory area must be readable
and writable.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address
space for this architecture).

EINVAL
The permissions of the corresponding memory area are not as required.

STANDARDS
Linux.

HISTORY
Linux 3.3.

SEE ALSO
prctl(2), PR_SET_MM(2const)

Linux man-pages 6.13 2024-07-23 1265

PR_SET_NAME(2const) PR_SET_NAME(2const)

NAME
PR_SET_NAME, PR_GET_NAME - operations on a process or thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_NAME, char name[16]);
int prctl(PR_GET_NAME, const char name[16]);

DESCRIPTION
PR_SET_NAME

Set the name of the calling thread, using the value in the location pointed to by
name.

The name can be up to 16 bytes long, including the terminating null byte. If
the length of the string, including the terminating null byte, exceeds 16 bytes,
the string is silently truncated.

PR_GET_NAME (since Linux 2.6.11)
Return the name of the calling thread, in the buffer pointed to by name. The
returned string will be null-terminated.

This is the same attribute that can be set via pthread_setname_np(3) and retrieved us-
ing pthread_getname_np(3).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

name is an invalid address.

FILES
/proc/self/task/tid /comm

The attribute is likewise accessible via this file (see proc_pid_comm(5)), where
tid is the thread ID of the calling thread, as returned by gettid(2).

STANDARDS
Linux.

HISTORY
PR_SET_NAME

Linux 2.6.9.

PR_GET_NAME
Linux 2.6.11.

SEE ALSO
prctl(2), pthread_setname_np(3), pthread_getname_np(3), proc_pid_comm(5)

Linux man-pages 6.13 2024-07-23 1266

PR_SET_NO_NEW_PRIVS(2const) PR_SET_NO_NEW_PRIVS(2const)

NAME
PR_SET_NO_NEW_PRIVS - set the calling thread’s no_new_privs attribute

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_NO_NEW_PRIVS, 1L, 0L, 0L, 0L);

DESCRIPTION
Set the calling thread’s no_new_privs attribute. With no_new_privs set to 1, ex-
ecve(2) promises not to grant privileges to do anything that could not have been done
without the execve(2) call (for example, rendering the set-user-ID and set-group-ID
mode bits, and file capabilities non-functional).

Once set, the no_new_privs attribute cannot be unset. The setting of this attribute is
inherited by children created by fork(2) and clone(2), and preserved across execve(2).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

The second argument is not equal to 1L.

FILES
/proc/ pid /status

Since Linux 4.10, the value of a thread’s no_new_privs attribute can be viewed
via the NoNewPrivs field in this file.

STANDARDS
Linux.

HISTORY
Linux 3.5.

SEE ALSO
prctl(2), PR_GET_NO_NEW_PRIVS(2const), seccomp(2)

For more information, see the kernel source file Documentation/userspace-api/
no_new_privs.rst (or Documentation/prctl/no_new_privs.txt before Linux 4.13).

Linux man-pages 6.13 2024-07-23 1267

PR_SET_PDEATHSIG(2const) PR_SET_PDEATHSIG(2const)

NAME
PR_SET_PDEATHSIG - set the parent-death signal of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_PDEATHSIG, long sig);

DESCRIPTION
Set the parent-death signal of the calling process to sig (either a signal value in the
range [1, NSIG - 1], or 0 to clear). This is the signal that the calling process will get
when its parent dies.

The parent-death signal is sent upon subsequent termination of the parent thread and
also upon termination of each subreaper process (see PR_SET_CHILD_SUB-
REAPER(2const)) to which the caller is subsequently reparented. If the parent thread
and all ancestor subreapers have already terminated by the time of the
PR_SET_PDEATHSIG operation, then no parent-death signal is sent to the caller.

The parent-death signal is process-directed (see signal(7)) and, if the child installs a
handler using the sigaction(2) SA_SIGINFO flag, the si_pid field of the siginfo_t ar-
gument of the handler contains the PID of the terminating parent process.

The parent-death signal setting is cleared for the child of a fork(2). It is also (since
Linux 2.4.36 / 2.6.23) cleared when executing a set-user-ID or set-group-ID binary, or
a binary that has associated capabilities (see capabilities(7)); otherwise, this value is
preserved across execve(2). The parent-death signal setting is also cleared upon
changes to any of the following thread credentials: effective user ID, effective group
ID, filesystem user ID, or filesystem group ID.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

sig is not a valid signal number.

STANDARDS
Linux.

HISTORY
Linux 2.1.57.

CAVEATS
The "parent" in this case is considered to be the thread that created this process. In
other words, the signal will be sent when that thread terminates (via, for example,
pthread_exit(3)), rather than after all of the threads in the parent process terminate.

SEE ALSO
prctl(2), PR_GET_PDEATHSIG(2const)

Linux man-pages 6.13 2024-07-23 1268

PR_SET_PTRACER(2const) PR_SET_PTRACER(2const)

NAME
PR_SET_PTRACER - allow processes to ptrace(2) the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_PTRACER, long pid);

DESCRIPTION
This is meaningful only when the Yama LSM is enabled and in mode 1 ("restricted
ptrace", visible via /proc/sys/kernel/yama/ptrace_scope).

When a "ptracer process ID" is passed in pid , the caller is declaring that the ptracer
process can ptrace(2) the calling process as if it were a direct process ancestor.

Each PR_SET_PTRACER operation replaces the previous "ptracer process ID".

Employing PR_SET_PTRACER with pid set to 0 clears the caller’s "ptracer process
ID". If pid is PR_SET_PTRACER_ANY, the ptrace restrictions introduced by
Yama are effectively disabled for the calling process.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

pid is not 0, PR_SET_PTRACER_ANY, nor the PID of an existing process.

STANDARDS
Linux.

HISTORY
Linux 3.4.

SEE ALSO
prctl(2),

For further information, see the kernel source file Documentation/admin-guide/LSM/
Yama.rst (or Documentation/security/Yama.txt before Linux 4.13).

Linux man-pages 6.13 2024-07-23 1269

PR_SET_SECCOMP(2const) PR_SET_SECCOMP(2const)

NAME
PR_SET_SECCOMP - set the secure computing mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

[[deprecated]]
int prctl(PR_SET_SECCOMP, long mode, ...);

[[deprecated]]
int prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT);
[[deprecated]]
int prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,

struct sock_fprog * filter);

DESCRIPTION
Set the secure computing (seccomp) mode for the calling thread, to limit the available
system calls. The more recent seccomp(2) system call provides a superset of the func-
tionality of PR_SET_SECCOMP, and is the preferred interface for new applications.

The seccomp mode is selected via mode. The seccomp constants are defined in
<linux/seccomp.h>. The following values can be specified:

SECCOMP_MODE_STRICT (since Linux 2.6.23)
See the description of SECCOMP_SET_MODE_STRICT in seccomp(2).

This operation is available only if the kernel is configured with CON-
FIG_SECCOMP enabled.

SECCOMP_MODE_FILTER (since Linux 3.5)
The allowed system calls are defined by a pointer to a Berkeley Packet Filter
passed in filter. It can be designed to filter arbitrary system calls and system
call arguments. See the description of SECCOMP_SET_MODE_FILTER
in seccomp(2).

This operation is available only if the kernel is configured with CON-
FIG_SECCOMP_FILTER enabled.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

mode is SECCOMP_MODE_FILTER, but the process does not have the
CAP_SYS_ADMIN capability or has not set the no_new_privs attribute (see
PR_SET_NO_NEW_PRIVS(2const)).

EFAULT
mode is SECCOMP_MODE_FILTER, and filter is an invalid address.

Linux man-pages 6.13 2024-07-23 1270

PR_SET_SECCOMP(2const) PR_SET_SECCOMP(2const)

EINVAL
mode is not a valid value.

EINVAL
The kernel was not configured with CONFIG_SECCOMP.

EINVAL
mode is SECCOMP_MODE_FILTER, and the kernel was not configured
with CONFIG_SECCOMP_FILTER.

STANDARDS
Linux.

HISTORY
Linux 2.6.23.

SEE ALSO
prctl(2), PR_GET_SECCOMP(2const), seccomp(2)

Linux man-pages 6.13 2024-07-23 1271

PR_SET_SECUREBITS(2const) PR_SET_SECUREBITS(2const)

NAME
PR_SET_SECUREBITS - set the "securebits" flags of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_SECUREBITS, unsigned long flags);

DESCRIPTION
Set the "securebits" flags of the calling thread to the value supplied in flags. See ca-
pabilities(7).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

flags is not a valid value.

EPERM
op is PR_SET_SECUREBITS, and the caller does not have the CAP_SETP-
CAP capability, or tried to unset a "locked" flag, or tried to set a flag whose
corresponding locked flag was set (see capabilities(7)).

STANDARDS
Linux.

HISTORY
Linux 2.6.26.

SEE ALSO
prctl(2), PR_GET_SECUREBITS(2const), capabilities(7)

Linux man-pages 6.13 2024-07-23 1272

PR_SET_SPECULATION_CTRL(2const) PR_SET_SPECULATION_CTRL(2const)

NAME
PR_SET_SPECULATION_CTRL - set the state of a speculation misfeature for the
calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_SPECULATION_CTRL, long misfeature, long val, 0L, 0L);

DESCRIPTION
Sets the state of the speculation misfeature specified in misfeature. The speculation-
misfeature settings are per-thread attributes.

Currently, misfeature must be one of:

PR_SPEC_STORE_BYPASS
Set the state of the speculative store bypass misfeature.

PR_SPEC_INDIRECT_BRANCH (since Linux 4.20)
Set the state of the indirect branch speculation misfeature.

The val argument is used to hand in the control value, which is one of the following:

PR_SPEC_ENABLE
The speculation feature is enabled, mitigation is disabled.

PR_SPEC_DISABLE
The speculation feature is disabled, mitigation is enabled.

PR_SPEC_FORCE_DISABLE
Same as PR_SPEC_DISABLE, but cannot be undone.

PR_SPEC_DISABLE_NOEXEC (since Linux 5.1)
Same as PR_SPEC_DISABLE, but the state will be cleared on execve(2).
Currently only supported for PR_SPEC_STORE_BYPASS.

The speculation feature can also be controlled by the spec_store_bypass_disable
boot parameter. This parameter may enforce a read-only policy which will result in
the prctl() call failing with the error ENXIO. For further details, see the kernel
source file Documentation/admin-guide/kernel-parameters.txt.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
ENODEV

The kernel or CPU does not support the requested speculation misfeature.

ENXIO
The control of the selected speculation misfeature is not possible. See
PR_GET_SPECULATION_CTRL for the bit fields to determine which op-
tion is available.

Linux man-pages 6.13 2024-07-23 1273

PR_SET_SPECULATION_CTRL(2const) PR_SET_SPECULATION_CTRL(2const)

EPERM
The speculation was disabled with PR_SPEC_FORCE_DISABLE and caller
tried to enable it again.

ERANGE
misfeature is not a valid value.

STANDARDS
Linux.

HISTORY
Linux 4.17.

SEE ALSO
prctl(2), PR_GET_SPECULATION_CTRL(2const)

Linux man-pages 6.13 2024-07-23 1274

PR_SET_SYSC . . . ER_DISPATCH(2const) PR_SET_SYSC . . . ER_DISPATCH(2const)

NAME
PR_SET_SYSCALL_USER_DISPATCH - set the system-call user dispatch mecha-
nism for the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_SYSCALL_USER_DISPATCH, long op, ...);

int prctl(PR_SET_SYSCALL_USER_DISPATCH, PR_SYS_DISPATCH_ON,
unsigned long off , unsigned long size, int8_t *switch);

int prctl(PR_SET_SYSCALL_USER_DISPATCH, PR_SYS_DISPATCH_OFF, 0L, 0L, 0L);

DESCRIPTION
Configure the Syscall User Dispatch mechanism for the calling thread. This mecha-
nism allows an application to selectively intercept system calls so that they can be
handled within the application itself. Interception takes the form of a thread-directed
SIGSYS signal that is delivered to the thread when it makes a system call. If inter-
cepted, the system call is not executed by the kernel.

PR_SYS_DISPATCH_ON
Enable this mechanism.

Once enabled, further system calls will be selectively intercepted, depending
on a control variable provided by user space. In this case, off and size respec-
tively identify the offset and size of a single contiguous memory region in the
process address space from where system calls are always allowed to be exe-
cuted, regardless of the control variable. (Typically, this area would include
the area of memory containing the C library.)

switch points to a variable that is a fast switch to allow/block system call exe-
cution without the overhead of doing another system call to re-configure
Syscall User Dispatch. This control variable can either be set to
SYSCALL_DISPATCH_FILTER_BLOCK to block system calls from exe-
cuting or to SYSCALL_DISPATCH_FILTER_ALLOW to temporarily al-
low them to be executed. This value is checked by the kernel on every system
call entry, and any unexpected value will raise an uncatchable SIGSYS at that
time, killing the application.

When a system call is intercepted, the kernel sends a thread-directed SIGSYS
signal to the triggering thread. Various fields will be set in the siginfo_t struc-
ture (see sigaction(2)) associated with the signal:

• si_signo will contain SIGSYS.

• si_call_addr will show the address of the system call instruction.

• si_syscall and si_arch will indicate which system call was attempted.

• si_code will contain SYS_USER_DISPATCH.

Linux man-pages 6.13 2024-07-23 1275

PR_SET_SYSC . . . ER_DISPATCH(2const) PR_SET_SYSC . . . ER_DISPATCH(2const)

• si_errno will be set to 0.

The program counter will be as though the system call happened (i.e., the pro-
gram counter will not point to the system call instruction).

When the signal handler returns to the kernel, the system call completes im-
mediately and returns to the calling thread, without actually being executed. If
necessary (i.e., when emulating the system call on user space.), the signal han-
dler should set the system call return value to a sane value, by modifying the
register context stored in the ucontext argument of the signal handler. See
sigaction(2), sigreturn(2), and getcontext(3) for more information.

PR_SYS_DISPATCH_OFF
Syscall User Dispatch is disabled for that thread.

The setting is not preserved across fork(2), clone(2), or execve(2).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

switch is an invalid address.

EINVAL
op is PR_SYS_DISPATCH_ON and the memory range specified is outside
the address space of the process.

EINVAL
op is invalid.

STANDARDS
Linux. x86 only.

HISTORY
Linux 5.11 (x86).

SEE ALSO
prctl(2)

For more information, see the kernel source file Documentation/admin-guide/
syscall-user-dispatch.rst

Linux man-pages 6.13 2024-07-23 1276

PR_SET_TAGGED_ADDR_CTRL(2const) PR_SET_TAGGED_ADDR_CTRL(2const)

NAME
PR_SET_TAGGED_ADDR_CTRL - control support for passing tagged user-space
addresses to the kernel

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_TAGGED_ADDR_CTRL, long mode, 0L, 0L, 0L);

DESCRIPTION
Controls support for passing tagged user-space addresses to the kernel (i.e., addresses
where bits 56—63 are not all zero).

The level of support is selected by support, which can be one of the following:

0L Addresses that are passed for the purpose of being dereferenced by the kernel
must be untagged.

PR_TAGGED_ADDR_ENABLE
Addresses that are passed for the purpose of being dereferenced by the kernel
may be tagged, with the exceptions summarized below.

On success, the mode specified in mode is set for the calling thread.

If prctl(PR_SET_TAGGED_ADDR_CTRL, 0L, 0L, 0L, 0L) fails with EINVAL, then
all addresses passed to the kernel must be untagged.

Irrespective of which mode is set, addresses passed to certain interfaces must always
be untagged:

• brk(2), mmap(2), shmat(2), shmdt(2), and the new_address argument of
mremap(2).

(Prior to Linux 5.6 these accepted tagged addresses, but the behaviour may not be
what you expect. Don’t rely on it.)

• ‘polymorphic’ interfaces that accept pointers to arbitrary types cast to a void * or
other generic type, specifically prctl(), ioctl(2), and in general setsockopt(2) (only
certain specific setsockopt(2) options allow tagged addresses).

This list of exclusions may shrink when moving from one kernel version to a later ker-
nel version. While the kernel may make some guarantees for backwards compatibility
reasons, for the purposes of new software the effect of passing tagged addresses to
these interfaces is unspecified.

The mode set by this call is inherited across fork(2) and clone(2). The mode is reset
by execve(2) to 0 (i.e., tagged addresses not permitted in the user/kernel ABI).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS

Linux man-pages 6.13 2024-07-23 1277

PR_SET_TAGGED_ADDR_CTRL(2const) PR_SET_TAGGED_ADDR_CTRL(2const)

EINVAL
mode is invalid or unsupported.

EINVAL
This feature is disabled via /proc/sys/abi/tagged_addr_disabled .

FILES
/proc/sys/abi/tagged_addr_disabled

STANDARDS
Linux. arm64 only.

HISTORY
Linux 5.4 (arm64).

CAVEATS
This call is primarily intended for use by the run-time environment. A successful
PR_SET_TAGGED_ADDR_CTRL call elsewhere may crash the calling process.
The conditions for using it safely are complex and system-dependent. Don’t use it un-
less you know what you are doing.

SEE ALSO
prctl(2), PR_SET_TAGGED_ADDR_CTRL(2const)

For more information, see the kernel source file Documentation/arm64/tagged-ad-
dress-abi.rst.

Linux man-pages 6.13 2024-07-23 1278

PR_SET_THP_DISABLE(2const) PR_SET_THP_DISABLE(2const)

NAME
PR_SET_THP_DISABLE - set the state of the "THP disable" flag for the calling
thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_THP_DISABLE, long flag, 0L, 0L, 0L);

DESCRIPTION
Set the state of the "THP disable" flag for the calling thread. If flag has a nonzero
value, the flag is set, otherwise it is cleared.

Setting this flag provides a method for disabling transparent huge pages for jobs
where the code cannot be modified, and using a malloc hook with madvise(2) is not an
option (i.e., statically allocated data). The setting of the "THP disable" flag is inher-
ited by a child created via fork(2) and is preserved across execve(2).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

STANDARDS
Linux.

HISTORY
Linux 3.15.

SEE ALSO
prctl(2), PR_GET_THP_DISABLE(2const)

Linux man-pages 6.13 2024-07-23 1279

PR_SET_TIMERSLACK (2const) PR_SET_TIMERSLACK (2const)

NAME
PR_SET_TIMERSLACK - set the "current" timer slack value for the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_TIMERSLACK, unsigned long slack);

DESCRIPTION
Each thread has two associated timer slack values: a "default" value, and a "current"
value. This operation sets the "current" timer slack value for the calling thread. slack
is an unsigned long value in the range [1L, ULONG_MAX]. If the nanosecond value
supplied in slack is greater than zero, then the "current" value is set to this value. If
slack is 0L, the "current" timer slack is reset to the thread’s "default" timer slack
value.

The "current" timer slack is used by the kernel to group timer expirations for the call-
ing thread that are close to one another; as a consequence, timer expirations for the
thread may be up to the specified number of nanoseconds late (but will never expire
early). Grouping timer expirations can help reduce system power consumption by
minimizing CPU wake-ups.

The timer expirations affected by timer slack are those set by select(2), pselect(2),
poll(2), ppoll(2), epoll_wait(2), epoll_pwait(2), clock_nanosleep(2), nanosleep(2),
and futex(2) (and thus the library functions implemented via futexes, including
pthread_cond_timedwait(3), pthread_mutex_timedlock(3), pthread_rwlock_timedrd-
lock(3), pthread_rwlock_timedwrlock(3), and sem_timedwait(3)).

Timer slack is not applied to threads that are scheduled under a real-time scheduling
policy (see sched_setscheduler(2)).

When a new thread is created, the two timer slack values are made the same as the
"current" value of the creating thread. Thereafter, a thread can adjust its "current"
timer slack value via PR_SET_TIMERSLACK. The "default" value can’t be
changed. The timer slack values of init (PID 1), the ancestor of all processes, are
50,000 nanoseconds (50 microseconds). The timer slack value is inherited by a child
created via fork(2), and is preserved across execve(2).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

FILES
/proc/pid /timerslack_ns

Since Linux 4.6, the "current" timer slack value of any process can be exam-
ined and changed via this file.

STANDARDS
Linux.

Linux man-pages 6.13 2024-07-23 1280

PR_SET_TIMERSLACK (2const) PR_SET_TIMERSLACK (2const)

HISTORY
Linux 2.6.28.

SEE ALSO
prctl(2), PR_GET_TIMERSLACK(2const), proc_pid_timerslack_ns(5)

Linux man-pages 6.13 2024-07-23 1281

PR_SET_TIMING(2const) PR_SET_TIMING(2const)

NAME
PR_SET_TIMING - set the process timing mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_TIMING, long mode);

DESCRIPTION
Set whether to use (normal, traditional) statistical process timing or accurate time-
stamp-based process timing, by passing PR_TIMING_STATISTICAL or PR_TIM-
ING_TIMESTAMP to mode.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

mode is not PR_TIMING_STATISTICAL.

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

CAVEATS
PR_TIMING_TIMESTAMP is not currently implemented (attempting to set this
mode will yield the error EINVAL).

SEE ALSO
prctl(2), PR_GET_TIMING(2const)

Linux man-pages 6.13 2024-07-23 1282

PR_SET_TSC(2const) PR_SET_TSC(2const)

NAME
PR_SET_TSC - change whether the timestamp counter can be read by the process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_TSC, long flag);

DESCRIPTION
Set the state of the flag determining whether the timestamp counter can be read by the
process. Pass PR_TSC_ENABLE to flag to allow it to be read, or
PR_TSC_SIGSEGV to generate a SIGSEGV when the process tries to read the
timestamp counter.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

arg2 is not a valid value.

STANDARDS
Linux. x86 only.

HISTORY
Linux 2.6.26 (x86).

SEE ALSO
prctl(2), PR_GET_TSC(2const)

Linux man-pages 6.13 2024-07-23 1283

PR_SET_UNALIGN (2const) PR_SET_UNALIGN (2const)

NAME
PR_SET_UNALIGN - set unaligned access control bits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_UNALIGN, unsigned long flag);

DESCRIPTION
Set unaligned access control bits to arg2.

Pass PR_UNALIGN_NOPRINT to silently fix up unaligned user accesses, or
PR_UNALIGN_SIGBUS to generate SIGBUS on unaligned user access.

Alpha also supports an additional flag with the value of 4 and no corresponding
named constant, which instructs kernel to not fix up unaligned accesses (it is analo-
gous to providing the UAC_NOFIX flag in SSI_NVPAIRS operation of the setsys-
info() system call on Tru64).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

flag is not a valid value.

STANDARDS
Linux.

HISTORY
Only on:

• ia64, since Linux 2.3.48
• parisc, since Linux 2.6.15
• PowerPC, since Linux 2.6.18
• Alpha, since Linux 2.6.22
• sh, since Linux 2.6.34
• tile, since Linux 3.12

SEE ALSO
prctl(2), PR_GET_UNALIGN(2const)

Linux man-pages 6.13 2024-07-23 1284

PR_SET_VMA(2const) PR_SET_VMA(2const)

NAME
PR_SET_VMA - set an attribute for virtual memory areas

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_VMA, long attr, unsigned long addr, unsigned long size,
const char *_Nullable val);

DESCRIPTION
Sets an attribute specified in attr for virtual memory areas starting from the address
specified in addr and spanning the size specified in size. val specifies the value of the
attribute to be set.

Note that assigning an attribute to a virtual memory area might prevent it from being
merged with adjacent virtual memory areas due to the difference in that attribute’s
value.

Currently, attr must be one of:

PR_SET_VMA_ANON_NAME
Set a name for anonymous virtual memory areas. val should be a pointer to a
null-terminated string containing the name. The name length including null
byte cannot exceed 80 bytes. If val is NULL, the name of the appropriate
anonymous virtual memory areas will be reset. The name can contain only
printable ascii characters (isprint(3)), except '[', ']', '\', '$', and '`'.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

attr is not a valid attribute.

EINVAL
addr is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 5.17.

SEE ALSO
prctl(2)

Linux man-pages 6.13 2024-07-23 1285

PR_SVE_GET_VL(2const) PR_SVE_GET_VL(2const)

NAME
PR_SVE_GET_VL - get the thread’s SVE vector length

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SVE_GET_VL);

DESCRIPTION
Get the thread’s current SVE vector length configuration.

This operation returns a nonnegative value that describes the current configuration.
The bits corresponding to PR_SVE_VL_LEN_MASK contain the currently config-
ured vector length in bytes. The bit corresponding to PR_SVE_VL_INHERIT indi-
cates whether the vector length will be inherited across execve(2).

RETURN VALUE
On success, PR_SVE_GET_VL, return the nonnegative values described above. On
error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

SVE is not available on this platform.

STANDARDS
Linux. arm64 only.

HISTORY
Linux 4.15 (arm64).

CAVEATS
There is no way to determine whether there is a pending vector length change that has
not yet taken effect.

SEE ALSO
prctl(2), PR_SVE_SET_VL(2const)

For more information, see the kernel source file Documentation/arm64/sve.rst (or
Documentation/arm64/sve.txt before Linux 5.3).

Linux man-pages 6.13 2024-07-23 1286

PR_SVE_SET_VL(2const) PR_SVE_SET_VL(2const)

NAME
PR_SVE_SET_VL - set the thread’s SVE vector length

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SVE_SET_VL, unsigned long val);

DESCRIPTION
Configure the thread’s SVE vector length, as specified by val.

The bits of val corresponding to PR_SVE_VL_LEN_MASK must be set to the de-
sired vector length in bytes. This is interpreted as an upper bound: the kernel will se-
lect the greatest available vector length that does not exceed the value specified. In
particular, specifying SVE_VL_MAX (defined in <asm/sigcontext.h>) for the
PR_SVE_VL_LEN_MASK bits requests the maximum supported vector length.

In addition, the other bits of val must be set to one of the following combinations of
flags:

0L Perform the change immediately. At the next execve(2) in the thread, the vec-
tor length will be reset to the value configured in /proc/sys/abi/sve_de-
fault_vector_length.

PR_SVE_VL_INHERIT
Perform the change immediately. Subsequent execve(2) calls will preserve the
new vector length.

PR_SVE_SET_VL_ONEXEC
Defer the change, so that it is performed at the next execve(2) in the thread.
Further execve(2) calls will reset the vector length to the value configured in
/proc/sys/abi/sve_default_vector_length.

PR_SVE_SET_VL_ONEXEC | PR_SVE_VL_INHERIT
Defer the change, so that it is performed at the next execve(2) in the thread.
Further execve(2) calls will preserve the new vector length.

In all cases, any previously pending deferred change is canceled.

On success, a nonnegative value is returned that describes the selected configuration.
If PR_SVE_SET_VL_ONEXEC was included in val, then the configuration de-
scribed by the return value will take effect at the next execve(2). Otherwise, the con-
figuration is already in effect when the PR_SVE_SET_VL call returns. In either
case, the value is encoded in the same way as the return value of PR_SVE_GET_VL.
Note that there is no explicit flag in the return value corresponding to
PR_SVE_SET_VL_ONEXEC.

The configuration (including any pending deferred change) is inherited across fork(2)
and clone(2).

RETURN VALUE
On success, PR_SVE_SET_VL returns the nonnegative value described above. On
error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.13 2024-07-23 1287

PR_SVE_SET_VL(2const) PR_SVE_SET_VL(2const)

ERRORS
EINVAL

SVE is not available on this platform.

EINVAL
The value in the bits of val corresponding to PR_SVE_VL_LEN_MASK is
outside the range [SVE_VL_MIN, SVE_VL_MAX] or is not a multiple of
16.

EINVAL
The other bits of val are invalid or unsupported.

FILES
/proc/sys/abi/sve_default_vector_length

STANDARDS
Linux. arm64 only.

HISTORY
Linux 4.15 (arm64).

CAVEATS
Because the compiler or run-time environment may be using SVE, using this call
without the PR_SVE_SET_VL_ONEXEC flag may crash the calling process. The
conditions for using it safely are complex and system-dependent. Don’t use it unless
you really know what you are doing.

SEE ALSO
prctl(2), PR_SVE_GET_VL(2const)

For more information, see the kernel source file Documentation/arm64/sve.rst (or
Documentation/arm64/sve.txt before Linux 5.3).

Linux man-pages 6.13 2024-07-23 1288

PR_TASK_P . . . TS_DISABLE(2) System Calls Manual PR_TASK_P . . . TS_DISABLE(2)

NAME
PR_TASK_PERF_EVENTS_DISABLE, PR_TASK_PERF_EVENTS_ENABLE -
disable or enable performance counters attached to the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_TASK_PERF_EVENTS_DISABLE);
int prctl(PR_TASK_PERF_EVENTS_ENABLE);

DESCRIPTION
PR_TASK_PERF_EVENTS_DISABLE

Disable all performance counters attached to the calling process, regardless of
whether the counters were created by this process or another process. Perfor-
mance counters created by the calling process for other processes are unaf-
fected.

PR_TASK_PERF_EVENTS_ENABLE
The converse of PR_TASK_PERF_EVENTS_DISABLE; enable perfor-
mance counters attached to the calling process.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

STANDARDS
Linux.

HISTORY
Linux 2.6.31.

Originally called PR_TASK_PERF_COUNTERS_DISABLE and
PR_TASK_PERF_COUNTERS_ENABLE; renamed (retaining the same numerical
value) in Linux 2.6.32.

SEE ALSO
prctl(2)

For more information on performance counters, see the Linux kernel source file tools/
perf/design.txt.

Linux man-pages 6.13 2024-07-23 1289

TCSBRK (2const) TCSBRK (2const)

NAME
TCSBRK, TCSBRKP, TIOCSBRK, TIOCCBRK - sending a break

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of T*BRK* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TCSBRK, int arg);
int ioctl(int fd , TCSBRKP, int arg);
int ioctl(int fd , TIOCSBRK);
int ioctl(int fd , TIOCCBRK);

DESCRIPTION
TCSBRK

Equivalent to tcsendbreak(fd, arg).

If the terminal is using asynchronous serial data transmission, and arg is zero,
then send a break (a stream of zero bits) for between 0.25 and 0.5 seconds. If
the terminal is not using asynchronous serial data transmission, then either a
break is sent, or the function returns without doing anything. When arg is
nonzero, nobody knows what will happen.

(SVr4, UnixWare, Solaris, and Linux treat tcsendbreak(fd,arg) with nonzero
arg like tcdrain(fd). SunOS treats arg as a multiplier, and sends a stream of
bits arg times as long as done for zero arg. DG/UX and AIX treat arg (when
nonzero) as a time interval measured in milliseconds. HP-UX ignores arg.)

TCSBRKP
So-called "POSIX version" of TCSBRK. It treats nonzero arg as a time inter-
val measured in deciseconds, and does nothing when the driver does not sup-
port breaks.

TIOCSBRK
Turn break on, that is, start sending zero bits.

TIOCCBRK
Turn break off, that is, stop sending zero bits.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.13 2024-07-23 1290

TCSETS(2const) TCSETS(2const)

NAME
TCGETS, TCSETS, TCSETSW, TCSETSF, TCGETS2, TCSETS2, TCSETSW2, TC-
SETSF2, TCGETA, TCSETA, TCSETAW, TCSETAF - get and set terminal attributes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TC* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TCGETS, struct termios *argp);
int ioctl(int fd , TCSETS, const struct termios *argp);
int ioctl(int fd , TCSETSW, const struct termios *argp);
int ioctl(int fd , TCSETSF, const struct termios *argp);

int ioctl(int fd , TCGETS2, struct termios2 *argp);
int ioctl(int fd , TCSETS2, const struct termios2 *argp);
int ioctl(int fd , TCSETSW2, const struct termios2 *argp);
int ioctl(int fd , TCSETSF2, const struct termios2 *argp);

int ioctl(int fd , TCGETA, struct termio *argp);
int ioctl(int fd , TCSETA, const struct termio *argp);
int ioctl(int fd , TCSETAW, const struct termio *argp);
int ioctl(int fd , TCSETAF, const struct termio *argp);

#include <asm/termbits.h>

struct termios;
struct termios2;
struct termio;

DESCRIPTION
TCGETS

Equivalent to tcgetattr(fd, argp).

Get the current serial port settings.

TCSETS
Equivalent to tcsetattr(fd, TCSANOW, argp).

Set the current serial port settings.

TCSETSW
Equivalent to tcsetattr(fd, TCSADRAIN, argp).

Allow the output buffer to drain, and set the current serial port settings.

TCSETSF
Equivalent to tcsetattr(fd, TCSAFLUSH, argp).

Allow the output buffer to drain, discard pending input, and set the current ser-
ial port settings.

The following four ioctls are just like TCGETS, TCSETS, TCSETSW, TCSETSF,
except that they take a struct termios2 * instead of a struct termios *. If the structure
member c_cflag contains the flag BOTHER, then the baud rate is stored in the struc-
ture members c_ispeed and c_ospeed as integer values. These ioctls are not

Linux man-pages 6.13 2024-07-23 1291

TCSETS(2const) TCSETS(2const)

supported on all architectures.

TCGETS2
TCSETS2
TCSETSW2
TCSETSF2

The following four ioctls are just like TCGETS, TCSETS, TCSETSW, TCSETSF,
except that they take a struct termio * instead of a struct termios *.

TCGETA
TCSETA
TCSETAW
TCSETAF

RETURN VALUE
On success, 0 is returned. On error, -1 is returned and errno is set to indicate the er-
ror.

ERRORS
EPERM

Insufficient permission.

HISTORY
TCGETS2
TCSETS2
TCSETSW2
TCSETSF2

Linux 2.6.20.

CAVEATS
struct termios from <asm/termbits.h> is different and incompatible with struct
termios from <termios.h>. These ioctl calls require struct termios from
<asm/termbits.h>.

EXAMPLES
Get or set arbitrary baudrate on the serial port.

/* SPDX-License-Identifier: GPL-2.0-or-later */

#include <asm/termbits.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{
#if !defined BOTHER

fprintf(stderr, "BOTHER is unsupported\n");
/* Program may fallback to TCGETS/TCSETS with Bnnn constants */
exit(EXIT_FAILURE);

Linux man-pages 6.13 2024-07-23 1292

TCSETS(2const) TCSETS(2const)

#else
/* Declare tio structure, its type depends on supported ioctl */

if defined TCGETS2
struct termios2 tio;

else
struct termios tio;

endif
int fd, rc;

if (argc != 2 && argc != 3 && argc != 4) {
fprintf(stderr, "Usage: %s device [output [input]]\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDWR | O_NONBLOCK | O_NOCTTY);
if (fd < 0) {

perror("open");
exit(EXIT_FAILURE);

}

/* Get the current serial port settings via supported ioctl */
if defined TCGETS2

rc = ioctl(fd, TCGETS2, &tio);
else

rc = ioctl(fd, TCGETS, &tio);
endif

if (rc) {
perror("TCGETS");
close(fd);
exit(EXIT_FAILURE);

}

/* Change baud rate when more arguments were provided */
if (argc == 3 || argc == 4) {

/* Clear the current output baud rate and fill a new value */
tio.c_cflag &= ~CBAUD;
tio.c_cflag |= BOTHER;
tio.c_ospeed = atoi(argv[2]);

/* Clear the current input baud rate and fill a new value */
tio.c_cflag &= ~(CBAUD << IBSHIFT);
tio.c_cflag |= BOTHER << IBSHIFT;
/* When 4th argument is not provided reuse output baud rate */
tio.c_ispeed = (argc == 4) ? atoi(argv[3]) : atoi(argv[2]);

/* Set new serial port settings via supported ioctl */
if defined TCSETS2

rc = ioctl(fd, TCSETS2, &tio);
else

Linux man-pages 6.13 2024-07-23 1293

TCSETS(2const) TCSETS(2const)

rc = ioctl(fd, TCSETS, &tio);
endif

if (rc) {
perror("TCSETS");
close(fd);
exit(EXIT_FAILURE);

}

/* And get new values which were really configured */
if defined TCGETS2

rc = ioctl(fd, TCGETS2, &tio);
else

rc = ioctl(fd, TCGETS, &tio);
endif

if (rc) {
perror("TCGETS");
close(fd);
exit(EXIT_FAILURE);

}
}

close(fd);

printf("output baud rate: %u\n", tio.c_ospeed);
printf("input baud rate: %u\n", tio.c_ispeed);

exit(EXIT_SUCCESS);
#endif
}

SEE ALSO
ioctl(2), ioctl_tty(2), termios(3)

Linux man-pages 6.13 2024-07-23 1294

TCXONC(2const) TCXONC(2const)

NAME
TCXONC - software flow control

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TCXONC */
#include <sys/ioctl.h>

int ioctl(int fd , TCXONC, int arg);

DESCRIPTION
Equivalent to tcflow(fd, arg).

See tcflow(3) for the argument values TCOOFF, TCOON, TCIOFF, TCION.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

SEE ALSO
ioctl(2), ioctl_tty(2), tcflow(3), termios(3)

Linux man-pages 6.13 2024-07-23 1295

TIOCCONS(2const) TIOCCONS(2const)

NAME
TIOCCONS - redirecting console output

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOCCONS */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCCONS);

DESCRIPTION
Redirect output that would have gone to /dev/console or /dev/tty0 to the given termi-
nal. If that was a pseudoterminal master, send it to the slave.

Only a process with the CAP_SYS_ADMIN capability may do this.

If output was redirected already, then EBUSY is returned, but redirection can be
stopped by using this ioctl with fd pointing at /dev/console or /dev/tty0.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EBUSY

Output was redirected already.

EPERM
Insufficient permission.

HISTORY
Before Linux 2.6.10, anybody can do this as long as the output was not redirected yet;
CAP_SYS_ADMIN was not necessary.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.13 2024-07-23 1296

TIOCEXCL(2const) TIOCEXCL(2const)

NAME
TIOCEXCL, TIOCGEXCL, TIOCNXCL - exclusive mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*XCL constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCEXCL);
int ioctl(int fd , TIOCGEXCL, int *argp);
int ioctl(int fd , TIOCNXCL);

DESCRIPTION
TIOCEXCL

Put the terminal into exclusive mode. No further open(2) operations on the
terminal are permitted. (They fail with EBUSY, except for a process with the
CAP_SYS_ADMIN capability.)

TIOCGEXCL
If the terminal is currently in exclusive mode, place a nonzero value in the lo-
cation pointed to by argp; otherwise, place zero in *argp.

TIOCNXCL
Disable exclusive mode.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

HISTORY
TIOCGEXCL

Linux 3.8.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.13 2024-07-23 1297

TIOCLINUX(2const) TIOCLINUX(2const)

NAME
TIOCLINUX - ioctls for console terminal and virtual consoles

SYNOPSIS
#include <linux/tiocl.h> /* Definition of TIOCL_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCLINUX, void *argp);

DESCRIPTION
The action of the following ioctls depends on the first byte in the struct pointed to by
argp, referred to here as the subcode. These are legal only for the superuser or the
owner of the current terminal.

subcode=0
Dump the screen. Disappeared in Linux 1.1.92. (With Linux 1.1.92 or later,
read from /dev/vcsN or /dev/vcsaN instead.)

subcode=1
Get task information. Disappeared in Linux 1.1.92.

subcode=TIOCL_SETSEL
Set selection. argp points to a

struct {
char subcode;
short xs, ys, xe, ye;
short sel_mode;

};

xs and ys are the starting column and row. xe and ye are the ending column
and row. (Upper left corner is row=column=1.) sel_mode is 0 for character-
by-character selection, 1 for word-by-word selection, or 2 for line-by-line se-
lection. The indicated screen characters are highlighted and saved in a kernel
buffer.

Since Linux 6.7, using this subcode requires the CAP_SYS_ADMIN capabil-
ity.

subcode=TIOCL_PASTESEL
Paste selection. The characters in the selection buffer are written to fd .

Since Linux 6.7, using this subcode requires the CAP_SYS_ADMIN capabil-
ity.

subcode=TIOCL_UNBLANKSCREEN
Unblank the screen.

subcode=TIOCL_SELLOADLUT
Sets contents of a 256-bit look up table defining characters in a "word", for
word-by-word selection. (Since Linux 1.1.32.)

Since Linux 6.7, using this subcode requires the CAP_SYS_ADMIN capabil-
ity.

subcode=TIOCL_GETSHIFTSTATE
argp points to a char which is set to the value of the kernel variable shift_state.
(Since Linux 1.1.32.)

Linux man-pages 6.13 2024-06-13 1298

TIOCLINUX(2const) TIOCLINUX(2const)

subcode=TIOCL_GETMOUSEREPORTING
argp points to a char which is set to the value of the kernel variable
report_mouse. (Since Linux 1.1.33.)

subcode=8
Dump screen width and height, cursor position, and all the character-attribute
pairs. (Linux 1.1.67 through Linux 1.1.91 only. With Linux 1.1.92 or later,
read from /dev/vcsa* instead.)

subcode=9
Restore screen width and height, cursor position, and all the character-attribute
pairs. (Linux 1.1.67 through Linux 1.1.91 only. With Linux 1.1.92 or later,
write to /dev/vcsa* instead.)

subcode=TIOCL_SETVESABLANK
Handles the Power Saving feature of the new generation of monitors. VESA
screen blanking mode is set to argp[1], which governs what screen blanking
does:

0 Screen blanking is disabled.

1 The current video adapter register settings are saved, then the con-
troller is programmed to turn off the vertical synchronization pulses.
This puts the monitor into "standby" mode. If your monitor has an
Off_Mode timer, then it will eventually power down by itself.

2 The current settings are saved, then both the vertical and horizontal
synchronization pulses are turned off. This puts the monitor into "off"
mode. If your monitor has no Off_Mode timer, or if you want your
monitor to power down immediately when the blank_timer times out,
then you choose this option. (Caution: Powering down frequently will
damage the monitor.) (Since Linux 1.1.76.)

subcode=TIOCL_SETKMSGREDIRECT
Change target of kernel messages ("console"): by default, and if this is set to 0,
messages are written to the currently active VT. The VT to write to is a single
byte following subcode. (Since Linux 2.5.36.)

subcode=TIOCL_GETFGCONSOLE
Returns the number of VT currently in foreground. (Since Linux 2.5.36.)

subcode=TIOCL_SCROLLCONSOLE
Scroll the foreground VT by the specified amount of lines down, or half the
screen if 0. lines is *(((int32_t *)&subcode) + 1). (Since Linux 2.5.67.)

subcode=TIOCL_BLANKSCREEN
Blank the foreground VT, ignoring "pokes" (typing): can only be unblanked
explicitly (by switching VTs, to text mode, etc.). (Since Linux 2.5.71.)

subcode=TIOCL_BLANKEDSCREEN
Returns the number of VT currently blanked, 0 if none. (Since Linux 2.5.71.)

subcode=16
Never used.

Linux man-pages 6.13 2024-06-13 1299

TIOCLINUX(2const) TIOCLINUX(2const)

subcode=TIOCL_GETKMSGREDIRECT
Returns target of kernel messages. (Since Linux 2.6.17.)

RETURN VALUE
On success, 0 is returned (except where indicated). On failure, -1 is returned, and er-
rno is set to indicate the error.

ERRORS
EINVAL

argp is invalid.

EPERM
Insufficient permission.

STANDARDS
Linux.

SEE ALSO
ioctl(2), ioctl_console(2)

Linux man-pages 6.13 2024-06-13 1300

TIOCMSET (2const) TIOCMSET (2const)

NAME
TIOCMGET, TIOCMSET, TIOCMBIC, TIOCMBIS, TIOCMIWAIT, TIOCGI-
COUNT - modem control

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCMGET, int *argp);
int ioctl(int fd , TIOCMSET, const int *argp);
int ioctl(int fd , TIOCMBIC, const int *argp);
int ioctl(int fd , TIOCMBIS, const int *argp);
int ioctl(int fd , TIOCMIWAIT, int arg);
int ioctl(int fd , TIOCGICOUNT, struct serial_icounter_struct *argp);

#include <linux/serial.h>

struct serial_icounter_struct;

DESCRIPTION
TIOCMGET

Get the status of modem bits.

TIOCMSET
Set the status of modem bits.

TIOCMBIC
Clear the indicated modem bits.

TIOCMBIS
Set the indicated modem bits.

The following bits are used by the above ioctls:

TIOCM_LE DSR (data set ready/line enable)
TIOCM_DTR DTR (data terminal ready)
TIOCM_RTS RTS (request to send)
TIOCM_ST Secondary TXD (transmit)
TIOCM_SR Secondary RXD (receive)
TIOCM_CTS CTS (clear to send)
TIOCM_CAR DCD (data carrier detect)
TIOCM_CD see TIOCM_CAR
TIOCM_RNG RNG (ring)
TIOCM_RI see TIOCM_RNG
TIOCM_DSR DSR (data set ready)

TIOCMIWAIT
Wait for any of the 4 modem bits (DCD, RI, DSR, CTS) to change. The bits
of interest are specified as a bit mask in arg, by ORing together any of the bit
values, TIOCM_RNG, TIOCM_DSR, TIOCM_CD, and TIOCM_CTS.
The caller should use TIOCGICOUNT to see which bit has changed.

Linux man-pages 6.13 2024-11-03 1301

TIOCMSET (2const) TIOCMSET (2const)

TIOCGICOUNT
Get counts of input serial line interrupts (DCD, RI, DSR, CTS). The counts
are written to the serial_icounter_struct structure pointed to by argp.

Note: both 1->0 and 0->1 transitions are counted, except for RI, where only
0->1 transitions are counted.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

EXAMPLES
Check the condition of DTR on the serial port.

#include <asm/termbits.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <unistd.h>

int
main(void)
{

int fd, serial;

fd = open("/dev/ttyS0", O_RDONLY);
ioctl(fd, TIOCMGET, &serial);
if (serial & TIOCM_DTR)

puts("TIOCM_DTR is set");
else

puts("TIOCM_DTR is not set");
close(fd);

}

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.13 2024-11-03 1302

TIOCPKT (2const) TIOCPKT (2const)

NAME
TIOCPKT, TIOCGPKT, TIOCSPTLCK, TIOCGPTLCK, TIOCGPTPEER -
pseudoterminal ioctls

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCPKT, const int *mode);
int ioctl(int fd , TIOCPKT, int *mode);

int ioctl(int fd , TIOCSPTLCK, const int *lock);
int ioctl(int fd , TIOCGPTLCK, int *lock);

int ioctl(int fd , TIOCGPTPEER, int flags);

DESCRIPTION
TIOCPKT

Enable (when *mode is nonzero) or disable packet mode. Can be applied to
the master side of a pseudoterminal only (and will return ENOTTY other-
wise). In packet mode, each subsequent read(2) will return a packet that either
contains a single nonzero control byte, or has a single byte containing zero
('\0') followed by data written on the slave side of the pseudoterminal. If the
first byte is not TIOCPKT_DATA (0), it is an OR of one or more of the fol-
lowing bits:

TIOCPKT_FLUSHREAD The read queue for the termi-
nal is flushed.

TIOCPKT_FLUSHWRITE The write queue for the termi-
nal is flushed.

TIOCPKT_STOP Output to the terminal is
stopped.

TIOCPKT_START Output to the terminal is
restarted.

TIOCPKT_DOSTOP The start and stop characters
are ^S/^Q.

TIOCPKT_NOSTOP The start and stop characters
are not ^S/^Q.

While packet mode is in use, the presence of control status information to be
read from the master side may be detected by a select(2) for exceptional con-
ditions or a poll(2) for the POLLPRI event.

This mode is used by rlogin(1) and rlogind(8) to implement a remote-echoed,
locally ^S/^Q flow-controlled remote login.

TIOCGPKT
Return the current packet mode setting in the integer pointed to by mode.

TIOCSPTLCK
Set (if *lock is nonzero) or remove (if *lock is zero) the lock on the pseudoter-
minal slave device. (See also unlockpt(3).)

Linux man-pages 6.13 2024-07-23 1303

TIOCPKT (2const) TIOCPKT (2const)

TIOCGPTLCK
Place the current lock state of the pseudoterminal slave device in the location
pointed to by lock.

TIOCGPTPEER
Given a file descriptor in fd that refers to a pseudoterminal master, open (with
the given open(2)-style flags) and return a new file descriptor that refers to the
peer pseudoterminal slave device. This operation can be performed regardless
of whether the pathname of the slave device is accessible through the calling
process’s mount namespace.

Security-conscious programs interacting with namespaces may wish to use
this operation rather than open(2) with the pathname returned by ptsname(3),
and similar library functions that have insecure APIs. (For example, confusion
can occur in some cases using ptsname(3) with a pathname where a devpts
filesystem has been mounted in a different mount namespace.)

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
ENOTTY

HISTORY
TIOCGPKT

Linux 3.8.

TIOCGPTLCK
Linux 3.8.

TIOCGPTPEER
Linux 4.13.

The BSD ioctls TIOCSTOP, TIOCSTART, TIOCUCNTL, and TIOCREMOTE
have not been implemented under Linux.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.13 2024-07-23 1304

TIOCSCTTY (2const) TIOCSCTTY (2const)

NAME
TIOCSCTTY, TIOCNOTTY - controlling the terminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*TTY constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCSCTTY, int arg);
int ioctl(int fd , TIOCNOTTY);

DESCRIPTION
TIOCSCTTY

Make the given terminal the controlling terminal of the calling process. The
calling process must be a session leader and not have a controlling terminal al-
ready. For this case, arg should be specified as zero.

If this terminal is already the controlling terminal of a different session group,
then the ioctl fails with EPERM, unless the caller has the CAP_SYS_AD-
MIN capability and arg equals 1, in which case the terminal is stolen, and all
processes that had it as controlling terminal lose it.

TIOCNOTTY
If the given terminal was the controlling terminal of the calling process, give
up this controlling terminal. If the process was session leader, then send
SIGHUP and SIGCONT to the foreground process group and all processes in
the current session lose their controlling terminal.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EPERM

Insufficient permission.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.13 2024-07-23 1305

TIOCSETD(2const) TIOCSETD(2const)

NAME
TIOCGETD, TIOCSETD - get or set the line discipline of the terminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*ETD constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCGETD, int *argp);
int ioctl(int fd , TIOCSETD, const int *argp);

DESCRIPTION
TIOCGETD

Get the line discipline of the terminal.

TIOCSETD
Set the line discipline of the terminal.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.13 2024-07-23 1306

TIOCSLCKTRMIOS(2const) TIOCSLCKTRMIOS(2const)

NAME
TIOCGLCKTRMIOS, TIOCSLCKTRMIOS - locking the termios structre

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*CLKTRMIOS constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCGLCKTRMIOS, struct termios *argp);
int ioctl(int fd , TIOCSLCKTRMIOS, const struct termios *argp);

#include <asm/termbits.h>

struct termios;

DESCRIPTION
The termios structure of a terminal can be locked. The lock is itself a termios struc-
ture, with nonzero bits or fields indicating a locked value.

TIOCGLCKTRMIOS
Gets the locking status of the termios structure of the terminal.

TIOCSLCKTRMIOS
Sets the locking status of the termios structure of the terminal. Only a process
with the CAP_SYS_ADMIN capability can do this.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EPERM

Insufficient permission.

CAVEATS
Please note that struct termios from <asm/termbits.h> is different and incompatible
with struct termios from <termios.h>. These ioctl calls require struct termios from
<asm/termbits.h>.

SEE ALSO
ioctl(2), ioctl_tty(2), TCSETS(2const)

Linux man-pages 6.13 2024-07-23 1307

TIOCSPGRP(2const) TIOCSPGRP(2const)

NAME
TIOCGPGRP, TIOCSPGRP, TIOCGSID - process group and session ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCGPGRP, pid_t *argp);
int ioctl(int fd , TIOCSPGRP, const pid_t *argp);
int ioctl(int fd , TIOCGSID, pid_t *argp);

DESCRIPTION
TIOCGPGRP

When successful, equivalent to *argp = tcgetpgrp(fd).

Get the process group ID of the foreground process group on this terminal.

TIOCSPGRP
Equivalent to tcsetpgrp(fd, *argp).

Set the foreground process group ID of this terminal.

TIOCGSID
When successful, equivalent to *argp = tcgetsid(fd).

Get the session ID of the given terminal. This fails with the error ENOTTY if
the terminal is not a master pseudoterminal and not our controlling terminal.
Strange.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
ENOTTY

The terminal is not a master pseudoterminal and not our controlling terminal.

EPERM
Insufficient permission.

SEE ALSO
ioctl(2), ioctl_tty(2), tcgetpgrp(3), tcsetpgrp(3), tcgetsid(3)

Linux man-pages 6.13 2024-07-23 1308

TIOCSSOFTCAR(2const) TIOCSSOFTCAR(2const)

NAME
TIOCGSOFTCAR, TIOCSSOFTCAR - marking a line as local

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*SOFTCAR constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCGSOFTCAR, int *argp);
int ioctl(int fd , TIOCSSOFTCAR, const int *argp);

DESCRIPTION
TIOCGSOFTCAR

("Get software carrier flag") Get the status of the CLOCAL flag in the c_cflag
field of the termios structure.

TIOCSSOFTCAR
("Set software carrier flag") Set the CLOCAL flag in the termios structure
when *argp is nonzero, and clear it otherwise.

If the CLOCAL flag for a line is off, the hardware carrier detect (DCD) signal is sig-
nificant, and an open(2) of the corresponding terminal will block until DCD is as-
serted, unless the O_NONBLOCK flag is given. If CLOCAL is set, the line behaves
as if DCD is always asserted. The software carrier flag is usually turned on for local
devices, and is off for lines with modems.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.13 2024-07-23 1309

TIOCSTI (2const) TIOCSTI (2const)

NAME
TIOCSTI - faking input

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOCSTI */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCSTI, const char *argp);

DESCRIPTION
Insert the given byte in the input queue.

Since Linux 6.2, this operation may require the CAP_SYS_ADMIN capability (if the
dev.tty.legacy_tiocsti sysctl variable is set to false).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EPERM

Insufficient permission.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.13 2024-07-23 1310

TIOCSWINSZ (2const) TIOCSWINSZ (2const)

NAME
TIOCGWINSZ, TIOCSWINSZ - get and set window size

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*WINSZ constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCGWINSZ, struct winsize *argp);
int ioctl(int fd , TIOCSWINSZ, const struct winsize *argp);

#include <asm/termios.h>

struct winsize {
unsigned short ws_row;
unsigned short ws_col;
unsigned short ws_xpixel; /* unused */
unsigned short ws_ypixel; /* unused */

};

DESCRIPTION
Window sizes are kept in the kernel, but not used by the kernel (except in the case of
virtual consoles, where the kernel will update the window size when the size of the
virtual console changes, for example, by loading a new font).

TIOCGWINSZ
Get window size.

TIOCSWINSZ
Set window size.

When the window size changes, a SIGWINCH signal is sent to the foreground
process group.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

SEE ALSO
ioctl(2), ioctl_tty(2const)

Linux man-pages 6.13 2024-07-23 1311

TIOCTTYGSTRUCT (2const) TIOCTTYGSTRUCT (2const)

NAME
TIOCTTYGSTRUCT - kernel debugging

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int fd , TIOCTTYGSTRUCT, struct tty_struct *argp);

#include <linux/tty.h>

struct tty_struct;

DESCRIPTION
Get the tty_struct corresponding to fd .

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

HISTORY
This operation was removed in Linux 2.5.67.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.13 2024-07-23 1312

UFFDIO_API (2const) UFFDIO_API (2const)

NAME
UFFDIO_API - enable operation of the userfaultfd and perform API handshake

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_API, struct uffdio_api *argp);

#include <linux/userfaultfd.h>

struct uffdio_api {
__u64 api; /* Requested API version (input) */
__u64 features; /* Requested features (input/output) */
__u64 ioctls; /* Available ioctl() operations (output) */

};

DESCRIPTION
Enable operation of the userfaultfd and perform API handshake.

The api field denotes the API version requested by the application. The kernel veri-
fies that it can support the requested API version, and sets the features and ioctls
fields to bit masks representing all the available features and the generic ioctl(2) oper-
ations available.

Since Linux 4.11, applications should use the features field to perform a two-step
handshake. First, UFFDIO_API is called with the features field set to zero. The ker-
nel responds by setting all supported feature bits.

Applications which do not require any specific features can begin using the user-
faultfd immediately. Applications which do need specific features should call UFF-
DIO_API again with a subset of the reported feature bits set to enable those features.

Before Linux 4.11, the features field must be initialized to zero before the call to
UFFDIO_API, and zero (i.e., no feature bits) is placed in the features field by the
kernel upon return from ioctl(2).

If the application sets unsupported feature bits, the kernel will zero out the returned
uffdio_api structure and return EINVAL.

The following feature bits may be set:

UFFD_FEATURE_EVENT_FORK (since Linux 4.11)
When this feature is enabled, the userfaultfd objects associated with a parent
process are duplicated into the child process during fork(2) and a
UFFD_EVENT_FORK event is delivered to the userfaultfd monitor

UFFD_FEATURE_EVENT_REMAP (since Linux 4.11)
If this feature is enabled, when the faulting process invokes mremap(2), the
userfaultfd monitor will receive an event of type UFFD_EVENT_REMAP.

UFFD_FEATURE_EVENT_REMOVE (since Linux 4.11)
If this feature is enabled, when the faulting process calls madvise(2) with the
MADV_DONTNEED or MADV_REMOVE advice value to free a virtual
memory area the userfaultfd monitor will receive an event of type

Linux man-pages 6.13 2024-07-23 1313

UFFDIO_API (2const) UFFDIO_API (2const)

UFFD_EVENT_REMOVE.

UFFD_FEATURE_EVENT_UNMAP (since Linux 4.11)
If this feature is enabled, when the faulting process unmaps virtual memory ei-
ther explicitly with munmap(2), or implicitly during either mmap(2) or
mremap(2), the userfaultfd monitor will receive an event of type
UFFD_EVENT_UNMAP.

UFFD_FEATURE_MISSING_HUGETLBFS (since Linux 4.11)
If this feature bit is set, the kernel supports registering userfaultfd ranges on
hugetlbfs virtual memory areas

UFFD_FEATURE_MISSING_SHMEM (since Linux 4.11)
If this feature bit is set, the kernel supports registering userfaultfd ranges on
shared memory areas. This includes all kernel shared memory APIs: System
V shared memory, tmpfs(5), shared mappings of /dev/zero, mmap(2) with the
MAP_SHARED flag set, memfd_create(2), and so on.

UFFD_FEATURE_SIGBUS (since Linux 4.14)
If this feature bit is set, no page-fault events (UFFD_EVENT_PAGEFAULT)
will be delivered. Instead, a SIGBUS signal will be sent to the faulting
process. Applications using this feature will not require the use of a user-
faultfd monitor for processing memory accesses to the regions registered with
userfaultfd.

UFFD_FEATURE_THREAD_ID (since Linux 4.14)
If this feature bit is set, uffd_msg.pagefault.feat.ptid will be set to the faulted
thread ID for each page-fault message.

UFFD_FEATURE_PAGEFAULT_FLAG_WP (since Linux 5.10)
If this feature bit is set, userfaultfd supports write-protect faults for anonymous
memory. (Note that shmem / hugetlbfs support is indicated by a separate fea-
ture.)

UFFD_FEATURE_MINOR_HUGETLBFS (since Linux 5.13)
If this feature bit is set, the kernel supports registering userfaultfd ranges in
minor mode on hugetlbfs-backed memory areas.

UFFD_FEATURE_MINOR_SHMEM (since Linux 5.14)
If this feature bit is set, the kernel supports registering userfaultfd ranges in
minor mode on shmem-backed memory areas.

UFFD_FEATURE_EXACT_ADDRESS (since Linux 5.18)
If this feature bit is set, uffd_msg.pagefault.address will be set to the exact
page-fault address that was reported by the hardware, and will not mask the
offset within the page. Note that old Linux versions might indicate the exact
address as well, even though the feature bit is not set.

UFFD_FEATURE_WP_HUGETLBFS_SHMEM (since Linux 5.19)
If this feature bit is set, userfaultfd supports write-protect faults for hugetlbfs
and shmem / tmpfs memory.

UFFD_FEATURE_WP_UNPOPULATED (since Linux 6.4)
If this feature bit is set, the kernel will handle anonymous memory the same
way as file memory, by allowing the user to write-protect unpopulated page

Linux man-pages 6.13 2024-07-23 1314

UFFDIO_API (2const) UFFDIO_API (2const)

table entries.

UFFD_FEATURE_POISON (since Linux 6.6)
If this feature bit is set, the kernel supports resolving faults with the UFF-
DIO_POISON ioctl.

UFFD_FEATURE_WP_ASYNC (since Linux 6.7)
If this feature bit is set, the write protection faults would be asynchronously re-
solved by the kernel.

The returned argp->ioctls field can contain the following bits:

1 << _UFFDIO_API
The UFFDIO_API operation is supported.

1 << _UFFDIO_REGISTER
The UFFDIO_REGISTER operation is supported.

1 << _UFFDIO_UNREGISTER
The UFFDIO_UNREGISTER operation is supported.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EFAULT

argp refers to an address that is outside the calling process’s accessible ad-
dress space.

EINVAL
The API version requested in the api field is not supported by this kernel, or
the features field passed to the kernel includes feature bits that are not sup-
ported by the current kernel version.

EINVAL
A previous UFFDIO_API call already enabled one or more features for this
userfaultfd. Calling UFFDIO_API twice, the first time with no features set, is
explicitly allowed as per the two-step feature detection handshake.

EPERM
The UFFD_FEATURE_EVENT_FORK feature was enabled, but the calling
process doesn’t have the CAP_SYS_PTRACE capability.

STANDARDS
Linux.

HISTORY
Linux 4.3.

CAVEATS
If an error occurs, the kernel may zero the provided uffdio_api structure. The caller
should treat its contents as unspecified, and reinitialize it before re-attempting another
UFFDIO_API call.

Linux man-pages 6.13 2024-07-23 1315

UFFDIO_API (2const) UFFDIO_API (2const)

BUGS
In order to detect available userfault features and enable some subset of those features
the userfaultfd file descriptor must be closed after the first UFFDIO_API operation
that queries features availability and reopened before the second UFFDIO_API oper-
ation that actually enables the desired features.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), mmap(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.13 2024-07-23 1316

UFFDIO_CONTINUE(2const) UFFDIO_CONTINUE(2const)

NAME
UFFDIO_CONTINUE - resolve a minor page fault

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_CONTINUE, struct uffdio_continue *argp);

#include <linux/userfaultfd.h>

struct uffdio_continue {
struct uffdio_range range;

/* Range to install PTEs for and continue */
__u64 mode; /* Flags controlling the behavior of continue */
__s64 mapped; /* Number of bytes mapped, or negated error */

};

DESCRIPTION
Resolve a minor page fault by installing page table entries for existing pages in the
page cache.

The following value may be bitwise ORed in mode to change the behavior of the
UFFDIO_CONTINUE operation:

UFFDIO_CONTINUE_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution.

The mapped field is used by the kernel to return the number of bytes that were actu-
ally mapped, or an error in the same manner as UFFDIO_COPY. If the value re-
turned in the mapped field doesn’t match the value that was specified in range.len, the
operation fails with the error EAGAIN. The mapped field is output-only; it is not
read by the UFFDIO_CONTINUE operation.

RETURN VALUE
This ioctl(2) operation returns 0 on success. In this case, the entire area was mapped.
On error, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The number of bytes mapped (i.e., the value returned in the mapped field)
does not equal the value that was specified in the range.len field.

EEXIST
One or more pages were already mapped in the given range.

EFAULT
No existing page could be found in the page cache for the given range.

EINVAL
Either range.start or range.len was not a multiple of the system page size; or
range.len was zero; or the range specified was invalid.

Linux man-pages 6.13 2024-07-23 1317

UFFDIO_CONTINUE(2const) UFFDIO_CONTINUE(2const)

EINVAL
An invalid bit was specified in the mode field.

ENOENT
The faulting process has changed its virtual memory layout simultaneously
with an outstanding UFFDIO_CONTINUE operation.

ENOMEM
Allocating memory needed to setup the page table mappings failed.

ESRCH
The faulting process has exited at the time of a UFFDIO_CONTINUE opera-
tion.

STANDARDS
Linux.

HISTORY
Linux 5.13.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.13 2024-07-23 1318

UFFDIO_COPY (2const) UFFDIO_COPY (2const)

NAME
UFFDIO_COPY - atomically copy a continuous memory chunk into the userfault
registered range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_COPY, struct uffdio_copy *argp);

#include <linux/userfaultfd.h>

struct uffdio_copy {
__u64 dst; /* Destination of copy */
__u64 src; /* Source of copy */
__u64 len; /* Number of bytes to copy */
__u64 mode; /* Flags controlling behavior of copy */
__s64 copy; /* Number of bytes copied, or negated error */

};

DESCRIPTION
Atomically copy a continuous memory chunk into the userfault registered range and
optionally wake up the blocked thread.

The following value may be bitwise ORed in mode to change the behavior of the
UFFDIO_COPY operation:

UFFDIO_COPY_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution

UFFDIO_COPY_MODE_WP
Copy the page with read-only permission. This allows the user to trap the next
write to the page, which will block and generate another write-protect user-
fault message. This is used only when both UFFDIO_REGIS-
TER_MODE_MISSING and UFFDIO_REGISTER_MODE_WP modes
are enabled for the registered range.

The copy field is used by the kernel to return the number of bytes that was actually
copied, or an error (a negated errno-style value). The copy field is output-only; it is
not read by the UFFDIO_COPY operation.

RETURN VALUE
On success, 0 is returned. In this case, the entire area was copied.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The number of bytes copied (i.e., the value returned in the copy field) does not
equal the value that was specified in the len field.

EINVAL
Either dst or len was not a multiple of the system page size, or the range speci-
fied by src and len or dst and len was invalid.

Linux man-pages 6.13 2024-07-23 1319

UFFDIO_COPY (2const) UFFDIO_COPY (2const)

EINVAL
An invalid bit was specified in the mode field.

ENOENT (since Linux 4.11)
The faulting process has changed its virtual memory layout simultaneously
with an outstanding UFFDIO_COPY operation.

ENOSPC (from Linux 4.11 until Linux 4.13)
The faulting process has exited at the time of a UFFDIO_COPY operation.

ESRCH (since Linux 4.13)
The faulting process has exited at the time of a UFFDIO_COPY operation.

STANDARDS
Linux.

HISTORY
Linux 4.3.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.13 2024-07-23 1320

UFFDIO_POISON (2const) UFFDIO_POISON (2const)

NAME
UFFDIO_POISON - mark an address range as "poisoned"

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_POISON, ...);

#include <linux/userfaultfd.h>

struct uffdio_poison {
struct uffdio_range range;

/* Range to install poison PTE markers in */
__u64 mode; /* Flags controlling the behavior of poison */
__s64 updated; /* Number of bytes poisoned, or negated error */

};

DESCRIPTION
Mark an address range as "poisoned". Future accesses to these addresses will raise a
SIGBUS signal. Unlike MADV_HWPOISON this works by installing page table
entries, rather than "really" poisoning the underlying physical pages. This means it
only affects this particular address space.

The following value may be bitwise ORed in mode to change the behavior of the
UFFDIO_POISON operation:

UFFDIO_POISON_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution.

The updated field is used by the kernel to return the number of bytes that were actu-
ally poisoned, or an error in the same manner as UFFDIO_COPY. If the value re-
turned in the updated field doesn’t match the value that was specified in range.len, the
operation fails with the error EAGAIN. The updated field is output-only; it is not
read by the UFFDIO_POISON operation.

RETURN VALUE
On success, 0 is returned. In this case, the entire area was poisoned.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The number of bytes mapped (i.e., the value returned in the updated field)
does not equal the value that was specified in the range.len field.

EINVAL
Either range.start or range.len was not a multiple of the system page size; or
range.len was zero; or the range specified was invalid.

EINVAL
An invalid bit was specified in the mode field.

Linux man-pages 6.13 2024-07-23 1321

UFFDIO_POISON (2const) UFFDIO_POISON (2const)

EEXIST
One or more pages were already mapped in the given range.

ENOENT
The faulting process has changed its virtual memory layout simultaneously
with an outstanding UFFDIO_POISON operation.

ENOMEM
Allocating memory for page table entries failed.

ESRCH
The faulting process has exited at the time of a UFFDIO_POISON operation.

STANDARDS
Linux.

HISTORY
Linux 6.6.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.13 2024-07-23 1322

UFFDIO_REGISTER(2const) UFFDIO_REGISTER(2const)

NAME
UFFDIO_REGISTER - register a memory address range with the userfaultfd object

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_REGISTER, struct uffdio_register *argp);

#include <linux/userfaultfd.h>

struct uffdio_range {
__u64 start; /* Start of range */
__u64 len; /* Size of range (bytes) */

};

struct uffdio_register {
struct uffdio_range range;
__u64 mode; /* Desired mode of operation (input) */
__u64 ioctls; /* Available ioctl()s (output) */

};

DESCRIPTION
Register a memory address range with the userfaultfd object. The pages in the range
must be “compatible”. Please refer to the list of register modes below for the compat-
ible memory backends for each mode.

The argp->range field defines a memory range starting at argp->range.start and con-
tinuing for argp->range.len bytes that should be handled by the userfaultfd.

The argp->mode field defines the mode of operation desired for this memory region.
The following values may be bitwise ORed to set the userfaultfd mode for the speci-
fied range:

UFFDIO_REGISTER_MODE_MISSING
Track page faults on missing pages. Since Linux 4.3, only private anonymous
ranges are compatible. Since Linux 4.11, hugetlbfs and shared memory ranges
are also compatible.

UFFDIO_REGISTER_MODE_WP
Track page faults on write-protected pages. Since Linux 5.7, only private
anonymous ranges are compatible.

UFFDIO_REGISTER_MODE_MINOR
Track minor page faults. Since Linux 5.13, only hugetlbfs ranges are compati-
ble. Since Linux 5.14, compatibility with shmem ranges was added.

If the operation is successful, the kernel modifies the argp->ioctls bit-mask field to in-
dicate which ioctl(2) operations are available for the specified range. This returned bit
mask can contain the following bits:

Linux man-pages 6.13 2024-11-17 1323

UFFDIO_REGISTER(2const) UFFDIO_REGISTER(2const)

1 << _UFFDIO_COPY
The UFFDIO_COPY operation is supported.

1 << _UFFDIO_WAKE
The UFFDIO_WAKE operation is supported.

1 << _UFFDIO_WRITEPROTECT
The UFFDIO_WRITEPROTECT operation is supported.

1 << _UFFDIO_ZEROPAGE
The UFFDIO_ZEROPAGE operation is supported.

1 << _UFFDIO_CONTINUE
The UFFDIO_CONTINUE operation is supported.

1 << _UFFDIO_POISON
The UFFDIO_POISON operation is supported.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned and errno is set to indicate the er-
ror.

ERRORS
EBUSY

A mapping in the specified range is registered with another userfaultfd object.

EFAULT
argp refers to an address that is outside the calling process’s accessible ad-
dress space.

EINVAL
An invalid or unsupported bit was specified in the mode field; or the mode
field was zero.

EINVAL
There is no mapping in the specified address range.

EINVAL
range.start or range.len is not a multiple of the system page size; or, range.len
is zero; or these fields are otherwise invalid.

EINVAL
There as an incompatible mapping in the specified address range.

STANDARDS
Linux.

HISTORY
Linux 4.3.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), UFFDIO_UNREGISTER(2const), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.13 2024-11-17 1324

UFFDIO_UNREGISTER(2const) UFFDIO_UNREGISTER(2const)

NAME
UFFDIO_UNREGISTER - unregister a memory address range from userfaultfd

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_UNREGISTER, const struct uffdio_range *argp);

DESCRIPTION
Unregister a memory address range from userfaultfd. The pages in the range must be
“compatible” (see UFFDIO_REGISTER(2const)).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned and errno is set to indicate the er-
ror.

ERRORS
EINVAL

Either argp->start or the argp->len fields was not a multiple of the system
page size; or the argp->len field was zero; or these fields were otherwise in-
valid.

EINVAL
There as an incompatible mapping in the specified address range.

EINVAL
There was no mapping in the specified address range.

STANDARDS
Linux.

HISTORY
Linux 4.3.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), UFFDIO_REGISTER(2const), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.13 2024-07-23 1325

UFFDIO_WAKE(2const) UFFDIO_WAKE(2const)

NAME
UFFDIO_WAKE - wake up a thread waiting for page-fault resolution

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_WAKE, const struct uffdio_range *argp);

DESCRIPTION
Wake up the thread waiting for page-fault resolution on a specified memory address
range.

The UFFDIO_WAKE operation is used in conjunction with UFFDIO_COPY and
UFFDIO_ZEROPAGE operations that have the UFFDIO_COPY_MODE_DONT-
WAKE or UFFDIO_ZEROPAGE_MODE_DONTWAKE bit set in the mode field.
The userfault monitor can perform several UFFDIO_COPY and UFFDIO_ZE-
ROPAGE operations in a batch and then explicitly wake up the faulting thread using
UFFDIO_WAKE.

RETURN VALUE
This ioctl(2) operation returns 0 on success. On error, -1 is returned and errno is set
to indicate the error.

ERRORS
EINVAL

The start or the len field of the ufdio_range structure was not a multiple of the
system page size; or len was zero; or the specified range was otherwise in-
valid.

STANDARDS
Linux.

HISTORY
Linux 4.3.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), UFFDIO_REGISTER(2const), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.13 2024-07-23 1326

UFFDIO_WRITEPROTECT (2const) UFFDIO_WRITEPROTECT (2const)

NAME
UFFDIO_WRITEPROTECT - write-protect or write-unprotect a userfaultfd-regis-
tered memory range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_WRITEPROTECT, ...);

#include <linux/userfaultfd.h>

struct uffdio_writeprotect {
struct uffdio_range range; /* Range to change write permission*/
__u64 mode; /* Mode to change write permission */

};

DESCRIPTION
Write-protect or write-unprotect a userfaultfd-registered memory range registered
with mode UFFDIO_REGISTER_MODE_WP.

There are two mode bits that are supported in this structure:

UFFDIO_WRITEPROTECT_MODE_WP
When this mode bit is set, the ioctl will be a write-protect operation upon the
memory range specified by range. Otherwise it will be a write-unprotect oper-
ation upon the specified range, which can be used to resolve a userfaultfd
write-protect page fault.

UFFDIO_WRITEPROTECT_MODE_DONTWAKE
When this mode bit is set, do not wake up any thread that waits for page-fault
resolution after the operation. This can be specified only if UFF-
DIO_WRITEPROTECT_MODE_WP is not specified.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned and errno is set to indicate the er-
ror.

ERRORS
EINVAL

The start or the len field of the ufdio_range structure was not a multiple of the
system page size; or len was zero; or the specified range was otherwise in-
valid.

EAGAIN
The process was interrupted; retry this call.

ENOENT
The range specified in range is not valid. For example, the virtual address
does not exist, or not registered with userfaultfd write-protect mode.

EFAULT
Encountered a generic fault during processing.

Linux man-pages 6.13 2024-07-23 1327

UFFDIO_WRITEPROTECT (2const) UFFDIO_WRITEPROTECT (2const)

STANDARDS
Linux.

HISTORY
Linux 5.7.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

Documentation/admin-guide/mm/userfaultfd.rst in the Linux kernel source tree

Linux man-pages 6.13 2024-07-23 1328

UFFDIO_ZEROPAGE(2const) UFFDIO_ZEROPAGE(2const)

NAME
UFFDIO_ZEROPAGE - zero out a memory range registered with userfaultfd

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_ZEROPAGE, struct uffdio_zeropage *argp);

#include <linux/userfaultfd.h>

struct uffdio_zeropage {
struct uffdio_range range;
__u64 mode; /* Flags controlling behavior */
__s64 zeropage; /* Number of bytes zeroed */

};

DESCRIPTION
Zero out a memory range registered with userfaultfd.

The following value may be bitwise ORed in mode to change the behavior of the
UFFDIO_ZEROPAGE operation:

UFFDIO_ZEROPAGE_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution.

The zeropage field is used by the kernel to return the number of bytes that was actu-
ally zeroed, or an error in the same manner as UFFDIO_COPY. If the value returned
in the zeropage field doesn’t match the value that was specified in range.len, the oper-
ation fails with the error EAGAIN. The zeropage field is output-only; it is not read
by the UFFDIO_ZEROPAGE operation.

RETURN VALUE
This ioctl(2) operation returns 0 on success. In this case, the entire area was zeroed.
On error, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The number of bytes zeroed (i.e., the value returned in the zeropage field) does
not equal the value that was specified in the range.len field.

EINVAL
Either range.start or range.len was not a multiple of the system page size; or
range.len was zero; or the range specified was invalid.

EINVAL
An invalid bit was specified in the mode field.

ESRCH (since Linux 4.13)
The faulting process has exited at the time of a UFFDIO_ZEROPAGE opera-
tion.

STANDARDS
Linux.

Linux man-pages 6.13 2024-07-23 1329

UFFDIO_ZEROPAGE(2const) UFFDIO_ZEROPAGE(2const)

HISTORY
Linux 4.3.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.13 2024-07-23 1330

VFAT_IOCTL_READDIR_BOTH(2const) VFAT_IOCTL_READDIR_BOTH(2const)

NAME
VFAT_IOCTL_READDIR_BOTH, VFAT_IOCTL_READDIR_SHORT - read file-
names of a directory in a FAT filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/msdos_fs.h> /* Definition of VFAT_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , VFAT_IOCTL_READDIR_BOTH,
struct __fat_dirent entry[2]);

int ioctl(int fd , VFAT_IOCTL_READDIR_SHORT,
struct __fat_dirent entry[2]);

DESCRIPTION
A file or directory on a FAT filesystem always has a short filename consisting of up to
8 capital letters, optionally followed by a period and up to 3 capital letters for the file
extension. If the actual filename does not fit into this scheme, it is stored as a long
filename of up to 255 UTF-16 characters.

The short filenames in a directory can be read with VFAT_IOCTL_READ-
DIR_SHORT. VFAT_IOCTL_READDIR_BOTH reads both the short and the
long filenames.

The fd argument must be a file descriptor for a directory. It is sufficient to create the
file descriptor by calling open(2) with the O_RDONLY flag. The file descriptor can
be used only once to iterate over the directory entries by calling ioctl(2) repeatedly.

The entry argument is a two-element array of the following structures:

struct __fat_dirent {
long d_ino;
__kernel_off_t d_off;
uint32_t short d_reclen;
char d_name[256];

};

The first entry in the array is for the short filename. The second entry is for the long
filename.

The d_ino and d_off fields are filled only for long filenames. The d_ino field holds
the inode number of the directory. The d_off field holds the offset of the file entry in
the directory. As these values are not available for short filenames, the user code
should simply ignore them.

The field d_reclen contains the length of the filename in the field d_name. To keep
backward compatibility, a length of 0 for the short filename signals that the end of the
directory has been reached. However, the preferred method for detecting the end of
the directory is to test the ioctl(2) return value. If no long filename exists, field d_re-
clen is set to 0 and d_name is a character string of length 0 for the long filename.

RETURN VALUE
A return value of 1 signals that a new directory entry has been read and a return value
of 0 signals that the end of the directory has been reached.

Linux man-pages 6.13 2024-07-23 1331

VFAT_IOCTL_READDIR_BOTH(2const) VFAT_IOCTL_READDIR_BOTH(2const)

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENOENT

fd refers to a removed, but still open directory.

ENOTDIR
fd does not refer to a directory.

STANDARDS
Linux.

HISTORY
Linux 2.0.

EXAMPLES
The following program demonstrates the use of ioctl(2) to list a directory.

The following was recorded when applying the program to the directory /mnt/user:

$./fat_dir /mnt/user
. -> ''
.. -> ''
ALONGF~1.TXT -> 'a long filename.txt'
UPPER.TXT -> ''
LOWER.TXT -> 'lower.txt'

Program source
#include <fcntl.h>
#include <linux/msdos_fs.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd;
int ret;
struct __fat_dirent entry[2];

if (argc != 2) {
printf("Usage: %s DIRECTORY\n", argv[0]);
exit(EXIT_FAILURE);

}

/*
* Open file descriptor for the directory.
*/

fd = open(argv[1], O_RDONLY | O_DIRECTORY);
if (fd == -1) {

perror("open");

Linux man-pages 6.13 2024-07-23 1332

VFAT_IOCTL_READDIR_BOTH(2const) VFAT_IOCTL_READDIR_BOTH(2const)

exit(EXIT_FAILURE);
}

for (;;) {

/*
* Read next directory entry.
*/

ret = ioctl(fd, VFAT_IOCTL_READDIR_BOTH, entry);

/*
* If an error occurs, the return value is -1.
* If the end of the directory list has been reached,
* the return value is 0.
* For backward compatibility the end of the directory
* list is also signaled by d_reclen == 0.
*/

if (ret < 1)
break;

/*
* Write both the short name and the long name.
*/

printf("%s -> '%s'\n", entry[0].d_name, entry[1].d_name);
}

if (ret == -1) {
perror("VFAT_IOCTL_READDIR_BOTH");
exit(EXIT_FAILURE);

}

/*
* Close the file descriptor.
*/

close(fd);

exit(EXIT_SUCCESS);
}

SEE ALSO
ioctl(2), ioctl_fat(2)

Linux man-pages 6.13 2024-07-23 1333

VFAT_IOCTL_READDIR_BOTH(2const) VFAT_IOCTL_READDIR_BOTH(2const)

Linux man-pages 6.13 2024-07-23 1334

open_how(2type) open_how(2type)

NAME
open_how - how to open a pathname

LIBRARY
Linux kernel headers

SYNOPSIS
#include <linux/openat2.h>

struct open_how {
u64 flags; /* O_* flags */
u64 mode; /* Mode for O_{CREAT,TMPFILE} */
u64 resolve; /* RESOLVE_* flags */
/* ... */

};

DESCRIPTION
Specifies how a pathname should be opened.

The fields are as follows:

flags This field specifies the file creation and file status flags to use when opening
the file.

mode This field specifies the mode for the new file.

resolve
This is a bit mask of flags that modify the way in which all components of a
pathname will be resolved (see path_resolution(7) for background informa-
tion).

VERSIONS
Extra fields may be appended to the structure, with a zero value in a new field result-
ing in the kernel behaving as though that extension field was not present. Therefore, a
user must zero-fill this structure on initialization.

STANDARDS
Linux.

SEE ALSO
openat2(2)

Linux man-pages 6.13 2024-05-02 1335

intro(3) Library Functions Manual intro(3)

NAME
intro - introduction to library functions

DESCRIPTION
Section 3 of the manual describes all library functions excluding the library functions
(system call wrappers) described in Section 2, which implement system calls.

Many of the functions described in the section are part of the Standard C Library
(libc). Some functions are part of other libraries (e.g., the math library, libm, or the
real-time library, librt) in which case the manual page will indicate the linker option
needed to link against the required library (e.g., -lm and -lrt, respectively, for the
aforementioned libraries).

In some cases, the programmer must define a feature test macro in order to obtain the
declaration of a function from the header file specified in the man page SYNOPSIS
section. (Where required, these feature test macros must be defined before including
any header files.) In such cases, the required macro is described in the man page. For
further information on feature test macros, see feature_test_macros(7).

Subsections
Section 3 of this manual is organized into subsections that reflect the complex struc-
ture of the standard C library and its many implementations:

• 3const

• 3head

• 3type

This difficult history frequently makes it a poor example to follow in design, imple-
mentation, and presentation.

Ideally, a library for the C language is designed such that each header file presents the
interface to a coherent software module. It provides a small number of function dec-
larations and exposes only data types and constants that are required for use of those
functions. Together, these are termed an API or application program interface.
Types and constants to be shared among multiple APIs should be placed in header
files that declare no functions. This organization permits a C library module to be
documented concisely with one header file per manual page. Such an approach im-
proves the readability and accessibility of library documentation, and thereby the us-
ability of the software.

STANDARDS
Certain terms and abbreviations are used to indicate UNIX variants and standards to
which calls in this section conform. See standards(7).

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright condi-
tions. Note that these can be different from page to page!

SEE ALSO
intro(2), errno(3), capabilities(7), credentials(7), environ(7), feature_test_macros(7),
libc(7), math_error(7), path_resolution(7), pthreads(7), signal(7), standards(7), sys-
tem_data_types(7)

Linux man-pages 6.13 2024-05-02 1336

a64l(3) Library Functions Manual a64l(3)

NAME
a64l, l64a - convert between long and base-64

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

long a64l(const char *str64);
char *l64a(long value);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

a64l(), l64a():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

DESCRIPTION
These functions provide a conversion between 32-bit long integers and little-endian
base-64 ASCII strings (of length zero to six). If the string used as argument for a64l()
has length greater than six, only the first six bytes are used. If the type long has more
than 32 bits, then l64a() uses only the low order 32 bits of value, and a64l() sign-ex-
tends its 32-bit result.

The 64 digits in the base-64 system are:

'.' represents a 0
'/' represents a 1
0-9 represent 2-11
A-Z represent 12-37
a-z represent 38-63

So 123 = 59*64^0 + 1*64^1 = "v/".

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:l64al64a()
Thread safety MT-Safea64l()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The value returned by l64a() may be a pointer to a static buffer, possibly overwritten
by later calls.

The behavior of l64a() is undefined when value is negative. If value is zero, it returns
an empty string.

These functions are broken before glibc 2.2.5 (puts most significant digit first).

This is not the encoding used by uuencode(1)

Linux man-pages 6.13 2024-07-23 1337

a64l(3) Library Functions Manual a64l(3)

SEE ALSO
uuencode(1), strtoul(3)

Linux man-pages 6.13 2024-07-23 1338

abort(3) Library Functions Manual abort(3)

NAME
abort - cause abnormal process termination

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

[[noreturn]] void abort(void);

DESCRIPTION
The abort() function first unblocks the SIGABRT signal, and then raises that signal
for the calling process (as though raise(3) was called). This results in the abnormal
termination of the process unless the SIGABRT signal is caught and the signal han-
dler does not return (see longjmp(3)).

If the SIGABRT signal is ignored, or caught by a handler that returns, the abort()
function will still terminate the process. It does this by restoring the default disposi-
tion for SIGABRT and then raising the signal for a second time.

As with other cases of abnormal termination the functions registered with atexit(3)
and on_exit(3) are not called.

RETURN VALUE
The abort() function never returns.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeabort()

STANDARDS
C11, POSIX.1-2008.

HISTORY
SVr4, POSIX.1-2001, 4.3BSD, C89.

Up until glibc 2.26, if the abort() function caused process termination, all open
streams were closed and flushed (as with fclose(3)). However, in some cases this
could result in deadlocks and data corruption. Therefore, starting with glibc 2.27,
abort() terminates the process without flushing streams. POSIX.1 permits either pos-
sible behavior, saying that abort() "may include an attempt to effect fclose() on all
open streams".

SEE ALSO
gdb(1), sigaction(2), assert(3), exit(3), longjmp(3), raise(3)

Linux man-pages 6.13 2024-07-23 1339

abs(3) Library Functions Manual abs(3)

NAME
abs, labs, llabs, imaxabs - compute the absolute value of an integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int abs(int j);
long labs(long j);
long long llabs(long long j);

#include <inttypes.h>

intmax_t imaxabs(intmax_t j);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

llabs():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The abs() function computes the absolute value of the integer argument j. The labs(),
llabs(), and imaxabs() functions compute the absolute value of the argument j of the
appropriate integer type for the function.

RETURN VALUE
Returns the absolute value of the integer argument, of the appropriate integer type for
the function.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeabs(), labs(), llabs(), imaxabs()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99, SVr4, 4.3BSD.

C89 only includes the abs() and labs() functions; the functions llabs() and imaxabs()
were added in C99.

NOTES
Trying to take the absolute value of the most negative integer is not defined.

The llabs() function is included since glibc 2.0. The imaxabs() function is included
since glibc 2.1.1.

For llabs() to be declared, it may be necessary to define _ISOC99_SOURCE or
_ISOC9X_SOURCE (depending on the version of glibc) before including any stan-
dard headers.

By default, GCC handles abs(), labs(), and (since GCC 3.0) llabs() and imaxabs() as
built-in functions.

Linux man-pages 6.13 2024-07-23 1340

abs(3) Library Functions Manual abs(3)

SEE ALSO
cabs(3), ceil(3), fabs(3), floor(3), rint(3)

Linux man-pages 6.13 2024-07-23 1341

acos(3) Library Functions Manual acos(3)

NAME
acos, acosf, acosl - arc cosine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double acos(double x);
float acosf(float x);
long double acosl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

acosf(), acosl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the arc cosine of x; that is the value whose cosine is x.

RETURN VALUE
On success, these functions return the arc cosine of x in radians; the return value is in
the range [0, pi].

If x is a NaN, a NaN is returned.

If x is +1, +0 is returned.

If x is positive infinity or negative infinity, a domain error occurs, and a NaN is re-
turned.

If x is outside the range [-1, 1], a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is outside the range [-1, 1]
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeacos(), acosf(), acosl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to C89, SVr4, 4.3BSD.

Linux man-pages 6.13 2024-07-23 1342

acos(3) Library Functions Manual acos(3)

SEE ALSO
asin(3), atan(3), atan2(3), cacos(3), cos(3), sin(3), tan(3)

Linux man-pages 6.13 2024-07-23 1343

acosh(3) Library Functions Manual acosh(3)

NAME
acosh, acoshf, acoshl - inverse hyperbolic cosine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

acosh():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

acoshf(), acoshl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the inverse hyperbolic cosine of x; that is the value whose
hyperbolic cosine is x.

RETURN VALUE
On success, these functions return the inverse hyperbolic cosine of x.

If x is a NaN, a NaN is returned.

If x is +1, +0 is returned.

If x is positive infinity, positive infinity is returned.

If x is less than 1, a domain error occurs, and the functions return a NaN.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is less than 1
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeacosh(), acoshf(), acoshl()

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 1344

acosh(3) Library Functions Manual acosh(3)

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
asinh(3), atanh(3), cacosh(3), cosh(3), sinh(3), tanh(3)

Linux man-pages 6.13 2024-07-23 1345

addseverity(3) Library Functions Manual addseverity(3)

NAME
addseverity - introduce new severity classes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fmtmsg.h>

int addseverity(int severity, const char *s);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

addseverity():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
This function allows the introduction of new severity classes which can be addressed
by the severity argument of the fmtmsg(3) function. By default, that function knows
only how to print messages for severity 0-4 (with strings (none), HALT, ERROR,
WARNING, INFO). This call attaches the given string s to the given value severity.
If s is NULL, the severity class with the numeric value severity is removed. It is not
possible to overwrite or remove one of the default severity classes. The severity value
must be nonnegative.

RETURN VALUE
Upon success, the value MM_OK is returned. Upon error, the return value is
MM_NOTOK. Possible errors include: out of memory, attempt to remove a nonexis-
tent or default severity class.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaddseverity()

STANDARDS
GNU.

HISTORY
glibc 2.1. System V.

NOTES
New severity classes can also be added by setting the environment variable
SEV_LEVEL.

SEE ALSO
fmtmsg(3)

Linux man-pages 6.13 2024-07-23 1346

adjtime(3) Library Functions Manual adjtime(3)

NAME
adjtime - correct the time to synchronize the system clock

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/time.h>

int adjtime(const struct timeval *delta, struct timeval *olddelta);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

adjtime():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The adjtime() function gradually adjusts the system clock (as returned by gettimeof-
day(2)). The amount of time by which the clock is to be adjusted is specified in the
structure pointed to by delta. This structure has the following form:

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

If the adjustment in delta is positive, then the system clock is speeded up by some
small percentage (i.e., by adding a small amount of time to the clock value in each
second) until the adjustment has been completed. If the adjustment in delta is nega-
tive, then the clock is slowed down in a similar fashion.

If a clock adjustment from an earlier adjtime() call is already in progress at the time
of a later adjtime() call, and delta is not NULL for the later call, then the earlier ad-
justment is stopped, but any already completed part of that adjustment is not undone.

If olddelta is not NULL, then the buffer that it points to is used to return the amount
of time remaining from any previous adjustment that has not yet been completed.

RETURN VALUE
On success, adjtime() returns 0. On failure, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
EINVAL

The adjustment in delta is outside the permitted range.

EPERM
The caller does not have sufficient privilege to adjust the time. Under Linux,
the CAP_SYS_TIME capability is required.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1347

adjtime(3) Library Functions Manual adjtime(3)

Interface Attribute Value
Thread safety MT-Safeadjtime()

STANDARDS
None.

HISTORY
4.3BSD, System V.

NOTES
The adjustment that adjtime() makes to the clock is carried out in such a manner that
the clock is always monotonically increasing. Using adjtime() to adjust the time pre-
vents the problems that could be caused for certain applications (e.g., make(1)) by
abrupt positive or negative jumps in the system time.

adjtime() is intended to be used to make small adjustments to the system time. Most
systems impose a limit on the adjustment that can be specified in delta. In the glibc
implementation, delta must be less than or equal to (INT_MAX / 1000000 - 2) and
greater than or equal to (INT_MIN / 1000000 + 2) (respectively 2145 and -2145 sec-
onds on i386).

BUGS
A longstanding bug meant that if delta was specified as NULL, no valid information
about the outstanding clock adjustment was returned in olddelta. (In this circum-
stance, adjtime() should return the outstanding clock adjustment, without changing
it.) This bug is fixed on systems with glibc 2.8 or later and Linux kernel 2.6.26 or
later.

SEE ALSO
adjtimex(2), gettimeofday(2), time(7)

Linux man-pages 6.13 2024-07-23 1348

aio_cancel(3) Library Functions Manual aio_cancel(3)

NAME
aio_cancel - cancel an outstanding asynchronous I/O request

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_cancel(int fd , struct aiocb *aiocbp);

DESCRIPTION
The aio_cancel() function attempts to cancel outstanding asynchronous I/O requests
for the file descriptor fd . If aiocbp is NULL, all such requests are canceled. Other-
wise, only the request described by the control block pointed to by aiocbp is canceled.
(See aio(7) for a description of the aiocb structure.)

Normal asynchronous notification occurs for canceled requests (see aio(7) and
sigevent(3type)). The request return status (aio_return(3)) is set to -1, and the re-
quest error status (aio_error(3)) is set to ECANCELED. The control block of re-
quests that cannot be canceled is not changed.

If the request could not be canceled, then it will terminate in the usual way after per-
forming the I/O operation. (In this case, aio_error(3) will return the status EINPRO-
GRESSS.)

If aiocbp is not NULL, and fd differs from the file descriptor with which the asyn-
chronous operation was initiated, unspecified results occur.

Which operations are cancelable is implementation-defined.

RETURN VALUE
The aio_cancel() function returns one of the following values:

AIO_CANCELED
All requests were successfully canceled.

AIO_NOTCANCELED
At least one of the requests specified was not canceled because it was in
progress. In this case, one may check the status of individual requests using
aio_error(3).

AIO_ALLDONE
All requests had already been completed before the call.

-1 An error occurred. The error can be found by inspecting errno.

ERRORS
EBADF

fd is not a valid file descriptor.

ENOSYS
aio_cancel() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1349

aio_cancel(3) Library Functions Manual aio_cancel(3)

Interface Attribute Value
Thread safety MT-Safeaio_cancel()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

EXAMPLES
See aio(7).

SEE ALSO
aio_error(3), aio_fsync(3), aio_read(3), aio_return(3), aio_suspend(3), aio_write(3),
lio_listio(3), aio(7)

Linux man-pages 6.13 2024-07-23 1350

aio_error(3) Library Functions Manual aio_error(3)

NAME
aio_error - get error status of asynchronous I/O operation

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

DESCRIPTION
The aio_error() function returns the error status for the asynchronous I/O request
with control block pointed to by aiocbp. (See aio(7) for a description of the aiocb
structure.)

RETURN VALUE
This function returns one of the following:

EINPROGRESS
if the request has not been completed yet.

ECANCELED
if the request was canceled.

0 if the request completed successfully.

> 0 A positive error number, if the asynchronous I/O operation failed. This is the
same value that would have been stored in the errno variable in the case of a
synchronous read(2), write(2), fsync(2), or fdatasync(2) call.

ERRORS
EINVAL

aiocbp does not point at a control block for an asynchronous I/O request of
which the return status (see aio_return(3)) has not been retrieved yet.

ENOSYS
aio_error() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_error()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

EXAMPLES
See aio(7).

SEE ALSO
aio_cancel(3), aio_fsync(3), aio_read(3), aio_return(3), aio_suspend(3),
aio_write(3), lio_listio(3), aio(7)

Linux man-pages 6.13 2024-07-23 1351

aio_fsync(3) Library Functions Manual aio_fsync(3)

NAME
aio_fsync - asynchronous file synchronization

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

DESCRIPTION
The aio_fsync() function does a sync on all outstanding asynchronous I/O operations
associated with aiocbp->aio_fildes. (See aio(7) for a description of the aiocb struc-
ture.)

More precisely, if op is O_SYNC, then all currently queued I/O operations shall be
completed as if by a call of fsync(2), and if op is O_DSYNC, this call is the asynchro-
nous analog of fdatasync(2).

Note that this is a request only; it does not wait for I/O completion.

Apart from aio_fildes, the only field in the structure pointed to by aiocbp that is used
by this call is the aio_sigevent field (a sigevent structure, described in
sigevent(3type)), which indicates the desired type of asynchronous notification at
completion. All other fields are ignored.

RETURN VALUE
On success (the sync request was successfully queued) this function returns 0. On er-
ror, -1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

Out of resources.

EBADF
aio_fildes is not a valid file descriptor open for writing.

EINVAL
Synchronized I/O is not supported for this file, or op is not O_SYNC or
O_DSYNC.

ENOSYS
aio_fsync() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_fsync()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

Linux man-pages 6.13 2024-07-23 1352

aio_fsync(3) Library Functions Manual aio_fsync(3)

SEE ALSO
aio_cancel(3), aio_error(3), aio_read(3), aio_return(3), aio_suspend(3),
aio_write(3), lio_listio(3), aio(7), sigevent(3type)

Linux man-pages 6.13 2024-07-23 1353

aio_init(3) Library Functions Manual aio_init(3)

NAME
aio_init - asynchronous I/O initialization

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <aio.h>

void aio_init(const struct aioinit *init);

DESCRIPTION
The GNU-specific aio_init() function allows the caller to provide tuning hints to the
glibc POSIX AIO implementation. Use of this function is optional, but to be effec-
tive, it must be called before employing any other functions in the POSIX AIO API.

The tuning information is provided in the buffer pointed to by the argument init. This
buffer is a structure of the following form:

struct aioinit {
int aio_threads; /* Maximum number of threads */
int aio_num; /* Number of expected simultaneous

requests */
int aio_locks; /* Not used */
int aio_usedba; /* Not used */
int aio_debug; /* Not used */
int aio_numusers; /* Not used */
int aio_idle_time; /* Number of seconds before idle thread

terminates (since glibc 2.2) */
int aio_reserved;

};

The following fields are used in the aioinit structure:

aio_threads
This field specifies the maximum number of worker threads that may be used
by the implementation. If the number of outstanding I/O operations exceeds
this limit, then excess operations will be queued until a worker thread becomes
free. If this field is specified with a value less than 1, the value 1 is used. The
default value is 20.

aio_num
This field should specify the maximum number of simultaneous I/O requests
that the caller expects to enqueue. If a value less than 32 is specified for this
field, it is rounded up to 32. The default value is 64.

aio_idle_time
This field specifies the amount of time in seconds that a worker thread should
wait for further requests before terminating, after having completed a previous
request. The default value is 1.

STANDARDS
GNU.

Linux man-pages 6.13 2024-07-23 1354

aio_init(3) Library Functions Manual aio_init(3)

HISTORY
glibc 2.1.

SEE ALSO
aio(7)

Linux man-pages 6.13 2024-07-23 1355

aio_read(3) Library Functions Manual aio_read(3)

NAME
aio_read - asynchronous read

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_read(struct aiocb *aiocbp);

DESCRIPTION
The aio_read() function queues the I/O request described by the buffer pointed to by
aiocbp. This function is the asynchronous analog of read(2). The arguments of the
call

read(fd, buf, count)

correspond (in order) to the fields aio_fildes, aio_buf , and aio_nbytes of the structure
pointed to by aiocbp. (See aio(7) for a description of the aiocb structure.)

The data is read starting at the absolute position aiocbp->aio_offset, regardless of the
file offset. After the call, the value of the file offset is unspecified.

The "asynchronous" means that this call returns as soon as the request has been en-
queued; the read may or may not have completed when the call returns. One tests for
completion using aio_error(3). The return status of a completed I/O operation can be
obtained by aio_return(3). Asynchronous notification of I/O completion can be ob-
tained by setting aiocbp->aio_sigevent appropriately; see sigevent(3type) for details.

If _POSIX_PRIORITIZED_IO is defined, and this file supports it, then the asyn-
chronous operation is submitted at a priority equal to that of the calling process minus
aiocbp->aio_reqprio.

The field aiocbp->aio_lio_opcode is ignored.

No data is read from a regular file beyond its maximum offset.

RETURN VALUE
On success, 0 is returned. On error, the request is not enqueued, -1 is returned, and
errno is set to indicate the error. If an error is detected only later, it will be reported
via aio_return(3) (returns status -1) and aio_error(3) (error status—whatever one
would have gotten in errno, such as EBADF).

ERRORS
EAGAIN

Out of resources.

EBADF
aio_fildes is not a valid file descriptor open for reading.

EINVAL
One or more of aio_offset, aio_reqprio, or aio_nbytes are invalid.

ENOSYS
aio_read() is not implemented.

Linux man-pages 6.13 2024-07-23 1356

aio_read(3) Library Functions Manual aio_read(3)

EOVERFLOW
The file is a regular file, we start reading before end-of-file and want at least
one byte, but the starting position is past the maximum offset for this file.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_read()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

NOTES
It is a good idea to zero out the control block before use. The control block must not
be changed while the read operation is in progress. The buffer area being read into
must not be accessed during the operation or undefined results may occur. The mem-
ory areas involved must remain valid.

Simultaneous I/O operations specifying the same aiocb structure produce undefined
results.

EXAMPLES
See aio(7).

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_return(3), aio_suspend(3),
aio_write(3), lio_listio(3), aio(7)

Linux man-pages 6.13 2024-07-23 1357

aio_return(3) Library Functions Manual aio_return(3)

NAME
aio_return - get return status of asynchronous I/O operation

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

DESCRIPTION
The aio_return() function returns the final return status for the asynchronous I/O re-
quest with control block pointed to by aiocbp. (See aio(7) for a description of the
aiocb structure.)

This function should be called only once for any given request, after aio_error(3) re-
turns something other than EINPROGRESS.

RETURN VALUE
If the asynchronous I/O operation has completed, this function returns the value that
would have been returned in case of a synchronous read(2), write(2), fsync(2), or
fdatasync(2), call. On error, -1 is returned, and errno is set to indicate the error.

If the asynchronous I/O operation has not yet completed, the return value and effect of
aio_return() are undefined.

ERRORS
EINVAL

aiocbp does not point at a control block for an asynchronous I/O request of
which the return status has not been retrieved yet.

ENOSYS
aio_return() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_return()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

EXAMPLES
See aio(7).

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_read(3), aio_suspend(3), aio_write(3),
lio_listio(3), aio(7)

Linux man-pages 6.13 2024-07-23 1358

aio_suspend(3) Library Functions Manual aio_suspend(3)

NAME
aio_suspend - wait for asynchronous I/O operation or timeout

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_suspend(const struct aiocb *const aiocb_list[], int n,
const struct timespec *restrict timeout);

DESCRIPTION
The aio_suspend() function suspends the calling thread until one of the following oc-
curs:

• One or more of the asynchronous I/O requests in the list aiocb_list has completed.

• A signal is delivered.

• timeout is not NULL and the specified time interval has passed. (For details of the
timespec structure, see nanosleep(2).)

The n argument specifies the number of items in aiocb_list. Each item in the list
pointed to by aiocb_list must be either NULL (and then is ignored), or a pointer to a
control block on which I/O was initiated using aio_read(3), aio_write(3), or lio_lis-
tio(3). (See aio(7) for a description of the aiocb structure.)

If CLOCK_MONOTONIC is supported, this clock is used to measure the timeout
interval (see clock_gettime(2)).

RETURN VALUE
If this function returns after completion of one of the I/O requests specified in
aiocb_list, 0 is returned. Otherwise, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EAGAIN

The call timed out before any of the indicated operations had completed.

EINTR
The call was ended by signal (possibly the completion signal of one of the op-
erations we were waiting for); see signal(7).

ENOSYS
aio_suspend() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_suspend()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

POSIX doesn’t specify the parameters to be restrict; that is specific to glibc.

Linux man-pages 6.13 2024-11-17 1359

aio_suspend(3) Library Functions Manual aio_suspend(3)

NOTES
One can achieve polling by using a non-NULL timeout that specifies a zero time in-
terval.

If one or more of the asynchronous I/O operations specified in aiocb_list has already
completed at the time of the call to aio_suspend(), then the call returns immediately.

To determine which I/O operations have completed after a successful return from
aio_suspend(), use aio_error(3) to scan the list of aiocb structures pointed to by
aiocb_list.

BUGS
The glibc implementation of aio_suspend() is not async-signal-safe, in violation of
the requirements of POSIX.1.

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_read(3), aio_return(3), aio_write(3),
lio_listio(3), aio(7), time(7)

Linux man-pages 6.13 2024-11-17 1360

aio_write(3) Library Functions Manual aio_write(3)

NAME
aio_write - asynchronous write

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_write(struct aiocb *aiocbp);

DESCRIPTION
The aio_write() function queues the I/O request described by the buffer pointed to by
aiocbp. This function is the asynchronous analog of write(2). The arguments of the
call

write(fd, buf, count)

correspond (in order) to the fields aio_fildes, aio_buf , and aio_nbytes of the structure
pointed to by aiocbp. (See aio(7) for a description of the aiocb structure.)

If O_APPEND is not set, the data is written starting at the absolute position
aiocbp->aio_offset, regardless of the file offset. If O_APPEND is set, data is written
at the end of the file in the same order as aio_write() calls are made. After the call,
the value of the file offset is unspecified.

The "asynchronous" means that this call returns as soon as the request has been en-
queued; the write may or may not have completed when the call returns. One tests for
completion using aio_error(3). The return status of a completed I/O operation can be
obtained aio_return(3). Asynchronous notification of I/O completion can be obtained
by setting aiocbp->aio_sigevent appropriately; see sigevent(3type) for details.

If _POSIX_PRIORITIZED_IO is defined, and this file supports it, then the asyn-
chronous operation is submitted at a priority equal to that of the calling process minus
aiocbp->aio_reqprio.

The field aiocbp->aio_lio_opcode is ignored.

No data is written to a regular file beyond its maximum offset.

RETURN VALUE
On success, 0 is returned. On error, the request is not enqueued, -1 is returned, and
errno is set to indicate the error. If an error is detected only later, it will be reported
via aio_return(3) (returns status -1) and aio_error(3) (error status—whatever one
would have gotten in errno, such as EBADF).

ERRORS
EAGAIN

Out of resources.

EBADF
aio_fildes is not a valid file descriptor open for writing.

EFBIG
The file is a regular file, we want to write at least one byte, but the starting po-
sition is at or beyond the maximum offset for this file.

Linux man-pages 6.13 2024-07-23 1361

aio_write(3) Library Functions Manual aio_write(3)

EINVAL
One or more of aio_offset, aio_reqprio, aio_nbytes are invalid.

ENOSYS
aio_write() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_write()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

NOTES
It is a good idea to zero out the control block before use. The control block must not
be changed while the write operation is in progress. The buffer area being written out
must not be accessed during the operation or undefined results may occur. The mem-
ory areas involved must remain valid.

Simultaneous I/O operations specifying the same aiocb structure produce undefined
results.

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_read(3), aio_return(3),
aio_suspend(3), lio_listio(3), aio(7)

Linux man-pages 6.13 2024-07-23 1362

alloca(3) Library Functions Manual alloca(3)

NAME
alloca - allocate memory that is automatically freed

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <alloca.h>

void *alloca(size_t size);

DESCRIPTION
The alloca() function allocates size bytes of space in the stack frame of the caller.
This temporary space is automatically freed when the function that called alloca() re-
turns to its caller.

RETURN VALUE
The alloca() function returns a pointer to the beginning of the allocated space. If the
allocation causes stack overflow, program behavior is undefined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safealloca()

STANDARDS
None.

HISTORY
PWB, 32V.

NOTES
The alloca() function is machine- and compiler-dependent. Because it allocates from
the stack, it’s faster than malloc(3) and free(3). In certain cases, it can also simplify
memory deallocation in applications that use longjmp(3) or siglongjmp(3). Other-
wise, its use is discouraged.

Because the space allocated by alloca() is allocated within the stack frame, that space
is automatically freed if the function return is jumped over by a call to longjmp(3) or
siglongjmp(3).

The space allocated by alloca() is not automatically deallocated if the pointer that
refers to it simply goes out of scope; it is automatically deallocated when the caller
function returns.

Do not attempt to free(3) space allocated by alloca()!

By necessity, alloca() is a compiler built-in, also known as __builtin_alloca(). By de-
fault, modern compilers automatically translate all uses of alloca() into the built-in,
but this is forbidden if standards conformance is requested (-ansi, -std=c*), in which
case <alloca.h> is required, lest a symbol dependency be emitted.

The fact that alloca() is a built-in means it is impossible to take its address or to
change its behavior by linking with a different library.

Variable length arrays (VLAs) are part of the C99 standard, optional since C11, and
can be used for a similar purpose. However, they do not port to standard C++, and,

Linux man-pages 6.13 2024-11-19 1363

alloca(3) Library Functions Manual alloca(3)

being variables, live in their block scope and don’t have an allocator-like interface,
making them unfit for implementing functionality like strdupa(3).

BUGS
Due to the nature of the stack, it is impossible to check if the allocation would over-
flow the space available, and, hence, neither is indicating an error. (However, the pro-
gram is likely to receive a SIGSEGV signal if it attempts to access unavailable
space.)

On many systems alloca() cannot be used inside the list of arguments of a function
call, because the stack space reserved by alloca() would appear on the stack in the
middle of the space for the function arguments.

SEE ALSO
brk(2), longjmp(3), malloc(3)

Linux man-pages 6.13 2024-11-19 1364

arc4random(3) Library Functions Manual arc4random(3)

NAME
arc4random, arc4random_uniform, arc4random_buf - cryptographically-secure
pseudorandom number generator

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

uint32_t arc4random(void);
uint32_t arc4random_uniform(uint32_t upper_bound);
void arc4random_buf(void buf [.n], size_t n);

DESCRIPTION
These functions give cryptographically-secure pseudorandom numbers.

arc4random() returns a uniformly-distributed value.

arc4random_uniform() returns a uniformly-distributed value less than upper_bound
(see BUGS).

arc4random_buf() fills the memory pointed to by buf , with n bytes of pseudorandom
data.

The rand(3) and drand48(3) families of functions should only be used where the qual-
ity of the pseudorandom numbers is not a concern and there’s a need for repeatability
of the results. Unless you meet both of those conditions, use the arc4random() func-
tions.

RETURN VALUE
arc4random() returns a pseudorandom number.

arc4random_uniform() returns a pseudorandom number less than upper_bound for
valid input, or 0 when upper_bound is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safearc4random(), arc4random_uniform(),
arc4random_buf()

STANDARDS
BSD.

HISTORY
OpenBSD 2.1, FreeBSD 3.0, NetBSD 1.6, DragonFly 1.0, libbsd, glibc 2.36.

BUGS
An upper_bound of 0 doesn’t make sense in a call to arc4random_uniform(). Such
a call will fail, and return 0. Be careful, since that value is not less than up-
per_bound . In some cases, such as accessing an array, using that value could result in
undefined behavior.

SEE ALSO
getrandom(3), rand(3), drand48(3), random(7)

Linux man-pages 6.13 2024-11-17 1365

arc4random(3) Library Functions Manual arc4random(3)

Linux man-pages 6.13 2024-11-17 1366

argz_add(3) Library Functions Manual argz_add(3)

NAME
argz_add, argz_add_sep, argz_append, argz_count, argz_create, argz_create_sep,
argz_delete, argz_extract, argz_insert, argz_next, argz_replace, argz_stringify - func-
tions to handle an argz list

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <argz.h>

error_t argz_add(char **restrict argz, size_t *restrict argz_len,
const char *restrict str);

error_t argz_add_sep(char **restrict argz, size_t *restrict argz_len,
const char *restrict str, int delim);

error_t argz_append(char **restrict argz, size_t *restrict argz_len,
const char *restrict buf , size_t buf_len);

size_t argz_count(const char *argz, size_t argz_len);

error_t argz_create(char *const argv[], char **restrict argz,
size_t *restrict argz_len);

error_t argz_create_sep(const char *restrict str, int sep,
char **restrict argz, size_t *restrict argz_len);

void argz_delete(char **restrict argz, size_t *restrict argz_len,
char *restrict entry);

void argz_extract(const char *restrict argz, size_t argz_len,
char **restrict argv);

error_t argz_insert(char **restrict argz, size_t *restrict argz_len,
char *restrict before, const char *restrict entry);

char *argz_next(const char *restrict argz, size_t argz_len,
const char *restrict entry);

error_t argz_replace(char **restrict argz, size_t *restrict argz_len,
const char *restrict str, const char *restrict with,
unsigned int *restrict replace_count);

void argz_stringify(char *argz, size_t len, int sep);

DESCRIPTION
These functions are glibc-specific.

An argz vector is a pointer to a character buffer together with a length. The intended
interpretation of the character buffer is an array of strings, where the strings are sepa-
rated by null bytes ('\0'). If the length is nonzero, the last byte of the buffer must be a
null byte.

These functions are for handling argz vectors. The pair (NULL,0) is an argz vector,
and, conversely, argz vectors of length 0 must have null pointer. Allocation of non-
empty argz vectors is done using malloc(3), so that free(3) can be used to dispose of
them again.

Linux man-pages 6.13 2024-07-23 1367

argz_add(3) Library Functions Manual argz_add(3)

argz_add() adds the string str at the end of the array *argz, and updates *argz and
*argz_len.

argz_add_sep() is similar, but splits the string str into substrings separated by the de-
limiter delim. For example, one might use this on a UNIX search path with delimiter
':'.

argz_append() appends the argz vector (buf , buf_len) after (*argz, *argz_len) and
updates *argz and *argz_len. (Thus, *argz_len will be increased by buf_len.)

argz_count() counts the number of strings, that is, the number of null bytes ('\0'), in
(argz, argz_len).

argz_create() converts a UNIX-style argument vector argv, terminated by (char *) 0,
into an argz vector (*argz, *argz_len).

argz_create_sep() converts the null-terminated string str into an argz vector
(*argz, *argz_len) by breaking it up at every occurrence of the separator sep.

argz_delete() removes the substring pointed to by entry from the argz vector
(*argz, *argz_len) and updates *argz and *argz_len.

argz_extract() is the opposite of argz_create(). It takes the argz vector
(argz, argz_len) and fills the array starting at argv with pointers to the substrings, and
a final NULL, making a UNIX-style argv vector. The array argv must have room for
argz_count(argz, argz_len) + 1" pointers.

argz_insert() is the opposite of argz_delete(). It inserts the argument entry at posi-
tion before into the argz vector (*argz, *argz_len) and updates *argz and *argz_len. If
before is NULL, then entry will inserted at the end.

argz_next() is a function to step through the argz vector. If entry is NULL, the first
entry is returned. Otherwise, the entry following is returned. It returns NULL if there
is no following entry.

argz_replace() replaces each occurrence of str with with, reallocating argz as neces-
sary. If replace_count is non-NULL, *replace_count will be incremented by the
number of replacements.

argz_stringify() is the opposite of argz_create_sep(). It transforms the argz vector
into a normal string by replacing all null bytes ('\0') except the last by sep.

RETURN VALUE
All argz functions that do memory allocation have a return type of error_t (an integer
type), and return 0 for success, and ENOMEM if an allocation error occurs.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeargz_add(), argz_add_sep(), argz_append(),
argz_count(), argz_create(), argz_create_sep(),
argz_delete(), argz_extract(), argz_insert(),
argz_next(), argz_replace(), argz_stringify()

STANDARDS
GNU.

Linux man-pages 6.13 2024-07-23 1368

argz_add(3) Library Functions Manual argz_add(3)

BUGS
Argz vectors without a terminating null byte may lead to Segmentation Faults.

SEE ALSO
envz_add(3)

Linux man-pages 6.13 2024-07-23 1369

asin(3) Library Functions Manual asin(3)

NAME
asin, asinf, asinl - arc sine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double asin(double x);
float asinf(float x);
long double asinl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

asinf(), asinl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the principal value of the arc sine of x; that is the value
whose sine is x.

RETURN VALUE
On success, these functions return the principal value of the arc sine of x in radians;
the return value is in the range [-pi/2, pi/2].

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is outside the range [-1, 1], a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is outside the range [-1, 1]
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeasin(), asinf(), asinl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

Linux man-pages 6.13 2024-07-23 1370

asin(3) Library Functions Manual asin(3)

SEE ALSO
acos(3), atan(3), atan2(3), casin(3), cos(3), sin(3), tan(3)

Linux man-pages 6.13 2024-07-23 1371

asinh(3) Library Functions Manual asinh(3)

NAME
asinh, asinhf, asinhl - inverse hyperbolic sine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

asinh():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

asinhf(), asinhl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the inverse hyperbolic sine of x; that is the value whose hy-
perbolic sine is x.

RETURN VALUE
On success, these functions return the inverse hyperbolic sine of x.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is re-
turned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeasinh(), asinhf(), asinhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
acosh(3), atanh(3), casinh(3), cosh(3), sinh(3), tanh(3)

Linux man-pages 6.13 2024-07-23 1372

asinh(3) Library Functions Manual asinh(3)

Linux man-pages 6.13 2024-07-23 1373

asprintf (3) Library Functions Manual asprintf (3)

NAME
asprintf, vasprintf - print to allocated string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdio.h>

int asprintf(char **restrict strp, const char *restrict fmt, ...);
int vasprintf(char **restrict strp, const char *restrict fmt,

va_list ap);

DESCRIPTION
The functions asprintf() and vasprintf() are analogs of sprintf(3) and vsprintf(3), ex-
cept that they allocate a string large enough to hold the output including the terminat-
ing null byte ('\0'), and return a pointer to it via the first argument. This pointer should
be passed to free(3) to release the allocated storage when it is no longer needed.

RETURN VALUE
When successful, these functions return the number of bytes printed, just like
sprintf(3). If memory allocation wasn’t possible, or some other error occurs, these
functions will return -1, and the contents of strp are undefined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeasprintf(), vasprintf()

VERSIONS
The FreeBSD implementation sets strp to NULL on error.

STANDARDS
GNU, BSD.

SEE ALSO
free(3), malloc(3), printf(3)

Linux man-pages 6.13 2024-07-23 1374

assert(3) Library Functions Manual assert(3)

NAME
assert - abort the program if assertion is false

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <assert.h>

void assert(scalar expression);

DESCRIPTION
This macro can help programmers find bugs in their programs, or handle exceptional
cases via a crash that will produce limited debugging output.

If expression is false (i.e., compares equal to zero), assert() prints an error message to
standard error and terminates the program by calling abort(3). The error message in-
cludes the name of the file and function containing the assert() call, the source code
line number of the call, and the text of the argument; something like:

prog: some_file.c:16: some_func: Assertion `val == 0' failed.

If the macro NDEBUG is defined at the moment <assert.h> was last included, the
macro assert() generates no code, and hence does nothing at all. It is not recom-
mended to define NDEBUG if using assert() to detect error conditions since the soft-
ware may behave non-deterministically.

RETURN VALUE
No value is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeassert()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, C99, POSIX.1-2001.

In C89, expression is required to be of type int and undefined behavior results if it is
not, but in C99 it may have any scalar type.

BUGS
assert() is implemented as a macro; if the expression tested has side-effects, program
behavior will be different depending on whether NDEBUG is defined. This may cre-
ate Heisenbugs which go away when debugging is turned on.

SEE ALSO
abort(3), assert_perror(3), exit(3)

Linux man-pages 6.13 2024-07-23 1375

assert_perror(3) Library Functions Manual assert_perror(3)

NAME
assert_perror - test errnum and abort

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <assert.h>

void assert_perror(int errnum);

DESCRIPTION
If the macro NDEBUG was defined at the moment <assert.h> was last included, the
macro assert_perror() generates no code, and hence does nothing at all. Otherwise,
the macro assert_perror() prints an error message to standard error and terminates
the program by calling abort(3) if errnum is nonzero. The message contains the file-
name, function name and line number of the macro call, and the output of strerror(er-
rnum).

RETURN VALUE
No value is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeassert_perror()

STANDARDS
GNU.

BUGS
The purpose of the assert macros is to help programmers find bugs in their programs,
things that cannot happen unless there was a coding mistake. However, with system
or library calls the situation is rather different, and error returns can happen, and will
happen, and should be tested for. Not by an assert, where the test goes away when
NDEBUG is defined, but by proper error handling code. Never use this macro.

SEE ALSO
abort(3), assert(3), exit(3), strerror(3)

Linux man-pages 6.13 2024-07-23 1376

atan(3) Library Functions Manual atan(3)

NAME
atan, atanf, atanl - arc tangent function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double atan(double x);
float atanf(float x);
long double atanl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

atanf(), atanl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the principal value of the arc tangent of x; that is the value
whose tangent is x.

RETURN VALUE
On success, these functions return the principal value of the arc tangent of x in radi-
ans; the return value is in the range [-pi/2, pi/2].

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity (negative infinity), +pi/2 (-pi/2) is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeatan(), atanf(), atanl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
acos(3), asin(3), atan2(3), carg(3), catan(3), cos(3), sin(3), tan(3)

Linux man-pages 6.13 2024-07-23 1377

atan2(3) Library Functions Manual atan2(3)

NAME
atan2, atan2f, atan2l - arc tangent function of two variables

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

atan2f(), atan2l():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the principal value of the arc tangent of y/x, using the signs
of the two arguments to determine the quadrant of the result.

RETURN VALUE
On success, these functions return the principal value of the arc tangent of y/x in radi-
ans; the return value is in the range [-pi, pi].

If y is +0 (-0) and x is less than 0, +pi (-pi) is returned.

If y is +0 (-0) and x is greater than 0, +0 (-0) is returned.

If y is less than 0 and x is +0 or -0, -pi/2 is returned.

If y is greater than 0 and x is +0 or -0, pi/2 is returned.

If either x or y is NaN, a NaN is returned.

If y is +0 (-0) and x is -0, +pi (-pi) is returned.

If y is +0 (-0) and x is +0, +0 (-0) is returned.

If y is a finite value greater (less) than 0, and x is negative infinity, +pi (-pi) is re-
turned.

If y is a finite value greater (less) than 0, and x is positive infinity, +0 (-0) is returned.

If y is positive infinity (negative infinity), and x is finite, pi/2 (-pi/2) is returned.

If y is positive infinity (negative infinity) and x is negative infinity, +3*pi/4 (-3*pi/4)
is returned.

If y is positive infinity (negative infinity) and x is positive infinity, +pi/4 (-pi/4) is re-
turned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1378

atan2(3) Library Functions Manual atan2(3)

Interface Attribute Value
Thread safety MT-Safeatan2(), atan2f(), atan2l()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
acos(3), asin(3), atan(3), carg(3), cos(3), sin(3), tan(3)

Linux man-pages 6.13 2024-07-23 1379

atanh(3) Library Functions Manual atanh(3)

NAME
atanh, atanhf, atanhl - inverse hyperbolic tangent function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

atanh():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

atanhf(), atanhl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the inverse hyperbolic tangent of x; that is the value whose
hyperbolic tangent is x.

RETURN VALUE
On success, these functions return the inverse hyperbolic tangent of x.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is +1 or -1, a pole error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the mathematically correct sign.

If the absolute value of x is greater than 1, a domain error occurs, and a NaN is re-
turned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x less than -1 or greater than +1
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Pole error: x is +1 or -1
errno is set to ERANGE (but see BUGS). A divide-by-zero floating-point ex-
ception (FE_DIVBYZERO) is raised.

Linux man-pages 6.13 2024-07-23 1380

atanh(3) Library Functions Manual atanh(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeatanh(), atanhf(), atanhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

BUGS
In glibc 2.9 and earlier, when a pole error occurs, errno is set to EDOM instead of the
POSIX-mandated ERANGE. Since glibc 2.10, glibc does the right thing.

SEE ALSO
acosh(3), asinh(3), catanh(3), cosh(3), sinh(3), tanh(3)

Linux man-pages 6.13 2024-07-23 1381

atexit(3) Library Functions Manual atexit(3)

NAME
atexit - register a function to be called at normal process termination

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int atexit(typeof(void (void)) * function);

DESCRIPTION
The atexit() function registers the given function to be called at normal process termi-
nation, either via exit(3) or via return from the program’s main(). Functions so regis-
tered are called in the reverse order of their registration; no arguments are passed.

The same function may be registered multiple times: it is called once for each regis-
tration.

POSIX.1 requires that an implementation allow at least ATEXIT_MAX (32) such
functions to be registered. The actual limit supported by an implementation can be
obtained using sysconf(3).

When a child process is created via fork(2), it inherits copies of its parent’s registra-
tions. Upon a successful call to one of the exec(3) functions, all registrations are re-
moved.

RETURN VALUE
The atexit() function returns the value 0 if successful; otherwise it returns a nonzero
value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeatexit()

VERSIONS
POSIX.1 says that the result of calling exit(3) more than once (i.e., calling exit(3)
within a function registered using atexit()) is undefined. On some systems (but not
Linux), this can result in an infinite recursion; portable programs should not invoke
exit(3) inside a function registered using atexit().

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, C99, SVr4, 4.3BSD.

NOTES
Functions registered using atexit() (and on_exit(3)) are not called if a process termi-
nates abnormally because of the delivery of a signal.

If one of the registered functions calls _exit(2), then any remaining functions are not
invoked, and the other process termination steps performed by exit(3) are not per-
formed.

The atexit() and on_exit(3) functions register functions on the same list: at normal

Linux man-pages 6.13 2024-12-13 1382

atexit(3) Library Functions Manual atexit(3)

process termination, the registered functions are invoked in reverse order of their reg-
istration by these two functions.

According to POSIX.1, the result is undefined if longjmp(3) is used to terminate exe-
cution of one of the functions registered using atexit().

Linux notes
Since glibc 2.2.3, atexit() (and on_exit(3)) can be used within a shared library to es-
tablish functions that are called when the shared library is unloaded.

EXAMPLES
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void
bye(void)
{

printf("That was all, folks\n");
}

int
main(void)
{

long a;
int i;

a = sysconf(_SC_ATEXIT_MAX);
printf("ATEXIT_MAX = %ld\n", a);

i = atexit(bye);
if (i != 0) {

fprintf(stderr, "cannot set exit function\n");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
_exit(2), dlopen(3), exit(3), on_exit(3)

Linux man-pages 6.13 2024-12-13 1383

atof (3) Library Functions Manual atof (3)

NAME
atof - convert a string to a double

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

double atof(const char *nptr);

DESCRIPTION
The atof() function converts the initial portion of the string pointed to by nptr to dou-
ble. The behavior is the same as

strtod(nptr, NULL);

except that atof() does not detect errors.

RETURN VALUE
The converted value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeatof()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, C99, SVr4, 4.3BSD.

SEE ALSO
atoi(3), atol(3), strfromd(3), strtod(3), strtol(3), strtoul(3)

Linux man-pages 6.13 2024-07-23 1384

atoi(3) Library Functions Manual atoi(3)

NAME
atoi, atol, atoll - convert a string to an integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int atoi(const char *nptr);
long atol(const char *nptr);
long long atoll(const char *nptr);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

atoll():
_ISOC99_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The atoi() function converts the initial portion of the string pointed to by nptr to int.
The behavior is the same as

strtol(nptr, NULL, 10);

except that atoi() does not detect errors.

The atol() and atoll() functions behave the same as atoi(), except that they convert the
initial portion of the string to their return type of long or long long.

RETURN VALUE
The converted value or 0 on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeatoi(), atol(), atoll()

VERSIONS
POSIX.1 leaves the return value of atoi() on error unspecified. On glibc, musl libc,
and uClibc, 0 is returned on error.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001, SVr4, 4.3BSD.

C89 and POSIX.1-1996 include the functions atoi() and atol() only.

BUGS
errno is not set on error so there is no way to distinguish between 0 as an error and as
the converted value. No checks for overflow or underflow are done. Only base-10 in-
put can be converted. It is recommended to instead use the strtol() and strtoul() fam-
ily of functions in new programs.

SEE ALSO
atof(3), strtod(3), strtol(3), strtoul(3)

Linux man-pages 6.13 2024-07-23 1385

atoi(3) Library Functions Manual atoi(3)

Linux man-pages 6.13 2024-07-23 1386

backtrace(3) Library Functions Manual backtrace(3)

NAME
backtrace, backtrace_symbols, backtrace_symbols_fd - support for application self-
debugging

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <execinfo.h>

int backtrace(void *buffer[.size], int size);

char **backtrace_symbols(void *const buffer[.size], int size);
void backtrace_symbols_fd(void *const buffer[.size], int size, int fd);

DESCRIPTION
backtrace() returns a backtrace for the calling program, in the array pointed to by
buffer. A backtrace is the series of currently active function calls for the program.
Each item in the array pointed to by buffer is of type void *, and is the return address
from the corresponding stack frame. The size argument specifies the maximum num-
ber of addresses that can be stored in buffer. If the backtrace is larger than size, then
the addresses corresponding to the size most recent function calls are returned; to ob-
tain the complete backtrace, make sure that buffer and size are large enough.

Given the set of addresses returned by backtrace() in buffer, backtrace_symbols()
translates the addresses into an array of strings that describe the addresses symboli-
cally. The size argument specifies the number of addresses in buffer. The symbolic
representation of each address consists of the function name (if this can be deter-
mined), a hexadecimal offset into the function, and the actual return address (in hexa-
decimal). The address of the array of string pointers is returned as the function result
of backtrace_symbols(). This array is malloc(3)ed by backtrace_symbols(), and
must be freed by the caller. (The strings pointed to by the array of pointers need not
and should not be freed.)

backtrace_symbols_fd() takes the same buffer and size arguments as back-
trace_symbols(), but instead of returning an array of strings to the caller, it writes the
strings, one per line, to the file descriptor fd . backtrace_symbols_fd() does not call
malloc(3), and so can be employed in situations where the latter function might fail,
but see NOTES.

RETURN VALUE
backtrace() returns the number of addresses returned in buffer, which is not greater
than size. If the return value is less than size, then the full backtrace was stored; if it
is equal to size, then it may have been truncated, in which case the addresses of the
oldest stack frames are not returned.

On success, backtrace_symbols() returns a pointer to the array malloc(3)ed by the
call; on error, NULL is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1387

backtrace(3) Library Functions Manual backtrace(3)

Interface Attribute Value
Thread safety MT-Safebacktrace(), backtrace_symbols(),

backtrace_symbols_fd()

STANDARDS
GNU.

HISTORY
glibc 2.1.

NOTES
These functions make some assumptions about how a function’s return address is
stored on the stack. Note the following:

• Omission of the frame pointers (as implied by any of gcc(1)nonzero optimization
levels) may cause these assumptions to be violated.

• Inlined functions do not have stack frames.

• Tail-call optimization causes one stack frame to replace another.

• backtrace() and backtrace_symbols_fd() don’t call malloc() explicitly, but they
are part of libgcc, which gets loaded dynamically when first used. Dynamic load-
ing usually triggers a call to malloc(3). If you need certain calls to these two func-
tions to not allocate memory (in signal handlers, for example), you need to make
sure libgcc is loaded beforehand.

The symbol names may be unavailable without the use of special linker options. For
systems using the GNU linker, it is necessary to use the -rdynamic linker option.
Note that names of "static" functions are not exposed, and won’t be available in the
backtrace.

EXAMPLES
The program below demonstrates the use of backtrace() and backtrace_symbols().
The following shell session shows what we might see when running the program:

$ cc -rdynamic prog.c -o prog
$./prog 3
backtrace() returned 8 addresses
./prog(myfunc3+0x5c) [0x80487f0]
./prog [0x8048871]
./prog(myfunc+0x21) [0x8048894]
./prog(myfunc+0x1a) [0x804888d]
./prog(myfunc+0x1a) [0x804888d]
./prog(main+0x65) [0x80488fb]
/lib/libc.so.6(__libc_start_main+0xdc) [0xb7e38f9c]
./prog [0x8048711]

Program source

#include <execinfo.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

Linux man-pages 6.13 2024-07-23 1388

backtrace(3) Library Functions Manual backtrace(3)

#define BT_BUF_SIZE 100

void
myfunc3(void)
{

int nptrs;
void *buffer[BT_BUF_SIZE];
char **strings;

nptrs = backtrace(buffer, BT_BUF_SIZE);
printf("backtrace() returned %d addresses\n", nptrs);

/* The call backtrace_symbols_fd(buffer, nptrs, STDOUT_FILENO)
would produce similar output to the following: */

strings = backtrace_symbols(buffer, nptrs);
if (strings == NULL) {

perror("backtrace_symbols");
exit(EXIT_FAILURE);

}

for (size_t j = 0; j < nptrs; j++)
printf("%s\n", strings[j]);

free(strings);
}

static void /* "static" means don't export the symbol... */
myfunc2(void)
{

myfunc3();
}

void
myfunc(int ncalls)
{

if (ncalls > 1)
myfunc(ncalls - 1);

else
myfunc2();

}

int
main(int argc, char *argv[])
{

if (argc != 2) {
fprintf(stderr, "%s num-calls\n", argv[0]);
exit(EXIT_FAILURE);

}

Linux man-pages 6.13 2024-07-23 1389

backtrace(3) Library Functions Manual backtrace(3)

myfunc(atoi(argv[1]));
exit(EXIT_SUCCESS);

}

SEE ALSO
addr2line(1), gcc(1), gdb(1), ld(1), dlopen(3), malloc(3)

Linux man-pages 6.13 2024-07-23 1390

basename(3) Library Functions Manual basename(3)

NAME
basename, dirname - parse pathname components

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <libgen.h>

char *dirname(char *path);
char *basename(char *path);

DESCRIPTION
Warning: there are two different functions basename(); see below.

The functions dirname() and basename() break a null-terminated pathname string
into directory and filename components. In the usual case, dirname() returns the
string up to, but not including, the final '/', and basename() returns the component fol-
lowing the final '/'. Trailing '/' characters are not counted as part of the pathname.

If path does not contain a slash, dirname() returns the string "." while basename()
returns a copy of path. If path is the string "/", then both dirname() and basename()
return the string "/". If path is a null pointer or points to an empty string, then both
dirname() and basename() return the string ".".

Concatenating the string returned by dirname(), a "/", and the string returned by
basename() yields a complete pathname.

Both dirname() and basename() may modify the contents of path, so it may be desir-
able to pass a copy when calling one of these functions.

These functions may return pointers to statically allocated memory which may be
overwritten by subsequent calls. Alternatively, they may return a pointer to some part
of path, so that the string referred to by path should not be modified or freed until the
pointer returned by the function is no longer required.

The following list of examples (taken from SUSv2) shows the strings returned by
dirname() and basename() for different paths:

path dirname basename
/usr/lib /usr lib
/usr/ / usr
usr . usr
/ / /
. . .
.. . ..

RETURN VALUE
Both dirname() and basename() return pointers to null-terminated strings. (Do not
pass these pointers to free(3).)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebasename(), dirname()

Linux man-pages 6.13 2024-07-23 1391

basename(3) Library Functions Manual basename(3)

VERSIONS
There are two different versions of basename() - the POSIX version described above,
and the GNU version, which one gets after

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

The GNU version never modifies its argument, and returns the empty string when
path has a trailing slash, and in particular also when it is "/". There is no GNU ver-
sion of dirname().

With glibc, one gets the POSIX version of basename() when <libgen.h> is included,
and the GNU version otherwise.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

BUGS
In the glibc implementation, the POSIX versions of these functions modify the path
argument, and segfault when called with a static string such as "/usr/".

Before glibc 2.2.1, the glibc version of dirname() did not correctly handle pathnames
with trailing '/' characters, and generated a segfault if given a NULL argument.

EXAMPLES
The following code snippet demonstrates the use of basename() and dirname():

char *dirc, *basec, *bname, *dname;
char *path = "/etc/passwd";

dirc = strdup(path);
basec = strdup(path);
dname = dirname(dirc);
bname = basename(basec);
printf("dirname=%s, basename=%s\n", dname, bname);

SEE ALSO
basename(1), dirname(1)

Linux man-pages 6.13 2024-07-23 1392

bcmp(3) Library Functions Manual bcmp(3)

NAME
bcmp - compare byte sequences

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

[[deprecated]] int bcmp(const void s1[.n], const void s2[.n], size_t n);

DESCRIPTION
bcmp() is identical to memcmp(3); use the latter instead.

STANDARDS
None.

HISTORY
4.3BSD. Marked as LEGACY in POSIX.1-2001; removed in POSIX.1-2008.

SEE ALSO
memcmp(3)

Linux man-pages 6.13 2024-07-23 1393

bcopy(3) Library Functions Manual bcopy(3)

NAME
bcopy - copy byte sequence

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

[[deprecated]] void bcopy(const void src[.n], void dest[.n], size_t n);

DESCRIPTION
The bcopy() function copies n bytes from src to dest. The result is correct, even
when both areas overlap.

RETURN VALUE
None.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebcopy()

STANDARDS
None.

HISTORY
4.3BSD.

Marked as LEGACY in POSIX.1-2001: use memcpy(3) or memmove(3) in new pro-
grams. Note that the first two arguments are interchanged for memcpy(3) and mem-
move(3). POSIX.1-2008 removes the specification of bcopy().

SEE ALSO
bstring(3), memccpy(3), memcpy(3), memmove(3), strcpy(3), strncpy(3)

Linux man-pages 6.13 2024-07-23 1394

bindresvport(3) Library Functions Manual bindresvport(3)

NAME
bindresvport - bind a socket to a privileged IP port

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

int bindresvport(int sockfd , struct sockaddr_in *sin);

DESCRIPTION
bindresvport() is used to bind the socket referred to by the file descriptor sockfd to a
privileged anonymous IP port, that is, a port number arbitrarily selected from the
range 512 to 1023.

If the bind(2) performed by bindresvport() is successful, and sin is not NULL, then
sin->sin_port returns the port number actually allocated.

sin can be NULL, in which case sin->sin_family is implicitly taken to be AF_INET.
However, in this case, bindresvport() has no way to return the port number actually
allocated. (This information can later be obtained using getsockname(2).)

RETURN VALUE
bindresvport() returns 0 on success; otherwise -1 is returned and errno is set to indi-
cate the error.

ERRORS
bindresvport() can fail for any of the same reasons as bind(2). In addition, the fol-
lowing errors may occur:

EACCES
The calling process was not privileged (on Linux: the calling process did not
have the CAP_NET_BIND_SERVICE capability in the user namespace gov-
erning its network namespace).

EADDRINUSE
All privileged ports are in use.

EAFNOSUPPORT (EPFNOSUPPORT in glibc 2.7 and earlier)
sin is not NULL and sin->sin_family is not AF_INET.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetybindresvport() glibc >= 2.17: MT-Safe; glibc < 2.17: MT-
Unsafe

The bindresvport() function uses a static variable that was not protected by a lock be-
fore glibc 2.17, rendering the function MT-Unsafe.

VERSIONS
Present on the BSDs, Solaris, and many other systems.

Linux man-pages 6.13 2024-07-23 1395

bindresvport(3) Library Functions Manual bindresvport(3)

NOTES
Unlike some bindresvport() implementations, the glibc implementation ignores any
value that the caller supplies in sin->sin_port.

STANDARDS
BSD.

SEE ALSO
bind(2), getsockname(2)

Linux man-pages 6.13 2024-07-23 1396

bsd_signal(3) Library Functions Manual bsd_signal(3)

NAME
bsd_signal - signal handling with BSD semantics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

typedef typeof(void (int)) *sighandler_t;

sighandler_t bsd_signal(int signum, sighandler_t handler);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

bsd_signal():
Since glibc 2.26:

_XOPEN_SOURCE >= 500
&& ! (_POSIX_C_SOURCE >= 200809L)

glibc 2.25 and earlier:
_XOPEN_SOURCE

DESCRIPTION
The bsd_signal() function takes the same arguments, and performs the same task, as
signal(2).

The difference between the two is that bsd_signal() is guaranteed to provide reliable
signal semantics, that is: a) the disposition of the signal is not reset to the default
when the handler is invoked; b) delivery of further instances of the signal is blocked
while the signal handler is executing; and c) if the handler interrupts a blocking sys-
tem call, then the system call is automatically restarted. A portable application cannot
rely on signal(2) to provide these guarantees.

RETURN VALUE
The bsd_signal() function returns the previous value of the signal handler, or
SIG_ERR on error.

ERRORS
As for signal(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebsd_signal()

VERSIONS
Use of bsd_signal() should be avoided; use sigaction(2) instead.

On modern Linux systems, bsd_signal() and signal(2) are equivalent. But on older
systems, signal(2) provided unreliable signal semantics; see signal(2) for details.

The use of sighandler_t is a GNU extension; this type is defined only if the
_GNU_SOURCE feature test macro is defined.

STANDARDS
None.

Linux man-pages 6.13 2024-12-13 1397

bsd_signal(3) Library Functions Manual bsd_signal(3)

HISTORY
4.2BSD, POSIX.1-2001. Removed in POSIX.1-2008, recommending the use of
sigaction(2) instead.

SEE ALSO
sigaction(2), signal(2), sysv_signal(3), signal(7)

Linux man-pages 6.13 2024-12-13 1398

bsearch(3) Library Functions Manual bsearch(3)

NAME
bsearch - binary search of a sorted array

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

void *bsearch(const void key[.size], const void base[.size * .n],
size_t n, size_t size,
typeof(int (const void [.size], const void [.size]))

*compar);

DESCRIPTION
The bsearch() function searches an array of n objects, the initial member of which is
pointed to by base, for a member that matches the object pointed to by key. The size
of each member of the array is specified by size.

The contents of the array should be in ascending sorted order according to the com-
parison function referenced by compar. The compar routine is expected to have two
arguments which point to the key object and to an array member, in that order, and
should return an integer less than, equal to, or greater than zero if the key object is
found, respectively, to be less than, to match, or be greater than the array member.

RETURN VALUE
The bsearch() function returns a pointer to a matching member of the array, or NULL
if no match is found. If there are multiple elements that match the key, the element re-
turned is unspecified.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebsearch()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, C99, SVr4, 4.3BSD.

EXAMPLES
The example below first sorts an array of structures using qsort(3), then retrieves de-
sired elements using bsearch().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define ARRAY_SIZE(arr) (sizeof((arr)) / sizeof((arr)[0]))

struct mi {
int nr;
const char *name;

};

Linux man-pages 6.13 2024-12-13 1399

bsearch(3) Library Functions Manual bsearch(3)

static struct mi months[] = {
{ 1, "jan" }, { 2, "feb" }, { 3, "mar" }, { 4, "apr" },
{ 5, "may" }, { 6, "jun" }, { 7, "jul" }, { 8, "aug" },
{ 9, "sep" }, {10, "oct" }, {11, "nov" }, {12, "dec" }

};

static int
compmi(const void *m1, const void *m2)
{

const struct mi *mi1 = m1;
const struct mi *mi2 = m2;

return strcmp(mi1->name, mi2->name);
}

int
main(int argc, char *argv[])
{

qsort(months, ARRAY_SIZE(months), sizeof(months[0]), compmi);
for (size_t i = 1; i < argc; i++) {

struct mi key;
struct mi *res;

key.name = argv[i];
res = bsearch(&key, months, ARRAY_SIZE(months),

sizeof(months[0]), compmi);
if (res == NULL)

printf("'%s': unknown month\n", argv[i]);
else

printf("%s: month #%d\n", res->name, res->nr);
}
exit(EXIT_SUCCESS);

}

SEE ALSO
hsearch(3), lsearch(3), qsort(3), tsearch(3)

Linux man-pages 6.13 2024-12-13 1400

bstring(3) Library Functions Manual bstring(3)

NAME
bcmp, bcopy, bzero, memccpy, memchr, memcmp, memcpy, memfrob, memmem,
memmove, memset - byte string operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

int bcmp(const void s1[.n], const void s2[.n], size_t n);

void bcopy(const void src[.n], void dest[.n], size_t n);

void bzero(void s[.n], size_t n);

void *memccpy(void dest[.n], const void src[.n], int c, size_t n);

void *memchr(const void s[.n], int c, size_t n);

int memcmp(const void s1[.n], const void s2[.n], size_t n);

void *memcpy(void dest[.n], const void src[.n], size_t n);

void *memfrob(void s[.n], size_t n);

void *memmem(const void haystack[.haystacklen], size_t haystacklen,
const void needle[.needlelen], size_t needlelen);

void *memmove(void dest[.n], const void src[.n], size_t n);

void *memset(void s[.n], int c, size_t n);

DESCRIPTION
The byte string functions perform operations on strings (byte arrays) that are not nec-
essarily null-terminated. See the individual man pages for descriptions of each func-
tion.

NOTES
The functions bcmp() and bcopy() are obsolete. Use memcmp() and memmove() in-
stead.

SEE ALSO
bcmp(3), bcopy(3), bzero(3), memccpy(3), memchr(3), memcmp(3), memcpy(3), mem-
frob(3), memmem(3), memmove(3), memset(3), string(3)

Linux man-pages 6.13 2024-07-23 1401

bswap(3) Library Functions Manual bswap(3)

NAME
bswap_16, bswap_32, bswap_64 - reverse order of bytes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <byteswap.h>

uint16_t bswap_16(uint16_t x);
uint32_t bswap_32(uint32_t x);
uint64_t bswap_64(uint64_t x);

DESCRIPTION
These functions return a value in which the order of the bytes in their 2-, 4-, or 8-byte
arguments is reversed.

RETURN VALUE
These functions return the value of their argument with the bytes reversed.

ERRORS
These functions always succeed.

STANDARDS
GNU.

EXAMPLES
The program below swaps the bytes of the 8-byte integer supplied as its command-
line argument. The following shell session demonstrates the use of the program:

$./a.out 0x0123456789abcdef
0x123456789abcdef ==> 0xefcdab8967452301

Program source

#include <byteswap.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

uint64_t x;

if (argc != 2) {
fprintf(stderr, "Usage: %s <num>\n", argv[0]);
exit(EXIT_FAILURE);

}

x = strtoull(argv[1], NULL, 0);
printf("%#" PRIx64 " ==> %#" PRIx64 "\n", x, bswap_64(x));

exit(EXIT_SUCCESS);

Linux man-pages 6.13 2024-07-23 1402

bswap(3) Library Functions Manual bswap(3)

}

SEE ALSO
byteorder(3), endian(3)

Linux man-pages 6.13 2024-07-23 1403

btowc(3) Library Functions Manual btowc(3)

NAME
btowc - convert single byte to wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wint_t btowc(int c);

DESCRIPTION
The btowc() function converts c, interpreted as a multibyte sequence of length 1,
starting in the initial shift state, to a wide character and returns it. If c is EOF or not a
valid multibyte sequence of length 1, the btowc() function returns WEOF.

RETURN VALUE
The btowc() function returns the wide character converted from the single byte c. If c
is EOF or not a valid multibyte sequence of length 1, it returns WEOF.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebtowc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

NOTES
The behavior of btowc() depends on the LC_CTYPE category of the current locale.

This function should never be used. It does not work for encodings which have state,
and unnecessarily treats single bytes differently from multibyte sequences. Use either
mbtowc(3) or the thread-safe mbrtowc(3) instead.

SEE ALSO
mbrtowc(3), mbtowc(3), wctob(3)

Linux man-pages 6.13 2024-07-23 1404

btree(3) Library Functions Manual btree(3)

NAME
btree - btree database access method

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <db.h>

DESCRIPTION
Note well: This page documents interfaces provided up until glibc 2.1. Since glibc
2.2, glibc no longer provides these interfaces. Probably, you are looking for the APIs
provided by the libdb library instead.

The routine dbopen(3) is the library interface to database files. One of the supported
file formats is btree files. The general description of the database access methods is in
dbopen(3), this manual page describes only the btree-specific information.

The btree data structure is a sorted, balanced tree structure storing associated key/data
pairs.

The btree access-method-specific data structure provided to dbopen(3) is defined in
the <db.h> include file as follows:

typedef struct {
unsigned long flags;
unsigned int cachesize;
int maxkeypage;
int minkeypage;
unsigned int psize;
int (*compare)(const DBT *key1, const DBT *key2);
size_t (*prefix)(const DBT *key1, const DBT *key2);
int lorder;

} BTREEINFO;

The elements of this structure are as follows:

flags The flag value is specified by ORing any of the following values:

R_DUP
Permit duplicate keys in the tree, that is, permit insertion if the key to
be inserted already exists in the tree. The default behavior, as de-
scribed in dbopen(3), is to overwrite a matching key when inserting a
new key or to fail if the R_NOOVERWRITE flag is specified. The
R_DUP flag is overridden by the R_NOOVERWRITE flag, and if the
R_NOOVERWRITE flag is specified, attempts to insert duplicate
keys into the tree will fail.

If the database contains duplicate keys, the order of retrieval of
key/data pairs is undefined if the get routine is used, however, seq rou-
tine calls with the R_CURSOR flag set will always return the logical
"first" of any group of duplicate keys.

Linux man-pages 6.13 2024-07-23 1405

btree(3) Library Functions Manual btree(3)

cachesize
A suggested maximum size (in bytes) of the memory cache. This value is
only advisory, and the access method will allocate more memory rather than
fail. Since every search examines the root page of the tree, caching the most
recently used pages substantially improves access time. In addition, physical
writes are delayed as long as possible, so a moderate cache can reduce the
number of I/O operations significantly. Obviously, using a cache increases
(but only increases) the likelihood of corruption or lost data if the system
crashes while a tree is being modified. If cachesize is 0 (no size is specified),
a default cache is used.

maxkeypage
The maximum number of keys which will be stored on any single page. Not
currently implemented.

minkeypage
The minimum number of keys which will be stored on any single page. This
value is used to determine which keys will be stored on overflow pages, that is,
if a key or data item is longer than the pagesize divided by the minkeypage
value, it will be stored on overflow pages instead of in the page itself. If
minkeypage is 0 (no minimum number of keys is specified), a value of 2 is
used.

psize Page size is the size (in bytes) of the pages used for nodes in the tree. The
minimum page size is 512 bytes and the maximum page size is 64 KiB. If
psize is 0 (no page size is specified), a page size is chosen based on the under-
lying filesystem I/O block size.

compare
Compare is the key comparison function. It must return an integer less than,
equal to, or greater than zero if the first key argument is considered to be re-
spectively less than, equal to, or greater than the second key argument. The
same comparison function must be used on a given tree every time it is
opened. If compare is NULL (no comparison function is specified), the keys
are compared lexically, with shorter keys considered less than longer keys.

prefix Prefix is the prefix comparison function. If specified, this routine must return
the number of bytes of the second key argument which are necessary to deter-
mine that it is greater than the first key argument. If the keys are equal, the
key length should be returned. Note, the usefulness of this routine is very
data-dependent, but, in some data sets can produce significantly reduced tree
sizes and search times. If prefix is NULL (no prefix function is specified),
and no comparison function is specified, a default lexical comparison routine
is used. If prefix is NULL and a comparison routine is specified, no prefix
comparison is done.

lorder
The byte order for integers in the stored database metadata. The number
should represent the order as an integer; for example, big endian order would
be the number 4,321. If lorder is 0 (no order is specified), the current host or-
der is used.

If the file already exists (and the O_TRUNC flag is not specified), the values specified

Linux man-pages 6.13 2024-07-23 1406

btree(3) Library Functions Manual btree(3)

for the arguments flags, lorder, and psize are ignored in favor of the values used
when the tree was created.

Forward sequential scans of a tree are from the least key to the greatest.

Space freed up by deleting key/data pairs from the tree is never reclaimed, although it
is normally made available for reuse. This means that the btree storage structure is
grow-only. The only solutions are to avoid excessive deletions, or to create a fresh
tree periodically from a scan of an existing one.

Searches, insertions, and deletions in a btree will all complete in O lg base N where
base is the average fill factor. Often, inserting ordered data into btrees results in a low
fill factor. This implementation has been modified to make ordered insertion the best
case, resulting in a much better than normal page fill factor.

ERRORS
The btree access method routines may fail and set errno for any of the errors specified
for the library routine dbopen(3).

BUGS
Only big and little endian byte order is supported.

SEE ALSO
dbopen(3), hash(3), mpool(3), recno(3)

The Ubiquitous B-tree, Douglas Comer, ACM Comput. Surv. 11, 2 (June 1979),
121-138.

Prefix B-trees, Bayer and Unterauer, ACM Transactions on Database Systems, Vol. 2,
1 (March 1977), 11-26.

The Art of Computer Programming Vol. 3: Sorting and Searching, D.E. Knuth, 1968,
pp 471-480.

Linux man-pages 6.13 2024-07-23 1407

BYTEORDER(3) Library Functions Manual BYTEORDER(3)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);

uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
The htonl() function converts the unsigned integer hostlong from host byte order to
network byte order.

The htons() function converts the unsigned short integer hostshort from host byte or-
der to network byte order.

The ntohl() function converts the unsigned integer netlong from network byte order to
host byte order.

The ntohs() function converts the unsigned short integer netshort from network byte
order to host byte order.

On the i386 the host byte order is Least Significant Byte first, whereas the network
byte order, as used on the Internet, is Most Significant Byte first.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safehtonl(), htons(), ntohl(), ntohs()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
bswap(3), endian(3), gethostbyname(3), getservent(3)

Linux man-pages 6.13 2024-07-23 1408

bzero(3) Library Functions Manual bzero(3)

NAME
bzero, explicit_bzero - zero a byte string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

void bzero(void s[.n], size_t n);

#include <string.h>

void explicit_bzero(void s[.n], size_t n);

DESCRIPTION
The bzero() function erases the data in the n bytes of the memory starting at the loca-
tion pointed to by s, by writing zeros (bytes containing '\0') to that area.

The explicit_bzero() function performs the same task as bzero(). It differs from
bzero() in that it guarantees that compiler optimizations will not remove the erase op-
eration if the compiler deduces that the operation is "unnecessary".

RETURN VALUE
None.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebzero(), explicit_bzero()

STANDARDS
None.

HISTORY
explicit_bzero()

glibc 2.25.

The explicit_bzero() function is a nonstandard extension that is also present
on some of the BSDs. Some other implementations have a similar function,
such as memset_explicit() or memset_s().

bzero()
4.3BSD.

Marked as LEGACY in POSIX.1-2001. Removed in POSIX.1-2008.

NOTES
The explicit_bzero() function addresses a problem that security-conscious applica-
tions may run into when using bzero(): if the compiler can deduce that the location to
be zeroed will never again be touched by a correct program, then it may remove the
bzero() call altogether. This is a problem if the intent of the bzero() call was to erase
sensitive data (e.g., passwords) to prevent the possibility that the data was leaked by
an incorrect or compromised program. Calls to explicit_bzero() are never optimized
away by the compiler.

The explicit_bzero() function does not solve all problems associated with erasing
sensitive data:

Linux man-pages 6.13 2024-07-23 1409

bzero(3) Library Functions Manual bzero(3)

• The explicit_bzero() function does not guarantee that sensitive data is completely
erased from memory. (The same is true of bzero().) For example, there may be
copies of the sensitive data in a register and in "scratch" stack areas. The ex-
plicit_bzero() function is not aware of these copies, and can’t erase them.

• In some circumstances, explicit_bzero() can decrease security. If the compiler
determined that the variable containing the sensitive data could be optimized to be
stored in a register (because it is small enough to fit in a register, and no operation
other than the explicit_bzero() call would need to take the address of the vari-
able), then the explicit_bzero() call will force the data to be copied from the regis-
ter to a location in RAM that is then immediately erased (while the copy in the
register remains unaffected). The problem here is that data in RAM is more likely
to be exposed by a bug than data in a register, and thus the explicit_bzero() call
creates a brief time window where the sensitive data is more vulnerable than it
would otherwise have been if no attempt had been made to erase the data.

Note that declaring the sensitive variable with the volatile qualifier does not eliminate
the above problems. Indeed, it will make them worse, since, for example, it may force
a variable that would otherwise have been optimized into a register to instead be
maintained in (more vulnerable) RAM for its entire lifetime.

Notwithstanding the above details, for security-conscious applications, using ex-
plicit_bzero() is generally preferable to not using it. The developers of ex-
plicit_bzero() anticipate that future compilers will recognize calls to explicit_bzero()
and take steps to ensure that all copies of the sensitive data are erased, including
copies in registers or in "scratch" stack areas.

SEE ALSO
bstring(3), memset(3), swab(3)

Linux man-pages 6.13 2024-07-23 1410

cabs(3) Library Functions Manual cabs(3)

NAME
cabs, cabsf, cabsl - absolute value of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

DESCRIPTION
These functions return the absolute value of the complex number z. The result is a
real number.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecabs(), cabsf(), cabsl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

NOTES
The function is actually an alias for hypot(a, b) (or, equivalently, sqrt(a*a + b*b)).

SEE ALSO
abs(3), cimag(3), hypot(3), complex(7)

Linux man-pages 6.13 2024-07-23 1411

cacos(3) Library Functions Manual cacos(3)

NAME
cacos, cacosf, cacosl - complex arc cosine

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

DESCRIPTION
These functions calculate the complex arc cosine of z. If y = cacos(z), then
z = ccos(y). The real part of y is chosen in the interval [0,pi].

One has:

cacos(z) = -i * clog(z + i * csqrt(1 - z * z))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecacos(), cacosf(), cacosl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

EXAMPLES
/* Link with "-lm" */

#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

double complex z, c, f;
double complex i = I;

if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);

}

z = atof(argv[1]) + atof(argv[2]) * I;

c = cacos(z);

Linux man-pages 6.13 2024-07-23 1412

cacos(3) Library Functions Manual cacos(3)

printf("cacos() = %6.3f %6.3f*i\n", creal(c), cimag(c));

f = -i * clog(z + i * csqrt(1 - z * z));

printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

exit(EXIT_SUCCESS);
}

SEE ALSO
ccos(3), clog(3), complex(7)

Linux man-pages 6.13 2024-07-23 1413

cacosh(3) Library Functions Manual cacosh(3)

NAME
cacosh, cacoshf, cacoshl - complex arc hyperbolic cosine

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

DESCRIPTION
These functions calculate the complex arc hyperbolic cosine of z. If y = cacosh(z),
then z = ccosh(y). The imaginary part of y is chosen in the interval [-pi,pi]. The real
part of y is chosen nonnegative.

One has:

cacosh(z) = 2 * clog(csqrt((z + 1) / 2) + csqrt((z - 1) / 2))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecacosh(), cacoshf(), cacoshl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001. glibc 2.1.

EXAMPLES
/* Link with "-lm" */

#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

double complex z, c, f;

if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);

}

z = atof(argv[1]) + atof(argv[2]) * I;

c = cacosh(z);

Linux man-pages 6.13 2024-07-23 1414

cacosh(3) Library Functions Manual cacosh(3)

printf("cacosh() = %6.3f %6.3f*i\n", creal(c), cimag(c));

f = 2 * clog(csqrt((z + 1)/2) + csqrt((z - 1)/2));
printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

exit(EXIT_SUCCESS);
}

SEE ALSO
acosh(3), cabs(3), ccosh(3), cimag(3), complex(7)

Linux man-pages 6.13 2024-07-23 1415

canonicalize_file_name(3) Library Functions Manual canonicalize_file_name(3)

NAME
canonicalize_file_name - return the canonicalized absolute pathname

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdlib.h>

char *canonicalize_file_name(const char *path);

DESCRIPTION
The canonicalize_file_name() function returns a null-terminated string containing the
canonicalized absolute pathname corresponding to path. In the returned string, sym-
bolic links are resolved, as are . and .. pathname components. Consecutive slash (/)
characters are replaced by a single slash.

The returned string is dynamically allocated by canonicalize_file_name() and the
caller should deallocate it with free(3) when it is no longer required.

The call canonicalize_file_name(path) is equivalent to the call:

realpath(path, NULL);

RETURN VALUE
On success, canonicalize_file_name() returns a null-terminated string. On error (e.g.,
a pathname component is unreadable or does not exist), canonicalize_file_name() re-
turns NULL and sets errno to indicate the error.

ERRORS
See realpath(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecanonicalize_file_name()

STANDARDS
GNU.

SEE ALSO
readlink(2), realpath(3)

Linux man-pages 6.13 2024-07-23 1416

carg(3) Library Functions Manual carg(3)

NAME
carg, cargf, cargl - calculate the complex argument

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

DESCRIPTION
These functions calculate the complex argument (also called phase angle) of z, with a
branch cut along the negative real axis.

A complex number can be described by two real coordinates. One may use rectangu-
lar coordinates and gets

z = x + I * y

where x = creal(z) and y = cimag(z).

Or one may use polar coordinates and gets

z = r * cexp(I * a)

where r = cabs(z) is the "radius", the "modulus", the absolute value of z, and
a = carg(z) is the "phase angle", the argument of z.

One has:

tan(carg(z)) = cimag(z) / creal(z)

RETURN VALUE
The return value is in the range of [-pi,pi].

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecarg(), cargf(), cargl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), complex(7)

Linux man-pages 6.13 2024-07-23 1417

casin(3) Library Functions Manual casin(3)

NAME
casin, casinf, casinl - complex arc sine

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

DESCRIPTION
These functions calculate the complex arc sine of z. If y = casin(z), then z = csin(y).
The real part of y is chosen in the interval [-pi/2,pi/2].

One has:

casin(z) = -i clog(iz + csqrt(1 - z * z))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecasin(), casinf(), casinl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
clog(3), csin(3), complex(7)

Linux man-pages 6.13 2024-07-23 1418

casinh(3) Library Functions Manual casinh(3)

NAME
casinh, casinhf, casinhl - complex arc sine hyperbolic

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

DESCRIPTION
These functions calculate the complex arc hyperbolic sine of z. If y = casinh(z), then
z = csinh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].

One has:

casinh(z) = clog(z + csqrt(z * z + 1))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecasinh(), casinhf(), casinhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
asinh(3), cabs(3), cimag(3), csinh(3), complex(7)

Linux man-pages 6.13 2024-07-23 1419

catan(3) Library Functions Manual catan(3)

NAME
catan, catanf, catanl - complex arc tangents

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

DESCRIPTION
These functions calculate the complex arc tangent of z. If y = catan(z), then
z = ctan(y). The real part of y is chosen in the interval [-pi/2, pi/2].

One has:

catan(z) = (clog(1 + i * z) - clog(1 - i * z)) / (2 * i)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecatan(), catanf(), catanl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

EXAMPLES
/* Link with "-lm" */

#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

double complex z, c, f;
double complex i = I;

if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);

}

z = atof(argv[1]) + atof(argv[2]) * I;

c = catan(z);

Linux man-pages 6.13 2024-07-23 1420

catan(3) Library Functions Manual catan(3)

printf("catan() = %6.3f %6.3f*i\n", creal(c), cimag(c));

f = (clog(1 + i * z) - clog(1 - i * z)) / (2 * i);
printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

exit(EXIT_SUCCESS);
}

SEE ALSO
ccos(3), clog(3), ctan(3), complex(7)

Linux man-pages 6.13 2024-07-23 1421

catanh(3) Library Functions Manual catanh(3)

NAME
catanh, catanhf, catanhl - complex arc tangents hyperbolic

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

DESCRIPTION
These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z),
then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].

One has:

catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecatanh(), catanhf(), catanhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

EXAMPLES
/* Link with "-lm" */

#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

double complex z, c, f;

if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);

}

z = atof(argv[1]) + atof(argv[2]) * I;

c = catanh(z);
printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));

Linux man-pages 6.13 2024-07-23 1422

catanh(3) Library Functions Manual catanh(3)

f = 0.5 * (clog(1 + z) - clog(1 - z));
printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

exit(EXIT_SUCCESS);
}

SEE ALSO
atanh(3), cabs(3), cimag(3), ctanh(3), complex(7)

Linux man-pages 6.13 2024-07-23 1423

catgets(3) Library Functions Manual catgets(3)

NAME
catgets - get message from a message catalog

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <nl_types.h>

char *catgets(nl_catd catalog, int set_number, int message_number,
const char *message);

DESCRIPTION
catgets() reads the message message_number, in set set_number, from the message
catalog identified by catalog, where catalog is a catalog descriptor returned from an
earlier call to catopen(3). The fourth argument, message, points to a default message
string which will be returned by catgets() if the identified message catalog is not cur-
rently available. The message-text is contained in an internal buffer area and should
be copied by the application if it is to be saved or modified. The return string is al-
ways terminated with a null byte ('\0').

RETURN VALUE
On success, catgets() returns a pointer to an internal buffer area containing the null-
terminated message string. On failure, catgets() returns the value message.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecatgets()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

The catgets() function is available only in libc.so.4.4.4c and above.

The Jan 1987 X/Open Portability Guide specifies a more subtle error return: message
is returned if the message catalog specified by catalog is not available, while an
empty string is returned when the message catalog is available but does not contain
the specified message. These two possible error returns seem to be discarded in
SUSv2 in favor of always returning message.

SEE ALSO
catopen(3), setlocale(3)

Linux man-pages 6.13 2024-07-23 1424

catopen(3) Library Functions Manual catopen(3)

NAME
catopen, catclose - open/close a message catalog

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <nl_types.h>

nl_catd catopen(const char *name, int flag);
int catclose(nl_catd catalog);

DESCRIPTION
The function catopen() opens a message catalog and returns a catalog descriptor. The
descriptor remains valid until catclose() or execve(2). If a file descriptor is used to
implement catalog descriptors, then the FD_CLOEXEC flag will be set.

The argument name specifies the name of the message catalog to be opened. If name
specifies an absolute path (i.e., contains a '/'), then name specifies a pathname for the
message catalog. Otherwise, the environment variable NLSPATH is used with name
substituted for %N (see locale(7)). It is unspecified whether NLSPATH will be used
when the process has root privileges. If NLSPATH does not exist in the environment,
or if a message catalog cannot be opened in any of the paths specified by it, then an
implementation defined path is used. This latter default path may depend on the
LC_MESSAGES locale setting when the flag argument is NL_CAT_LOCALE and
on the LANG environment variable when the flag argument is 0. Changing the
LC_MESSAGES part of the locale may invalidate open catalog descriptors.

The flag argument to catopen() is used to indicate the source for the language to use.
If it is set to NL_CAT_LOCALE, then it will use the current locale setting for
LC_MESSAGES. Otherwise, it will use the LANG environment variable.

The function catclose() closes the message catalog identified by catalog. It invali-
dates any subsequent references to the message catalog defined by catalog.

RETURN VALUE
The function catopen() returns a message catalog descriptor of type nl_catd on suc-
cess. On failure, it returns (nl_catd) -1 and sets errno to indicate the error. The pos-
sible error values include all possible values for the open(2) call.

The function catclose() returns 0 on success, or -1 on failure.

ENVIRONMENT
LC_MESSAGES

May be the source of the LC_MESSAGES locale setting, and thus determine
the language to use if flag is set to NL_CAT_LOCALE.

LANG
The language to use if flag is 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1425

catopen(3) Library Functions Manual catopen(3)

Interface Attribute Value
Thread safety MT-Safe envcatopen()
Thread safety MT-Safecatclose()

VERSIONS
The above is the POSIX.1 description. The glibc value for NL_CAT_LOCALE is 1.
The default path varies, but usually looks at a number of places below /usr/share/lo-
cale.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
catgets(3), setlocale(3)

Linux man-pages 6.13 2024-07-23 1426

cbrt(3) Library Functions Manual cbrt(3)

NAME
cbrt, cbrtf, cbrtl - cube root function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

cbrt():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

cbrtf(), cbrtl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the (real) cube root of x. This function cannot fail; every rep-
resentable real value has a real cube root, and rounding it to a representable value
never causes overflow nor underflow.

RETURN VALUE
These functions return the cube root of x.

If x is +0, -0, positive infinity, negative infinity, or NaN, x is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecbrt(), cbrtf(), cbrtl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
pow(3), sqrt(3)

Linux man-pages 6.13 2024-07-23 1427

ccos(3) Library Functions Manual ccos(3)

NAME
ccos, ccosf, ccosl - complex cosine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

DESCRIPTION
These functions calculate the complex cosine of z.

The complex cosine function is defined as:

ccos(z) = (exp(i * z) + exp(-i * z)) / 2

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeccos(), ccosf(), ccosl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cacos(3), csin(3), ctan(3), complex(7)

Linux man-pages 6.13 2024-07-23 1428

ccosh(3) Library Functions Manual ccosh(3)

NAME
ccosh, ccoshf, ccoshl - complex hyperbolic cosine

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

DESCRIPTION
These functions calculate the complex hyperbolic cosine of z.

The complex hyperbolic cosine function is defined as:

ccosh(z) = (exp(z)+exp(-z))/2

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cacosh(3), csinh(3), ctanh(3), complex(7)

Linux man-pages 6.13 2024-07-23 1429

ceil(3) Library Functions Manual ceil(3)

NAME
ceil, ceilf, ceill - ceiling function: smallest integral value not less than argument

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double ceil(double x);
float ceilf(float x);
long double ceill(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ceilf(), ceill():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the smallest integral value that is not less than x.

For example, ceil(0.5) is 1.0, and ceil(-0.5) is 0.0.

RETURN VALUE
These functions return the ceiling of x.

If x is integral, +0, -0, NaN, or infinite, x itself is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeceil(), ceilf(), ceill()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SUSv2 and POSIX.1-2001 contain text about overflow (which might set errno to
ERANGE, or raise an FE_OVERFLOW exception). In practice, the result cannot
overflow on any current machine, so this error-handling stuff was just nonsense.
(More precisely, overflow can happen only when the maximum value of the exponent
is smaller than the number of mantissa bits. For the IEEE-754 standard 32-bit and
64-bit floating-point numbers the maximum value of the exponent is 127 (respec-
tively, 1023), and the number of mantissa bits including the implicit bit is 24 (respec-
tively, 53).) This was removed in POSIX.1-2008.

The integral value returned by these functions may be too large to store in an integer
type (int, long, etc.). To avoid an overflow, which will produce undefined results, an
application should perform a range check on the returned value before assigning it to

Linux man-pages 6.13 2024-07-23 1430

ceil(3) Library Functions Manual ceil(3)

an integer type.

SEE ALSO
floor(3), lrint(3), nearbyint(3), rint(3), round(3), trunc(3)

Linux man-pages 6.13 2024-07-23 1431

cexp(3) Library Functions Manual cexp(3)

NAME
cexp, cexpf, cexpl - complex exponential function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

DESCRIPTION
These functions calculate e (2.71828..., the base of natural logarithms) raised to the
power of z.

One has:

cexp(I * z) = ccos(z) + I * csin(z)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecexp(), cexpf(), cexpl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cexp2(3), clog(3), cpow(3), complex(7)

Linux man-pages 6.13 2024-07-23 1432

cexp2(3) Library Functions Manual cexp2(3)

NAME
cexp2, cexp2f, cexp2l - base-2 exponent of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cexp2(double complex z);
float complex cexp2f(float complex z);
long double complex cexp2l(long double complex z);

DESCRIPTION
The function returns 2 raised to the power of z.

STANDARDS
These function names are reserved for future use in C99.

As at glibc 2.31, these functions are not provided in glibc.

SEE ALSO
cabs(3), cexp(3), clog10(3), complex(7)

Linux man-pages 6.13 2024-07-23 1433

cfree(3) Library Functions Manual cfree(3)

NAME
cfree - free allocated memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

/* In SunOS 4 */
int cfree(void *ptr);

/* In glibc or FreeBSD libcompat */
void cfree(void *ptr);

/* In SCO OpenServer */
void cfree(char ptr[.size * .n], unsigned int n, unsigned int size);

/* In Solaris watchmalloc.so.1 */
void cfree(void ptr[.size * .n], size_t n, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

cfree():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
This function should never be used. Use free(3) instead. Starting with glibc 2.26, it
has been removed from glibc.

1-arg cfree
In glibc, the function cfree() is a synonym for free(3), "added for compatibility with
SunOS".

Other systems have other functions with this name. The declaration is sometimes in
<stdlib.h> and sometimes in <malloc.h>.

3-arg cfree
Some SCO and Solaris versions have malloc libraries with a 3-argument cfree(), ap-
parently as an analog to calloc(3).

If you need it while porting something, add

#define cfree(p, n, s) free((p))

to your file.

A frequently asked question is "Can I use free(3) to free memory allocated with cal-
loc(3), or do I need cfree()?" Answer: use free(3).

An SCO manual writes: "The cfree routine is provided for compliance to the iBCSe2
standard and simply calls free. The n and size arguments to cfree are not used."

RETURN VALUE
The SunOS version of cfree() (which is a synonym for free(3)) returns 1 on success
and 0 on failure. In case of error, errno is set to EINVAL: the value of ptr was not a

Linux man-pages 6.13 2024-11-17 1434

cfree(3) Library Functions Manual cfree(3)

pointer to a block previously allocated by one of the routines in the malloc(3) family.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe /* In glibc */cfree()

VERSIONS
The 3-argument version of cfree() as used by SCO conforms to the iBCSe2 standard:
Intel386 Binary Compatibility Specification, Edition 2.

STANDARDS
None.

HISTORY
Removed in glibc 2.26.

SEE ALSO
malloc(3)

Linux man-pages 6.13 2024-11-17 1435

cimag(3) Library Functions Manual cimag(3)

NAME
cimag, cimagf, cimagl - get imaginary part of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

DESCRIPTION
These functions return the imaginary part of the complex number z.

One has:

z = creal(z) + I * cimag(z)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecimag(), cimagf(), cimagl()

VERSIONS
GCC also supports __imag__. That is a GNU extension.

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), creal(3), complex(7)

Linux man-pages 6.13 2024-07-23 1436

CIRCLEQ(3) Library Functions Manual CIRCLEQ(3)

NAME
CIRCLEQ_EMPTY, CIRCLEQ_ENTRY, CIRCLEQ_FIRST, CIRCLEQ_FOREACH,
CIRCLEQ_FOREACH_REVERSE, CIRCLEQ_HEAD, CIRCLEQ_HEAD_INI-
TIALIZER, CIRCLEQ_INIT, CIRCLEQ_INSERT_AFTER, CIRCLEQ_IN-
SERT_BEFORE, CIRCLEQ_INSERT_HEAD, CIRCLEQ_INSERT_TAIL, CIR-
CLEQ_LAST, CIRCLEQ_LOOP_NEXT, CIRCLEQ_LOOP_PREV, CIR-
CLEQ_NEXT, CIRCLEQ_PREV, CIRCLEQ_REMOVE - implementation of a dou-
bly linked circular queue

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/queue.h>

CIRCLEQ_ENTRY(TYPE);

CIRCLEQ_HEAD(HEADNAME, TYPE);
CIRCLEQ_HEAD CIRCLEQ_HEAD_INITIALIZER(CIRCLEQ_HEAD head);
void CIRCLEQ_INIT(CIRCLEQ_HEAD *head);

int CIRCLEQ_EMPTY(CIRCLEQ_HEAD *head);

void CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD *head ,
struct TYPE *elm, CIRCLEQ_ENTRY NAME);

void CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD *head ,
struct TYPE *elm, CIRCLEQ_ENTRY NAME);

void CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD *head , struct TYPE *listelm,
struct TYPE *elm, CIRCLEQ_ENTRY NAME);

void CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD *head , struct TYPE *listelm,
struct TYPE *elm, CIRCLEQ_ENTRY NAME);

struct TYPE *CIRCLEQ_FIRST(CIRCLEQ_HEAD *head);
struct TYPE *CIRCLEQ_LAST(CIRCLEQ_HEAD *head);
struct TYPE *CIRCLEQ_PREV(struct TYPE *elm, CIRCLEQ_ENTRY NAME);
struct TYPE *CIRCLEQ_NEXT(struct TYPE *elm, CIRCLEQ_ENTRY NAME);
struct TYPE *CIRCLEQ_LOOP_PREV(CIRCLEQ_HEAD *head ,

struct TYPE *elm, CIRCLEQ_ENTRY NAME);
struct TYPE *CIRCLEQ_LOOP_NEXT(CIRCLEQ_HEAD *head ,

struct TYPE *elm, CIRCLEQ_ENTRY NAME);

CIRCLEQ_FOREACH(struct TYPE *var, CIRCLEQ_HEAD *head ,
CIRCLEQ_ENTRY NAME);

CIRCLEQ_FOREACH_REVERSE(struct TYPE *var, CIRCLEQ_HEAD *head ,
CIRCLEQ_ENTRY NAME);

void CIRCLEQ_REMOVE(CIRCLEQ_HEAD *head , struct TYPE *elm,
CIRCLEQ_ENTRY NAME);

DESCRIPTION
These macros define and operate on doubly linked circular queues.

In the macro definitions, TYPE is the name of a user-defined structure, that must con-
tain a field of type CIRCLEQ_ENTRY , named NAME. The argument HEADNAME is
the name of a user-defined structure that must be declared using the macro

Linux man-pages 6.13 2024-07-23 1437

CIRCLEQ(3) Library Functions Manual CIRCLEQ(3)

CIRCLEQ_HEAD().

Creation
A circular queue is headed by a structure defined by the CIRCLEQ_HEAD() macro.
This structure contains a pair of pointers, one to the first element in the queue and the
other to the last element in the queue. The elements are doubly linked so that an arbi-
trary element can be removed without traversing the queue. New elements can be
added to the queue after an existing element, before an existing element, at the head of
the queue, or at the end of the queue. A CIRCLEQ_HEAD structure is declared as
follows:

CIRCLEQ_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type
of the elements to be linked into the queue. A pointer to the head of the queue can
later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

CIRCLEQ_ENTRY() declares a structure that connects the elements in the queue.

CIRCLEQ_HEAD_INITIALIZER() evaluates to an initializer for the queue head .

CIRCLEQ_INIT() initializes the queue referenced by head .

CIRCLEQ_EMPTY() evaluates to true if there are no items on the queue.

Insertion
CIRCLEQ_INSERT_HEAD() inserts the new element elm at the head of the queue.

CIRCLEQ_INSERT_TAIL() inserts the new element elm at the end of the queue.

CIRCLEQ_INSERT_BEFORE() inserts the new element elm before the element
listelm.

CIRCLEQ_INSERT_AFTER() inserts the new element elm after the element lis-
telm.

Traversal
CIRCLEQ_FIRST() returns the first item on the queue.

CIRCLEQ_LAST() returns the last item on the queue.

CIRCLEQ_PREV() returns the previous item on the queue, or &head if this item is
the first one.

CIRCLEQ_NEXT() returns the next item on the queue, or &head if this item is the
last one.

CIRCLEQ_LOOP_PREV() returns the previous item on the queue. If elm is the
first element on the queue, the last element is returned.

CIRCLEQ_LOOP_NEXT() returns the next item on the queue. If elm is the last el-
ement on the queue, the first element is returned.

CIRCLEQ_FOREACH() traverses the queue referenced by head in the forward di-
rection, assigning each element in turn to var. var is set to &head if the loop com-
pletes normally, or if there were no elements.

Linux man-pages 6.13 2024-07-23 1438

CIRCLEQ(3) Library Functions Manual CIRCLEQ(3)

CIRCLEQ_FOREACH_REVERSE() traverses the queue referenced by head in the
reverse direction, assigning each element in turn to var.

Removal
CIRCLEQ_REMOVE() removes the element elm from the queue.

RETURN VALUE
CIRCLEQ_EMPTY() returns nonzero if the queue is empty, and zero if the queue
contains at least one entry.

CIRCLEQ_FIRST(), CIRCLEQ_LAST(), CIRCLEQ_LOOP_PREV(), and CIR-
CLEQ_LOOP_NEXT() return a pointer to the first, last, previous, or next TYPE
structure, respectively.

CIRCLEQ_PREV(), and CIRCLEQ_NEXT() are similar to their CIR-
CLEQ_LOOP_*() counterparts, except that if the argument is the first or last ele-
ment, respectively, they return &head .

CIRCLEQ_HEAD_INITIALIZER() returns an initializer that can be assigned to
the queue head .

STANDARDS
BSD.

BUGS
CIRCLEQ_FOREACH() and CIRCLEQ_FOREACH_REVERSE() don’t allow
var to be removed or freed within the loop, as it would interfere with the traversal.
CIRCLEQ_FOREACH_SAFE() and CIRCLEQ_FOREACH_RE-
VERSE_SAFE(), which are present on the BSDs but are not present in glibc, fix this
limitation by allowing var to safely be removed from the list and freed from within
the loop without interfering with the traversal.

EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>

struct entry {
int data;
CIRCLEQ_ENTRY(entry) entries; /* Queue */

};

CIRCLEQ_HEAD(circlehead, entry);

int
main(void)
{

struct entry *n1, *n2, *n3, *np;
struct circlehead head; /* Queue head */
int i;

CIRCLEQ_INIT(&head); /* Initialize the queue */

Linux man-pages 6.13 2024-07-23 1439

CIRCLEQ(3) Library Functions Manual CIRCLEQ(3)

n1 = malloc(sizeof(struct entry)); /* Insert at the head */
CIRCLEQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail */
CIRCLEQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after */
CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before */
CIRCLEQ_INSERT_BEFORE(&head, n2, n3, entries);

CIRCLEQ_REMOVE(&head, n2, entries); /* Deletion */
free(n2);

/* Forward traversal */
i = 0;
CIRCLEQ_FOREACH(np, &head, entries)

np->data = i++;
/* Reverse traversal */

CIRCLEQ_FOREACH_REVERSE(np, &head, entries)
printf("%i\n", np->data);

/* Queue deletion */
n1 = CIRCLEQ_FIRST(&head);
while (n1 != (void *)&head) {

n2 = CIRCLEQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
CIRCLEQ_INIT(&head);

exit(EXIT_SUCCESS);
}

SEE ALSO
insque(3), queue(7)

Linux man-pages 6.13 2024-07-23 1440

CIRCLEQ(3) Library Functions Manual CIRCLEQ(3)

Linux man-pages 6.13 2024-07-23 1441

clearenv(3) Library Functions Manual clearenv(3)

NAME
clearenv - clear the environment

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int clearenv(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clearenv():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The clearenv() function clears the environment of all name-value pairs and sets the
value of the external variable environ to NULL. After this call, new variables can be
added to the environment using putenv(3) and setenv(3).

RETURN VALUE
The clearenv() function returns zero on success, and a nonzero value on failure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe const:envclearenv()

STANDARDS
putenv()

POSIX.1-2008.

clearenv()
None.

HISTORY
putenv()

glibc 2.0. POSIX.1-2001.

clearenv()
glibc 2.0.

Various UNIX variants (DG/UX, HP-UX, QNX, ...). POSIX.9 (bindings for FOR-
TRAN77). POSIX.1-1996 did not accept clearenv() and putenv(3), but changed its
mind and scheduled these functions for some later issue of this standard (see
§B.4.6.1). However, POSIX.1-2001 adds only putenv(3), and rejected clearenv().

NOTES
On systems where clearenv() is unavailable, the assignment

environ = NULL;

will probably do.

The clearenv() function may be useful in security-conscious applications that want to
precisely control the environment that is passed to programs executed using exec(3).
The application would do this by first clearing the environment and then adding select

Linux man-pages 6.13 2024-07-23 1442

clearenv(3) Library Functions Manual clearenv(3)

environment variables.

Note that the main effect of clearenv() is to adjust the value of the pointer environ(7);
this function does not erase the contents of the buffers containing the environment de-
finitions.

The DG/UX and Tru64 man pages write: If environ has been modified by anything
other than the putenv(3), getenv(3), or clearenv() functions, then clearenv() will re-
turn an error and the process environment will remain unchanged.

SEE ALSO
getenv(3), putenv(3), setenv(3), unsetenv(3), environ(7)

Linux man-pages 6.13 2024-07-23 1443

clock(3) Library Functions Manual clock(3)

NAME
clock - determine processor time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

clock_t clock(void);

DESCRIPTION
The clock() function returns an approximation of processor time used by the program.

RETURN VALUE
The value returned is the CPU time used so far as a clock_t; to get the number of sec-
onds used, divide by CLOCKS_PER_SEC. If the processor time used is not avail-
able or its value cannot be represented, the function returns the value (clock_t) -1.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclock()

VERSIONS
XSI requires that CLOCKS_PER_SEC equals 1000000 independent of the actual
resolution.

On several other implementations, the value returned by clock() also includes the
times of any children whose status has been collected via wait(2) (or another wait-
type call). Linux does not include the times of waited-for children in the value re-
turned by clock(). The times(2) function, which explicitly returns (separate) informa-
tion about the caller and its children, may be preferable.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

In glibc 2.17 and earlier, clock() was implemented on top of times(2). For improved
accuracy, since glibc 2.18, it is implemented on top of clock_gettime(2) (using the
CLOCK_PROCESS_CPUTIME_ID clock).

NOTES
The C standard allows for arbitrary values at the start of the program; subtract the
value returned from a call to clock() at the start of the program to get maximum porta-
bility.

Note that the time can wrap around. On a 32-bit system where CLOCKS_PER_SEC
equals 1000000 this function will return the same value approximately every 72 min-
utes.

SEE ALSO
clock_gettime(2), getrusage(2), times(2)

Linux man-pages 6.13 2024-07-23 1444

clock_getcpuclockid(3) Library Functions Manual clock_getcpuclockid(3)

NAME
clock_getcpuclockid - obtain ID of a process CPU-time clock

LIBRARY
Standard C library (libc, -lc), since glibc 2.17

Before glibc 2.17, Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int clock_getcpuclockid(pid_t pid , clockid_t *clockid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_getcpuclockid():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The clock_getcpuclockid() function obtains the ID of the CPU-time clock of the
process whose ID is pid , and returns it in the location pointed to by clockid . If pid is
zero, then the clock ID of the CPU-time clock of the calling process is returned.

RETURN VALUE
On success, clock_getcpuclockid() returns 0; on error, it returns one of the positive
error numbers listed in ERRORS.

ERRORS
ENOSYS

The kernel does not support obtaining the per-process CPU-time clock of an-
other process, and pid does not specify the calling process.

EPERM
The caller does not have permission to access the CPU-time clock of the
process specified by pid . (Specified in POSIX.1-2001; does not occur on
Linux unless the kernel does not support obtaining the per-process CPU-time
clock of another process.)

ESRCH
There is no process with the ID pid .

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclock_getcpuclockid()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

NOTES
Calling clock_gettime(2) with the clock ID obtained by a call to clock_getcpu-
clockid() with a pid of 0, is the same as using the clock ID
CLOCK_PROCESS_CPUTIME_ID.

Linux man-pages 6.13 2024-07-23 1445

clock_getcpuclockid(3) Library Functions Manual clock_getcpuclockid(3)

EXAMPLES
The example program below obtains the CPU-time clock ID of the process whose ID
is given on the command line, and then uses clock_gettime(2) to obtain the time on
that clock. An example run is the following:

$./a.out 1 # Show CPU clock of init process
CPU-time clock for PID 1 is 2.213466748 seconds

Program source

#define _XOPEN_SOURCE 600
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

clockid_t clockid;
struct timespec ts;

if (argc != 2) {
fprintf(stderr, "%s <process-ID>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (clock_getcpuclockid(atoi(argv[1]), &clockid) != 0) {
perror("clock_getcpuclockid");
exit(EXIT_FAILURE);

}

if (clock_gettime(clockid, &ts) == -1) {
perror("clock_gettime");
exit(EXIT_FAILURE);

}

printf("CPU-time clock for PID %s is %jd.%09ld seconds\n",
argv[1], (intmax_t) ts.tv_sec, ts.tv_nsec);

exit(EXIT_SUCCESS);
}

SEE ALSO
clock_getres(2), timer_create(2), pthread_getcpuclockid(3), time(7)

Linux man-pages 6.13 2024-07-23 1446

clog(3) Library Functions Manual clog(3)

NAME
clog, clogf, clogl - natural logarithm of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

DESCRIPTION
These functions calculate the complex natural logarithm of z, with a branch cut along
the negative real axis.

The logarithm clog() is the inverse function of the exponential cexp(3). Thus, if
y = clog(z), then z = cexp(y). The imaginary part of y is chosen in the interval
[-pi,pi].

One has:

clog(z) = log(cabs(z)) + I * carg(z)

Note that z close to zero will cause an overflow.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclog(), clogf(), clogl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cexp(3), clog10(3), clog2(3), complex(7)

Linux man-pages 6.13 2024-07-23 1447

clog2(3) Library Functions Manual clog2(3)

NAME
clog2, clog2f, clog2l - base-2 logarithm of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex clog2(double complex z);
float complex clog2f(float complex z);
long double complex clog2l(long double complex z);

DESCRIPTION
The call clog2(z) is equivalent to clog(z)/log(2).

The other functions perform the same task for float and long double.

Note that z close to zero will cause an overflow.

STANDARDS
None.

HISTORY
These function names are reserved for future use in C99.

Not yet in glibc, as at glibc 2.19.

SEE ALSO
cabs(3), cexp(3), clog(3), clog10(3), complex(7)

Linux man-pages 6.13 2024-07-23 1448

clog10(3) Library Functions Manual clog10(3)

NAME
clog10, clog10f, clog10l - base-10 logarithm of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <complex.h>

double complex clog10(double complex z);
float complex clog10f(float complex z);
long double complex clog10l(long double complex z);

DESCRIPTION
The call clog10(z) is equivalent to:

clog(z)/log(10)

or equally:

log10(cabs(c)) + I * carg(c) / log(10)

The other functions perform the same task for float and long double.

Note that z close to zero will cause an overflow.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclog10(), clog10f(), clog10l()

STANDARDS
GNU.

HISTORY
glibc 2.1.

The identifiers are reserved for future use in C99 and C11.

SEE ALSO
cabs(3), cexp(3), clog(3), clog2(3), complex(7)

Linux man-pages 6.13 2024-07-23 1449

closedir(3) Library Functions Manual closedir(3)

NAME
closedir - close a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

int closedir(DIR *dirp);

DESCRIPTION
The closedir() function closes the directory stream associated with dirp. A successful
call to closedir() also closes the underlying file descriptor associated with dirp. The
directory stream descriptor dirp is not available after this call.

RETURN VALUE
The closedir() function returns 0 on success. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
EBADF

Invalid directory stream descriptor dirp.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclosedir()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
close(2), opendir(3), readdir(3), rewinddir(3), scandir(3), seekdir(3), telldir(3)

Linux man-pages 6.13 2024-07-23 1450

CMSG(3) Library Functions Manual CMSG(3)

NAME
CMSG_ALIGN, CMSG_SPACE, CMSG_NXTHDR, CMSG_FIRSTHDR - access
ancillary data

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *msgh);
struct cmsghdr *CMSG_NXTHDR(struct msghdr *msgh,

struct cmsghdr *cmsg);
size_t CMSG_ALIGN(size_t length);
size_t CMSG_SPACE(size_t length);
size_t CMSG_LEN(size_t length);
unsigned char *CMSG_DATA(struct cmsghdr *cmsg);

DESCRIPTION
These macros are used to create and access control messages (also called ancillary
data) that are not a part of the socket payload. This control information may include
the interface the packet was received on, various rarely used header fields, an ex-
tended error description, a set of file descriptors, or UNIX credentials. For instance,
control messages can be used to send additional header fields such as IP options. An-
cillary data is sent by calling sendmsg(2) and received by calling recvmsg(2). See
their manual pages for more information.

Ancillary data is a sequence of cmsghdr structures with appended data. See the spe-
cific protocol man pages for the available control message types. The maximum an-
cillary buffer size allowed per socket can be set using /proc/sys/net/core/opt-
mem_max; see socket(7).

The cmsghdr structure is defined as follows:

struct cmsghdr {
size_t cmsg_len; /* Data byte count, including header

(type is socklen_t in POSIX) */
int cmsg_level; /* Originating protocol */
int cmsg_type; /* Protocol-specific type */

/* followed by
unsigned char cmsg_data[]; */

};

The sequence of cmsghdr structures should never be accessed directly. Instead, use
only the following macros:

CMSG_FIRSTHDR()
returns a pointer to the first cmsghdr in the ancillary data buffer associated
with the passed msghdr. It returns NULL if there isn’t enough space for a
cmsghdr in the buffer.

CMSG_NXTHDR()
returns the next valid cmsghdr after the passed cmsghdr. It returns NULL
when there isn’t enough space left in the buffer.

Linux man-pages 6.13 2024-07-23 1451

CMSG(3) Library Functions Manual CMSG(3)

When initializing a buffer that will contain a series of cmsghdr structures (e.g.,
to be sent with sendmsg(2)), that buffer should first be zero-initialized to en-
sure the correct operation of CMSG_NXTHDR().

CMSG_ALIGN(),
given a length, returns it including the required alignment. This is a constant
expression.

CMSG_SPACE()
returns the number of bytes an ancillary element with payload of the passed
data length occupies. This is a constant expression.

CMSG_DATA()
returns a pointer to the data portion of a cmsghdr. The pointer returned cannot
be assumed to be suitably aligned for accessing arbitrary payload data types.
Applications should not cast it to a pointer type matching the payload, but
should instead use memcpy(3) to copy data to or from a suitably declared ob-
ject.

CMSG_LEN()
returns the value to store in the cmsg_len member of the cmsghdr structure,
taking into account any necessary alignment. It takes the data length as an ar-
gument. This is a constant expression.

To create ancillary data, first initialize the msg_controllen member of the msghdr with
the length of the control message buffer. Use CMSG_FIRSTHDR() on the msghdr
to get the first control message and CMSG_NXTHDR() to get all subsequent ones.
In each control message, initialize cmsg_len (with CMSG_LEN ()), the other cmsghdr
header fields, and the data portion using CMSG_DATA(). Finally, the msg_con-
trollen field of the msghdr should be set to the sum of the CMSG_SPACE() of the
length of all control messages in the buffer. For more information on the msghdr, see
recvmsg(2).

VERSIONS
For portability, ancillary data should be accessed using only the macros described
here.

In Linux, CMSG_LEN(), CMSG_DATA(), and CMSG_ALIGN() are constant ex-
pressions (assuming their argument is constant), meaning that these values can be
used to declare the size of global variables. This may not be portable, however.

STANDARDS
CMSG_FIRSTHDR()
CMSG_NXTHDR()
CMSG_DATA()

POSIX.1-2008.

CMSG_SPACE()
CMSG_LEN()
CMSG_ALIGN()

Linux.

HISTORY
This ancillary data model conforms to the POSIX.1g draft, 4.4BSD-Lite, the IPv6 ad-
vanced API described in RFC 2292 and SUSv2.

Linux man-pages 6.13 2024-07-23 1452

CMSG(3) Library Functions Manual CMSG(3)

CMSG_SPACE() and CMSG_LEN() will be included in the next POSIX release (Is-
sue 8).

EXAMPLES
This code looks for the IP_TTL option in a received ancillary buffer:

struct msghdr msgh;
struct cmsghdr *cmsg;
int received_ttl;

/* Receive auxiliary data in msgh */

for (cmsg = CMSG_FIRSTHDR(&msgh); cmsg != NULL;
cmsg = CMSG_NXTHDR(&msgh, cmsg)) {

if (cmsg->cmsg_level == IPPROTO_IP
&& cmsg->cmsg_type == IP_TTL) {

memcpy(&receive_ttl, CMSG_DATA(cmsg), sizeof(received_ttl));
break;

}
}

if (cmsg == NULL) {
/* Error: IP_TTL not enabled or small buffer or I/O error */

}

The code below passes an array of file descriptors over a UNIX domain socket using
SCM_RIGHTS:

struct msghdr msg = { 0 };
struct cmsghdr *cmsg;
int myfds[NUM_FD]; /* Contains the file descriptors to pass */
char iobuf[1];
struct iovec io = {

.iov_base = iobuf,

.iov_len = sizeof(iobuf)
};
union { /* Ancillary data buffer, wrapped in a union

in order to ensure it is suitably aligned */
char buf[CMSG_SPACE(sizeof(myfds))];
struct cmsghdr align;

} u;

msg.msg_iov = &io;
msg.msg_iovlen = 1;
msg.msg_control = u.buf;
msg.msg_controllen = sizeof(u.buf);
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(myfds));
memcpy(CMSG_DATA(cmsg), myfds, sizeof(myfds));

Linux man-pages 6.13 2024-07-23 1453

CMSG(3) Library Functions Manual CMSG(3)

For a complete code example that shows passing of file descriptors over a UNIX do-
main socket, see seccomp_unotify(2).

SEE ALSO
recvmsg(2), sendmsg(2)

RFC 2292

Linux man-pages 6.13 2024-07-23 1454

confstr(3) Library Functions Manual confstr(3)

NAME
confstr - get configuration dependent string variables

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

size_t confstr(int name, char buf [.size], size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

confstr():
_POSIX_C_SOURCE >= 2 || _XOPEN_SOURCE

DESCRIPTION
confstr() gets the value of configuration-dependent string variables.

The name argument is the system variable to be queried. The following variables are
supported:

_CS_GNU_LIBC_VERSION (GNU C library only; since glibc 2.3.2)
A string which identifies the GNU C library version on this system (e.g.,
"glibc 2.3.4").

_CS_GNU_LIBPTHREAD_VERSION (GNU C library only; since glibc 2.3.2)
A string which identifies the POSIX implementation supplied by this C library
(e.g., "NPTL 2.3.4" or "linuxthreads-0.10").

_CS_PATH
A value for the PATH variable which indicates where all the POSIX.2 stan-
dard utilities can be found.

If buf is not NULL and size is not zero, confstr() copies the value of the string to buf
truncated to size - 1 bytes if necessary, with a null byte ('\0') as terminator. This can
be detected by comparing the return value of confstr() against size.

If size is zero and buf is NULL, confstr() just returns the value as defined below.

RETURN VALUE
If name is a valid configuration variable, confstr() returns the number of bytes (in-
cluding the terminating null byte) that would be required to hold the entire value of
that variable. This value may be greater than size, which means that the value in buf
is truncated.

If name is a valid configuration variable, but that variable does not have a value, then
confstr() returns 0. If name does not correspond to a valid configuration variable,
confstr() returns 0, and errno is set to EINVAL.

ERRORS
EINVAL

The value of name is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1455

confstr(3) Library Functions Manual confstr(3)

Interface Attribute Value
Thread safety MT-Safeconfstr()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The following code fragment determines the path where to find the POSIX.2 system
utilities:

char *pathbuf;
size_t n;

n = confstr(_CS_PATH, NULL, (size_t) 0);
pathbuf = malloc(n);
if (pathbuf == NULL)

abort();
confstr(_CS_PATH, pathbuf, n);

SEE ALSO
getconf (1), sh(1), exec(3), fpathconf(3), pathconf(3), sysconf(3), system(3)

Linux man-pages 6.13 2024-07-23 1456

conj(3) Library Functions Manual conj(3)

NAME
conj, conjf, conjl - calculate the complex conjugate

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

DESCRIPTION
These functions return the complex conjugate value of z. That is the value obtained
by changing the sign of the imaginary part.

One has:

cabs(z) = csqrt(z * conj(z))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeconj(), conjf(), conjl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), csqrt(3), complex(7)

Linux man-pages 6.13 2024-07-23 1457

copysign(3) Library Functions Manual copysign(3)

NAME
copysign, copysignf, copysignl - copy sign of a number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

copysign(), copysignf(), copysignl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return a value whose absolute value matches that of x, but whose sign
bit matches that of y.

For example, copysign(42.0, -1.0) and copysign(-42.0, -1.0) both return -42.0.

RETURN VALUE
On success, these functions return a value whose magnitude is taken from x and
whose sign is taken from y.

If x is a NaN, a NaN with the sign bit of y is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecopysign(), copysignf(), copysignl()

VERSIONS
On architectures where the floating-point formats are not IEEE 754 compliant, these
functions may treat a negative zero as positive.

STANDARDS
C11, POSIX.1-2008.

This function is defined in IEC 559 (and the appendix with recommended functions in
IEEE 754/IEEE 854).

HISTORY
C99, POSIX.1-2001, 4.3BSD.

SEE ALSO
signbit(3)

Linux man-pages 6.13 2024-07-23 1458

cos(3) Library Functions Manual cos(3)

NAME
cos, cosf, cosl - cosine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double cos(double x);
float cosf(float x);
long double cosl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

cosf(), cosl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the cosine of x, where x is given in radians.

RETURN VALUE
On success, these functions return the cosine of x.

If x is a NaN, a NaN is returned.

If x is positive infinity or negative infinity, a domain error occurs, and a NaN is re-
turned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecos(), cosf(), cosl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

BUGS
Before glibc 2.10, the glibc implementation did not set errno to EDOM when a do-
main error occurred.

Linux man-pages 6.13 2024-07-23 1459

cos(3) Library Functions Manual cos(3)

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), ccos(3), sin(3), sincos(3), tan(3)

Linux man-pages 6.13 2024-07-23 1460

cosh(3) Library Functions Manual cosh(3)

NAME
cosh, coshf, coshl - hyperbolic cosine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double cosh(double x);
float coshf(float x);
long double coshl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

coshf(), coshl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the hyperbolic cosine of x, which is defined mathematically as:

cosh(x) = (exp(x) + exp(-x)) / 2

RETURN VALUE
On success, these functions return the hyperbolic cosine of x.

If x is a NaN, a NaN is returned.

If x is +0 or -0, 1 is returned.

If x is positive infinity or negative infinity, positive infinity is returned.

If the result overflows, a range error occurs, and the functions return +HUGE_VAL,
+HUGE_VALF, or +HUGE_VALL, respectively.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecosh(), coshf(), coshl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

Linux man-pages 6.13 2024-07-23 1461

cosh(3) Library Functions Manual cosh(3)

BUGS
In glibc 2.3.4 and earlier, an overflow floating-point (FE_OVERFLOW) exception is
not raised when an overflow occurs.

SEE ALSO
acosh(3), asinh(3), atanh(3), ccos(3), sinh(3), tanh(3)

Linux man-pages 6.13 2024-07-23 1462

cpow(3) Library Functions Manual cpow(3)

NAME
cpow, cpowf, cpowl - complex power function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cpow(double complex x, double complex z);
float complex cpowf(float complex x, float complex z);
long double complex cpowl(long double complex x,

long double complex z);

DESCRIPTION
These functions calculate x raised to the power z (with a branch cut for x along the
negative real axis).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecpow(), cpowf(), cpowl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), pow(3), complex(7)

Linux man-pages 6.13 2024-07-23 1463

cproj(3) Library Functions Manual cproj(3)

NAME
cproj, cprojf, cprojl - project into Riemann Sphere

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

DESCRIPTION
These functions project a point in the plane onto the surface of a Riemann Sphere, the
one-point compactification of the complex plane. Each finite point z projects to z it-
self. Every complex infinite value is projected to a single infinite value, namely to
positive infinity on the real axis.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecproj(), cprojf(), cprojl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

In glibc 2.11 and earlier, the implementation does something different (a stereo-
graphic projection onto a Riemann Sphere).

SEE ALSO
cabs(3), complex(7)

Linux man-pages 6.13 2024-07-23 1464

CPU_SET (3) Library Functions Manual CPU_SET (3)

NAME
CPU_SET, CPU_CLR, CPU_ISSET, CPU_ZERO, CPU_COUNT, CPU_AND,
CPU_OR, CPU_XOR, CPU_EQUAL, CPU_ALLOC, CPU_ALLOC_SIZE,
CPU_FREE, CPU_SET_S, CPU_CLR_S, CPU_ISSET_S, CPU_ZERO_S,
CPU_COUNT_S, CPU_AND_S, CPU_OR_S, CPU_XOR_S, CPU_EQUAL_S -
macros for manipulating CPU sets

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>

void CPU_ZERO(cpu_set_t *set);

void CPU_SET(int cpu, cpu_set_t *set);
void CPU_CLR(int cpu, cpu_set_t *set);
int CPU_ISSET(int cpu, cpu_set_t *set);

int CPU_COUNT(cpu_set_t *set);

void CPU_AND(cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

void CPU_OR(cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

void CPU_XOR(cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

int CPU_EQUAL(cpu_set_t *set1, cpu_set_t *set2);

cpu_set_t *CPU_ALLOC(int num_cpus);
void CPU_FREE(cpu_set_t *set);
size_t CPU_ALLOC_SIZE(int num_cpus);

void CPU_ZERO_S(size_t setsize, cpu_set_t *set);

void CPU_SET_S(int cpu, size_t setsize, cpu_set_t *set);
void CPU_CLR_S(int cpu, size_t setsize, cpu_set_t *set);
int CPU_ISSET_S(int cpu, size_t setsize, cpu_set_t *set);

int CPU_COUNT_S(size_t setsize, cpu_set_t *set);

void CPU_AND_S(size_t setsize, cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

void CPU_OR_S(size_t setsize, cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

void CPU_XOR_S(size_t setsize, cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

int CPU_EQUAL_S(size_t setsize, cpu_set_t *set1, cpu_set_t *set2);

DESCRIPTION
The cpu_set_t data structure represents a set of CPUs. CPU sets are used by
sched_setaffinity(2) and similar interfaces.

The cpu_set_t data type is implemented as a bit mask. However, the data structure
should be treated as opaque: all manipulation of CPU sets should be done via the

Linux man-pages 6.13 2024-07-23 1465

CPU_SET (3) Library Functions Manual CPU_SET (3)

macros described in this page.

The following macros are provided to operate on the CPU set set:

CPU_ZERO()
Clears set, so that it contains no CPUs.

CPU_SET()
Add CPU cpu to set.

CPU_CLR()
Remove CPU cpu from set.

CPU_ISSET()
Test to see if CPU cpu is a member of set.

CPU_COUNT()
Return the number of CPUs in set.

Where a cpu argument is specified, it should not produce side effects, since the above
macros may evaluate the argument more than once.

The first CPU on the system corresponds to a cpu value of 0, the next CPU corre-
sponds to a cpu value of 1, and so on. No assumptions should be made about particu-
lar CPUs being available, or the set of CPUs being contiguous, since CPUs can be
taken offline dynamically or be otherwise absent. The constant CPU_SETSIZE (cur-
rently 1024) specifies a value one greater than the maximum CPU number that can be
stored in cpu_set_t.

The following macros perform logical operations on CPU sets:

CPU_AND()
Store the intersection of the sets srcset1 and srcset2 in destset (which may be
one of the source sets).

CPU_OR()
Store the union of the sets srcset1 and srcset2 in destset (which may be one of
the source sets).

CPU_XOR()
Store the XOR of the sets srcset1 and srcset2 in destset (which may be one of
the source sets). The XOR means the set of CPUs that are in either srcset1 or
srcset2, but not both.

CPU_EQUAL()
Test whether two CPU set contain exactly the same CPUs.

Dynamically sized CPU sets
Because some applications may require the ability to dynamically size CPU sets (e.g.,
to allocate sets larger than that defined by the standard cpu_set_t data type), glibc
nowadays provides a set of macros to support this.

The following macros are used to allocate and deallocate CPU sets:

CPU_ALLOC()
Allocate a CPU set large enough to hold CPUs in the range 0 to num_cpus-1.

Linux man-pages 6.13 2024-07-23 1466

CPU_SET (3) Library Functions Manual CPU_SET (3)

CPU_ALLOC_SIZE()
Return the size in bytes of the CPU set that would be needed to hold CPUs in
the range 0 to num_cpus-1. This macro provides the value that can be used for
the setsize argument in the CPU_*_S() macros described below.

CPU_FREE()
Free a CPU set previously allocated by CPU_ALLOC().

The macros whose names end with "_S" are the analogs of the similarly named
macros without the suffix. These macros perform the same tasks as their analogs, but
operate on the dynamically allocated CPU set(s) whose size is setsize bytes.

RETURN VALUE
CPU_ISSET() and CPU_ISSET_S() return nonzero if cpu is in set; otherwise, it re-
turns 0.

CPU_COUNT() and CPU_COUNT_S() return the number of CPUs in set.

CPU_EQUAL() and CPU_EQUAL_S() return nonzero if the two CPU sets are
equal; otherwise they return 0.

CPU_ALLOC() returns a pointer on success, or NULL on failure. (Errors are as for
malloc(3).)

CPU_ALLOC_SIZE() returns the number of bytes required to store a CPU set of the
specified cardinality.

The other functions do not return a value.

STANDARDS
Linux.

HISTORY
The CPU_ZERO(), CPU_SET(), CPU_CLR(), and CPU_ISSET() macros were
added in glibc 2.3.3.

CPU_COUNT() first appeared in glibc 2.6.

CPU_AND(), CPU_OR(), CPU_XOR(), CPU_EQUAL(), CPU_ALLOC(),
CPU_ALLOC_SIZE(), CPU_FREE(), CPU_ZERO_S(), CPU_SET_S(),
CPU_CLR_S(), CPU_ISSET_S(), CPU_AND_S(), CPU_OR_S(), CPU_XOR_S(),
and CPU_EQUAL_S() first appeared in glibc 2.7.

NOTES
To duplicate a CPU set, use memcpy(3).

Since CPU sets are bit masks allocated in units of long words, the actual number of
CPUs in a dynamically allocated CPU set will be rounded up to the next multiple of
sizeof(unsigned long). An application should consider the contents of these extra bits
to be undefined.

Notwithstanding the similarity in the names, note that the constant CPU_SETSIZE
indicates the number of CPUs in the cpu_set_t data type (thus, it is effectively a count
of the bits in the bit mask), while the setsize argument of the CPU_*_S() macros is a
size in bytes.

The data types for arguments and return values shown in the SYNOPSIS are hints
what about is expected in each case. However, since these interfaces are implemented

Linux man-pages 6.13 2024-07-23 1467

CPU_SET (3) Library Functions Manual CPU_SET (3)

as macros, the compiler won’t necessarily catch all type errors if you violate the sug-
gestions.

BUGS
On 32-bit platforms with glibc 2.8 and earlier, CPU_ALLOC() allocates twice as
much space as is required, and CPU_ALLOC_SIZE() returns a value twice as large
as it should. This bug should not affect the semantics of a program, but does result in
wasted memory and less efficient operation of the macros that operate on dynamically
allocated CPU sets. These bugs are fixed in glibc 2.9.

EXAMPLES
The following program demonstrates the use of some of the macros used for dynami-
cally allocated CPU sets.

#define _GNU_SOURCE
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <assert.h>

int
main(int argc, char *argv[])
{

cpu_set_t *cpusetp;
size_t size, num_cpus;

if (argc < 2) {
fprintf(stderr, "Usage: %s <num-cpus>\n", argv[0]);
exit(EXIT_FAILURE);

}

num_cpus = atoi(argv[1]);

cpusetp = CPU_ALLOC(num_cpus);
if (cpusetp == NULL) {

perror("CPU_ALLOC");
exit(EXIT_FAILURE);

}

size = CPU_ALLOC_SIZE(num_cpus);

CPU_ZERO_S(size, cpusetp);
for (size_t cpu = 0; cpu < num_cpus; cpu += 2)

CPU_SET_S(cpu, size, cpusetp);

printf("CPU_COUNT() of set: %d\n", CPU_COUNT_S(size, cpusetp));

CPU_FREE(cpusetp);

Linux man-pages 6.13 2024-07-23 1468

CPU_SET (3) Library Functions Manual CPU_SET (3)

exit(EXIT_SUCCESS);
}

SEE ALSO
sched_setaffinity(2), pthread_attr_setaffinity_np(3), pthread_setaffinity_np(3),
cpuset(7)

Linux man-pages 6.13 2024-07-23 1469

creal(3) Library Functions Manual creal(3)

NAME
creal, crealf, creall - get real part of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

DESCRIPTION
These functions return the real part of the complex number z.

One has:

z = creal(z) + I * cimag(z)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecreal(), crealf(), creall()

VERSIONS
GCC supports also __real__. That is a GNU extension.

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cimag(3), complex(7)

Linux man-pages 6.13 2024-07-23 1470

crypt(3) Library Functions Manual crypt(3)

NAME
crypt, crypt_r - password hashing

LIBRARY
Password hashing library (libcrypt, -lcrypt)

SYNOPSIS
#include <unistd.h>

char *crypt(const char *key, const char *salt);

#include <crypt.h>

char *crypt_r(const char *key, const char *salt,
struct crypt_data *restrict data);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

crypt():
Since glibc 2.28:

_DEFAULT_SOURCE
glibc 2.27 and earlier:

_XOPEN_SOURCE

crypt_r():
_GNU_SOURCE

DESCRIPTION
crypt() is the password hashing function. It is based on the Data Encryption Standard
algorithm with variations intended (among other things) to discourage use of hard-
ware implementations of a key search.

key is a user’s typed password.

salt is a two-character string chosen from the set [a-zA-Z0-9./]. This string is used
to perturb the algorithm in one of 4096 different ways.

By taking the lowest 7 bits of each of the first eight characters of the key, a 56-bit key
is obtained. This 56-bit key is used to encrypt repeatedly a constant string (usually a
string consisting of all zeros). The returned value points to the hashed password, a se-
ries of 13 printable ASCII characters (the first two characters represent the salt itself).
The return value points to static data whose content is overwritten by each call.

Warning: the key space consists of 256 equal 7.2e16 possible values. Exhaustive
searches of this key space are possible using massively parallel computers. Software,
such as crack(1), is available which will search the portion of this key space that is
generally used by humans for passwords. Hence, password selection should, at mini-
mum, avoid common words and names. The use of a passwd(1) program that checks
for crackable passwords during the selection process is recommended.

The DES algorithm itself has a few quirks which make the use of the crypt() interface
a very poor choice for anything other than password authentication. If you are plan-
ning on using the crypt() interface for a cryptography project, don’t do it: get a good
book on encryption and one of the widely available DES libraries.

crypt_r() is a reentrant version of crypt(). The structure pointed to by data is used to
store result data and bookkeeping information. Other than allocating it, the only thing
that the caller should do with this structure is to set data->initialized to zero before

Linux man-pages 6.13 2024-07-23 1471

crypt(3) Library Functions Manual crypt(3)

the first call to crypt_r().

RETURN VALUE
On success, a pointer to the hashed password is returned. On error, NULL is returned.

ERRORS
EINVAL

salt has the wrong format.

ENOSYS
The crypt() function was not implemented, probably because of U.S.A. export
restrictions.

EPERM
/proc/sys/crypto/fips_enabled has a nonzero value, and an attempt was made
to use a weak hashing type, such as DES.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:cryptcrypt()
Thread safety MT-Safecrypt_r()

STANDARDS
crypt()

POSIX.1-2008.

crypt_r()
GNU.

HISTORY
crypt()

POSIX.1-2001, SVr4, 4.3BSD.

Availability in glibc
The crypt(), encrypt(3), and setkey(3) functions are part of the POSIX.1-2008 XSI
Options Group for Encryption and are optional. If the interfaces are not available,
then the symbolic constant _XOPEN_CRYPT is either not defined, or it is defined to
-1 and availability can be checked at run time with sysconf(3). This may be the case
if the downstream distribution has switched from glibc crypt to libxcrypt. When re-
compiling applications in such distributions, the programmer must detect if
_XOPEN_CRYPT is not available and include <crypt.h> for the function proto-
types; otherwise libxcrypt is an ABI-compatible drop-in replacement.

NOTES
Features in glibc

The glibc version of this function supports additional hashing algorithms.

If salt is a character string starting with the characters "id" followed by a string op-
tionally terminated by "$", then the result has the form:

idsalt$hashed

id identifies the hashing method used instead of DES and this then determines how
the rest of the password string is interpreted. The following values of id are sup-
ported:

Linux man-pages 6.13 2024-07-23 1472

crypt(3) Library Functions Manual crypt(3)

ID Method
1 MD5
2a Blowfish (not in mainline glibc; added in some Linux distributions)
5 SHA-256 (since glibc 2.7)
6 SHA-512 (since glibc 2.7)

Thus, 5salt$hashed and 6salt$hashed contain the password hashed with, respec-
tively, functions based on SHA-256 and SHA-512.

"salt" stands for the up to 16 characters following "id" in the salt. The "hashed"
part of the password string is the actual computed password. The size of this string is
fixed:

MD5 22 characters
SHA-256 43 characters
SHA-512 86 characters

The characters in "salt" and "hashed" are drawn from the set [a-zA-Z0-9./]. In the
MD5 and SHA implementations the entire key is significant (instead of only the first 8
bytes in DES).

Since glibc 2.7, the SHA-256 and SHA-512 implementations support a user-supplied
number of hashing rounds, defaulting to 5000. If the "id" characters in the salt are
followed by "rounds=xxx$", where xxx is an integer, then the result has the form

idrounds=yyy$salt$hashed

where yyy is the number of hashing rounds actually used. The number of rounds actu-
ally used is 1000 if xxx is less than 1000, 999999999 if xxx is greater than
999999999, and is equal to xxx otherwise.

SEE ALSO
login(1), passwd(1), encrypt(3), getpass(3), passwd(5)

Linux man-pages 6.13 2024-07-23 1473

csin(3) Library Functions Manual csin(3)

NAME
csin, csinf, csinl - complex sine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

DESCRIPTION
These functions calculate the complex sine of z.

The complex sine function is defined as:

csin(z) = (exp(i * z) - exp(-i * z)) / (2 * i)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecsin(), csinf(), csinl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), casin(3), ccos(3), ctan(3), complex(7)

Linux man-pages 6.13 2024-07-23 1474

csinh(3) Library Functions Manual csinh(3)

NAME
csinh, csinhf, csinhl - complex hyperbolic sine

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

DESCRIPTION
These functions calculate the complex hyperbolic sine of z.

The complex hyperbolic sine function is defined as:

csinh(z) = (exp(z)-exp(-z))/2

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecsinh(), csinhf(), csinhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), casinh(3), ccosh(3), ctanh(3), complex(7)

Linux man-pages 6.13 2024-07-23 1475

csqrt(3) Library Functions Manual csqrt(3)

NAME
csqrt, csqrtf, csqrtl - complex square root

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

DESCRIPTION
These functions calculate the complex square root of z, with a branch cut along the
negative real axis. (That means that csqrt(-1+eps*I) will be close to I while
csqrt(-1-eps*I) will be close to -I, if eps is a small positive real number.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecsqrt(), csqrtf(), csqrtl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cexp(3), complex(7)

Linux man-pages 6.13 2024-07-23 1476

ctan(3) Library Functions Manual ctan(3)

NAME
ctan, ctanf, ctanl - complex tangent function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

DESCRIPTION
These functions calculate the complex tangent of z.

The complex tangent function is defined as:

ctan(z) = csin(z) / ccos(z)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safectan(), ctanf(), ctanl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), catan(3), ccos(3), csin(3), complex(7)

Linux man-pages 6.13 2024-07-23 1477

ctanh(3) Library Functions Manual ctanh(3)

NAME
ctanh, ctanhf, ctanhl - complex hyperbolic tangent

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

DESCRIPTION
These functions calculate the complex hyperbolic tangent of z.

The complex hyperbolic tangent function is defined mathematically as:

ctanh(z) = csinh(z) / ccosh(z)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safectanh(), ctanhf(), ctanhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), catanh(3), ccosh(3), csinh(3), complex(7)

Linux man-pages 6.13 2024-07-23 1478

ctermid(3) Library Functions Manual ctermid(3)

NAME
ctermid - get controlling terminal name

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

char *ctermid(char *s);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ctermid():
_POSIX_C_SOURCE

DESCRIPTION
ctermid() returns a string which is the pathname for the current controlling terminal
for this process. If s is NULL, a static buffer is used, otherwise s points to a buffer
used to hold the terminal pathname. The symbolic constant L_ctermid is the maxi-
mum number of characters in the returned pathname.

RETURN VALUE
The pointer to the pathname.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safectermid()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, Svr4.

BUGS
The returned pathname may not uniquely identify the controlling terminal; it may, for
example, be /dev/tty.

It is not assured that the program can open the terminal.

SEE ALSO
ttyname(3)

Linux man-pages 6.13 2024-07-23 1479

ctime(3) Library Functions Manual ctime(3)

NAME
asctime, ctime, gmtime, localtime, mktime, asctime_r, ctime_r, gmtime_r, localtime_r
- transform date and time to broken-down time or ASCII

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

char *asctime(const struct tm *tm);
char *asctime_r(const struct tm *restrict tm,

char buf [restrict 26]);

char *ctime(const time_t *timep);
char *ctime_r(const time_t *restrict timep,

char buf [restrict 26]);

struct tm *gmtime(const time_t *timep);
struct tm *gmtime_r(const time_t *restrict timep,

struct tm *restrict result);

struct tm *localtime(const time_t *timep);
struct tm *localtime_r(const time_t *restrict timep,

struct tm *restrict result);

time_t mktime(struct tm *tm);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

asctime_r(), ctime_r(), gmtime_r(), localtime_r():
_POSIX_C_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The ctime(), gmtime(), and localtime() functions all take an argument of data type
time_t, which represents calendar time. When interpreted as an absolute time value, it
represents the number of seconds elapsed since the Epoch, 1970-01-01 00:00:00
+0000 (UTC).

The asctime() and mktime() functions both take an argument representing broken-
down time, which is a representation separated into year, month, day, and so on.

Broken-down time is stored in the structure tm, described in tm(3type).

The call ctime(t) is equivalent to asctime(localtime(t)). It converts the calendar time
t into a null-terminated string of the form

"Wed Jun 30 21:49:08 1993\n"

The abbreviations for the days of the week are "Sun", "Mon", "Tue", "Wed", "Thu",
"Fri", and "Sat". The abbreviations for the months are "Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", and "Dec". The return value points
to a statically allocated string which might be overwritten by subsequent calls to any
of the date and time functions. The function also sets the external variables tzname,
timezone, and daylight as if it called tzset(3). The reentrant version ctime_r() does
the same, but stores the string in a user-supplied buffer which should have room for at
least 26 bytes. It need not set tzname, timezone, and daylight.

Linux man-pages 6.13 2025-02-18 1480

ctime(3) Library Functions Manual ctime(3)

The gmtime() function converts the calendar time timep to broken-down time repre-
sentation, expressed in Coordinated Universal Time (UTC). It may return NULL
when the year does not fit into an integer. The return value points to a statically allo-
cated struct which might be overwritten by subsequent calls to any of the date and
time functions. The gmtime_r() function does the same, but stores the data in a user-
supplied struct.

The localtime() function converts the calendar time timep to broken-down time repre-
sentation, expressed relative to the user’s specified timezone. The function also sets
the external variables tzname, timezone, and daylight as if it called tzset(3). The re-
turn value points to a statically allocated struct which might be overwritten by subse-
quent calls to any of the date and time functions. The localtime_r() function does the
same, but stores the data in a user-supplied struct. It need not set tzname, timezone,
and daylight.

The asctime() function converts the broken-down time value tm into a null-terminated
string with the same format as ctime(). The return value points to a statically allo-
cated string which might be overwritten by subsequent calls to any of the date and
time functions. The asctime_r() function does the same, but stores the string in a
user-supplied buffer which should have room for at least 26 bytes.

The mktime() function converts a broken-down time structure, expressed as local
time, to calendar time representation. The function ignores the values supplied by the
caller in the tm_wday and tm_yday fields. The value specified in the tm_isdst field in-
forms mktime() whether or not daylight saving time (DST) is in effect for the time
supplied in the tm structure: a positive value means DST is in effect; zero means that
DST is not in effect; and a negative value means that mktime() should (use timezone
information and system databases to) attempt to determine whether DST is in effect at
the specified time. See timegm(3) for a UTC equivalent of this function.

The mktime() function modifies the fields of the tm structure as follows: tm_wday
and tm_yday are set to values determined from the contents of the other fields; if
structure members are outside their valid interval, they will be normalized (so that, for
example, 40 October is changed into 9 November); tm_isdst is set (regardless of its
initial value) to a positive value or to 0, respectively, to indicate whether DST is or is
not in effect at the specified time. The function also sets the external variables tz-
name, timezone, and daylight as if it called tzset(3).

If the specified broken-down time cannot be represented as calendar time (seconds
since the Epoch), mktime() returns (time_t) -1 and does not alter the members of the
broken-down time structure.

RETURN VALUE
On success, gmtime() and localtime() return a pointer to a struct tm.

On success, gmtime_r() and localtime_r() return the address of the structure pointed
to by result.

On success, asctime() and ctime() return a pointer to a string.

On success, asctime_r() and ctime_r() return a pointer to the string pointed to by
buf .

On success, mktime() returns the calendar time (seconds since the Epoch), expressed
as a value of type time_t.

Linux man-pages 6.13 2025-02-18 1481

ctime(3) Library Functions Manual ctime(3)

On error, mktime() returns the value (time_t) -1, and leaves the tm->tm_wday mem-
ber unmodified. The remaining functions return NULL on error. On error, errno is
set to indicate the error.

ERRORS
EOVERFLOW

The result cannot be represented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyasctime() MT-Unsafe race:asctime locale
Thread safetyasctime_r() MT-Safe locale
Thread safetyctime() MT-Unsafe race:tmbuf race:asctime env

locale
Thread safetyctime_r(),

gmtime_r(),
localtime_r(),
mktime()

MT-Safe env locale

Thread safetygmtime(), localtime() MT-Unsafe race:tmbuf env locale

VERSIONS
POSIX doesn’t specify the parameters of ctime_r() to be restrict; that is specific to
glibc.

In many implementations, including glibc, a 0 in tm_mday is interpreted as meaning
the last day of the preceding month.

According to POSIX.1, localtime() is required to behave as though tzset(3) was
called, while localtime_r() does not have this requirement. For portable code, tzset(3)
should be called before localtime_r().

STANDARDS
asctime()
ctime()
gmtime()
localtime()
mktime()

C23, POSIX.1-2024.

gmtime_r()
localtime_r()

POSIX.1-2024.

asctime_r()
ctime_r()

None.

HISTORY
gmtime()
localtime()

Linux man-pages 6.13 2025-02-18 1482

ctime(3) Library Functions Manual ctime(3)

mktime()
C89, POSIX.1-1988.

asctime()
ctime()

C89, POSIX.1-1988. Marked obsolescent in C23 and in POSIX.1-2008 (rec-
ommending strftime(3)).

gmtime_r()
localtime_r()

POSIX.1-1996.

asctime_r()
ctime_r()

POSIX.1-1996. Marked obsolescent in POSIX.1-2008. Removed in
POSIX.1-2024 (recommending strftime(3)).

CAVEATS
Thread safety

The four functions asctime(), ctime(), gmtime(), and localtime() return a pointer to
static data and hence are not thread-safe. The thread-safe versions, asctime_r(),
ctime_r(), gmtime_r(), and localtime_r(), are specified by SUSv2.

POSIX.1 says: "The asctime(), ctime(), gmtime(), and localtime() functions shall re-
turn values in one of two static objects: a broken-down time structure and an array of
type char. Execution of any of the functions that return a pointer to one of these ob-
ject types may overwrite the information in any object of the same type pointed to by
the value returned from any previous call to any of them." This can occur in the glibc
implementation.

mktime()
(time_t) -1 can represent a valid time (one second before the Epoch). To determine
whether mktime() failed, one must use the tm->tm_wday field. See the example pro-
gram in EXAMPLES.

The handling of a non-negative tm_isdst in mktime() is poorly specified, and passing
a value that is incorrect for the time specified yields unspecified results. Since mk-
time() is one of the few functions that knows when DST is in effect, providing a cor-
rect value may be difficult. One workaround for this is to call mktime() twice, once
with tm_isdst set to zero, and once with tm_isdst set to a positive value, and discard-
ing the results from the call that changes it. If neither call changes tm_isdst then the
time specified probably happens during a fall-back period where DST begins or ends,
and both results are valid but represent two different times. If both calls change it,
that could indicate a fall-forward transition, or some other reason why the time speci-
fied does not exist.

The specification of time zones and daylight saving time are up to regional govern-
ments, change often, and may include discontinuities beyond mktime’s ability to doc-
ument a result. For example, a change in the timezone definition may cause a clock
time to be repeated or skipped without a corresponding DST change.

EXAMPLES
The program below defines a wrapper that allows detecting invalid and ambiguous
times, with EINVAL and ENOTUNIQ, respectively.

Linux man-pages 6.13 2025-02-18 1483

ctime(3) Library Functions Manual ctime(3)

The following shell session shows sample runs of the program:

$ TZ=UTC ./a.out 1969 12 31 23 59 59 0;
-1
$
$ export TZ=Europe/Madrid;
$
$./a.out 2147483647 2147483647 00 00 00 00 -1;
a.out: mktime: Value too large for defined data type
$
$./a.out 2024 08 23 00 17 53 -1;
1724365073
$./a.out 2024 08 23 00 17 53 0;
a.out: my_mktime: Invalid argument
1724368673
$./a.out 2024 08 23 00 17 53 1;
1724365073
$
$./a.out 2024 02 23 00 17 53 -1;
1708643873
$./a.out 2024 02 23 00 17 53 0;
1708643873
$./a.out 2024 02 23 00 17 53 1;
a.out: my_mktime: Invalid argument
1708640273
$
$./a.out 2023 03 26 02 17 53 -1;
a.out: my_mktime: Invalid argument
1679793473
$
$./a.out 2023 10 29 02 17 53 -1;
a.out: my_mktime: Name not unique on network
1698542273
$./a.out 2023 10 29 02 17 53 0;
1698542273
$./a.out 2023 10 29 02 17 53 1;
1698538673
$
$./a.out 2023 02 29 12 00 00 -1;
a.out: my_mktime: Invalid argument
1677668400

Program source: mktime.c

#include <err.h>
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Linux man-pages 6.13 2025-02-18 1484

ctime(3) Library Functions Manual ctime(3)

#include <time.h>

#define is_signed(T) ((T) -1 < 1)

time_t my_mktime(struct tm *tp);

int
main(int argc, char *argv[])
{

char **p;
time_t t;
struct tm tm;

if (argc != 8) {
fprintf(stderr, "Usage: %s yyyy mm dd HH MM SS isdst\n", argv[0]);
exit(EXIT_FAILURE);

}

p = &argv[1];
tm.tm_year = atoi(*p++) - 1900;
tm.tm_mon = atoi(*p++) - 1;
tm.tm_mday = atoi(*p++);
tm.tm_hour = atoi(*p++);
tm.tm_min = atoi(*p++);
tm.tm_sec = atoi(*p++);
tm.tm_isdst = atoi(*p++);

errno = 0;
tm.tm_wday = -1;
t = my_mktime(&tm);
if (tm.tm_wday == -1)

err(EXIT_FAILURE, "mktime");
if (errno == EINVAL || errno == ENOTUNIQ)

warn("my_mktime");

if (is_signed(time_t))
printf("%jd\n", (intmax_t) t);

else
printf("%ju\n", (uintmax_t) t);

exit(EXIT_SUCCESS);
}

time_t
my_mktime(struct tm *tp)
{

int e, isdst;
time_t t;
struct tm tm;

Linux man-pages 6.13 2025-02-18 1485

ctime(3) Library Functions Manual ctime(3)

unsigned char wday[sizeof(tp->tm_wday)];

e = errno;

tm = *tp;
isdst = tp->tm_isdst;

memcpy(wday, &tp->tm_wday, sizeof(wday));
tp->tm_wday = -1;
t = mktime(tp);
if (tp->tm_wday == -1) {

memcpy(&tp->tm_wday, wday, sizeof(wday));
return -1;

}

if (isdst == -1)
tm.tm_isdst = tp->tm_isdst;

if (tm.tm_sec != tp->tm_sec
|| tm.tm_min != tp->tm_min
|| tm.tm_hour != tp->tm_hour
|| tm.tm_mday != tp->tm_mday
|| tm.tm_mon != tp->tm_mon
|| tm.tm_year != tp->tm_year
|| tm.tm_isdst != tp->tm_isdst)

{
errno = EINVAL;
return t;

}

if (isdst != -1)
goto out;

tm = *tp;
tm.tm_isdst = !tm.tm_isdst;

tm.tm_wday = -1;
mktime(&tm);
if (tm.tm_wday == -1)

goto out;

if (tm.tm_isdst != tp->tm_isdst) {
errno = ENOTUNIQ;
return t;

}
out:

errno = e;
return t;

}

Linux man-pages 6.13 2025-02-18 1486

ctime(3) Library Functions Manual ctime(3)

SEE ALSO
date(1), gettimeofday(2), time(2), utime(2), clock(3), difftime(3), strftime(3), strp-
time(3), timegm(3), tzset(3), time(7)

Linux man-pages 6.13 2025-02-18 1487

daemon(3) Library Functions Manual daemon(3)

NAME
daemon - run in the background

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int daemon(int nochdir, int noclose);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

daemon():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The daemon() function is for programs wishing to detach themselves from the con-
trolling terminal and run in the background as system daemons.

If nochdir is zero, daemon() changes the process’s current working directory to the
root directory ("/"); otherwise, the current working directory is left unchanged.

If noclose is zero, daemon() redirects standard input, standard output, and standard
error to /dev/null; otherwise, no changes are made to these file descriptors.

RETURN VALUE
(This function forks, and if the fork(2) succeeds, the parent calls _exit(2), so that fur-
ther errors are seen by the child only.) On success daemon() returns zero. If an error
occurs, daemon() returns -1 and sets errno to any of the errors specified for the
fork(2) and setsid(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedaemon()

VERSIONS
A similar function appears on the BSDs.

The glibc implementation can also return -1 when /dev/null exists but is not a charac-
ter device with the expected major and minor numbers. In this case, errno need not
be set.

STANDARDS
None.

HISTORY
4.4BSD.

Linux man-pages 6.13 2024-07-23 1488

daemon(3) Library Functions Manual daemon(3)

BUGS
The GNU C library implementation of this function was taken from BSD, and does
not employ the double-fork technique (i.e., fork(2), setsid(2), fork(2)) that is necessary
to ensure that the resulting daemon process is not a session leader. Instead, the result-
ing daemon is a session leader. On systems that follow System V semantics (e.g.,
Linux), this means that if the daemon opens a terminal that is not already a controlling
terminal for another session, then that terminal will inadvertently become the control-
ling terminal for the daemon.

SEE ALSO
fork(2), setsid(2), daemon(7), logrotate(8)

Linux man-pages 6.13 2024-07-23 1489

dbopen(3) Library Functions Manual dbopen(3)

NAME
dbopen - database access methods

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <limits.h>
#include <db.h>
#include <fcntl.h>

DB *dbopen(const char * file, int flags, int mode, DBTYPE type,
const void *openinfo);

DESCRIPTION
Note well: This page documents interfaces provided up until glibc 2.1. Since glibc
2.2, glibc no longer provides these interfaces. Probably, you are looking for the APIs
provided by the libdb library instead.

dbopen() is the library interface to database files. The supported file formats are
btree, hashed, and UNIX file oriented. The btree format is a representation of a
sorted, balanced tree structure. The hashed format is an extensible, dynamic hashing
scheme. The flat-file format is a byte stream file with fixed or variable length records.
The formats and file-format-specific information are described in detail in their re-
spective manual pages btree(3), hash(3), and recno(3).

dbopen() opens file for reading and/or writing. Files never intended to be preserved
on disk may be created by setting the file argument to NULL.

The flags and mode arguments are as specified to the open(2) routine, however, only
the O_CREAT, O_EXCL, O_EXLOCK, O_NONBLOCK, O_RDONLY,
O_RDWR, O_SHLOCK, and O_TRUNC flags are meaningful. (Note, opening a
database file O_WRONLY is not possible.)

The type argument is of type DBTYPE (as defined in the <db.h> include file) and
may be set to DB_BTREE, DB_HASH, or DB_RECNO.

The openinfo argument is a pointer to an access-method-specific structure described
in the access method’s manual page. If openinfo is NULL, each access method will
use defaults appropriate for the system and the access method.

dbopen() returns a pointer to a DB structure on success and NULL on error. The DB
structure is defined in the <db.h> include file, and contains at least the following
fields:

typedef struct {
DBTYPE type;
int (*close)(const DB *db);
int (*del)(const DB *db, const DBT *key, unsigned int flags);
int (*fd)(const DB *db);
int (*get)(const DB *db, DBT *key, DBT *data,

unsigned int flags);
int (*put)(const DB *db, DBT *key, const DBT *data,

unsigned int flags);

4.4 Berkeley Distribution 2024-07-23 1490

dbopen(3) Library Functions Manual dbopen(3)

int (*sync)(const DB *db, unsigned int flags);
int (*seq)(const DB *db, DBT *key, DBT *data,

unsigned int flags);
} DB;

These elements describe a database type and a set of functions performing various ac-
tions. These functions take a pointer to a structure as returned by dbopen(), and
sometimes one or more pointers to key/data structures and a flag value.

type The type of the underlying access method (and file format).

close A pointer to a routine to flush any cached information to disk, free any allo-
cated resources, and close the underlying file(s). Since key/data pairs may be
cached in memory, failing to sync the file with a close or sync function may
result in inconsistent or lost information. close routines return -1 on error
(setting errno) and 0 on success.

del A pointer to a routine to remove key/data pairs from the database.

The argument flag may be set to the following value:

R_CURSOR
Delete the record referenced by the cursor. The cursor must have pre-
viously been initialized.

delete routines return -1 on error (setting errno), 0 on success, and 1 if the
specified key was not in the file.

fd A pointer to a routine which returns a file descriptor representative of the un-
derlying database. A file descriptor referencing the same file will be returned
to all processes which call dbopen() with the same file name. This file de-
scriptor may be safely used as an argument to the fcntl(2) and flock(2) locking
functions. The file descriptor is not necessarily associated with any of the un-
derlying files used by the access method. No file descriptor is available for in
memory databases. fd routines return -1 on error (setting errno), and the file
descriptor on success.

get A pointer to a routine which is the interface for keyed retrieval from the data-
base. The address and length of the data associated with the specified key are
returned in the structure referenced by data. get routines return -1 on error
(setting errno), 0 on success, and 1 if the key was not in the file.

put A pointer to a routine to store key/data pairs in the database.

The argument flag may be set to one of the following values:

R_CURSOR
Replace the key/data pair referenced by the cursor. The cursor must
have previously been initialized.

R_IAFTER
Append the data immediately after the data referenced by key, creating
a new key/data pair. The record number of the appended key/data pair
is returned in the key structure. (Applicable only to the DB_RECNO
access method.)

4.4 Berkeley Distribution 2024-07-23 1491

dbopen(3) Library Functions Manual dbopen(3)

R_IBEFORE
Insert the data immediately before the data referenced by key, creating
a new key/data pair. The record number of the inserted key/data pair is
returned in the key structure. (Applicable only to the DB_RECNO ac-
cess method.)

R_NOOVERWRITE
Enter the new key/data pair only if the key does not previously exist.

R_SETCURSOR
Store the key/data pair, setting or initializing the position of the cursor
to reference it. (Applicable only to the DB_BTREE and DB_RECNO
access methods.)

R_SETCURSOR is available only for the DB_BTREE and DB_RECNO ac-
cess methods because it implies that the keys have an inherent order which
does not change.

R_IAFTER and R_IBEFORE are available only for the DB_RECNO access
method because they each imply that the access method is able to create new
keys. This is true only if the keys are ordered and independent, record num-
bers for example.

The default behavior of the put routines is to enter the new key/data pair, re-
placing any previously existing key.

put routines return -1 on error (setting errno), 0 on success, and 1 if the
R_NOOVERWRITE flag was set and the key already exists in the file.

seq A pointer to a routine which is the interface for sequential retrieval from the
database. The address and length of the key are returned in the structure refer-
enced by key, and the address and length of the data are returned in the struc-
ture referenced by data.

Sequential key/data pair retrieval may begin at any time, and the position of
the "cursor" is not affected by calls to the del, get, put, or sync routines.
Modifications to the database during a sequential scan will be reflected in the
scan, that is, records inserted behind the cursor will not be returned while
records inserted in front of the cursor will be returned.

The flag value must be set to one of the following values:

R_CURSOR
The data associated with the specified key is returned. This differs
from the get routines in that it sets or initializes the cursor to the loca-
tion of the key as well. (Note, for the DB_BTREE access method, the
returned key is not necessarily an exact match for the specified key.
The returned key is the smallest key greater than or equal to the speci-
fied key, permitting partial key matches and range searches.)

R_FIRST
The first key/data pair of the database is returned, and the cursor is set
or initialized to reference it.

4.4 Berkeley Distribution 2024-07-23 1492

dbopen(3) Library Functions Manual dbopen(3)

R_LAST
The last key/data pair of the database is returned, and the cursor is set
or initialized to reference it. (Applicable only to the DB_BTREE and
DB_RECNO access methods.)

R_NEXT
Retrieve the key/data pair immediately after the cursor. If the cursor is
not yet set, this is the same as the R_FIRST flag.

R_PREV
Retrieve the key/data pair immediately before the cursor. If the cursor
is not yet set, this is the same as the R_LAST flag. (Applicable only to
the DB_BTREE and DB_RECNO access methods.)

R_LAST and R_PREV are available only for the DB_BTREE and
DB_RECNO access methods because they each imply that the keys have an
inherent order which does not change.

seq routines return -1 on error (setting errno), 0 on success and 1 if there are
no key/data pairs less than or greater than the specified or current key. If the
DB_RECNO access method is being used, and if the database file is a charac-
ter special file and no complete key/data pairs are currently available, the seq
routines return 2.

sync A pointer to a routine to flush any cached information to disk. If the database
is in memory only, the sync routine has no effect and will always succeed.

The flag value may be set to the following value:

R_RECNOSYNC
If the DB_RECNO access method is being used, this flag causes the
sync routine to apply to the btree file which underlies the recno file, not
the recno file itself. (See the bfname field of the recno(3) manual page
for more information.)

sync routines return -1 on error (setting errno) and 0 on success.

Key/data pairs
Access to all file types is based on key/data pairs. Both keys and data are represented
by the following data structure:

typedef struct {
void *data;
size_t size;

} DBT;

The elements of the DBT structure are defined as follows:

data A pointer to a byte string.

size The length of the byte string.

Key and data byte strings may reference strings of essentially unlimited length al-
though any two of them must fit into available memory at the same time. It should be
noted that the access methods provide no guarantees about byte string alignment.

4.4 Berkeley Distribution 2024-07-23 1493

dbopen(3) Library Functions Manual dbopen(3)

ERRORS
The dbopen() routine may fail and set errno for any of the errors specified for the li-
brary routines open(2) and malloc(3) or the following:

EFTYPE
A file is incorrectly formatted.

EINVAL
A parameter has been specified (hash function, pad byte, etc.) that is incom-
patible with the current file specification or which is not meaningful for the
function (for example, use of the cursor without prior initialization) or there is
a mismatch between the version number of file and the software.

The close routines may fail and set errno for any of the errors specified for the library
routines close(2), read(2), write(2), free(3), or fsync(2).

The del, get, put, and seq routines may fail and set errno for any of the errors speci-
fied for the library routines read(2), write(2), free(3), or malloc(3).

The fd routines will fail and set errno to ENOENT for in memory databases.

The sync routines may fail and set errno for any of the errors specified for the library
routine fsync(2).

BUGS
The typedef DBT is a mnemonic for "data base thang", and was used because no one
could think of a reasonable name that wasn’t already used.

The file descriptor interface is a kludge and will be deleted in a future version of the
interface.

None of the access methods provide any form of concurrent access, locking, or trans-
actions.

SEE ALSO
btree(3), hash(3), mpool(3), recno(3)

LIBTP: Portable, Modular Transactions for UNIX , Margo Seltzer, Michael Olson,
USENIX proceedings, Winter 1992.

4.4 Berkeley Distribution 2024-07-23 1494

des_crypt(3) Library Functions Manual des_crypt(3)

NAME
des_crypt, ecb_crypt, cbc_crypt, des_setparity, DES_FAILED - fast DES encryption

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <rpc/des_crypt.h>

[[deprecated]] int ecb_crypt(char *key, char data[.datalen],
unsigned int datalen, unsigned int mode);

[[deprecated]] int cbc_crypt(char *key, char data[.datalen],
unsigned int datalen, unsigned int mode,
char *ivec);

[[deprecated]] void des_setparity(char *key);

[[deprecated]] int DES_FAILED(int status);

DESCRIPTION
ecb_crypt() and cbc_crypt() implement the NBS DES (Data Encryption Standard).
These routines are faster and more general purpose than crypt(3). They also are able
to utilize DES hardware if it is available. ecb_crypt() encrypts in ECB (Electronic
Code Book) mode, which encrypts blocks of data independently. cbc_crypt() en-
crypts in CBC (Cipher Block Chaining) mode, which chains together successive
blocks. CBC mode protects against insertions, deletions, and substitutions of blocks.
Also, regularities in the clear text will not appear in the cipher text.

Here is how to use these routines. The first argument, key, is the 8-byte encryption
key with parity. To set the key’s parity, which for DES is in the low bit of each byte,
use des_setparity(). The second argument, data, contains the data to be encrypted or
decrypted. The third argument, datalen, is the length in bytes of data, which must be
a multiple of 8. The fourth argument, mode, is formed by ORing together some
things. For the encryption direction OR in either DES_ENCRYPT or DES_DE-
CRYPT. For software versus hardware encryption, OR in either DES_HW or
DES_SW. If DES_HW is specified, and there is no hardware, then the encryption is
performed in software and the routine returns DESERR_NOHWDEVICE. For
cbc_crypt(), the argument ivec is the 8-byte initialization vector for the chaining. It is
updated to the next initialization vector upon return.

RETURN VALUE
DESERR_NONE

No error.

DESERR_NOHWDEVICE
Encryption succeeded, but done in software instead of the requested hardware.

DESERR_HWERROR
An error occurred in the hardware or driver.

DESERR_BADPARAM
Bad argument to routine.

Given a result status stat, the macro DES_FAILED(stat) is false only for the first two
statuses.

Linux man-pages 6.13 2024-07-23 1495

des_crypt(3) Library Functions Manual des_crypt(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeecb_crypt(), cbc_crypt(), des_setparity()

STANDARDS
None.

HISTORY
4.3BSD. glibc 2.1. Removed in glibc 2.28.

Because they employ the DES block cipher, which is no longer considered secure,
these functions were removed. Applications should switch to a modern cryptography
library, such as libgcrypt.

SEE ALSO
des(1), crypt(3), xcrypt(3)

Linux man-pages 6.13 2024-07-23 1496

difftime(3) Library Functions Manual difftime(3)

NAME
difftime - calculate time difference

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

double difftime(time_t time1, time_t time0);

DESCRIPTION
The difftime() function returns the number of seconds elapsed between time time1
and time time0, represented as a double. Each time is a count of seconds.

difftime(b, a) acts like (b-a) except that the result does not overflow and is rounded to
double.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedifftime()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
date(1), gettimeofday(2), time(2), ctime(3), gmtime(3), localtime(3)

Linux man-pages 6.13 2024-07-23 1497

dirfd(3) Library Functions Manual dirfd(3)

NAME
dirfd - get directory stream file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

int dirfd(DIR *dirp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

dirfd():
/* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200809L

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The function dirfd() returns the file descriptor associated with the directory stream
dirp.

This file descriptor is the one used internally by the directory stream. As a result, it is
useful only for functions which do not depend on or alter the file position, such as fs-
tat(2) and fchdir(2). It will be automatically closed when closedir(3) is called.

RETURN VALUE
On success, dirfd() returns a file descriptor (a nonnegative integer). On error, -1 is
returned, and errno is set to indicate the error.

ERRORS
POSIX.1-2008 specifies two errors, neither of which is returned by the current imple-
mentation.

EINVAL
dirp does not refer to a valid directory stream.

ENOTSUP
The implementation does not support the association of a file descriptor with a
directory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedirfd()

STANDARDS
POSIX.1-2008.

HISTORY
4.3BSD-Reno (not in 4.2BSD).

SEE ALSO
open(2), openat(2), closedir(3), opendir(3), readdir(3), rewinddir(3), scandir(3),
seekdir(3), telldir(3)

Linux man-pages 6.13 2024-07-23 1498

div(3) Library Functions Manual div(3)

NAME
div, ldiv, lldiv, imaxdiv - compute quotient and remainder of an integer division

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

div_t div(int numerator, int denominator);
ldiv_t ldiv(long numerator, long denominator);
lldiv_t lldiv(long long numerator, long long denominator);

#include <inttypes.h>

imaxdiv_t imaxdiv(intmax_t numerator, intmax_t denominator);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lldiv():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The div() function computes the value numerator/denominator and returns the quo-
tient and remainder in a structure named div_t that contains two integer members (in
unspecified order) named quot and rem. The quotient is rounded toward zero. The re-
sult satisfies quot*denominator+rem = numerator.

The ldiv(), lldiv(), and imaxdiv() functions do the same, dividing numbers of the in-
dicated type and returning the result in a structure of the indicated name, in all cases
with fields quot and rem of the same type as the function arguments.

RETURN VALUE
The div_t (etc.) structure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safediv(), ldiv(), lldiv(), imaxdiv()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, C99, SVr4, 4.3BSD.

lldiv() and imaxdiv() were added in C99.

EXAMPLES
After

div_t q = div(-5, 3);

the values q.quot and q.rem are -1 and -2, respectively.

SEE ALSO
abs(3), remainder(3)

Linux man-pages 6.13 2024-07-23 1499

dl_iterate_phdr(3) Library Functions Manual dl_iterate_phdr(3)

NAME
dl_iterate_phdr - walk through list of shared objects

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <link.h>

int dl_iterate_phdr(
typeof(int (struct dl_phdr_info *info, size_t size, void *data))

*callback,
void *data);

DESCRIPTION
The dl_iterate_phdr() function allows an application to inquire at run time to find out
which shared objects it has loaded, and the order in which they were loaded.

The dl_iterate_phdr() function walks through the list of an application’s shared ob-
jects and calls the function callback once for each object, until either all shared ob-
jects have been processed or callback returns a nonzero value.

Each call to callback receives three arguments: info, which is a pointer to a structure
containing information about the shared object; size, which is the size of the structure
pointed to by info; and data, which is a copy of whatever value was passed by the
calling program as the second argument (also named data) in the call to dl_iter-
ate_phdr().

The info argument is a structure of the following type:

struct dl_phdr_info {
ElfW(Addr) dlpi_addr; /* Base address of object */
const char *dlpi_name; /* (Null-terminated) name of

object */
const ElfW(Phdr) *dlpi_phdr; /* Pointer to array of

ELF program headers
for this object */

ElfW(Half) dlpi_phnum; /* # of items in dlpi_phdr */

/* The following fields were added in glibc 2.4, after the first
version of this structure was available. Check the size
argument passed to the dl_iterate_phdr callback to determine
whether or not each later member is available. */

unsigned long long dlpi_adds;
/* Incremented when a new object may

have been added */
unsigned long long dlpi_subs;

/* Incremented when an object may
have been removed */

size_t dlpi_tls_modid;
/* If there is a PT_TLS segment, its module

Linux man-pages 6.13 2024-12-13 1500

dl_iterate_phdr(3) Library Functions Manual dl_iterate_phdr(3)

ID as used in TLS relocations, else zero */
void *dlpi_tls_data;

/* The address of the calling thread's instance
of this module's PT_TLS segment, if it has
one and it has been allocated in the calling
thread, otherwise a null pointer */

};

(The ElfW () macro definition turns its argument into the name of an ELF data type
suitable for the hardware architecture. For example, on a 32-bit platform, ElfW(Addr)
yields the data type name Elf32_Addr. Further information on these types can be
found in the <elf.h> and <link.h> header files.)

The dlpi_addr field indicates the base address of the shared object (i.e., the difference
between the virtual memory address of the shared object and the offset of that object
in the file from which it was loaded). The dlpi_name field is a null-terminated string
giving the pathname from which the shared object was loaded.

To understand the meaning of the dlpi_phdr and dlpi_phnum fields, we need to be
aware that an ELF shared object consists of a number of segments, each of which has
a corresponding program header describing the segment. The dlpi_phdr field is a
pointer to an array of the program headers for this shared object. The dlpi_phnum
field indicates the size of this array.

These program headers are structures of the following form:

typedef struct {
Elf32_Word p_type; /* Segment type */
Elf32_Off p_offset; /* Segment file offset */
Elf32_Addr p_vaddr; /* Segment virtual address */
Elf32_Addr p_paddr; /* Segment physical address */
Elf32_Word p_filesz; /* Segment size in file */
Elf32_Word p_memsz; /* Segment size in memory */
Elf32_Word p_flags; /* Segment flags */
Elf32_Word p_align; /* Segment alignment */

} Elf32_Phdr;

Note that we can calculate the location of a particular program header, x, in virtual
memory using the formula:

addr == info->dlpi_addr + info->dlpi_phdr[x].p_vaddr;

Possible values for p_type include the following (see <elf.h> for further details):

#define PT_LOAD 1 /* Loadable program segment */
#define PT_DYNAMIC 2 /* Dynamic linking information */
#define PT_INTERP 3 /* Program interpreter */
#define PT_NOTE 4 /* Auxiliary information */
#define PT_SHLIB 5 /* Reserved */
#define PT_PHDR 6 /* Entry for header table itself */
#define PT_TLS 7 /* Thread-local storage segment */
#define PT_GNU_EH_FRAME 0x6474e550 /* GCC .eh_frame_hdr segment */
#define PT_GNU_STACK 0x6474e551 /* Indicates stack executability */
#define PT_GNU_RELRO 0x6474e552 /* Read-only after relocation */

Linux man-pages 6.13 2024-12-13 1501

dl_iterate_phdr(3) Library Functions Manual dl_iterate_phdr(3)

RETURN VALUE
The dl_iterate_phdr() function returns whatever value was returned by the last call to
callback.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedl_iterate_phdr()

VERSIONS
Various other systems provide a version of this function, although details of the re-
turned dl_phdr_info structure differ. On the BSDs and Solaris, the structure includes
the fields dlpi_addr, dlpi_name, dlpi_phdr, and dlpi_phnum in addition to other im-
plementation-specific fields.

Future versions of the C library may add further fields to the dl_phdr_info structure;
in that event, the size argument provides a mechanism for the callback function to dis-
cover whether it is running on a system with added fields.

STANDARDS
None.

HISTORY
glibc 2.2.4.

NOTES
The first object visited by callback is the main program. For the main program, the
dlpi_name field will be an empty string.

EXAMPLES
The following program displays a list of pathnames of the shared objects it has
loaded. For each shared object, the program lists some information (virtual address,
size, flags, and type) for each of the objects ELF segments.

The following shell session demonstrates the output produced by the program on an
x86-64 system. The first shared object for which output is displayed (where the name
is an empty string) is the main program.

$./a.out
Name: "" (9 segments)

0: [0x400040; memsz: 1f8] flags: 0x5; PT_PHDR
1: [0x400238; memsz: 1c] flags: 0x4; PT_INTERP
2: [0x400000; memsz: ac4] flags: 0x5; PT_LOAD
3: [0x600e10; memsz: 240] flags: 0x6; PT_LOAD
4: [0x600e28; memsz: 1d0] flags: 0x6; PT_DYNAMIC
5: [0x400254; memsz: 44] flags: 0x4; PT_NOTE
6: [0x400970; memsz: 3c] flags: 0x4; PT_GNU_EH_FRAME
7: [(nil); memsz: 0] flags: 0x6; PT_GNU_STACK
8: [0x600e10; memsz: 1f0] flags: 0x4; PT_GNU_RELRO

Name: "linux-vdso.so.1" (4 segments)
0: [0x7ffc6edd1000; memsz: e89] flags: 0x5; PT_LOAD
1: [0x7ffc6edd1360; memsz: 110] flags: 0x4; PT_DYNAMIC
2: [0x7ffc6edd17b0; memsz: 3c] flags: 0x4; PT_NOTE
3: [0x7ffc6edd17ec; memsz: 3c] flags: 0x4; PT_GNU_EH_FRAME

Linux man-pages 6.13 2024-12-13 1502

dl_iterate_phdr(3) Library Functions Manual dl_iterate_phdr(3)

Name: "/lib64/libc.so.6" (10 segments)
0: [0x7f55712ce040; memsz: 230] flags: 0x5; PT_PHDR
1: [0x7f557145b980; memsz: 1c] flags: 0x4; PT_INTERP
2: [0x7f55712ce000; memsz: 1b6a5c] flags: 0x5; PT_LOAD
3: [0x7f55716857a0; memsz: 9240] flags: 0x6; PT_LOAD
4: [0x7f5571688b80; memsz: 1f0] flags: 0x6; PT_DYNAMIC
5: [0x7f55712ce270; memsz: 44] flags: 0x4; PT_NOTE
6: [0x7f55716857a0; memsz: 78] flags: 0x4; PT_TLS
7: [0x7f557145b99c; memsz: 544c] flags: 0x4; PT_GNU_EH_FRAME
8: [0x7f55712ce000; memsz: 0] flags: 0x6; PT_GNU_STACK
9: [0x7f55716857a0; memsz: 3860] flags: 0x4; PT_GNU_RELRO

Name: "/lib64/ld-linux-x86-64.so.2" (7 segments)
0: [0x7f557168f000; memsz: 20828] flags: 0x5; PT_LOAD
1: [0x7f55718afba0; memsz: 15a8] flags: 0x6; PT_LOAD
2: [0x7f55718afe10; memsz: 190] flags: 0x6; PT_DYNAMIC
3: [0x7f557168f1c8; memsz: 24] flags: 0x4; PT_NOTE
4: [0x7f55716acec4; memsz: 604] flags: 0x4; PT_GNU_EH_FRAME
5: [0x7f557168f000; memsz: 0] flags: 0x6; PT_GNU_STACK
6: [0x7f55718afba0; memsz: 460] flags: 0x4; PT_GNU_RELRO

Program source

#define _GNU_SOURCE
#include <link.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

static int
callback(struct dl_phdr_info *info, size_t size, void *data)
{

char *type;
int p_type;

printf("Name: \"%s\" (%d segments)\n", info->dlpi_name,
info->dlpi_phnum);

for (size_t j = 0; j < info->dlpi_phnum; j++) {
p_type = info->dlpi_phdr[j].p_type;
type = (p_type == PT_LOAD) ? "PT_LOAD" :

(p_type == PT_DYNAMIC) ? "PT_DYNAMIC" :
(p_type == PT_INTERP) ? "PT_INTERP" :
(p_type == PT_NOTE) ? "PT_NOTE" :
(p_type == PT_INTERP) ? "PT_INTERP" :
(p_type == PT_PHDR) ? "PT_PHDR" :
(p_type == PT_TLS) ? "PT_TLS" :
(p_type == PT_GNU_EH_FRAME) ? "PT_GNU_EH_FRAME" :
(p_type == PT_GNU_STACK) ? "PT_GNU_STACK" :
(p_type == PT_GNU_RELRO) ? "PT_GNU_RELRO" : NULL;

Linux man-pages 6.13 2024-12-13 1503

dl_iterate_phdr(3) Library Functions Manual dl_iterate_phdr(3)

printf(" %2zu: [%14p; memsz:%7jx] flags: %#jx; ", j,
(void *) (info->dlpi_addr + info->dlpi_phdr[j].p_vaddr),
(uintmax_t) info->dlpi_phdr[j].p_memsz,
(uintmax_t) info->dlpi_phdr[j].p_flags);

if (type != NULL)
printf("%s\n", type);

else
printf("[other (%#x)]\n", p_type);

}

return 0;
}

int
main(void)
{

dl_iterate_phdr(callback, NULL);

exit(EXIT_SUCCESS);
}

SEE ALSO
ldd(1), objdump(1), readelf (1), dladdr(3), dlopen(3), elf(5), ld.so(8)

Executable and Linking Format Specification, available at various locations online.

Linux man-pages 6.13 2024-12-13 1504

dladdr(3) Library Functions Manual dladdr(3)

NAME
dladdr, dladdr1 - translate address to symbolic information

LIBRARY
Dynamic linking library (libdl, -ldl)

SYNOPSIS
#define _GNU_SOURCE
#include <dlfcn.h>

int dladdr(const void *addr, Dl_info *info);
int dladdr1(const void *addr, Dl_info *info, void **extra_info,

int flags);

DESCRIPTION
The function dladdr() determines whether the address specified in addr is located in
one of the shared objects loaded by the calling application. If it is, then dladdr() re-
turns information about the shared object and symbol that overlaps addr. This infor-
mation is returned in a Dl_info structure:

typedef struct {
const char *dli_fname; /* Pathname of shared object that

contains address */
void *dli_fbase; /* Base address at which shared

object is loaded */
const char *dli_sname; /* Name of symbol whose definition

overlaps addr */
void *dli_saddr; /* Exact address of symbol named

in dli_sname */
} Dl_info;

If no symbol matching addr could be found, then dli_sname and dli_saddr are set to
NULL.

The function dladdr1() is like dladdr(), but returns additional information via the ar-
gument extra_info. The information returned depends on the value specified in flags,
which can have one of the following values:

RTLD_DL_LINKMAP
Obtain a pointer to the link map for the matched file. The extra_info argument
points to a pointer to a link_map structure (i.e., struct link_map **), defined in
<link.h> as:

struct link_map {
ElfW(Addr) l_addr; /* Difference between the

address in the ELF file and
the address in memory */

char *l_name; /* Absolute pathname where
object was found */

ElfW(Dyn) *l_ld; /* Dynamic section of the
shared object */

struct link_map *l_next, *l_prev;
/* Chain of loaded objects */

Linux man-pages 6.13 2024-07-23 1505

dladdr(3) Library Functions Manual dladdr(3)

/* Plus additional fields private to the
implementation */

};

RTLD_DL_SYMENT
Obtain a pointer to the ELF symbol table entry of the matching symbol. The
extra_info argument is a pointer to a symbol pointer: const ElfW(Sym) **.
The ElfW () macro definition turns its argument into the name of an ELF data
type suitable for the hardware architecture. For example, on a 64-bit platform,
ElfW(Sym) yields the data type name Elf64_Sym, which is defined in <elf.h>
as:

typedef struct {
Elf64_Word st_name; /* Symbol name */
unsigned char st_info; /* Symbol type and binding */
unsigned char st_other; /* Symbol visibility */
Elf64_Section st_shndx; /* Section index */
Elf64_Addr st_value; /* Symbol value */
Elf64_Xword st_size; /* Symbol size */

} Elf64_Sym;

The st_name field is an index into the string table.

The st_info field encodes the symbol’s type and binding. The type can be ex-
tracted using the macro ELF64_ST_TYPE(st_info) (or ELF32_ST_TYPE()
on 32-bit platforms), which yields one of the following values:

Value Description
STT_NOTYPE Symbol type is unspecified
STT_OBJECT Symbol is a data object
STT_FUNC Symbol is a code object
STT_SECTION Symbol associated with a section
STT_FILE Symbol’s name is filename
STT_COMMON Symbol is a common data object
STT_TLS Symbol is thread-local data object
STT_GNU_IFUNC Symbol is indirect code object

The symbol binding can be extracted from the st_info field using the macro
ELF64_ST_BIND(st_info) (or ELF32_ST_BIND() on 32-bit platforms),
which yields one of the following values:

Value Description
STB_LOCAL Local symbol
STB_GLOBAL Global symbol
STB_WEAK Weak symbol
STB_GNU_UNIQUE Unique symbol

The st_other field contains the symbol’s visibility, which can be extracted us-
ing the macro ELF64_ST_VISIBILITY(st_info) (or ELF32_ST_VISIBIL-
ITY() on 32-bit platforms), which yields one of the following values:

Value Description
STV_DEFAULT Default symbol visibility rules
STV_INTERNAL Processor-specific hidden class

Linux man-pages 6.13 2024-07-23 1506

dladdr(3) Library Functions Manual dladdr(3)

STV_HIDDEN Symbol unavailable in other modules
STV_PROTECTED Not preemptible, not exported

RETURN VALUE
On success, these functions return a nonzero value. If the address specified in addr
could be matched to a shared object, but not to a symbol in the shared object, then the
info->dli_sname and info->dli_saddr fields are set to NULL.

If the address specified in addr could not be matched to a shared object, then these
functions return 0. In this case, an error message is not available via dlerror(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedladdr(), dladdr1()

STANDARDS
GNU.

HISTORY
dladdr()

glibc 2.0.

dladdr1()
glibc 2.3.3.

Solaris.

BUGS
Sometimes, the function pointers you pass to dladdr() may surprise you. On some ar-
chitectures (notably i386 and x86-64), dli_fname and dli_fbase may end up pointing
back at the object from which you called dladdr(), even if the function used as an ar-
gument should come from a dynamically linked library.

The problem is that the function pointer will still be resolved at compile time, but
merely point to the plt (Procedure Linkage Table) section of the original object
(which dispatches the call after asking the dynamic linker to resolve the symbol). To
work around this, you can try to compile the code to be position-independent: then,
the compiler cannot prepare the pointer at compile time any more and gcc(1) will gen-
erate code that just loads the final symbol address from the got (Global Offset Table)
at run time before passing it to dladdr().

SEE ALSO
dl_iterate_phdr(3), dlinfo(3), dlopen(3), dlsym(3), ld.so(8)

Linux man-pages 6.13 2024-07-23 1507

dlerror(3) Library Functions Manual dlerror(3)

NAME
dlerror - obtain error diagnostic for functions in the dlopen API

LIBRARY
Dynamic linking library (libdl, -ldl)

SYNOPSIS
#include <dlfcn.h>

char *dlerror(void);

DESCRIPTION
The dlerror() function returns a human-readable, null-terminated string describing
the most recent error that occurred from a call to one of the functions in the dlopen
API since the last call to dlerror(). The returned string does not include a trailing
newline.

dlerror() returns NULL if no errors have occurred since initialization or since it was
last called.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedlerror()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0. POSIX.1-2001.

SunOS.

NOTES
The message returned by dlerror() may reside in a statically allocated buffer that is
overwritten by subsequent dlerror() calls.

EXAMPLES
See dlopen(3).

SEE ALSO
dladdr(3), dlinfo(3), dlopen(3), dlsym(3)

Linux man-pages 6.13 2024-07-23 1508

dlinfo(3) Library Functions Manual dlinfo(3)

NAME
dlinfo - obtain information about a dynamically loaded object

LIBRARY
Dynamic linking library (libdl, -ldl)

SYNOPSIS
#define _GNU_SOURCE
#include <link.h>
#include <dlfcn.h>

int dlinfo(void *restrict handle, int request, void *restrict info);

DESCRIPTION
The dlinfo() function obtains information about the dynamically loaded object re-
ferred to by handle (typically obtained by an earlier call to dlopen(3) or dlmopen(3)).
The request argument specifies which information is to be returned. The info argu-
ment is a pointer to a buffer used to store information returned by the call; the type of
this argument depends on request.

The following values are supported for request (with the corresponding type for info
shown in parentheses):

RTLD_DI_LMID (Lmid_t *)
Obtain the ID of the link-map list (namespace) in which handle is loaded.

RTLD_DI_LINKMAP (struct link_map **)
Obtain a pointer to the link_map structure corresponding to handle. The info
argument points to a pointer to a link_map structure, defined in <link.h> as:

struct link_map {
ElfW(Addr) l_addr; /* Difference between the

address in the ELF file and
the address in memory */

char *l_name; /* Absolute pathname where
object was found */

ElfW(Dyn) *l_ld; /* Dynamic section of the
shared object */

struct link_map *l_next, *l_prev;
/* Chain of loaded objects */

/* Plus additional fields private to the
implementation */

};

RTLD_DI_ORIGIN (char *)
Copy the pathname of the origin of the shared object corresponding to handle
to the location pointed to by info.

RTLD_DI_SERINFO (Dl_serinfo *)
Obtain the library search paths for the shared object referred to by handle.
The info argument is a pointer to a Dl_serinfo that contains the search paths.
Because the number of search paths may vary, the size of the structure pointed
to by info can vary. The RTLD_DI_SERINFOSIZE request described below
allows applications to size the buffer suitably. The caller must perform the

Linux man-pages 6.13 2024-08-28 1509

dlinfo(3) Library Functions Manual dlinfo(3)

following steps:

(1) Use a RTLD_DI_SERINFOSIZE request to populate a Dl_serinfo
structure with the size (dls_size) of the structure needed for the subse-
quent RTLD_DI_SERINFO request.

(2) Allocate a Dl_serinfo buffer of the correct size (dls_size).

(3) Use a further RTLD_DI_SERINFOSIZE request to populate the
dls_size and dls_cnt fields of the buffer allocated in the previous step.

(4) Use a RTLD_DI_SERINFO to obtain the library search paths.

The Dl_serinfo structure is defined as follows:

typedef struct {
size_t dls_size; /* Size in bytes of

the whole buffer */
unsigned int dls_cnt; /* Number of elements

in 'dls_serpath' */
Dl_serpath dls_serpath[1]; /* Actually longer,

'dls_cnt' elements */
} Dl_serinfo;

Each of the dls_serpath elements in the above structure is a structure of the
following form:

typedef struct {
char *dls_name; /* Name of library search

path directory */
unsigned int dls_flags; /* Indicates where this

directory came from */
} Dl_serpath;

The dls_flags field is currently unused, and always contains zero.

RTLD_DI_SERINFOSIZE (Dl_serinfo *)
Populate the dls_size and dls_cnt fields of the Dl_serinfo structure pointed to
by info with values suitable for allocating a buffer for use in a subsequent
RTLD_DI_SERINFO request.

RTLD_DI_TLS_MODID (size_t *, since glibc 2.4)
Obtain the module ID of this shared object’s TLS (thread-local storage) seg-
ment, as used in TLS relocations. If this object does not define a TLS seg-
ment, zero is placed in *info.

RTLD_DI_TLS_DATA (void **, since glibc 2.4)
Obtain a pointer to the calling thread’s TLS block corresponding to this shared
object’s TLS segment. If this object does not define a PT_TLS segment, or if
the calling thread has not allocated a block for it, NULL is placed in *info.

RTLD_DI_PHDR (const ElfW(Phdr *), since glibc 2.34.1)
Obtain the address of this shared object’s program header and place it in *info.
This dlinfo call returns the number of program headers in the shared object.

Linux man-pages 6.13 2024-08-28 1510

dlinfo(3) Library Functions Manual dlinfo(3)

RETURN VALUE
On success, dlinfo() returns 0 (if not specified explicitly), or a positive value corre-
sponding to the request. On failure, it returns -1; the error can be diagnosed using
dlerror(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedlinfo()

VERSIONS
The sets of requests supported by the various implementations overlaps only partially.

STANDARDS
GNU.

HISTORY
glibc 2.3.3. Solaris.

EXAMPLES
The program below opens a shared objects using dlopen(3) and then uses the
RTLD_DI_SERINFOSIZE and RTLD_DI_SERINFO requests to obtain the library
search path list for the library. Here is an example of what we might see when run-
ning the program:

$./a.out /lib64/libm.so.6
dls_serpath[0].dls_name = /lib64
dls_serpath[1].dls_name = /usr/lib64

Program source

#define _GNU_SOURCE
#include <dlfcn.h>
#include <link.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

void *handle;
Dl_serinfo serinfo;
Dl_serinfo *sip;

if (argc != 2) {
fprintf(stderr, "Usage: %s <libpath>\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Obtain a handle for shared object specified on command line. */

handle = dlopen(argv[1], RTLD_NOW);
if (handle == NULL) {

Linux man-pages 6.13 2024-08-28 1511

dlinfo(3) Library Functions Manual dlinfo(3)

fprintf(stderr, "dlopen() failed: %s\n", dlerror());
exit(EXIT_FAILURE);

}

/* Discover the size of the buffer that we must pass to
RTLD_DI_SERINFO. */

if (dlinfo(handle, RTLD_DI_SERINFOSIZE, &serinfo) == -1) {
fprintf(stderr, "RTLD_DI_SERINFOSIZE failed: %s\n", dlerror());
exit(EXIT_FAILURE);

}

/* Allocate the buffer for use with RTLD_DI_SERINFO. */

sip = malloc(serinfo.dls_size);
if (sip == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

/* Initialize the 'dls_size' and 'dls_cnt' fields in the newly
allocated buffer. */

if (dlinfo(handle, RTLD_DI_SERINFOSIZE, sip) == -1) {
fprintf(stderr, "RTLD_DI_SERINFOSIZE failed: %s\n", dlerror());
exit(EXIT_FAILURE);

}

/* Fetch and print library search list. */

if (dlinfo(handle, RTLD_DI_SERINFO, sip) == -1) {
fprintf(stderr, "RTLD_DI_SERINFO failed: %s\n", dlerror());
exit(EXIT_FAILURE);

}

for (size_t j = 0; j < serinfo.dls_cnt; j++)
printf("dls_serpath[%zu].dls_name = %s\n",

j, sip->dls_serpath[j].dls_name);

exit(EXIT_SUCCESS);
}

SEE ALSO
dl_iterate_phdr(3), dladdr(3), dlerror(3), dlopen(3), dlsym(3), ld.so(8)

Linux man-pages 6.13 2024-08-28 1512

dlopen(3) Library Functions Manual dlopen(3)

NAME
dlclose, dlopen, dlmopen - open and close a shared object

LIBRARY
Dynamic linking library (libdl, -ldl)

SYNOPSIS
#include <dlfcn.h>

void *dlopen(const char * filename, int flags);
int dlclose(void *handle);

#define _GNU_SOURCE
#include <dlfcn.h>

void *dlmopen(Lmid_t lmid , const char * filename, int flags);

DESCRIPTION
dlopen()

The function dlopen() loads the dynamic shared object (shared library) file named by
the null-terminated string filename and returns an opaque "handle" for the loaded ob-
ject. This handle is employed with other functions in the dlopen API, such as dl-
sym(3), dladdr(3), dlinfo(3), and dlclose().

If filename is NULL, then the returned handle is for the main program. If filename
contains a slash ("/"), then it is interpreted as a (relative or absolute) pathname. Oth-
erwise, the dynamic linker searches for the object as follows (see ld.so(8) for further
details):

• (ELF only) If the calling object (i.e., the shared library or executable from which
dlopen() is called) contains a DT_RPATH tag, and does not contain a DT_RUN-
PATH tag, then the directories listed in the DT_RPATH tag are searched.

• If, at the time that the program was started, the environment variable LD_LI-
BRARY_PATH was defined to contain a colon-separated list of directories, then
these are searched. (As a security measure, this variable is ignored for set-user-ID
and set-group-ID programs.)

• (ELF only) If the calling object contains a DT_RUNPATH tag, then the directories
listed in that tag are searched.

• The cache file /etc/ld.so.cache (maintained by ldconfig(8)) is checked to see
whether it contains an entry for filename.

• The directories /lib and /usr/lib are searched (in that order).

If the object specified by filename has dependencies on other shared objects, then
these are also automatically loaded by the dynamic linker using the same rules. (This
process may occur recursively, if those objects in turn have dependencies, and so on.)

One of the following two values must be included in flags:

RTLD_LAZY
Perform lazy binding. Resolve symbols only as the code that references them
is executed. If the symbol is never referenced, then it is never resolved. (Lazy
binding is performed only for function references; references to variables are
always immediately bound when the shared object is loaded.) Since glibc
2.1.1, this flag is overridden by the effect of the LD_BIND_NOW

Linux man-pages 6.13 2025-01-05 1513

dlopen(3) Library Functions Manual dlopen(3)

environment variable.

RTLD_NOW
If this value is specified, or the environment variable LD_BIND_NOW is set
to a nonempty string, all undefined symbols in the shared object are resolved
before dlopen() returns. If this cannot be done, an error is returned.

Zero or more of the following values may also be ORed in flags:

RTLD_GLOBAL
The symbols defined by this shared object will be made available for symbol
resolution of subsequently loaded shared objects.

RTLD_LOCAL
This is the converse of RTLD_GLOBAL, and the default if neither flag is
specified. Symbols defined in this shared object are not made available to re-
solve references in subsequently loaded shared objects.

RTLD_NODELETE (since glibc 2.2)
Do not unload the shared object during dlclose(). Consequently, the object’s
static and global variables are not reinitialized if the object is reloaded with
dlopen() at a later time.

RTLD_NOLOAD (since glibc 2.2)
Don’t load the shared object. This can be used to test if the object is already
resident (dlopen() returns NULL if it is not, or the object’s handle if it is resi-
dent). This flag can also be used to promote the flags on a shared object that is
already loaded. For example, a shared object that was previously loaded with
RTLD_LOCAL can be reopened with
RTLD_NOLOAD | RTLD_GLOBAL.

RTLD_DEEPBIND (since glibc 2.3.4)
Place the lookup scope of the symbols in this shared object ahead of the global
scope. This means that a self-contained object will use its own symbols in
preference to global symbols with the same name contained in objects that
have already been loaded.

If filename is NULL, then the returned handle is for the main program. When given
to dlsym(3), this handle causes a search for a symbol in the main program, followed
by all shared objects loaded at program startup, and then all shared objects loaded by
dlopen() with the flag RTLD_GLOBAL.

Symbol references in the shared object are resolved using (in order): symbols in the
link map of objects loaded for the main program and its dependencies; symbols in
shared objects (and their dependencies) that were previously opened with dlopen()
using the RTLD_GLOBAL flag; and definitions in the shared object itself (and any
dependencies that were loaded for that object).

Any global symbols in the executable that were placed into its dynamic symbol table
by ld(1) can also be used to resolve references in a dynamically loaded shared object.
Symbols may be placed in the dynamic symbol table either because the executable
was linked with the flag "-rdynamic" (or, synonymously, "--export-dynamic"),
which causes all of the executable’s global symbols to be placed in the dynamic sym-
bol table, or because ld(1) noted a dependency on a symbol in another object during
static linking.

Linux man-pages 6.13 2025-01-05 1514

dlopen(3) Library Functions Manual dlopen(3)

If the same shared object is opened again with dlopen(), the same object handle is re-
turned. The dynamic linker maintains reference counts for object handles, so a dy-
namically loaded shared object is not deallocated until dlclose() has been called on it
as many times as dlopen() has succeeded on it. Constructors (see below) are called
only when the object is actually loaded into memory (i.e., when the reference count
increases to 1).

A subsequent dlopen() call that loads the same shared object with RTLD_NOW may
force symbol resolution for a shared object earlier loaded with RTLD_LAZY. Simi-
larly, an object that was previously opened with RTLD_LOCAL can be promoted to
RTLD_GLOBAL in a subsequent dlopen().

If dlopen() fails for any reason, it returns NULL.

dlmopen()
This function performs the same task as dlopen()—the filename and flags arguments,
as well as the return value, are the same, except for the differences noted below.

The dlmopen() function differs from dlopen() primarily in that it accepts an addi-
tional argument, lmid , that specifies the link-map list (also referred to as a name-
space) in which the shared object should be loaded. (By comparison, dlopen() adds
the dynamically loaded shared object to the same namespace as the shared object
from which the dlopen() call is made.) The Lmid_t type is an opaque handle that
refers to a namespace.

The lmid argument is either the ID of an existing namespace (which can be obtained
using the dlinfo(3) RTLD_DI_LMID request) or one of the following special values:

LM_ID_BASE
Load the shared object in the initial namespace (i.e., the application’s name-
space).

LM_ID_NEWLM
Create a new namespace and load the shared object in that namespace. The
object must have been correctly linked to reference all of the other shared ob-
jects that it requires, since the new namespace is initially empty.

If filename is NULL, then the only permitted value for lmid is LM_ID_BASE.

dlclose()
The function dlclose() decrements the reference count on the dynamically loaded
shared object referred to by handle.

If the object’s reference count drops to zero and no symbols in this object are required
by other objects, then the object is unloaded after first calling any destructors defined
for the object. (Symbols in this object might be required in another object because
this object was opened with the RTLD_GLOBAL flag and one of its symbols satis-
fied a relocation in another object.)

All shared objects that were automatically loaded when dlopen() was invoked on the
object referred to by handle are recursively closed in the same manner.

A successful return from dlclose() does not guarantee that the symbols associated
with handle are removed from the caller’s address space. In addition to references re-
sulting from explicit dlopen() calls, a shared object may have been implicitly loaded
(and reference counted) because of dependencies in other shared objects. Only when

Linux man-pages 6.13 2025-01-05 1515

dlopen(3) Library Functions Manual dlopen(3)

all references have been released can the shared object be removed from the address
space.

RETURN VALUE
On success, dlopen() and dlmopen() return a non-NULL handle for the loaded object.
On error (file could not be found, was not readable, had the wrong format, or caused
errors during loading), these functions return NULL.

On success, dlclose() returns 0; on error, it returns a nonzero value.

Errors from these functions can be diagnosed using dlerror(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedlopen(), dlmopen(), dlclose()

STANDARDS
dlopen()
dlclose()

POSIX.1-2008.

dlmopen()
RTLD_NOLOAD
RTLD_NODELETE

GNU.

RTLD_DEEPBIND
Solaris.

HISTORY
dlopen()
dlclose()

glibc 2.0. POSIX.1-2001.

dlmopen()
glibc 2.3.4.

NOTES
dlmopen() and namespaces

A link-map list defines an isolated namespace for the resolution of symbols by the dy-
namic linker. Within a namespace, dependent shared objects are implicitly loaded ac-
cording to the usual rules, and symbol references are likewise resolved according to
the usual rules, but such resolution is confined to the definitions provided by the ob-
jects that have been (explicitly and implicitly) loaded into the namespace.

The dlmopen() function permits object-load isolation—the ability to load a shared
object in a new namespace without exposing the rest of the application to the symbols
made available by the new object. Note that the use of the RTLD_LOCAL flag is not
sufficient for this purpose, since it prevents a shared object’s symbols from being
available to any other shared object. In some cases, we may want to make the sym-
bols provided by a dynamically loaded shared object available to (a subset of) other
shared objects without exposing those symbols to the entire application. This can be
achieved by using a separate namespace and the RTLD_GLOBAL flag.

The dlmopen() function also can be used to provide better isolation than the

Linux man-pages 6.13 2025-01-05 1516

dlopen(3) Library Functions Manual dlopen(3)

RTLD_LOCAL flag. In particular, shared objects loaded with RTLD_LOCAL may
be promoted to RTLD_GLOBAL if they are dependencies of another shared object
loaded with RTLD_GLOBAL. Thus, RTLD_LOCAL is insufficient to isolate a
loaded shared object except in the (uncommon) case where one has explicit control
over all shared object dependencies.

Possible uses of dlmopen() are plugins where the author of the plugin-loading frame-
work can’t trust the plugin authors and does not wish any undefined symbols from the
plugin framework to be resolved to plugin symbols. Another use is to load the same
object more than once. Without the use of dlmopen(), this would require the creation
of distinct copies of the shared object file. Using dlmopen(), this can be achieved by
loading the same shared object file into different namespaces.

The glibc implementation supports a maximum of 16 namespaces.

Initialization and finalization functions
Shared objects may export functions using the __attribute__((constructor)) and
__attribute__((destructor)) function attributes. Constructor functions are executed
before dlopen() returns, and destructor functions are executed before dlclose() re-
turns. A shared object may export multiple constructors and destructors, and priori-
ties can be associated with each function to determine the order in which they are exe-
cuted. See the gcc info pages (under "Function attributes") for further information.

An older method of (partially) achieving the same result is via the use of two special
symbols recognized by the linker: _init and _fini. If a dynamically loaded shared ob-
ject exports a routine named _init(), then that code is executed after loading a shared
object, before dlopen() returns. If the shared object exports a routine named _fini(),
then that routine is called just before the object is unloaded. In this case, one must
avoid linking against the system startup files, which contain default versions of these
files; this can be done by using the gcc(1) -nostartfiles command-line option.

Use of _init and _fini is now deprecated in favor of the aforementioned constructors
and destructors, which among other advantages, permit multiple initialization and fi-
nalization functions to be defined.

Since glibc 2.2.3, atexit(3) can be used to register an exit handler that is automatically
called when a shared object is unloaded.

History
These functions are part of the dlopen API, derived from SunOS.

BUGS
As at glibc 2.24, specifying the RTLD_GLOBAL flag when calling dlmopen() gen-
erates an error. Furthermore, specifying RTLD_GLOBAL when calling dlopen() re-
sults in a program crash (SIGSEGV) if the call is made from any object loaded in a
namespace other than the initial namespace.

EXAMPLES
The program below loads the (glibc) math library, looks up the address of the cos(3)
function, and prints the cosine of 2.0. The following is an example of building and
running the program:

$ cc dlopen_demo.c -ldl
$./a.out
-0.416147

Linux man-pages 6.13 2025-01-05 1517

dlopen(3) Library Functions Manual dlopen(3)

Program source

#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>

#include <gnu/lib-names.h> /* Defines LIBM_SO (which will be a
string such as "libm.so.6") */

int
main(void)
{

void *handle;
typeof(double (double)) *cosine;
char *error;

handle = dlopen(LIBM_SO, RTLD_LAZY);
if (!handle) {

fprintf(stderr, "%s\n", dlerror());
exit(EXIT_FAILURE);

}

dlerror(); /* Clear any existing error */

cosine = (typeof(double (double)) *) dlsym(handle, "cos");

/* According to the ISO C standard, casting between function
pointers and 'void *', as done above, produces undefined results.
POSIX.1-2001 and POSIX.1-2008 accepted this state of affairs and
proposed the following workaround:

*(void **) &cosine = dlsym(handle, "cos");

This (clumsy) cast conforms with the ISO C standard and will
avoid any compiler warnings.

The 2013 Technical Corrigendum 1 to POSIX.1-2008 improved matters
by requiring that conforming implementations support casting
'void *' to a function pointer. Nevertheless, some compilers
(e.g., gcc with the '-pedantic' option) may complain about the
cast used in this program. */

error = dlerror();
if (error != NULL) {

fprintf(stderr, "%s\n", error);
exit(EXIT_FAILURE);

}

printf("%f\n", (*cosine)(2.0));
dlclose(handle);

Linux man-pages 6.13 2025-01-05 1518

dlopen(3) Library Functions Manual dlopen(3)

exit(EXIT_SUCCESS);
}

SEE ALSO
ld(1), ldd(1), pldd(1), dl_iterate_phdr(3), dladdr(3), dlerror(3), dlinfo(3), dlsym(3),
rtld-audit(7), ld.so(8), ldconfig(8)

gcc info pages, ld info pages

Linux man-pages 6.13 2025-01-05 1519

dlsym(3) Library Functions Manual dlsym(3)

NAME
dlsym, dlvsym - obtain address of a symbol in a shared object or executable

LIBRARY
Dynamic linking library (libdl, -ldl)

SYNOPSIS
#include <dlfcn.h>

void *dlsym(void *restrict handle, const char *restrict symbol);

#define _GNU_SOURCE
#include <dlfcn.h>

void *dlvsym(void *restrict handle, const char *restrict symbol,
const char *restrict version);

DESCRIPTION
The function dlsym() takes a "handle" of a dynamic loaded shared object returned by
dlopen(3) along with a null-terminated symbol name, and returns the address where
that symbol is loaded into memory. If the symbol is not found, in the specified object
or any of the shared objects that were automatically loaded by dlopen(3) when that
object was loaded, dlsym() returns NULL. (The search performed by dlsym() is
breadth first through the dependency tree of these shared objects.)

In unusual cases (see NOTES) the value of the symbol could actually be NULL.
Therefore, a NULL return from dlsym() need not indicate an error. The correct way
to distinguish an error from a symbol whose value is NULL is to call dlerror(3) to
clear any old error conditions, then call dlsym(), and then call dlerror(3) again, saving
its return value into a variable, and check whether this saved value is not NULL.

There are two special pseudo-handles that may be specified in handle:

RTLD_DEFAULT
Find the first occurrence of the desired symbol using the default shared object
search order. The search will include global symbols in the executable and its
dependencies, as well as symbols in shared objects that were dynamically
loaded with the RTLD_GLOBAL flag.

RTLD_NEXT
Find the next occurrence of the desired symbol in the search order after the
current object. This allows one to provide a wrapper around a function in an-
other shared object, so that, for example, the definition of a function in a pre-
loaded shared object (see LD_PRELOAD in ld.so(8)) can find and invoke the
"real" function provided in another shared object (or for that matter, the "next"
definition of the function in cases where there are multiple layers of preload-
ing).

The _GNU_SOURCE feature test macro must be defined in order to obtain the defin-
itions of RTLD_DEFAULT and RTLD_NEXT from <dlfcn.h>.

The function dlvsym() does the same as dlsym() but takes a version string as an addi-
tional argument.

Linux man-pages 6.13 2024-07-23 1520

dlsym(3) Library Functions Manual dlsym(3)

RETURN VALUE
On success, these functions return the address associated with symbol. On failure,
they return NULL; the error can be diagnosed using dlerror(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedlsym(), dlvsym()

STANDARDS
dlsym()

POSIX.1-2008.

dlvsym()
GNU.

HISTORY
dlsym()

glibc 2.0. POSIX.1-2001.

dlvsym()
glibc 2.1.

NOTES
There are several scenarios when the address of a global symbol is NULL. For exam-
ple, a symbol can be placed at zero address by the linker, via a linker script or with
--defsym command-line option. Undefined weak symbols also have NULL value.
Finally, the symbol value may be the result of a GNU indirect function (IFUNC) re-
solver function that returns NULL as the resolved value. In the latter case, dlsym()
also returns NULL without error. However, in the former two cases, the behavior of
GNU dynamic linker is inconsistent: relocation processing succeeds and the symbol
can be observed to have NULL value, but dlsym() fails and dlerror() indicates a
lookup error.

History
The dlsym() function is part of the dlopen API, derived from SunOS. That system
does not have dlvsym().

EXAMPLES
See dlopen(3).

SEE ALSO
dl_iterate_phdr(3), dladdr(3), dlerror(3), dlinfo(3), dlopen(3), ld.so(8)

Linux man-pages 6.13 2024-07-23 1521

drand48(3) Library Functions Manual drand48(3)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 -
generate uniformly distributed pseudo-random numbers

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

double drand48(void);
double erand48(unsigned short xsubi[3]);

long lrand48(void);
long nrand48(unsigned short xsubi[3]);

long mrand48(void);
long jrand48(unsigned short xsubi[3]);

void srand48(long seedval);
unsigned short *seed48(unsigned short seed16v[3]);
void lcong48(unsigned short param[7]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

DESCRIPTION
These functions generate pseudo-random numbers using the linear congruential algo-
rithm and 48-bit integer arithmetic.

The drand48() and erand48() functions return nonnegative double-precision floating-
point values uniformly distributed over the interval [0.0, 1.0).

The lrand48() and nrand48() functions return nonnegative long integers uniformly
distributed over the interval [0, 2^31).

The mrand48() and jrand48() functions return signed long integers uniformly dis-
tributed over the interval [-2^31, 2^31).

The srand48(), seed48(), and lcong48() functions are initialization functions, one of
which should be called before using drand48(), lrand48(), or mrand48(). The func-
tions erand48(), nrand48(), and jrand48() do not require an initialization function to
be called first.

All the functions work by generating a sequence of 48-bit integers, Xi, according to
the linear congruential formula:

Xn+1 = (aXn + c) mod m, where n >= 0

The parameter m = 2^48, hence 48-bit integer arithmetic is performed. Unless
lcong48() is called, a and c are given by:

a = 0x5DEECE66D
c = 0xB

Linux man-pages 6.13 2024-07-23 1522

drand48(3) Library Functions Manual drand48(3)

The value returned by any of the functions drand48(), erand48(), lrand48(),
nrand48(), mrand48(), or jrand48() is computed by first generating the next 48-bit
Xi in the sequence. Then the appropriate number of bits, according to the type of data
item to be returned, is copied from the high-order bits of Xi and transformed into the
returned value.

The functions drand48(), lrand48(), and mrand48() store the last 48-bit Xi gener-
ated in an internal buffer. The functions erand48(), nrand48(), and jrand48() require
the calling program to provide storage for the successive Xi values in the array argu-
ment xsubi. The functions are initialized by placing the initial value of Xi into the ar-
ray before calling the function for the first time.

The initializer function srand48() sets the high order 32-bits of Xi to the argument
seedval. The low order 16-bits are set to the arbitrary value 0x330E.

The initializer function seed48() sets the value of Xi to the 48-bit value specified in
the array argument seed16v. The previous value of Xi is copied into an internal buffer
and a pointer to this buffer is returned by seed48().

The initialization function lcong48() allows the user to specify initial values for Xi, a,
and c. Array argument elements param[0-2] specify Xi, param[3-5] specify a, and
param[6] specifies c. After lcong48() has been called, a subsequent call to either
srand48() or seed48() will restore the standard values of a and c.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetydrand48(), erand48(), lrand48(), nrand48(),
mrand48(), jrand48(), srand48(), seed48(),
lcong48()

MT-Unsafe
race:drand48

The above functions record global state information for the random number generator,
so they are not thread-safe.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

SEE ALSO
rand(3), random(3)

Linux man-pages 6.13 2024-07-23 1523

drand48_r(3) Library Functions Manual drand48_r(3)

NAME
drand48_r, erand48_r, lrand48_r, nrand48_r, mrand48_r, jrand48_r, srand48_r,
seed48_r, lcong48_r - generate uniformly distributed pseudo-random numbers reen-
trantly

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int drand48_r(struct drand48_data *restrict buffer,
double *restrict result);

int erand48_r(unsigned short xsubi[3],
struct drand48_data *restrict buffer,
double *restrict result);

int lrand48_r(struct drand48_data *restrict buffer,
long *restrict result);

int nrand48_r(unsigned short xsubi[3],
struct drand48_data *restrict buffer,
long *restrict result);

int mrand48_r(struct drand48_data *restrict buffer,
long *restrict result);

int jrand48_r(unsigned short xsubi[3],
struct drand48_data *restrict buffer,
long *restrict result);

int srand48_r(long int seedval, struct drand48_data *buffer);
int seed48_r(unsigned short seed16v[3], struct drand48_data *buffer);
int lcong48_r(unsigned short param[7], struct drand48_data *buffer);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
These functions are the reentrant analogs of the functions described in drand48(3).
Instead of modifying the global random generator state, they use the supplied data
buffer.

Before the first use, this struct must be initialized, for example, by filling it with zeros,
or by calling one of the functions srand48_r(), seed48_r(), or lcong48_r().

RETURN VALUE
The return value is 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1524

drand48_r(3) Library Functions Manual drand48_r(3)

Interface Attribute Value
Thread safety MT-Safe race:bufferdrand48_r(), erand48_r(), lrand48_r(),

nrand48_r(), mrand48_r(), jrand48_r(),
srand48_r(), seed48_r(), lcong48_r()

STANDARDS
GNU.

SEE ALSO
drand48(3), rand(3), random(3)

Linux man-pages 6.13 2024-07-23 1525

duplocale(3) Library Functions Manual duplocale(3)

NAME
duplocale - duplicate a locale object

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <locale.h>

locale_t duplocale(locale_t locobj);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

duplocale():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The duplocale() function creates a duplicate of the locale object referred to by locobj.

If locobj is LC_GLOBAL_LOCALE, duplocale() creates a locale object containing
a copy of the global locale determined by setlocale(3).

RETURN VALUE
On success, duplocale() returns a handle for the new locale object. On error, it re-
turns (locale_t) 0, and sets errno to indicate the error.

ERRORS
ENOMEM

Insufficient memory to create the duplicate locale object.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.3.

NOTES
Duplicating a locale can serve the following purposes:

• To create a copy of a locale object in which one of more categories are to be modi-
fied (using newlocale(3)).

• To obtain a handle for the current locale which can used in other functions that
employ a locale handle, such as toupper_l(3). This is done by applying duplo-
cale() to the value returned by the following call:

loc = uselocale((locale_t) 0);

This technique is necessary, because the above uselocale(3) call may return the
value LC_GLOBAL_LOCALE, which results in undefined behavior if passed to
functions such as toupper_l(3). Calling duplocale() can be used to ensure that the
LC_GLOBAL_LOCALE value is converted into a usable locale object. See EX-
AMPLES, below.

Each locale object created by duplocale() should be deallocated using freelocale(3).

Linux man-pages 6.13 2024-07-23 1526

duplocale(3) Library Functions Manual duplocale(3)

EXAMPLES
The program below uses uselocale(3) and duplocale() to obtain a handle for the cur-
rent locale which is then passed to toupper_l(3). The program takes one command-
line argument, a string of characters that is converted to uppercase and displayed on
standard output. An example of its use is the following:

$./a.out abc
ABC

Program source

#define _XOPEN_SOURCE 700
#include <ctype.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

int
main(int argc, char *argv[])
{

locale_t loc, nloc;

if (argc != 2) {
fprintf(stderr, "Usage: %s string\n", argv[0]);
exit(EXIT_FAILURE);

}

/* This sequence is necessary, because uselocale() might return
the value LC_GLOBAL_LOCALE, which can't be passed as an
argument to toupper_l(). */

loc = uselocale((locale_t) 0);
if (loc == (locale_t) 0)

errExit("uselocale");

nloc = duplocale(loc);
if (nloc == (locale_t) 0)

errExit("duplocale");

for (char *p = argv[1]; *p; p++)
putchar(toupper_l(*p, nloc));

printf("\n");

freelocale(nloc);

exit(EXIT_SUCCESS);

Linux man-pages 6.13 2024-07-23 1527

duplocale(3) Library Functions Manual duplocale(3)

}

SEE ALSO
freelocale(3), newlocale(3), setlocale(3), uselocale(3), locale(5), locale(7)

Linux man-pages 6.13 2024-07-23 1528

dysize(3) Library Functions Manual dysize(3)

NAME
dysize - get number of days for a given year

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

int dysize(int year);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

dysize():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The function returns 365 for a normal year and 366 for a leap year. The calculation
for leap year is based on:

(year) %4 == 0 && ((year) %100 != 0 || (year) %400 == 0)

The formula is defined in the macro __isleap(year) also found in <time.h>.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedysize()

STANDARDS
None.

HISTORY
SunOS 4.x.

This is a compatibility function only. Don’t use it in new programs.

SEE ALSO
strftime(3)

Linux man-pages 6.13 2024-07-23 1529

ecvt(3) Library Functions Manual ecvt(3)

NAME
ecvt, fcvt - convert a floating-point number to a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

[[deprecated]] char *ecvt(double number, int ndigits,
int *restrict decpt, int *restrict sign);

[[deprecated]] char *fcvt(double number, int ndigits,
int *restrict decpt, int *restrict sign);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ecvt(), fcvt():
Since glibc 2.17

(_XOPEN_SOURCE >= 500 && ! (_POSIX_C_SOURCE >= 200809L))
|| /* glibc >= 2.20 */ _DEFAULT_SOURCE
|| /* glibc <= 2.19 */ _SVID_SOURCE

glibc 2.12 to glibc 2.16:
(_XOPEN_SOURCE >= 500 && ! (_POSIX_C_SOURCE >= 200112L))

|| _SVID_SOURCE
Before glibc 2.12:

_SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The ecvt() function converts number to a null-terminated string of ndigits digits
(where ndigits is reduced to a system-specific limit determined by the precision of a
double), and returns a pointer to the string. The high-order digit is nonzero, unless
number is zero. The low order digit is rounded. The string itself does not contain a
decimal point; however, the position of the decimal point relative to the start of the
string is stored in *decpt. A negative value for *decpt means that the decimal point is
to the left of the start of the string. If the sign of number is negative, *sign is set to a
nonzero value, otherwise it is set to 0. If number is zero, it is unspecified whether
*decpt is 0 or 1.

The fcvt() function is identical to ecvt(), except that ndigits specifies the number of
digits after the decimal point.

RETURN VALUE
Both the ecvt() and fcvt() functions return a pointer to a static string containing the
ASCII representation of number. The static string is overwritten by each call to ecvt()
or fcvt().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:ecvtecvt()
Thread safety MT-Unsafe race:fcvtfcvt()

Linux man-pages 6.13 2024-07-23 1530

ecvt(3) Library Functions Manual ecvt(3)

STANDARDS
None.

HISTORY
SVr2; marked as LEGACY in POSIX.1-2001. POSIX.1-2008 removes the specifica-
tions of ecvt() and fcvt(), recommending the use of sprintf(3) instead (though
snprintf(3) may be preferable).

NOTES
Not all locales use a point as the radix character ("decimal point").

SEE ALSO
ecvt_r(3), gcvt(3), qecvt(3), setlocale(3), sprintf(3)

Linux man-pages 6.13 2024-07-23 1531

ecvt_r(3) Library Functions Manual ecvt_r(3)

NAME
ecvt_r, fcvt_r, qecvt_r, qfcvt_r - convert a floating-point number to a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

[[deprecated]] int ecvt_r(double number, int ndigits,
int *restrict decpt, int *restrict sign,
char *restrict buf , size_t size);

[[deprecated]] int fcvt_r(double number, int ndigits,
int *restrict decpt, int *restrict sign,
char *restrict buf , size_t size);

[[deprecated]] int qecvt_r(long double number, int ndigits,
int *restrict decpt, int *restrict sign,
char *restrict buf , size_t size);

[[deprecated]] int qfcvt_r(long double number, int ndigits,
int *restrict decpt, int *restrict sign,
char *restrict buf , size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ecvt_r(), fcvt_r(), qecvt_r(), qfcvt_r():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The functions ecvt_r(), fcvt_r(), qecvt_r(), and qfcvt_r() are identical to ecvt(3),
fcvt(3), qecvt(3), and qfcvt(3), respectively, except that they do not return their result
in a static buffer, but instead use the supplied buf of size size. See ecvt(3) and
qecvt(3).

RETURN VALUE
These functions return 0 on success, and -1 otherwise.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeecvt_r(), fcvt_r(), qecvt_r(), qfcvt_r()

STANDARDS
GNU.

NOTES
These functions are obsolete. Instead, sprintf(3) is recommended.

SEE ALSO
ecvt(3), qecvt(3), sprintf(3)

Linux man-pages 6.13 2024-11-17 1532

encrypt(3) Library Functions Manual encrypt(3)

NAME
encrypt, setkey, encrypt_r, setkey_r - encrypt 64-bit messages

LIBRARY
Password hashing library (libcrypt, -lcrypt)

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

[[deprecated]] void encrypt(char block[64], int edflag);

#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <stdlib.h>

[[deprecated]] void setkey(const char *key);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <crypt.h>

[[deprecated]] void setkey_r(const char *key, struct crypt_data *data);
[[deprecated]] void encrypt_r(char *block, int edflag,

struct crypt_data *data);

DESCRIPTION
These functions encrypt and decrypt 64-bit messages. The setkey() function sets the
key used by encrypt(). The key argument used here is an array of 64 bytes, each of
which has numerical value 1 or 0. The bytes key[n] where n=8*i-1 are ignored, so
that the effective key length is 56 bits.

The encrypt() function modifies the passed buffer, encoding if edflag is 0, and decod-
ing if 1 is being passed. Like the key argument, also block is a bit vector representa-
tion of the actual value that is encoded. The result is returned in that same vector.

These two functions are not reentrant, that is, the key data is kept in static storage.
The functions setkey_r() and encrypt_r() are the reentrant versions. They use the
following structure to hold the key data:

struct crypt_data {
char keysched[16 * 8];
char sb0[32768];
char sb1[32768];
char sb2[32768];
char sb3[32768];
char crypt_3_buf[14];
char current_salt[2];
long current_saltbits;
int direction;
int initialized;

};

Before calling setkey_r() set data->initialized to zero.

RETURN VALUE
These functions do not return any value.

Linux man-pages 6.13 2024-07-23 1533

encrypt(3) Library Functions Manual encrypt(3)

ERRORS
Set errno to zero before calling the above functions. On success, errno is unchanged.

ENOSYS
The function is not provided. (For example because of former USA export re-
strictions.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:cryptencrypt(), setkey()
Thread safety MT-Safeencrypt_r(), setkey_r()

STANDARDS
encrypt()
setkey()

POSIX.1-2008.

encrypt_r()
setkey_r()

None.

HISTORY
Removed in glibc 2.28.

Because they employ the DES block cipher, which is no longer considered secure,
these functions were removed from glibc. Applications should switch to a modern
cryptography library, such as libgcrypt.

encrypt()
setkey()

POSIX.1-2001, SUS, SVr4.

Availability in glibc
See crypt(3).

Features in glibc
In glibc 2.2, these functions use the DES algorithm.

EXAMPLES
#define _XOPEN_SOURCE
#include <crypt.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(void)
{

char key[64];
char orig[9] = "eggplant";
char buf[64];
char txt[9];

Linux man-pages 6.13 2024-07-23 1534

encrypt(3) Library Functions Manual encrypt(3)

for (size_t i = 0; i < 64; i++) {
key[i] = rand() & 1;

}

for (size_t i = 0; i < 8; i++) {
for (size_t j = 0; j < 8; j++) {

buf[i * 8 + j] = orig[i] >> j & 1;
}
setkey(key);

}
printf("Before encrypting: %s\n", orig);

encrypt(buf, 0);
for (size_t i = 0; i < 8; i++) {

for (size_t j = 0, txt[i] = '\0'; j < 8; j++) {
txt[i] |= buf[i * 8 + j] << j;

}
txt[8] = '\0';

}
printf("After encrypting: %s\n", txt);

encrypt(buf, 1);
for (size_t i = 0; i < 8; i++) {

for (size_t j = 0, txt[i] = '\0'; j < 8; j++) {
txt[i] |= buf[i * 8 + j] << j;

}
txt[8] = '\0';

}
printf("After decrypting: %s\n", txt);
exit(EXIT_SUCCESS);

}

SEE ALSO
cbc_crypt(3), crypt(3), ecb_crypt(3)

Linux man-pages 6.13 2024-07-23 1535

end(3) Library Functions Manual end(3)

NAME
etext, edata, end - end of program segments

SYNOPSIS
extern etext;
extern edata;
extern end;

DESCRIPTION
The addresses of these symbols indicate the end of various program segments:

etext This is the first address past the end of the text segment (the program code).

edata This is the first address past the end of the initialized data segment.

end This is the first address past the end of the uninitialized data segment (also
known as the BSS segment).

STANDARDS
None.

HISTORY
Although these symbols have long been provided on most UNIX systems, they are not
standardized; use with caution.

NOTES
The program must explicitly declare these symbols; they are not defined in any header
file.

On some systems the names of these symbols are preceded by underscores, thus:
_etext, _edata, and _end . These symbols are also defined for programs compiled on
Linux.

At the start of program execution, the program break will be somewhere near &end
(perhaps at the start of the following page). However, the break will change as mem-
ory is allocated via brk(2) or malloc(3). Use sbrk(2) with an argument of zero to find
the current value of the program break.

EXAMPLES
When run, the program below produces output such as the following:

$./a.out
First address past:

program text (etext) 0x8048568
initialized data (edata) 0x804a01c
uninitialized data (end) 0x804a024

Program source

#include <stdio.h>
#include <stdlib.h>

extern char etext, edata, end; /* The symbols must have some type,
or "gcc -Wall" complains */

int

Linux man-pages 6.13 2024-06-15 1536

end(3) Library Functions Manual end(3)

main(void)
{

printf("First address past:\n");
printf(" program text (etext) %10p\n", &etext);
printf(" initialized data (edata) %10p\n", &edata);
printf(" uninitialized data (end) %10p\n", &end);

exit(EXIT_SUCCESS);
}

SEE ALSO
objdump(1), readelf (1), sbrk(2), elf(5)

Linux man-pages 6.13 2024-06-15 1537

endian(3) Library Functions Manual endian(3)

NAME
htobe16, htole16, be16toh, le16toh, htobe32, htole32, be32toh, le32toh, htobe64,
htole64, be64toh, le64toh - convert values between host and big-/little-endian byte or-
der

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <endian.h>

uint16_t htobe16(uint16_t host_16bits);
uint16_t htole16(uint16_t host_16bits);
uint16_t be16toh(uint16_t big_endian_16bits);
uint16_t le16toh(uint16_t little_endian_16bits);

uint32_t htobe32(uint32_t host_32bits);
uint32_t htole32(uint32_t host_32bits);
uint32_t be32toh(uint32_t big_endian_32bits);
uint32_t le32toh(uint32_t little_endian_32bits);

uint64_t htobe64(uint64_t host_64bits);
uint64_t htole64(uint64_t host_64bits);
uint64_t be64toh(uint64_t big_endian_64bits);
uint64_t le64toh(uint64_t little_endian_64bits);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

htobe16(), htole16(), be16toh(), le16toh(), htobe32(), htole32(), be32toh(),
le32toh(), htobe64(), htole64(), be64toh(), le64toh():

Since glibc 2.19:
_DEFAULT_SOURCE

In glibc up to and including 2.19:
_BSD_SOURCE

DESCRIPTION
These functions convert the byte encoding of integer values from the byte order that
the current CPU (the "host") uses, to and from little-endian and big-endian byte order.

The number, nn, in the name of each function indicates the size of integer handled by
the function, either 16, 32, or 64 bits.

The functions with names of the form "htobenn" convert from host byte order to big-
endian order.

The functions with names of the form "htolenn" convert from host byte order to little-
endian order.

The functions with names of the form "benntoh" convert from big-endian order to
host byte order.

The functions with names of the form "lenntoh" convert from little-endian order to
host byte order.

VERSIONS
Similar functions are present on the BSDs, where the required header file is <sys/en-
dian.h> instead of <endian.h>. Unfortunately, NetBSD, FreeBSD, and glibc haven’t

Linux man-pages 6.13 2024-07-23 1538

endian(3) Library Functions Manual endian(3)

followed the original OpenBSD naming convention for these functions, whereby the
nn component always appears at the end of the function name (thus, for example, in
NetBSD, FreeBSD, and glibc, the equivalent of OpenBSDs "betoh32" is "be32toh").

STANDARDS
None.

HISTORY
glibc 2.9.

These functions are similar to the older byteorder(3) family of functions. For exam-
ple, be32toh() is identical to ntohl().

The advantage of the byteorder(3) functions is that they are standard functions avail-
able on all UNIX systems. On the other hand, the fact that they were designed for use
in the context of TCP/IP means that they lack the 64-bit and little-endian variants de-
scribed in this page.

EXAMPLES
The program below display the results of converting an integer from host byte order to
both little-endian and big-endian byte order. Since host byte order is either little-en-
dian or big-endian, only one of these conversions will have an effect. When we run
this program on a little-endian system such as x86-32, we see the following:

$./a.out
x.u32 = 0x44332211
htole32(x.u32) = 0x44332211
htobe32(x.u32) = 0x11223344

Program source

#include <endian.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

union {
uint32_t u32;
uint8_t arr[4];

} x;

x.arr[0] = 0x11; /* Lowest-address byte */
x.arr[1] = 0x22;
x.arr[2] = 0x33;
x.arr[3] = 0x44; /* Highest-address byte */

printf("x.u32 = %#x\n", x.u32);
printf("htole32(x.u32) = %#x\n", htole32(x.u32));
printf("htobe32(x.u32) = %#x\n", htobe32(x.u32));

Linux man-pages 6.13 2024-07-23 1539

endian(3) Library Functions Manual endian(3)

exit(EXIT_SUCCESS);
}

SEE ALSO
bswap(3), byteorder(3)

Linux man-pages 6.13 2024-07-23 1540

envz_add(3) Library Functions Manual envz_add(3)

NAME
envz_add, envz_entry, envz_get, envz_merge, envz_remove, envz_strip - environment
string support

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <envz.h>

error_t envz_add(char **restrict envz, size_t *restrict envz_len,
const char *restrict name, const char *restrict value);

char *envz_entry(const char *restrict envz, size_t envz_len,
const char *restrict name);

char *envz_get(const char *restrict envz, size_t envz_len,
const char *restrict name);

error_t envz_merge(char **restrict envz, size_t *restrict envz_len,
const char *restrict envz2, size_t envz2_len,
int override);

void envz_remove(char **restrict envz, size_t *restrict envz_len,
const char *restrict name);

void envz_strip(char **restrict envz, size_t *restrict envz_len);

DESCRIPTION
These functions are glibc-specific.

An argz vector is a pointer to a character buffer together with a length, see
argz_add(3). An envz vector is a special argz vector, namely one where the strings
have the form "name=value". Everything after the first '=' is considered to be the
value. If there is no '=', the value is taken to be NULL. (While the value in case of a
trailing '=' is the empty string "".)

These functions are for handling envz vectors.

envz_add() adds the string "name=value" (in case value is non-NULL) or "name" (in
case value is NULL) to the envz vector (*envz, *envz_len) and updates *envz and
*envz_len. If an entry with the same name existed, it is removed.

envz_entry() looks for name in the envz vector (envz, envz_len) and returns the entry
if found, or NULL if not.

envz_get() looks for name in the envz vector (envz, envz_len) and returns the value if
found, or NULL if not. (Note that the value can also be NULL, namely when there is
an entry for name without '=' sign.)

envz_merge() adds each entry in envz2 to *envz, as if with envz_add(). If override is
true, then values in envz2 will supersede those with the same name in *envz, otherwise
not.

envz_remove() removes the entry for name from (*envz, *envz_len) if there was one.

envz_strip() removes all entries with value NULL.

Linux man-pages 6.13 2024-07-23 1541

envz_add(3) Library Functions Manual envz_add(3)

RETURN VALUE
All envz functions that do memory allocation have a return type of error_t (an integer
type), and return 0 for success, and ENOMEM if an allocation error occurs.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeenvz_add(), envz_entry(), envz_get(),
envz_merge(), envz_remove(), envz_strip()

STANDARDS
GNU.

EXAMPLES
#include <envz.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[], char *envp[])
{

char *str;
size_t e_len = 0;

for (size_t i = 0; envp[i] != NULL; i++)
e_len += strlen(envp[i]) + 1;

str = envz_entry(*envp, e_len, "HOME");
printf("%s\n", str);
str = envz_get(*envp, e_len, "HOME");
printf("%s\n", str);
exit(EXIT_SUCCESS);

}

SEE ALSO
argz_add(3)

Linux man-pages 6.13 2024-07-23 1542

erf (3) Library Functions Manual erf (3)

NAME
erf, erff, erfl - error function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double erf(double x);
float erff(float x);
long double erfl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

erf():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

erff(), erfl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the error function of x, defined as

erf(x) = 2/sqrt(pi) * integral from 0 to x of exp(-t*t) dt

RETURN VALUE
On success, these functions return the value of the error function of x, a value in the
range [-1, 1].

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity (negative infinity), +1 (-1) is returned.

If x is subnormal, a range error occurs, and the return value is 2*x/sqrt(pi).

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result underflow (x is subnormal)
An underflow floating-point exception (FE_UNDERFLOW) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeerf(), erff(), erfl()

Linux man-pages 6.13 2024-07-23 1543

erf (3) Library Functions Manual erf (3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
cerf (3), erfc(3), exp(3)

Linux man-pages 6.13 2024-07-23 1544

erfc(3) Library Functions Manual erfc(3)

NAME
erfc, erfcf, erfcl - complementary error function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

erfc():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

erfcf(), erfcl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the complementary error function of x, that is, 1.0 - erf(x).

RETURN VALUE
On success, these functions return the complementary error function of x, a value in
the range [0,2].

If x is a NaN, a NaN is returned.

If x is +0 or -0, 1 is returned.

If x is positive infinity, +0 is returned.

If x is negative infinity, +2 is returned.

If the function result underflows and produces an unrepresentable value, the return
value is 0.0.

If the function result underflows but produces a representable (i.e., subnormal) value,
that value is returned, and a range error occurs.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result underflow (result is subnormal)
An underflow floating-point exception (FE_UNDERFLOW) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1545

erfc(3) Library Functions Manual erfc(3)

Interface Attribute Value
Thread safety MT-Safeerfc(), erfcf(), erfcl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

NOTES
The erfc(), erfcf(), and erfcl() functions are provided to avoid the loss accuracy that
would occur for the calculation 1-erf(x) for large values of x (for which the value of
erf(x) approaches 1).

SEE ALSO
cerf (3), erf(3), exp(3)

Linux man-pages 6.13 2024-07-23 1546

err(3) Library Functions Manual err(3)

NAME
err, verr, errx, verrx, warn, vwarn, warnx, vwarnx - formatted error messages

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <err.h>

[[noreturn]] void err(int eval, const char * fmt, ...);
[[noreturn]] void errx(int eval, const char * fmt, ...);

void warn(const char * fmt, ...);
void warnx(const char * fmt, ...);

#include <stdarg.h>

[[noreturn]] void verr(int eval, const char * fmt, va_list args);
[[noreturn]] void verrx(int eval, const char * fmt, va_list args);

void vwarn(const char * fmt, va_list args);
void vwarnx(const char * fmt, va_list args);

DESCRIPTION
The err() and warn() family of functions display a formatted error message on the
standard error output. In all cases, the last component of the program name, a colon
character, and a space are output. If the fmt argument is not NULL, the printf(3)-like
formatted error message is output. The output is terminated by a newline character.

The err(), verr(), warn(), and vwarn() functions append an error message obtained
from strerror(3) based on the global variable errno, preceded by another colon and
space unless the fmt argument is NULL.

The errx() and warnx() functions do not append an error message.

The err(), verr(), errx(), and verrx() functions do not return, but exit with the value
of the argument eval.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeerr(), errx(), warn(), warnx(), verr(), verrx(),
vwarn(), vwarnx()

STANDARDS
BSD.

HISTORY
err()
warn()

4.4BSD.

EXAMPLES
Display the current errno information string and exit:

p = malloc(size);
if (p == NULL)

err(EXIT_FAILURE, NULL);

Linux man-pages 6.13 2024-07-23 1547

err(3) Library Functions Manual err(3)

fd = open(file_name, O_RDONLY, 0);
if (fd == -1)

err(EXIT_FAILURE, "%s", file_name);

Display an error message and exit:

if (tm.tm_hour < START_TIME)
errx(EXIT_FAILURE, "too early, wait until %s",

start_time_string);

Warn of an error:

fd = open(raw_device, O_RDONLY, 0);
if (fd == -1)

warnx("%s: %s: trying the block device",
raw_device, strerror(errno));

fd = open(block_device, O_RDONLY, 0);
if (fd == -1)

err(EXIT_FAILURE, "%s", block_device);

SEE ALSO
error(3), exit(3), perror(3), printf(3), strerror(3)

Linux man-pages 6.13 2024-07-23 1548

errno(3) Library Functions Manual errno(3)

NAME
errno - number of last error

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <errno.h>

DESCRIPTION
The <errno.h> header file defines the integer variable errno, which is set by system
calls and some library functions in the event of an error to indicate what went wrong.

errno
The value in errno is significant only when the return value of the call indicated an er-
ror (i.e., -1 from most system calls; -1 or NULL from most library functions); a func-
tion that succeeds is allowed to change errno. The value of errno is never set to zero
by any system call or library function.

For some system calls and library functions (e.g., getpriority(2)), -1 is a valid return
on success. In such cases, a successful return can be distinguished from an error re-
turn by setting errno to zero before the call, and then, if the call returns a status that
indicates that an error may have occurred, checking to see if errno has a nonzero
value.

errno is defined by the ISO C standard to be a modifiable lvalue of type int, and must
not be explicitly declared; errno may be a macro. errno is thread-local; setting it in
one thread does not affect its value in any other thread.

Error numbers and names
Valid error numbers are all positive numbers. The <errno.h> header file defines sym-
bolic names for each of the possible error numbers that may appear in errno.

All the error names specified by POSIX.1 must have distinct values, with the excep-
tion of EAGAIN and EWOULDBLOCK, which may be the same. On Linux, these
two have the same value on all architectures.

The error numbers that correspond to each symbolic name vary across UNIX systems,
and even across different architectures on Linux. Therefore, numeric values are not
included as part of the list of error names below. The perror(3) and strerror(3) func-
tions can be used to convert these names to corresponding textual error messages.

On any particular Linux system, one can obtain a list of all symbolic error names and
the corresponding error numbers using the errno(1) command (part of the moreutils
package):

$ errno -l
EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process
EINTR 4 Interrupted system call
EIO 5 Input/output error
...

The errno(1) command can also be used to look up individual error numbers and
names, and to search for errors using strings from the error description, as in the

Linux man-pages 6.13 2024-07-23 1549

errno(3) Library Functions Manual errno(3)

following examples:

$ errno 2
ENOENT 2 No such file or directory
$ errno ESRCH
ESRCH 3 No such process
$ errno -s permission
EACCES 13 Permission denied

List of error names
In the list of the symbolic error names below, various names are marked as follows:

POSIX.1-2001
The name is defined by POSIX.1-2001, and is defined in later POSIX.1 ver-
sions, unless otherwise indicated.

POSIX.1-2008
The name is defined in POSIX.1-2008, but was not present in earlier POSIX.1
standards.

C99 The name is defined by C99.

Below is a list of the symbolic error names that are defined on Linux:

E2BIG Argument list too long (POSIX.1-2001).

EACCES Permission denied (POSIX.1-2001).

EADDRINUSE Address already in use (POSIX.1-2001).

EADDRNOTAVAIL
Address not available (POSIX.1-2001).

EAFNOSUPPORT
Address family not supported (POSIX.1-2001).

EAGAIN Resource temporarily unavailable (may be the same value as
EWOULDBLOCK) (POSIX.1-2001).

EALREADY Connection already in progress (POSIX.1-2001).

EBADE Invalid exchange.

EBADF Bad file descriptor (POSIX.1-2001).

EBADFD File descriptor in bad state.

EBADMSG Bad message (POSIX.1-2001).

EBADR Invalid request descriptor.

EBADRQC Invalid request code.

EBADSLT Invalid slot.

EBUSY Device or resource busy (POSIX.1-2001).

ECANCELED Operation canceled (POSIX.1-2001).

ECHILD No child processes (POSIX.1-2001).

Linux man-pages 6.13 2024-07-23 1550

errno(3) Library Functions Manual errno(3)

ECHRNG Channel number out of range.

ECOMM Communication error on send.

ECONNABORTED
Connection aborted (POSIX.1-2001).

ECONNREFUSED
Connection refused (POSIX.1-2001).

ECONNRESET Connection reset (POSIX.1-2001).

EDEADLK Resource deadlock avoided (POSIX.1-2001).

EDEADLOCK On most architectures, a synonym for EDEADLK. On some ar-
chitectures (e.g., Linux MIPS, PowerPC, SPARC), it is a separate
error code "File locking deadlock error".

EDESTADDRREQ
Destination address required (POSIX.1-2001).

EDOM Mathematics argument out of domain of function (POSIX.1,
C99).

EDQUOT Disk quota exceeded (POSIX.1-2001).

EEXIST File exists (POSIX.1-2001).

EFAULT Bad address (POSIX.1-2001).

EFBIG File too large (POSIX.1-2001).

EHOSTDOWN Host is down.

EHOSTUNREACH
Host is unreachable (POSIX.1-2001).

EHWPOISON Memory page has hardware error.

EIDRM Identifier removed (POSIX.1-2001).

EILSEQ Invalid or incomplete multibyte or wide character (POSIX.1,
C99).

The text shown here is the glibc error description; in POSIX.1,
this error is described as "Illegal byte sequence".

EINPROGRESS Operation in progress (POSIX.1-2001).

EINTR Interrupted function call (POSIX.1-2001); see signal(7).

EINVAL Invalid argument (POSIX.1-2001).

EIO Input/output error (POSIX.1-2001).

EISCONN Socket is connected (POSIX.1-2001).

EISDIR Is a directory (POSIX.1-2001).

EISNAM Is a named type file.

EKEYEXPIRED Key has expired.

Linux man-pages 6.13 2024-07-23 1551

errno(3) Library Functions Manual errno(3)

EKEYREJECTED
Key was rejected by service.

EKEYREVOKED
Key has been revoked.

EL2HLT Level 2 halted.

EL2NSYNC Level 2 not synchronized.

EL3HLT Level 3 halted.

EL3RST Level 3 reset.

ELIBACC Cannot access a needed shared library.

ELIBBAD Accessing a corrupted shared library.

ELIBMAX Attempting to link in too many shared libraries.

ELIBSCN .lib section in a.out corrupted

ELIBEXEC Cannot exec a shared library directly.

ELNRNG Link number out of range.

ELOOP Too many levels of symbolic links (POSIX.1-2001).

EMEDIUMTYPE
Wrong medium type.

EMFILE Too many open files (POSIX.1-2001). Commonly caused by ex-
ceeding the RLIMIT_NOFILE resource limit described in getr-
limit(2). Can also be caused by exceeding the limit specified in
/proc/sys/fs/nr_open.

EMLINK Too many links (POSIX.1-2001).

EMSGSIZE Message too long (POSIX.1-2001).

EMULTIHOP Multihop attempted (POSIX.1-2001).

ENAMETOOLONG
Filename too long (POSIX.1-2001).

ENETDOWN Network is down (POSIX.1-2001).

ENETRESET Connection aborted by network (POSIX.1-2001).

ENETUNREACH
Network unreachable (POSIX.1-2001).

ENFILE Too many open files in system (POSIX.1-2001). On Linux, this is
probably a result of encountering the /proc/sys/fs/file-max limit
(see proc(5)).

ENOANO No anode.

ENOBUFS No buffer space available (POSIX.1 (XSI STREAMS option)).

ENODATA The named attribute does not exist, or the process has no access to
this attribute; see xattr(7).

Linux man-pages 6.13 2024-07-23 1552

errno(3) Library Functions Manual errno(3)

In POSIX.1-2001 (XSI STREAMS option), this error was de-
scribed as "No message is available on the STREAM head read
queue".

ENODEV No such device (POSIX.1-2001).

ENOENT No such file or directory (POSIX.1-2001).

Typically, this error results when a specified pathname does not
exist, or one of the components in the directory prefix of a path-
name does not exist, or the specified pathname is a dangling sym-
bolic link.

ENOEXEC Exec format error (POSIX.1-2001).

ENOKEY Required key not available.

ENOLCK No locks available (POSIX.1-2001).

ENOLINK Link has been severed (POSIX.1-2001).

ENOMEDIUM No medium found.

ENOMEM Not enough space/cannot allocate memory (POSIX.1-2001).

ENOMSG No message of the desired type (POSIX.1-2001).

ENONET Machine is not on the network.

ENOPKG Package not installed.

ENOPROTOOPT
Protocol not available (POSIX.1-2001).

ENOSPC No space left on device (POSIX.1-2001).

ENOSR No STREAM resources (POSIX.1 (XSI STREAMS option)).

ENOSTR Not a STREAM (POSIX.1 (XSI STREAMS option)).

ENOSYS Function not implemented (POSIX.1-2001).

ENOTBLK Block device required.

ENOTCONN The socket is not connected (POSIX.1-2001).

ENOTDIR Not a directory (POSIX.1-2001).

ENOTEMPTY Directory not empty (POSIX.1-2001).

ENOTRECOVERABLE
State not recoverable (POSIX.1-2008).

ENOTSOCK Not a socket (POSIX.1-2001).

ENOTSUP Operation not supported (POSIX.1-2001).

ENOTTY Inappropriate I/O control operation (POSIX.1-2001).

ENOTUNIQ Name not unique on network.

ENXIO No such device or address (POSIX.1-2001).

Linux man-pages 6.13 2024-07-23 1553

errno(3) Library Functions Manual errno(3)

EOPNOTSUPP Operation not supported on socket (POSIX.1-2001).

(ENOTSUP and EOPNOTSUPP have the same value on Linux,
but according to POSIX.1 these error values should be distinct.)

EOVERFLOW Value too large to be stored in data type (POSIX.1-2001).

EOWNERDEAD Owner died (POSIX.1-2008).

EPERM Operation not permitted (POSIX.1-2001).

EPFNOSUPPORT
Protocol family not supported.

EPIPE Broken pipe (POSIX.1-2001).

EPROTO Protocol error (POSIX.1-2001).

EPROTONOSUPPORT
Protocol not supported (POSIX.1-2001).

EPROTOTYPE Protocol wrong type for socket (POSIX.1-2001).

ERANGE Result too large (POSIX.1, C99).

EREMCHG Remote address changed.

EREMOTE Object is remote.

EREMOTEIO Remote I/O error.

ERESTART Interrupted system call should be restarted.

ERFKILL Operation not possible due to RF-kill.

EROFS Read-only filesystem (POSIX.1-2001).

ESHUTDOWN Cannot send after transport endpoint shutdown.

ESPIPE Invalid seek (POSIX.1-2001).

ESOCKTNOSUPPORT
Socket type not supported.

ESRCH No such process (POSIX.1-2001).

ESTALE Stale file handle (POSIX.1-2001).

This error can occur for NFS and for other filesystems.

ESTRPIPE Streams pipe error.

ETIME Timer expired (POSIX.1 (XSI STREAMS option)).

(POSIX.1 says "STREAM ioctl(2) timeout".)

ETIMEDOUT Connection timed out (POSIX.1-2001).

ETOOMANYREFS
Too many references: cannot splice.

ETXTBSY Text file busy (POSIX.1-2001).

EUCLEAN Structure needs cleaning.

Linux man-pages 6.13 2024-07-23 1554

errno(3) Library Functions Manual errno(3)

EUNATCH Protocol driver not attached.

EUSERS Too many users.

EWOULDBLOCK
Operation would block (may be same value as EAGAIN)
(POSIX.1-2001).

EXDEV Invalid cross-device link (POSIX.1-2001).

EXFULL Exchange full.

NOTES
A common mistake is to do

if (somecall() == -1) {
printf("somecall() failed\n");
if (errno == ...) { ... }

}

where errno no longer needs to have the value it had upon return from somecall()
(i.e., it may have been changed by the printf(3)). If the value of errno should be pre-
served across a library call, it must be saved:

if (somecall() == -1) {
int errsv = errno;
printf("somecall() failed\n");
if (errsv == ...) { ... }

}

Note that the POSIX threads APIs do not set errno on error. Instead, on failure they
return an error number as the function result. These error numbers have the same
meanings as the error numbers returned in errno by other APIs.

On some ancient systems, <errno.h> was not present or did not declare errno, so that
it was necessary to declare errno manually (i.e., extern int errno). Do not do this. It
long ago ceased to be necessary, and it will cause problems with modern versions of
the C library.

SEE ALSO
errno(1), err(3), error(3), perror(3), strerror(3)

Linux man-pages 6.13 2024-07-23 1555

error(3) Library Functions Manual error(3)

NAME
error, error_at_line, error_message_count, error_one_per_line, error_print_progname
- glibc error reporting functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <error.h>

void error(int status, int errnum, const char * format, ...);
void error_at_line(int status, int errnum, const char * filename,

unsigned int linenum, const char * format, ...);

extern unsigned int error_message_count;
extern int error_one_per_line;

extern typeof(void (void)) *error_print_progname;

DESCRIPTION
error() is a general error-reporting function. It flushes stdout, and then outputs to
stderr the program name, a colon and a space, the message specified by the
printf(3)-style format string format, and, if errnum is nonzero, a second colon and a
space followed by the string given by strerror(errnum). Any arguments required for
format should follow format in the argument list. The output is terminated by a new-
line character.

The program name printed by error() is the value of the global variable program_in-
vocation_name(3). program_invocation_name initially has the same value as
main()’s argv[0]. The value of this variable can be modified to change the output of
error().

If status has a nonzero value, then error() calls exit(3) to terminate the program using
the given value as the exit status; otherwise it returns after printing the error message.

The error_at_line() function is exactly the same as error(), except for the addition of
the arguments filename and linenum. The output produced is as for error(), except
that after the program name are written: a colon, the value of filename, a colon, and
the value of linenum. The preprocessor values __LINE__ and __FILE__ may be
useful when calling error_at_line(), but other values can also be used. For example,
these arguments could refer to a location in an input file.

If the global variable error_one_per_line is set nonzero, a sequence of er-
ror_at_line() calls with the same value of filename and linenum will result in only
one message (the first) being output.

The global variable error_message_count counts the number of messages that have
been output by error() and error_at_line().

If the global variable error_print_progname is assigned the address of a function (i.e.,
is not NULL), then that function is called instead of prefixing the message with the
program name and colon. The function should print a suitable string to stderr.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-12-13 1556

error(3) Library Functions Manual error(3)

Interface Attribute Value
Thread safety MT-Safe localeerror()
Thread safetyerror_at_line() MT-Unsafe race: error_at_line/

error_one_per_line locale

The internal error_one_per_line variable is accessed (without any form of synchro-
nization, but since it’s an int used once, it should be safe enough) and, if er-
ror_one_per_line is set nonzero, the internal static variables (not exposed to users)
used to hold the last printed filename and line number are accessed and modified with-
out synchronization; the update is not atomic and it occurs before disabling cancela-
tion, so it can be interrupted only after one of the two variables is modified. After
that, error_at_line() is very much like error().

STANDARDS
GNU.

SEE ALSO
err(3), errno(3), exit(3), perror(3), program_invocation_name(3), strerror(3)

Linux man-pages 6.13 2024-12-13 1557

ether_aton(3) Library Functions Manual ether_aton(3)

NAME
ether_aton, ether_ntoa, ether_ntohost, ether_hostton, ether_line, ether_ntoa_r,
ether_aton_r - Ethernet address manipulation routines

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netinet/ether.h>

char *ether_ntoa(const struct ether_addr *addr);
struct ether_addr *ether_aton(const char *asc);

int ether_ntohost(char *hostname, const struct ether_addr *addr);
int ether_hostton(const char *hostname, struct ether_addr *addr);

int ether_line(const char *line, struct ether_addr *addr,
char *hostname);

/* GNU extensions */
char *ether_ntoa_r(const struct ether_addr *addr, char *buf);

struct ether_addr *ether_aton_r(const char *asc,
struct ether_addr *addr);

DESCRIPTION
ether_aton() converts the 48-bit Ethernet host address asc from the standard hex-dig-
its-and-colons notation into binary data in network byte order and returns a pointer to
it in a statically allocated buffer, which subsequent calls will overwrite. ether_aton()
returns NULL if the address is invalid.

The ether_ntoa() function converts the Ethernet host address addr given in network
byte order to a string in standard hex-digits-and-colons notation, omitting leading ze-
ros. The string is returned in a statically allocated buffer, which subsequent calls will
overwrite.

The ether_ntohost() function maps an Ethernet address to the corresponding host-
name in /etc/ethers and returns nonzero if it cannot be found.

The ether_hostton() function maps a hostname to the corresponding Ethernet address
in /etc/ethers and returns nonzero if it cannot be found.

The ether_line() function parses a line in /etc/ethers format (ethernet address fol-
lowed by whitespace followed by hostname; '#' introduces a comment) and returns an
address and hostname pair, or nonzero if it cannot be parsed. The buffer pointed to by
hostname must be sufficiently long, for example, have the same length as line.

The functions ether_ntoa_r() and ether_aton_r() are reentrant thread-safe versions
of ether_ntoa() and ether_aton() respectively, and do not use static buffers.

The structure ether_addr is defined in <net/ethernet.h> as:

struct ether_addr {
uint8_t ether_addr_octet[6];

}

Linux man-pages 6.13 2024-07-23 1558

ether_aton(3) Library Functions Manual ether_aton(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafeether_aton(), ether_ntoa()
Thread safety MT-Safeether_ntohost(), ether_hostton(), ether_line(),

ether_ntoa_r(), ether_aton_r()

STANDARDS
None.

HISTORY
4.3BSD, SunOS.

BUGS
In glibc 2.2.5 and earlier, the implementation of ether_line() is broken.

SEE ALSO
ethers(5)

Linux man-pages 6.13 2024-07-23 1559

euidaccess(3) Library Functions Manual euidaccess(3)

NAME
euidaccess, eaccess - check effective user’s permissions for a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

int euidaccess(const char *pathname, int mode);
int eaccess(const char *pathname, int mode);

DESCRIPTION
Like access(2), euidaccess() checks permissions and existence of the file identified by
its argument pathname. However, whereas access(2) performs checks using the real
user and group identifiers of the process, euidaccess() uses the effective identifiers.

mode is a mask consisting of one or more of R_OK, W_OK, X_OK, and F_OK,
with the same meanings as for access(2).

eaccess() is a synonym for euidaccess(), provided for compatibility with some other
systems.

RETURN VALUE
On success (all requested permissions granted), zero is returned. On error (at least
one bit in mode asked for a permission that is denied, or some other error occurred),
-1 is returned, and errno is set to indicate the error.

ERRORS
As for access(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeeuidaccess(), eaccess()

VERSIONS
Some other systems have an eaccess() function.

STANDARDS
None.

HISTORY
eaccess()

glibc 2.4.

NOTES
Warning: Using this function to check a process’s permissions on a file before per-
forming some operation based on that information leads to race conditions: the file
permissions may change between the two steps. Generally, it is safer just to attempt
the desired operation and handle any permission error that occurs.

This function always dereferences symbolic links. If you need to check the permis-
sions on a symbolic link, use faccessat(2) with the flags AT_EACCESS and
AT_SYMLINK_NOFOLLOW.

Linux man-pages 6.13 2024-07-23 1560

euidaccess(3) Library Functions Manual euidaccess(3)

SEE ALSO
access(2), chmod(2), chown(2), faccessat(2), open(2), setgid(2), setuid(2), stat(2), cre-
dentials(7), path_resolution(7)

Linux man-pages 6.13 2024-07-23 1561

exec(3) Library Functions Manual exec(3)

NAME
execl, execlp, execle, execv, execvp, execvpe - execute a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

extern char **environ;

int execl(const char *pathname, const char *arg, ...
/*, (char *) NULL */);

int execlp(const char * file, const char *arg, ...
/*, (char *) NULL */);

int execle(const char *pathname, const char *arg, ...
/*, (char *) NULL, char *const envp[] */);

int execv(const char *pathname, char *const argv[]);
int execvp(const char * file, char *const argv[]);
int execvpe(const char * file, char *const argv[], char *const envp[]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

execvpe():
_GNU_SOURCE

DESCRIPTION
The exec() family of functions replaces the current process image with a new process
image. The functions described in this manual page are layered on top of execve(2).
(See the manual page for execve(2) for further details about the replacement of the
current process image.)

The initial argument for these functions is the name of a file that is to be executed.

The functions can be grouped based on the letters following the "exec" prefix.

l - execl(), execlp(), execle()
The const char *arg and subsequent ellipses can be thought of as arg0, arg1, ..., argn.
Together they describe a list of one or more pointers to null-terminated strings that
represent the argument list available to the executed program. The first argument, by
convention, should point to the filename associated with the file being executed. The
list of arguments must be terminated by a null pointer, and, since these are variadic
functions, this pointer must be cast (char *) NULL.

By contrast with the ’l’ functions, the ’v’ functions (below) specify the command-line
arguments of the executed program as a vector.

v - execv(), execvp(), execvpe()
The char *const argv[] argument is an array of pointers to null-terminated strings that
represent the argument list available to the new program. The first argument, by con-
vention, should point to the filename associated with the file being executed. The ar-
ray of pointers must be terminated by a null pointer.

e - execle(), execvpe()
The environment of the new process image is specified via the argument envp. The
envp argument is an array of pointers to null-terminated strings and must be

Linux man-pages 6.13 2024-07-23 1562

exec(3) Library Functions Manual exec(3)

terminated by a null pointer.

All other exec() functions (which do not include ’e’ in the suffix) take the environ-
ment for the new process image from the external variable environ in the calling
process.

p - execlp(), execvp(), execvpe()
These functions duplicate the actions of the shell in searching for an executable file if
the specified filename does not contain a slash (/) character. The file is sought in the
colon-separated list of directory pathnames specified in the PATH environment vari-
able. If this variable isn’t defined, the path list defaults to a list that includes the direc-
tories returned by confstr(_CS_PATH) (which typically returns the value
"/bin:/usr/bin") and possibly also the current working directory; see VERSIONS for
further details.

execvpe() searches for the program using the value of PATH from the caller’s envi-
ronment, not from the envp argument.

If the specified filename includes a slash character, then PATH is ignored, and the file
at the specified pathname is executed.

In addition, certain errors are treated specially.

If permission is denied for a file (the attempted execve(2) failed with the error EAC-
CES), these functions will continue searching the rest of the search path. If no other
file is found, however, they will return with errno set to EACCES.

If the header of a file isn’t recognized (the attempted execve(2) failed with the error
ENOEXEC), these functions will execute the shell (/bin/sh) with the path of the file
as its first argument. (If this attempt fails, no further searching is done.)

All other exec() functions (which do not include ’p’ in the suffix) take as their first ar-
gument a (relative or absolute) pathname that identifies the program to be executed.

RETURN VALUE
The exec() functions return only if an error has occurred. The return value is -1, and
errno is set to indicate the error.

ERRORS
All of these functions may fail and set errno for any of the errors specified for ex-
ecve(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeexecl(), execle(), execv()
Thread safety MT-Safe envexeclp(), execvp(), execvpe()

VERSIONS
The default search path (used when the environment does not contain the variable
PATH) shows some variation across systems. It generally includes /bin and /usr/bin
(in that order) and may also include the current working directory. On some other
systems, the current working is included after /bin and /usr/bin, as an anti-Trojan-
horse measure. The glibc implementation long followed the traditional default where
the current working directory is included at the start of the search path. However,

Linux man-pages 6.13 2024-07-23 1563

exec(3) Library Functions Manual exec(3)

some code refactoring during the development of glibc 2.24 caused the current work-
ing directory to be dropped altogether from the default search path. This accidental
behavior change is considered mildly beneficial, and won’t be reverted.

The behavior of execlp() and execvp() when errors occur while attempting to execute
the file is historic practice, but has not traditionally been documented and is not speci-
fied by the POSIX standard. BSD (and possibly other systems) do an automatic sleep
and retry if ETXTBSY is encountered. Linux treats it as a hard error and returns im-
mediately.

Traditionally, the functions execlp() and execvp() ignored all errors except for the
ones described above and ENOMEM and E2BIG, upon which they returned. They
now return if any error other than the ones described above occurs.

STANDARDS
environ
execl()
execlp()
execle()
execv()
execvp()

POSIX.1-2008.

execvpe()
GNU.

HISTORY
environ
execl()
execlp()
execle()
execv()
execvp()

POSIX.1-2001.

execvpe()
glibc 2.11.

BUGS
Before glibc 2.24, execl() and execle() employed realloc(3) internally and were con-
sequently not async-signal-safe, in violation of the requirements of POSIX.1. This
was fixed in glibc 2.24.

Architecture-specific details
On sparc and sparc64, execv() is provided as a system call by the kernel (with the pro-
totype shown above) for compatibility with SunOS. This function is not employed by
the execv() wrapper function on those architectures.

SEE ALSO
sh(1), execve(2), execveat(2), fork(2), ptrace(2), fexecve(3), system(3), environ(7)

Linux man-pages 6.13 2024-07-23 1564

exec(3) Library Functions Manual exec(3)

Linux man-pages 6.13 2024-07-23 1565

exit(3) Library Functions Manual exit(3)

NAME
exit - cause normal process termination

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

[[noreturn]] void exit(int status);

DESCRIPTION
The exit() function causes normal process termination and the least significant byte of
status (i.e., status & 0xFF) is returned to the parent (see wait(2)).

All functions registered with atexit(3) and on_exit(3) are called, in the reverse order of
their registration. (It is possible for one of these functions to use atexit(3) or
on_exit(3) to register an additional function to be executed during exit processing; the
new registration is added to the front of the list of functions that remain to be called.)
If one of these functions does not return (e.g., it calls _exit(2), or kills itself with a sig-
nal), then none of the remaining functions is called, and further exit processing (in
particular, flushing of stdio(3) streams) is abandoned. If a function has been regis-
tered multiple times using atexit(3) or on_exit(3), then it is called as many times as it
was registered.

All open stdio(3) streams are flushed and closed. Files created by tmpfile(3) are re-
moved.

The C standard specifies two constants, EXIT_SUCCESS and EXIT_FAILURE,
that may be passed to exit() to indicate successful or unsuccessful termination, respec-
tively.

RETURN VALUE
The exit() function does not return.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:exitexit()

The exit() function uses a global variable that is not protected, so it is not thread-safe.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001, SVr4, 4.3BSD.

NOTES
The behavior is undefined if one of the functions registered using atexit(3) and
on_exit(3) calls either exit() or longjmp(3). Note that a call to execve(2) removes reg-
istrations created using atexit(3) and on_exit(3).

The use of EXIT_SUCCESS and EXIT_FAILURE is slightly more portable (to
non-UNIX environments) than the use of 0 and some nonzero value like 1 or -1. In
particular, VMS uses a different convention.

Linux man-pages 6.13 2024-07-23 1566

exit(3) Library Functions Manual exit(3)

BSD has attempted to standardize exit codes (which some C libraries such as the
GNU C library have also adopted); see the file <sysexits.h>.

After exit(), the exit status must be transmitted to the parent process. There are three
cases:

• If the parent has set SA_NOCLDWAIT, or has set the SIGCHLD handler to
SIG_IGN, the status is discarded and the child dies immediately.

• If the parent was waiting on the child, it is notified of the exit status and the child
dies immediately.

• Otherwise, the child becomes a "zombie" process: most of the process resources
are recycled, but a slot containing minimal information about the child process
(termination status, resource usage statistics) is retained in process table. This al-
lows the parent to subsequently use waitpid(2) (or similar) to learn the termination
status of the child; at that point the zombie process slot is released.

If the implementation supports the SIGCHLD signal, this signal is sent to the parent.
If the parent has set SA_NOCLDWAIT, it is undefined whether a SIGCHLD signal
is sent.

Signals sent to other processes
If the exiting process is a session leader and its controlling terminal is the controlling
terminal of the session, then each process in the foreground process group of this con-
trolling terminal is sent a SIGHUP signal, and the terminal is disassociated from this
session, allowing it to be acquired by a new controlling process.

If the exit of the process causes a process group to become orphaned, and if any mem-
ber of the newly orphaned process group is stopped, then a SIGHUP signal followed
by a SIGCONT signal will be sent to each process in this process group. See
setpgid(2) for an explanation of orphaned process groups.

Except in the above cases, where the signalled processes may be children of the termi-
nating process, termination of a process does not in general cause a signal to be sent
to children of that process. However, a process can use the prctl(2)
PR_SET_PDEATHSIG operation to arrange that it receives a signal if its parent ter-
minates.

SEE ALSO
_exit(2), get_robust_list(2), setpgid(2), wait(2), atexit(3), on_exit(3), tmpfile(3)

Linux man-pages 6.13 2024-07-23 1567

exp(3) Library Functions Manual exp(3)

NAME
exp, expf, expl - base-e exponential function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double exp(double x);
float expf(float x);
long double expl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

expf(), expl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the value of e (the base of natural logarithms) raised to the
power of x.

RETURN VALUE
On success, these functions return the exponential value of x.

If x is a NaN, a NaN is returned.

If x is positive infinity, positive infinity is returned.

If x is negative infinity, +0 is returned.

If the result underflows, a range error occurs, and zero is returned.

If the result overflows, a range error occurs, and the functions return +HUGE_VAL,
+HUGE_VALF, or +HUGE_VALL, respectively.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error, overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Range error, underflow
errno is set to ERANGE. An underflow floating-point exception (FE_UN-
DERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeexp(), expf(), expl()

Linux man-pages 6.13 2024-07-23 1568

exp(3) Library Functions Manual exp(3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
cbrt(3), cexp(3), exp10(3), exp2(3), expm1(3), sqrt(3)

Linux man-pages 6.13 2024-07-23 1569

exp2(3) Library Functions Manual exp2(3)

NAME
exp2, exp2f, exp2l - base-2 exponential function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

exp2(), exp2f(), exp2l():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return the value of 2 raised to the power of x.

RETURN VALUE
On success, these functions return the base-2 exponential value of x.

For various special cases, including the handling of infinity and NaN, as well as over-
flows and underflows, see exp(3).

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

For a discussion of the errors that can occur for these functions, see exp(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeexp2(), exp2f(), exp2l()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
cbrt(3), cexp2(3), exp(3), exp10(3), sqrt(3)

Linux man-pages 6.13 2024-07-23 1570

exp10(3) Library Functions Manual exp10(3)

NAME
exp10, exp10f, exp10l - base-10 exponential function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <math.h>

double exp10(double x);
float exp10f(float x);
long double exp10l(long double x);

DESCRIPTION
These functions return the value of 10 raised to the power of x.

RETURN VALUE
On success, these functions return the base-10 exponential value of x.

For various special cases, including the handling of infinity and NaN, as well as over-
flows and underflows, see exp(3).

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

For a discussion of the errors that can occur for these functions, see exp(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeexp10(), exp10f(), exp10l()

STANDARDS
GNU.

HISTORY
glibc 2.1.

BUGS
Before glibc 2.19, the glibc implementation of these functions did not set errno to
ERANGE when an underflow error occurred.

SEE ALSO
cbrt(3), exp(3), exp2(3), log10(3), sqrt(3)

Linux man-pages 6.13 2024-07-23 1571

expm1(3) Library Functions Manual expm1(3)

NAME
expm1, expm1f, expm1l - exponential minus 1

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

expm1():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

expm1f(), expm1l():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return a value equivalent to

exp(x) - 1

The result is computed in a way that is accurate even if the value of x is near zero—a
case where exp(x) - 1 would be inaccurate due to subtraction of two numbers that are
nearly equal.

RETURN VALUE
On success, these functions return exp(x) - 1.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity, positive infinity is returned.

If x is negative infinity, -1 is returned.

If the result overflows, a range error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error, overflow
errno is set to ERANGE (but see BUGS). An overflow floating-point excep-
tion (FE_OVERFLOW) is raised.

Linux man-pages 6.13 2024-07-23 1572

expm1(3) Library Functions Manual expm1(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeexpm1(), expm1f(), expm1l()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001. BSD.

BUGS
Before glibc 2.17, on certain architectures (e.g., x86, but not x86_64) expm1() raised
a bogus underflow floating-point exception for some large negative x values (where
the function result approaches -1).

Before approximately glibc 2.11, expm1() raised a bogus invalid floating-point excep-
tion in addition to the expected overflow exception, and returned a NaN instead of
positive infinity, for some large positive x values.

Before glibc 2.11, the glibc implementation did not set errno to ERANGE when a
range error occurred.

SEE ALSO
exp(3), log(3), log1p(3)

Linux man-pages 6.13 2024-07-23 1573

fabs(3) Library Functions Manual fabs(3)

NAME
fabs, fabsf, fabsl - absolute value of floating-point number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fabsf(), fabsl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the absolute value of the floating-point number x.

RETURN VALUE
These functions return the absolute value of x.

If x is a NaN, a NaN is returned.

If x is -0, +0 is returned.

If x is negative infinity or positive infinity, positive infinity is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefabs(), fabsf(), fabsl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
abs(3), cabs(3), ceil(3), floor(3), labs(3), rint(3)

Linux man-pages 6.13 2024-07-23 1574

fclose(3) Library Functions Manual fclose(3)

NAME
fclose - close a stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fclose(FILE *stream);

DESCRIPTION
The fclose() function flushes the stream pointed to by stream (writing any buffered
output data using fflush(3)) and closes the underlying file descriptor.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, EOF is returned and errno is
set to indicate the error. In either case, any further access (including another call to
fclose()) to the stream results in undefined behavior.

ERRORS
EBADF

The file descriptor underlying stream is not valid.

The fclose() function may also fail and set errno for any of the errors specified for the
routines close(2), write(2), or fflush(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefclose()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

NOTES
Note that fclose() flushes only the user-space buffers provided by the C library. To en-
sure that the data is physically stored on disk the kernel buffers must be flushed too,
for example, with sync(2) or fsync(2).

SEE ALSO
close(2), fcloseall(3), fflush(3), fileno(3), fopen(3), setbuf(3)

Linux man-pages 6.13 2024-07-23 1575

fcloseall(3) Library Functions Manual fcloseall(3)

NAME
fcloseall - close all open streams

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdio.h>

int fcloseall(void);

DESCRIPTION
The fcloseall() function closes all of the calling process’s open streams. Buffered out-
put for each stream is written before it is closed (as for fflush(3)); buffered input is dis-
carded.

The standard streams, stdin, stdout, and stderr are also closed.

RETURN VALUE
This function returns 0 if all files were successfully closed; on error, EOF is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:streamsfcloseall()

The fcloseall() function does not lock the streams, so it is not thread-safe.

STANDARDS
GNU.

SEE ALSO
close(2), fclose(3), fflush(3), fopen(3), setbuf(3)

Linux man-pages 6.13 2024-07-23 1576

fdim(3) Library Functions Manual fdim(3)

NAME
fdim, fdimf, fdiml - positive difference

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fdimf(), fdiml():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return the positive difference, max(x-y,0), between their arguments.

RETURN VALUE
On success, these functions return the positive difference.

If x or y is a NaN, a NaN is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefdim(), fdimf(), fdiml()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

BUGS
Before glibc 2.24 on certain architectures (e.g., x86, but not x86_64) these functions
did not set errno.

SEE ALSO
fmax(3)

Linux man-pages 6.13 2024-07-23 1577

fdim(3) Library Functions Manual fdim(3)

Linux man-pages 6.13 2024-07-23 1578

fenv(3) Library Functions Manual fenv(3)

NAME
feclearexcept, fegetexceptflag, feraiseexcept, fesetexceptflag, fetestexcept, fegetenv,
fegetround, feholdexcept, fesetround, fesetenv, feupdateenv, feenableexcept, fedis-
ableexcept, fegetexcept - floating-point rounding and exception handling

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <fenv.h>

int feclearexcept(int excepts);
int fegetexceptflag(fexcept_t * flagp, int excepts);
int feraiseexcept(int excepts);
int fesetexceptflag(const fexcept_t * flagp, int excepts);
int fetestexcept(int excepts);

int fegetround(void);
int fesetround(int rounding_mode);

int fegetenv(fenv_t *envp);
int feholdexcept(fenv_t *envp);
int fesetenv(const fenv_t *envp);
int feupdateenv(const fenv_t *envp);

DESCRIPTION
These eleven functions were defined in C99, and describe the handling of floating-
point rounding and exceptions (overflow, zero-divide, etc.).

Exceptions
The divide-by-zero exception occurs when an operation on finite numbers produces
infinity as exact answer.

The overflow exception occurs when a result has to be represented as a floating-point
number, but has (much) larger absolute value than the largest (finite) floating-point
number that is representable.

The underflow exception occurs when a result has to be represented as a floating-point
number, but has smaller absolute value than the smallest positive normalized floating-
point number (and would lose much accuracy when represented as a denormalized
number).

The inexact exception occurs when the rounded result of an operation is not equal to
the infinite precision result. It may occur whenever overflow or underflow occurs.

The invalid exception occurs when there is no well-defined result for an operation, as
for 0/0 or infinity - infinity or sqrt(-1).

Exception handling
Exceptions are represented in two ways: as a single bit (exception present/absent), and
these bits correspond in some implementation-defined way with bit positions in an in-
teger, and also as an opaque structure that may contain more information about the ex-
ception (perhaps the code address where it occurred).

Each of the macros FE_DIVBYZERO, FE_INEXACT, FE_INVALID, FE_OVER-
FLOW, FE_UNDERFLOW is defined when the implementation supports handling

Linux man-pages 6.13 2024-07-23 1579

fenv(3) Library Functions Manual fenv(3)

of the corresponding exception, and if so then defines the corresponding bit(s), so that
one can call exception handling functions, for example, using the integer argument
FE_OVERFLOW|FE_UNDERFLOW. Other exceptions may be supported. The
macro FE_ALL_EXCEPT is the bitwise OR of all bits corresponding to supported
exceptions.

The feclearexcept() function clears the supported exceptions represented by the bits
in its argument.

The fegetexceptflag() function stores a representation of the state of the exception
flags represented by the argument excepts in the opaque object *flagp.

The feraiseexcept() function raises the supported exceptions represented by the bits
in excepts.

The fesetexceptflag() function sets the complete status for the exceptions represented
by excepts to the value *flagp. This value must have been obtained by an earlier call
of fegetexceptflag() with a last argument that contained all bits in excepts.

The fetestexcept() function returns a word in which the bits are set that were set in the
argument excepts and for which the corresponding exception is currently set.

Rounding mode
The rounding mode determines how the result of floating-point operations is treated
when the result cannot be exactly represented in the significand. Various rounding
modes may be provided: round to nearest (the default), round up (toward positive in-
finity), round down (toward negative infinity), and round toward zero.

Each of the macros FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, and
FE_TOWARDZERO is defined when the implementation supports getting and set-
ting the corresponding rounding direction.

The fegetround() function returns the macro corresponding to the current rounding
mode.

The fesetround() function sets the rounding mode as specified by its argument and re-
turns zero when it was successful.

C99 and POSIX.1-2008 specify an identifier, FLT_ROUNDS, defined in <float.h>,
which indicates the implementation-defined rounding behavior for floating-point addi-
tion. This identifier has one of the following values:

-1 The rounding mode is not determinable.

0 Rounding is toward 0.

1 Rounding is toward nearest number.

2 Rounding is toward positive infinity.

3 Rounding is toward negative infinity.

Other values represent machine-dependent, nonstandard rounding modes.

The value of FLT_ROUNDS should reflect the current rounding mode as set by fes-
etround() (but see BUGS).

Linux man-pages 6.13 2024-07-23 1580

fenv(3) Library Functions Manual fenv(3)

Floating-point environment
The entire floating-point environment, including control modes and status flags, can
be handled as one opaque object, of type fenv_t. The default environment is denoted
by FE_DFL_ENV (of type const fenv_t *). This is the environment setup at program
start and it is defined by ISO C to have round to nearest, all exceptions cleared and a
nonstop (continue on exceptions) mode.

The fegetenv() function saves the current floating-point environment in the object
*envp.

The feholdexcept() function does the same, then clears all exception flags, and sets a
nonstop (continue on exceptions) mode, if available. It returns zero when successful.

The fesetenv() function restores the floating-point environment from the object *envp.
This object must be known to be valid, for example, the result of a call to fegetenv()
or feholdexcept() or equal to FE_DFL_ENV. This call does not raise exceptions.

The feupdateenv() function installs the floating-point environment represented by the
object *envp, except that currently raised exceptions are not cleared. After calling this
function, the raised exceptions will be a bitwise OR of those previously set with those
in *envp. As before, the object *envp must be known to be valid.

RETURN VALUE
These functions return zero on success and nonzero if an error occurred.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyfeclearexcept(), fegetexceptflag(), feraiseexcept(),
fesetexceptflag(), fetestexcept(), fegetround(),
fesetround(), fegetenv(), feholdexcept(), fesetenv(),
feupdateenv(), feenableexcept(), fedisableexcept(),
fegetexcept()

MT-Safe

STANDARDS
C11, POSIX.1-2008, IEC 60559 (IEC 559:1989), ANSI/IEEE 854.

HISTORY
C99, POSIX.1-2001. glibc 2.1.

NOTES
glibc notes

If possible, the GNU C Library defines a macro FE_NOMASK_ENV which repre-
sents an environment where every exception raised causes a trap to occur. You can
test for this macro using #ifdef. It is defined only if _GNU_SOURCE is defined.
The C99 standard does not define a way to set individual bits in the floating-point
mask, for example, to trap on specific flags. Since glibc 2.2, glibc supports the func-
tions feenableexcept() and fedisableexcept() to set individual floating-point traps,
and fegetexcept() to query the state.

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fenv.h>

int feenableexcept(int excepts);
int fedisableexcept(int excepts);

Linux man-pages 6.13 2024-07-23 1581

fenv(3) Library Functions Manual fenv(3)

int fegetexcept(void);

The feenableexcept() and fedisableexcept() functions enable (disable) traps for each
of the exceptions represented by excepts and return the previous set of enabled excep-
tions when successful, and -1 otherwise. The fegetexcept() function returns the set
of all currently enabled exceptions.

BUGS
C99 specifies that the value of FLT_ROUNDS should reflect changes to the current
rounding mode, as set by fesetround(). Currently, this does not occur:
FLT_ROUNDS always has the value 1.

SEE ALSO
math_error(7)

Linux man-pages 6.13 2024-07-23 1582

ferror(3) Library Functions Manual ferror(3)

NAME
clearerr, feof, ferror - check and reset stream status

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

void clearerr(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);

DESCRIPTION
The function clearerr() clears the end-of-file and error indicators for the stream
pointed to by stream.

The function feof() tests the end-of-file indicator for the stream pointed to by stream,
returning nonzero if it is set. The end-of-file indicator can be cleared only by the
function clearerr().

The function ferror() tests the error indicator for the stream pointed to by stream, re-
turning nonzero if it is set. The error indicator can be reset only by the clearerr()
function.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
The feof() function returns nonzero if the end-of-file indicator is set for stream; other-
wise, it returns zero.

The ferror() function returns nonzero if the error indicator is set for stream; other-
wise, it returns zero.

ERRORS
These functions should not fail and do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclearerr(), feof(), ferror()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

NOTES
POSIX.1-2008 specifies that these functions shall not change the value of errno if
stream is valid.

CAVEATS
Normally, programs should read the return value of an input function, such as
fgetc(3), before using functions of the feof(3) family. Only when the function returned
the sentinel value EOF it makes sense to distinguish between the end of a file or an
error with feof(3) or ferror(3).

Linux man-pages 6.13 2024-07-23 1583

ferror(3) Library Functions Manual ferror(3)

SEE ALSO
open(2), fdopen(3), fileno(3), stdio(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-07-23 1584

fexecve(3) Library Functions Manual fexecve(3)

NAME
fexecve - execute program specified via file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int fexecve(int fd , char *const argv[], char *const envp[]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fexecve():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
fexecve() performs the same task as execve(2), with the difference that the file to be
executed is specified via a file descriptor, fd , rather than via a pathname. The file de-
scriptor fd must be opened read-only (O_RDONLY) or with the O_PATH flag and
the caller must have permission to execute the file that it refers to.

RETURN VALUE
A successful call to fexecve() never returns. On error, the function does return, with a
result value of -1, and errno is set to indicate the error.

ERRORS
Errors are as for execve(2), with the following additions:

EINVAL
fd is not a valid file descriptor, or argv is NULL, or envp is NULL.

ENOENT
The close-on-exec flag is set on fd , and fd refers to a script. See BUGS.

ENOSYS
The kernel does not provide the execveat(2) system call, and the /proc filesys-
tem could not be accessed.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefexecve()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.3.2.

On Linux with glibc versions 2.26 and earlier, fexecve() is implemented using the
proc(5) filesystem, so /proc needs to be mounted and available at the time of the call.
Since glibc 2.27, if the underlying kernel supports the execveat(2) system call, then
fexecve() is implemented using that system call, with the benefit that /proc does not

Linux man-pages 6.13 2024-07-23 1585

fexecve(3) Library Functions Manual fexecve(3)

need to be mounted.

NOTES
The idea behind fexecve() is to allow the caller to verify (checksum) the contents of
an executable before executing it. Simply opening the file, checksumming the con-
tents, and then doing an execve(2) would not suffice, since, between the two steps, the
filename, or a directory prefix of the pathname, could have been exchanged (by, for
example, modifying the target of a symbolic link). fexecve() does not mitigate the
problem that the contents of a file could be changed between the checksumming and
the call to fexecve(); for that, the solution is to ensure that the permissions on the file
prevent it from being modified by malicious users.

The natural idiom when using fexecve() is to set the close-on-exec flag on fd , so that
the file descriptor does not leak through to the program that is executed. This ap-
proach is natural for two reasons. First, it prevents file descriptors being consumed
unnecessarily. (The executed program normally has no need of a file descriptor that
refers to the program itself.) Second, if fexecve() is used recursively, employing the
close-on-exec flag prevents the file descriptor exhaustion that would result from the
fact that each step in the recursion would cause one more file descriptor to be passed
to the new program. (But see BUGS.)

BUGS
If fd refers to a script (i.e., it is an executable text file that names a script interpreter
with a first line that begins with the characters #!) and the close-on-exec flag has been
set for fd , then fexecve() fails with the error ENOENT. This error occurs because,
by the time the script interpreter is executed, fd has already been closed because of
the close-on-exec flag. Thus, the close-on-exec flag can’t be set on fd if it refers to a
script, leading to the problems described in NOTES.

SEE ALSO
execve(2), execveat(2)

Linux man-pages 6.13 2024-07-23 1586

fflush(3) Library Functions Manual fflush(3)

NAME
fflush - flush a stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fflush(FILE *_Nullable stream);

DESCRIPTION
For output streams, fflush() forces a write of all user-space buffered data for the given
output or update stream via the stream’s underlying write function.

For input streams associated with seekable files (e.g., disk files, but not pipes or termi-
nals), fflush() discards any buffered data that has been fetched from the underlying
file, but has not been consumed by the application.

The open status of the stream is unaffected.

If the stream argument is NULL, fflush() flushes all open output streams.

For a nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
Upon successful completion 0 is returned. Otherwise, EOF is returned and errno is
set to indicate the error.

ERRORS
EBADF

stream is not an open stream, or is not open for writing.

The function fflush() may also fail and set errno for any of the errors specified for
write(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefflush()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001, POSIX.1-2008.

POSIX.1-2001 did not specify the behavior for flushing of input streams, but the be-
havior is specified in POSIX.1-2008.

NOTES
Note that fflush() flushes only the user-space buffers provided by the C library. To en-
sure that the data is physically stored on disk the kernel buffers must be flushed too,
for example, with sync(2) or fsync(2).

SEE ALSO
fsync(2), sync(2), write(2), fclose(3), fileno(3), fopen(3), fpurge(3), setbuf(3), un-
locked_stdio(3)

Linux man-pages 6.13 2024-07-23 1587

ffs(3) Library Functions Manual ffs(3)

NAME
ffs, ffsl, ffsll - find first bit set in a word

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

int ffs(int i);
int ffsl(long i);
int ffsll(long long i);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ffs():
Since glibc 2.12:

_XOPEN_SOURCE >= 700
|| ! (_POSIX_C_SOURCE >= 200809L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

Before glibc 2.12:
none

ffsl(), ffsll():
Since glibc 2.27:

_DEFAULT_SOURCE
Before glibc 2.27:

_GNU_SOURCE

DESCRIPTION
The ffs() function returns the position of the first (least significant) bit set in the word
i. The least significant bit is position 1 and the most significant position is, for exam-
ple, 32 or 64. The functions ffsll() and ffsl() do the same but take arguments of possi-
bly different size.

RETURN VALUE
These functions return the position of the first bit set, or 0 if no bits are set in i.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeffs(), ffsl(), ffsll()

STANDARDS
ffs() POSIX.1-2001, POSIX.1-2008, 4.3BSD.

ffsl()
ffsll() GNU.

SEE ALSO
memchr(3)

Linux man-pages 6.13 2024-07-23 1588

fgetc(3) Library Functions Manual fgetc(3)

NAME
fgetc, fgets, getc, getchar, ungetc - input of characters and strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fgetc(FILE *stream);
int getc(FILE *stream);
int getchar(void);

char *fgets(char s[restrict .size], int size, FILE *restrict stream);

int ungetc(int c, FILE *stream);

DESCRIPTION
fgetc() reads the next character from stream and returns it as an unsigned char cast to
an int, or EOF on end of file or error.

getc() is equivalent to fgetc() except that it may be implemented as a macro which
evaluates stream more than once.

getchar() is equivalent to getc(stdin).

fgets() reads in at most one less than size characters from stream and stores them into
the buffer pointed to by s. Reading stops after an EOF or a newline. If a newline is
read, it is stored into the buffer. A terminating null byte ('\0') is stored after the last
character in the buffer.

ungetc() pushes c back to stream, cast to unsigned char, where it is available for sub-
sequent read operations. Pushed-back characters will be returned in reverse order;
only one pushback is guaranteed.

Calls to the functions described here can be mixed with each other and with calls to
other input functions from the stdio library for the same input stream.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
fgetc(), getc(), and getchar() return the character read as an unsigned char cast to an
int or EOF on end of file or error.

fgets() returns s on success, and NULL on error or when end of file occurs while no
characters have been read.

ungetc() returns c on success, or EOF on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefgetc(), fgets(), getc(), getchar(), ungetc()

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 1589

fgetc(3) Library Functions Manual fgetc(3)

HISTORY
POSIX.1-2001, C89.

NOTES
It is not advisable to mix calls to input functions from the stdio library with low-level
calls to read(2) for the file descriptor associated with the input stream; the results will
be undefined and very probably not what you want.

SEE ALSO
read(2), write(2), ferror(3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek(3), get-
line(3), gets(3), getwchar(3), puts(3), scanf(3), ungetwc(3), unlocked_stdio(3), fea-
ture_test_macros(7)

Linux man-pages 6.13 2024-07-23 1590

fgetgrent(3) Library Functions Manual fgetgrent(3)

NAME
fgetgrent - get group file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <sys/types.h>
#include <grp.h>

struct group *fgetgrent(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fgetgrent():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
The fgetgrent() function returns a pointer to a structure containing the group informa-
tion from the file referred to by stream. The first time it is called it returns the first en-
try; thereafter, it returns successive entries. The file referred to by stream must have
the same format as /etc/group (see group(5)).

The group structure is defined in <grp.h> as follows:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
gid_t gr_gid; /* group ID */
char **gr_mem; /* NULL-terminated array of pointers

to names of group members */
};

RETURN VALUE
The fgetgrent() function returns a pointer to a group structure, or NULL if there are
no more entries or an error occurs. In the event of an error, errno is set to indicate the
error.

ERRORS
ENOMEM

Insufficient memory to allocate group structure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:fgetgrentfgetgrent()

STANDARDS
None.

Linux man-pages 6.13 2024-07-23 1591

fgetgrent(3) Library Functions Manual fgetgrent(3)

HISTORY
SVr4.

SEE ALSO
endgrent(3), fgetgrent_r(3), fopen(3), getgrent(3), getgrgid(3), getgrnam(3), put-
grent(3), setgrent(3), group(5)

Linux man-pages 6.13 2024-07-23 1592

fgetpwent(3) Library Functions Manual fgetpwent(3)

NAME
fgetpwent - get password file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <sys/types.h>
#include <pwd.h>

struct passwd *fgetpwent(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fgetpwent():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
The fgetpwent() function returns a pointer to a structure containing the broken out
fields of a line in the file stream. The first time it is called it returns the first entry;
thereafter, it returns successive entries. The file referred to by stream must have the
same format as /etc/passwd (see passwd(5)).

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* real name */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

RETURN VALUE
The fgetpwent() function returns a pointer to a passwd structure, or NULL if there
are no more entries or an error occurs. In the event of an error, errno is set to indicate
the error.

ERRORS
ENOMEM

Insufficient memory to allocate passwd structure.

FILES
/etc/passwd

password database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1593

fgetpwent(3) Library Functions Manual fgetpwent(3)

Interface Attribute Value
Thread safety MT-Unsafe race:fgetpwentfgetpwent()

STANDARDS
None.

HISTORY
SVr4.

SEE ALSO
endpwent(3), fgetpwent_r(3), fopen(3), getpw(3), getpwent(3), getpwnam(3), getp-
wuid(3), putpwent(3), setpwent(3), passwd(5)

Linux man-pages 6.13 2024-07-23 1594

fgetwc(3) Library Functions Manual fgetwc(3)

NAME
fgetwc, getwc - read a wide character from a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fgetwc(FILE *stream);
wint_t getwc(FILE *stream);

DESCRIPTION
The fgetwc() function is the wide-character equivalent of the fgetc(3) function. It
reads a wide character from stream and returns it. If the end of stream is reached, or
if ferror(stream) becomes true, it returns WEOF. If a wide-character conversion error
occurs, it sets errno to EILSEQ and returns WEOF.

The getwc() function or macro functions identically to fgetwc(). It may be imple-
mented as a macro, and may evaluate its argument more than once. There is no rea-
son ever to use it.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
On success, fgetwc() returns the next wide-character from the stream. Otherwise,
WEOF is returned, and errno is set to indicate the error.

ERRORS
Apart from the usual ones, there is

EILSEQ
The data obtained from the input stream does not form a valid character.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefgetwc(), getwc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of fgetwc() depends on the LC_CTYPE category of the current locale.

In the absence of additional information passed to the fopen(3) call, it is reasonable to
expect that fgetwc() will actually read a multibyte sequence from the stream and then
convert it to a wide character.

SEE ALSO
fgetws(3), fputwc(3), ungetwc(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-07-23 1595

fgetws(3) Library Functions Manual fgetws(3)

NAME
fgetws - read a wide-character string from a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *fgetws(wchar_t ws[restrict .n], int n, FILE *restrict stream);

DESCRIPTION
The fgetws() function is the wide-character equivalent of the fgets(3) function. It
reads a string of at most n-1 wide characters into the wide-character array pointed to
by ws, and adds a terminating null wide character (L'\0'). It stops reading wide char-
acters after it has encountered and stored a newline wide character. It also stops when
end of stream is reached.

The programmer must ensure that there is room for at least n wide characters at ws.

For a nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
The fgetws() function, if successful, returns ws. If end of stream was already reached
or if an error occurred, it returns NULL.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefgetws()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of fgetws() depends on the LC_CTYPE category of the current locale.

In the absence of additional information passed to the fopen(3) call, it is reasonable to
expect that fgetws() will actually read a multibyte string from the stream and then
convert it to a wide-character string.

This function is unreliable, because it does not permit to deal properly with null wide
characters that may be present in the input.

SEE ALSO
fgetwc(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-07-23 1596

fileno(3) Library Functions Manual fileno(3)

NAME
fileno - obtain file descriptor of a stdio stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fileno(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fileno():
_POSIX_C_SOURCE

DESCRIPTION
The function fileno() examines the argument stream and returns the integer file de-
scriptor used to implement this stream. The file descriptor is still owned by stream
and will be closed when fclose(3) is called. Duplicate the file descriptor with dup(2)
before passing it to code that might close it.

For the nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
On success, fileno() returns the file descriptor associated with stream. On failure, -1
is returned and errno is set to indicate the error.

ERRORS
EBADF

stream is not associated with a file.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefileno()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-07-23 1597

finite(3) Library Functions Manual finite(3)

NAME
finite, finitef, finitel, isinf, isinff, isinfl, isnan, isnanf, isnanl - BSD floating-point clas-
sification functions

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

int finite(double x);
int finitef(float x);
int finitel(long double x);

int isinf(double x);
int isinff(float x);
int isinfl(long double x);

int isnan(double x);
int isnanf(float x);
int isnanl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

finite(), finitef(), finitel():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

isinf():
_XOPEN_SOURCE >= 600 || _ISOC99_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

isinff(), isinfl():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

isnan():
_XOPEN_SOURCE || _ISOC99_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

isnanf(), isnanl():
_XOPEN_SOURCE >= 600

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The finite(), finitef(), and finitel() functions return a nonzero value if x is neither infi-
nite nor a "not-a-number" (NaN) value, and 0 otherwise.

The isnan(), isnanf(), and isnanl() functions return a nonzero value if x is a NaN
value, and 0 otherwise.

The isinf(), isinff(), and isinfl() functions return 1 if x is positive infinity, -1 if x is
negative infinity, and 0 otherwise.

Linux man-pages 6.13 2024-07-23 1598

finite(3) Library Functions Manual finite(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefinite(), finitef(), finitel(), isinf(), isinff(), isinfl(),
isnan(), isnanf(), isnanl()

NOTES
Note that these functions are obsolete. C99 defines macros isfinite(), isinf(), and is-
nan() (for all types) replacing them. Further note that the C99 isinf() has weaker
guarantees on the return value. See fpclassify(3).

SEE ALSO
fpclassify(3)

Linux man-pages 6.13 2024-07-23 1599

flockfile(3) Library Functions Manual flockfile(3)

NAME
flockfile, ftrylockfile, funlockfile - lock FILE for stdio

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

void flockfile(FILE * filehandle);
int ftrylockfile(FILE * filehandle);
void funlockfile(FILE * filehandle);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
/* Since glibc 2.24: */ _POSIX_C_SOURCE >= 199309L

|| /* glibc <= 2.23: */ _POSIX_C_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The stdio functions are thread-safe. This is achieved by assigning to each FILE ob-
ject a lockcount and (if the lockcount is nonzero) an owning thread. For each library
call, these functions wait until the FILE object is no longer locked by a different
thread, then lock it, do the requested I/O, and unlock the object again.

(Note: this locking has nothing to do with the file locking done by functions like
flock(2) and lockf(3).)

All this is invisible to the C-programmer, but there may be two reasons to wish for
more detailed control. On the one hand, maybe a series of I/O actions by one thread
belongs together, and should not be interrupted by the I/O of some other thread. On
the other hand, maybe the locking overhead should be avoided for greater efficiency.

To this end, a thread can explicitly lock the FILE object, then do its series of I/O ac-
tions, then unlock. This prevents other threads from coming in between. If the reason
for doing this was to achieve greater efficiency, one does the I/O with the nonlocking
versions of the stdio functions: with getc_unlocked(3) and putc_unlocked(3) instead of
getc(3) and putc(3).

The flockfile() function waits for *filehandle to be no longer locked by a different
thread, then makes the current thread owner of *filehandle, and increments the lock-
count.

The funlockfile() function decrements the lock count.

The ftrylockfile() function is a nonblocking version of flockfile(). It does nothing in
case some other thread owns *filehandle, and it obtains ownership and increments the
lockcount otherwise.

RETURN VALUE
The ftrylockfile() function returns zero for success (the lock was obtained), and
nonzero for failure.

ERRORS
None.

Linux man-pages 6.13 2024-07-23 1600

flockfile(3) Library Functions Manual flockfile(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeflockfile(), ftrylockfile(), funlockfile()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

These functions are available when _POSIX_THREAD_SAFE_FUNCTIONS is de-
fined.

SEE ALSO
unlocked_stdio(3)

Linux man-pages 6.13 2024-07-23 1601

floor(3) Library Functions Manual floor(3)

NAME
floor, floorf, floorl - largest integral value not greater than argument

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double floor(double x);
float floorf(float x);
long double floorl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

floorf(), floorl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the largest integral value that is not greater than x.

For example, floor(0.5) is 0.0, and floor(-0.5) is -1.0.

RETURN VALUE
These functions return the floor of x.

If x is integral, +0, -0, NaN, or an infinity, x itself is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefloor(), floorf(), floorl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SUSv2 and POSIX.1-2001 contain text about overflow (which might set errno to
ERANGE, or raise an FE_OVERFLOW exception). In practice, the result cannot
overflow on any current machine, so this error-handling stuff was just nonsense.
(More precisely, overflow can happen only when the maximum value of the exponent
is smaller than the number of mantissa bits. For the IEEE-754 standard 32-bit and
64-bit floating-point numbers the maximum value of the exponent is 127 (respec-
tively, 1023), and the number of mantissa bits including the implicit bit is 24 (respec-
tively, 53).) This was removed in POSIX.1-2008.

SEE ALSO
ceil(3), lrint(3), nearbyint(3), rint(3), round(3), trunc(3)

Linux man-pages 6.13 2024-07-23 1602

floor(3) Library Functions Manual floor(3)

Linux man-pages 6.13 2024-07-23 1603

fma(3) Library Functions Manual fma(3)

NAME
fma, fmaf, fmal - floating-point multiply and add

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fma(), fmaf(), fmal():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions compute x * y + z. The result is rounded as one ternary operation ac-
cording to the current rounding mode (see fenv(3)).

RETURN VALUE
These functions return the value of x * y + z, rounded as one ternary operation.

If x or y is a NaN, a NaN is returned.

If x times y is an exact infinity, and z is an infinity with the opposite sign, a domain
error occurs, and a NaN is returned.

If one of x or y is an infinity, the other is 0, and z is not a NaN, a domain error occurs,
and a NaN is returned.

If one of x or y is an infinity, and the other is 0, and z is a NaN, a domain error oc-
curs, and a NaN is returned.

If x times y is not an infinity times zero (or vice versa), and z is a NaN, a NaN is re-
turned.

If the result overflows, a range error occurs, and an infinity with the correct sign is re-
turned.

If the result underflows, a range error occurs, and a signed 0 is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x * y + z, or x * y is invalid and z is not a NaN
An invalid floating-point exception (FE_INVALID) is raised.

Range error: result overflow
An overflow floating-point exception (FE_OVERFLOW) is raised.

Range error: result underflow
An underflow floating-point exception (FE_UNDERFLOW) is raised.

These functions do not set errno.

Linux man-pages 6.13 2024-07-23 1604

fma(3) Library Functions Manual fma(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefma(), fmaf(), fmal()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
remainder(3), remquo(3)

Linux man-pages 6.13 2024-07-23 1605

fmax(3) Library Functions Manual fmax(3)

NAME
fmax, fmaxf, fmaxl - determine maximum of two floating-point numbers

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fmax(), fmaxf(), fmaxl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return the larger value of x and y.

RETURN VALUE
These functions return the maximum of x and y.

If one argument is a NaN, the other argument is returned.

If both arguments are NaN, a NaN is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefmax(), fmaxf(), fmaxl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
fdim(3), fmin(3)

Linux man-pages 6.13 2024-07-23 1606

fmemopen(3) Library Functions Manual fmemopen(3)

NAME
fmemopen - open memory as stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

FILE *fmemopen(void buf [.size], size_t size, const char *mode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fmemopen():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The fmemopen() function opens a stream that permits the access specified by mode.
The stream allows I/O to be performed on the string or memory buffer pointed to by
buf .

The mode argument specifies the semantics of I/O on the stream, and is one of the fol-
lowing:

r The stream is opened for reading.

w The stream is opened for writing.

a Append; open the stream for writing, with the initial buffer position set to the
first null byte.

r+ Open the stream for reading and writing.

w+ Open the stream for reading and writing. The buffer contents are truncated
(i.e., '\0' is placed in the first byte of the buffer).

a+ Append; open the stream for reading and writing, with the initial buffer posi-
tion set to the first null byte.

The stream maintains the notion of a current position, the location where the next I/O
operation will be performed. The current position is implicitly updated by I/O opera-
tions. It can be explicitly updated using fseek(3), and determined using ftell(3). In all
modes other than append, the initial position is set to the start of the buffer. In append
mode, if no null byte is found within the buffer, then the initial position is size+1.

If buf is specified as NULL, then fmemopen() allocates a buffer of size bytes. This is
useful for an application that wants to write data to a temporary buffer and then read it
back again. The initial position is set to the start of the buffer. The buffer is automati-
cally freed when the stream is closed. Note that the caller has no way to obtain a
pointer to the temporary buffer allocated by this call (but see open_memstream(3)).

If buf is not NULL, then it should point to a buffer of at least size bytes allocated by
the caller.

When a stream that has been opened for writing is flushed (fflush(3)) or closed
(fclose(3)), a null byte is written at the end of the buffer if there is space. The caller

Linux man-pages 6.13 2024-07-23 1607

fmemopen(3) Library Functions Manual fmemopen(3)

should ensure that an extra byte is available in the buffer (and that size counts that
byte) to allow for this.

In a stream opened for reading, null bytes ('\0') in the buffer do not cause read opera-
tions to return an end-of-file indication. A read from the buffer will indicate end-of-
file only when the current buffer position advances size bytes past the start of the
buffer.

Write operations take place either at the current position (for modes other than ap-
pend), or at the current size of the stream (for append modes).

Attempts to write more than size bytes to the buffer result in an error. By default,
such errors will be visible (by the absence of data) only when the stdio buffer is
flushed. Disabling buffering with the following call may be useful to detect errors at
the time of an output operation:

setbuf(stream, NULL);

RETURN VALUE
Upon successful completion, fmemopen() returns a FILE pointer. Otherwise, NULL
is returned and errno is set to indicate the error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefmemopen(),

STANDARDS
POSIX.1-2008.

HISTORY
glibc 1.0.x. POSIX.1-2008.

POSIX.1-2008 specifies that 'b' in mode shall be ignored. However, Technical Corri-
gendum 1 adjusts the standard to allow implementation-specific treatment for this
case, thus permitting the glibc treatment of 'b'.

With glibc 2.22, binary mode (see below) was removed, many longstanding bugs in
the implementation of fmemopen() were fixed, and a new versioned symbol was cre-
ated for this interface.

Binary mode
From glibc 2.9 to glibc 2.21, the glibc implementation of fmemopen() supported a
"binary" mode, enabled by specifying the letter 'b' as the second character in mode. In
this mode, writes don’t implicitly add a terminating null byte, and fseek(3)
SEEK_END is relative to the end of the buffer (i.e., the value specified by the size ar-
gument), rather than the current string length.

An API bug afflicted the implementation of binary mode: to specify binary mode, the
'b' must be the second character in mode. Thus, for example, "wb+" has the desired
effect, but "w+b" does not. This is inconsistent with the treatment of mode by
fopen(3).

Binary mode was removed in glibc 2.22; a 'b' specified in mode has no effect.

Linux man-pages 6.13 2024-07-23 1608

fmemopen(3) Library Functions Manual fmemopen(3)

NOTES
There is no file descriptor associated with the file stream returned by this function
(i.e., fileno(3) will return an error if called on the returned stream).

BUGS
Before glibc 2.22, if size is specified as zero, fmemopen() fails with the error EIN-
VAL. It would be more consistent if this case successfully created a stream that then
returned end-of-file on the first attempt at reading; since glibc 2.22, the glibc imple-
mentation provides that behavior.

Before glibc 2.22, specifying append mode ("a" or "a+") for fmemopen() sets the ini-
tial buffer position to the first null byte, but (if the current position is reset to a loca-
tion other than the end of the stream) does not force subsequent writes to append at
the end of the stream. This bug is fixed in glibc 2.22.

Before glibc 2.22, if the mode argument to fmemopen() specifies append ("a" or
"a+"), and the size argument does not cover a null byte in buf , then, according to
POSIX.1-2008, the initial buffer position should be set to the next byte after the end
of the buffer. However, in this case the glibc fmemopen() sets the buffer position to
-1. This bug is fixed in glibc 2.22.

Before glibc 2.22, when a call to fseek(3) with a whence value of SEEK_END was
performed on a stream created by fmemopen(), the offset was subtracted from the
end-of-stream position, instead of being added. This bug is fixed in glibc 2.22.

The glibc 2.9 addition of "binary" mode for fmemopen() silently changed the ABI:
previously, fmemopen() ignored 'b' in mode.

EXAMPLES
The program below uses fmemopen() to open an input buffer, and open_mem-
stream(3) to open a dynamically sized output buffer. The program scans its input
string (taken from the program’s first command-line argument) reading integers, and
writes the squares of these integers to the output buffer. An example of the output
produced by this program is the following:

$./a.out '1 23 43'
size=11; ptr=1 529 1849

Program source

#define _GNU_SOURCE
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

FILE *out, *in;
int v, s;
size_t size;
char *ptr;

Linux man-pages 6.13 2024-07-23 1609

fmemopen(3) Library Functions Manual fmemopen(3)

if (argc != 2) {
fprintf(stderr, "Usage: %s '<num>...'\n", argv[0]);
exit(EXIT_FAILURE);

}

in = fmemopen(argv[1], strlen(argv[1]), "r");
if (in == NULL)

err(EXIT_FAILURE, "fmemopen");

out = open_memstream(&ptr, &size);
if (out == NULL)

err(EXIT_FAILURE, "open_memstream");

for (;;) {
s = fscanf(in, "%d", &v);
if (s <= 0)

break;

s = fprintf(out, "%d ", v * v);
if (s == -1)

err(EXIT_FAILURE, "fprintf");
}

fclose(in);
fclose(out);

printf("size=%zu; ptr=%s\n", size, ptr);

free(ptr);
exit(EXIT_SUCCESS);

}

SEE ALSO
fopen(3), fopencookie(3), open_memstream(3)

Linux man-pages 6.13 2024-07-23 1610

fmin(3) Library Functions Manual fmin(3)

NAME
fmin, fminf, fminl - determine minimum of two floating-point numbers

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fmin(), fminf(), fminl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return the lesser value of x and y.

RETURN VALUE
These functions return the minimum of x and y.

If one argument is a NaN, the other argument is returned.

If both arguments are NaN, a NaN is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefmin(), fminf(), fminl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
fdim(3), fmax(3)

Linux man-pages 6.13 2024-07-23 1611

fmod(3) Library Functions Manual fmod(3)

NAME
fmod, fmodf, fmodl - floating-point remainder function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fmodf(), fmodl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions compute the floating-point remainder of dividing x by y. The return
value is x - n * y, where n is the quotient of x / y, rounded toward zero to an integer.

To obtain the modulus, more specifically, the Least Positive Residue, you will need to
adjust the result from fmod() like so:

z = fmod(x, y);
if (z < 0)

z += fabs(y);

An alternate way to express this is with fmod(fmod(x, y) + y, y), but the second
fmod() usually costs way more than the one branch.

RETURN VALUE
On success, these functions return the value x - n*y, for some integer n, such that the
returned value has the same sign as x and a magnitude less than the magnitude of y.

If x or y is a NaN, a NaN is returned.

If x is an infinity, a domain error occurs, and a NaN is returned.

If y is zero, a domain error occurs, and a NaN is returned.

If x is +0 (-0), and y is not zero, +0 (-0) is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

Domain error: y is zero
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Linux man-pages 6.13 2024-11-17 1612

fmod(3) Library Functions Manual fmod(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefmod(), fmodf(), fmodl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
Before glibc 2.10, the glibc implementation did not set errno to EDOM when a do-
main error occurred for an infinite x.

EXAMPLES
The call fmod(372, 360) returns 12.

The call fmod(-372, 360) returns -12.

The call fmod(-372, -360) also returns -12.

SEE ALSO
remainder(3)

Linux man-pages 6.13 2024-11-17 1613

fmtmsg(3) Library Functions Manual fmtmsg(3)

NAME
fmtmsg - print formatted error messages

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fmtmsg.h>

int fmtmsg(long classification, const char *label,
int severity, const char *text,
const char *action, const char *tag);

DESCRIPTION
This function displays a message described by its arguments on the device(s) specified
in the classification argument. For messages written to stderr, the format depends on
the MSGVERB environment variable.

The label argument identifies the source of the message. The string must consist of
two colon separated parts where the first part has not more than 10 and the second part
not more than 14 characters.

The text argument describes the condition of the error.

The action argument describes possible steps to recover from the error. If it is
printed, it is prefixed by "TO FIX: ".

The tag argument is a reference to the online documentation where more information
can be found. It should contain the label value and a unique identification number.

Dummy arguments
Each of the arguments can have a dummy value. The dummy classification value
MM_NULLMC (0L) does not specify any output, so nothing is printed. The dummy
severity value NO_SEV (0) says that no severity is supplied. The values MM_NUL-
LLBL, MM_NULLTXT, MM_NULLACT, MM_NULLTAG are synonyms for
((char *) 0), the empty string, and MM_NULLSEV is a synonym for NO_SEV.

The classification argument
The classification argument is the sum of values describing 4 types of information.

The first value defines the output channel.

MM_PRINT Output to stderr.

MM_CONSOLE
Output to the system console.

MM_PRINT | MM_CONSOLE
Output to both.

The second value is the source of the error:

MM_HARD A hardware error occurred.

MM_FIRM A firmware error occurred.

MM_SOFT A software error occurred.

The third value encodes the detector of the problem:

Linux man-pages 6.13 2024-07-23 1614

fmtmsg(3) Library Functions Manual fmtmsg(3)

MM_APPL It is detected by an application.

MM_UTIL It is detected by a utility.

MM_OPSYS
It is detected by the operating system.

The fourth value shows the severity of the incident:

MM_RECOVER
It is a recoverable error.

MM_NRECOV
It is a nonrecoverable error.

The severity argument
The severity argument can take one of the following values:

MM_NOSEV
No severity is printed.

MM_HALT This value is printed as HALT.

MM_ERROR
This value is printed as ERROR.

MM_WARNING
This value is printed as WARNING.

MM_INFO This value is printed as INFO.

The numeric values are between 0 and 4. Using addseverity(3) or the environment
variable SEV_LEVEL you can add more levels and strings to print.

RETURN VALUE
The function can return 4 values:

MM_OK Everything went smooth.

MM_NOTOK
Complete failure.

MM_NOMSG
Error writing to stderr.

MM_NOCON
Error writing to the console.

ENVIRONMENT
The environment variable MSGVERB ("message verbosity") can be used to suppress
parts of the output to stderr. (It does not influence output to the console.) When this
variable is defined, is non-NULL, and is a colon-separated list of valid keywords, then
only the parts of the message corresponding to these keywords is printed. Valid key-
words are "label", "severity", "text", "action", and "tag".

The environment variable SEV_LEVEL can be used to introduce new severity levels.
By default, only the five severity levels described above are available. Any other nu-
meric value would make fmtmsg() print nothing. If the user puts SEV_LEVEL with
a format like

SEV_LEVEL=[description[:description[:...]]]

Linux man-pages 6.13 2024-07-23 1615

fmtmsg(3) Library Functions Manual fmtmsg(3)

in the environment of the process before the first call to fmtmsg(), where each de-
scription is of the form

severity-keyword,level,printstring

then fmtmsg() will also accept the indicated values for the level (in addition to the
standard levels 0–4), and use the indicated printstring when such a level occurs.

The severity-keyword part is not used by fmtmsg() but it has to be present. The level
part is a string representation of a number. The numeric value must be a number
greater than 4. This value must be used in the severity argument of fmtmsg() to select
this class. It is not possible to overwrite any of the predefined classes. The printstring
is the string printed when a message of this class is processed by fmtmsg().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyfmtmsg() glibc >= 2.16: MT-Safe; glibc < 2.16: MT-Unsafe

Before glibc 2.16, the fmtmsg() function uses a static variable that is not protected, so
it is not thread-safe.

Since glibc 2.16, the fmtmsg() function uses a lock to protect the static variable, so it
is thread-safe.

STANDARDS
fmtmsg()
MSGVERB

POSIX.1-2008.

HISTORY
fmtmsg()

System V. POSIX.1-2001 and POSIX.1-2008. glibc 2.1.

MSGVERB
System V. POSIX.1-2001 and POSIX.1-2008.

SEV_LEVEL
System V.

System V and UnixWare man pages tell us that these functions have been replaced by
"pfmt() and addsev()" or by "pfmt(), vpfmt(), lfmt(), and vlfmt()", and will be re-
moved later.

EXAMPLES
#include <fmtmsg.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

long class = MM_PRINT | MM_SOFT | MM_OPSYS | MM_RECOVER;
int err;

err = fmtmsg(class, "util-linux:mount", MM_ERROR,

Linux man-pages 6.13 2024-07-23 1616

fmtmsg(3) Library Functions Manual fmtmsg(3)

"unknown mount option", "See mount(8).",
"util-linux:mount:017");

switch (err) {
case MM_OK:

break;
case MM_NOTOK:

printf("Nothing printed\n");
break;

case MM_NOMSG:
printf("Nothing printed to stderr\n");
break;

case MM_NOCON:
printf("No console output\n");
break;

default:
printf("Unknown error from fmtmsg()\n");

}
exit(EXIT_SUCCESS);

}

The output should be:

util-linux:mount: ERROR: unknown mount option
TO FIX: See mount(8). util-linux:mount:017

and after

MSGVERB=text:action; export MSGVERB

the output becomes:

unknown mount option
TO FIX: See mount(8).

SEE ALSO
addseverity(3), perror(3)

Linux man-pages 6.13 2024-07-23 1617

fnmatch(3) Library Functions Manual fnmatch(3)

NAME
fnmatch - match filename or pathname

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fnmatch.h>

int fnmatch(const char *pattern, const char *string, int flags);

DESCRIPTION
The fnmatch() function checks whether the string argument matches the pattern ar-
gument, which is a shell wildcard pattern (see glob(7)).

The flags argument modifies the behavior; it is the bitwise OR of zero or more of the
following flags:

FNM_NOESCAPE
If this flag is set, treat backslash as an ordinary character, instead of an escape
character.

FNM_PATHNAME
If this flag is set, match a slash in string only with a slash in pattern and not
by an asterisk (*) or a question mark (?) metacharacter, nor by a bracket ex-
pression ([]) containing a slash.

FNM_PERIOD
If this flag is set, a leading period in string has to be matched exactly by a pe-
riod in pattern. A period is considered to be leading if it is the first character
in string, or if both FNM_PATHNAME is set and the period immediately fol-
lows a slash.

FNM_FILE_NAME
This is a GNU synonym for FNM_PATHNAME.

FNM_LEADING_DIR
If this flag (a GNU extension) is set, the pattern is considered to be matched if
it matches an initial segment of string which is followed by a slash. This flag
is mainly for the internal use of glibc and is implemented only in certain cases.

FNM_CASEFOLD
FNM_IGNORECASE (same as FNM_CASEFOLD)

If this flag is set, the pattern is matched case-insensitively.

FNM_EXTMATCH
If this flag (a GNU extension) is set, extended patterns are supported, as intro-
duced by ’ksh’ and now supported by other shells. The extended format is as
follows, with pattern-list being a ’|’ separated list of patterns.

’?(pattern-list)’
The pattern matches if zero or one occurrences of any of the patterns in the
pattern-list match the input string.

’*(pattern-list)’
The pattern matches if zero or more occurrences of any of the patterns in the
pattern-list match the input string.

Linux man-pages 6.13 2024-07-23 1618

fnmatch(3) Library Functions Manual fnmatch(3)

’+(pattern-list)’
The pattern matches if one or more occurrences of any of the patterns in the
pattern-list match the input string.

’@(pattern-list)’
The pattern matches if exactly one occurrence of any of the patterns in the pat-
tern-list match the input string.

’!(pattern-list)’
The pattern matches if the input string cannot be matched with any of the pat-
terns in the pattern-list.

RETURN VALUE
Zero if string matches pattern, FNM_NOMATCH if there is no match or another
nonzero value if there is an error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localefnmatch()

STANDARDS
fnmatch()

POSIX.1-2008.

FNM_CASEFOLD
FNM_IGNORECASE

POSIX.1-2024.

FNM_FILE_NAME
FNM_LEADING_DIR

GNU.

HISTORY
fnmatch()

POSIX.1-2001, POSIX.2.

FNM_CASEFOLD
has been available on many systems even before POSIX.1-2024.

SEE ALSO
sh(1), glob(3), scandir(3), wordexp(3), glob(7)

Linux man-pages 6.13 2024-07-23 1619

fopen(3) Library Functions Manual fopen(3)

NAME
fopen, fdopen, freopen - stream open functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char *restrict pathname, const char *restrict mode);
FILE *fdopen(int fd , const char *mode);
FILE *freopen(const char *restrict pathname, const char *restrict mode,

FILE *restrict stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fdopen():
_POSIX_C_SOURCE

DESCRIPTION
The fopen() function opens the file whose name is the string pointed to by pathname
and associates a stream with it.

The argument mode points to a string beginning with one of the following sequences
(possibly followed by additional characters, as described below):

r Open text file for reading. The stream is positioned at the beginning of the
file.

r+ Open for reading and writing. The stream is positioned at the beginning of the
file.

w Truncate file to zero length or create text file for writing. The stream is posi-
tioned at the beginning of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise
it is truncated. The stream is positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it does not
exist. The stream is positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it
does not exist. Output is always appended to the end of the file. POSIX is
silent on what the initial read position is when using this mode. For glibc, the
initial file position for reading is at the beginning of the file, but for An-
droid/BSD/MacOS, the initial file position for reading is at the end of the file.

The mode string can also include the letter 'b' either as a last character or as a charac-
ter between the characters in any of the two-character strings described above. This is
strictly for compatibility with ISO C and has no effect; the 'b' is ignored on all POSIX
conforming systems, including Linux. (Other systems may treat text files and binary
files differently, and adding the 'b' may be a good idea if you do I/O to a binary file
and expect that your program may be ported to non-UNIX environments.)

See NOTES below for details of glibc extensions for mode.

Any created file will have the mode S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP |
S_IROTH | S_IWOTH (0666), as modified by the process’s umask value (see

Linux man-pages 6.13 2024-07-23 1620

fopen(3) Library Functions Manual fopen(3)

umask(2)).

Reads and writes may be intermixed on read/write streams in any order. Note that
ANSI C requires that a file positioning function intervene between output and input,
unless an input operation encounters end-of-file. (If this condition is not met, then a
read is allowed to return the result of writes other than the most recent.) Therefore it
is good practice (and indeed sometimes necessary under Linux) to put an fseek(3) or
fsetpos(3) operation between write and read operations on such a stream. This opera-
tion may be an apparent no-op (as in fseek(..., 0L, SEEK_CUR) called for its synchro-
nizing side effect).

Opening a file in append mode (a as the first character of mode) causes all subsequent
write operations to this stream to occur at end-of-file, as if preceded by the call:

fseek(stream, 0, SEEK_END);

The file descriptor associated with the stream is opened as if by a call to open(2) with
the following flags:

fopen() mode open() flags
r O_RDONLY
w O_WRONLY | O_CREAT | O_TRUNC
a O_WRONLY | O_CREAT | O_APPEND

r+ O_RDWR
w+ O_RDWR | O_CREAT | O_TRUNC
a+ O_RDWR | O_CREAT | O_APPEND

fdopen()
The fdopen() function associates a stream with the existing file descriptor, fd . The
mode of the stream (one of the values "r", "r+", "w", "w+", "a", "a+") must be com-
patible with the mode of the file descriptor. The file position indicator of the new
stream is set to that belonging to fd , and the error and end-of-file indicators are
cleared. Modes "w" or "w+" do not cause truncation of the file. The file descriptor is
not dup’ed, and will be closed when the stream created by fdopen() is closed. The re-
sult of applying fdopen() to a shared memory object is undefined.

freopen()
The freopen() function opens the file whose name is the string pointed to by path-
name and associates the stream pointed to by stream with it. The original stream (if it
exists) is closed. The mode argument is used just as in the fopen() function.

If the pathname argument is a null pointer, freopen() changes the mode of the stream
to that specified in mode; that is, freopen() reopens the pathname that is associated
with the stream. The specification for this behavior was added in the C99 standard,
which says:

In this case, the file descriptor associated with the stream need not be closed if
the call to freopen() succeeds. It is implementation-defined which changes of
mode are permitted (if any), and under what circumstances.

The primary use of the freopen() function is to change the file associated with a stan-
dard text stream (stderr, stdin, or stdout).

Linux man-pages 6.13 2024-07-23 1621

fopen(3) Library Functions Manual fopen(3)

RETURN VALUE
Upon successful completion fopen(), fdopen(), and freopen() return a FILE pointer.
Otherwise, NULL is returned and errno is set to indicate the error.

ERRORS
EINVAL

The mode provided to fopen(), fdopen(), or freopen() was invalid.

The fopen(), fdopen(), and freopen() functions may also fail and set errno for any of
the errors specified for the routine malloc(3).

The fopen() function may also fail and set errno for any of the errors specified for the
routine open(2).

The fdopen() function may also fail and set errno for any of the errors specified for
the routine fcntl(2).

The freopen() function may also fail and set errno for any of the errors specified for
the routines open(2), fclose(3), and fflush(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefopen(), fdopen(), freopen()

STANDARDS
fopen()
freopen()

C11, POSIX.1-2008.

fdopen()
POSIX.1-2008.

HISTORY
fopen()
freopen()

POSIX.1-2001, C89.

fdopen()
POSIX.1-2001.

NOTES
glibc notes

The GNU C library allows the following extensions for the string specified in mode:

c (since glibc 2.3.3)
Do not make the open operation, or subsequent read and write operations,
thread cancelation points. This flag is ignored for fdopen().

e (since glibc 2.7)
Open the file with the O_CLOEXEC flag. See open(2) for more information.
This flag is ignored for fdopen().

m (since glibc 2.3)
Attempt to access the file using mmap(2), rather than I/O system calls
(read(2), write(2)). Currently, use of mmap(2) is attempted only for a file
opened for reading.

Linux man-pages 6.13 2024-07-23 1622

fopen(3) Library Functions Manual fopen(3)

x Open the file exclusively (like the O_EXCL flag of open(2)). If the file al-
ready exists, fopen() fails, and sets errno to EEXIST. This flag is ignored for
fdopen().

In addition to the above characters, fopen() and freopen() support the following syn-
tax in mode:

,ccs=string

The given string is taken as the name of a coded character set and the stream is
marked as wide-oriented. Thereafter, internal conversion functions convert I/O to and
from the character set string. If the ,ccs=string syntax is not specified, then the wide-
orientation of the stream is determined by the first file operation. If that operation is a
wide-character operation, the stream is marked wide-oriented, and functions to con-
vert to the coded character set are loaded.

BUGS
When parsing for individual flag characters in mode (i.e., the characters preceding the
"ccs" specification), the glibc implementation of fopen() and freopen() limits the
number of characters examined in mode to 7 (or, before glibc 2.14, to 6, which was
not enough to include possible specifications such as "rb+cmxe"). The current imple-
mentation of fdopen() parses at most 5 characters in mode.

SEE ALSO
open(2), fclose(3), fileno(3), fmemopen(3), fopencookie(3), open_memstream(3)

Linux man-pages 6.13 2024-07-23 1623

fopencookie(3) Library Functions Manual fopencookie(3)

NAME
fopencookie - open a custom stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#define _FILE_OFFSET_BITS 64
#include <stdio.h>

FILE *fopencookie(void *restrict cookie, const char *restrict mode,
cookie_io_functions_t io_funcs);

DESCRIPTION
The fopencookie() function allows the programmer to create a custom implementa-
tion for a standard I/O stream. This implementation can store the stream’s data at a
location of its own choosing; for example, fopencookie() is used to implement fmem-
open(3), which provides a stream interface to data that is stored in a buffer in memory.

In order to create a custom stream the programmer must:

• Implement four "hook" functions that are used internally by the standard I/O li-
brary when performing I/O on the stream.

• Define a "cookie" data type, a structure that provides bookkeeping information
(e.g., where to store data) used by the aforementioned hook functions. The stan-
dard I/O package knows nothing about the contents of this cookie (thus it is typed
as void * when passed to fopencookie()), but automatically supplies the cookie as
the first argument when calling the hook functions.

• Call fopencookie() to open a new stream and associate the cookie and hook func-
tions with that stream.

The fopencookie() function serves a purpose similar to fopen(3): it opens a new
stream and returns a pointer to a FILE object that is used to operate on that stream.

The cookie argument is a pointer to the caller’s cookie structure that is to be associ-
ated with the new stream. This pointer is supplied as the first argument when the stan-
dard I/O library invokes any of the hook functions described below.

The mode argument serves the same purpose as for fopen(3). The following modes
are supported: r, w, a, r+, w+, and a+. See fopen(3) for details.

The io_funcs argument is a structure that contains four fields pointing to the pro-
grammer-defined hook functions that are used to implement this stream. The struc-
ture is defined as follows

typedef struct {
cookie_read_function_t *read;
cookie_write_function_t *write;
cookie_seek_function_t *seek;
cookie_close_function_t *close;

} cookie_io_functions_t;

The four fields are as follows:

Linux man-pages 6.13 2024-07-23 1624

fopencookie(3) Library Functions Manual fopencookie(3)

cookie_read_function_t *read
This function implements read operations for the stream. When called, it re-
ceives three arguments:

ssize_t read(void *cookie, char *buf, size_t size);

The buf and size arguments are, respectively, a buffer into which input data
can be placed and the size of that buffer. As its function result, the read func-
tion should return the number of bytes copied into buf , 0 on end of file, or -1
on error. The read function should update the stream offset appropriately.

If *read is a null pointer, then reads from the custom stream always return end
of file.

cookie_write_function_t *write
This function implements write operations for the stream. When called, it re-
ceives three arguments:

ssize_t write(void *cookie, const char *buf, size_t size);

The buf and size arguments are, respectively, a buffer of data to be output to
the stream and the size of that buffer. As its function result, the write function
should return the number of bytes copied from buf , or 0 on error. (The func-
tion must not return a negative value.) The write function should update the
stream offset appropriately.

If *write is a null pointer, then output to the stream is discarded.

cookie_seek_function_t *seek
This function implements seek operations on the stream. When called, it re-
ceives three arguments:

int seek(void *cookie, off_t *offset, int whence);

The *offset argument specifies the new file offset depending on which of the
following three values is supplied in whence:

SEEK_SET
The stream offset should be set *offset bytes from the start of the
stream.

SEEK_CUR
*offset should be added to the current stream offset.

SEEK_END
The stream offset should be set to the size of the stream plus *offset.

Before returning, the seek function should update *offset to indicate the new
stream offset.

As its function result, the seek function should return 0 on success, and -1 on
error.

If *seek is a null pointer, then it is not possible to perform seek operations on
the stream.

cookie_close_function_t *close
This function closes the stream. The hook function can do things such as free-
ing buffers allocated for the stream. When called, it receives one argument:

Linux man-pages 6.13 2024-07-23 1625

fopencookie(3) Library Functions Manual fopencookie(3)

int close(void *cookie);

The cookie argument is the cookie that the programmer supplied when calling
fopencookie().

As its function result, the close function should return 0 on success, and EOF
on error.

If *close is NULL, then no special action is performed when the stream is
closed.

RETURN VALUE
On success fopencookie() returns a pointer to the new stream. On error, NULL is re-
turned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefopencookie()

STANDARDS
GNU.

EXAMPLES
The program below implements a custom stream whose functionality is similar (but
not identical) to that available via fmemopen(3). It implements a stream whose data is
stored in a memory buffer. The program writes its command-line arguments to the
stream, and then seeks through the stream reading two out of every five characters and
writing them to standard output. The following shell session demonstrates the use of
the program:

$./a.out 'hello world'
/he/
/ w/
/d/
Reached end of file

Note that a more general version of the program below could be improved to more ro-
bustly handle various error situations (e.g., opening a stream with a cookie that al-
ready has an open stream; closing a stream that has already been closed).

Program source

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

#define INIT_BUF_SIZE 4

struct memfile_cookie {
char *buf; /* Dynamically sized buffer for data */

Linux man-pages 6.13 2024-07-23 1626

fopencookie(3) Library Functions Manual fopencookie(3)

size_t allocated; /* Size of buf */
size_t endpos; /* Number of characters in buf */
off_t offset; /* Current file offset in buf */

};

ssize_t
memfile_write(void *c, const char *buf, size_t size)
{

char *new_buff;
struct memfile_cookie *cookie = c;

/* Buffer too small? Keep doubling size until big enough. */

while (size + cookie->offset > cookie->allocated) {
new_buff = realloc(cookie->buf, cookie->allocated * 2);
if (new_buff == NULL)

return -1;
cookie->allocated *= 2;
cookie->buf = new_buff;

}

memcpy(cookie->buf + cookie->offset, buf, size);

cookie->offset += size;
if (cookie->offset > cookie->endpos)

cookie->endpos = cookie->offset;

return size;
}

ssize_t
memfile_read(void *c, char *buf, size_t size)
{

ssize_t xbytes;
struct memfile_cookie *cookie = c;

/* Fetch minimum of bytes requested and bytes available. */

xbytes = size;
if (cookie->offset + size > cookie->endpos)

xbytes = cookie->endpos - cookie->offset;
if (xbytes < 0) /* offset may be past endpos */

xbytes = 0;

memcpy(buf, cookie->buf + cookie->offset, xbytes);

cookie->offset += xbytes;
return xbytes;

}

Linux man-pages 6.13 2024-07-23 1627

fopencookie(3) Library Functions Manual fopencookie(3)

int
memfile_seek(void *c, off_t *offset, int whence)
{

off_t new_offset;
struct memfile_cookie *cookie = c;

if (whence == SEEK_SET)
new_offset = *offset;

else if (whence == SEEK_END)
new_offset = cookie->endpos + *offset;

else if (whence == SEEK_CUR)
new_offset = cookie->offset + *offset;

else
return -1;

if (new_offset < 0)
return -1;

cookie->offset = new_offset;
*offset = new_offset;
return 0;

}

int
memfile_close(void *c)
{

struct memfile_cookie *cookie = c;

free(cookie->buf);
cookie->allocated = 0;
cookie->buf = NULL;

return 0;
}

int
main(int argc, char *argv[])
{

cookie_io_functions_t memfile_func = {
.read = memfile_read,
.write = memfile_write,
.seek = memfile_seek,
.close = memfile_close

};
FILE *stream;
struct memfile_cookie mycookie;
size_t nread;
char buf[1000];

Linux man-pages 6.13 2024-07-23 1628

fopencookie(3) Library Functions Manual fopencookie(3)

/* Set up the cookie before calling fopencookie(). */

mycookie.buf = malloc(INIT_BUF_SIZE);
if (mycookie.buf == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

mycookie.allocated = INIT_BUF_SIZE;
mycookie.offset = 0;
mycookie.endpos = 0;

stream = fopencookie(&mycookie, "w+", memfile_func);
if (stream == NULL) {

perror("fopencookie");
exit(EXIT_FAILURE);

}

/* Write command-line arguments to our file. */

for (size_t j = 1; j < argc; j++)
if (fputs(argv[j], stream) == EOF) {

perror("fputs");
exit(EXIT_FAILURE);

}

/* Read two bytes out of every five, until EOF. */

for (long p = 0; ; p += 5) {
if (fseek(stream, p, SEEK_SET) == -1) {

perror("fseek");
exit(EXIT_FAILURE);

}
nread = fread(buf, 1, 2, stream);
if (nread == 0) {

if (ferror(stream) != 0) {
fprintf(stderr, "fread failed\n");
exit(EXIT_FAILURE);

}
printf("Reached end of file\n");
break;

}

printf("/%.*s/\n", (int) nread, buf);
}

free(mycookie.buf);

Linux man-pages 6.13 2024-07-23 1629

fopencookie(3) Library Functions Manual fopencookie(3)

exit(EXIT_SUCCESS);
}

NOTES
_FILE_OFFSET_BITS should be defined to be 64 in code that uses non-null seek or
that takes the address of fopencookie, if the code is intended to be portable to tradi-
tional 32-bit x86 and ARM platforms where off_t’s width defaults to 32 bits.

SEE ALSO
fclose(3), fmemopen(3), fopen(3), fseek(3)

Linux man-pages 6.13 2024-07-23 1630

fpathconf (3) Library Functions Manual fpathconf (3)

NAME
fpathconf, pathconf - get configuration values for files

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

long fpathconf(int fd , int name);
long pathconf(const char *path, int name);

DESCRIPTION
fpathconf() gets a value for the configuration option name for the open file descriptor
fd .

pathconf() gets a value for configuration option name for the filename path.

The corresponding macros defined in <unistd.h> are minimum values; if an applica-
tion wants to take advantage of values which may change, a call to fpathconf() or
pathconf() can be made, which may yield more liberal results.

Setting name equal to one of the following constants returns the following configura-
tion options:

_PC_LINK_MAX
The maximum number of links to the file. If fd or path refer to a directory,
then the value applies to the whole directory. The corresponding macro is
_POSIX_LINK_MAX.

_PC_MAX_CANON
The maximum length of a formatted input line, where fd or path must refer to
a terminal. The corresponding macro is _POSIX_MAX_CANON.

_PC_MAX_INPUT
The maximum length of an input line, where fd or path must refer to a termi-
nal. The corresponding macro is _POSIX_MAX_INPUT.

_PC_NAME_MAX
The maximum length of a filename in the directory path or fd that the process
is allowed to create. The corresponding macro is _POSIX_NAME_MAX.

_PC_PATH_MAX
The maximum length of a relative pathname when path or fd is the current
working directory. The corresponding macro is _POSIX_PATH_MAX.

_PC_PIPE_BUF
The maximum number of bytes that can be written atomically to a pipe of
FIFO. For fpathconf(), fd should refer to a pipe or FIFO. For fpathconf(),
path should refer to a FIFO or a directory; in the latter case, the returned value
corresponds to FIFOs created in that directory. The corresponding macro is
_POSIX_PIPE_BUF.

_PC_CHOWN_RESTRICTED
This returns a positive value if the use of chown(2) and fchown(2) for changing
a file’s user ID is restricted to a process with appropriate privileges, and
changing a file’s group ID to a value other than the process’s effective group

Linux man-pages 6.13 2024-07-23 1631

fpathconf (3) Library Functions Manual fpathconf (3)

ID or one of its supplementary group IDs is restricted to a process with appro-
priate privileges. According to POSIX.1, this variable shall always be defined
with a value other than -1. The corresponding macro is
_POSIX_CHOWN_RESTRICTED.

If fd or path refers to a directory, then the return value applies to all files in
that directory.

_PC_NO_TRUNC
This returns nonzero if accessing filenames longer than
_POSIX_NAME_MAX generates an error. The corresponding macro is
_POSIX_NO_TRUNC.

_PC_VDISABLE
This returns nonzero if special character processing can be disabled, where fd
or path must refer to a terminal.

RETURN VALUE
The return value of these functions is one of the following:

• On error, -1 is returned and errno is set to indicate the error (for example, EIN-
VAL, indicating that name is invalid).

• If name corresponds to a maximum or minimum limit, and that limit is indetermi-
nate, -1 is returned and errno is not changed. (To distinguish an indeterminate
limit from an error, set errno to zero before the call, and then check whether errno
is nonzero when -1 is returned.)

• If name corresponds to an option, a positive value is returned if the option is sup-
ported, and -1 is returned if the option is not supported.

• Otherwise, the current value of the option or limit is returned. This value will not
be more restrictive than the corresponding value that was described to the applica-
tion in <unistd.h> or <limits.h> when the application was compiled.

ERRORS
EACCES

(pathconf()) Search permission is denied for one of the directories in the path
prefix of path.

EBADF
(fpathconf()) fd is not a valid file descriptor.

EINVAL
name is invalid.

EINVAL
The implementation does not support an association of name with the speci-
fied file.

ELOOP
(pathconf()) Too many symbolic links were encountered while resolving
path.

ENAMETOOLONG
(pathconf()) path is too long.

Linux man-pages 6.13 2024-07-23 1632

fpathconf (3) Library Functions Manual fpathconf (3)

ENOENT
(pathconf()) A component of path does not exist, or path is an empty string.

ENOTDIR
(pathconf()) A component used as a directory in path is not in fact a direc-
tory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefpathconf(), pathconf()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Files with name lengths longer than the value returned for name equal to
_PC_NAME_MAX may exist in the given directory.

Some returned values may be huge; they are not suitable for allocating memory.

SEE ALSO
getconf (1), open(2), statfs(2), confstr(3), sysconf(3)

Linux man-pages 6.13 2024-07-23 1633

fpclassify(3) Library Functions Manual fpclassify(3)

NAME
fpclassify, isfinite, isnormal, isnan, isinf - floating-point classification macros

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

int fpclassify(x);
int isfinite(x);
int isnormal(x);
int isnan(x);
int isinf(x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fpclassify(), isfinite(), isnormal():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

isnan():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

isinf():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Floating point numbers can have special values, such as infinite or NaN. With the
macro fpclassify(x) you can find out what type x is. The macro takes any floating-
point expression as argument. The result is one of the following values:

FP_NAN x is "Not a Number".

FP_INFINITE x is either positive infinity or negative infinity.

FP_ZERO x is zero.

FP_SUBNORMAL
x is too small to be represented in normalized format.

FP_NORMAL if nothing of the above is correct then it must be a normal floating-
point number.

The other macros provide a short answer to some standard questions.

isfinite(x) returns a nonzero value if
(fpclassify(x) != FP_NAN && fpclassify(x) != FP_INFINITE)

isnormal(x) returns a nonzero value if (fpclassify(x) == FP_NORMAL)

isnan(x) returns a nonzero value if (fpclassify(x) == FP_NAN)

Linux man-pages 6.13 2024-07-23 1634

fpclassify(3) Library Functions Manual fpclassify(3)

isinf(x) returns 1 if x is positive infinity, and -1 if x is negative infinity.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefpclassify(), isfinite(), isnormal(), isnan(), isinf()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

In glibc 2.01 and earlier, isinf() returns a nonzero value (actually: 1) if x is positive in-
finity or negative infinity. (This is all that C99 requires.)

NOTES
For isinf(), the standards merely say that the return value is nonzero if and only if the
argument has an infinite value.

SEE ALSO
finite(3), INFINITY(3), isgreater(3), signbit(3)

Linux man-pages 6.13 2024-07-23 1635

fpurge(3) Library Functions Manual fpurge(3)

NAME
fpurge, __fpurge - purge a stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
/* unsupported */
#include <stdio.h>

int fpurge(FILE *stream);

/* supported */
#include <stdio.h>
#include <stdio_ext.h>

void __fpurge(FILE *stream);

DESCRIPTION
The function fpurge() clears the buffers of the given stream. For output streams this
discards any unwritten output. For input streams this discards any input read from the
underlying object but not yet obtained via getc(3); this includes any text pushed back
via ungetc(3). See also fflush(3).

The function __fpurge() does precisely the same, but without returning a value.

RETURN VALUE
Upon successful completion fpurge() returns 0. On error, it returns -1 and sets errno
to indicate the error.

ERRORS
EBADF

stream is not an open stream.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:stream__fpurge()

STANDARDS
None.

HISTORY
fpurge()

4.4BSD. Not available under Linux.

__fpurge()
Solaris, glibc 2.1.95.

NOTES
Usually it is a mistake to want to discard input buffers.

SEE ALSO
fflush(3), setbuf(3), stdio_ext(3)

Linux man-pages 6.13 2024-07-23 1636

fpurge(3) Library Functions Manual fpurge(3)

Linux man-pages 6.13 2024-07-23 1637

fputwc(3) Library Functions Manual fputwc(3)

NAME
fputwc, putwc - write a wide character to a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE *stream);
wint_t putwc(wchar_t wc, FILE *stream);

DESCRIPTION
The fputwc() function is the wide-character equivalent of the fputc(3) function. It
writes the wide character wc to stream. If ferror(stream) becomes true, it returns
WEOF. If a wide-character conversion error occurs, it sets errno to EILSEQ and re-
turns WEOF. Otherwise, it returns wc.

The putwc() function or macro functions identically to fputwc(). It may be imple-
mented as a macro, and may evaluate its argument more than once. There is no rea-
son ever to use it.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
On success, fputwc() function returns wc. Otherwise, WEOF is returned, and errno
is set to indicate the error.

ERRORS
Apart from the usual ones, there is

EILSEQ
Conversion of wc to the stream’s encoding fails.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefputwc(), putwc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

NOTES
The behavior of fputwc() depends on the LC_CTYPE category of the current locale.

In the absence of additional information passed to the fopen(3) call, it is reasonable to
expect that fputwc() will actually write the multibyte sequence corresponding to the
wide character wc.

SEE ALSO
fgetwc(3), fputws(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-07-23 1638

fputws(3) Library Functions Manual fputws(3)

NAME
fputws - write a wide-character string to a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int fputws(const wchar_t *restrict ws, FILE *restrict stream);

DESCRIPTION
The fputws() function is the wide-character equivalent of the fputs(3) function. It
writes the wide-character string starting at ws, up to but not including the terminating
null wide character (L'\0'), to stream.

For a nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
The fputws() function returns a nonnegative integer if the operation was successful, or
-1 to indicate an error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefputws()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of fputws() depends on the LC_CTYPE category of the current locale.

In the absence of additional information passed to the fopen(3) call, it is reasonable to
expect that fputws() will actually write the multibyte string corresponding to the
wide-character string ws.

SEE ALSO
fputwc(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-07-23 1639

fread(3) Library Functions Manual fread(3)

NAME
fread, fwrite - binary stream input/output

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

size_t fread(void ptr[restrict .size * .n],
size_t size, size_t n,
FILE *restrict stream);

size_t fwrite(const void ptr[restrict .size * .n],
size_t size, size_t n,
FILE *restrict stream);

DESCRIPTION
The function fread() reads n items of data, each size bytes long, from the stream
pointed to by stream, storing them at the location given by ptr.

The function fwrite() writes n items of data, each size bytes long, to the stream
pointed to by stream, obtaining them from the location given by ptr.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
On success, fread() and fwrite() return the number of items read or written. This
number equals the number of bytes transferred only when size is 1. If an error occurs,
or the end of the file is reached, the return value is a short item count (or zero).

The file position indicator for the stream is advanced by the number of bytes success-
fully read or written.

fread() does not distinguish between end-of-file and error, and callers must use feof(3)
and ferror(3) to determine which occurred.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefread(), fwrite()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

EXAMPLES
The program below demonstrates the use of fread() by parsing /bin/sh ELF exe-
cutable in binary mode and printing its magic and class:

$./a.out
ELF magic: 0x7f454c46
Class: 0x02

Linux man-pages 6.13 2024-11-17 1640

fread(3) Library Functions Manual fread(3)

Program source

#include <stdio.h>
#include <stdlib.h>

#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))

int
main(void)
{

FILE *fp;
size_t ret;
unsigned char buffer[4];

fp = fopen("/bin/sh", "rb");
if (!fp) {

perror("fopen");
return EXIT_FAILURE;

}

ret = fread(buffer, sizeof(*buffer), ARRAY_SIZE(buffer), fp);
if (ret != ARRAY_SIZE(buffer)) {

fprintf(stderr, "fread() failed: %zu\n", ret);
exit(EXIT_FAILURE);

}

printf("ELF magic: %#04x%02x%02x%02x\n", buffer[0], buffer[1],
buffer[2], buffer[3]);

ret = fread(buffer, 1, 1, fp);
if (ret != 1) {

fprintf(stderr, "fread() failed: %zu\n", ret);
exit(EXIT_FAILURE);

}

printf("Class: %#04x\n", buffer[0]);

fclose(fp);

exit(EXIT_SUCCESS);
}

SEE ALSO
read(2), write(2), feof(3), ferror(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-11-17 1641

fread(3) Library Functions Manual fread(3)

Linux man-pages 6.13 2024-11-17 1642

frexp(3) Library Functions Manual frexp(3)

NAME
frexp, frexpf, frexpl - convert floating-point number to fractional and integral compo-
nents

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double frexp(double x, int *exp);
float frexpf(float x, int *exp);
long double frexpl(long double x, int *exp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

frexpf(), frexpl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions are used to split the number x into a normalized fraction and an expo-
nent which is stored in exp.

RETURN VALUE
These functions return the normalized fraction. If the argument x is not zero, the nor-
malized fraction is x times a power of two, and its absolute value is always in the
range 1/2 (inclusive) to 1 (exclusive), that is, [0.5,1).

If x is zero, then the normalized fraction is zero and zero is stored in exp.

If x is a NaN, a NaN is returned, and the value of *exp is unspecified.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is re-
turned, and the value of *exp is unspecified.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefrexp(), frexpf(), frexpl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

EXAMPLES
The program below produces results such as the following:

$./a.out 2560
frexp(2560, &e) = 0.625: 0.625 * 2^12 = 2560
$./a.out -4

Linux man-pages 6.13 2024-07-23 1643

frexp(3) Library Functions Manual frexp(3)

frexp(-4, &e) = -0.5: -0.5 * 2^3 = -4

Program source

#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

double x, r;
int exp;

x = strtod(argv[1], NULL);
r = frexp(x, &exp);

printf("frexp(%g, &e) = %g: %g * %d^%d = %g\n", x, r, r, 2, exp, x);
exit(EXIT_SUCCESS);

}

SEE ALSO
ldexp(3), modf(3)

Linux man-pages 6.13 2024-07-23 1644

fseek(3) Library Functions Manual fseek(3)

NAME
fgetpos, fseek, fsetpos, ftell, rewind - reposition a stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);
long ftell(FILE *stream);

void rewind(FILE *stream);

int fgetpos(FILE *restrict stream, fpos_t *restrict pos);
int fsetpos(FILE *stream, const fpos_t *pos);

DESCRIPTION
The fseek() function sets the file position indicator for the stream pointed to by
stream. The new position, measured in bytes, is obtained by adding offset bytes to the
position specified by whence. If whence is set to SEEK_SET, SEEK_CUR, or
SEEK_END, the offset is relative to the start of the file, the current position indicator,
or end-of-file, respectively. A successful call to the fseek() function clears the end-of-
file indicator for the stream and undoes any effects of the ungetc(3) function on the
same stream.

The ftell() function obtains the current value of the file position indicator for the
stream pointed to by stream.

The rewind() function sets the file position indicator for the stream pointed to by
stream to the beginning of the file. It is equivalent to:

(void) fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared (see clearerr(3)).

The fgetpos() and fsetpos() functions are alternate interfaces equivalent to ftell() and
fseek() (with whence set to SEEK_SET), setting and storing the current value of the
file offset into or from the object referenced by pos. On some non-UNIX systems, an
fpos_t object may be a complex object and these routines may be the only way to
portably reposition a text stream.

If the stream refers to a regular file and the resulting stream offset is beyond the size
of the file, subsequent writes will extend the file with a hole, up to the offset, before
committing any data. See lseek(2) for details on file seeking semantics.

RETURN VALUE
The rewind() function returns no value. Upon successful completion, fgetpos(),
fseek(), fsetpos() return 0, and ftell() returns the current offset. Otherwise, -1 is re-
turned and errno is set to indicate the error.

ERRORS
EINVAL

The whence argument to fseek() was not SEEK_SET, SEEK_END, or
SEEK_CUR. Or: the resulting file offset would be negative.

Linux man-pages 6.13 2024-07-23 1645

fseek(3) Library Functions Manual fseek(3)

ESPIPE
The file descriptor underlying stream is not seekable (e.g., it refers to a pipe,
FIFO, or socket).

The functions fgetpos(), fseek(), fsetpos(), and ftell() may also fail and set errno for
any of the errors specified for the routines fflush(3), fstat(2), lseek(2), and malloc(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefseek(), ftell(), rewind(), fgetpos(), fsetpos()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

SEE ALSO
lseek(2), fseeko(3)

Linux man-pages 6.13 2024-07-23 1646

fseeko(3) Library Functions Manual fseeko(3)

NAME
fseeko, ftello - seek to or report file position

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fseeko(FILE *stream, off_t offset, int whence);
off_t ftello(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fseeko(), ftello():
_FILE_OFFSET_BITS == 64 || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The fseeko() and ftello() functions are identical to fseek(3) and ftell(3) (see fseek(3)),
respectively, except that the offset argument of fseeko() and the return value of ftello()
is of type off_t instead of long.

On some architectures, both off_t and long are 32-bit types, but defining
_FILE_OFFSET_BITS with the value 64 (before including any header files) will
turn off_t into a 64-bit type.

RETURN VALUE
On successful completion, fseeko() returns 0, while ftello() returns the current offset.
Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS
See the ERRORS in fseek(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefseeko(), ftello()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001, SUSv2.

NOTES
The declarations of these functions can also be obtained by defining the obsolete
_LARGEFILE_SOURCE feature test macro.

SEE ALSO
fseek(3)

Linux man-pages 6.13 2024-07-23 1647

ftime(3) Library Functions Manual ftime(3)

NAME
ftime - return date and time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/timeb.h>

int ftime(struct timeb *tp);

DESCRIPTION
NOTE: This function is no longer provided by the GNU C library. Use clock_get-
time(2) instead.

This function returns the current time as seconds and milliseconds since the Epoch,
1970-01-01 00:00:00 +0000 (UTC). The time is returned in tp, which is declared as
follows:

struct timeb {
time_t time;
unsigned short millitm;
short timezone;
short dstflag;

};

Here time is the number of seconds since the Epoch, and millitm is the number of mil-
liseconds since time seconds since the Epoch. The timezone field is the local time-
zone measured in minutes of time west of Greenwich (with a negative value indicating
minutes east of Greenwich). The dstflag field is a flag that, if nonzero, indicates that
Daylight Saving time applies locally during the appropriate part of the year.

POSIX.1-2001 says that the contents of the timezone and dstflag fields are unspeci-
fied; avoid relying on them.

RETURN VALUE
This function always returns 0. (POSIX.1-2001 specifies, and some systems docu-
ment, a -1 error return.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeftime()

STANDARDS
None.

HISTORY
Removed in glibc 2.33. 4.2BSD, POSIX.1-2001. Removed in POSIX.1-2008.

This function is obsolete. Don’t use it. If the time in seconds suffices, time(2) can be
used; gettimeofday(2) gives microseconds; clock_gettime(2) gives nanoseconds but is
not as widely available.

BUGS
Early glibc2 is buggy and returns 0 in the millitm field; glibc 2.1.1 is correct again.

Linux man-pages 6.13 2024-07-23 1648

ftime(3) Library Functions Manual ftime(3)

SEE ALSO
gettimeofday(2), time(2)

Linux man-pages 6.13 2024-07-23 1649

ftok(3) Library Functions Manual ftok(3)

NAME
ftok - convert a pathname and a project identifier to a System V IPC key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ipc.h>

key_t ftok(const char *pathname, int proj_id);

DESCRIPTION
The ftok() function uses the identity of the file named by the given pathname (which
must refer to an existing, accessible file) and the least significant 8 bits of proj_id
(which must be nonzero) to generate a key_t type System V IPC key, suitable for use
with msgget(2), semget(2), or shmget(2).

The resulting value is the same for all pathnames that name the same file, when the
same value of proj_id is used. The value returned should be different when the (si-
multaneously existing) files or the project IDs differ.

RETURN VALUE
On success, the generated key_t value is returned. On failure -1 is returned, with er-
rno indicating the error as for the stat(2) system call.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeftok()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
On some ancient systems, the prototype was:

key_t ftok(char *pathname, char proj_id);

Today, proj_id is an int, but still only 8 bits are used. Typical usage has an ASCII
character proj_id , that is why the behavior is said to be undefined when proj_id is
zero.

Of course, no guarantee can be given that the resulting key_t is unique. Typically, a
best-effort attempt combines the given proj_id byte, the lower 16 bits of the inode
number, and the lower 8 bits of the device number into a 32-bit result. Collisions may
easily happen, for example between files on /dev/hda1 and files on /dev/sda1.

EXAMPLES
See semget(2).

SEE ALSO
msgget(2), semget(2), shmget(2), stat(2), sysvipc(7)

Linux man-pages 6.13 2024-07-23 1650

fts(3) Library Functions Manual fts(3)

NAME
fts, fts_open, fts_read, fts_children, fts_set, fts_close - traverse a file hierarchy

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fts.h>

FTS *fts_open(char *const *path_argv, int options,
typeof(int (const FTSENT **, const FTSENT **))

*_Nullable compar);

FTSENT *fts_read(FTS * ftsp);

FTSENT *fts_children(FTS * ftsp, int instr);

int fts_set(FTS * ftsp, FTSENT * f , int instr);

int fts_close(FTS * ftsp);

DESCRIPTION
The fts functions are provided for traversing file hierarchies. A simple overview is
that the fts_open() function returns a "handle" (of type FTS *) that refers to a file hi-
erarchy "stream". This handle is then supplied to the other fts functions. The func-
tion fts_read() returns a pointer to a structure describing one of the files in the file hi-
erarchy. The function fts_children() returns a pointer to a linked list of structures,
each of which describes one of the files contained in a directory in the hierarchy.

In general, directories are visited two distinguishable times; in preorder (before any of
their descendants are visited) and in postorder (after all of their descendants have been
visited). Files are visited once. It is possible to walk the hierarchy "logically" (visit-
ing the files that symbolic links point to) or physically (visiting the symbolic links
themselves), order the walk of the hierarchy or prune and/or revisit portions of the hi-
erarchy.

Two structures (and associated types) are defined in the include file <fts.h>. The first
type is FTS, the structure that represents the file hierarchy itself. The second type is
FTSENT , the structure that represents a file in the file hierarchy. Normally, an FT-
SENT structure is returned for every file in the file hierarchy. In this manual page,
"file" and "FTSENT structure" are generally interchangeable.

The FTSENT structure contains fields describing a file. The structure contains at least
the following fields (there are additional fields that should be considered private to the
implementation):

typedef struct _ftsent {
unsigned short fts_info; /* flags for FTSENT structure */
char *fts_accpath; /* access path */
char *fts_path; /* root path */
short fts_pathlen; /* strlen(fts_path) +

strlen(fts_name) */
char *fts_name; /* filename */
short fts_namelen; /* strlen(fts_name) */

Linux man-pages 6.13 2024-12-13 1651

fts(3) Library Functions Manual fts(3)

short fts_level; /* depth (-1 to N) */
int fts_errno; /* file errno */
long fts_number; /* local numeric value */
void *fts_pointer; /* local address value */
struct _ftsent *fts_parent; /* parent directory */
struct _ftsent *fts_link; /* next file structure */
struct _ftsent *fts_cycle; /* cycle structure */
struct stat *fts_statp; /* [l]stat(2) information */

} FTSENT;

These fields are defined as follows:

fts_info
One of the following values describing the returned FTSENT structure and the
file it represents. With the exception of directories without errors (FTS_D),
all of these entries are terminal, that is, they will not be revisited, nor will any
of their descendants be visited.

FTS_D
A directory being visited in preorder.

FTS_DC
A directory that causes a cycle in the tree. (The fts_cycle field of the
FTSENT structure will be filled in as well.)

FTS_DEFAULT
Any FTSENT structure that represents a file type not explicitly de-
scribed by one of the other fts_info values.

FTS_DNR
A directory which cannot be read. This is an error return, and the
fts_errno field will be set to indicate what caused the error.

FTS_DOT
A file named "." or ".." which was not specified as a filename to
fts_open() (see FTS_SEEDOT).

FTS_DP
A directory being visited in postorder. The contents of the FTSENT
structure will be unchanged from when it was returned in preorder, that
is, with the fts_info field set to FTS_D.

FTS_ERR
This is an error return, and the fts_errno field will be set to indicate
what caused the error.

FTS_F
A regular file.

FTS_NS
A file for which no [l]stat(2) information was available. The contents
of the fts_statp field are undefined. This is an error return, and the
fts_errno field will be set to indicate what caused the error.

Linux man-pages 6.13 2024-12-13 1652

fts(3) Library Functions Manual fts(3)

FTS_NSOK
A file for which no [l]stat(2) information was requested. The contents
of the fts_statp field are undefined.

FTS_SL
A symbolic link.

FTS_SLNONE
A symbolic link with a nonexistent target. The contents of the
fts_statp field reference the file characteristic information for the sym-
bolic link itself.

fts_accpath
A path for accessing the file from the current directory.

fts_path
The path for the file relative to the root of the traversal. This path contains the
path specified to fts_open() as a prefix.

fts_pathlen
The sum of the lengths of the strings referenced by fts_path and fts_name.

fts_name
The name of the file.

fts_namelen
The length of the string referenced by fts_name.

fts_level
The depth of the traversal, numbered from -1 to N, where this file was found.
The FTSENT structure representing the parent of the starting point (or root) of
the traversal is numbered -1, and the FTSENT structure for the root itself is
numbered 0.

fts_errno
If fts_children() or fts_read() returns an FTSENT structure whose fts_info
field is set to FTS_DNR, FTS_ERR, or FTS_NS, the fts_errno field contains
the error number (i.e., the errno value) specifying the error. Otherwise, the
contents of the fts_errno field are undefined.

fts_number
This field is provided for the use of the application program and is not modi-
fied by the fts functions. It is initialized to 0.

fts_pointer
This field is provided for the use of the application program and is not modi-
fied by the fts functions. It is initialized to NULL.

fts_parent
A pointer to the FTSENT structure referencing the file in the hierarchy imme-
diately above the current file, that is, the directory of which this file is a mem-
ber. A parent structure for the initial entry point is provided as well, however,
only the fts_level, fts_number, and fts_pointer fields are guaranteed to be ini-
tialized.

Linux man-pages 6.13 2024-12-13 1653

fts(3) Library Functions Manual fts(3)

fts_link
Upon return from the fts_children() function, the fts_link field points to the
next structure in the NULL-terminated linked list of directory members. Oth-
erwise, the contents of the fts_link field are undefined.

fts_cycle
If a directory causes a cycle in the hierarchy (see FTS_DC), either because of
a hard link between two directories, or a symbolic link pointing to a directory,
the fts_cycle field of the structure will point to the FTSENT structure in the
hierarchy that references the same file as the current FTSENT structure. Oth-
erwise, the contents of the fts_cycle field are undefined.

fts_statp
A pointer to [l]stat(2) information for the file.

A single buffer is used for all of the paths of all of the files in the file hierarchy.
Therefore, the fts_path and fts_accpath fields are guaranteed to be null-terminated
only for the file most recently returned by fts_read(). To use these fields to reference
any files represented by other FTSENT structures will require that the path buffer be
modified using the information contained in that FTSENT structure’s fts_pathlen
field. Any such modifications should be undone before further calls to fts_read() are
attempted. The fts_name field is always null-terminated.

fts_open()
The fts_open() function takes a pointer to an array of character pointers naming one
or more paths which make up a logical file hierarchy to be traversed. The array must
be terminated by a null pointer.

There are a number of options, at least one of which (either FTS_LOGICAL or
FTS_PHYSICAL) must be specified. The options are selected by ORing the follow-
ing values:

FTS_LOGICAL
This option causes the fts routines to return FTSENT structures for the targets
of symbolic links instead of the symbolic links themselves. If this option is
set, the only symbolic links for which FTSENT structures are returned to the
application are those referencing nonexistent files: the fts_statp field is ob-
tained via stat(2) with a fallback to lstat(2).

FTS_PHYSICAL
This option causes the fts routines to return FTSENT structures for symbolic
links themselves instead of the target files they point to. If this option is set,
FTSENT structures for all symbolic links in the hierarchy are returned to the
application: the fts_statp field is obtained via lstat(2).

FTS_COMFOLLOW
This option causes any symbolic link specified as a root path to be followed
immediately, as if via FTS_LOGICAL, regardless of the primary mode.

FTS_NOCHDIR
As a performance optimization, the fts functions change directories as they
walk the file hierarchy. This has the side-effect that an application cannot rely
on being in any particular directory during the traversal. This option turns off
this optimization, and the fts functions will not change the current directory.

Linux man-pages 6.13 2024-12-13 1654

fts(3) Library Functions Manual fts(3)

Note that applications should not themselves change their current directory
and try to access files unless FTS_NOCHDIR is specified and absolute path-
names were provided as arguments to fts_open().

FTS_NOSTAT
By default, returned FTSENT structures reference file characteristic informa-
tion (the fts_statp field) for each file visited. This option relaxes that require-
ment as a performance optimization, allowing the fts functions to set the
fts_info field to FTS_NSOK and leave the contents of the fts_statp field un-
defined.

FTS_SEEDOT
By default, unless they are specified as path arguments to fts_open(), any files
named "." or ".." encountered in the file hierarchy are ignored. This option
causes the fts routines to return FTSENT structures for them.

FTS_XDEV
This option prevents fts from descending into directories that have a different
device number than the file from which the descent began.

The argument compar() specifies a user-defined function which may be used to order
the traversal of the hierarchy. It takes two pointers to pointers to FTSENT structures
as arguments and should return a negative value, zero, or a positive value to indicate if
the file referenced by its first argument comes before, in any order with respect to, or
after, the file referenced by its second argument. The fts_accpath, fts_path, and
fts_pathlen fields of the FTSENT structures may never be used in this comparison. If
the fts_info field is set to FTS_NS or FTS_NSOK, the fts_statp field may not either.
If the compar() argument is NULL, the directory traversal order is in the order listed
in path_argv for the root paths, and in the order listed in the directory for everything
else.

fts_read()
The fts_read() function returns a pointer to an FTSENT structure describing a file in
the hierarchy. Directories (that are readable and do not cause cycles) are visited at
least twice, once in preorder and once in postorder. All other files are visited at least
once. (Hard links between directories that do not cause cycles or symbolic links to
symbolic links may cause files to be visited more than once, or directories more than
twice.)

If all the members of the hierarchy have been returned, fts_read() returns NULL and
sets errno to 0. If an error unrelated to a file in the hierarchy occurs, fts_read() re-
turns NULL and sets errno to indicate the error. If an error related to a returned file
occurs, a pointer to an FTSENT structure is returned, and errno may or may not have
been set (see fts_info).

The FTSENT structures returned by fts_read() may be overwritten after a call to
fts_close() on the same file hierarchy stream, or, after a call to fts_read() on the same
file hierarchy stream unless they represent a file of type directory, in which case they
will not be overwritten until after a call to fts_read() after the FTSENT structure has
been returned by the function fts_read() in postorder.

Linux man-pages 6.13 2024-12-13 1655

fts(3) Library Functions Manual fts(3)

fts_children()
The fts_children() function returns a pointer to an FTSENT structure describing the
first entry in a NULL-terminated linked list of the files in the directory represented by
the FTSENT structure most recently returned by fts_read(). The list is linked through
the fts_link field of the FTSENT structure, and is ordered by the user-specified com-
parison function, if any. Repeated calls to fts_children() will re-create this linked list.

As a special case, if fts_read() has not yet been called for a hierarchy, fts_children()
will return a pointer to the files in the logical directory specified to fts_open(), that is,
the arguments specified to fts_open(). Otherwise, if the FTSENT structure most re-
cently returned by fts_read() is not a directory being visited in preorder, or the direc-
tory does not contain any files, fts_children() returns NULL and sets errno to zero. If
an error occurs, fts_children() returns NULL and sets errno to indicate the error.

The FTSENT structures returned by fts_children() may be overwritten after a call to
fts_children(), fts_close(), or fts_read() on the same file hierarchy stream.

The instr argument is either zero or the following value:

FTS_NAMEONLY
Only the names of the files are needed. The contents of all the fields in the re-
turned linked list of structures are undefined with the exception of the
fts_name and fts_namelen fields.

fts_set()
The function fts_set() allows the user application to determine further processing for
the file f of the stream ftsp. The fts_set() function returns 0 on success, and -1 if an
error occurs.

The instr argument is either 0 (meaning "do nothing") or one of the following values:

FTS_AGAIN
Revisit the file; any file type may be revisited. The next call to fts_read() will
return the referenced file. The fts_stat and fts_info fields of the structure will
be reinitialized at that time, but no other fields will have been changed. This
option is meaningful only for the most recently returned file from fts_read().
Normal use is for postorder directory visits, where it causes the directory to be
revisited (in both preorder and postorder) as well as all of its descendants.

FTS_FOLLOW
The referenced file must be a symbolic link. If the referenced file is the one
most recently returned by fts_read(), the next call to fts_read() returns the file
with the fts_info and fts_statp fields reinitialized to reflect the target of the
symbolic link instead of the symbolic link itself. If the file is one of those
most recently returned by fts_children(), the fts_info and fts_statp fields of
the structure, when returned by fts_read(), will reflect the target of the sym-
bolic link instead of the symbolic link itself. In either case, if the target of the
symbolic link does not exist, the fields of the returned structure will be un-
changed and the fts_info field will be set to FTS_SLNONE.

If the target of the link is a directory, the preorder return, followed by the re-
turn of all of its descendants, followed by a postorder return, is done.

Linux man-pages 6.13 2024-12-13 1656

fts(3) Library Functions Manual fts(3)

FTS_SKIP
No descendants of this file are visited. The file may be one of those most re-
cently returned by either fts_children() or fts_read().

fts_close()
The fts_close() function closes the file hierarchy stream referred to by ftsp and re-
stores the current directory to the directory from which fts_open() was called to open
ftsp. The fts_close() function returns 0 on success, and -1 if an error occurs.

ERRORS
The function fts_open() may fail and set errno for any of the errors specified for
open(2) and malloc(3).

In addition, fts_open() may fail and set errno as follows:

ENOENT
Any element of path_argv was an empty string.

The function fts_close() may fail and set errno for any of the errors specified for
chdir(2) and close(2).

The functions fts_read() and fts_children() may fail and set errno for any of the er-
rors specified for chdir(2), malloc(3), opendir(3), readdir(3), and [l]stat(2).

In addition, fts_children(), fts_open(), and fts_set() may fail and set errno as fol-
lows:

EINVAL
options or instr was invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefts_open(), fts_set(), fts_close()
Thread safety MT-Unsafefts_read(), fts_children()

STANDARDS
None.

HISTORY
glibc 2. 4.4BSD.

BUGS
Before glibc 2.23, all of the APIs described in this man page are not safe when com-
piling a program using the LFS APIs (e.g., when compiling with -D_FILE_OFF-
SET_BITS=64).

SEE ALSO
find(1), chdir(2), lstat(2), stat(2), ftw(3), qsort(3)

Linux man-pages 6.13 2024-12-13 1657

ftw(3) Library Functions Manual ftw(3)

NAME
ftw, nftw - file tree walk

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ftw.h>

int nftw(const char *dirpath,
typeof(int (const char * fpath, const struct stat *sb,

int typeflag, struct FTW * ftwbuf))
* fn,

int nopenfd , int flags);

[[deprecated]]
int ftw(const char *dirpath,

typeof(int (const char * fpath, const struct stat *sb,
int typeflag))

* fn,
int nopenfd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nftw():
_XOPEN_SOURCE >= 500

DESCRIPTION
nftw() walks through the directory tree that is located under the directory dirpath, and
calls fn() once for each entry in the tree. By default, directories are handled before the
files and subdirectories they contain (preorder traversal).

To avoid using up all of the calling process’s file descriptors, nopenfd specifies the
maximum number of directories that nftw() will hold open simultaneously. When the
search depth exceeds this, nftw() will become slower because directories have to be
closed and reopened. nftw() uses at most one file descriptor for each level in the di-
rectory tree.

For each entry found in the tree, nftw() calls fn() with four arguments: fpath, sb, type-
flag, and ftwbuf . fpath is the pathname of the entry, and is expressed either as a path-
name relative to the calling process’s current working directory at the time of the call
to nftw(), if dirpath was expressed as a relative pathname, or as an absolute path-
name, if dirpath was expressed as an absolute pathname. sb is a pointer to the stat
structure returned by a call to stat(2) for fpath.

The typeflag argument passed to fn() is an integer that has one of the following val-
ues:

FTW_F
fpath is a regular file.

FTW_D
fpath is a directory.

Linux man-pages 6.13 2024-12-13 1658

ftw(3) Library Functions Manual ftw(3)

FTW_DNR
fpath is a directory which can’t be read.

FTW_DP
fpath is a directory, and FTW_DEPTH was specified in flags. (If
FTW_DEPTH was not specified in flags, then directories will always be vis-
ited with typeflag set to FTW_D.) All of the files and subdirectories within
fpath have been processed.

FTW_NS
The stat(2) call failed on fpath, which is not a symbolic link. The probable
cause for this is that the caller had read permission on the parent directory, so
that the filename fpath could be seen, but did not have execute permission, so
that the file could not be reached for stat(2). The contents of the buffer
pointed to by sb are undefined.

FTW_SL
fpath is a symbolic link, and FTW_PHYS was set in flags.

FTW_SLN
fpath is a symbolic link pointing to a nonexistent file. (This occurs only if
FTW_PHYS is not set.) In this case the sb argument passed to fn() contains
information returned by performing lstat(2) on the "dangling" symbolic link.
(But see BUGS.)

The fourth argument (ftwbuf) that nftw() supplies when calling fn() is a pointer to a
structure of type FTW:

struct FTW {
int base;
int level;

};

base is the offset of the filename (i.e., basename component) in the pathname given in
fpath. level is the depth of fpath in the directory tree, relative to the root of the tree
(dirpath, which has depth 0).

To stop the tree walk, fn() returns a nonzero value; this value will become the return
value of nftw(). As long as fn() returns 0, nftw() will continue either until it has tra-
versed the entire tree, in which case it will return zero, or until it encounters an error
(such as a malloc(3) failure), in which case it will return -1.

Because nftw() uses dynamic data structures, the only safe way to exit out of a tree
walk is to return a nonzero value from fn(). To allow a signal to terminate the walk
without causing a memory leak, have the handler set a global flag that is checked by
fn(). Don’t use longjmp(3) unless the program is going to terminate.

The flags argument of nftw() is formed by ORing zero or more of the following flags:

FTW_ACTIONRETVAL (since glibc 2.3.3)
If this glibc-specific flag is set, then nftw() handles the return value from fn()
differently. fn() should return one of the following values:

FTW_CONTINUE
Instructs nftw() to continue normally.

Linux man-pages 6.13 2024-12-13 1659

ftw(3) Library Functions Manual ftw(3)

FTW_SKIP_SIBLINGS
If fn() returns this value, then siblings of the current entry will be
skipped, and processing continues in the parent.

FTW_SKIP_SUBTREE
If fn() is called with an entry that is a directory (typeflag is FTW_D),
this return value will prevent objects within that directory from being
passed as arguments to fn(). nftw() continues processing with the next
sibling of the directory.

FTW_STOP
Causes nftw() to return immediately with the return value
FTW_STOP.

Other return values could be associated with new actions in the future; fn()
should not return values other than those listed above.

The feature test macro _GNU_SOURCE must be defined (before including
any header files) in order to obtain the definition of FTW_ACTIONRETVAL
from <ftw.h>.

FTW_CHDIR
If set, do a chdir(2) to each directory before handling its contents. This is use-
ful if the program needs to perform some action in the directory in which fpath
resides. (Specifying this flag has no effect on the pathname that is passed in
the fpath argument of fn.)

FTW_DEPTH
If set, do a post-order traversal, that is, call fn() for the directory itself after
handling the contents of the directory and its subdirectories. (By default, each
directory is handled before its contents.)

FTW_MOUNT
If set, stay within the same filesystem (i.e., do not cross mount points).

FTW_PHYS
If set, do not follow symbolic links. (This is what you want.) If not set, sym-
bolic links are followed, but no file is reported twice.

If FTW_PHYS is not set, but FTW_DEPTH is set, then the function fn() is
never called for a directory that would be a descendant of itself.

ftw()
ftw() is an older function that offers a subset of the functionality of nftw(). The no-
table differences are as follows:

• ftw() has no flags argument. It behaves the same as when nftw() is called with
flags specified as zero.

• The callback function, fn(), is not supplied with a fourth argument.

• The range of values that is passed via the typeflag argument supplied to fn() is
smaller: just FTW_F, FTW_D, FTW_DNR, FTW_NS, and (possibly)
FTW_SL.

Linux man-pages 6.13 2024-12-13 1660

ftw(3) Library Functions Manual ftw(3)

RETURN VALUE
These functions return 0 on success, and -1 if an error occurs.

If fn() returns nonzero, then the tree walk is terminated and the value returned by fn()
is returned as the result of ftw() or nftw().

If nftw() is called with the FTW_ACTIONRETVAL flag, then the only nonzero
value that should be used by fn() to terminate the tree walk is FTW_STOP, and that
value is returned as the result of nftw().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe cwdnftw()
Thread safety MT-Safeftw()

VERSIONS
In some implementations (e.g., glibc), ftw() will never use FTW_SL; on other sys-
tems FTW_SL occurs only for symbolic links that do not point to an existing file; and
again on other systems ftw() will use FTW_SL for each symbolic link. If fpath is a
symbolic link and stat(2) failed, POSIX.1-2008 states that it is undefined whether
FTW_NS or FTW_SL is passed in typeflag. For predictable results, use nftw().

STANDARDS
POSIX.1-2008.

HISTORY
ftw() POSIX.1-2001, SVr4, SUSv1. POSIX.1-2008 marks it as obsolete.

nftw()
glibc 2.1. POSIX.1-2001, SUSv1.

FTW_SL
POSIX.1-2001, SUSv1.

NOTES
POSIX.1-2008 notes that the results are unspecified if fn does not preserve the current
working directory.

BUGS
According to POSIX.1-2008, when the typeflag argument passed to fn() contains
FTW_SLN, the buffer pointed to by sb should contain information about the dangling
symbolic link (obtained by calling lstat(2) on the link). Early glibc versions correctly
followed the POSIX specification on this point. However, as a result of a regression
introduced in glibc 2.4, the contents of the buffer pointed to by sb were undefined
when FTW_SLN is passed in typeflag. (More precisely, the contents of the buffer
were left unchanged in this case.) This regression was eventually fixed in glibc 2.30,
so that the glibc implementation (once more) follows the POSIX specification.

EXAMPLES
The following program traverses the directory tree under the path named in its first
command-line argument, or under the current directory if no argument is supplied. It
displays various information about each file. The second command-line argument can
be used to specify characters that control the value assigned to the flags argument
when calling nftw().

Linux man-pages 6.13 2024-12-13 1661

ftw(3) Library Functions Manual ftw(3)

Program source

#define _XOPEN_SOURCE 500
#include <ftw.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int
display_info(const char *fpath, const struct stat *sb,

int tflag, struct FTW *ftwbuf)
{

printf("%-3s %2d ",
(tflag == FTW_D) ? "d" : (tflag == FTW_DNR) ? "dnr" :
(tflag == FTW_DP) ? "dp" : (tflag == FTW_F) ? "f" :
(tflag == FTW_NS) ? "ns" : (tflag == FTW_SL) ? "sl" :
(tflag == FTW_SLN) ? "sln" : "???",
ftwbuf->level);

if (tflag == FTW_NS)
printf("-------");

else
printf("%7jd", (intmax_t) sb->st_size);

printf(" %-40s %d %s\n",
fpath, ftwbuf->base, fpath + ftwbuf->base);

return 0; /* To tell nftw() to continue */
}

int
main(int argc, char *argv[])
{

int flags = 0;

if (argc > 2 && strchr(argv[2], 'd') != NULL)
flags |= FTW_DEPTH;

if (argc > 2 && strchr(argv[2], 'p') != NULL)
flags |= FTW_PHYS;

if (nftw((argc < 2) ? "." : argv[1], display_info, 20, flags)
== -1)

{
perror("nftw");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);

Linux man-pages 6.13 2024-12-13 1662

ftw(3) Library Functions Manual ftw(3)

}

SEE ALSO
stat(2), fts(3), readdir(3)

Linux man-pages 6.13 2024-12-13 1663

futimes(3) Library Functions Manual futimes(3)

NAME
futimes, lutimes - change file timestamps

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/time.h>

int futimes(int fd , const struct timeval tv[2]);
int lutimes(const char * filename, const struct timeval tv[2]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

futimes(), lutimes():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
futimes() changes the access and modification times of a file in the same way as
utimes(2), with the difference that the file whose timestamps are to be changed is
specified via a file descriptor, fd , rather than via a pathname.

lutimes() changes the access and modification times of a file in the same way as
utimes(2), with the difference that if filename refers to a symbolic link, then the link
is not dereferenced: instead, the timestamps of the symbolic link are changed.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
Errors are as for utimes(2), with the following additions for futimes():

EBADF
fd is not a valid file descriptor.

ENOSYS
The /proc filesystem could not be accessed.

The following additional error may occur for lutimes():

ENOSYS
The kernel does not support this call; Linux 2.6.22 or later is required.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefutimes(), lutimes()

STANDARDS
Linux, BSD.

HISTORY

Linux man-pages 6.13 2024-07-23 1664

futimes(3) Library Functions Manual futimes(3)

futimes()
glibc 2.3.

lutimes()
glibc 2.6.

NOTES
lutimes() is implemented using the utimensat(2) system call.

SEE ALSO
utime(2), utimensat(2), symlink(7)

Linux man-pages 6.13 2024-07-23 1665

fwide(3) Library Functions Manual fwide(3)

NAME
fwide - set and determine the orientation of a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int fwide(FILE *stream, int mode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fwide():
_XOPEN_SOURCE >= 500 || _ISOC99_SOURCE

|| _POSIX_C_SOURCE >= 200112L

DESCRIPTION
When mode is zero, the fwide() function determines the current orientation of stream.
It returns a positive value if stream is wide-character oriented, that is, if wide-charac-
ter I/O is permitted but char I/O is disallowed. It returns a negative value if stream is
byte oriented—that is, if char I/O is permitted but wide-character I/O is disallowed. It
returns zero if stream has no orientation yet; in this case the next I/O operation might
change the orientation (to byte oriented if it is a char I/O operation, or to wide-charac-
ter oriented if it is a wide-character I/O operation).

Once a stream has an orientation, it cannot be changed and persists until the stream is
closed.

When mode is nonzero, the fwide() function first attempts to set stream’s orientation
(to wide-character oriented if mode is greater than 0, or to byte oriented if mode is less
than 0). It then returns a value denoting the current orientation, as above.

RETURN VALUE
The fwide() function returns the stream’s orientation, after possibly changing it. A
positive return value means wide-character oriented. A negative return value means
byte oriented. A return value of zero means undecided.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
Wide-character output to a byte oriented stream can be performed through the
fprintf(3) function with the %lc and %ls directives.

Char oriented output to a wide-character oriented stream can be performed through
the fwprintf(3) function with the %c and %s directives.

SEE ALSO
fprintf(3), fwprintf(3)

Linux man-pages 6.13 2024-07-23 1666

fwide(3) Library Functions Manual fwide(3)

Linux man-pages 6.13 2024-07-23 1667

gamma(3) Library Functions Manual gamma(3)

NAME
gamma, gammaf, gammal - (logarithm of the) gamma function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

[[deprecated]] double gamma(double x);
[[deprecated]] float gammaf(float x);
[[deprecated]] long double gammal(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gamma():
_XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

gammaf(), gammal():
_XOPEN_SOURCE >= 600 || (_XOPEN_SOURCE && _ISOC99_SOURCE)

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions are deprecated: instead, use either the tgamma(3) or the lgamma(3)
functions, as appropriate.

For the definition of the Gamma function, see tgamma(3).

*BSD version
The libm in 4.4BSD and some versions of FreeBSD had a gamma() function that
computes the Gamma function, as one would expect.

glibc version
glibc has a gamma() function that is equivalent to lgamma(3) and computes the nat-
ural logarithm of the Gamma function.

RETURN VALUE
See lgamma(3).

ERRORS
See lgamma(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:signgamgamma(), gammaf(), gammal()

STANDARDS
None.

HISTORY
SVID 2.

Because of historical variations in behavior across systems, this function is not speci-
fied in any recent standard.

Linux man-pages 6.13 2024-07-23 1668

gamma(3) Library Functions Manual gamma(3)

4.2BSD had a gamma() that computed ln(|Gamma(|x|)|), leaving the sign of
Gamma(|x|) in the external integer signgam. In 4.3BSD the name was changed to
lgamma(3), and the man page promises

"At some time in the future the name gamma will be rehabilitated and used for
the Gamma function"

This did indeed happen in 4.4BSD, where gamma() computes the Gamma function
(with no effect on signgam). However, this came too late, and we now have
tgamma(3), the "true gamma" function.

SEE ALSO
lgamma(3), signgam(3), tgamma(3)

Linux man-pages 6.13 2024-07-23 1669

gcvt(3) Library Functions Manual gcvt(3)

NAME
gcvt - convert a floating-point number to a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

char *gcvt(double number, int ndigit, char *buf);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gcvt():
Since glibc 2.17

(_XOPEN_SOURCE >= 500 && ! (_POSIX_C_SOURCE >= 200809L))
|| /* glibc >= 2.20 */ _DEFAULT_SOURCE
|| /* glibc <= 2.19 */ _SVID_SOURCE

glibc 2.12 to glibc 2.16:
(_XOPEN_SOURCE >= 500 && ! (_POSIX_C_SOURCE >= 200112L))

|| _SVID_SOURCE
Before glibc 2.12:

_SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The gcvt() function converts number to a minimal length null-terminated ASCII string
and stores the result in buf. It produces ndigit significant digits in either printf(3) F
format or E format.

RETURN VALUE
The gcvt() function returns buf.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegcvt()

STANDARDS
None.

HISTORY
Marked as LEGACY in POSIX.1-2001. POSIX.1-2008 removed it, recommending
the use of sprintf(3) instead (though snprintf(3) may be preferable).

SEE ALSO
ecvt(3), fcvt(3), sprintf(3)

Linux man-pages 6.13 2024-07-23 1670

_Generic(3) Library Functions Manual _Generic(3)

NAME
_Generic - type-generic selection

SYNOPSIS
_Generic(expression, type1: e1, ... /*, default: e */);

DESCRIPTION
_Generic() evaluates the path of code under the type selector that is compatible with
the type of the controlling expression, or default: if no type is compatible.

expression is not evaluated.

This is especially useful for writing type-generic macros, that will behave differently
depending on the type of the argument.

STANDARDS
C11.

HISTORY
C11.

EXAMPLES
The following program demonstrates how to write a replacement for the standard
imaxabs(3) function, which being a function can’t really provide what it promises:
seamlessly upgrading to the widest available type.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

#define my_imaxabs _Generic(INTMAX_C(0), \
long: labs, \
long long: llabs \

/* long long long: lllabs */ \
)

int
main(void)
{

off_t a;

a = -42;
printf("imaxabs(%jd) == %jd\n", (intmax_t) a, my_imaxabs(a));
printf("&imaxabs == %p\n", &my_imaxabs);
printf("&labs == %p\n", &labs);
printf("&llabs == %p\n", &llabs);

exit(EXIT_SUCCESS);
}

Linux man-pages 6.13 2024-06-15 1671

get_nprocs(3) Library Functions Manual get_nprocs(3)

NAME
get_nprocs, get_nprocs_conf - get number of processors

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sysinfo.h>

int get_nprocs(void);
int get_nprocs_conf(void);

DESCRIPTION
The function get_nprocs_conf() returns the number of processors configured by the
operating system.

The function get_nprocs() returns the number of processors currently available in the
system. This may be less than the number returned by get_nprocs_conf() because
processors may be offline (e.g., on hotpluggable systems).

RETURN VALUE
As given in DESCRIPTION.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeget_nprocs(), get_nprocs_conf()

STANDARDS
GNU.

NOTES
The current implementation of these functions is rather expensive, since they open
and parse files in the /sys filesystem each time they are called.

The following sysconf(3) calls make use of the functions documented on this page to
return the same information.

np = sysconf(_SC_NPROCESSORS_CONF); /* processors configured */
np = sysconf(_SC_NPROCESSORS_ONLN); /* processors available */

EXAMPLES
The following example shows how get_nprocs() and get_nprocs_conf() can be used.

#include <stdio.h>
#include <stdlib.h>
#include <sys/sysinfo.h>

int
main(void)
{

printf("This system has %d processors configured and "
"%d processors available.\n",
get_nprocs_conf(), get_nprocs());

exit(EXIT_SUCCESS);
}

Linux man-pages 6.13 2024-07-23 1672

get_nprocs(3) Library Functions Manual get_nprocs(3)

SEE ALSO
nproc(1)

Linux man-pages 6.13 2024-07-23 1673

get_phys_pages(3) Library Functions Manual get_phys_pages(3)

NAME
get_phys_pages, get_avphys_pages - get total and available physical page counts

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sysinfo.h>

long get_phys_pages(void);
long get_avphys_pages(void);

DESCRIPTION
The function get_phys_pages() returns the total number of physical pages of memory
available on the system.

The function get_avphys_pages() returns the number of currently available physical
pages of memory on the system.

RETURN VALUE
On success, these functions return a nonnegative value as given in DESCRIPTION.
On failure, they return -1 and set errno to indicate the error.

ERRORS
ENOSYS

The system could not provide the required information (possibly because the
/proc filesystem was not mounted).

STANDARDS
GNU.

HISTORY
Before glibc 2.23, these functions obtained the required information by scanning the
MemTotal and MemFree fields of /proc/meminfo. Since glibc 2.23, these functions
obtain the required information by calling sysinfo(2).

NOTES
The following sysconf(3) calls provide a portable means of obtaining the same infor-
mation as the functions described on this page.

total_pages = sysconf(_SC_PHYS_PAGES); /* total pages */
avl_pages = sysconf(_SC_AVPHYS_PAGES); /* available pages */

EXAMPLES
The following example shows how get_phys_pages() and get_avphys_pages() can be
used.

#include <stdio.h>
#include <stdlib.h>
#include <sys/sysinfo.h>

int
main(void)
{

printf("This system has %ld pages of physical memory and "
"%ld pages of physical memory available.\n",

Linux man-pages 6.13 2024-07-23 1674

get_phys_pages(3) Library Functions Manual get_phys_pages(3)

get_phys_pages(), get_avphys_pages());
exit(EXIT_SUCCESS);

}

SEE ALSO
sysconf(3)

Linux man-pages 6.13 2024-07-23 1675

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

NAME
getaddrinfo, freeaddrinfo, gai_strerror - network address and service translation

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *restrict node,
const char *restrict service,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

void freeaddrinfo(struct addrinfo *res);

const char *gai_strerror(int errcode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getaddrinfo(), freeaddrinfo(), gai_strerror():
Since glibc 2.22:

_POSIX_C_SOURCE >= 200112L
glibc 2.21 and earlier:

_POSIX_C_SOURCE

DESCRIPTION
Given node and service, which identify an Internet host and a service, getaddrinfo()
returns one or more addrinfo structures, each of which contains an Internet address
that can be specified in a call to bind(2) or connect(2). The getaddrinfo() function
combines the functionality provided by the gethostbyname(3) and getservbyname(3)
functions into a single interface, but unlike the latter functions, getaddrinfo() is reen-
trant and allows programs to eliminate IPv4-versus-IPv6 dependencies.

The addrinfo structure used by getaddrinfo() contains the following fields:

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

The hints argument points to an addrinfo structure that specifies criteria for selecting
the socket address structures returned in the list pointed to by res. If hints is not
NULL it points to an addrinfo structure whose ai_family, ai_socktype, and ai_proto-
col specify criteria that limit the set of socket addresses returned by getaddrinfo(), as
follows:

Linux man-pages 6.13 2024-11-17 1676

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

ai_family
This field specifies the desired address family for the returned addresses.
Valid values for this field include AF_INET and AF_INET6. The value
AF_UNSPEC indicates that getaddrinfo() should return socket addresses for
any address family (either IPv4 or IPv6, for example) that can be used with
node and service.

ai_socktype
This field specifies the preferred socket type, for example SOCK_STREAM
or SOCK_DGRAM. Specifying 0 in this field indicates that socket addresses
of any type can be returned by getaddrinfo().

ai_protocol
This field specifies the protocol for the returned socket addresses. Specifying
0 in this field indicates that socket addresses with any protocol can be returned
by getaddrinfo().

ai_flags
This field specifies additional options, described below. Multiple flags are
specified by bitwise OR-ing them together.

All the other fields in the structure pointed to by hints must contain either 0 or a null
pointer, as appropriate.

Specifying hints as NULL is equivalent to setting ai_socktype and ai_protocol to 0;
ai_family to AF_UNSPEC; and ai_flags to (AI_V4MAPPED | AI_ADDRCON-
FIG). (POSIX specifies different defaults for ai_flags; see NOTES.) node specifies
either a numerical network address (for IPv4, numbers-and-dots notation as supported
by inet_aton(3); for IPv6, hexadecimal string format as supported by inet_pton(3)), or
a network hostname, whose network addresses are looked up and resolved. If
hints.ai_flags contains the AI_NUMERICHOST flag, then node must be a numerical
network address. The AI_NUMERICHOST flag suppresses any potentially lengthy
network host address lookups.

If the AI_PASSIVE flag is specified in hints.ai_flags, and node is NULL, then the re-
turned socket addresses will be suitable for bind(2)ing a socket that will accept(2)
connections. The returned socket address will contain the "wildcard address" (IN-
ADDR_ANY for IPv4 addresses, IN6ADDR_ANY_INIT for IPv6 address). The
wildcard address is used by applications (typically servers) that intend to accept con-
nections on any of the host’s network addresses. If node is not NULL, then the
AI_PASSIVE flag is ignored.

If the AI_PASSIVE flag is not set in hints.ai_flags, then the returned socket addresses
will be suitable for use with connect(2), sendto(2), or sendmsg(2). If node is NULL,
then the network address will be set to the loopback interface address (IN-
ADDR_LOOPBACK for IPv4 addresses, IN6ADDR_LOOPBACK_INIT for IPv6
address); this is used by applications that intend to communicate with peers running
on the same host.

service sets the port in each returned address structure. If this argument is a service
name (see services(5)), it is translated to the corresponding port number. This argu-
ment can also be specified as a decimal number, which is simply converted to binary.
If service is NULL, then the port number of the returned socket addresses will be left

Linux man-pages 6.13 2024-11-17 1677

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

uninitialized. If AI_NUMERICSERV is specified in hints.ai_flags and service is not
NULL, then service must point to a string containing a numeric port number. This
flag is used to inhibit the invocation of a name resolution service in cases where it is
known not to be required.

Either node or service, but not both, may be NULL.

The getaddrinfo() function allocates and initializes a linked list of addrinfo struc-
tures, one for each network address that matches node and service, subject to any re-
strictions imposed by hints, and returns a pointer to the start of the list in res. The
items in the linked list are linked by the ai_next field.

There are several reasons why the linked list may have more than one addrinfo struc-
ture, including: the network host is multihomed, accessible over multiple protocols
(e.g., both AF_INET and AF_INET6); or the same service is available from multiple
socket types (one SOCK_STREAM address and another SOCK_DGRAM address,
for example). Normally, the application should try using the addresses in the order in
which they are returned. The sorting function used within getaddrinfo() is defined in
RFC 3484; the order can be tweaked for a particular system by editing /etc/gai.conf
(available since glibc 2.5).

If hints.ai_flags includes the AI_CANONNAME flag, then the ai_canonname field
of the first of the addrinfo structures in the returned list is set to point to the official
name of the host.

The remaining fields of each returned addrinfo structure are initialized as follows:

• The ai_family, ai_socktype, and ai_protocol fields return the socket creation para-
meters (i.e., these fields have the same meaning as the corresponding arguments of
socket(2)). For example, ai_family might return AF_INET or AF_INET6;
ai_socktype might return SOCK_DGRAM or SOCK_STREAM; and ai_proto-
col returns the protocol for the socket.

• A pointer to the socket address is placed in the ai_addr field, and the size of the
socket address, in bytes, is placed in the ai_addrlen field.

If hints.ai_flags includes the AI_ADDRCONFIG flag, then IPv4 addresses are re-
turned in the list pointed to by res only if the local system has at least one IPv4 ad-
dress configured, and IPv6 addresses are returned only if the local system has at least
one IPv6 address configured. The loopback address is not considered for this case as
valid as a configured address. This flag is useful on, for example, IPv4-only systems,
to ensure that getaddrinfo() does not return IPv6 socket addresses that would always
fail in connect(2) or bind(2).

If hints.ai_flags specifies the AI_V4MAPPED flag, and hints.ai_family was specified
as AF_INET6, and no matching IPv6 addresses could be found, then return
IPv4-mapped IPv6 addresses in the list pointed to by res. If both AI_V4MAPPED
and AI_ALL are specified in hints.ai_flags, then return both IPv6 and IPv4-mapped
IPv6 addresses in the list pointed to by res. AI_ALL is ignored if AI_V4MAPPED
is not also specified.

The freeaddrinfo() function frees the memory that was allocated for the dynamically
allocated linked list res.

Linux man-pages 6.13 2024-11-17 1678

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

Extensions to getaddrinfo() for Internationalized Domain Names
Starting with glibc 2.3.4, getaddrinfo() has been extended to selectively allow the in-
coming and outgoing hostnames to be transparently converted to and from the Interna-
tionalized Domain Name (IDN) format (see RFC 3490, Internationalizing Domain
Names in Applications (IDNA)). Four new flags are defined:

AI_IDN
If this flag is specified, then the node name given in node is converted to IDN
format if necessary. The source encoding is that of the current locale.

If the input name contains non-ASCII characters, then the IDN encoding is
used. Those parts of the node name (delimited by dots) that contain non-
ASCII characters are encoded using ASCII Compatible Encoding (ACE) be-
fore being passed to the name resolution functions.

AI_CANONIDN
After a successful name lookup, and if the AI_CANONNAME flag was spec-
ified, getaddrinfo() will return the canonical name of the node corresponding
to the addrinfo structure value passed back. The return value is an exact copy
of the value returned by the name resolution function.

If the name is encoded using ACE, then it will contain the xn-- prefix for one
or more components of the name. To convert these components into a read-
able form the AI_CANONIDN flag can be passed in addition to
AI_CANONNAME. The resulting string is encoded using the current lo-
cale’s encoding.

AI_IDN_ALLOW_UNASSIGNED
AI_IDN_USE_STD3_ASCII_RULES

Setting these flags will enable the IDNA_ALLOW_UNASSIGNED (allow
unassigned Unicode code points) and IDNA_USE_STD3_ASCII_RULES
(check output to make sure it is a STD3 conforming hostname) flags respec-
tively to be used in the IDNA handling.

RETURN VALUE
getaddrinfo() returns 0 if it succeeds, or one of the following nonzero error codes:

EAI_ADDRFAMILY
The specified network host does not have any network addresses in the re-
quested address family.

EAI_AGAIN
The name server returned a temporary failure indication. Try again later.

EAI_BADFLAGS
hints.ai_flags contains invalid flags; or, hints.ai_flags included AI_CANON-
NAME and node was NULL.

EAI_FAIL
The name server returned a permanent failure indication.

EAI_FAMILY
The requested address family is not supported.

Linux man-pages 6.13 2024-11-17 1679

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

EAI_MEMORY
Out of memory.

EAI_NODATA
The specified network host exists, but does not have any network addresses de-
fined.

EAI_NONAME
The node or service is not known; or both node and service are NULL; or
AI_NUMERICSERV was specified in hints.ai_flags and service was not a
numeric port-number string.

EAI_SERVICE
The requested service is not available for the requested socket type. It may be
available through another socket type. For example, this error could occur if
service was "shell" (a service available only on stream sockets), and either
hints.ai_protocol was IPPROTO_UDP, or hints.ai_socktype was
SOCK_DGRAM; or the error could occur if service was not NULL, and
hints.ai_socktype was SOCK_RAW (a socket type that does not support the
concept of services).

EAI_SOCKTYPE
The requested socket type is not supported. This could occur, for example, if
hints.ai_socktype and hints.ai_protocol are inconsistent (e.g.,
SOCK_DGRAM and IPPROTO_TCP, respectively).

EAI_SYSTEM
Other system error; errno is set to indicate the error.

The gai_strerror() function translates these error codes to a human readable string,
suitable for error reporting.

FILES
/etc/gai.conf

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localegetaddrinfo()
Thread safety MT-Safefreeaddrinfo(), gai_strerror()

VERSIONS
According to POSIX.1, specifying hints as NULL should cause ai_flags to be as-
sumed as 0. The GNU C library instead assumes a value of
(AI_V4MAPPED | AI_ADDRCONFIG) for this case, since this value is considered
an improvement on the specification.

STANDARDS
POSIX.1-2008.

getaddrinfo()
RFC 2553.

Linux man-pages 6.13 2024-11-17 1680

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

HISTORY
POSIX.1-2001.

AI_ADDRCONFIG
AI_ALL
AI_V4MAPPED

glibc 2.3.3.

AI_NUMERICSERV
glibc 2.3.4.

NOTES
getaddrinfo() supports the address%scope-id notation for specifying the IPv6 scope-
ID.

EXAMPLES
The following programs demonstrate the use of getaddrinfo(), gai_strerror(),
freeaddrinfo(), and getnameinfo(3). The programs are an echo server and client for
UDP datagrams.

Server program

#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

#define BUF_SIZE 500

int
main(int argc, char *argv[])
{

int sfd, s;
char buf[BUF_SIZE];
ssize_t nread;
socklen_t peer_addrlen;
struct addrinfo hints;
struct addrinfo *result, *rp;
struct sockaddr_storage peer_addr;

if (argc != 2) {
fprintf(stderr, "Usage: %s port\n", argv[0]);
exit(EXIT_FAILURE);

}

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */
hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */
hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */

Linux man-pages 6.13 2024-11-17 1681

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

hints.ai_protocol = 0; /* Any protocol */
hints.ai_canonname = NULL;
hints.ai_addr = NULL;
hints.ai_next = NULL;

s = getaddrinfo(NULL, argv[1], &hints, &result);
if (s != 0) {

fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);

}

/* getaddrinfo() returns a list of address structures.
Try each address until we successfully bind(2).
If socket(2) (or bind(2)) fails, we (close the socket
and) try the next address. */

for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype,

rp->ai_protocol);
if (sfd == -1)

continue;

if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)
break; /* Success */

close(sfd);
}

freeaddrinfo(result); /* No longer needed */

if (rp == NULL) { /* No address succeeded */
fprintf(stderr, "Could not bind\n");
exit(EXIT_FAILURE);

}

/* Read datagrams and echo them back to sender. */

for (;;) {
char host[NI_MAXHOST], service[NI_MAXSERV];

peer_addrlen = sizeof(peer_addr);
nread = recvfrom(sfd, buf, BUF_SIZE, 0,

(struct sockaddr *) &peer_addr, &peer_addrlen);
if (nread == -1)

continue; /* Ignore failed request */

s = getnameinfo((struct sockaddr *) &peer_addr,
peer_addrlen, host, NI_MAXHOST,
service, NI_MAXSERV, NI_NUMERICSERV);

Linux man-pages 6.13 2024-11-17 1682

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

if (s == 0)
printf("Received %zd bytes from %s:%s\n",

nread, host, service);
else

fprintf(stderr, "getnameinfo: %s\n", gai_strerror(s));

if (sendto(sfd, buf, nread, 0, (struct sockaddr *) &peer_addr,
peer_addrlen) != nread)

{
fprintf(stderr, "Error sending response\n");

}
}

}

Client program

#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

#define BUF_SIZE 500

int
main(int argc, char *argv[])
{

int sfd, s;
char buf[BUF_SIZE];
size_t size;
ssize_t nread;
struct addrinfo hints;
struct addrinfo *result, *rp;

if (argc < 3) {
fprintf(stderr, "Usage: %s host port msg...\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Obtain address(es) matching host/port. */

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */
hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */
hints.ai_flags = 0;
hints.ai_protocol = 0; /* Any protocol */

Linux man-pages 6.13 2024-11-17 1683

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

s = getaddrinfo(argv[1], argv[2], &hints, &result);
if (s != 0) {

fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);

}

/* getaddrinfo() returns a list of address structures.
Try each address until we successfully connect(2).
If socket(2) (or connect(2)) fails, we (close the socket
and) try the next address. */

for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype,

rp->ai_protocol);
if (sfd == -1)

continue;

if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1)
break; /* Success */

close(sfd);
}

freeaddrinfo(result); /* No longer needed */

if (rp == NULL) { /* No address succeeded */
fprintf(stderr, "Could not connect\n");
exit(EXIT_FAILURE);

}

/* Send remaining command-line arguments as separate
datagrams, and read responses from server. */

for (size_t j = 3; j < argc; j++) {
size = strlen(argv[j]) + 1;

/* +1 for terminating null byte */

if (size > BUF_SIZE) {
fprintf(stderr,

"Ignoring long message in argument %zu\n", j);
continue;

}

if (write(sfd, argv[j], size) != size) {
fprintf(stderr, "partial/failed write\n");
exit(EXIT_FAILURE);

}

nread = read(sfd, buf, BUF_SIZE);

Linux man-pages 6.13 2024-11-17 1684

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

if (nread == -1) {
perror("read");
exit(EXIT_FAILURE);

}

printf("Received %zd bytes: %s\n", nread, buf);
}

exit(EXIT_SUCCESS);
}

SEE ALSO
getaddrinfo_a(3), gethostbyname(3), getnameinfo(3), inet(3), gai.conf(5), host-
name(7), ip(7)

Linux man-pages 6.13 2024-11-17 1685

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

NAME
getaddrinfo_a, gai_suspend, gai_error, gai_cancel - asynchronous network address
and service translation

LIBRARY
Asynchronous name lookup library (libanl, -lanl)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <netdb.h>

int getaddrinfo_a(int mode, struct gaicb *list[restrict],
int n, struct sigevent *restrict sevp);

int gai_suspend(const struct gaicb *const list[], int n,
const struct timespec *timeout);

int gai_error(struct gaicb *req);
int gai_cancel(struct gaicb *req);

DESCRIPTION
The getaddrinfo_a() function performs the same task as getaddrinfo(3), but allows
multiple name look-ups to be performed asynchronously, with optional notification on
completion of look-up operations.

The mode argument has one of the following values:

GAI_WAIT
Perform the look-ups synchronously. The call blocks until the look-ups have
completed.

GAI_NOWAIT
Perform the look-ups asynchronously. The call returns immediately, and the
requests are resolved in the background. See the discussion of the sevp argu-
ment below.

The array list specifies the look-up requests to process. The n argument specifies the
number of elements in list. The requested look-up operations are started in parallel.
NULL elements in list are ignored. Each request is described by a gaicb structure,
defined as follows:

struct gaicb {
const char *ar_name;
const char *ar_service;
const struct addrinfo *ar_request;
struct addrinfo *ar_result;

};

The elements of this structure correspond to the arguments of getaddrinfo(3). Thus,
ar_name corresponds to the node argument and ar_service to the service argument,
identifying an Internet host and a service. The ar_request element corresponds to the
hints argument, specifying the criteria for selecting the returned socket address struc-
tures. Finally, ar_result corresponds to the res argument; you do not need to initialize
this element, it will be automatically set when the request is resolved. The addrinfo
structure referenced by the last two elements is described in getaddrinfo(3).

When mode is specified as GAI_NOWAIT, notifications about resolved requests can

Linux man-pages 6.13 2024-11-17 1686

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

be obtained by employing the sigevent structure pointed to by the sevp argument. For
the definition and general details of this structure, see sigevent(3type). The
sevp->sigev_notify field can have the following values:

SIGEV_NONE
Don’t provide any notification.

SIGEV_SIGNAL
When a look-up completes, generate the signal sigev_signo for the process.
See sigevent(3type) for general details. The si_code field of the siginfo_t
structure will be set to SI_ASYNCNL.

SIGEV_THREAD
When a look-up completes, invoke sigev_notify_function as if it were the start
function of a new thread. See sigevent(3type) for details.

For SIGEV_SIGNAL and SIGEV_THREAD, it may be useful to point
sevp->sigev_value.sival_ptr to list.

The gai_suspend() function suspends execution of the calling thread, waiting for the
completion of one or more requests in the array list. The n argument specifies the
size of the array list. The call blocks until one of the following occurs:

• One or more of the operations in list completes.

• The call is interrupted by a signal that is caught.

• The time interval specified in timeout elapses. This argument specifies a timeout
in seconds plus nanoseconds (see nanosleep(2) for details of the timespec struc-
ture). If timeout is NULL, then the call blocks indefinitely (until one of the events
above occurs).

No explicit indication of which request was completed is given; you must determine
which request(s) have completed by iterating with gai_error() over the list of re-
quests.

The gai_error() function returns the status of the request req: either EAI_IN-
PROGRESS if the request was not completed yet, 0 if it was handled successfully, or
an error code if the request could not be resolved.

The gai_cancel() function cancels the request req. If the request has been canceled
successfully, the error status of the request will be set to EAI_CANCELED and nor-
mal asynchronous notification will be performed. The request cannot be canceled if it
is currently being processed; in that case, it will be handled as if gai_cancel() has
never been called. If req is NULL, an attempt is made to cancel all outstanding re-
quests that the process has made.

RETURN VALUE
The getaddrinfo_a() function returns 0 if all of the requests have been enqueued suc-
cessfully, or one of the following nonzero error codes:

EAI_AGAIN
The resources necessary to enqueue the look-up requests were not available.
The application may check the error status of each request to determine which
ones failed.

Linux man-pages 6.13 2024-11-17 1687

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

EAI_MEMORY
Out of memory.

EAI_SYSTEM
mode is invalid.

The gai_suspend() function returns 0 if at least one of the listed requests has been
completed. Otherwise, it returns one of the following nonzero error codes:

EAI_AGAIN
The given timeout expired before any of the requests could be completed.

EAI_ALLDONE
There were no actual requests given to the function.

EAI_INTR
A signal has interrupted the function. Note that this interruption might have
been caused by signal notification of some completed look-up request.

The gai_error() function can return EAI_INPROGRESS for an unfinished look-up
request, 0 for a successfully completed look-up (as described above), one of the error
codes that could be returned by getaddrinfo(3), or the error code EAI_CANCELED
if the request has been canceled explicitly before it could be finished.

The gai_cancel() function can return one of these values:

EAI_CANCELED
The request has been canceled successfully.

EAI_NOTCANCELED
The request has not been canceled.

EAI_ALLDONE
The request has already completed.

The gai_strerror(3) function translates these error codes to a human readable string,
suitable for error reporting.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetaddrinfo_a(), gai_suspend(), gai_error(),
gai_cancel()

STANDARDS
GNU.

HISTORY
glibc 2.2.3.

The interface of getaddrinfo_a() was modeled after the lio_listio(3) interface.

EXAMPLES
Two examples are provided: a simple example that resolves several requests in paral-
lel synchronously, and a complex example showing some of the asynchronous capa-
bilities.

Linux man-pages 6.13 2024-11-17 1688

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

Synchronous example
The program below simply resolves several hostnames in parallel, giving a speed-up
compared to resolving the hostnames sequentially using getaddrinfo(3). The program
might be used like this:

$./a.out mirrors.kernel.org enoent.linuxfoundation.org gnu.org
mirrors.kernel.org: 139.178.88.99
enoent.linuxfoundation.org: Name or service not known
gnu.org: 209.51.188.116

Here is the program source code

#define _GNU_SOURCE
#include <err.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MALLOC(n, type) ((type *) reallocarray(NULL, n, sizeof(type)))

int
main(int argc, char *argv[])
{

int ret;
struct gaicb *reqs[argc - 1];
char host[NI_MAXHOST];
struct addrinfo *res;

if (argc < 2) {
fprintf(stderr, "Usage: %s HOST...\n", argv[0]);
exit(EXIT_FAILURE);

}

for (size_t i = 0; i < argc - 1; i++) {
reqs[i] = MALLOC(1, struct gaicb);
if (reqs[i] == NULL)

err(EXIT_FAILURE, "malloc");

memset(reqs[i], 0, sizeof(*reqs[0]));
reqs[i]->ar_name = argv[i + 1];

}

ret = getaddrinfo_a(GAI_WAIT, reqs, argc - 1, NULL);
if (ret != 0) {

fprintf(stderr, "getaddrinfo_a() failed: %s\n",
gai_strerror(ret));

exit(EXIT_FAILURE);
}

Linux man-pages 6.13 2024-11-17 1689

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

for (size_t i = 0; i < argc - 1; i++) {
printf("%s: ", reqs[i]->ar_name);
ret = gai_error(reqs[i]);
if (ret == 0) {

res = reqs[i]->ar_result;

ret = getnameinfo(res->ai_addr, res->ai_addrlen,
host, sizeof(host),
NULL, 0, NI_NUMERICHOST);

if (ret != 0) {
fprintf(stderr, "getnameinfo() failed: %s\n",

gai_strerror(ret));
exit(EXIT_FAILURE);

}
puts(host);

} else {
puts(gai_strerror(ret));

}
}
exit(EXIT_SUCCESS);

}

Asynchronous example
This example shows a simple interactive getaddrinfo_a() front-end. The notification
facility is not demonstrated.

An example session might look like this:

$./a.out
> a mirrors.kernel.org enoent.linuxfoundation.org gnu.org
> c 2
[2] gnu.org: Request not canceled
> w 0 1
[00] mirrors.kernel.org: Finished
> l
[00] mirrors.kernel.org: 139.178.88.99
[01] enoent.linuxfoundation.org: Processing request in progress
[02] gnu.org: 209.51.188.116
> l
[00] mirrors.kernel.org: 139.178.88.99
[01] enoent.linuxfoundation.org: Name or service not known
[02] gnu.org: 209.51.188.116

The program source is as follows:

#define _GNU_SOURCE
#include <assert.h>
#include <err.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.13 2024-11-17 1690

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

#include <string.h>

#define CALLOC(n, type) ((type *) calloc(n, sizeof(type)))

#define REALLOCF(ptr, n, type) \
({ \

static_assert(__builtin_types_compatible_p(typeof(ptr), type *)); \
\

(type *) reallocarrayf(ptr, n, sizeof(type)); \
})

static struct gaicb **reqs = NULL;
static size_t nreqs = 0;

static inline void *
reallocarrayf(void *p, size_t n, size_t size)
{

void *q;

q = reallocarray(p, n, size);
if (q == NULL && n != 0 && size != 0)

free(p);
return q;

}

static char *
getcmd(void)
{

static char buf[256];

fputs("> ", stdout); fflush(stdout);
if (fgets(buf, sizeof(buf), stdin) == NULL)

return NULL;

if (buf[strlen(buf) - 1] == '\n')
buf[strlen(buf) - 1] = 0;

return buf;
}

/* Add requests for specified hostnames. */
static void
add_requests(void)
{

size_t nreqs_base = nreqs;
char *host;
int ret;

while ((host = strtok(NULL, " "))) {

Linux man-pages 6.13 2024-11-17 1691

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

nreqs++;
reqs = REALLOCF(reqs, nreqs, struct gaicb *);
if (reqs == NULL)

err(EXIT_FAILURE, "reallocf");

reqs[nreqs - 1] = CALLOC(1, struct gaicb);
if (reqs[nreqs - 1] == NULL)

err(EXIT_FAILURE, "calloc");

reqs[nreqs - 1]->ar_name = strdup(host);
}

/* Queue nreqs_base..nreqs requests. */

ret = getaddrinfo_a(GAI_NOWAIT, &reqs[nreqs_base],
nreqs - nreqs_base, NULL);

if (ret) {
fprintf(stderr, "getaddrinfo_a() failed: %s\n",

gai_strerror(ret));
exit(EXIT_FAILURE);

}
}

/* Wait until at least one of specified requests completes. */
static void
wait_requests(void)
{

char *id;
int ret;
size_t n;
struct gaicb const **wait_reqs;

wait_reqs = CALLOC(nreqs, const struct gaicb *);
if (wait_reqs == NULL)

err(EXIT_FAILURE, "calloc");

/* NULL elements are ignored by gai_suspend(). */

while ((id = strtok(NULL, " ")) != NULL) {
n = atoi(id);

if (n >= nreqs) {
printf("Bad request number: %s\n", id);
return;

}

wait_reqs[n] = reqs[n];
}

Linux man-pages 6.13 2024-11-17 1692

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

ret = gai_suspend(wait_reqs, nreqs, NULL);
if (ret) {

printf("gai_suspend(): %s\n", gai_strerror(ret));
return;

}

for (size_t i = 0; i < nreqs; i++) {
if (wait_reqs[i] == NULL)

continue;

ret = gai_error(reqs[i]);
if (ret == EAI_INPROGRESS)

continue;

printf("[%02zu] %s: %s\n", i, reqs[i]->ar_name,
ret == 0 ? "Finished" : gai_strerror(ret));

}
}

/* Cancel specified requests. */
static void
cancel_requests(void)
{

char *id;
int ret;
size_t n;

while ((id = strtok(NULL, " ")) != NULL) {
n = atoi(id);

if (n >= nreqs) {
printf("Bad request number: %s\n", id);
return;

}

ret = gai_cancel(reqs[n]);
printf("[%s] %s: %s\n", id, reqs[atoi(id)]->ar_name,

gai_strerror(ret));
}

}

/* List all requests. */
static void
list_requests(void)
{

int ret;
char host[NI_MAXHOST];
struct addrinfo *res;

Linux man-pages 6.13 2024-11-17 1693

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

for (size_t i = 0; i < nreqs; i++) {
printf("[%02zu] %s: ", i, reqs[i]->ar_name);
ret = gai_error(reqs[i]);

if (!ret) {
res = reqs[i]->ar_result;

ret = getnameinfo(res->ai_addr, res->ai_addrlen,
host, sizeof(host),
NULL, 0, NI_NUMERICHOST);

if (ret) {
fprintf(stderr, "getnameinfo() failed: %s\n",

gai_strerror(ret));
exit(EXIT_FAILURE);

}
puts(host);

} else {
puts(gai_strerror(ret));

}
}

}

int
main(void)
{

char *cmdline;
char *cmd;

while ((cmdline = getcmd()) != NULL) {
cmd = strtok(cmdline, " ");

if (cmd == NULL) {
list_requests();

} else {
switch (cmd[0]) {
case 'a':

add_requests();
break;

case 'w':
wait_requests();
break;

case 'c':
cancel_requests();
break;

case 'l':
list_requests();
break;

default:
fprintf(stderr, "Bad command: %c\n", cmd[0]);

Linux man-pages 6.13 2024-11-17 1694

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

break;
}

}
}
exit(EXIT_SUCCESS);

}

SEE ALSO
getaddrinfo(3), inet(3), lio_listio(3), hostname(7), ip(7), sigevent(3type)

Linux man-pages 6.13 2024-11-17 1695

getauxval(3) Library Functions Manual getauxval(3)

NAME
getauxval - retrieve a value from the auxiliary vector

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/auxv.h>

unsigned long getauxval(unsigned long type);

DESCRIPTION
The getauxval() function retrieves values from the auxiliary vector, a mechanism that
the kernel’s ELF binary loader uses to pass certain information to user space when a
program is executed.

Each entry in the auxiliary vector consists of a pair of values: a type that identifies
what this entry represents, and a value for that type. Given the argument type,
getauxval() returns the corresponding value.

The value returned for each type is given in the following list. Not all type values are
present on all architectures.

AT_BASE
The base address of the program interpreter (usually, the dynamic linker).

AT_BASE_PLATFORM
A pointer to a string (PowerPC and MIPS only). On PowerPC, this identifies
the real platform; may differ from AT_PLATFORM. On MIPS, this identi-
fies the ISA level (since Linux 5.7).

AT_CLKTCK
The frequency with which times(2) counts. This value can also be obtained
via sysconf(_SC_CLK_TCK).

AT_DCACHEBSIZE
The data cache block size.

AT_EGID
The effective group ID of the thread.

AT_ENTRY
The entry address of the executable.

AT_EUID
The effective user ID of the thread.

AT_EXECFD
File descriptor of program.

AT_EXECFN
A pointer to a string containing the pathname used to execute the program.

AT_FLAGS
Flags (unused).

AT_FPUCW
Used FPU control word (SuperH architecture only). This gives some informa-
tion about the FPU initialization performed by the kernel.

Linux man-pages 6.13 2024-07-23 1696

getauxval(3) Library Functions Manual getauxval(3)

AT_GID
The real group ID of the thread.

AT_HWCAP
An architecture and ABI dependent bit-mask whose settings indicate detailed
processor capabilities. The contents of the bit mask are hardware dependent
(for example, see the kernel source file arch/x86/include/asm/cpufeature.h for
details relating to the Intel x86 architecture; the value returned is the first
32-bit word of the array described there). A human-readable version of the
same information is available via /proc/cpuinfo.

AT_HWCAP2 (since glibc 2.18)
Further machine-dependent hints about processor capabilities.

AT_ICACHEBSIZE
The instruction cache block size.

AT_L1D_CACHEGEOMETRY
Geometry of the L1 data cache, encoded with the cache line size in bytes in
the bottom 16 bits and the cache associativity in the next 16 bits. The associa-
tivity is such that if N is the 16-bit value, the cache is N-way set associative.

AT_L1D_CACHESIZE
The L1 data cache size.

AT_L1I_CACHEGEOMETRY
Geometry of the L1 instruction cache, encoded as for AT_L1D_CACHEGE-
OMETRY.

AT_L1I_CACHESIZE
The L1 instruction cache size.

AT_L2_CACHEGEOMETRY
Geometry of the L2 cache, encoded as for AT_L1D_CACHEGEOMETRY.

AT_L2_CACHESIZE
The L2 cache size.

AT_L3_CACHEGEOMETRY
Geometry of the L3 cache, encoded as for AT_L1D_CACHEGEOMETRY.

AT_L3_CACHESIZE
The L3 cache size.

AT_PAGESZ
The system page size (the same value returned by sysconf(_SC_PAGESIZE)).

AT_PHDR
The address of the program headers of the executable.

AT_PHENT
The size of program header entry.

AT_PHNUM
The number of program headers.

Linux man-pages 6.13 2024-07-23 1697

getauxval(3) Library Functions Manual getauxval(3)

AT_PLATFORM
A pointer to a string that identifies the hardware platform that the program is
running on. The dynamic linker uses this in the interpretation of rpath values.

AT_RANDOM
The address of sixteen bytes containing a random value.

AT_SECURE
Has a nonzero value if this executable should be treated securely. Most com-
monly, a nonzero value indicates that the process is executing a set-user-ID or
set-group-ID binary (so that its real and effective UIDs or GIDs differ from
one another), or that it gained capabilities by executing a binary file that has
capabilities (see capabilities(7)). Alternatively, a nonzero value may be trig-
gered by a Linux Security Module. When this value is nonzero, the dynamic
linker disables the use of certain environment variables (see ld-linux.so(8)) and
glibc changes other aspects of its behavior. (See also secure_getenv(3).)

AT_SYSINFO
The entry point to the system call function in the vDSO. Not present/needed
on all architectures (e.g., absent on x86-64).

AT_SYSINFO_EHDR
The address of a page containing the virtual Dynamic Shared Object (vDSO)
that the kernel creates in order to provide fast implementations of certain sys-
tem calls.

AT_UCACHEBSIZE
The unified cache block size.

AT_UID
The real user ID of the thread.

RETURN VALUE
On success, getauxval() returns the value corresponding to type. If type is not found,
0 is returned.

ERRORS
ENOENT (since glibc 2.19)

No entry corresponding to type could be found in the auxiliary vector.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetauxval()

STANDARDS
GNU.

HISTORY
glibc 2.16.

NOTES
The primary consumer of the information in the auxiliary vector is the dynamic linker,
ld-linux.so(8). The auxiliary vector is a convenient and efficient shortcut that allows
the kernel to communicate a certain set of standard information that the dynamic
linker usually or always needs. In some cases, the same information could be

Linux man-pages 6.13 2024-07-23 1698

getauxval(3) Library Functions Manual getauxval(3)

obtained by system calls, but using the auxiliary vector is cheaper.

The auxiliary vector resides just above the argument list and environment in the
process address space. The auxiliary vector supplied to a program can be viewed by
setting the LD_SHOW_AUXV environment variable when running a program:

$ LD_SHOW_AUXV=1 sleep 1

The auxiliary vector of any process can (subject to file permissions) be obtained via
/proc/ pid /auxv; see proc(5) for more information.

BUGS
Before the addition of the ENOENT error in glibc 2.19, there was no way to unam-
biguously distinguish the case where type could not be found from the case where the
value corresponding to type was zero.

SEE ALSO
execve(2), secure_getenv(3), vdso(7), ld-linux.so(8)

Linux man-pages 6.13 2024-07-23 1699

getcontext(3) Library Functions Manual getcontext(3)

NAME
getcontext, setcontext - get or set the user context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ucontext.h>

int getcontext(ucontext_t *ucp);
int setcontext(const ucontext_t *ucp);

DESCRIPTION
In a System V-like environment, one has the two types mcontext_t and ucontext_t de-
fined in <ucontext.h> and the four functions getcontext(), setcontext(), makecon-
text(3), and swapcontext(3) that allow user-level context switching between multiple
threads of control within a process.

The mcontext_t type is machine-dependent and opaque. The ucontext_t type is a
structure that has at least the following fields:

typedef struct ucontext_t {
struct ucontext_t *uc_link;
sigset_t uc_sigmask;
stack_t uc_stack;
mcontext_t uc_mcontext;
...

} ucontext_t;

with sigset_t and stack_t defined in <signal.h>. Here uc_link points to the context
that will be resumed when the current context terminates (in case the current context
was created using makecontext(3)), uc_sigmask is the set of signals blocked in this
context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigalt-
stack(2)), and uc_mcontext is the machine-specific representation of the saved con-
text, that includes the calling thread’s machine registers.

The function getcontext() initializes the structure pointed to by ucp to the currently
active context.

The function setcontext() restores the user context pointed to by ucp. A successful
call does not return. The context should have been obtained by a call of getcontext(),
or makecontext(3), or received as the third argument to a signal handler (see the dis-
cussion of the SA_SIGINFO flag in sigaction(2)).

If the context was obtained by a call of getcontext(), program execution continues as
if this call just returned.

If the context was obtained by a call of makecontext(3), program execution continues
by a call to the function func specified as the second argument of that call to make-
context(3). When the function func returns, we continue with the uc_link member of
the structure ucp specified as the first argument of that call to makecontext(3). When
this member is NULL, the thread exits.

If the context was obtained by a call to a signal handler, then old standard text says
that "program execution continues with the program instruction following the instruc-
tion interrupted by the signal". However, this sentence was removed in SUSv2, and

Linux man-pages 6.13 2024-07-23 1700

getcontext(3) Library Functions Manual getcontext(3)

the present verdict is "the result is unspecified".

RETURN VALUE
When successful, getcontext() returns 0 and setcontext() does not return. On error,
both return -1 and set errno to indicate the error.

ERRORS
None defined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:ucpgetcontext(), setcontext()

STANDARDS
None.

HISTORY
SUSv2, POSIX.1-2001.

POSIX.1-2008 removes these functions, citing portability issues, and recommending
that applications be rewritten to use POSIX threads instead.

NOTES
The earliest incarnation of this mechanism was the setjmp(3)/longjmp(3) mechanism.
Since that does not define the handling of the signal context, the next stage was the
sigsetjmp(3)/siglongjmp(3) pair. The present mechanism gives much more control.
On the other hand, there is no easy way to detect whether a return from getcontext()
is from the first call, or via a setcontext() call. The user has to invent their own book-
keeping device, and a register variable won’t do since registers are restored.

When a signal occurs, the current user context is saved and a new context is created
by the kernel for the signal handler. Do not leave the handler using longjmp(3): it is
undefined what would happen with contexts. Use siglongjmp(3) or setcontext() in-
stead.

SEE ALSO
sigaction(2), sigaltstack(2), sigprocmask(2), longjmp(3), makecontext(3),
sigsetjmp(3), signal(7)

Linux man-pages 6.13 2024-07-23 1701

getcwd(3) Library Functions Manual getcwd(3)

NAME
getcwd, getwd, get_current_dir_name - get current working directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

char *getcwd(char buf [.size], size_t size);
char *get_current_dir_name(void);

[[deprecated]] char *getwd(char buf [PATH_MAX]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

get_current_dir_name():
_GNU_SOURCE

getwd():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
These functions return a null-terminated string containing an absolute pathname that
is the current working directory of the calling process. The pathname is returned as
the function result and via the argument buf , if present.

The getcwd() function copies an absolute pathname of the current working directory
to the array pointed to by buf , which is of length size.

If the length of the absolute pathname of the current working directory, including the
terminating null byte, exceeds size bytes, NULL is returned, and errno is set to
ERANGE; an application should check for this error, and allocate a larger buffer if
necessary.

As an extension to the POSIX.1-2001 standard, glibc’s getcwd() allocates the buffer
dynamically using malloc(3) if buf is NULL. In this case, the allocated buffer has the
length size unless size is zero, when buf is allocated as big as necessary. The caller
should free(3) the returned buffer.

get_current_dir_name() will malloc(3) an array big enough to hold the absolute
pathname of the current working directory. If the environment variable PWD is set,
and its value is correct, then that value will be returned. The caller should free(3) the
returned buffer.

getwd() does not malloc(3) any memory. The buf argument should be a pointer to an
array at least PATH_MAX bytes long. If the length of the absolute pathname of the
current working directory, including the terminating null byte, exceeds PATH_MAX
bytes, NULL is returned, and errno is set to ENAMETOOLONG. (Note that on
some systems, PATH_MAX may not be a compile-time constant; furthermore, its
value may depend on the filesystem, see pathconf(3).) For portability and security

Linux man-pages 6.13 2025-02-20 1702

getcwd(3) Library Functions Manual getcwd(3)

reasons, use of getwd() is deprecated.

RETURN VALUE
On success, these functions return a pointer to a string containing the pathname of the
current working directory. In the case of getcwd() and getwd() this is the same value
as buf .

On failure, these functions return NULL, and errno is set to indicate the error. The
contents of the array pointed to by buf are undefined on error.

ERRORS
EACCES

Permission to read or search a component of the filename was denied.

EFAULT
buf points to a bad address.

EINVAL
The size argument is zero and buf is not a null pointer.

EINVAL
getwd(): buf is NULL.

ENAMETOOLONG
getwd(): The size of the null-terminated absolute pathname string exceeds
PATH_MAX bytes.

ENOENT
The current working directory has been unlinked.

ENOMEM
Out of memory.

ERANGE
The size argument is less than the length of the absolute pathname of the
working directory, including the terminating null byte. You need to allocate a
bigger array and try again.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetcwd(), getwd()
Thread safety MT-Safe envget_current_dir_name()

VERSIONS
POSIX.1-2001 leaves the behavior of getcwd() unspecified if buf is NULL.

POSIX.1-2001 does not define any errors for getwd().

VERSIONS
C library/kernel differences

On Linux, the kernel provides a getcwd() system call, which the functions described
in this page will use if possible. The system call takes the same arguments as the li-
brary function of the same name, but is limited to returning at most PATH_MAX
bytes. (Before Linux 3.12, the limit on the size of the returned pathname was the sys-
tem page size. On many architectures, PATH_MAX and the system page size are
both 4096 bytes, but a few architectures have a larger page size.) If the length of the

Linux man-pages 6.13 2025-02-20 1703

getcwd(3) Library Functions Manual getcwd(3)

pathname of the current working directory exceeds this limit, then the system call fails
with the error ENAMETOOLONG. In this case, the library functions fall back to a
(slower) alternative implementation that returns the full pathname.

Following a change in Linux 2.6.36, the pathname returned by the getcwd() system
call will be prefixed with the string "(unreachable)" if the current directory is not be-
low the root directory of the current process (e.g., because the process set a new
filesystem root using chroot(2) without changing its current directory into the new
root). Such behavior can also be caused by an unprivileged user by changing the cur-
rent directory into another mount namespace. When dealing with pathnames from un-
trusted sources, callers of the functions described in this page (before glibc 2.27) or
the raw getcwd() system call should consider checking whether the returned path-
name starts with ’/’ or ’(’ to avoid misinterpreting an unreachable path as a relative
pathname.

STANDARDS
getcwd()

POSIX.1-2008.

get_current_dir_name()
GNU.

getwd()
None.

HISTORY
getcwd()

POSIX.1-2001.

getwd()
POSIX.1-2001, but marked LEGACY. Removed in POSIX.1-2008. Use
getcwd() instead.

Under Linux, these functions make use of the getcwd() system call (available since
Linux 2.1.92). On older systems they would query /proc/self/cwd . If both system
call and proc filesystem are missing, a generic implementation is called. Only in that
case can these calls fail under Linux with EACCES.

NOTES
These functions are often used to save the location of the current working directory
for the purpose of returning to it later. Opening the current directory (".") and calling
fchdir(2) to return is usually a faster and more reliable alternative when sufficiently
many file descriptors are available, especially on platforms other than Linux.

BUGS
Since the Linux 2.6.36 change that added "(unreachable)" in the circumstances de-
scribed above, the glibc implementation of getcwd() has failed to conform to POSIX
and returned a relative pathname when the API contract requires an absolute path-
name. With glibc 2.27 onwards this is corrected; calling getcwd() from such a path-
name will now result in failure with ENOENT.

SEE ALSO
pwd(1), chdir(2), fchdir(2), open(2), unlink(2), free(3), malloc(3)

Linux man-pages 6.13 2025-02-20 1704

getdate(3) Library Functions Manual getdate(3)

NAME
getdate, getdate_r - convert a date-plus-time string to broken-down time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

struct tm *getdate(const char *string);

extern int getdate_err;

int getdate_r(const char *restrict string, struct tm *restrict res);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getdate():
_XOPEN_SOURCE >= 500

getdate_r():
_GNU_SOURCE

DESCRIPTION
The function getdate() converts a string representation of a date and time, contained
in the buffer pointed to by string, into a broken-down time. The broken-down time is
stored in a tm structure, and a pointer to this structure is returned as the function re-
sult. This tm structure is allocated in static storage, and consequently it will be over-
written by further calls to getdate().

In contrast to strptime(3), (which has a format argument), getdate() uses the formats
found in the file whose full pathname is given in the environment variable
DATEMSK. The first line in the file that matches the given input string is used for
the conversion.

The matching is done case insensitively. Superfluous whitespace, either in the pattern
or in the string to be converted, is ignored.

The conversion specifications that a pattern can contain are those given for
strptime(3). One more conversion specification is specified in POSIX.1-2001:

%Z Timezone name. This is not implemented in glibc.

When %Z is given, the structure containing the broken-down time is initialized with
values corresponding to the current time in the given timezone. Otherwise, the struc-
ture is initialized to the broken-down time corresponding to the current local time (as
by a call to localtime(3)).

When only the day of the week is given, the day is taken to be the first such day on or
after today.

When only the month is given (and no year), the month is taken to be the first such
month equal to or after the current month. If no day is given, it is the first day of the
month.

When no hour, minute, and second are given, the current hour, minute, and second are
taken.

If no date is given, but we know the hour, then that hour is taken to be the first such

Linux man-pages 6.13 2024-07-23 1705

getdate(3) Library Functions Manual getdate(3)

hour equal to or after the current hour.

getdate_r() is a GNU extension that provides a reentrant version of getdate(). Rather
than using a global variable to report errors and a static buffer to return the broken
down time, it returns errors via the function result value, and returns the resulting bro-
ken-down time in the caller-allocated buffer pointed to by the argument res.

RETURN VALUE
When successful, getdate() returns a pointer to a struct tm. Otherwise, it returns
NULL and sets the global variable getdate_err to one of the error numbers shown be-
low. Changes to errno are unspecified.

On success getdate_r() returns 0; on error it returns one of the error numbers shown
below.

ERRORS
The following errors are returned via getdate_err (for getdate()) or as the function re-
sult (for getdate_r()):

1 The DATEMSK environment variable is not defined, or its value is an empty
string.

2 The template file specified by DATEMSK cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 An error was encountered while reading the template file.

6 Memory allocation failed (not enough memory available).

7 There is no line in the file that matches the input.

8 Invalid input specification.

ENVIRONMENT
DATEMSK

File containing format patterns.

TZ
LC_TIME

Variables used by strptime(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetdate() MT-Unsafe race:getdate env locale
Thread safetygetdate_r() MT-Safe env locale

VERSIONS
The POSIX.1 specification for strptime(3) contains conversion specifications using
the %E or %O modifier, while such specifications are not given for getdate(). In
glibc, getdate() is implemented using strptime(3), so that precisely the same conver-
sions are supported by both.

Linux man-pages 6.13 2024-07-23 1706

getdate(3) Library Functions Manual getdate(3)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The program below calls getdate() for each of its command-line arguments, and for
each call displays the values in the fields of the returned tm structure. The following
shell session demonstrates the operation of the program:

$ TFILE=$PWD/tfile
$ echo '%A' > $TFILE # Full name of the day of the week
$ echo '%T' >> $TFILE # Time (HH:MM:SS)
$ echo '%F' >> $TFILE # ISO date (YYYY-MM-DD)
$ date
$ export DATEMSK=$TFILE
$./a.out Tuesday '2009-12-28' '12:22:33'
Sun Sep 7 06:03:36 CEST 2008
Call 1 ("Tuesday") succeeded:

tm_sec = 36
tm_min = 3
tm_hour = 6
tm_mday = 9
tm_mon = 8
tm_year = 108
tm_wday = 2
tm_yday = 252
tm_isdst = 1

Call 2 ("2009-12-28") succeeded:
tm_sec = 36
tm_min = 3
tm_hour = 6
tm_mday = 28
tm_mon = 11
tm_year = 109
tm_wday = 1
tm_yday = 361
tm_isdst = 0

Call 3 ("12:22:33") succeeded:
tm_sec = 33
tm_min = 22
tm_hour = 12
tm_mday = 7
tm_mon = 8
tm_year = 108
tm_wday = 0
tm_yday = 250
tm_isdst = 1

Linux man-pages 6.13 2024-07-23 1707

getdate(3) Library Functions Manual getdate(3)

Program source

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int
main(int argc, char *argv[])
{

struct tm *tmp;

for (size_t j = 1; j < argc; j++) {
tmp = getdate(argv[j]);

if (tmp == NULL) {
printf("Call %zu failed; getdate_err = %d\n",

j, getdate_err);
continue;

}

printf("Call %zu (\"%s\") succeeded:\n", j, argv[j]);
printf(" tm_sec = %d\n", tmp->tm_sec);
printf(" tm_min = %d\n", tmp->tm_min);
printf(" tm_hour = %d\n", tmp->tm_hour);
printf(" tm_mday = %d\n", tmp->tm_mday);
printf(" tm_mon = %d\n", tmp->tm_mon);
printf(" tm_year = %d\n", tmp->tm_year);
printf(" tm_wday = %d\n", tmp->tm_wday);
printf(" tm_yday = %d\n", tmp->tm_yday);
printf(" tm_isdst = %d\n", tmp->tm_isdst);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
time(2), localtime(3), setlocale(3), strftime(3), strptime(3)

Linux man-pages 6.13 2024-07-23 1708

getdirentries(3) Library Functions Manual getdirentries(3)

NAME
getdirentries - get directory entries in a filesystem-independent format

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

ssize_t getdirentries(int fd , char buf [restrict .nbytes], size_t nbytes,
off_t *restrict basep);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getdirentries():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Read directory entries from the directory specified by fd into buf . At most nbytes are
read. Reading starts at offset *basep, and *basep is updated with the new position af-
ter reading.

RETURN VALUE
getdirentries() returns the number of bytes read or zero when at the end of the direc-
tory. If an error occurs, -1 is returned, and errno is set to indicate the error.

ERRORS
See the Linux library source code for details.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetdirentries()

STANDARDS
BSD.

NOTES
Use opendir(3) and readdir(3) instead.

SEE ALSO
lseek(2), open(2)

Linux man-pages 6.13 2024-07-23 1709

getdtablesize(3) Library Functions Manual getdtablesize(3)

NAME
getdtablesize - get file descriptor table size

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getdtablesize(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getdtablesize():
Since glibc 2.20:

_DEFAULT_SOURCE || ! (_POSIX_C_SOURCE >= 200112L)
glibc 2.12 to glibc 2.19:

_BSD_SOURCE || ! (_POSIX_C_SOURCE >= 200112L)
Before glibc 2.12:

_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
getdtablesize() returns the maximum number of files a process can have open, one
more than the largest possible value for a file descriptor.

RETURN VALUE
The current limit on the number of open files per process.

ERRORS
On Linux, getdtablesize() can return any of the errors described for getrlimit(2); see
VERSIONS below.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetdtablesize()

VERSIONS
The glibc version of getdtablesize() calls getrlimit(2) and returns the current
RLIMIT_NOFILE limit, or OPEN_MAX when that fails.

Portable applications should employ sysconf(_SC_OPEN_MAX) instead of this call.

STANDARDS
None.

HISTORY
SVr4, 4.4BSD (first appeared in 4.2BSD).

SEE ALSO
close(2), dup(2), getrlimit(2), open(2)

Linux man-pages 6.13 2024-07-23 1710

getentropy(3) Library Functions Manual getentropy(3)

NAME
getentropy - fill a buffer with random bytes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getentropy(void buffer[.length], size_t length);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getentropy():
_DEFAULT_SOURCE

DESCRIPTION
The getentropy() function writes length bytes of high-quality random data to the
buffer starting at the location pointed to by buffer. The maximum permitted value for
the length argument is 256.

A successful call to getentropy() always provides the requested number of bytes of
entropy.

RETURN VALUE
On success, this function returns zero. On error, -1 is returned, and errno is set to in-
dicate the error.

ERRORS
EFAULT

Part or all of the buffer specified by buffer and length is not in valid address-
able memory.

EIO length is greater than 256.

EIO An unspecified error occurred while trying to overwrite buffer with random
data.

ENOSYS
This kernel version does not implement the getrandom(2) system call required
to implement this function.

STANDARDS
None.

HISTORY
glibc 2.25. OpenBSD.

NOTES
The getentropy() function is implemented using getrandom(2).

Whereas the glibc wrapper makes getrandom(2) a cancelation point, getentropy() is
not a cancelation point.

getentropy() is also declared in <sys/random.h>. (No feature test macro need be de-
fined to obtain the declaration from that header file.)

A call to getentropy() may block if the system has just booted and the kernel has not
yet collected enough randomness to initialize the entropy pool. In this case,

Linux man-pages 6.13 2024-07-23 1711

getentropy(3) Library Functions Manual getentropy(3)

getentropy() will keep blocking even if a signal is handled, and will return only once
the entropy pool has been initialized.

SEE ALSO
getrandom(2), urandom(4), random(7)

Linux man-pages 6.13 2024-07-23 1712

getenv(3) Library Functions Manual getenv(3)

NAME
getenv, secure_getenv - get an environment variable

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

char *getenv(const char *name);
char *secure_getenv(const char *name);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

secure_getenv():
_GNU_SOURCE

DESCRIPTION
The getenv() function searches the environment list to find the environment variable
name, and returns a pointer to the corresponding value string.

The GNU-specific secure_getenv() function is just like getenv() except that it returns
NULL in cases where "secure execution" is required. Secure execution is required if
one of the following conditions was true when the program run by the calling process
was loaded:

• the process’s effective user ID did not match its real user ID or the process’s effec-
tive group ID did not match its real group ID (typically this is the result of execut-
ing a set-user-ID or set-group-ID program);

• the effective capability bit was set on the executable file; or

• the process has a nonempty permitted capability set.

Secure execution may also be required if triggered by some Linux security modules.

The secure_getenv() function is intended for use in general-purpose libraries to avoid
vulnerabilities that could occur if set-user-ID or set-group-ID programs accidentally
trusted the environment.

RETURN VALUE
The getenv() function returns a pointer to the value in the environment, or NULL if
there is no match.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe envgetenv(), secure_getenv()

STANDARDS
getenv()

C11, POSIX.1-2008.

secure_getenv()
GNU.

HISTORY

Linux man-pages 6.13 2024-07-23 1713

getenv(3) Library Functions Manual getenv(3)

getenv()
POSIX.1-2001, C89, C99, SVr4, 4.3BSD.

secure_getenv()
glibc 2.17.

NOTES
The strings in the environment list are of the form name=value.

As typically implemented, getenv() returns a pointer to a string within the environ-
ment list. The caller must take care not to modify this string, since that would change
the environment of the process.

The implementation of getenv() is not required to be reentrant. The string pointed to
by the return value of getenv() may be statically allocated, and can be modified by a
subsequent call to getenv(), putenv(3), setenv(3), or unsetenv(3).

The "secure execution" mode of secure_getenv() is controlled by the AT_SECURE
flag contained in the auxiliary vector passed from the kernel to user space.

SEE ALSO
clearenv(3), getauxval(3), putenv(3), setenv(3), unsetenv(3), capabilities(7), environ(7)

Linux man-pages 6.13 2024-07-23 1714

getfsent(3) Library Functions Manual getfsent(3)

NAME
getfsent, getfsspec, getfsfile, setfsent, endfsent - handle fstab entries

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fstab.h>

int setfsent(void);
struct fstab *getfsent(void);
void endfsent(void);

struct fstab *getfsfile(const char *mount_point);
struct fstab *getfsspec(const char *special_file);

DESCRIPTION
These functions read from the file /etc/fstab. The struct fstab is defined by:

struct fstab {
char *fs_spec; /* block device name */
char *fs_file; /* mount point */
char *fs_vfstype; /* filesystem type */
char *fs_mntops; /* mount options */
const char *fs_type; /* rw/rq/ro/sw/xx option */
int fs_freq; /* dump frequency, in days */
int fs_passno; /* pass number on parallel dump */

};

Here the field fs_type contains (on a *BSD system) one of the five strings "rw", "rq",
"ro", "sw", "xx" (read-write, read-write with quota, read-only, swap, ignore).

The function setfsent() opens the file when required and positions it at the first line.

The function getfsent() parses the next line from the file. (After opening it when re-
quired.)

The function endfsent() closes the file when required.

The function getfsspec() searches the file from the start and returns the first entry
found for which the fs_spec field matches the special_file argument.

The function getfsfile() searches the file from the start and returns the first entry found
for which the fs_file field matches the mount_point argument.

RETURN VALUE
Upon success, the functions getfsent(), getfsfile(), and getfsspec() return a pointer to
a struct fstab, while setfsent() returns 1. Upon failure or end-of-file, these functions
return NULL and 0, respectively.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyendfsent(), setfsent() MT-Unsafe race:fsent
Thread safetygetfsent(), getfsspec(),

getfsfile()
MT-Unsafe race:fsent locale

Linux man-pages 6.13 2024-07-23 1715

getfsent(3) Library Functions Manual getfsent(3)

VERSIONS
Several operating systems have these functions, for example, *BSD, SunOS, Digital
UNIX, AIX (which also has a getfstype())HP-UX has functions of the same names,
that however use a struct checklist instead of a struct fstab, and calls these functions
obsolete, superseded by getmntent(3).

STANDARDS
None.

HISTORY
The getfsent() function appeared in 4.0BSD; the other four functions appeared in
4.3BSD.

NOTES
These functions are not thread-safe.

Since Linux allows mounting a block special device in several places, and since sev-
eral devices can have the same mount point, where the last device with a given mount
point is the interesting one, while getfsfile() and getfsspec() only return the first oc-
currence, these two functions are not suitable for use under Linux.

SEE ALSO
getmntent(3), fstab(5)

Linux man-pages 6.13 2024-07-23 1716

getgrent(3) Library Functions Manual getgrent(3)

NAME
getgrent, setgrent, endgrent - get group file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <grp.h>

struct group *getgrent(void);

void setgrent(void);
void endgrent(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setgrent():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

getgrent(), endgrent():
Since glibc 2.22:

_XOPEN_SOURCE >= 500 || _DEFAULT_SOURCE
glibc 2.21 and earlier

_XOPEN_SOURCE >= 500
|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getgrent() function returns a pointer to a structure containing the broken-out
fields of a record in the group database (e.g., the local group file /etc/group, NIS, and
LDAP). The first time getgrent() is called, it returns the first entry; thereafter, it re-
turns successive entries.

The setgrent() function rewinds to the beginning of the group database, to allow re-
peated scans.

The endgrent() function is used to close the group database after all processing has
been performed.

The group structure is defined in <grp.h> as follows:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
gid_t gr_gid; /* group ID */
char **gr_mem; /* NULL-terminated array of pointers

to names of group members */
};

For more information about the fields of this structure, see group(5).

RETURN VALUE
The getgrent() function returns a pointer to a group structure, or NULL if there are no
more entries or an error occurs.

Linux man-pages 6.13 2024-07-23 1717

getgrent(3) Library Functions Manual getgrent(3)

Upon error, errno may be set. If one wants to check errno after the call, it should be
set to zero before the call.

The return value may point to a static area, and may be overwritten by subsequent
calls to getgrent(), getgrgid(3), or getgrnam(3). (Do not pass the returned pointer to
free(3).)

ERRORS
EAGAIN

The service was temporarily unavailable; try again later. For NSS backends in
glibc this indicates a temporary error talking to the backend. The error may
correct itself, retrying later is suggested.

EINTR
A signal was caught; see signal(7).

EIO I/O error.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
A necessary input file cannot be found. For NSS backends in glibc this indi-
cates the backend is not correctly configured.

ENOMEM
Insufficient memory to allocate group structure.

ERANGE
Insufficient buffer space supplied.

FILES
/etc/group

local group database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetgrent() MT-Unsafe race:grent race:grentbuf
locale

Thread safetysetgrent(), endgrent() MT-Unsafe race:grent locale

In the above table, grent in race:grent signifies that if any of the functions setgrent(),
getgrent(), or endgrent() are used in parallel in different threads of a program, then
data races could occur.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

Linux man-pages 6.13 2024-07-23 1718

getgrent(3) Library Functions Manual getgrent(3)

SEE ALSO
fgetgrent(3), getgrent_r(3), getgrgid(3), getgrnam(3), getgrouplist(3), putgrent(3),
group(5)

Linux man-pages 6.13 2024-07-23 1719

getgrent_r(3) Library Functions Manual getgrent_r(3)

NAME
getgrent_r, fgetgrent_r - get group file entry reentrantly

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <grp.h>

int getgrent_r(struct group *restrict gbuf ,
char buf [restrict .size], size_t size,
struct group **restrict gbufp);

int fgetgrent_r(FILE *restrict stream, struct group *restrict gbuf ,
char buf [restrict .size], size_t size,
struct group **restrict gbufp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getgrent_r():
_GNU_SOURCE

fgetgrent_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
The functions getgrent_r() and fgetgrent_r() are the reentrant versions of getgrent(3)
and fgetgrent(3). The former reads the next group entry from the stream initialized by
setgrent(3). The latter reads the next group entry from stream.

The group structure is defined in <grp.h> as follows:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
gid_t gr_gid; /* group ID */
char **gr_mem; /* NULL-terminated array of pointers

to names of group members */
};

For more information about the fields of this structure, see group(5).

The nonreentrant functions return a pointer to static storage, where this static storage
contains further pointers to group name, password, and members. The reentrant func-
tions described here return all of that in caller-provided buffers. First of all there is
the buffer gbuf that can hold a struct group. And next the buffer buf of size size that
can hold additional strings. The result of these functions, the struct group read from
the stream, is stored in the provided buffer *gbuf , and a pointer to this struct group is
returned in *gbufp.

RETURN VALUE
On success, these functions return 0 and *gbufp is a pointer to the struct group. On
error, these functions return an error value and *gbufp is NULL.

Linux man-pages 6.13 2024-12-24 1720

getgrent_r(3) Library Functions Manual getgrent_r(3)

ERRORS
ENOENT

No more entries.

ERANGE
Insufficient buffer space supplied. Try again with larger buffer.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetgrent_r() MT-Unsafe race:grent locale
Thread safetyfgetgrent_r() MT-Safe

In the above table, grent in race:grent signifies that if any of the functions setgrent(3),
getgrent(3), endgrent(3), or getgrent_r() are used in parallel in different threads of a
program, then data races could occur.

VERSIONS
Other systems use the prototype

struct group *getgrent_r(struct group *grp, char buf[.size],
int size);

or, better,

int getgrent_r(struct group *grp, char buf[.size], int size,
FILE **gr_fp);

STANDARDS
GNU.

HISTORY
These functions are done in a style resembling the POSIX version of functions like
getpwnam_r(3).

NOTES
The function getgrent_r() is not really reentrant since it shares the reading position in
the stream with all other threads.

EXAMPLES
#define _GNU_SOURCE
#include <grp.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#define BUFLEN 4096

int
main(void)
{

struct group grp;
struct group *grpp;
char buf[BUFLEN];
int i;

Linux man-pages 6.13 2024-12-24 1721

getgrent_r(3) Library Functions Manual getgrent_r(3)

setgrent();
while (1) {

i = getgrent_r(&grp, buf, sizeof(buf), &grpp);
if (i)

break;
printf("%s (%jd):", grpp->gr_name, (intmax_t) grpp->gr_gid);
for (size_t j = 0; ; j++) {

if (grpp->gr_mem[j] == NULL)
break;

printf(" %s", grpp->gr_mem[j]);
}
printf("\n");

}
endgrent();
exit(EXIT_SUCCESS);

}

SEE ALSO
fgetgrent(3), getgrent(3), getgrgid(3), getgrnam(3), putgrent(3), group(5)

Linux man-pages 6.13 2024-12-24 1722

getgrnam(3) Library Functions Manual getgrnam(3)

NAME
getgrnam, getgrnam_r, getgrgid, getgrgid_r - get group file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <grp.h>

struct group *getgrnam(const char *name);
struct group *getgrgid(gid_t gid);

int getgrnam_r(const char *restrict name, struct group *restrict grp,
char buf [restrict .size], size_t size,
struct group **restrict result);

int getgrgid_r(gid_t gid , struct group *restrict grp,
char buf [restrict .size], size_t size,
struct group **restrict result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getgrnam_r(), getgrgid_r():
_POSIX_C_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getgrnam() function returns a pointer to a structure containing the broken-out
fields of the record in the group database (e.g., the local group file /etc/group, NIS,
and LDAP) that matches the group name name.

The getgrgid() function returns a pointer to a structure containing the broken-out
fields of the record in the group database that matches the group ID gid .

The group structure is defined in <grp.h> as follows:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
gid_t gr_gid; /* group ID */
char **gr_mem; /* NULL-terminated array of pointers

to names of group members */
};

For more information about the fields of this structure, see group(5).

The getgrnam_r() and getgrgid_r() functions obtain the same information as getgr-
nam() and getgrgid(), but store the retrieved group structure in the space pointed to
by grp. The string fields pointed to by the members of the group structure are stored
in the buffer buf of size size. A pointer to the result (in case of success) or NULL (in
case no entry was found or an error occurred) is stored in *result.

The call

sysconf(_SC_GETGR_R_SIZE_MAX)

returns either -1, without changing errno, or an initial suggested size for buf . (If this
size is too small, the call fails with ERANGE, in which case the caller can retry with

Linux man-pages 6.13 2024-12-24 1723

getgrnam(3) Library Functions Manual getgrnam(3)

a larger buffer.)

RETURN VALUE
The getgrnam() and getgrgid() functions return a pointer to a group structure, or
NULL if the matching entry is not found or an error occurs. If an error occurs, errno
is set to indicate the error. If one wants to check errno after the call, it should be set
to zero before the call.

The return value may point to a static area, and may be overwritten by subsequent
calls to getgrent(3), getgrgid(), or getgrnam(). (Do not pass the returned pointer to
free(3).)

On success, getgrnam_r() and getgrgid_r() return zero, and set *result to grp. If no
matching group record was found, these functions return 0 and store NULL in *result.
In case of error, an error number is returned, and NULL is stored in *result.

ERRORS
0 or ENOENT or ESRCH or EBADF or EPERM or ...

The given name or gid was not found.

EINTR
A signal was caught; see signal(7).

EIO I/O error.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient memory to allocate group structure.

ERANGE
Insufficient buffer space supplied.

FILES
/etc/group

local group database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetgrnam() MT-Unsafe race:grnam locale
Thread safetygetgrgid() MT-Unsafe race:grgid locale
Thread safety MT-Safe localegetgrnam_r(),

getgrgid_r()

VERSIONS
The formulation given above under "RETURN VALUE" is from POSIX.1. It does
not call "not found" an error, hence does not specify what value errno might have in
this situation. But that makes it impossible to recognize errors. One might argue that
according to POSIX errno should be left unchanged if an entry is not found. Experi-
ments on various UNIX-like systems show that lots of different values occur in this
situation: 0, ENOENT, EBADF, ESRCH, EWOULDBLOCK, EPERM, and probably

Linux man-pages 6.13 2024-12-24 1724

getgrnam(3) Library Functions Manual getgrnam(3)

others.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
endgrent(3), fgetgrent(3), getgrent(3), getpwnam(3), setgrent(3), group(5)

Linux man-pages 6.13 2024-12-24 1725

getgrouplist(3) Library Functions Manual getgrouplist(3)

NAME
getgrouplist - get list of groups to which a user belongs

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <grp.h>

int getgrouplist(const char *user, gid_t group,
gid_t *groups, int *ngroups);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getgrouplist():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The getgrouplist() function scans the group database (see group(5)) to obtain the list
of groups that user belongs to. Up to *ngroups of these groups are returned in the ar-
ray groups.

If it was not among the groups defined for user in the group database, then group is
included in the list of groups returned by getgrouplist(); typically this argument is
specified as the group ID from the password record for user.

The ngroups argument is a value-result argument: on return it always contains the
number of groups found for user, including group; this value may be greater than the
number of groups stored in groups.

RETURN VALUE
If the number of groups of which user is a member is less than or equal to *ngroups,
then the value *ngroups is returned.

If the user is a member of more than *ngroups groups, then getgrouplist() returns -1.
In this case, the value returned in *ngroups can be used to resize the buffer passed to a
further call to getgrouplist().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetgrouplist()

STANDARDS
None.

HISTORY
glibc 2.2.4.

BUGS
Before glibc 2.3.3, the implementation of this function contains a buffer-overrun bug:
it returns the complete list of groups for user in the array groups, even when the num-
ber of groups exceeds *ngroups.

Linux man-pages 6.13 2024-07-23 1726

getgrouplist(3) Library Functions Manual getgrouplist(3)

EXAMPLES
The program below displays the group list for the user named in its first command-
line argument. The second command-line argument specifies the ngroups value to be
supplied to getgrouplist(). The following shell session shows examples of the use of
this program:

$./a.out cecilia 0
getgrouplist() returned -1; ngroups = 3
$./a.out cecilia 3
ngroups = 3
16 (dialout)
33 (video)
100 (users)

Program source

#include <errno.h>
#include <grp.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

int ngroups;
gid_t *groups;
struct group *gr;
struct passwd *pw;

if (argc != 3) {
fprintf(stderr, "Usage: %s <user> <ngroups>\n", argv[0]);
exit(EXIT_FAILURE);

}

ngroups = atoi(argv[2]);

groups = malloc(sizeof(*groups) * ngroups);
if (groups == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

/* Fetch passwd structure (contains first group ID for user). */

errno = 0;
pw = getpwnam(argv[1]);
if (pw == NULL) {

if (errno)
perror("getpwnam");

Linux man-pages 6.13 2024-07-23 1727

getgrouplist(3) Library Functions Manual getgrouplist(3)

else
fprintf(stderr, "no such user\n");

exit(EXIT_FAILURE);
}

/* Retrieve group list. */

if (getgrouplist(argv[1], pw->pw_gid, groups, &ngroups) == -1) {
fprintf(stderr, "getgrouplist() returned -1; ngroups = %d\n",

ngroups);
exit(EXIT_FAILURE);

}

/* Display list of retrieved groups, along with group names. */

fprintf(stderr, "ngroups = %d\n", ngroups);
for (int j = 0; j < ngroups; j++) {

printf("%d", groups[j]);
gr = getgrgid(groups[j]);
if (gr != NULL)

printf(" (%s)", gr->gr_name);
printf("\n");

}

exit(EXIT_SUCCESS);
}

SEE ALSO
getgroups(2), setgroups(2), getgrent(3), group_member(3), group(5), passwd(5)

Linux man-pages 6.13 2024-07-23 1728

gethostbyname(3) Library Functions Manual gethostbyname(3)

NAME
gethostbyname, gethostbyaddr, sethostent, gethostent, endhostent, h_errno, herror,
hstrerror, gethostbyaddr_r, gethostbyname2, gethostbyname2_r, gethostbyname_r,
gethostent_r - get network host entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

void sethostent(int stayopen);
void endhostent(void);

[[deprecated]] extern int h_errno;

[[deprecated]] struct hostent *gethostbyname(const char *name);
[[deprecated]] struct hostent *gethostbyaddr(const void addr[.size],

socklen_t size, int type);

[[deprecated]] void herror(const char *s);
[[deprecated]] const char *hstrerror(int err);

/* System V/POSIX extension */
struct hostent *gethostent(void);

/* GNU extensions */
[[deprecated]]
struct hostent *gethostbyname2(const char *name, int af);

int gethostent_r(struct hostent *restrict ret,
char buf [restrict .bufsize], size_t bufsize,
struct hostent **restrict result,
int *restrict h_errnop);

[[deprecated]]
int gethostbyaddr_r(const void addr[restrict .size], socklen_t size,

int type,
struct hostent *restrict ret,
char buf [restrict .bufsize], size_t bufsize,
struct hostent **restrict result,
int *restrict h_errnop);

[[deprecated]]
int gethostbyname_r(const char *restrict name,

struct hostent *restrict ret,
char buf [restrict .bufsize], size_t bufsize,
struct hostent **restrict result,
int *restrict h_errnop);

[[deprecated]]
int gethostbyname2_r(const char *restrict name, int af,

struct hostent *restrict ret,
char buf [restrict .bufsize], size_t bufsize,
struct hostent **restrict result,
int *restrict h_errnop);

Linux man-pages 6.13 2024-12-24 1729

gethostbyname(3) Library Functions Manual gethostbyname(3)

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gethostbyname2(), gethostent_r(), gethostbyaddr_r(), gethostbyname_r(), geth-
ostbyname2_r():

Since glibc 2.19:
_DEFAULT_SOURCE

glibc up to and including 2.19:
_BSD_SOURCE || _SVID_SOURCE

herror(), hstrerror():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.8 to glibc 2.19:

_BSD_SOURCE || _SVID_SOURCE
Before glibc 2.8:

none

h_errno:
Since glibc 2.19

_DEFAULT_SOURCE || _POSIX_C_SOURCE < 200809L
glibc 2.12 to glibc 2.19:

_BSD_SOURCE || _SVID_SOURCE || _POSIX_C_SOURCE < 200809L
Before glibc 2.12:

none

DESCRIPTION
The gethostbyname*(), gethostbyaddr*(), herror(), and hstrerror() functions are
obsolete. Applications should use getaddrinfo(3), getnameinfo(3), and gai_strerror(3)
instead.

The sethostent() function specifies, if stayopen is true (1), that a connected TCP
socket should be used for the name server queries and that the connection should re-
main open during successive queries. Otherwise, name server queries will use UDP
datagrams.

The endhostent() function ends the use of a TCP connection for name server queries.

The gethostbyname() function returns a structure of type hostent for the given host
name. Here name is either a hostname or an IPv4 address in standard dot notation (as
for inet_addr(3)). If name is an IPv4 address, no lookup is performed and gethostby-
name() simply copies name into the h_name field and its struct in_addr equivalent
into the h_addr_list[0] field of the returned hostent structure. If name doesn’t end in
a dot and the environment variable HOSTALIASES is set, the alias file pointed to by
HOSTALIASES will first be searched for name (see hostname(7) for the file format).
The current domain and its parents are searched unless name ends in a dot.

The gethostbyaddr() function returns a structure of type hostent for the given host
address addr of size len and address type type. Valid address types are AF_INET and
AF_INET6 (defined in <sys/socket.h>). The host address argument is a pointer to a
struct of a type depending on the address type, for example a struct in_addr * (proba-
bly obtained via a call to inet_addr(3)) for address type AF_INET.

The (obsolete) herror() function prints the error message associated with the current
value of h_errno on stderr.

Linux man-pages 6.13 2024-12-24 1730

gethostbyname(3) Library Functions Manual gethostbyname(3)

The (obsolete) hstrerror() function takes an error number (typically h_errno) and re-
turns the corresponding message string.

The domain name queries carried out by gethostbyname() and gethostbyaddr() rely
on the Name Service Switch (nsswitch.conf(5)) configured sources or a local name
server (named(8)). The default action is to query the Name Service Switch (nss-
witch.conf(5)) configured sources, failing that, a local name server (named(8)).

Historical
The nsswitch.conf(5) file is the modern way of controlling the order of host lookups.

In glibc 2.4 and earlier, the order keyword was used to control the order of host
lookups as defined in /etc/host.conf (host.conf(5)).

The hostent structure is defined in <netdb.h> as follows:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* size of address */
char **h_addr_list; /* list of addresses */

}
#define h_addr h_addr_list[0] /* for backward compatibility */

The members of the hostent structure are:

h_name
The official name of the host.

h_aliases
An array of alternative names for the host, terminated by a null pointer.

h_addrtype
The type of address; always AF_INET or AF_INET6 at present.

h_length
The size of the address in bytes.

h_addr_list
An array of pointers to network addresses for the host (in network byte order),
terminated by a null pointer.

h_addr
The first address in h_addr_list for backward compatibility.

RETURN VALUE
The gethostbyname() and gethostbyaddr() functions return the hostent structure or a
null pointer if an error occurs. On error, the h_errno variable holds an error number.
When non-NULL, the return value may point at static data, see the notes below.

ERRORS
The variable h_errno can have the following values:

HOST_NOT_FOUND
The specified host is unknown.

Linux man-pages 6.13 2024-12-24 1731

gethostbyname(3) Library Functions Manual gethostbyname(3)

NO_DATA
The requested name is valid but does not have an IP address. Another type of
request to the name server for this domain may return an answer. The constant
NO_ADDRESS is a synonym for NO_DATA.

NO_RECOVERY
A nonrecoverable name server error occurred.

TRY_AGAIN
A temporary error occurred on an authoritative name server. Try again later.

FILES
/etc/host.conf

resolver configuration file

/etc/hosts
host database file

/etc/nsswitch.conf
name service switch configuration

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygethostbyname() MT-Unsafe race:hostbyname env locale
Thread safetygethostbyaddr() MT-Unsafe race:hostbyaddr env locale
Thread safetysethostent(),

endhostent(),
gethostent_r()

MT-Unsafe race:hostent env locale

Thread safety MT-Safeherror(), hstrerror()
Thread safetygethostent() MT-Unsafe race:hostent race:hostentbuf

env locale
Thread safetygethostbyname2() MT-Unsafe race:hostbyname2 env locale
Thread safety MT-Safe env localegethostbyaddr_r(),

gethostbyname_r(),
gethostbyname2_r()

In the above table, hostent in race:hostent signifies that if any of the functions sethos-
tent(), gethostent(), gethostent_r(), or endhostent() are used in parallel in different
threads of a program, then data races could occur.

STANDARDS
sethostent()
endhostent()
gethostent()

POSIX.1-2008.

gethostent_r()
GNU.

Others:
None.

Linux man-pages 6.13 2024-12-24 1732

gethostbyname(3) Library Functions Manual gethostbyname(3)

HISTORY
sethostent()
endhostent()
gethostent()

POSIX.1-2001.

gethostbyname()
gethostbyaddr()
h_errno

Marked obsolescent in POSIX.1-2001. Removed in POSIX.1-2008, recom-
mending the use of getaddrinfo(3) and getnameinfo(3) instead.

NOTES
The functions gethostbyname() and gethostbyaddr() may return pointers to static
data, which may be overwritten by later calls. Copying the struct hostent does not
suffice, since it contains pointers; a deep copy is required.

In the original BSD implementation the size argument of gethostbyname() was an
int. The SUSv2 standard is buggy and declares the size argument of gethostbyaddr()
to be of type size_t. (That is wrong, because it has to be int, and size_t is not.
POSIX.1-2001 makes it socklen_t, which is OK.) See also accept(2).

The BSD prototype for gethostbyaddr() uses const char * for the first argument.

System V/POSIX extension
POSIX requires the gethostent() call, which should return the next entry in the host
data base. When using DNS/BIND this does not make much sense, but it may be rea-
sonable if the host data base is a file that can be read line by line. On many systems, a
routine of this name reads from the file /etc/hosts. It may be available only when the
library was built without DNS support. The glibc version will ignore ipv6 entries.
This function is not reentrant, and glibc adds a reentrant version gethostent_r().

GNU extensions
glibc2 also has a gethostbyname2() that works like gethostbyname(), but permits to
specify the address family to which the address must belong.

glibc2 also has reentrant versions gethostent_r(), gethostbyaddr_r(), gethostby-
name_r(), and gethostbyname2_r(). The caller supplies a hostent structure ret
which will be filled in on success, and a temporary work buffer buf of size bufsize.
After the call, result will point to the result on success. In case of an error or if no en-
try is found result will be NULL. The functions return 0 on success and a nonzero er-
ror number on failure. In addition to the errors returned by the nonreentrant versions
of these functions, if buf is too small, the functions will return ERANGE, and the call
should be retried with a larger buffer. The global variable h_errno is not modified,
but the address of a variable in which to store error numbers is passed in h_errnop.

BUGS
gethostbyname() does not recognize components of a dotted IPv4 address string that
are expressed in hexadecimal.

SEE ALSO
getaddrinfo(3), getnameinfo(3), inet(3), inet_ntop(3), inet_pton(3), resolver(3),
hosts(5), nsswitch.conf(5), hostname(7), named(8)

Linux man-pages 6.13 2024-12-24 1733

gethostbyname(3) Library Functions Manual gethostbyname(3)

Linux man-pages 6.13 2024-12-24 1734

gethostid(3) Library Functions Manual gethostid(3)

NAME
gethostid, sethostid - get or set the unique identifier of the current host

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

long gethostid(void);
int sethostid(long hostid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gethostid():
Since glibc 2.20:

_DEFAULT_SOURCE || _XOPEN_SOURCE >= 500
Up to and including glibc 2.19:

_BSD_SOURCE || _XOPEN_SOURCE >= 500

sethostid():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
gethostid() and sethostid() respectively get or set a unique 32-bit identifier for the
current machine. The 32-bit identifier was intended to be unique among all UNIX
systems in existence. This normally resembles the Internet address for the local ma-
chine, as returned by gethostbyname(3), and thus usually never needs to be set.

The sethostid() call is restricted to the superuser.

RETURN VALUE
gethostid() returns the 32-bit identifier for the current host as set by sethostid().

On success, sethostid() returns 0; on error, -1 is returned, and errno is set to indicate
the error.

ERRORS
sethostid() can fail with the following errors:

EACCES
The caller did not have permission to write to the file used to store the host ID.

EPERM
The calling process’s effective user or group ID is not the same as its corre-
sponding real ID.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1735

gethostid(3) Library Functions Manual gethostid(3)

Interface Attribute Value
Thread safetygethostid() MT-Safe hostid env locale
Thread safetysethostid() MT-Unsafe const:hostid

VERSIONS
In the glibc implementation, the hostid is stored in the file /etc/hostid . (Before glibc
2.2, the file /var/adm/hostid was used.)

In the glibc implementation, if gethostid() cannot open the file containing the host ID,
then it obtains the hostname using gethostname(2), passes that hostname to gethostby-
name_r(3) in order to obtain the host’s IPv4 address, and returns a value obtained by
bit-twiddling the IPv4 address. (This value may not be unique.)

STANDARDS
gethostid()

POSIX.1-2008.

sethostid()
None.

HISTORY
4.2BSD; dropped in 4.4BSD. SVr4 and POSIX.1-2001 include gethostid() but not
sethostid().

BUGS
It is impossible to ensure that the identifier is globally unique.

SEE ALSO
hostid(1), gethostbyname(3)

Linux man-pages 6.13 2024-07-23 1736

getifaddrs(3) Library Functions Manual getifaddrs(3)

NAME
getifaddrs, freeifaddrs - get interface addresses

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <ifaddrs.h>

int getifaddrs(struct ifaddrs **ifap);
void freeifaddrs(struct ifaddrs *ifa);

DESCRIPTION
The getifaddrs() function creates a linked list of structures describing the network in-
terfaces of the local system, and stores the address of the first item of the list in *ifap.
The list consists of ifaddrs structures, defined as follows:

struct ifaddrs {
struct ifaddrs *ifa_next; /* Next item in list */
char *ifa_name; /* Name of interface */
unsigned int ifa_flags; /* Flags from SIOCGIFFLAGS */
struct sockaddr *ifa_addr; /* Address of interface */
struct sockaddr *ifa_netmask; /* Netmask of interface */
union {

struct sockaddr *ifu_broadaddr;
/* Broadcast address of interface */

struct sockaddr *ifu_dstaddr;
/* Point-to-point destination address */

} ifa_ifu;
#define ifa_broadaddr ifa_ifu.ifu_broadaddr
#define ifa_dstaddr ifa_ifu.ifu_dstaddr

void *ifa_data; /* Address-specific data */
};

The ifa_next field contains a pointer to the next structure on the list, or NULL if this is
the last item of the list.

The ifa_name points to the null-terminated interface name.

The ifa_flags field contains the interface flags, as returned by the SIOCGIFFLAGS
ioctl(2) operation (see netdevice(7) for a list of these flags).

The ifa_addr field points to a structure containing the interface address. (The sa_fam-
ily subfield should be consulted to determine the format of the address structure.)
This field may contain a null pointer.

The ifa_netmask field points to a structure containing the netmask associated with
ifa_addr, if applicable for the address family. This field may contain a null pointer.

Depending on whether the bit IFF_BROADCAST or IFF_POINTOPOINT is set in
ifa_flags (only one can be set at a time), either ifa_broadaddr will contain the broad-
cast address associated with ifa_addr (if applicable for the address family) or
ifa_dstaddr will contain the destination address of the point-to-point interface.

The ifa_data field points to a buffer containing address-family-specific data; this field

Linux man-pages 6.13 2024-07-23 1737

getifaddrs(3) Library Functions Manual getifaddrs(3)

may be NULL if there is no such data for this interface.

The data returned by getifaddrs() is dynamically allocated and should be freed using
freeifaddrs() when no longer needed.

RETURN VALUE
On success, getifaddrs() returns zero; on error, -1 is returned, and errno is set to in-
dicate the error.

ERRORS
getifaddrs() may fail and set errno for any of the errors specified for socket(2),
bind(2), getsockname(2), recvmsg(2), sendto(2), malloc(3), or realloc(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetifaddrs(), freeifaddrs()

STANDARDS
None.

HISTORY
This function first appeared in BSDi and is present on the BSD systems, but with
slightly different semantics documented—returning one entry per interface, not per
address. This means ifa_addr and other fields can actually be NULL if the interface
has no address, and no link-level address is returned if the interface has an IP address
assigned. Also, the way of choosing either ifa_broadaddr or ifa_dstaddr differs on
various systems.

getifaddrs() first appeared in glibc 2.3, but before glibc 2.3.3, the implementation
supported only IPv4 addresses; IPv6 support was added in glibc 2.3.3. Support of ad-
dress families other than IPv4 is available only on kernels that support netlink.

NOTES
The addresses returned on Linux will usually be the IPv4 and IPv6 addresses assigned
to the interface, but also one AF_PACKET address per interface containing lower-
level details about the interface and its physical layer. In this case, the ifa_data field
may contain a pointer to a struct rtnl_link_stats, defined in <linux/if_link.h> (in
Linux 2.4 and earlier, struct net_device_stats, defined in <linux/netdevice.h>), which
contains various interface attributes and statistics.

EXAMPLES
The program below demonstrates the use of getifaddrs(), freeifaddrs(), and getname-
info(3). Here is what we see when running this program on one system:

$./a.out
lo AF_PACKET (17)

tx_packets = 524; rx_packets = 524
tx_bytes = 38788; rx_bytes = 38788

wlp3s0 AF_PACKET (17)
tx_packets = 108391; rx_packets = 130245
tx_bytes = 30420659; rx_bytes = 94230014

em1 AF_PACKET (17)
tx_packets = 0; rx_packets = 0

Linux man-pages 6.13 2024-07-23 1738

getifaddrs(3) Library Functions Manual getifaddrs(3)

tx_bytes = 0; rx_bytes = 0
lo AF_INET (2)

address: <127.0.0.1>
wlp3s0 AF_INET (2)

address: <192.168.235.137>
lo AF_INET6 (10)

address: <::1>
wlp3s0 AF_INET6 (10)

address: <fe80::7ee9:d3ff:fef5:1a91%wlp3s0>

Program source

#define _GNU_SOURCE /* To get defns of NI_MAXSERV and NI_MAXHOST */
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netdb.h>
#include <ifaddrs.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/if_link.h>

int main(int argc, char *argv[])
{

struct ifaddrs *ifaddr;
int family, s;
char host[NI_MAXHOST];

if (getifaddrs(&ifaddr) == -1) {
perror("getifaddrs");
exit(EXIT_FAILURE);

}

/* Walk through linked list, maintaining head pointer so we
can free list later. */

for (struct ifaddrs *ifa = ifaddr; ifa != NULL;
ifa = ifa->ifa_next) {

if (ifa->ifa_addr == NULL)
continue;

family = ifa->ifa_addr->sa_family;

/* Display interface name and family (including symbolic
form of the latter for the common families). */

printf("%-8s %s (%d)\n",
ifa->ifa_name,
(family == AF_PACKET) ? "AF_PACKET" :

Linux man-pages 6.13 2024-07-23 1739

getifaddrs(3) Library Functions Manual getifaddrs(3)

(family == AF_INET) ? "AF_INET" :
(family == AF_INET6) ? "AF_INET6" : "???",
family);

/* For an AF_INET* interface address, display the address. */

if (family == AF_INET || family == AF_INET6) {
s = getnameinfo(ifa->ifa_addr,

(family == AF_INET) ? sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6),

host, NI_MAXHOST,
NULL, 0, NI_NUMERICHOST);

if (s != 0) {
printf("getnameinfo() failed: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);

}

printf("\t\taddress: <%s>\n", host);

} else if (family == AF_PACKET && ifa->ifa_data != NULL) {
struct rtnl_link_stats *stats = ifa->ifa_data;

printf("\t\ttx_packets = %10u; rx_packets = %10u\n"
"\t\ttx_bytes = %10u; rx_bytes = %10u\n",
stats->tx_packets, stats->rx_packets,
stats->tx_bytes, stats->rx_bytes);

}
}

freeifaddrs(ifaddr);
exit(EXIT_SUCCESS);

}

SEE ALSO
bind(2), getsockname(2), socket(2), packet(7), ifconfig(8)

Linux man-pages 6.13 2024-07-23 1740

getipnodebyname(3) Library Functions Manual getipnodebyname(3)

NAME
getipnodebyname, getipnodebyaddr, freehostent - get network hostnames and ad-
dresses

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

[[deprecated]] struct hostent *getipnodebyname(const char *name, int af ,
int flags, int *error_num);

[[deprecated]] struct hostent *getipnodebyaddr(const void addr[.size],
size_t size, int af ,
int *error_num);

[[deprecated]] void freehostent(struct hostent *ip);

DESCRIPTION
These functions are deprecated (and unavailable in glibc). Use getaddrinfo(3) and
getnameinfo(3) instead.

The getipnodebyname() and getipnodebyaddr() functions return the names and ad-
dresses of a network host. These functions return a pointer to the following structure:

struct hostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

};

These functions replace the gethostbyname(3) and gethostbyaddr(3) functions, which
could access only the IPv4 network address family. The getipnodebyname() and
getipnodebyaddr() functions can access multiple network address families.

Unlike the gethostby functions, these functions return pointers to dynamically allo-
cated memory. The freehostent() function is used to release the dynamically allo-
cated memory after the caller no longer needs the hostent structure.

getipnodebyname() arguments
The getipnodebyname() function looks up network addresses for the host specified
by the name argument. The af argument specifies one of the following values:

AF_INET
The name argument points to a dotted-quad IPv4 address or a name of an IPv4
network host.

AF_INET6
The name argument points to a hexadecimal IPv6 address or a name of an
IPv6 network host.

The flags argument specifies additional options. More than one option can be speci-
fied by bitwise OR-ing them together. flags should be set to 0 if no options are

Linux man-pages 6.13 2024-11-17 1741

getipnodebyname(3) Library Functions Manual getipnodebyname(3)

desired.

AI_V4MAPPED
This flag is used with AF_INET6 to request a query for IPv4 addresses in-
stead of IPv6 addresses; the IPv4 addresses will be mapped to IPv6 addresses.

AI_ALL
This flag is used with AI_V4MAPPED to request a query for both IPv4 and
IPv6 addresses. Any IPv4 address found will be mapped to an IPv6 address.

AI_ADDRCONFIG
This flag is used with AF_INET6 to further request that queries for IPv6 ad-
dresses should not be made unless the system has at least one IPv6 address as-
signed to a network interface, and that queries for IPv4 addresses should not
be made unless the system has at least one IPv4 address assigned to a network
interface. This flag may be used by itself or with the AI_V4MAPPED flag.

AI_DEFAULT
This flag is equivalent to (AI_ADDRCONFIG | AI_V4MAPPED).

getipnodebyaddr() arguments
The getipnodebyaddr() function looks up the name of the host whose network ad-
dress is specified by the addr argument. The af argument specifies one of the follow-
ing values:

AF_INET
The addr argument points to a struct in_addr and size must be set to
sizeof(struct in_addr).

AF_INET6
The addr argument points to a struct in6_addr and size must be set to
sizeof(struct in6_addr).

RETURN VALUE
NULL is returned if an error occurred, and error_num will contain an error code from
the following list:

HOST_NOT_FOUND
The hostname or network address was not found.

NO_ADDRESS
The domain name server recognized the network address or name, but no an-
swer was returned. This can happen if the network host has only IPv4 ad-
dresses and a request has been made for IPv6 information only, or vice versa.

NO_RECOVERY
The domain name server returned a permanent failure response.

TRY_AGAIN
The domain name server returned a temporary failure response. You might
have better luck next time.

A successful query returns a pointer to a hostent structure that contains the following
fields:

Linux man-pages 6.13 2024-11-17 1742

getipnodebyname(3) Library Functions Manual getipnodebyname(3)

h_name
This is the official name of this network host.

h_aliases
This is an array of pointers to unofficial aliases for the same host. The array is
terminated by a null pointer.

h_addrtype
This is a copy of the af argument to getipnodebyname() or getipnode-
byaddr(). h_addrtype will always be AF_INET if the af argument was
AF_INET. h_addrtype will always be AF_INET6 if the af argument was
AF_INET6.

h_length
This field will be set to sizeof(struct in_addr) if h_addrtype is AF_INET, and
to sizeof(struct in6_addr) if h_addrtype is AF_INET6.

h_addr_list
This is an array of one or more pointers to network address structures for the
network host. The array is terminated by a null pointer.

STANDARDS
None.

HISTORY
RFC 2553.

Present in glibc 2.1.91-95, but removed again. Several UNIX-like systems support
them, but all call them deprecated.

SEE ALSO
getaddrinfo(3), getnameinfo(3), inet_ntop(3), inet_pton(3)

Linux man-pages 6.13 2024-11-17 1743

getline(3) Library Functions Manual getline(3)

NAME
getline, getdelim - delimited string input

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

ssize_t getline(char **restrict lineptr, size_t *restrict n,
FILE *restrict stream);

ssize_t getdelim(char **restrict lineptr, size_t *restrict n,
int delim, FILE *restrict stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getline(), getdelim():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
getline() reads an entire line from stream, storing the address of the buffer containing
the text into *lineptr. The buffer is null-terminated and includes the newline charac-
ter, if one was found.

If *lineptr is set to NULL before the call, then getline() will allocate a buffer for stor-
ing the line. This buffer should be freed by the user program even if getline() failed.

Alternatively, before calling getline(), *lineptr can contain a pointer to a malloc(3)-al-
located buffer *n bytes in size. If the buffer is not large enough to hold the line, get-
line() resizes it with realloc(3), updating *lineptr and *n as necessary.

In either case, on a successful call, *lineptr and *n will be updated to reflect the buffer
address and allocated size respectively.

getdelim() works like getline(), except that a line delimiter other than newline can be
specified as the delimiter argument. As with getline(), a delimiter character is not
added if one was not present in the input before end of file was reached.

RETURN VALUE
On success, getline() and getdelim() return the number of characters read, including
the delimiter character, but not including the terminating null byte ('\0'). This value
can be used to handle embedded null bytes in the line read.

At end of file, both functions return -1 with the file stream end-of-file indicator set.
On error, both functions return -1 with the file stream error indicator set, and errno is
set to indicate the error.

If *lineptr was set to NULL before the call, then the buffer should be freed by the user
program even on failure.

ERRORS
EINVAL

Bad arguments (n or lineptr is NULL, or stream is not valid).

Linux man-pages 6.13 2024-12-20 1744

getline(3) Library Functions Manual getline(3)

ENOMEM
Allocation or reallocation of the line buffer failed.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetline(), getdelim()

STANDARDS
POSIX.1-2008.

HISTORY
GNU, POSIX.1-2008.

EXAMPLES
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

FILE *stream;
char *line = NULL;
size_t size = 0;
ssize_t nread;

if (argc != 2) {
fprintf(stderr, "Usage: %s <file>\n", argv[0]);
exit(EXIT_FAILURE);

}

stream = fopen(argv[1], "r");
if (stream == NULL) {

perror("fopen");
exit(EXIT_FAILURE);

}

while ((nread = getline(&line, &size, stream)) != -1) {
printf("Retrieved line of length %zd:\n", nread);
fwrite(line, nread, 1, stdout);

}

free(line);
fclose(stream);
exit(EXIT_SUCCESS);

}

SEE ALSO
read(2), fgets(3), fopen(3), fread(3), scanf(3)

Linux man-pages 6.13 2024-12-20 1745

getloadavg(3) Library Functions Manual getloadavg(3)

NAME
getloadavg - get system load averages

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int getloadavg(double loadavg[], int n);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getloadavg():
Since glibc 2.19:

_DEFAULT_SOURCE
In glibc up to and including 2.19:

_BSD_SOURCE

DESCRIPTION
The getloadavg() function returns the number of processes in the system run queue
averaged over various periods of time. Up to n samples are retrieved and assigned to
successive elements of loadavg[]. The system imposes a maximum of 3 samples,
representing averages over the last 1, 5, and 15 minutes, respectively.

RETURN VALUE
If the load average was unobtainable, -1 is returned; otherwise, the number of sam-
ples actually retrieved is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetloadavg()

STANDARDS
BSD.

HISTORY
4.3BSD-Reno, Solaris. glibc 2.2.

SEE ALSO
uptime(1), proc(5)

Linux man-pages 6.13 2024-11-17 1746

getlogin(3) Library Functions Manual getlogin(3)

NAME
getlogin, getlogin_r, cuserid - get username

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

char *getlogin(void);
int getlogin_r(char buf [.bufsize], size_t bufsize);

#include <stdio.h>

char *cuserid(char *string);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getlogin_r():
_POSIX_C_SOURCE >= 199506L

cuserid():
Since glibc 2.24:

(_XOPEN_SOURCE && ! (_POSIX_C_SOURCE >= 200112L)
|| _GNU_SOURCE

Up to and including glibc 2.23:
_XOPEN_SOURCE

DESCRIPTION
getlogin() returns a pointer to a string containing the name of the user logged in on
the controlling terminal of the process, or a null pointer if this information cannot be
determined. The string is statically allocated and might be overwritten on subsequent
calls to this function or to cuserid().

getlogin_r() returns this same username in the array buf of size bufsize.

cuserid() returns a pointer to a string containing a username associated with the effec-
tive user ID of the process. If string is not a null pointer, it should be an array that can
hold at least L_cuserid characters; the string is returned in this array. Otherwise, a
pointer to a string in a static area is returned. This string is statically allocated and
might be overwritten on subsequent calls to this function or to getlogin().

The macro L_cuserid is an integer constant that indicates how long an array you
might need to store a username. L_cuserid is declared in <stdio.h>.

These functions let your program identify positively the user who is running
(cuserid()) or the user who logged in this session (getlogin()). (These can differ
when set-user-ID programs are involved.)

For most purposes, it is more useful to use the environment variable LOGNAME to
find out who the user is. This is more flexible precisely because the user can set
LOGNAME arbitrarily.

RETURN VALUE
getlogin() returns a pointer to the username when successful, and NULL on failure,
with errno set to indicate the error. getlogin_r() returns 0 when successful, and
nonzero on failure.

Linux man-pages 6.13 2024-07-23 1747

getlogin(3) Library Functions Manual getlogin(3)

ERRORS
POSIX specifies:

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENXIO
The calling process has no controlling terminal.

ERANGE
(getlogin_r) The length of the username, including the terminating null byte
('\0'), is larger than bufsize.

Linux/glibc also has:

ENOENT
There was no corresponding entry in the utmp-file.

ENOMEM
Insufficient memory to allocate passwd structure.

ENOTTY
Standard input didn’t refer to a terminal. (See BUGS.)

FILES
/etc/passwd

password database file

/var/run/utmp
(traditionally /etc/utmp; some libc versions used /var/adm/utmp)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetlogin() MT-Unsafe race:getlogin race:utent sig:ALRM
timer locale

Thread safetygetlogin_r() MT-Unsafe race:utent sig:ALRM timer locale
Thread safetycuserid() MT-Unsafe race:cuserid/!string locale

In the above table, utent in race:utent signifies that if any of the functions setutent(3),
getutent(3), or endutent(3) are used in parallel in different threads of a program, then
data races could occur. getlogin() and getlogin_r() call those functions, so we use
race:utent to remind users.

VERSIONS
OpenBSD has getlogin() and setlogin(), and a username associated with a session,
even if it has no controlling terminal.

STANDARDS
getlogin()
getlogin_r()

POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 1748

getlogin(3) Library Functions Manual getlogin(3)

cuserid()
None.

STANDARDS
getlogin()
getlogin_r():

POSIX.1-2001. OpenBSD.

cuserid()
System V, POSIX.1-1988. Removed in POSIX.1-1990. SUSv2. Removed in
POSIX.1-2001.

System V has a cuserid() function which uses the real user ID rather than the
effective user ID.

BUGS
Unfortunately, it is often rather easy to fool getlogin(). Sometimes it does not work at
all, because some program messed up the utmp file. Often, it gives only the first 8
characters of the login name. The user currently logged in on the controlling terminal
of our program need not be the user who started it. Avoid getlogin() for security-re-
lated purposes.

Note that glibc does not follow the POSIX specification and uses stdin instead of
/dev/tty. A bug. (Other recent systems, like SunOS 5.8 and HP-UX 11.11 and
FreeBSD 4.8 all return the login name also when stdin is redirected.)

Nobody knows precisely what cuserid() does; avoid it in portable programs. Or avoid
it altogether: use getpwuid(geteuid()) instead, if that is what you meant. Do not use
cuserid().

SEE ALSO
logname(1), geteuid(2), getuid(2), utmp(5)

Linux man-pages 6.13 2024-07-23 1749

getmntent(3) Library Functions Manual getmntent(3)

NAME
getmntent, setmntent, addmntent, endmntent, hasmntopt, getmntent_r - get filesystem
descriptor file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <mntent.h>

FILE *setmntent(const char * filename, const char *type);

struct mntent *getmntent(FILE *stream);

int addmntent(FILE *restrict stream,
const struct mntent *restrict mnt);

int endmntent(FILE *streamp);

char *hasmntopt(const struct mntent *mnt, const char *opt);

/* GNU extension */
#include <mntent.h>

struct mntent *getmntent_r(FILE *restrict streamp,
struct mntent *restrict mntbuf ,
char buf [restrict .size], int size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getmntent_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These routines are used to access the filesystem description file /etc/fstab and the
mounted filesystem description file /etc/mtab.

The setmntent() function opens the filesystem description file filename and returns a
file pointer which can be used by getmntent(). The argument type is the type of ac-
cess required and can take the same values as the mode argument of fopen(3). The re-
turned stream should be closed using endmntent() rather than fclose(3).

The getmntent() function reads the next line of the filesystem description file from
stream and returns a pointer to a structure containing the broken out fields from a line
in the file. The pointer points to a static area of memory which is overwritten by sub-
sequent calls to getmntent().

The addmntent() function adds the mntent structure mnt to the end of the open
stream.

The endmntent() function closes the stream associated with the filesystem descrip-
tion file.

The hasmntopt() function scans the mnt_opts field (see below) of the mntent struc-
ture mnt for a substring that matches opt. See <mntent.h> and mount(8) for valid

Linux man-pages 6.13 2024-12-24 1750

getmntent(3) Library Functions Manual getmntent(3)

mount options.

The reentrant getmntent_r() function is similar to getmntent(), but stores the mntent
structure in the provided *mntbuf , and stores the strings pointed to by the entries in
that structure in the provided array buf of size size.

The mntent structure is defined in <mntent.h> as follows:

struct mntent {
char *mnt_fsname; /* name of mounted filesystem */
char *mnt_dir; /* filesystem path prefix */
char *mnt_type; /* mount type (see mntent.h) */
char *mnt_opts; /* mount options (see mntent.h) */
int mnt_freq; /* dump frequency in days */
int mnt_passno; /* pass number on parallel fsck */

};

Since fields in the mtab and fstab files are separated by whitespace, octal escapes are
used to represent the characters space (\040), tab (\011), newline (\012), and backslash
(\\) in those files when they occur in one of the four strings in a mntent structure. The
routines addmntent() and getmntent() will convert from string representation to es-
caped representation and back. When converting from escaped representation, the se-
quence \134 is also converted to a backslash.

RETURN VALUE
The getmntent() and getmntent_r() functions return a pointer to the mntent structure
or NULL on failure.

The addmntent() function returns 0 on success and 1 on failure.

The endmntent() function always returns 1.

The hasmntopt() function returns the address of the substring if a match is found and
NULL otherwise.

FILES
/etc/fstab

filesystem description file

/etc/mtab
mounted filesystem description file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesetmntent(),
endmntent(),
hasmntopt()

Thread safetygetmntent() MT-Unsafe race:mntentbuf locale
Thread safetyaddmntent() MT-Safe race:stream locale
Thread safety MT-Safe localegetmntent_r()

STANDARDS
None.

Linux man-pages 6.13 2024-12-24 1751

getmntent(3) Library Functions Manual getmntent(3)

HISTORY
The nonreentrant functions are from SunOS 4.1.3. A routine getmntent_r() was in-
troduced in HP-UX 10, but it returns an int. The prototype shown above is glibc-only.

System V also has a getmntent() function but the calling sequence differs, and the re-
turned structure is different. Under System V /etc/mnttab is used. 4.4BSD and Digi-
tal UNIX have a routine getmntinfo(), a wrapper around the system call getfsstat().

SEE ALSO
fopen(3), fstab(5), mount(8)

Linux man-pages 6.13 2024-12-24 1752

getnameinfo(3) Library Functions Manual getnameinfo(3)

NAME
getnameinfo - address-to-name translation in protocol-independent manner

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *restrict addr, socklen_t addrlen,
char host[_Nullable restrict .hostlen],
socklen_t hostlen,
char serv[_Nullable restrict .servlen],
socklen_t servlen,
int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getnameinfo():
Since glibc 2.22:

_POSIX_C_SOURCE >= 200112L
glibc 2.21 and earlier:

_POSIX_C_SOURCE

DESCRIPTION
The getnameinfo() function is the inverse of getaddrinfo(3): it converts a socket ad-
dress to a corresponding host and service, in a protocol-independent manner. It com-
bines the functionality of gethostbyaddr(3) and getservbyport(3), but unlike those
functions, getnameinfo() is reentrant and allows programs to eliminate IPv4-versus-
IPv6 dependencies.

The addr argument is a pointer to a generic socket address structure (of type sock-
addr_in or sockaddr_in6) of size addrlen that holds the input IP address and port
number. The arguments host and serv are pointers to caller-allocated buffers (of size
hostlen and servlen respectively) into which getnameinfo() places null-terminated
strings containing the host and service names respectively.

The caller can specify that no hostname (or no service name) is required by providing
a NULL host (or serv) argument or a zero hostlen (or servlen) argument. However, at
least one of hostname or service name must be requested.

The flags argument modifies the behavior of getnameinfo() as follows:

NI_NAMEREQD
If set, then an error is returned if the hostname cannot be determined.

NI_DGRAM
If set, then the service is datagram (UDP) based rather than stream (TCP)
based. This is required for the few ports (512–514) that have different services
for UDP and TCP.

NI_NOFQDN
If set, return only the hostname part of the fully qualified domain name for lo-
cal hosts.

Linux man-pages 6.13 2024-07-23 1753

getnameinfo(3) Library Functions Manual getnameinfo(3)

NI_NUMERICHOST
If set, then the numeric form of the hostname is returned. (When not set, this
will still happen in case the node’s name cannot be determined.)

NI_NUMERICSERV
If set, then the numeric form of the service address is returned. (When not set,
this will still happen in case the service’s name cannot be determined.)

Extensions to getnameinfo() for Internationalized Domain Names
Starting with glibc 2.3.4, getnameinfo() has been extended to selectively allow host-
names to be transparently converted to and from the Internationalized Domain Name
(IDN) format (see RFC 3490, Internationalizing Domain Names in Applications
(IDNA)). Three new flags are defined:

NI_IDN
If this flag is used, then the name found in the lookup process is converted
from IDN format to the locale’s encoding if necessary. ASCII-only names are
not affected by the conversion, which makes this flag usable in existing pro-
grams and environments.

NI_IDN_ALLOW_UNASSIGNED
NI_IDN_USE_STD3_ASCII_RULES

Setting these flags will enable the IDNA_ALLOW_UNASSIGNED (allow
unassigned Unicode code points) and IDNA_USE_STD3_ASCII_RULES
(check output to make sure it is a STD3 conforming hostname) flags respec-
tively to be used in the IDNA handling.

RETURN VALUE
On success, 0 is returned, and node and service names, if requested, are filled with
null-terminated strings, possibly truncated to fit the specified buffer lengths. On error,
one of the following nonzero error codes is returned:

EAI_AGAIN
The name could not be resolved at this time. Try again later.

EAI_BADFLAGS
The flags argument has an invalid value.

EAI_FAIL
A nonrecoverable error occurred.

EAI_FAMILY
The address family was not recognized, or the address length was invalid for
the specified family.

EAI_MEMORY
Out of memory.

EAI_NONAME
The name does not resolve for the supplied arguments. NI_NAMEREQD is
set and the host’s name cannot be located, or neither hostname nor service
name were requested.

EAI_OVERFLOW
The buffer pointed to by host or serv was too small.

Linux man-pages 6.13 2024-07-23 1754

getnameinfo(3) Library Functions Manual getnameinfo(3)

EAI_SYSTEM
A system error occurred. The error code can be found in errno.

The gai_strerror(3) function translates these error codes to a human readable string,
suitable for error reporting.

FILES
/etc/hosts
/etc/nsswitch.conf
/etc/resolv.conf

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localegetnameinfo()

STANDARDS
POSIX.1-2008. RFC 2553.

HISTORY
glibc 2.1. POSIX.1-2001.

Before glibc 2.2, the hostlen and servlen arguments were typed as size_t.

NOTES
In order to assist the programmer in choosing reasonable sizes for the supplied
buffers, <netdb.h> defines the constants

#define NI_MAXHOST 1025
#define NI_MAXSERV 32

Since glibc 2.8, these definitions are exposed only if suitable feature test macros are
defined, namely: _GNU_SOURCE, _DEFAULT_SOURCE (since glibc 2.19), or (in
glibc versions up to and including 2.19) _BSD_SOURCE or _SVID_SOURCE.

The former is the constant MAXDNAME in recent versions of BIND’s
<arpa/nameser.h> header file. The latter is a guess based on the services listed in the
current Assigned Numbers RFC.

EXAMPLES
The following code tries to get the numeric hostname and service name, for a given
socket address. Note that there is no hardcoded reference to a particular address fam-
ily.

struct sockaddr *addr; /* input */
socklen_t addrlen; /* input */
char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];

if (getnameinfo(addr, addrlen, hbuf, sizeof(hbuf), sbuf,
sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV) == 0)

printf("host=%s, serv=%s\n", hbuf, sbuf);

The following version checks if the socket address has a reverse address mapping.

struct sockaddr *addr; /* input */
socklen_t addrlen; /* input */
char hbuf[NI_MAXHOST];

Linux man-pages 6.13 2024-07-23 1755

getnameinfo(3) Library Functions Manual getnameinfo(3)

if (getnameinfo(addr, addrlen, hbuf, sizeof(hbuf),
NULL, 0, NI_NAMEREQD))

printf("could not resolve hostname");
else

printf("host=%s\n", hbuf);

An example program using getnameinfo() can be found in getaddrinfo(3).

SEE ALSO
accept(2), getpeername(2), getsockname(2), recvfrom(2), socket(2), getaddrinfo(3),
gethostbyaddr(3), getservbyname(3), getservbyport(3), inet_ntop(3), hosts(5), ser-
vices(5), hostname(7), named(8)

R. Gilligan, S. Thomson, J. Bound and W. Stevens, Basic Socket Interface Extensions
for IPv6, RFC 2553, March 1999.

Tatsuya Jinmei and Atsushi Onoe, An Extension of Format for IPv6 Scoped Ad-
dresses, internet draft, work in progress 〈ftp://ftp.ietf.org/internet-drafts
/draft-ietf-ipngwg-scopedaddr-format-02.txt〉.

Craig Metz, Protocol Independence Using the Sockets API , Proceedings of the freenix
track: 2000 USENIX annual technical conference, June 2000 〈http://www.usenix.org
/publications/library/proceedings/usenix2000/freenix/metzprotocol.html〉.

Linux man-pages 6.13 2024-07-23 1756

getnetent(3) Library Functions Manual getnetent(3)

NAME
getnetent, getnetbyname, getnetbyaddr, setnetent, endnetent - get network entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

struct netent *getnetent(void);

struct netent *getnetbyname(const char *name);
struct netent *getnetbyaddr(uint32_t net, int type);

void setnetent(int stayopen);
void endnetent(void);

DESCRIPTION
The getnetent() function reads the next entry from the networks database and returns
a netent structure containing the broken-out fields from the entry. A connection is
opened to the database if necessary.

The getnetbyname() function returns a netent structure for the entry from the data-
base that matches the network name.

The getnetbyaddr() function returns a netent structure for the entry from the database
that matches the network number net of type type. The net argument must be in host
byte order.

The setnetent() function opens a connection to the database, and sets the next entry to
the first entry. If stayopen is nonzero, then the connection to the database will not be
closed between calls to one of the getnet*() functions.

The endnetent() function closes the connection to the database.

The netent structure is defined in <netdb.h> as follows:

struct netent {
char *n_name; /* official network name */
char **n_aliases; /* alias list */
int n_addrtype; /* net address type */
uint32_t n_net; /* network number */

}

The members of the netent structure are:

n_name
The official name of the network.

n_aliases
A NULL-terminated list of alternative names for the network.

n_addrtype
The type of the network number; always AF_INET.

n_net The network number in host byte order.

Linux man-pages 6.13 2024-07-23 1757

getnetent(3) Library Functions Manual getnetent(3)

RETURN VALUE
The getnetent(), getnetbyname(), and getnetbyaddr() functions return a pointer to a
statically allocated netent structure, or a null pointer if an error occurs or the end of
the file is reached.

FILES
/etc/networks

networks database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetnetent() MT-Unsafe race:netent race:netentbuf env
locale

Thread safetygetnetbyname() MT-Unsafe race:netbyname env locale
Thread safetygetnetbyaddr() MT-Unsafe race:netbyaddr locale
Thread safetysetnetent(),

endnetent()
MT-Unsafe race:netent env locale

In the above table, netent in race:netent signifies that if any of the functions setne-
tent(), getnetent(), or endnetent() are used in parallel in different threads of a pro-
gram, then data races could occur.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

Before glibc 2.2, the net argument of getnetbyaddr() was of type long.

SEE ALSO
getnetent_r(3), getprotoent(3), getservent(3)
RFC 1101

Linux man-pages 6.13 2024-07-23 1758

getnetent_r(3) Library Functions Manual getnetent_r(3)

NAME
getnetent_r, getnetbyname_r, getnetbyaddr_r - get network entry (reentrant)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

int getnetent_r(struct netent *restrict result_buf ,
char buf [restrict .size], size_t size,
struct netent **restrict result,
int *restrict h_errnop);

int getnetbyname_r(const char *restrict name,
struct netent *restrict result_buf ,
char buf [restrict .size], size_t size,
struct netent **restrict result,
int *restrict h_errnop);

int getnetbyaddr_r(uint32_t net, int type,
struct netent *restrict result_buf ,
char buf [restrict .size], size_t size,
struct netent **restrict result,
int *restrict h_errnop);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getnetent_r(), getnetbyname_r(), getnetbyaddr_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getnetent_r(), getnetbyname_r(), and getnetbyaddr_r() functions are the reen-
trant equivalents of, respectively, getnetent(3), getnetbyname(3), and getnetbynum-
ber(3)They differ in the way that the netent structure is returned, and in the function
calling signature and return value. This manual page describes just the differences
from the nonreentrant functions.

Instead of returning a pointer to a statically allocated netent structure as the function
result, these functions copy the structure into the location pointed to by result_buf .

The buf array is used to store the string fields pointed to by the returned netent struc-
ture. (The nonreentrant functions allocate these strings in static storage.) The size of
this array is specified in size. If buf is too small, the call fails with the error
ERANGE, and the caller must try again with a larger buffer. (A buffer of size 1024
bytes should be sufficient for most applications.)

If the function call successfully obtains a network record, then *result is set pointing
to result_buf ; otherwise, *result is set to NULL.

The buffer pointed to by h_errnop is used to return the value that would be stored in
the global variable h_errno by the nonreentrant versions of these functions.

Linux man-pages 6.13 2024-12-24 1759

getnetent_r(3) Library Functions Manual getnetent_r(3)

RETURN VALUE
On success, these functions return 0. On error, they return one of the positive error
numbers listed in ERRORS.

On error, record not found (getnetbyname_r(), getnetbyaddr_r()), or end of input
(getnetent_r()) result is set to NULL.

ERRORS
ENOENT

(getnetent_r()) No more records in database.

ERANGE
buf is too small. Try again with a larger buffer (and increased size).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetnetent_r(), getnetbyname_r(),
getnetbyaddr_r()

VERSIONS
Functions with similar names exist on some other systems, though typically with dif-
ferent calling signatures.

STANDARDS
GNU.

SEE ALSO
getnetent(3), networks(5)

Linux man-pages 6.13 2024-12-24 1760

getopt(3) Library Functions Manual getopt(3)

NAME
getopt, getopt_long, getopt_long_only, optarg, optind, opterr, optopt - Parse com-
mand-line options

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getopt(int argc, char *argv[],
const char *optstring);

extern char *optarg;
extern int optind , opterr, optopt;

#include <getopt.h>

int getopt_long(int argc, char *argv[],
const char *optstring,
const struct option *longopts, int *longindex);

int getopt_long_only(int argc, char *argv[],
const char *optstring,
const struct option *longopts, int *longindex);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getopt():
_POSIX_C_SOURCE >= 2 || _XOPEN_SOURCE

getopt_long(), getopt_long_only():
_GNU_SOURCE

DESCRIPTION
The getopt() function parses the command-line arguments. Its arguments argc and
argv are the argument count and array as passed to the main() function on program in-
vocation. An element of argv that starts with '-' (and is not exactly "-" or "--") is an
option element. The characters of this element (aside from the initial '-') are option
characters. If getopt() is called repeatedly, it returns successively each of the option
characters from each of the option elements.

The variable optind is the index of the next element to be processed in argv. The sys-
tem initializes this value to 1. The caller can reset it to 1 to restart scanning of the
same argv, or when scanning a new argument vector.

If getopt() finds another option character, it returns that character, updating the exter-
nal variable optind and a static variable nextchar so that the next call to getopt() can
resume the scan with the following option character or argv-element.

If there are no more option characters, getopt() returns -1. Then optind is the index
in argv of the first argv-element that is not an option.

optstring is a string containing the legitimate option characters. A legitimate option
character is any visible one byte ascii(7) character (for which isgraph(3) would return
nonzero) that is not '-', ':', or ';'. If such a character is followed by a colon, the option
requires an argument, so getopt() places a pointer to the following text in the same
argv-element, or the text of the following argv-element, in optarg. Two colons mean

Linux man-pages 6.13 2024-12-19 1761

getopt(3) Library Functions Manual getopt(3)

an option takes an optional arg; if there is text in the current argv-element (i.e., in the
same word as the option name itself, for example, "-oarg"), then it is returned in op-
targ, otherwise optarg is set to zero. This is a GNU extension. If optstring contains
W followed by a semicolon, then -W foo is treated as the long option --foo. (The
-W option is reserved by POSIX.2 for implementation extensions.) This behavior is
a GNU extension, not available with libraries before glibc 2.

By default, getopt() permutes the contents of argv as it scans, so that eventually all
the nonoptions are at the end. Two other scanning modes are also implemented. If
the first character of optstring is '+' or the environment variable POSIXLY_COR-
RECT is set, then option processing stops as soon as a nonoption argument is en-
countered. If '+' is not the first character of optstring, it is treated as a normal option.
If POSIXLY_CORRECT behaviour is required in this case optstring will contain
two '+' symbols. If the first character of optstring is '-', then each nonoption argv-ele-
ment is handled as if it were the argument of an option with character code 1. (This is
used by programs that were written to expect options and other argv-elements in any
order and that care about the ordering of the two.) The special argument "--" forces
an end of option-scanning regardless of the scanning mode.

While processing the option list, getopt() can detect two kinds of errors: (1) an option
character that was not specified in optstring and (2) a missing option argument (i.e.,
an option at the end of the command line without an expected argument). Such errors
are handled and reported as follows:

• By default, getopt() prints an error message on standard error, places the erro-
neous option character in optopt, and returns '?' as the function result.

• If the caller has set the global variable opterr to zero, then getopt() does not print
an error message. The caller can determine that there was an error by testing
whether the function return value is '?'. (By default, opterr has a nonzero value.)

• If the first character (following any optional '+' or '-' described above) of optstring
is a colon (':'), then getopt() likewise does not print an error message. In addition,
it returns ':' instead of '?' to indicate a missing option argument. This allows the
caller to distinguish the two different types of errors.

getopt_long() and getopt_long_only()
The getopt_long() function works like getopt() except that it also accepts long op-
tions, started with two dashes. (If the program accepts only long options, then opt-
string should be specified as an empty string (""), not NULL.) Long option names
may be abbreviated if the abbreviation is unique or is an exact match for some defined
option. A long option may take a parameter, of the form --arg=param or --arg
param.

longopts is a pointer to the first element of an array of struct option declared in
<getopt.h> as

struct option {
const char *name;
int has_arg;
int *flag;
int val;

};

Linux man-pages 6.13 2024-12-19 1762

getopt(3) Library Functions Manual getopt(3)

The meanings of the different fields are:

name is the name of the long option.

has_arg
is: no_argument (or 0) if the option does not take an argument; required_ar-
gument (or 1) if the option requires an argument; or optional_argument (or
2) if the option takes an optional argument.

flag specifies how results are returned for a long option. If flag is NULL, then
getopt_long() returns val. (For example, the calling program may set val to
the equivalent short option character.) Otherwise, getopt_long() returns 0, and
flag points to a variable which is set to val if the option is found, but left un-
changed if the option is not found.

val is the value to return, or to load into the variable pointed to by flag.

The last element of the array has to be filled with zeros.

If longindex is not NULL, it points to a variable which is set to the index of the long
option relative to longopts.

getopt_long_only() is like getopt_long(), but '-' as well as "--" can indicate a long
option. If an option that starts with '-' (not "--") doesn’t match a long option, but
does match a short option, it is parsed as a short option instead.

RETURN VALUE
If an option was successfully found, then getopt() returns the option character. If all
command-line options have been parsed, then getopt() returns -1. If getopt() en-
counters an option character that was not in optstring, then '?' is returned. If getopt()
encounters an option with a missing argument, then the return value depends on the
first character in optstring: if it is ':', then ':' is returned; otherwise '?' is returned.

getopt_long() and getopt_long_only() also return the option character when a short
option is recognized. For a long option, they return val if flag is NULL, and 0 other-
wise. Error and -1 returns are the same as for getopt(), plus '?' for an ambiguous
match or an extraneous parameter.

ENVIRONMENT
POSIXLY_CORRECT

If this is set, then option processing stops as soon as a nonoption argument is
encountered.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetopt(),
getopt_long(),
getopt_long_only()

MT-Unsafe race:getopt env

VERSIONS
POSIX specifies that the argv array argument should be const, but these functions
permute its elements unless the environment variable POSIXLY_CORRECT is set.
const is used in the actual prototype to be compatible with other systems; however,
this page doesn’t show the qualifier, to avoid confusing readers.

Linux man-pages 6.13 2024-12-19 1763

getopt(3) Library Functions Manual getopt(3)

STANDARDS
getopt()

POSIX.1-2008.

getopt_long()
getopt_long_only()

GNU.

The use of '+' and '-' in optstring is a GNU extension.

HISTORY
getopt()

POSIX.1-2001, and POSIX.2.

On some older implementations, getopt() was declared in <stdio.h>. SUSv1 permit-
ted the declaration to appear in either <unistd.h> or <stdio.h>. POSIX.1-1996
marked the use of <stdio.h> for this purpose as LEGACY. POSIX.1-2001 does not
require the declaration to appear in <stdio.h>.

Very old versions of glibc were affected by a _PID_GNU_nonoption_argv_flags_
environment variable 〈https://sourceware.org/git/
?p=glibc.git;a=commitdiff;h=bf079e19f50d64aa5e05〉.

NOTES
A program that scans multiple argument vectors, or rescans the same vector more than
once, and wants to make use of GNU extensions such as '+' and '-' at the start of opt-
string, or changes the value of POSIXLY_CORRECT between scans, must reinitial-
ize getopt() by resetting optind to 0, rather than the traditional value of 1. (Resetting
to 0 forces the invocation of an internal initialization routine that rechecks
POSIXLY_CORRECT and checks for GNU extensions in optstring.)

Command-line arguments are parsed in strict order meaning that an option requiring
an argument will consume the next argument, regardless of whether that argument is
the correctly specified option argument or simply the next option (in the scenario the
user mis-specifies the command line). For example, if optstring is specified as "1n:"
and the user specifies the command line arguments incorrectly as prog -n -1, the -n
option will be given the optarg value "-1", and the -1 option will be considered to
have not been specified.

EXAMPLES
getopt()

The following trivial example program uses getopt() to handle two program options:
-n, with no associated value; and -t val, which expects an associated value.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int flags, opt;
int nsecs, tfnd;

Linux man-pages 6.13 2024-12-19 1764

getopt(3) Library Functions Manual getopt(3)

nsecs = 0;
tfnd = 0;
flags = 0;
while ((opt = getopt(argc, argv, "nt:")) != -1) {

switch (opt) {
case 'n':

flags = 1;
break;

case 't':
nsecs = atoi(optarg);
tfnd = 1;
break;

default: /* '?' */
fprintf(stderr, "Usage: %s [-t nsecs] [-n] name\n",

argv[0]);
exit(EXIT_FAILURE);

}
}

printf("flags=%d; tfnd=%d; nsecs=%d; optind=%d\n",
flags, tfnd, nsecs, optind);

if (optind >= argc) {
fprintf(stderr, "Expected argument after options\n");
exit(EXIT_FAILURE);

}

printf("name argument = %s\n", argv[optind]);

/* Other code omitted */

exit(EXIT_SUCCESS);
}

getopt_long()
The following example program illustrates the use of getopt_long() with most of its
features.

#include <getopt.h>
#include <stdio.h> /* for printf */
#include <stdlib.h> /* for exit */

int
main(int argc, char *argv[])
{

int c;
int digit_optind = 0;

while (1) {
int this_option_optind = optind ? optind : 1;

Linux man-pages 6.13 2024-12-19 1765

getopt(3) Library Functions Manual getopt(3)

int option_index = 0;
static struct option long_options[] = {

{"add", required_argument, 0, 0 },
{"append", no_argument, 0, 0 },
{"delete", required_argument, 0, 0 },
{"verbose", no_argument, 0, 0 },
{"create", required_argument, 0, 'c'},
{"file", required_argument, 0, 0 },
{0, 0, 0, 0 }

};

c = getopt_long(argc, argv, "abc:d:012",
long_options, &option_index);

if (c == -1)
break;

switch (c) {
case 0:

printf("option %s", long_options[option_index].name);
if (optarg)

printf(" with arg %s", optarg);
printf("\n");
break;

case '0':
case '1':
case '2':

if (digit_optind != 0 && digit_optind != this_option_optind)
printf("digits occur in two different argv-elements.\n");

digit_optind = this_option_optind;
printf("option %c\n", c);
break;

case 'a':
printf("option a\n");
break;

case 'b':
printf("option b\n");
break;

case 'c':
printf("option c with value '%s'\n", optarg);
break;

case 'd':
printf("option d with value '%s'\n", optarg);
break;

Linux man-pages 6.13 2024-12-19 1766

getopt(3) Library Functions Manual getopt(3)

case '?':
break;

default:
printf("?? getopt returned character code 0%o ??\n", c);

}
}

if (optind < argc) {
printf("non-option ARGV-elements: ");
while (optind < argc)

printf("%s ", argv[optind++]);
printf("\n");

}

exit(EXIT_SUCCESS);
}

SEE ALSO
getopt(1), getsubopt(3)

Linux man-pages 6.13 2024-12-19 1767

getpass(3) Library Functions Manual getpass(3)

NAME
getpass - get a password

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

[[deprecated]] char *getpass(const char *prompt);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpass():
Since glibc 2.2.2:

_XOPEN_SOURCE && ! (_POSIX_C_SOURCE >= 200112L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.2.2:
none

DESCRIPTION
This function is obsolete. Do not use it. See NOTES. If you want to read input with-
out terminal echoing enabled, see the description of the ECHO flag in termios(3).

The getpass() function opens /dev/tty (the controlling terminal of the process), out-
puts the string prompt, turns off echoing, reads one line (the "password"), restores the
terminal state and closes /dev/tty again.

RETURN VALUE
The function getpass() returns a pointer to a static buffer containing (the first
PASS_MAX bytes of) the password without the trailing newline, terminated by a null
byte ('\0'). This buffer may be overwritten by a following call. On error, the terminal
state is restored, errno is set to indicate the error, and NULL is returned.

ERRORS
ENXIO

The process does not have a controlling terminal.

FILES
/dev/tty

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe termgetpass()

STANDARDS
None.

HISTORY
Version 7 AT&T UNIX. Present in SUSv2, but marked LEGACY. Removed in
POSIX.1-2001.

NOTES
You should use instead readpassphrase(3bsd), provided by libbsd .

Linux man-pages 6.13 2024-07-23 1768

getpass(3) Library Functions Manual getpass(3)

In the GNU C library implementation, if /dev/tty cannot be opened, the prompt is
written to stderr and the password is read from stdin. There is no limit on the length
of the password. Line editing is not disabled.

According to SUSv2, the value of PASS_MAX must be defined in <limits.h> in case
it is smaller than 8, and can in any case be obtained using sysconf(_SC_PASS_MAX).
However, POSIX.2 withdraws the constants PASS_MAX and _SC_PASS_MAX, and
the function getpass(). The glibc version accepts _SC_PASS_MAX and returns
BUFSIZ (e.g., 8192).

BUGS
The calling process should zero the password as soon as possible to avoid leaving the
cleartext password visible in the process’s address space.

SEE ALSO
crypt(3)

Linux man-pages 6.13 2024-07-23 1769

getprotoent(3) Library Functions Manual getprotoent(3)

NAME
getprotoent, getprotobyname, getprotobynumber, setprotoent, endprotoent - get proto-
col entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

struct protoent *getprotoent(void);

struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);

void setprotoent(int stayopen);
void endprotoent(void);

DESCRIPTION
The getprotoent() function reads the next entry from the protocols database (see pro-
tocols(5)) and returns a protoent structure containing the broken-out fields from the
entry. A connection is opened to the database if necessary.

The getprotobyname() function returns a protoent structure for the entry from the
database that matches the protocol name name. A connection is opened to the data-
base if necessary.

The getprotobynumber() function returns a protoent structure for the entry from the
database that matches the protocol number number. A connection is opened to the
database if necessary.

The setprotoent() function opens a connection to the database, and sets the next entry
to the first entry. If stayopen is nonzero, then the connection to the database will not
be closed between calls to one of the getproto*() functions.

The endprotoent() function closes the connection to the database.

The protoent structure is defined in <netdb.h> as follows:

struct protoent {
char *p_name; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

}

The members of the protoent structure are:

p_name
The official name of the protocol.

p_aliases
A NULL-terminated list of alternative names for the protocol.

p_proto
The protocol number.

RETURN VALUE
The getprotoent(), getprotobyname(), and getprotobynumber() functions return a
pointer to a statically allocated protoent structure, or a null pointer if an error occurs

Linux man-pages 6.13 2024-07-23 1770

getprotoent(3) Library Functions Manual getprotoent(3)

or the end of the file is reached.

FILES
/etc/protocols

protocol database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetprotoent() MT-Unsafe race:protoent
race:protoentbuf locale

Thread safetygetprotobyname() MT-Unsafe race:protobyname locale
Thread safetygetprotobynumber() MT-Unsafe race:protobynumber locale
Thread safetysetprotoent(),

endprotoent()
MT-Unsafe race:protoent locale

In the above table, protoent in race:protoent signifies that if any of the functions set-
protoent(), getprotoent(), or endprotoent() are used in parallel in different threads of
a program, then data races could occur.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

SEE ALSO
getnetent(3), getprotoent_r(3), getservent(3), protocols(5)

Linux man-pages 6.13 2024-07-23 1771

getprotoent_r(3) Library Functions Manual getprotoent_r(3)

NAME
getprotoent_r, getprotobyname_r, getprotobynumber_r - get protocol entry (reentrant)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

int getprotoent_r(struct protoent *restrict result_buf ,
char buf [restrict .size], size_t size,
struct protoent **restrict result);

int getprotobyname_r(const char *restrict name,
struct protoent *restrict result_buf ,
char buf [restrict .size], size_t size,
struct protoent **restrict result);

int getprotobynumber_r(int proto,
struct protoent *restrict result_buf ,
char buf [restrict .size], size_t size,
struct protoent **restrict result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getprotoent_r(), getprotobyname_r(), getprotobynumber_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getprotoent_r(), getprotobyname_r(), and getprotobynumber_r() functions
are the reentrant equivalents of, respectively, getprotoent(3), getprotobyname(3), and
getprotobynumber(3). They differ in the way that the protoent structure is returned,
and in the function calling signature and return value. This manual page describes
just the differences from the nonreentrant functions.

Instead of returning a pointer to a statically allocated protoent structure as the func-
tion result, these functions copy the structure into the location pointed to by
result_buf .

The buf array is used to store the string fields pointed to by the returned protoent
structure. (The nonreentrant functions allocate these strings in static storage.) The
size of this array is specified in size. If buf is too small, the call fails with the error
ERANGE, and the caller must try again with a larger buffer. (A buffer of size 1024
bytes should be sufficient for most applications.)

If the function call successfully obtains a protocol record, then *result is set pointing
to result_buf ; otherwise, *result is set to NULL.

RETURN VALUE
On success, these functions return 0. On error, they return one of the positive error
numbers listed in ERRORS.

On error, record not found (getprotobyname_r(), getprotobynumber_r()), or end of
input (getprotoent_r()) result is set to NULL.

Linux man-pages 6.13 2024-12-24 1772

getprotoent_r(3) Library Functions Manual getprotoent_r(3)

ERRORS
ENOENT

(getprotoent_r()) No more records in database.

ERANGE
buf is too small. Try again with a larger buffer (and increased size).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetprotoent_r(), getprotobyname_r(),
getprotobynumber_r()

VERSIONS
Functions with similar names exist on some other systems, though typically with dif-
ferent calling signatures.

STANDARDS
GNU.

EXAMPLES
The program below uses getprotobyname_r() to retrieve the protocol record for the
protocol named in its first command-line argument. If a second (integer) command-
line argument is supplied, it is used as the initial value for size; if getprotoby-
name_r() fails with the error ERANGE, the program retries with larger buffer sizes.
The following shell session shows a couple of sample runs:

$./a.out tcp 1
ERANGE! Retrying with larger buffer
getprotobyname_r() returned: 0 (success) (size=78)
p_name=tcp; p_proto=6; aliases=TCP
$./a.out xxx 1
ERANGE! Retrying with larger buffer
getprotobyname_r() returned: 0 (success) (size=100)
Call failed/record not found

Program source

#define _GNU_SOURCE
#include <ctype.h>
#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX_BUF 10000

int
main(int argc, char *argv[])
{

int size, erange_cnt, s;
struct protoent result_buf;

Linux man-pages 6.13 2024-12-24 1773

getprotoent_r(3) Library Functions Manual getprotoent_r(3)

struct protoent *result;
char buf[MAX_BUF];

if (argc < 2) {
printf("Usage: %s proto-name [size]\n", argv[0]);
exit(EXIT_FAILURE);

}

size = 1024;
if (argc > 2)

size = atoi(argv[2]);

if (size > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);
exit(EXIT_FAILURE);

}

erange_cnt = 0;
do {

s = getprotobyname_r(argv[1], &result_buf,
buf, size, &result);

if (s == ERANGE) {
if (erange_cnt == 0)

printf("ERANGE! Retrying with larger buffer\n");
erange_cnt++;

/* Increment a byte at a time so we can see exactly
what size buffer was required. */

size++;

if (size > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);
exit(EXIT_FAILURE);

}
}

} while (s == ERANGE);

printf("getprotobyname_r() returned: %s (size=%d)\n",
(s == 0) ? "0 (success)" : (s == ENOENT) ? "ENOENT" :
strerror(s), size);

if (s != 0 || result == NULL) {
printf("Call failed/record not found\n");
exit(EXIT_FAILURE);

}

printf("p_name=%s; p_proto=%d; aliases=",
result_buf.p_name, result_buf.p_proto);

Linux man-pages 6.13 2024-12-24 1774

getprotoent_r(3) Library Functions Manual getprotoent_r(3)

for (char **p = result_buf.p_aliases; *p != NULL; p++)
printf("%s ", *p);

printf("\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
getprotoent(3), protocols(5)

Linux man-pages 6.13 2024-12-24 1775

getpt(3) Library Functions Manual getpt(3)

NAME
getpt - open a new pseudoterminal master

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdlib.h>

int getpt(void);

DESCRIPTION
getpt() opens a new pseudoterminal device and returns a file descriptor that refers to
that device. It is equivalent to opening the pseudoterminal multiplexor device

open("/dev/ptmx", O_RDWR);

on Linux systems, though the pseudoterminal multiplexor device is located elsewhere
on some systems that use the GNU C library.

RETURN VALUE
getpt() returns an open file descriptor upon successful completion. Otherwise, it re-
turns -1 and sets errno to indicate the error.

ERRORS
getpt() can fail with various errors described in open(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetpt()

VERSIONS
Use posix_openpt(3) instead.

STANDARDS
GNU.

HISTORY
glibc 2.1.

SEE ALSO
grantpt(3), posix_openpt(3), ptsname(3), unlockpt(3), ptmx(4), pty(7)

Linux man-pages 6.13 2024-07-23 1776

getpw(3) Library Functions Manual getpw(3)

NAME
getpw - reconstruct password line entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/types.h>
#include <pwd.h>

[[deprecated]] int getpw(uid_t uid , char *buf);

DESCRIPTION
The getpw() function reconstructs the password line entry for the given user ID uid in
the buffer buf. The returned buffer contains a line of format

name:passwd:uid:gid:gecos:dir:shell

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* user information */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

For more information about the fields of this structure, see passwd(5).

RETURN VALUE
The getpw() function returns 0 on success; on error, it returns -1, and errno is set to
indicate the error.

If uid is not found in the password database, getpw() returns -1, sets errno to 0, and
leaves buf unchanged.

ERRORS
0 or ENOENT

No user corresponding to uid .

EINVAL
buf is NULL.

ENOMEM
Insufficient memory to allocate passwd structure.

FILES
/etc/passwd

password database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1777

getpw(3) Library Functions Manual getpw(3)

Interface Attribute Value
Thread safety MT-Safe localegetpw()

STANDARDS
None.

HISTORY
SVr2.

BUGS
The getpw() function is dangerous as it may overflow the provided buffer buf . It is
obsoleted by getpwuid(3).

SEE ALSO
endpwent(3), fgetpwent(3), getpwent(3), getpwnam(3), getpwuid(3), putpwent(3), set-
pwent(3), passwd(5)

Linux man-pages 6.13 2024-07-23 1778

getpwent(3) Library Functions Manual getpwent(3)

NAME
getpwent, setpwent, endpwent - get password file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwent(void);
void setpwent(void);
void endpwent(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpwent(), setpwent(), endpwent():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getpwent() function returns a pointer to a structure containing the broken-out
fields of a record from the password database (e.g., the local password file
/etc/passwd , NIS, and LDAP). The first time getpwent() is called, it returns the first
entry; thereafter, it returns successive entries.

The setpwent() function rewinds to the beginning of the password database.

The endpwent() function is used to close the password database after all processing
has been performed.

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* user information */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

For more information about the fields of this structure, see passwd(5).

RETURN VALUE
The getpwent() function returns a pointer to a passwd structure, or NULL if there are
no more entries or an error occurred. If an error occurs, errno is set to indicate the er-
ror. If one wants to check errno after the call, it should be set to zero before the call.

The return value may point to a static area, and may be overwritten by subsequent
calls to getpwent(), getpwnam(3), or getpwuid(3). (Do not pass the returned pointer
to free(3).)

Linux man-pages 6.13 2024-07-23 1779

getpwent(3) Library Functions Manual getpwent(3)

ERRORS
EINTR

A signal was caught; see signal(7).

EIO I/O error.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient memory to allocate passwd structure.

ERANGE
Insufficient buffer space supplied.

FILES
/etc/passwd

local password database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetpwent() MT-Unsafe race:pwent race:pwentbuf locale
Thread safetysetpwent(),

endpwent()
MT-Unsafe race:pwent locale

In the above table, pwent in race:pwent signifies that if any of the functions setp-
went(), getpwent(), or endpwent() are used in parallel in different threads of a pro-
gram, then data races could occur.

VERSIONS
The pw_gecos field is not specified in POSIX, but is present on most implementa-
tions.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
fgetpwent(3), getpw(3), getpwent_r(3), getpwnam(3), getpwuid(3), putpwent(3),
passwd(5)

Linux man-pages 6.13 2024-07-23 1780

getpwent_r(3) Library Functions Manual getpwent_r(3)

NAME
getpwent_r, fgetpwent_r - get passwd file entry reentrantly

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <pwd.h>

int getpwent_r(struct passwd *restrict pwbuf ,
char buf [restrict .size], size_t size,
struct passwd **restrict pwbufp);

int fgetpwent_r(FILE *restrict stream, struct passwd *restrict pwbuf ,
char buf [restrict .size], size_t size,
struct passwd **restrict pwbufp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpwent_r(),
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

fgetpwent_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
The functions getpwent_r() and fgetpwent_r() are the reentrant versions of getp-
went(3) and fgetpwent(3). The former reads the next passwd entry from the stream
initialized by setpwent(3). The latter reads the next passwd entry from stream.

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* user information */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

For more information about the fields of this structure, see passwd(5).

The nonreentrant functions return a pointer to static storage, where this static storage
contains further pointers to user name, password, gecos field, home directory and
shell. The reentrant functions described here return all of that in caller-provided
buffers. First of all there is the buffer pwbuf that can hold a struct passwd. And next
the buffer buf of size size that can hold additional strings. The result of these func-
tions, the struct passwd read from the stream, is stored in the provided buffer *pwbuf ,

Linux man-pages 6.13 2024-12-24 1781

getpwent_r(3) Library Functions Manual getpwent_r(3)

and a pointer to this struct passwd is returned in *pwbufp.

RETURN VALUE
On success, these functions return 0 and *pwbufp is a pointer to the struct passwd. On
error, these functions return an error value and *pwbufp is NULL.

ERRORS
ENOENT

No more entries.

ERANGE
Insufficient buffer space supplied. Try again with larger buffer.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetpwent_r() MT-Unsafe race:pwent locale
Thread safety MT-Safefgetpwent_r()

In the above table, pwent in race:pwent signifies that if any of the functions setp-
went(), getpwent(), endpwent(), or getpwent_r() are used in parallel in different
threads of a program, then data races could occur.

VERSIONS
Other systems use the prototype

struct passwd *
getpwent_r(struct passwd *pwd, char buf[.size], int size);

or, better,

int
getpwent_r(struct passwd *pwd, char buf[.size], int size,

FILE **pw_fp);

STANDARDS
None.

HISTORY
These functions are done in a style resembling the POSIX version of functions like
getpwnam_r(3).

NOTES
The function getpwent_r() is not really reentrant since it shares the reading position
in the stream with all other threads.

EXAMPLES
#define _GNU_SOURCE
#include <pwd.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

#define BUFLEN 4096

int

Linux man-pages 6.13 2024-12-24 1782

getpwent_r(3) Library Functions Manual getpwent_r(3)

main(void)
{

struct passwd pw;
struct passwd *pwp;
char buf[BUFLEN];
int i;

setpwent();
while (1) {

i = getpwent_r(&pw, buf, sizeof(buf), &pwp);
if (i)

break;
printf("%s (%jd)\tHOME %s\tSHELL %s\n", pwp->pw_name,

(intmax_t) pwp->pw_uid, pwp->pw_dir, pwp->pw_shell);
}
endpwent();
exit(EXIT_SUCCESS);

}

SEE ALSO
fgetpwent(3), getpw(3), getpwent(3), getpwnam(3), getpwuid(3), putpwent(3),
passwd(5)

Linux man-pages 6.13 2024-12-24 1783

getpwnam(3) Library Functions Manual getpwnam(3)

NAME
getpwnam, getpwnam_r, getpwuid, getpwuid_r - get password file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwnam(const char *name);
struct passwd *getpwuid(uid_t uid);

int getpwnam_r(const char *restrict name, struct passwd *restrict pwd ,
char buf [restrict .size], size_t size,
struct passwd **restrict result);

int getpwuid_r(uid_t uid , struct passwd *restrict pwd ,
char buf [restrict .size], size_t size,
struct passwd **restrict result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpwnam_r(), getpwuid_r():
_POSIX_C_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getpwnam() function returns a pointer to a structure containing the broken-out
fields of the record in the password database (e.g., the local password file /etc/passwd ,
NIS, and LDAP) that matches the username name.

The getpwuid() function returns a pointer to a structure containing the broken-out
fields of the record in the password database that matches the user ID uid .

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* user information */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

See passwd(5) for more information about these fields.

The getpwnam_r() and getpwuid_r() functions obtain the same information as getp-
wnam() and getpwuid(), but store the retrieved passwd structure in the space pointed
to by pwd . The string fields pointed to by the members of the passwd structure are
stored in the buffer buf of size size. A pointer to the result (in case of success) or
NULL (in case no entry was found or an error occurred) is stored in *result.

The call

sysconf(_SC_GETPW_R_SIZE_MAX)

Linux man-pages 6.13 2024-12-24 1784

getpwnam(3) Library Functions Manual getpwnam(3)

returns either -1, without changing errno, or an initial suggested size for buf . (If this
size is too small, the call fails with ERANGE, in which case the caller can retry with
a larger buffer.)

RETURN VALUE
The getpwnam() and getpwuid() functions return a pointer to a passwd structure, or
NULL if the matching entry is not found or an error occurs. If an error occurs, errno
is set to indicate the error. If one wants to check errno after the call, it should be set
to zero before the call.

The return value may point to a static area, and may be overwritten by subsequent
calls to getpwent(3), getpwnam(), or getpwuid(). (Do not pass the returned pointer
to free(3).)

On success, getpwnam_r() and getpwuid_r() return zero, and set *result to pwd . If
no matching password record was found, these functions return 0 and store NULL in
*result. In case of error, an error number is returned, and NULL is stored in *result.

ERRORS
0 or ENOENT or ESRCH or EBADF or EPERM or ...

The given name or uid was not found.

EINTR
A signal was caught; see signal(7).

EIO I/O error.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient memory to allocate passwd structure.

ERANGE
Insufficient buffer space supplied.

FILES
/etc/passwd

local password database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetpwnam() MT-Unsafe race:pwnam locale
Thread safetygetpwuid() MT-Unsafe race:pwuid locale
Thread safetygetpwnam_r(),

getpwuid_r()
MT-Safe locale

VERSIONS
The pw_gecos field is not specified in POSIX, but is present on most implementa-
tions.

Linux man-pages 6.13 2024-12-24 1785

getpwnam(3) Library Functions Manual getpwnam(3)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
The formulation given above under "RETURN VALUE" is from POSIX.1-2001. It
does not call "not found" an error, and hence does not specify what value errno might
have in this situation. But that makes it impossible to recognize errors. One might ar-
gue that according to POSIX errno should be left unchanged if an entry is not found.
Experiments on various UNIX-like systems show that lots of different values occur in
this situation: 0, ENOENT, EBADF, ESRCH, EWOULDBLOCK, EPERM, and prob-
ably others.

The pw_dir field contains the name of the initial working directory of the user. Login
programs use the value of this field to initialize the HOME environment variable for
the login shell. An application that wants to determine its user’s home directory
should inspect the value of HOME (rather than the value getpwuid(ge-
tuid())->pw_dir) since this allows the user to modify their notion of "the home direc-
tory" during a login session. To determine the (initial) home directory of another user,
it is necessary to use getpwnam("username")->pw_dir or similar.

EXAMPLES
The program below demonstrates the use of getpwnam_r() to find the full username
and user ID for the username supplied as a command-line argument.

#include <errno.h>
#include <pwd.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

struct passwd pwd;
struct passwd *result;
char *buf;
long bufsize;
int s;

if (argc != 2) {
fprintf(stderr, "Usage: %s username\n", argv[0]);
exit(EXIT_FAILURE);

}

bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
if (bufsize == -1) /* Value was indeterminate */

bufsize = 16384; /* Should be more than enough */

Linux man-pages 6.13 2024-12-24 1786

getpwnam(3) Library Functions Manual getpwnam(3)

buf = malloc(bufsize);
if (buf == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

s = getpwnam_r(argv[1], &pwd, buf, bufsize, &result);
if (result == NULL) {

if (s == 0)
printf("Not found\n");

else {
errno = s;
perror("getpwnam_r");

}
exit(EXIT_FAILURE);

}

printf("Name: %s; UID: %jd\n", pwd.pw_gecos,
(intmax_t) pwd.pw_uid);

exit(EXIT_SUCCESS);
}

SEE ALSO
endpwent(3), fgetpwent(3), getgrnam(3), getpw(3), getpwent(3), getspnam(3), putp-
went(3), setpwent(3), passwd(5)

Linux man-pages 6.13 2024-12-24 1787

getrpcent(3) Library Functions Manual getrpcent(3)

NAME
getrpcent, getrpcbyname, getrpcbynumber, setrpcent, endrpcent - get RPC entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

struct rpcent *getrpcent(void);

struct rpcent *getrpcbyname(const char *name);
struct rpcent *getrpcbynumber(int number);

void setrpcent(int stayopen);
void endrpcent(void);

DESCRIPTION
The getrpcent(), getrpcbyname(), and getrpcbynumber() functions each return a
pointer to an object with the following structure containing the broken-out fields of an
entry in the RPC program number data base.

struct rpcent {
char *r_name; /* name of server for this RPC program */
char **r_aliases; /* alias list */
long r_number; /* RPC program number */

};

The members of this structure are:

r_name
The name of the server for this RPC program.

r_aliases
A NULL-terminated list of alternate names for the RPC program.

r_number
The RPC program number for this service.

The getrpcent() function reads the next entry from the database. A connection is
opened to the database if necessary.

The setrpcent() function opens a connection to the database, and sets the next entry to
the first entry. If stayopen is nonzero, then the connection to the database will not be
closed between calls to one of the getrpc*() functions.

The endrpcent() function closes the connection to the database.

The getrpcbyname() and getrpcbynumber() functions sequentially search from the
beginning of the file until a matching RPC program name or program number is
found, or until end-of-file is encountered.

RETURN VALUE
On success, getrpcent(), getrpcbyname(), and getrpcbynumber() return a pointer to
a statically allocated rpcent structure. NULL is returned on EOF or error.

FILES

Linux man-pages 6.13 2024-07-23 1788

getrpcent(3) Library Functions Manual getrpcent(3)

/etc/rpc
RPC program number database.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafegetrpcent(), getrpcbyname(),
getrpcbynumber()

Thread safety MT-Safe localesetrpcent(), endrpcent()

STANDARDS
BSD.

HISTORY
BSD, Solaris.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

SEE ALSO
getrpcent_r(3), rpc(5), rpcinfo(8), ypserv(8)

Linux man-pages 6.13 2024-07-23 1789

getrpcent_r(3) Library Functions Manual getrpcent_r(3)

NAME
getrpcent_r, getrpcbyname_r, getrpcbynumber_r - get RPC entry (reentrant)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

int getrpcent_r(struct rpcent *result_buf , char buf [.size],
size_t size, struct rpcent **result);

int getrpcbyname_r(const char *name,
struct rpcent *result_buf , char buf [.size],
size_t size, struct rpcent **result);

int getrpcbynumber_r(int number,
struct rpcent *result_buf , char buf [.size],
size_t size, struct rpcent **result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getrpcent_r(), getrpcbyname_r(), getrpcbynumber_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getrpcent_r(), getrpcbyname_r(), and getrpcbynumber_r() functions are the
reentrant equivalents of, respectively, getrpcent(3), getrpcbyname(3), and getr-
pcbynumber(3). They differ in the way that the rpcent structure is returned, and in the
function calling signature and return value. This manual page describes just the dif-
ferences from the nonreentrant functions.

Instead of returning a pointer to a statically allocated rpcent structure as the function
result, these functions copy the structure into the location pointed to by result_buf .

The buf array is used to store the string fields pointed to by the returned rpcent struc-
ture. (The nonreentrant functions allocate these strings in static storage.) The size of
this array is specified in size. If buf is too small, the call fails with the error
ERANGE, and the caller must try again with a larger buffer. (A buffer of size 1024
bytes should be sufficient for most applications.)

If the function call successfully obtains an RPC record, then *result is set pointing to
result_buf ; otherwise, *result is set to NULL.

RETURN VALUE
On success, these functions return 0. On error, they return one of the positive error
numbers listed in ERRORS.

On error, record not found (getrpcbyname_r(), getrpcbynumber_r()), or end of input
(getrpcent_r()) *result is set to NULL.

ERRORS
ENOENT

(getrpcent_r()) No more records in database.

Linux man-pages 6.13 2024-12-24 1790

getrpcent_r(3) Library Functions Manual getrpcent_r(3)

ERANGE
buf is too small. Try again with a larger buffer (and increased size).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetrpcent_r(), getrpcbyname_r(),
getrpcbynumber_r()

VERSIONS
Functions with similar names exist on some other systems, though typically with dif-
ferent calling signatures.

STANDARDS
GNU.

SEE ALSO
getrpcent(3), rpc(5)

Linux man-pages 6.13 2024-12-24 1791

getrpcport(3) Library Functions Manual getrpcport(3)

NAME
getrpcport - get RPC port number

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <rpc/rpc.h>

int getrpcport(const char *host, unsigned long prognum,
unsigned long versnum, unsigned int proto);

DESCRIPTION
getrpcport() returns the port number for version versnum of the RPC program
prognum running on host and using protocol proto. It returns 0 if it cannot contact
the portmapper, or if prognum is not registered. If prognum is registered but not with
version versnum, it will still return a port number (for some version of the program)
indicating that the program is indeed registered. The version mismatch will be de-
tected upon the first call to the service.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localegetrpcport()

STANDARDS
BSD.

HISTORY
BSD, Solaris.

Linux man-pages 6.13 2024-07-23 1792

gets(3) Library Functions Manual gets(3)

NAME
gets - get a string from standard input (DEPRECATED)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

[[deprecated]] char *gets(char *s);

DESCRIPTION
Never use this function.

gets() reads a line from stdin into the buffer pointed to by s until either a terminating
newline or EOF, which it replaces with a null byte ('\0'). No check for buffer overrun
is performed (see BUGS below).

RETURN VALUE
gets() returns s on success, and NULL on error or when end of file occurs while no
characters have been read. However, given the lack of buffer overrun checking, there
can be no guarantees that the function will even return.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegets()

STANDARDS
POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

LSB deprecates gets(). POSIX.1-2008 marks gets() obsolescent. ISO C11 removes
the specification of gets() from the C language, and since glibc 2.16, glibc header files
don’t expose the function declaration if the _ISOC11_SOURCE feature test macro is
defined.

BUGS
Never use gets(). Because it is impossible to tell without knowing the data in advance
how many characters gets() will read, and because gets() will continue to store char-
acters past the end of the buffer, it is extremely dangerous to use. It has been used to
break computer security. Use fgets() instead.

For more information, see CWE-242 (aka "Use of Inherently Dangerous Function") at
http://cwe.mitre.org/data/definitions/242.html

SEE ALSO
read(2), write(2), ferror(3), fgetc(3), fgets(3), fgetwc(3), fgetws(3), fopen(3), fread(3),
fseek(3), getline(3), getwchar(3), puts(3), scanf(3), ungetwc(3), unlocked_stdio(3),
feature_test_macros(7)

Linux man-pages 6.13 2024-07-23 1793

getservent(3) Library Functions Manual getservent(3)

NAME
getservent, getservbyname, getservbyport, setservent, endservent - get service entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

struct servent *getservent(void);

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);

void setservent(int stayopen);
void endservent(void);

DESCRIPTION
The getservent() function reads the next entry from the services database (see ser-
vices(5)) and returns a servent structure containing the broken-out fields from the en-
try. A connection is opened to the database if necessary.

The getservbyname() function returns a servent structure for the entry from the data-
base that matches the service name using protocol proto. If proto is NULL, any pro-
tocol will be matched. A connection is opened to the database if necessary.

The getservbyport() function returns a servent structure for the entry from the data-
base that matches the port port (given in network byte order) using protocol proto. If
proto is NULL, any protocol will be matched. A connection is opened to the database
if necessary.

The setservent() function opens a connection to the database, and sets the next entry
to the first entry. If stayopen is nonzero, then the connection to the database will not
be closed between calls to one of the getserv*() functions.

The endservent() function closes the connection to the database.

The servent structure is defined in <netdb.h> as follows:

struct servent {
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number */
char *s_proto; /* protocol to use */

}

The members of the servent structure are:

s_name
The official name of the service.

s_aliases
A NULL-terminated list of alternative names for the service.

s_port
The port number for the service given in network byte order.

Linux man-pages 6.13 2024-07-23 1794

getservent(3) Library Functions Manual getservent(3)

s_proto
The name of the protocol to use with this service.

RETURN VALUE
The getservent(), getservbyname(), and getservbyport() functions return a pointer
to a statically allocated servent structure, or NULL if an error occurs or the end of the
file is reached.

FILES
/etc/services

services database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetservent() MT-Unsafe race:servent race:serventbuf
locale

Thread safetygetservbyname() MT-Unsafe race:servbyname locale
Thread safetygetservbyport() MT-Unsafe race:servbyport locale
Thread safetysetservent(),

endservent()
MT-Unsafe race:servent locale

In the above table, servent in race:servent signifies that if any of the functions setser-
vent(), getservent(), or endservent() are used in parallel in different threads of a pro-
gram, then data races could occur.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

SEE ALSO
getnetent(3), getprotoent(3), getservent_r(3), services(5)

Linux man-pages 6.13 2024-07-23 1795

getservent_r(3) Library Functions Manual getservent_r(3)

NAME
getservent_r, getservbyname_r, getservbyport_r - get service entry (reentrant)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

int getservent_r(struct servent *restrict result_buf ,
char buf [restrict .size], size_t size,
struct servent **restrict result);

int getservbyname_r(const char *restrict name,
const char *restrict proto,
struct servent *restrict result_buf ,
char buf [restrict .size], size_t size,
struct servent **restrict result);

int getservbyport_r(int port,
const char *restrict proto,
struct servent *restrict result_buf ,
char buf [restrict .size], size_t size,
struct servent **restrict result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getservent_r(), getservbyname_r(), getservbyport_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getservent_r(), getservbyname_r(), and getservbyport_r() functions are the
reentrant equivalents of, respectively, getservent(3), getservbyname(3), and getservby-
port(3). They differ in the way that the servent structure is returned, and in the func-
tion calling signature and return value. This manual page describes just the differ-
ences from the nonreentrant functions.

Instead of returning a pointer to a statically allocated servent structure as the function
result, these functions copy the structure into the location pointed to by result_buf .

The buf array is used to store the string fields pointed to by the returned servent struc-
ture. (The nonreentrant functions allocate these strings in static storage.) The size of
this array is specified in size. If buf is too small, the call fails with the error
ERANGE, and the caller must try again with a larger buffer. (A buffer of size 1024
bytes should be sufficient for most applications.)

If the function call successfully obtains a service record, then *result is set pointing to
result_buf ; otherwise, *result is set to NULL.

RETURN VALUE
On success, these functions return 0. On error, they return one of the positive error
numbers listed in errors.

On error, record not found (getservbyname_r(), getservbyport_r()), or end of input

Linux man-pages 6.13 2024-12-24 1796

getservent_r(3) Library Functions Manual getservent_r(3)

(getservent_r()) result is set to NULL.

ERRORS
ENOENT

(getservent_r()) No more records in database.

ERANGE
buf is too small. Try again with a larger buffer (and increased size).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetservent_r(), getservbyname_r(),
getservbyport_r()

VERSIONS
Functions with similar names exist on some other systems, though typically with dif-
ferent calling signatures.

STANDARDS
GNU.

EXAMPLES
The program below uses getservbyport_r() to retrieve the service record for the port
and protocol named in its first command-line argument. If a third (integer) command-
line argument is supplied, it is used as the initial value for size; if getservbyport_r()
fails with the error ERANGE, the program retries with larger buffer sizes. The fol-
lowing shell session shows a couple of sample runs:

$./a.out 7 tcp 1
ERANGE! Retrying with larger buffer
getservbyport_r() returned: 0 (success) (size=87)
s_name=echo; s_proto=tcp; s_port=7; aliases=
$./a.out 77777 tcp
getservbyport_r() returned: 0 (success) (size=1024)
Call failed/record not found

Program source

#define _GNU_SOURCE
#include <ctype.h>
#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX_BUF 10000

int
main(int argc, char *argv[])
{

int size, erange_cnt, port, s;

Linux man-pages 6.13 2024-12-24 1797

getservent_r(3) Library Functions Manual getservent_r(3)

struct servent result_buf;
struct servent *result;
char buf[MAX_BUF];
char *protop;

if (argc < 3) {
printf("Usage: %s port-num proto-name [size]\n", argv[0]);
exit(EXIT_FAILURE);

}

port = htons(atoi(argv[1]));
protop = (strcmp(argv[2], "null") == 0 ||

strcmp(argv[2], "NULL") == 0) ? NULL : argv[2];

size = 1024;
if (argc > 3)

size = atoi(argv[3]);

if (size > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);
exit(EXIT_FAILURE);

}

erange_cnt = 0;
do {

s = getservbyport_r(port, protop, &result_buf,
buf, size, &result);

if (s == ERANGE) {
if (erange_cnt == 0)

printf("ERANGE! Retrying with larger buffer\n");
erange_cnt++;

/* Increment a byte at a time so we can see exactly
what size buffer was required. */

size++;

if (size > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);
exit(EXIT_FAILURE);

}
}

} while (s == ERANGE);

printf("getservbyport_r() returned: %s (size=%d)\n",
(s == 0) ? "0 (success)" : (s == ENOENT) ? "ENOENT" :
strerror(s), size);

if (s != 0 || result == NULL) {

Linux man-pages 6.13 2024-12-24 1798

getservent_r(3) Library Functions Manual getservent_r(3)

printf("Call failed/record not found\n");
exit(EXIT_FAILURE);

}

printf("s_name=%s; s_proto=%s; s_port=%d; aliases=",
result_buf.s_name, result_buf.s_proto,
ntohs(result_buf.s_port));

for (char **p = result_buf.s_aliases; *p != NULL; p++)
printf("%s ", *p);

printf("\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
getservent(3), services(5)

Linux man-pages 6.13 2024-12-24 1799

getspnam(3) Library Functions Manual getspnam(3)

NAME
getspnam, getspnam_r, getspent, getspent_r, setspent, endspent, fgetspent, fgetspent_r,
sgetspent, sgetspent_r, putspent, lckpwdf, ulckpwdf - get shadow password file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
/* General shadow password file API */
#include <shadow.h>

struct spwd *getspnam(const char *name);
struct spwd *getspent(void);

void setspent(void);
void endspent(void);

struct spwd *fgetspent(FILE *stream);
struct spwd *sgetspent(const char *s);

int putspent(const struct spwd *p, FILE *stream);

int lckpwdf(void);
int ulckpwdf(void);

/* GNU extension */
#include <shadow.h>

int getspent_r(struct spwd *spbuf ,
char buf [.size], size_t size, struct spwd **spbufp);

int getspnam_r(const char *name, struct spwd *spbuf ,
char buf [.size], size_t size, struct spwd **spbufp);

int fgetspent_r(FILE *stream, struct spwd *spbuf ,
char buf [.size], size_t size, struct spwd **spbufp);

int sgetspent_r(const char *s, struct spwd *spbuf ,
char buf [.size], size_t size, struct spwd **spbufp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getspent_r(), getspnam_r(), fgetspent_r(), sgetspent_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Long ago it was considered safe to have encrypted passwords openly visible in the
password file. When computers got faster and people got more security-conscious,
this was no longer acceptable. Julianne Frances Haugh implemented the shadow
password suite that keeps the encrypted passwords in the shadow password database
(e.g., the local shadow password file /etc/shadow, NIS, and LDAP), readable only by
root.

The functions described below resemble those for the traditional password database
(e.g., see getpwnam(3) and getpwent(3)).

The getspnam() function returns a pointer to a structure containing the broken-out

Linux man-pages 6.13 2024-12-24 1800

getspnam(3) Library Functions Manual getspnam(3)

fields of the record in the shadow password database that matches the username name.

The getspent() function returns a pointer to the next entry in the shadow password
database. The position in the input stream is initialized by setspent(). When done
reading, the program may call endspent() so that resources can be deallocated.

The fgetspent() function is similar to getspent() but uses the supplied stream instead
of the one implicitly opened by setspent().

The sgetspent() function parses the supplied string s into a struct spwd .

The putspent() function writes the contents of the supplied struct spwd *p as a text
line in the shadow password file format to stream. String entries with value NULL
and numerical entries with value -1 are written as an empty string.

The lckpwdf() function is intended to protect against multiple simultaneous accesses
of the shadow password database. It tries to acquire a lock, and returns 0 on success,
or -1 on failure (lock not obtained within 15 seconds). The ulckpwdf() function re-
leases the lock again. Note that there is no protection against direct access of the
shadow password file. Only programs that use lckpwdf() will notice the lock.

These were the functions that formed the original shadow API. They are widely avail-
able.

Reentrant versions
Analogous to the reentrant functions for the password database, glibc also has reen-
trant functions for the shadow password database. The getspnam_r() function is like
getspnam() but stores the retrieved shadow password structure in the space pointed to
by spbuf . This shadow password structure contains pointers to strings, and these
strings are stored in the buffer buf of size size. A pointer to the result (in case of suc-
cess) or NULL (in case no entry was found or an error occurred) is stored in *spbufp.

The functions getspent_r(), fgetspent_r(), and sgetspent_r() are similarly analogous
to their nonreentrant counterparts.

Some non-glibc systems also have functions with these names, often with different
prototypes.

Structure
The shadow password structure is defined in <shadow.h> as follows:

struct spwd {
char *sp_namp; /* Login name */
char *sp_pwdp; /* Encrypted password */
long sp_lstchg; /* Date of last change

(measured in days since
1970-01-01 00:00:00 +0000 (UTC)) */

long sp_min; /* Min # of days between changes */
long sp_max; /* Max # of days between changes */
long sp_warn; /* # of days before password expires

to warn user to change it */
long sp_inact; /* # of days after password expires

until account is disabled */
long sp_expire; /* Date when account expires

(measured in days since

Linux man-pages 6.13 2024-12-24 1801

getspnam(3) Library Functions Manual getspnam(3)

1970-01-01 00:00:00 +0000 (UTC)) */
unsigned long sp_flag; /* Reserved */

};

RETURN VALUE
The functions that return a pointer return NULL if no more entries are available or if
an error occurs during processing. The functions which have int as the return value
return 0 for success and -1 for failure, with errno set to indicate the error.

For the nonreentrant functions, the return value may point to static area, and may be
overwritten by subsequent calls to these functions.

The reentrant functions return zero on success. In case of error, an error number is re-
turned.

ERRORS
EACCES

The caller does not have permission to access the shadow password file.

ERANGE
Supplied buffer is too small.

FILES
/etc/shadow

local shadow password database file

/etc/.pwd.lock
lock file

The include file <paths.h> defines the constant _PATH_SHADOW to the pathname
of the shadow password file.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetspnam() MT-Unsafe race:getspnam locale
Thread safetygetspent() MT-Unsafe race:getspent race:spentbuf

locale
Thread safetysetspent(), endspent(),

getspent_r()
MT-Unsafe race:getspent locale

Thread safetyfgetspent() MT-Unsafe race:fgetspent
Thread safetysgetspent() MT-Unsafe race:sgetspent
Thread safetyputspent(),

getspnam_r(),
sgetspent_r()

MT-Safe locale

Thread safetylckpwdf(),
ulckpwdf(),
fgetspent_r()

MT-Safe

In the above table, getspent in race:getspent signifies that if any of the functions set-
spent(), getspent(), getspent_r(), or endspent() are used in parallel in different
threads of a program, then data races could occur.

Linux man-pages 6.13 2024-12-24 1802

getspnam(3) Library Functions Manual getspnam(3)

VERSIONS
Many other systems provide a similar API.

STANDARDS
None.

SEE ALSO
getgrnam(3), getpwnam(3), getpwnam_r(3), shadow(5)

Linux man-pages 6.13 2024-12-24 1803

getsubopt(3) Library Functions Manual getsubopt(3)

NAME
getsubopt - parse suboption arguments from a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int getsubopt(char **restrict optionp, char *const *restrict tokens,
char **restrict valuep);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getsubopt():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

DESCRIPTION
getsubopt() parses the list of comma-separated suboptions provided in optionp.
(Such a suboption list is typically produced when getopt(3) is used to parse a com-
mand line; see for example the -o option of mount(8)Each suboption may include an
associated value, which is separated from the suboption name by an equal sign. The
following is an example of the kind of string that might be passed in optionp:

ro,name=xyz

The tokens argument is a pointer to a NULL-terminated array of pointers to the tokens
that getsubopt() will look for in optionp. The tokens should be distinct, null-termi-
nated strings containing at least one character, with no embedded equal signs or com-
mas.

Each call to getsubopt() returns information about the next unprocessed suboption in
optionp. The first equal sign in a suboption (if any) is interpreted as a separator be-
tween the name and the value of that suboption. The value extends to the next
comma, or (for the last suboption) to the end of the string. If the name of the subop-
tion matches a known name from tokens, and a value string was found, getsubopt()
sets *valuep to the address of that string. The first comma in optionp is overwritten
with a null byte, so *valuep is precisely the "value string" for that suboption.

If the suboption is recognized, but no value string was found, *valuep is set to NULL.

When getsubopt() returns, optionp points to the next suboption, or to the null byte
('\0') at the end of the string if the last suboption was just processed.

RETURN VALUE
If the first suboption in optionp is recognized, getsubopt() returns the index of the
matching suboption element in tokens. Otherwise, -1 is returned and *valuep is the
entire name[=value] string.

Since *optionp is changed, the first suboption before the call to getsubopt() is not
(necessarily) the same as the first suboption after getsubopt().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1804

getsubopt(3) Library Functions Manual getsubopt(3)

Interface Attribute Value
Thread safety MT-Safegetsubopt()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Since getsubopt() overwrites any commas it finds in the string *optionp, that string
must be writable; it cannot be a string constant.

EXAMPLES
The following program expects suboptions following a "-o" option.

#define _XOPEN_SOURCE 500
#include <stdio.h>
#include <stdlib.h>

#include <assert.h>

int
main(int argc, char *argv[])
{

enum {
RO_OPT = 0,
RW_OPT,
NAME_OPT

};
char *const token[] = {

[RO_OPT] = "ro",
[RW_OPT] = "rw",
[NAME_OPT] = "name",
NULL

};
char *subopts;
char *value;
int opt;

int readonly = 0;
int readwrite = 0;
char *name = NULL;
int errfnd = 0;

while ((opt = getopt(argc, argv, "o:")) != -1) {
switch (opt) {
case 'o':

subopts = optarg;
while (*subopts != '\0' && !errfnd) {

Linux man-pages 6.13 2024-07-23 1805

getsubopt(3) Library Functions Manual getsubopt(3)

switch (getsubopt(&subopts, token, &value)) {
case RO_OPT:

readonly = 1;
break;

case RW_OPT:
readwrite = 1;
break;

case NAME_OPT:
if (value == NULL) {

fprintf(stderr,
"Missing value for suboption '%s'\n",
token[NAME_OPT]);

errfnd = 1;
continue;

}

name = value;
break;

default:
fprintf(stderr,

"No match found for token: /%s/\n", value);
errfnd = 1;
break;

}
}
if (readwrite && readonly) {

fprintf(stderr,
"Only one of '%s' and '%s' can be specified\n",
token[RO_OPT], token[RW_OPT]);

errfnd = 1;
}
break;

default:
errfnd = 1;

}
}

if (errfnd || argc == 1) {
fprintf(stderr, "\nUsage: %s -o <suboptstring>\n", argv[0]);
fprintf(stderr,

"suboptions are 'ro', 'rw', and 'name=<value>'\n");
exit(EXIT_FAILURE);

}

/* Remainder of program... */

Linux man-pages 6.13 2024-07-23 1806

getsubopt(3) Library Functions Manual getsubopt(3)

exit(EXIT_SUCCESS);
}

SEE ALSO
getopt(3)

Linux man-pages 6.13 2024-07-23 1807

getttyent(3) Library Functions Manual getttyent(3)

NAME
getttyent, getttynam, setttyent, endttyent - get ttys file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ttyent.h>

struct ttyent *getttyent(void);
struct ttyent *getttynam(const char *name);

int setttyent(void);
int endttyent(void);

DESCRIPTION
These functions provide an interface to the file _PATH_TTYS (e.g., /etc/ttys).

The function setttyent() opens the file or rewinds it if already open.

The function endttyent() closes the file.

The function getttynam() searches for a given terminal name in the file. It returns a
pointer to a ttyent structure (description below).

The function getttyent() opens the file _PATH_TTYS (if necessary) and returns the
first entry. If the file is already open, the next entry. The ttyent structure has the form:

struct ttyent {
char *ty_name; /* terminal device name */
char *ty_getty; /* command to execute, usually getty */
char *ty_type; /* terminal type for termcap */
int ty_status; /* status flags */
char *ty_window; /* command to start up window manager */
char *ty_comment; /* comment field */

};

ty_status can be:

#define TTY_ON 0x01 /* enable logins (start ty_getty program) */
#define TTY_SECURE 0x02 /* allow UID 0 to login */

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:ttyentgetttyent(), setttyent(), endttyent(),
getttynam()

STANDARDS
BSD.

NOTES
Under Linux, the file /etc/ttys, and the functions described above, are not used.

SEE ALSO
ttyname(3), ttyslot(3)

Linux man-pages 6.13 2024-07-23 1808

getusershell(3) Library Functions Manual getusershell(3)

NAME
getusershell, setusershell, endusershell - get permitted user shells

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

char *getusershell(void);
void setusershell(void);
void endusershell(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getusershell(), setusershell(), endusershell():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The getusershell() function returns the next line from the file /etc/shells, opening the
file if necessary. The line should contain the pathname of a valid user shell. If
/etc/shells does not exist or is unreadable, getusershell() behaves as if /bin/sh and
/bin/csh were listed in the file.

The setusershell() function rewinds /etc/shells.

The endusershell() function closes /etc/shells.

RETURN VALUE
The getusershell() function returns NULL on end-of-file.

FILES
/etc/shells

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafegetusershell(), setusershell(), endusershell()

STANDARDS
None.

HISTORY
4.3BSD.

SEE ALSO
shells(5)

Linux man-pages 6.13 2024-07-23 1809

getutent(3) Library Functions Manual getutent(3)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access utmp file
entries

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <utmp.h>

struct utmp *getutent(void);
struct utmp *getutid(const struct utmp *ut);
struct utmp *getutline(const struct utmp *ut);

struct utmp *pututline(const struct utmp *ut);

void setutent(void);
void endutent(void);

int utmpname(const char * file);

DESCRIPTION
New applications should use the POSIX.1-specified "utmpx" versions of these func-
tions; see STANDARDS.

utmpname() sets the name of the utmp-format file for the other utmp functions to ac-
cess. If utmpname() is not used to set the filename before the other functions are
used, they assume _PATH_UTMP, as defined in <paths.h>.

setutent() rewinds the file pointer to the beginning of the utmp file. It is generally a
good idea to call it before any of the other functions.

endutent() closes the utmp file. It should be called when the user code is done ac-
cessing the file with the other functions.

getutent() reads a line from the current file position in the utmp file. It returns a
pointer to a structure containing the fields of the line. The definition of this structure
is shown in utmp(5).

getutid() searches forward from the current file position in the utmp file based upon
ut. If ut->ut_type is one of RUN_LVL, BOOT_TIME, NEW_TIME, or
OLD_TIME, getutid() will find the first entry whose ut_type field matches
ut->ut_type. If ut->ut_type is one of INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS, or DEAD_PROCESS, getutid() will find the first entry whose
ut_id field matches ut->ut_id.

getutline() searches forward from the current file position in the utmp file. It scans
entries whose ut_type is USER_PROCESS or LOGIN_PROCESS and returns the
first one whose ut_line field matches ut->ut_line.

pututline() writes the utmp structure ut into the utmp file. It uses getutid() to search
for the proper place in the file to insert the new entry. If it cannot find an appropriate
slot for ut, pututline() will append the new entry to the end of the file.

RETURN VALUE
getutent(), getutid(), and getutline() return a pointer to a struct utmp on success, and
NULL on failure (which includes the "record not found" case). This struct utmp is al-
located in static storage, and may be overwritten by subsequent calls.

Linux man-pages 6.13 2024-07-23 1810

getutent(3) Library Functions Manual getutent(3)

On success pututline() returns ut; on failure, it returns NULL.

utmpname() returns 0 if the new name was successfully stored, or -1 on failure.

On failure, these functions errno set to indicate the error.

ERRORS
ENOMEM

Out of memory.

ESRCH
Record not found.

setutent(), pututline(), and the getut*() functions can also fail for the reasons de-
scribed in open(2).

FILES
/var/run/utmp

database of currently logged-in users

/var/log/wtmp
database of past user logins

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetutent() MT-Unsafe init race:utent race:utentbuf
sig:ALRM timer

Thread safetygetutid(), getutline() MT-Unsafe init race:utent sig:ALRM
timer

Thread safetypututline() MT-Unsafe race:utent sig:ALRM timer
Thread safety MT-Unsafe race:utentsetutent(), endutent(),

utmpname()

In the above table, utent in race:utent signifies that if any of the functions setutent(),
getutent(), getutid(), getutline(), pututline(), utmpname(), or endutent() are used
in parallel in different threads of a program, then data races could occur.

STANDARDS
None.

HISTORY
XPG2, SVr4.

In XPG2 and SVID 2 the function pututline() is documented to return void, and that
is what it does on many systems (AIX, HP-UX). HP-UX introduces a new function
_pututline() with the prototype given above for pututline().

All these functions are obsolete now on non-Linux systems. POSIX.1-2001 and
POSIX.1-2008, following SUSv1, does not have any of these functions, but instead
uses

#include <utmpx.h>

struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *);

Linux man-pages 6.13 2024-07-23 1811

getutent(3) Library Functions Manual getutent(3)

struct utmpx *getutxline(const struct utmpx *);
struct utmpx *pututxline(const struct utmpx *);
void setutxent(void);
void endutxent(void);

These functions are provided by glibc, and perform the same task as their equivalents
without the "x", but use struct utmpx, defined on Linux to be the same as struct utmp.
For completeness, glibc also provides utmpxname(), although this function is not
specified by POSIX.1.

On some other systems, the utmpx structure is a superset of the utmp structure, with
additional fields, and larger versions of the existing fields, and parallel files are main-
tained, often /var/*/utmpx and /var/*/wtmpx.

Linux glibc on the other hand does not use a parallel utmpx file since its utmp struc-
ture is already large enough. The "x" functions listed above are just aliases for their
counterparts without the "x" (e.g., getutxent() is an alias for getutent())

NOTES
glibc notes

The above functions are not thread-safe. glibc adds reentrant versions

#include <utmp.h>

int getutent_r(struct utmp *ubuf , struct utmp **ubufp);
int getutid_r(struct utmp *ut,

struct utmp *ubuf , struct utmp **ubufp);
int getutline_r(struct utmp *ut,

struct utmp *ubuf , struct utmp **ubufp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getutent_r(), getutid_r(), getutline_r():
_GNU_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

These functions are GNU extensions, analogs of the functions of the same name with-
out the _r suffix. The ubuf argument gives these functions a place to store their result.
On success, they return 0, and a pointer to the result is written in *ubufp. On error,
these functions return -1. There are no utmpx equivalents of the above functions.
(POSIX.1 does not specify such functions.)

EXAMPLES
The following example adds and removes a utmp record, assuming it is run from
within a pseudo terminal. For usage in a real application, you should check the return
values of getpwuid(3) and ttyname(3).

#include <err.h>
#include <pwd.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <utmp.h>

Linux man-pages 6.13 2024-07-23 1812

getutent(3) Library Functions Manual getutent(3)

int
main(void)
{

struct utmp entry;

if (system("echo before adding entry:;who") == -1)
err(EXIT_FAILURE, "system");

entry.ut_type = USER_PROCESS;
entry.ut_pid = getpid();
strcpy(entry.ut_line, ttyname(STDIN_FILENO) + strlen("/dev/"));
/* only correct for ptys named /dev/tty[pqr][0-9a-z] */
strcpy(entry.ut_id, ttyname(STDIN_FILENO) + strlen("/dev/tty"));
entry.ut_time = time(NULL);
strcpy(entry.ut_user, getpwuid(getuid())->pw_name);
memset(entry.ut_host, 0, UT_HOSTSIZE);
entry.ut_addr = 0;
setutent();
if (pututline(&entry) == NULL)

err(EXIT_FAILURE, "pututline");

if (system("echo after adding entry:;who") == -1)
err(EXIT_FAILURE, "system");

entry.ut_type = DEAD_PROCESS;
memset(entry.ut_line, 0, UT_LINESIZE);
entry.ut_time = 0;
memset(entry.ut_user, 0, UT_NAMESIZE);
setutent();
if (pututline(&entry) == NULL)

err(EXIT_FAILURE, "pututline");

if (system("echo after removing entry:;who") == -1)
err(EXIT_FAILURE, "system");

endutent();
exit(EXIT_SUCCESS);

}

SEE ALSO
getutmp(3), utmp(5)

Linux man-pages 6.13 2024-07-23 1813

getutmp(3) Library Functions Manual getutmp(3)

NAME
getutmp, getutmpx - copy utmp structure to utmpx, and vice versa

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <utmpx.h>

void getutmp(const struct utmpx *ux, struct utmp *u);
void getutmpx(const struct utmp *u, struct utmpx *ux);

DESCRIPTION
The getutmp() function copies the fields of the utmpx structure pointed to by ux to
the corresponding fields of the utmp structure pointed to by u. The getutmpx() func-
tion performs the converse operation.

RETURN VALUE
These functions do not return a value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetutmp(), getutmpx()

STANDARDS
None.

HISTORY
glibc 2.1.1. Solaris, NetBSD.

NOTES
These functions exist primarily for compatibility with other systems where the utmp
and utmpx structures contain different fields, or the size of corresponding fields dif-
fers. On Linux, the two structures contain the same fields, and the fields have the
same sizes.

SEE ALSO
utmpdump(1), getutent(3), utmp(5)

Linux man-pages 6.13 2024-07-23 1814

getw(3) Library Functions Manual getw(3)

NAME
getw, putw - input and output of words (ints)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int getw(FILE *stream);
int putw(int w, FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getw(), putw():
Since glibc 2.3.3:

_XOPEN_SOURCE && ! (_POSIX_C_SOURCE >= 200112L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

Before glibc 2.3.3:
_SVID_SOURCE || _BSD_SOURCE || _XOPEN_SOURCE

DESCRIPTION
getw() reads a word (that is, an int) from stream. It’s provided for compatibility with
SVr4. We recommend you use fread(3) instead.

putw() writes the word w (that is, an int) to stream. It is provided for compatibility
with SVr4, but we recommend you use fwrite(3) instead.

RETURN VALUE
Normally, getw() returns the word read, and putw() returns 0. On error, they return
EOF.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetw(), putw()

STANDARDS
None.

HISTORY
SVr4, SUSv2.

BUGS
The value returned on error is also a legitimate data value. ferror(3) can be used to
distinguish between the two cases.

SEE ALSO
ferror(3), fread(3), fwrite(3), getc(3), putc(3)

Linux man-pages 6.13 2024-07-23 1815

getwchar(3) Library Functions Manual getwchar(3)

NAME
getwchar - read a wide character from standard input

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wint_t getwchar(void);

DESCRIPTION
The getwchar() function is the wide-character equivalent of the getchar(3) function.
It reads a wide character from stdin and returns it. If the end of stream is reached, or
if ferror(stdin) becomes true, it returns WEOF. If a wide-character conversion error
occurs, it sets errno to EILSEQ and returns WEOF.

For a nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
The getwchar() function returns the next wide-character from standard input, or
WEOF.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetwchar()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

NOTES
The behavior of getwchar() depends on the LC_CTYPE category of the current lo-
cale.

It is reasonable to expect that getwchar() will actually read a multibyte sequence
from standard input and then convert it to a wide character.

SEE ALSO
fgetwc(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-07-23 1816

glob(3) Library Functions Manual glob(3)

NAME
glob, globfree - find pathnames matching a pattern, free memory from glob()

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <glob.h>

int glob(const char *restrict pattern, int flags,
typeof(int (const char *epath, int eerrno)) *errfunc,
glob_t *restrict pglob);

void globfree(glob_t *pglob);

DESCRIPTION
The glob() function searches for all the pathnames matching pattern according to the
rules used by the shell (see glob(7)). No tilde expansion or parameter substitution is
done; if you want these, use wordexp(3).

The globfree() function frees the dynamically allocated storage from an earlier call to
glob().

The results of a glob() call are stored in the structure pointed to by pglob. This struc-
ture is of type glob_t (declared in <glob.h>) and includes the following elements de-
fined by POSIX.2 (more may be present as an extension):

typedef struct {
size_t gl_pathc; /* Count of paths matched so far */
char **gl_pathv; /* List of matched pathnames. */
size_t gl_offs; /* Slots to reserve in gl_pathv. */

} glob_t;

Results are stored in dynamically allocated storage.

The argument flags is made up of the bitwise OR of zero or more the following sym-
bolic constants, which modify the behavior of glob():

GLOB_ERR
Return upon a read error (because a directory does not have read permission,
for example). By default, glob() attempts carry on despite errors, reading all
of the directories that it can.

GLOB_MARK
Append a slash to each path which corresponds to a directory.

GLOB_NOSORT
Don’t sort the returned pathnames. The only reason to do this is to save pro-
cessing time. By default, the returned pathnames are sorted.

GLOB_DOOFFS
Reserve pglob->gl_offs slots at the beginning of the list of strings in
pglob->pathv. The reserved slots contain null pointers.

GLOB_NOCHECK
If no pattern matches, return the original pattern. By default, glob() returns
GLOB_NOMATCH if there are no matches.

Linux man-pages 6.13 2024-12-13 1817

glob(3) Library Functions Manual glob(3)

GLOB_APPEND
Append the results of this call to the vector of results returned by a previous
call to glob(). Do not set this flag on the first invocation of glob().

GLOB_NOESCAPE
Don’t allow backslash ('\') to be used as an escape character. Normally, a
backslash can be used to quote the following character, providing a mecha-
nism to turn off the special meaning metacharacters.

flags may also include any of the following, which are GNU extensions and not de-
fined by POSIX.2:

GLOB_PERIOD
Allow a leading period to be matched by metacharacters. By default,
metacharacters can’t match a leading period.

GLOB_ALTDIRFUNC
Use alternative functions pglob->gl_closedir, pglob->gl_readdir,
pglob->gl_opendir, pglob->gl_lstat, and pglob->gl_stat for filesystem ac-
cess instead of the normal library functions.

GLOB_BRACE
Expand csh(1) style brace expressions of the form {a,b}. Brace expressions
can be nested. Thus, for example, specifying the pattern
"{foo/{,cat,dog},bar}" would return the same results as four separate glob()
calls using the strings: "foo/", "foo/cat", "foo/dog", and "bar".

GLOB_NOMAGIC
If the pattern contains no metacharacters, then it should be returned as the sole
matching word, even if there is no file with that name.

GLOB_TILDE
Carry out tilde expansion. If a tilde ('~') is the only character in the pattern, or
an initial tilde is followed immediately by a slash ('/'), then the home directory
of the caller is substituted for the tilde. If an initial tilde is followed by a user-
name (e.g., "~andrea/bin"), then the tilde and username are substituted by the
home directory of that user. If the username is invalid, or the home directory
cannot be determined, then no substitution is performed.

GLOB_TILDE_CHECK
This provides behavior similar to that of GLOB_TILDE. The difference is
that if the username is invalid, or the home directory cannot be determined,
then instead of using the pattern itself as the name, glob() returns GLOB_NO-
MATCH to indicate an error.

GLOB_ONLYDIR
This is a hint to glob() that the caller is interested only in directories that
match the pattern. If the implementation can easily determine file-type infor-
mation, then nondirectory files are not returned to the caller. However, the
caller must still check that returned files are directories. (The purpose of this
flag is merely to optimize performance when the caller is interested only in di-
rectories.)

If errfunc is not NULL, it will be called in case of an error with the arguments epath,
a pointer to the path which failed, and eerrno, the value of errno as returned from one

Linux man-pages 6.13 2024-12-13 1818

glob(3) Library Functions Manual glob(3)

of the calls to opendir(3), readdir(3), or stat(2). If errfunc returns nonzero, or if
GLOB_ERR is set, glob() will terminate after the call to errfunc.

Upon successful return, pglob->gl_pathc contains the number of matched path-
names and pglob->gl_pathv contains a pointer to the list of pointers to matched
pathnames. The list of pointers is terminated by a null pointer.

It is possible to call glob() several times. In that case, the GLOB_APPEND flag has
to be set in flags on the second and later invocations.

As a GNU extension, pglob->gl_flags is set to the flags specified, ored with
GLOB_MAGCHAR if any metacharacters were found.

RETURN VALUE
On successful completion, glob() returns zero. Other possible returns are:

GLOB_NOSPACE
for running out of memory,

GLOB_ABORTED
for a read error, and

GLOB_NOMATCH
for no found matches.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyglob() MT-Unsafe race:utent env sig:ALRM timer locale
Thread safety MT-Safeglobfree()

In the above table, utent in race:utent signifies that if any of the functions setutent(3),
getutent(3), or endutent(3) are used in parallel in different threads of a program, then
data races could occur. glob() calls those functions, so we use race:utent to remind
users.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, POSIX.2.

NOTES
The structure elements gl_pathc and gl_offs are declared as size_t in glibc 2.1, as they
should be according to POSIX.2, but are declared as int in glibc 2.0.

BUGS
The glob() function may fail due to failure of underlying function calls, such as mal-
loc(3) or opendir(3). These will store their error code in errno.

EXAMPLES
One example of use is the following code, which simulates typing

ls -l *.c ../*.c

in the shell:

glob_t globbuf;

Linux man-pages 6.13 2024-12-13 1819

glob(3) Library Functions Manual glob(3)

globbuf.gl_offs = 2;
glob("*.c", GLOB_DOOFFS, NULL, &globbuf);
glob("../*.c", GLOB_DOOFFS | GLOB_APPEND, NULL, &globbuf);
globbuf.gl_pathv[0] = "ls";
globbuf.gl_pathv[1] = "-l";
execvp("ls", &globbuf.gl_pathv[0]);

SEE ALSO
ls(1), sh(1), stat(2), exec(3), fnmatch(3), malloc(3), opendir(3), readdir(3), word-
exp(3), glob(7)

Linux man-pages 6.13 2024-12-13 1820

gnu_get_libc_version(3) Library Functions Manual gnu_get_libc_version(3)

NAME
gnu_get_libc_version, gnu_get_libc_release - get glibc version and release

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <gnu/libc-version.h>

const char *gnu_get_libc_version(void);
const char *gnu_get_libc_release(void);

DESCRIPTION
The function gnu_get_libc_version() returns a string that identifies the glibc version
available on the system.

The function gnu_get_libc_release() returns a string indicates the release status of the
glibc version available on the system. This will be a string such as stable.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegnu_get_libc_version(), gnu_get_libc_release()

STANDARDS
GNU.

HISTORY
glibc 2.1.

EXAMPLES
When run, the program below will produce output such as the following:

$./a.out
GNU libc version: 2.8
GNU libc release: stable

Program source

#include <stdio.h>
#include <stdlib.h>

#include <gnu/libc-version.h>

int
main(void)
{

printf("GNU libc version: %s\n", gnu_get_libc_version());
printf("GNU libc release: %s\n", gnu_get_libc_release());
exit(EXIT_SUCCESS);

}

SEE ALSO
confstr(3)

Linux man-pages 6.13 2024-07-23 1821

grantpt(3) Library Functions Manual grantpt(3)

NAME
grantpt - grant access to the slave pseudoterminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE
#include <stdlib.h>

int grantpt(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

grantpt():
Since glibc 2.24:

_XOPEN_SOURCE >= 500
glibc 2.23 and earlier:

_XOPEN_SOURCE

DESCRIPTION
The grantpt() function changes the mode and owner of the slave pseudoterminal de-
vice corresponding to the master pseudoterminal referred to by the file descriptor fd .
The user ID of the slave is set to the real UID of the calling process. The group ID is
set to an unspecified value (e.g., tty). The mode of the slave is set to 0620
(crw--w----).

The behavior of grantpt() is unspecified if a signal handler is installed to catch
SIGCHLD signals.

RETURN VALUE
When successful, grantpt() returns 0. Otherwise, it returns -1 and sets errno to indi-
cate the error.

ERRORS
EACCES

The corresponding slave pseudoterminal could not be accessed.

EBADF
The fd argument is not a valid open file descriptor.

EINVAL
The fd argument is valid but not associated with a master pseudoterminal.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegrantpt()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

This is part of the UNIX 98 pseudoterminal support, see pts(4).

Historical systems implemented this function via a set-user-ID helper binary called

Linux man-pages 6.13 2024-07-23 1822

grantpt(3) Library Functions Manual grantpt(3)

"pt_chown". glibc on Linux before glibc 2.33 could do so as well, in order to support
configurations with only BSD pseudoterminals; this support has been removed. On
modern systems this is either a no-op —with permissions configured on pty alloca-
tion, as is the case on Linux— or an ioctl(2).

SEE ALSO
open(2), posix_openpt(3), ptsname(3), unlockpt(3), pts(4), pty(7)

Linux man-pages 6.13 2024-07-23 1823

group_member(3) Library Functions Manual group_member(3)

NAME
group_member - test whether a process is in a group

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int group_member(gid_t gid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

group_member():
_GNU_SOURCE

DESCRIPTION
The group_member() function tests whether any of the caller’s supplementary group
IDs (as returned by getgroups(2)) matches gid .

RETURN VALUE
The group_member() function returns nonzero if any of the caller’s supplementary
group IDs matches gid , and zero otherwise.

STANDARDS
GNU.

SEE ALSO
getgid(2), getgroups(2), getgrouplist(3), group(5)

Linux man-pages 6.13 2024-07-23 1824

gsignal(3) Library Functions Manual gsignal(3)

NAME
gsignal, ssignal - software signal facility

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

typedef typeof(void (int)) *sighandler_t;

[[deprecated]] int gsignal(int signum);

[[deprecated]] sighandler_t ssignal(int signum, sighandler_t action);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gsignal(), ssignal():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
Don’t use these functions under Linux. Due to a historical mistake, under Linux these
functions are aliases for raise(3) and signal(2), respectively.

Elsewhere, on System V-like systems, these functions implement software signaling,
entirely independent of the classical signal(2) and kill(2) functions. The function
ssignal() defines the action to take when the software signal with number signum is
raised using the function gsignal(), and returns the previous such action or SIG_DFL.
The function gsignal() does the following: if no action (or the action SIG_DFL) was
specified for signum, then it does nothing and returns 0. If the action SIG_IGN was
specified for signum, then it does nothing and returns 1. Otherwise, it resets the ac-
tion to SIG_DFL and calls the action function with argument signum, and returns the
value returned by that function. The range of possible values signum varies (often
1–15 or 1–17).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegsignal()
Thread safety MT-Safe sigintrssignal()

STANDARDS
None.

HISTORY
AIX, DG/UX, HP-UX, SCO, Solaris, Tru64. They are called obsolete under most of
these systems, and are broken under glibc. Some systems also have gsignal_r() and
ssignal_r().

SEE ALSO
kill(2), signal(2), raise(3)

Linux man-pages 6.13 2024-12-13 1825

hash(3) Library Functions Manual hash(3)

NAME
hash - hash database access method

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <db.h>

DESCRIPTION
Note well: This page documents interfaces provided up until glibc 2.1. Since glibc
2.2, glibc no longer provides these interfaces. Probably, you are looking for the APIs
provided by the libdb library instead.

The routine dbopen(3) is the library interface to database files. One of the supported
file formats is hash files. The general description of the database access methods is in
dbopen(3), this manual page describes only the hash-specific information.

The hash data structure is an extensible, dynamic hashing scheme.

The access-method-specific data structure provided to dbopen(3) is defined in the
<db.h> include file as follows:

typedef struct {
unsigned int bsize;
unsigned int ffactor;
unsigned int nelem;
unsigned int cachesize;
uint32_t (*hash)(const void *, size_t);
int lorder;

} HASHINFO;

The elements of this structure are as follows:

bsize defines the hash table bucket size, and is, by default, 256 bytes. It may be
preferable to increase the page size for disk-resident tables and tables
with large data items.

ffactor indicates a desired density within the hash table. It is an approximation
of the number of keys allowed to accumulate in any one bucket, deter-
mining when the hash table grows or shrinks. The default value is 8.

nelem is an estimate of the final size of the hash table. If not set or set too low,
hash tables will expand gracefully as keys are entered, although a slight
performance degradation may be noticed. The default value is 1.

cachesize is the suggested maximum size, in bytes, of the memory cache. This
value is only advisory, and the access method will allocate more memory
rather than fail.

hash is a user-defined hash function. Since no hash function performs equally
well on all possible data, the user may find that the built-in hash function
does poorly on a particular data set. A user-specified hash functions must
take two arguments (a pointer to a byte string and a length) and return a
32-bit quantity to be used as the hash value.

4.4 Berkeley Distribution 2024-07-23 1826

hash(3) Library Functions Manual hash(3)

lorder is the byte order for integers in the stored database metadata. The num-
ber should represent the order as an integer; for example, big endian order
would be the number 4,321. If lorder is 0 (no order is specified), the cur-
rent host order is used. If the file already exists, the specified value is ig-
nored and the value specified when the tree was created is used.

If the file already exists (and the O_TRUNC flag is not specified), the values specified
for bsize, ffactor, lorder, and nelem are ignored and the values specified when the tree
was created are used.

If a hash function is specified, hash_open attempts to determine if the hash function
specified is the same as the one with which the database was created, and fails if it is
not.

Backward-compatible interfaces to the routines described in dbm(3), and ndbm(3) are
provided, however these interfaces are not compatible with previous file formats.

ERRORS
The hash access method routines may fail and set errno for any of the errors specified
for the library routine dbopen(3).

BUGS
Only big and little endian byte order are supported.

SEE ALSO
btree(3), dbopen(3), mpool(3), recno(3)

Dynamic Hash Tables, Per-Ake Larson, Communications of the ACM, April 1988.

A New Hash Package for UNIX , Margo Seltzer, USENIX Proceedings, Winter 1991.

4.4 Berkeley Distribution 2024-07-23 1827

hsearch(3) Library Functions Manual hsearch(3)

NAME
hcreate, hdestroy, hsearch, hcreate_r, hdestroy_r, hsearch_r - hash table management

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <search.h>

int hcreate(size_t nel);
void hdestroy(void);

ENTRY *hsearch(ENTRY item, ACTION action);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <search.h>

int hcreate_r(size_t nel, struct hsearch_data *htab);
void hdestroy_r(struct hsearch_data *htab);

int hsearch_r(ENTRY item, ACTION action, ENTRY **retval,
struct hsearch_data *htab);

DESCRIPTION
The three functions hcreate(), hsearch(), and hdestroy() allow the caller to create
and manage a hash search table containing entries consisting of a key (a string) and
associated data. Using these functions, only one hash table can be used at a time.

The three functions hcreate_r(), hsearch_r(), hdestroy_r() are reentrant versions
that allow a program to use more than one hash search table at the same time. The
last argument, htab, points to a structure that describes the table on which the function
is to operate. The programmer should treat this structure as opaque (i.e., do not at-
tempt to directly access or modify the fields in this structure).

First a hash table must be created using hcreate(). The argument nel specifies the
maximum number of entries in the table. (This maximum cannot be changed later, so
choose it wisely.) The implementation may adjust this value upward to improve the
performance of the resulting hash table.

The hcreate_r() function performs the same task as hcreate(), but for the table de-
scribed by the structure *htab. The structure pointed to by htab must be zeroed before
the first call to hcreate_r().

The function hdestroy() frees the memory occupied by the hash table that was created
by hcreate(). After calling hdestroy(), a new hash table can be created using hcre-
ate(). The hdestroy_r() function performs the analogous task for a hash table de-
scribed by *htab, which was previously created using hcreate_r().

The hsearch() function searches the hash table for an item with the same key as item
(where "the same" is determined using strcmp(3)), and if successful returns a pointer
to it.

The argument item is of type ENTRY, which is defined in <search.h> as follows:

typedef struct entry {
char *key;
void *data;

} ENTRY;

Linux man-pages 6.13 2025-01-05 1828

hsearch(3) Library Functions Manual hsearch(3)

The field key points to a null-terminated string which is the search key. The field data
points to data that is associated with that key.

The argument action determines what hsearch() does after an unsuccessful search.
This argument must either have the value ENTER, meaning insert a copy of item (and
return a pointer to the new hash table entry as the function result), or the value FIND,
meaning that NULL should be returned. (If action is FIND, then data is ignored.)

The hsearch_r() function is like hsearch() but operates on the hash table described
by *htab. The hsearch_r() function differs from hsearch() in that a pointer to the
found item is returned in *retval, rather than as the function result.

RETURN VALUE
hcreate() and hcreate_r() return nonzero on success. They return 0 on error, with er-
rno set to indicate the error.

On success, hsearch() returns a pointer to an entry in the hash table. hsearch() re-
turns NULL on error, that is, if action is ENTER and the hash table is full, or action
is FIND and item cannot be found in the hash table. hsearch_r() returns nonzero on
success, and 0 on error. In the event of an error, these two functions set errno to indi-
cate the error.

ERRORS
hcreate_r() and hdestroy_r() can fail for the following reasons:

EINVAL
htab is NULL.

hsearch() and hsearch_r() can fail for the following reasons:

ENOMEM
action was ENTER, key was not found in the table, and there was no room in
the table to add a new entry.

ESRCH
action was FIND, and key was not found in the table.

POSIX.1 specifies only the ENOMEM error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:hsearchhcreate(), hsearch(), hdestroy()
Thread safety MT-Safe race:htabhcreate_r(), hsearch_r(),

hdestroy_r()

STANDARDS
hcreate()
hsearch()
hdestroy()

POSIX.1-2008.

hcreate_r()
hsearch_r()

Linux man-pages 6.13 2025-01-05 1829

hsearch(3) Library Functions Manual hsearch(3)

hdestroy_r()
GNU.

HISTORY
hcreate()
hsearch()
hdestroy()

SVr4, POSIX.1-2001.

hcreate_r()
hsearch_r()
hdestroy_r()

GNU.

NOTES
Hash table implementations are usually more efficient when the table contains enough
free space to minimize collisions. Typically, this means that nel should be at least
25% larger than the maximum number of elements that the caller expects to store in
the table.

The hdestroy() and hdestroy_r() functions do not free the buffers pointed to by the
key and data elements of the hash table entries. (It can’t do this because it doesn’t
know whether these buffers were allocated dynamically.) If these buffers need to be
freed (perhaps because the program is repeatedly creating and destroying hash tables,
rather than creating a single table whose lifetime matches that of the program), then
the program must maintain bookkeeping data structures that allow it to free them.

BUGS
SVr4 and POSIX.1-2001 specify that action is significant only for unsuccessful
searches, so that an ENTER should not do anything for a successful search. In libc
and glibc (before glibc 2.3), the implementation violates the specification, updating
the data for the given key in this case.

Individual hash table entries can be added, but not deleted.

EXAMPLES
The following program inserts 24 items into a hash table, then prints some of them.

#include <search.h>
#include <stdio.h>
#include <stdlib.h>

static char *data[] = { "alpha", "bravo", "charlie", "delta",
"echo", "foxtrot", "golf", "hotel", "india", "juliet",
"kilo", "lima", "mike", "november", "oscar", "papa",
"quebec", "romeo", "sierra", "tango", "uniform",
"victor", "whisky", "x-ray", "yankee", "zulu"

};

int
main(void)
{

ENTRY e;

Linux man-pages 6.13 2025-01-05 1830

hsearch(3) Library Functions Manual hsearch(3)

ENTRY *ep;

hcreate(30);

for (size_t i = 0; i < 24; i++) {
e.key = data[i];
/* data is just an integer, instead of a

pointer to something */
e.data = (void *) i;
ep = hsearch(e, ENTER);
/* there should be no failures */
if (ep == NULL) {

fprintf(stderr, "entry failed\n");
exit(EXIT_FAILURE);

}
}

for (size_t i = 22; i < 26; i++) {
/* print two entries from the table, and

show that two are not in the table */
e.key = data[i];
ep = hsearch(e, FIND);
printf("%9.9s -> %9.9s:%d\n", e.key,

ep ? ep->key : "NULL", ep ? (int) ep->data : 0);
}
hdestroy();
exit(EXIT_SUCCESS);

}

SEE ALSO
bsearch(3), lsearch(3), malloc(3), tsearch(3)

Linux man-pages 6.13 2025-01-05 1831

hypot(3) Library Functions Manual hypot(3)

NAME
hypot, hypotf, hypotl - Euclidean distance function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

hypot():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

hypotf(), hypotl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return sqrt(x*x+y*y). This is the length of the hypotenuse of a right-
angled triangle with sides of length x and y, or the distance of the point (x,y) from the
origin.

The calculation is performed without undue overflow or underflow during the inter-
mediate steps of the calculation.

RETURN VALUE
On success, these functions return the length of the hypotenuse of a right-angled trian-
gle with sides of length x and y.

If x or y is an infinity, positive infinity is returned.

If x or y is a NaN, and the other argument is not an infinity, a NaN is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively.

If both arguments are subnormal, and the result is subnormal, a range error occurs,
and the correct result is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Linux man-pages 6.13 2024-07-23 1832

hypot(3) Library Functions Manual hypot(3)

Range error: result underflow
An underflow floating-point exception (FE_UNDERFLOW) is raised.

These functions do not set errno for this case.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safehypot(), hypotf(), hypotl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
cabs(3), sqrt(3)

Linux man-pages 6.13 2024-07-23 1833

iconv(3) Library Functions Manual iconv(3)

NAME
iconv - perform character set conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <iconv.h>

size_t iconv(iconv_t cd ,
char **restrict inbuf , size_t *restrict inbytesleft,
char **restrict outbuf , size_t *restrict outbytesleft);

DESCRIPTION
The iconv() function converts a sequence of characters in one character encoding to a
sequence of characters in another character encoding. The cd argument is a conver-
sion descriptor, previously created by a call to iconv_open(3); the conversion descrip-
tor defines the character encodings that iconv() uses for the conversion. The inbuf ar-
gument is the address of a variable that points to the first character of the input se-
quence; inbytesleft indicates the number of bytes in that buffer. The outbuf argument
is the address of a variable that points to the first byte available in the output buffer;
outbytesleft indicates the number of bytes available in the output buffer.

The main case is when inbuf is not NULL and *inbuf is not NULL. In this case, the
iconv() function converts the multibyte sequence starting at *inbuf to a multibyte se-
quence starting at *outbuf. At most *inbytesleft bytes, starting at *inbuf, will be read.
At most *outbytesleft bytes, starting at *outbuf, will be written.

The iconv() function converts one multibyte character at a time, and for each charac-
ter conversion it increments *inbuf and decrements *inbytesleft by the number of con-
verted input bytes, it increments *outbuf and decrements *outbytesleft by the number
of converted output bytes, and it updates the conversion state contained in cd. If the
character encoding of the input is stateful, the iconv() function can also convert a se-
quence of input bytes to an update to the conversion state without producing any out-
put bytes; such input is called a shift sequence. The conversion can stop for five rea-
sons:

• An invalid multibyte sequence is encountered in the input. In this case, it sets er-
rno to EILSEQ and returns (size_t) -1. *inbuf is left pointing to the beginning of
the invalid multibyte sequence.

• A multibyte sequence is encountered that is valid but that cannot be translated to
the character encoding of the output. This condition depends on the implementa-
tion and on the conversion descriptor. In the GNU C library and GNU libiconv, if
cd was created without the suffix //TRANSLIT or //IGNORE, the conversion is
strict: lossy conversions produce this condition. If the suffix //TRANSLIT was
specified, transliteration can avoid this condition in some cases. In the musl C li-
brary, this condition cannot occur because a conversion to '*' is used as a fallback.
In the FreeBSD, NetBSD, and Solaris implementations of iconv(), this condition
cannot occur either, because a conversion to '?' is used as a fallback. When this
condition is met, iconv() sets errno to EILSEQ and returns (size_t) -1. *inbuf is
left pointing to the beginning of the unconvertible multibyte sequence.

Linux man-pages 6.13 2024-07-23 1834

iconv(3) Library Functions Manual iconv(3)

• The input byte sequence has been entirely converted, that is, *inbytesleft has gone
down to 0. In this case, iconv() returns the number of nonreversible conversions
performed during this call.

• An incomplete multibyte sequence is encountered in the input, and the input byte
sequence terminates after it. In this case, it sets errno to EINVAL and returns
(size_t) -1. *inbuf is left pointing to the beginning of the incomplete multibyte se-
quence.

• The output buffer has no more room for the next converted character. In this case,
it sets errno to E2BIG and returns (size_t) -1.

A different case is when inbuf is NULL or *inbuf is NULL, but outbuf is not NULL
and *outbuf is not NULL. In this case, the iconv() function attempts to set cd’s con-
version state to the initial state and store a corresponding shift sequence at *outbuf.
At most *outbytesleft bytes, starting at *outbuf, will be written. If the output buffer
has no more room for this reset sequence, it sets errno to E2BIG and returns
(size_t) -1. Otherwise, it increments *outbuf and decrements *outbytesleft by the
number of bytes written.

A third case is when inbuf is NULL or *inbuf is NULL, and outbuf is NULL or *out-
buf is NULL. In this case, the iconv() function sets cd’s conversion state to the initial
state.

RETURN VALUE
The iconv() function returns the number of characters converted in a nonreversible
way during this call; reversible conversions are not counted. In case of error, iconv()
returns (size_t) -1 and sets errno to indicate the error.

ERRORS
The following errors can occur, among others:

E2BIG
There is not sufficient room at *outbuf.

EILSEQ
An invalid multibyte sequence has been encountered in the input.

EINVAL
An incomplete multibyte sequence has been encountered in the input.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:cdiconv()

The iconv() function is MT-Safe, as long as callers arrange for mutual exclusion on
the cd argument.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

Linux man-pages 6.13 2024-07-23 1835

iconv(3) Library Functions Manual iconv(3)

NOTES
In each series of calls to iconv(), the last should be one with inbuf or *inbuf equal to
NULL, in order to flush out any partially converted input.

Although inbuf and outbuf are typed as char **, this does not mean that the objects
they point can be interpreted as C strings or as arrays of characters: the interpretation
of character byte sequences is handled internally by the conversion functions. In
some encodings, a zero byte may be a valid part of a multibyte character.

The caller of iconv() must ensure that the pointers passed to the function are suitable
for accessing characters in the appropriate character set. This includes ensuring cor-
rect alignment on platforms that have tight restrictions on alignment.

SEE ALSO
iconv_close(3), iconv_open(3), iconvconfig(8)

Linux man-pages 6.13 2024-07-23 1836

iconv_close(3) Library Functions Manual iconv_close(3)

NAME
iconv_close - deallocate descriptor for character set conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <iconv.h>

int iconv_close(iconv_t cd);

DESCRIPTION
The iconv_close() function deallocates a conversion descriptor cd previously allo-
cated using iconv_open(3).

RETURN VALUE
On success, iconv_close() returns 0; otherwise, it returns -1 and sets errno to indicate
the error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeiconv_close()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

SEE ALSO
iconv(3), iconv_open(3)

Linux man-pages 6.13 2024-07-23 1837

iconv_open(3) Library Functions Manual iconv_open(3)

NAME
iconv_open - allocate descriptor for character set conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <iconv.h>

iconv_t iconv_open(const char *tocode, const char * fromcode);

DESCRIPTION
The iconv_open() function allocates a conversion descriptor suitable for converting
byte sequences from character encoding fromcode to character encoding tocode.

The values permitted for fromcode and tocode and the supported combinations are
system-dependent. For the GNU C library, the permitted values are listed by the iconv
--list command, and all combinations of the listed values are supported. Further-
more the GNU C library and the GNU libiconv library support the following two suf-
fixes:

//TRANSLIT
When the string "//TRANSLIT" is appended to tocode, transliteration is acti-
vated. This means that when a character cannot be represented in the target
character set, it can be approximated through one or several similarly looking
characters.

//IGNORE
When the string "//IGNORE" is appended to tocode, characters that cannot be
represented in the target character set will be silently discarded.

The resulting conversion descriptor can be used with iconv(3) any number of times. It
remains valid until deallocated using iconv_close(3).

A conversion descriptor contains a conversion state. After creation using
iconv_open(), the state is in the initial state. Using iconv(3) modifies the descriptor’s
conversion state. To bring the state back to the initial state, use iconv(3) with NULL
as inbuf argument.

RETURN VALUE
On success, iconv_open() returns a freshly allocated conversion descriptor. On fail-
ure, it returns (iconv_t) -1 and sets errno to indicate the error.

ERRORS
The following error can occur, among others:

EINVAL
The conversion from fromcode to tocode is not supported by the implementa-
tion.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiconv_open()

Linux man-pages 6.13 2024-07-23 1838

iconv_open(3) Library Functions Manual iconv_open(3)

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001, SUSv2.

SEE ALSO
iconv(1), iconv(3), iconv_close(3)

Linux man-pages 6.13 2024-07-23 1839

if_nameindex(3) Library Functions Manual if_nameindex(3)

NAME
if_nameindex, if_freenameindex - get network interface names and indexes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <net/if.h>

struct if_nameindex *if_nameindex(void);
void if_freenameindex(struct if_nameindex *ptr);

DESCRIPTION
The if_nameindex() function returns an array of if_nameindex structures, each con-
taining information about one of the network interfaces on the local system. The
if_nameindex structure contains at least the following entries:

unsigned int if_index; /* Index of interface (1, 2, ...) */
char *if_name; /* Null-terminated name ("eth0", etc.) */

The if_index field contains the interface index. The if_name field points to the null-
terminated interface name. The end of the array is indicated by entry with if_index set
to zero and if_name set to NULL.

The data structure returned by if_nameindex() is dynamically allocated and should be
freed using if_freenameindex() when no longer needed.

RETURN VALUE
On success, if_nameindex() returns pointer to the array; on error, NULL is returned,
and errno is set to indicate the error.

ERRORS
if_nameindex() may fail and set errno if:

ENOBUFS
Insufficient resources available.

if_nameindex() may also fail for any of the errors specified for socket(2), bind(2),
ioctl(2), getsockname(2), recvmsg(2), sendto(2), or malloc(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeif_nameindex(), if_freenameindex()

STANDARDS
POSIX.1-2008, RFC 3493.

HISTORY
glibc 2.1. POSIX.1-2001. BSDi.

Before glibc 2.3.4, the implementation supported only interfaces with IPv4 addresses.
Support of interfaces that don’t have IPv4 addresses is available only on kernels that
support netlink.

EXAMPLES
The program below demonstrates the use of the functions described on this page. An
example of the output this program might produce is the following:

Linux man-pages 6.13 2024-07-23 1840

if_nameindex(3) Library Functions Manual if_nameindex(3)

$./a.out
1: lo
2: wlan0
3: em1

Program source
#include <net/if.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(void)
{

struct if_nameindex *if_ni, *i;

if_ni = if_nameindex();
if (if_ni == NULL) {

perror("if_nameindex");
exit(EXIT_FAILURE);

}

for (i = if_ni; !(i->if_index == 0 && i->if_name == NULL); i++)
printf("%u: %s\n", i->if_index, i->if_name);

if_freenameindex(if_ni);

exit(EXIT_SUCCESS);
}

SEE ALSO
getsockopt(2), setsockopt(2), getifaddrs(3), if_indextoname(3), if_nametoindex(3), if-
config(8)

Linux man-pages 6.13 2024-07-23 1841

if_nametoindex(3) Library Functions Manual if_nametoindex(3)

NAME
if_nametoindex, if_indextoname - mappings between network interface names and
indexes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <net/if.h>

unsigned int if_nametoindex(const char *ifname);
char *if_indextoname(unsigned int ifindex, char *ifname);

DESCRIPTION
The if_nametoindex() function returns the index of the network interface correspond-
ing to the name ifname.

The if_indextoname() function returns the name of the network interface correspond-
ing to the interface index ifindex. The name is placed in the buffer pointed to by if-
name. The buffer must allow for the storage of at least IF_NAMESIZE bytes.

RETURN VALUE
On success, if_nametoindex() returns the index number of the network interface; on
error, 0 is returned and errno is set to indicate the error.

On success, if_indextoname() returns ifname; on error, NULL is returned and errno
is set to indicate the error.

ERRORS
if_nametoindex() may fail and set errno if:

ENODEV
No interface found with given name.

if_indextoname() may fail and set errno if:

ENXIO
No interface found for the index.

if_nametoindex() and if_indextoname() may also fail for any of the errors specified
for socket(2) or ioctl(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeif_nametoindex(), if_indextoname()

STANDARDS
POSIX.1-2008, RFC 3493.

HISTORY
POSIX.1-2001. BSDi.

SEE ALSO
getifaddrs(3), if_nameindex(3), ifconfig(8)

Linux man-pages 6.13 2024-07-23 1842

ilogb(3) Library Functions Manual ilogb(3)

NAME
ilogb, ilogbf, ilogbl - get integer exponent of a floating-point value

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ilogb():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

ilogbf(), ilogbl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the exponent part of their argument as a signed integer. When
no error occurs, these functions are equivalent to the corresponding logb(3) functions,
cast to int.

RETURN VALUE
On success, these functions return the exponent of x, as a signed integer.

If x is zero, then a domain error occurs, and the functions return FP_ILOGB0.

If x is a NaN, then a domain error occurs, and the functions return FP_ILOGBNAN.

If x is negative infinity or positive infinity, then a domain error occurs, and the func-
tions return INT_MAX.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is 0 or a NaN
An invalid floating-point exception (FE_INVALID) is raised, and errno is set
to EDOM (but see BUGS).

Domain error: x is an infinity
An invalid floating-point exception (FE_INVALID) is raised, and errno is set
to EDOM (but see BUGS).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1843

ilogb(3) Library Functions Manual ilogb(3)

Interface Attribute Value
Thread safety MT-Safeilogb(), ilogbf(), ilogbl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

BUGS
Before glibc 2.16, the following bugs existed in the glibc implementation of these
functions:

• The domain error case where x is 0 or a NaN did not cause errno to be set or (on
some architectures) raise a floating-point exception.

• The domain error case where x is an infinity did not cause errno to be set or raise
a floating-point exception.

SEE ALSO
log(3), logb(3), significand(3)

Linux man-pages 6.13 2024-07-23 1844

index(3) Library Functions Manual index(3)

NAME
index, rindex - locate character in string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

[[deprecated]] char *index(const char *s, int c);
[[deprecated]] char *rindex(const char *s, int c);

DESCRIPTION
index() is identical to strchr(3).

rindex() is identical to strrchr(3).

Use strchr(3) and strrchr(3) instead of these functions.

STANDARDS
None.

HISTORY
4.3BSD; marked as LEGACY in POSIX.1-2001. Removed in POSIX.1-2008, recom-
mending strchr(3) and strrchr(3) instead.

SEE ALSO
strchr(3), strrchr(3)

Linux man-pages 6.13 2024-07-23 1845

inet(3) Library Functions Manual inet(3)

NAME
inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof -
Internet address manipulation routines

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_aton(const char *cp, struct in_addr *inp);

in_addr_t inet_addr(const char *cp);
in_addr_t inet_network(const char *cp);

[[deprecated]] char *inet_ntoa(struct in_addr in);

[[deprecated]] struct in_addr inet_makeaddr(in_addr_t net,
in_addr_t host);

[[deprecated]] in_addr_t inet_lnaof(struct in_addr in);
[[deprecated]] in_addr_t inet_netof(struct in_addr in);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

inet_aton(), inet_ntoa():
Since glibc 2.19:

_DEFAULT_SOURCE
In glibc up to and including 2.19:

_BSD_SOURCE || _BSD_SOURCE

DESCRIPTION
inet_aton() converts the Internet host address cp from the IPv4 numbers-and-dots no-
tation into binary form (in network byte order) and stores it in the structure that inp
points to. inet_aton() returns nonzero if the address is valid, zero if not. The address
supplied in cp can have one of the following forms:

a.b.c.d Each of the four numeric parts specifies a byte of the address; the bytes
are assigned in left-to-right order to produce the binary address.

a.b.c Parts a and b specify the first two bytes of the binary address. Part c is
interpreted as a 16-bit value that defines the rightmost two bytes of the bi-
nary address. This notation is suitable for specifying (outmoded) Class B
network addresses.

a.b Part a specifies the first byte of the binary address. Part b is interpreted
as a 24-bit value that defines the rightmost three bytes of the binary ad-
dress. This notation is suitable for specifying (outmoded) Class A net-
work addresses.

a The value a is interpreted as a 32-bit value that is stored directly into the
binary address without any byte rearrangement.

In all of the above forms, components of the dotted address can be specified in deci-
mal, octal (with a leading 0), or hexadecimal, with a leading 0X). Addresses in any of
these forms are collectively termed IPV4 numbers-and-dots notation. The form that

Linux man-pages 6.13 2024-07-23 1846

inet(3) Library Functions Manual inet(3)

uses exactly four decimal numbers is referred to as IPv4 dotted-decimal notation (or
sometimes: IPv4 dotted-quad notation).

inet_aton() returns 1 if the supplied string was successfully interpreted, or 0 if the
string is invalid (errno is not set on error).

The inet_addr() function converts the Internet host address cp from IPv4 numbers-
and-dots notation into binary data in network byte order. If the input is invalid, IN-
ADDR_NONE (usually -1) is returned. Use of this function is problematic because
-1 is a valid address (255.255.255.255). Avoid its use in favor of inet_aton(),
inet_pton(3), or getaddrinfo(3), which provide a cleaner way to indicate error return.

The inet_network() function converts cp, a string in IPv4 numbers-and-dots notation,
into a number in host byte order suitable for use as an Internet network address. On
success, the converted address is returned. If the input is invalid, -1 is returned.

The inet_ntoa() function converts the Internet host address in, given in network byte
order, to a string in IPv4 dotted-decimal notation. The string is returned in a statically
allocated buffer, which subsequent calls will overwrite.

The inet_lnaof() function returns the local network address part of the Internet ad-
dress in. The returned value is in host byte order.

The inet_netof() function returns the network number part of the Internet address in.
The returned value is in host byte order.

The inet_makeaddr() function is the converse of inet_netof() and inet_lnaof(). It re-
turns an Internet host address in network byte order, created by combining the net-
work number net with the local address host, both in host byte order.

The structure in_addr as used in inet_ntoa(), inet_makeaddr(), inet_lnaof(), and
inet_netof() is defined in <netinet/in.h> as:

typedef uint32_t in_addr_t;

struct in_addr {
in_addr_t s_addr;

};

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeinet_aton(), inet_addr(), inet_network(),
inet_ntoa()

Thread safety MT-Safeinet_makeaddr(), inet_lnaof(), inet_netof()

STANDARDS
inet_addr()
inet_ntoa()

POSIX.1-2008.

inet_aton()
None.

Linux man-pages 6.13 2024-07-23 1847

inet(3) Library Functions Manual inet(3)

STANDARDS
inet_addr()
inet_ntoa()

POSIX.1-2001, 4.3BSD.

inet_lnaof(), inet_netof(), and inet_makeaddr() are legacy functions that assume
they are dealing with classful network addresses. Classful networking divides IPv4
network addresses into host and network components at byte boundaries, as follows:

Class A This address type is indicated by the value 0 in the most significant bit of
the (network byte ordered) address. The network address is contained in
the most significant byte, and the host address occupies the remaining
three bytes.

Class B This address type is indicated by the binary value 10 in the most signifi-
cant two bits of the address. The network address is contained in the two
most significant bytes, and the host address occupies the remaining two
bytes.

Class C This address type is indicated by the binary value 110 in the most signifi-
cant three bits of the address. The network address is contained in the
three most significant bytes, and the host address occupies the remaining
byte.

Classful network addresses are now obsolete, having been superseded by Classless
Inter-Domain Routing (CIDR), which divides addresses into network and host compo-
nents at arbitrary bit (rather than byte) boundaries.

NOTES
On x86 architectures, the host byte order is Least Significant Byte first (little endian),
whereas the network byte order, as used on the Internet, is Most Significant Byte first
(big endian).

EXAMPLES
An example of the use of inet_aton() and inet_ntoa() is shown below. Here are some
example runs:

$./a.out 226.000.000.037 # Last byte is in octal
226.0.0.31
$./a.out 0x7f.1 # First byte is in hex
127.0.0.1

Program source

#define _DEFAULT_SOURCE
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

struct in_addr addr;

Linux man-pages 6.13 2024-07-23 1848

inet(3) Library Functions Manual inet(3)

if (argc != 2) {
fprintf(stderr, "%s <dotted-address>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (inet_aton(argv[1], &addr) == 0) {
fprintf(stderr, "Invalid address\n");
exit(EXIT_FAILURE);

}

printf("%s\n", inet_ntoa(addr));
exit(EXIT_SUCCESS);

}

SEE ALSO
byteorder(3), getaddrinfo(3), gethostbyname(3), getnameinfo(3), getnetent(3),
inet_net_pton(3), inet_ntop(3), inet_pton(3), hosts(5), networks(5)

Linux man-pages 6.13 2024-07-23 1849

inet_net_pton(3) Library Functions Manual inet_net_pton(3)

NAME
inet_net_pton, inet_net_ntop - Internet network number conversion

LIBRARY
Resolver library (libresolv, -lresolv)

SYNOPSIS
#include <arpa/inet.h>

int inet_net_pton(int af , const char *pres,
void netp[.nsize], size_t nsize);

char *inet_net_ntop(int af ,
const void netp[(.bits - CHAR_BIT + 1) / CHAR_BIT],
int bits,
char pres[.psize], size_t psize);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

inet_net_pton(), inet_net_ntop():
Since glibc 2.20:

_DEFAULT_SOURCE
Before glibc 2.20:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions convert network numbers between presentation (i.e., printable) format
and network (i.e., binary) format.

For both functions, af specifies the address family for the conversion; the only sup-
ported value is AF_INET.

inet_net_pton()
The inet_net_pton() function converts pres, a null-terminated string containing an In-
ternet network number in presentation format to network format. The result of the
conversion, which is in network byte order, is placed in the buffer pointed to by netp.
(The netp argument typically points to an in_addr structure.) The nsize argument
specifies the number of bytes available in netp.

On success, inet_net_pton() returns the number of bits in the network number field of
the result placed in netp. For a discussion of the input presentation format and the re-
turn value, see NOTES.

Note: the buffer pointed to by netp should be zeroed out before calling
inet_net_pton(), since the call writes only as many bytes as are required for the net-
work number (or as are explicitly specified by pres), which may be less than the num-
ber of bytes in a complete network address.

inet_net_ntop()
The inet_net_ntop() function converts the network number in the buffer pointed to by
netp to presentation format; *netp is interpreted as a value in network byte order. The
bits argument specifies the number of bits in the network number in *netp.

The null-terminated presentation-format string is placed in the buffer pointed to by
pres. The psize argument specifies the number of bytes available in pres. The pre-
sentation string is in CIDR format: a dotted-decimal number representing the network
address, followed by a slash, and the size of the network number in bits.

Linux man-pages 6.13 2024-07-23 1850

inet_net_pton(3) Library Functions Manual inet_net_pton(3)

RETURN VALUE
On success, inet_net_pton() returns the number of bits in the network number. On
error, it returns -1, and errno is set to indicate the error.

On success, inet_net_ntop() returns pres. On error, it returns NULL, and errno is set
to indicate the error.

ERRORS
EAFNOSUPPORT

af specified a value other than AF_INET.

EMSGSIZE
The size of the output buffer was insufficient.

ENOENT
(inet_net_pton()) pres was not in correct presentation format.

STANDARDS
None.

NOTES
Input presentation format for inet_net_pton()

The network number may be specified either as a hexadecimal value or in dotted-deci-
mal notation.

Hexadecimal values are indicated by an initial "0x" or "0X". The hexadecimal digits
populate the nibbles (half octets) of the network number from left to right in network
byte order.

In dotted-decimal notation, up to four octets are specified, as decimal numbers sepa-
rated by dots. Thus, any of the following forms are accepted:

a.b.c.d
a.b.c
a.b
a

Each part is a number in the range 0 to 255 that populates one byte of the resulting
network number, going from left to right, in network-byte (big endian) order. Where
a part is omitted, the resulting byte in the network number is zero.

For either hexadecimal or dotted-decimal format, the network number can optionally
be followed by a slash and a number in the range 0 to 32, which specifies the size of
the network number in bits.

Return value of inet_net_pton()
The return value of inet_net_pton() is the number of bits in the network number field.
If the input presentation string terminates with a slash and an explicit size value, then
that size becomes the return value of inet_net_pton(). Otherwise, the return value,
bits, is inferred as follows:

• If the most significant byte of the network number is greater than or equal to 240,
then bits is 32.

• Otherwise, if the most significant byte of the network number is greater than or
equal to 224, then bits is 4.

Linux man-pages 6.13 2024-07-23 1851

inet_net_pton(3) Library Functions Manual inet_net_pton(3)

• Otherwise, if the most significant byte of the network number is greater than or
equal to 192, then bits is 24.

• Otherwise, if the most significant byte of the network number is greater than or
equal to 128, then bits is 16.

• Otherwise, bits is 8.

If the resulting bits value from the above steps is greater than or equal to 8, but the
number of octets specified in the network number exceed bits/8, then bits is set to 8
times the number of octets actually specified.

EXAMPLES
The program below demonstrates the use of inet_net_pton() and inet_net_ntop(). It
uses inet_net_pton() to convert the presentation format network address provided in
its first command-line argument to binary form, displays the return value from
inet_net_pton(). It then uses inet_net_ntop() to convert the binary form back to pre-
sentation format, and displays the resulting string.

In order to demonstrate that inet_net_pton() may not write to all bytes of its netp ar-
gument, the program allows an optional second command-line argument, a number
used to initialize the buffer before inet_net_pton() is called. As its final line of out-
put, the program displays all of the bytes of the buffer returned by inet_net_pton() al-
lowing the user to see which bytes have not been touched by inet_net_pton().

An example run, showing that inet_net_pton() infers the number of bits in the net-
work number:

$./a.out 193.168
inet_net_pton() returned: 24
inet_net_ntop() yielded: 193.168.0/24
Raw address: c1a80000

Demonstrate that inet_net_pton() does not zero out unused bytes in its result buffer:

$./a.out 193.168 0xffffffff
inet_net_pton() returned: 24
inet_net_ntop() yielded: 193.168.0/24
Raw address: c1a800ff

Demonstrate that inet_net_pton() will widen the inferred size of the network number,
if the supplied number of bytes in the presentation string exceeds the inferred value:

$./a.out 193.168.1.128
inet_net_pton() returned: 32
inet_net_ntop() yielded: 193.168.1.128/32
Raw address: c1a80180

Explicitly specifying the size of the network number overrides any inference about its
size (but any extra bytes that are explicitly specified will still be used by
inet_net_pton(): to populate the result buffer):

$./a.out 193.168.1.128/24
inet_net_pton() returned: 24
inet_net_ntop() yielded: 193.168.1/24
Raw address: c1a80180

Linux man-pages 6.13 2024-07-23 1852

inet_net_pton(3) Library Functions Manual inet_net_pton(3)

Program source
/* Link with "-lresolv" */

#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

int
main(int argc, char *argv[])
{

char buf[100];
struct in_addr addr;
int bits;

if (argc < 2) {
fprintf(stderr,

"Usage: %s presentation-form [addr-init-value]\n",
argv[0]);

exit(EXIT_FAILURE);
}

/* If argv[2] is supplied (a numeric value), use it to initialize
the output buffer given to inet_net_pton(), so that we can see
that inet_net_pton() initializes only those bytes needed for
the network number. If argv[2] is not supplied, then initialize
the buffer to zero (as is recommended practice). */

addr.s_addr = (argc > 2) ? strtod(argv[2], NULL) : 0;

/* Convert presentation network number in argv[1] to binary. */

bits = inet_net_pton(AF_INET, argv[1], &addr, sizeof(addr));
if (bits == -1)

errExit("inet_net_ntop");

printf("inet_net_pton() returned: %d\n", bits);

/* Convert binary format back to presentation, using 'bits'
returned by inet_net_pton(). */

if (inet_net_ntop(AF_INET, &addr, bits, buf, sizeof(buf)) == NULL)
errExit("inet_net_ntop");

printf("inet_net_ntop() yielded: %s\n", buf);

/* Display 'addr' in raw form (in network byte order), so we can

Linux man-pages 6.13 2024-07-23 1853

inet_net_pton(3) Library Functions Manual inet_net_pton(3)

see bytes not displayed by inet_net_ntop(); some of those bytes
may not have been touched by inet_net_ntop(), and so will still
have any initial value that was specified in argv[2]. */

printf("Raw address: %x\n", htonl(addr.s_addr));

exit(EXIT_SUCCESS);
}

SEE ALSO
inet(3), networks(5)

Linux man-pages 6.13 2024-07-23 1854

inet_ntop(3) Library Functions Manual inet_ntop(3)

NAME
inet_ntop - convert IPv4 and IPv6 addresses from binary to text form

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <arpa/inet.h>

const char *inet_ntop(int af , const void *restrict src,
char dst[restrict .size], socklen_t size);

DESCRIPTION
This function converts the network address structure src in the af address family into
a character string. The resulting string is copied to the buffer pointed to by dst, which
must be a non-null pointer. The caller specifies the number of bytes available in this
buffer in the argument size.

inet_ntop() extends the inet_ntoa(3) function to support multiple address families,
inet_ntoa(3) is now considered to be deprecated in favor of inet_ntop(). The follow-
ing address families are currently supported:

AF_INET
src points to a struct in_addr (in network byte order) which is converted to an
IPv4 network address in the dotted-decimal format, "ddd.ddd.ddd.ddd". The
buffer dst must be at least INET_ADDRSTRLEN bytes long.

AF_INET6
src points to a struct in6_addr (in network byte order) which is converted to a
representation of this address in the most appropriate IPv6 network address
format for this address. The buffer dst must be at least INET6_AD-
DRSTRLEN bytes long.

RETURN VALUE
On success, inet_ntop() returns a non-null pointer to dst. NULL is returned if there
was an error, with errno set to indicate the error.

ERRORS
EAFNOSUPPORT

af was not a valid address family.

ENOSPC
The converted address string would exceed the size given by size.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeinet_ntop()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Note that RFC 2553 defines a prototype where the last argument size is of type size_t.
Many systems follow RFC 2553. glibc 2.0 and 2.1 have size_t, but 2.2 and later have

Linux man-pages 6.13 2024-07-23 1855

inet_ntop(3) Library Functions Manual inet_ntop(3)

socklen_t.

BUGS
AF_INET6 converts IPv4-mapped IPv6 addresses into an IPv6 format.

EXAMPLES
See inet_pton(3).

SEE ALSO
getnameinfo(3), inet(3), inet_pton(3)

Linux man-pages 6.13 2024-07-23 1856

inet_pton(3) Library Functions Manual inet_pton(3)

NAME
inet_pton - convert IPv4 and IPv6 addresses from text to binary form

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <arpa/inet.h>

int inet_pton(int af , const char *restrict src, void *restrict dst);

DESCRIPTION
This function converts the character string src into a network address structure in the
af address family, then copies the network address structure to dst. The af argument
must be either AF_INET or AF_INET6. dst is written in network byte order.

The following address families are currently supported:

AF_INET
src points to a character string containing an IPv4 network address in dotted-
decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number of up to
three digits in the range 0 to 255. The address is converted to a struct in_addr
and copied to dst, which must be sizeof(struct in_addr) (4) bytes (32 bits)
long.

AF_INET6
src points to a character string containing an IPv6 network address. The ad-
dress is converted to a struct in6_addr and copied to dst, which must be
sizeof(struct in6_addr) (16) bytes (128 bits) long. The allowed formats for
IPv6 addresses follow these rules:

• The preferred format is x:x:x:x:x:x:x:x. This form consists of eight hexa-
decimal numbers, each of which expresses a 16-bit value (i.e., each x can
be up to 4 hex digits).

• A series of contiguous zero values in the preferred format can be abbrevi-
ated to ::. Only one instance of :: can occur in an address. For example,
the loopback address 0:0:0:0:0:0:0:1 can be abbreviated as ::1. The wild-
card address, consisting of all zeros, can be written as ::.

• An alternate format is useful for expressing IPv4-mapped IPv6 addresses.
This form is written as x:x:x:x:x:x:d.d.d.d , where the six leading xs are
hexadecimal values that define the six most-significant 16-bit pieces of the
address (i.e., 96 bits), and the ds express a value in dotted-decimal nota-
tion that defines the least significant 32 bits of the address. An example of
such an address is ::FFFF:204.152.189.116.

See RFC 2373 for further details on the representation of IPv6 addresses.

RETURN VALUE
inet_pton() returns 1 on success (network address was successfully converted). 0 is
returned if src does not contain a character string representing a valid network address
in the specified address family. If af does not contain a valid address family, -1 is re-
turned and errno is set to EAFNOSUPPORT.

Linux man-pages 6.13 2024-07-23 1857

inet_pton(3) Library Functions Manual inet_pton(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeinet_pton()

VERSIONS
Unlike inet_aton(3) and inet_addr(3), inet_pton() supports IPv6 addresses. On the
other hand, inet_pton() accepts only IPv4 addresses in dotted-decimal notation,
whereas inet_aton(3) and inet_addr(3) allow the more general numbers-and-dots no-
tation (hexadecimal and octal number formats, and formats that don’t require all four
bytes to be explicitly written). For an interface that handles both IPv6 addresses, and
IPv4 addresses in numbers-and-dots notation, see getaddrinfo(3).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

BUGS
AF_INET6 does not recognize IPv4 addresses. An explicit IPv4-mapped IPv6 ad-
dress must be supplied in src instead.

EXAMPLES
The program below demonstrates the use of inet_pton() and inet_ntop(3). Here are
some example runs:

$./a.out i6 0:0:0:0:0:0:0:0
::
$./a.out i6 1:0:0:0:0:0:0:8
1::8
$./a.out i6 0:0:0:0:0:FFFF:204.152.189.116
::ffff:204.152.189.116

Program source

#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

unsigned char buf[sizeof(struct in6_addr)];
int domain, s;
char str[INET6_ADDRSTRLEN];

if (argc != 3) {
fprintf(stderr, "Usage: %s {i4|i6|<num>} string\n", argv[0]);
exit(EXIT_FAILURE);

}

Linux man-pages 6.13 2024-07-23 1858

inet_pton(3) Library Functions Manual inet_pton(3)

domain = (strcmp(argv[1], "i4") == 0) ? AF_INET :
(strcmp(argv[1], "i6") == 0) ? AF_INET6 : atoi(argv[1]);

s = inet_pton(domain, argv[2], buf);
if (s <= 0) {

if (s == 0)
fprintf(stderr, "Not in presentation format");

else
perror("inet_pton");

exit(EXIT_FAILURE);
}

if (inet_ntop(domain, buf, str, INET6_ADDRSTRLEN) == NULL) {
perror("inet_ntop");
exit(EXIT_FAILURE);

}

printf("%s\n", str);

exit(EXIT_SUCCESS);
}

SEE ALSO
getaddrinfo(3), inet(3), inet_ntop(3)

Linux man-pages 6.13 2024-07-23 1859

INFINITY (3) Library Functions Manual INFINITY (3)

NAME
INFINITY, NAN, HUGE_VAL, HUGE_VALF, HUGE_VALL - floating-point con-
stants

LIBRARY
Math library (libm)

SYNOPSIS
#define _ISOC99_SOURCE /* See feature_test_macros(7) */
#include <math.h>

INFINITY

NAN

HUGE_VAL
HUGE_VALF
HUGE_VALL

DESCRIPTION
The macro INFINITY expands to a float constant representing positive infinity.

The macro NAN expands to a float constant representing a quiet NaN (when sup-
ported). A quiet NaN is a NaN ("not-a-number") that does not raise exceptions when
it is used in arithmetic. The opposite is a signaling NaN. See IEC 60559:1989.

The macros HUGE_VAL, HUGE_VALF, HUGE_VALL expand to constants of
types double, float, and long double, respectively, that represent a large positive
value, possibly positive infinity.

STANDARDS
C11.

HISTORY
C99.

On a glibc system, the macro HUGE_VAL is always available. Availability of the
NAN macro can be tested using #ifdef NAN, and similarly for INFINITY,
HUGE_VALF, HUGE_VALL. They will be defined by <math.h> if
_ISOC99_SOURCE or _GNU_SOURCE is defined, or __STDC_VERSION__ is
defined and has a value not less than 199901L.

SEE ALSO
fpclassify(3), math_error(7)

Linux man-pages 6.13 2024-05-02 1860

initgroups(3) Library Functions Manual initgroups(3)

NAME
initgroups - initialize the supplementary group access list

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <grp.h>

int initgroups(const char *user, gid_t group);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

initgroups():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The initgroups() function initializes the group access list by reading the group data-
base /etc/group and using all groups of which user is a member. The additional
group group is also added to the list.

The user argument must be non-NULL.

RETURN VALUE
The initgroups() function returns 0 on success. On error, -1 is returned, and errno is
set to indicate the error.

ERRORS
ENOMEM

Insufficient memory to allocate group information structure.

EPERM
The calling process has insufficient privilege. See the underlying system call
setgroups(2).

FILES
/etc/group

group database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeinitgroups()

STANDARDS
None.

HISTORY
SVr4, 4.3BSD.

SEE ALSO
getgroups(2), setgroups(2), credentials(7)

Linux man-pages 6.13 2024-07-23 1861

initgroups(3) Library Functions Manual initgroups(3)

Linux man-pages 6.13 2024-07-23 1862

insque(3) Library Functions Manual insque(3)

NAME
insque, remque - insert/remove an item from a queue

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <search.h>

void insque(void *elem, void *prev);
void remque(void *elem);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

insque(), remque():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

DESCRIPTION
The insque() and remque() functions manipulate doubly linked lists. Each element
in the list is a structure of which the first two elements are a forward and a backward
pointer. The linked list may be linear (i.e., NULL forward pointer at the end of the
list and NULL backward pointer at the start of the list) or circular.

The insque() function inserts the element pointed to by elem immediately after the el-
ement pointed to by prev.

If the list is linear, then the call insque(elem, NULL) can be used to insert the initial
list element, and the call sets the forward and backward pointers of elem to NULL.

If the list is circular, the caller should ensure that the forward and backward pointers
of the first element are initialized to point to that element, and the prev argument of
the insque() call should also point to the element.

The remque() function removes the element pointed to by elem from the doubly
linked list.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeinsque(), remque()

VERSIONS
On ancient systems, the arguments of these functions were of type struct qelem *, de-
fined as:

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;
char q_data[1];

};

This is still what you will get if _GNU_SOURCE is defined before including
<search.h>.

The location of the prototypes for these functions differs among several versions of

Linux man-pages 6.13 2024-07-23 1863

insque(3) Library Functions Manual insque(3)

UNIX. The above is the POSIX version. Some systems place them in <string.h>.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

BUGS
In glibc 2.4 and earlier, it was not possible to specify prev as NULL. Consequently,
to build a linear list, the caller had to build a list using an initial call that contained the
first two elements of the list, with the forward and backward pointers in each element
suitably initialized.

EXAMPLES
The program below demonstrates the use of insque(). Here is an example run of the
program:

$./a.out -c a b c
Traversing completed list:

a
b
c

That was a circular list

Program source

#include <search.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

struct element {
struct element *forward;
struct element *backward;
char *name;

};

static struct element *
new_element(void)
{

struct element *e;

e = malloc(sizeof(*e));
if (e == NULL) {

fprintf(stderr, "malloc() failed\n");
exit(EXIT_FAILURE);

}

return e;
}

Linux man-pages 6.13 2024-07-23 1864

insque(3) Library Functions Manual insque(3)

int
main(int argc, char *argv[])
{

struct element *first, *elem, *prev;
int circular, opt, errfnd;

/* The "-c" command-line option can be used to specify that the
list is circular. */

errfnd = 0;
circular = 0;
while ((opt = getopt(argc, argv, "c")) != -1) {

switch (opt) {
case 'c':

circular = 1;
break;

default:
errfnd = 1;
break;

}
}

if (errfnd || optind >= argc) {
fprintf(stderr, "Usage: %s [-c] string...\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Create first element and place it in the linked list. */

elem = new_element();
first = elem;

elem->name = argv[optind];

if (circular) {
elem->forward = elem;
elem->backward = elem;
insque(elem, elem);

} else {
insque(elem, NULL);

}

/* Add remaining command-line arguments as list elements. */

while (++optind < argc) {
prev = elem;

elem = new_element();
elem->name = argv[optind];

Linux man-pages 6.13 2024-07-23 1865

insque(3) Library Functions Manual insque(3)

insque(elem, prev);
}

/* Traverse the list from the start, printing element names. */

printf("Traversing completed list:\n");
elem = first;
do {

printf(" %s\n", elem->name);
elem = elem->forward;

} while (elem != NULL && elem != first);

if (elem == first)
printf("That was a circular list\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
queue(7)

Linux man-pages 6.13 2024-07-23 1866

isalpha(3) Library Functions Manual isalpha(3)

NAME
isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, is-
space, isupper, isxdigit, isalnum_l, isalpha_l, isascii_l, isblank_l, iscntrl_l, isdigit_l,
isgraph_l, islower_l, isprint_l, ispunct_l, isspace_l, isupper_l, isxdigit_l - character
classification functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ctype.h>

int isalnum(int c);
int isalpha(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);

int isascii(int c);
int isblank(int c);

int isalnum_l(int c, locale_t locale);
int isalpha_l(int c, locale_t locale);
int isblank_l(int c, locale_t locale);
int iscntrl_l(int c, locale_t locale);
int isdigit_l(int c, locale_t locale);
int isgraph_l(int c, locale_t locale);
int islower_l(int c, locale_t locale);
int isprint_l(int c, locale_t locale);
int ispunct_l(int c, locale_t locale);
int isspace_l(int c, locale_t locale);
int isupper_l(int c, locale_t locale);
int isxdigit_l(int c, locale_t locale);

int isascii_l(int c, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

isascii():
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

isblank():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

isalnum_l(), isalpha_l(), isblank_l(), iscntrl_l(), isdigit_l(), isgraph_l(), islower_l(),
isprint_l(), ispunct_l(), isspace_l(), isupper_l(), isxdigit_l():

Since glibc 2.10:

Linux man-pages 6.13 2024-12-11 1867

isalpha(3) Library Functions Manual isalpha(3)

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

isascii_l():
Since glibc 2.10:

_XOPEN_SOURCE >= 700 && (_SVID_SOURCE || _BSD_SOURCE)
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
These functions check whether c, which must have the value of an unsigned char or
EOF, falls into a certain character class according to the specified locale. The func-
tions without the "_l" suffix perform the check based on the current locale.

The functions with the "_l" suffix perform the check based on the locale specified by
the locale object locale. The behavior of these functions is undefined if locale is the
special locale object LC_GLOBAL_LOCALE (see duplocale(3)) or is not a valid lo-
cale object handle.

The list below explains the operation of the functions without the "_l" suffix; the func-
tions with the "_l" suffix differ only in using the locale object locale instead of the
current locale.

isalnum()
checks for an alphanumeric character; it is equivalent to (isalpha(c) || is-
digit(c)).

isalpha()
checks for an alphabetic character; in the standard "C" locale, it is equivalent
to (isupper(c) || islower(c)). In some locales, there may be additional charac-
ters for which isalpha() is true—letters which are neither uppercase nor lower-
case.

isascii()
checks whether c is a 7-bit unsigned char value that fits into the ASCII charac-
ter set.

isblank()
checks for a blank character; that is, a space or a tab.

iscntrl()
checks for a control character.

isdigit()
checks for a digit (0 through 9).

isgraph()
checks for any printable character except space.

islower()
checks for a lowercase character.

isprint()
checks for any printable character including space.

Linux man-pages 6.13 2024-12-11 1868

isalpha(3) Library Functions Manual isalpha(3)

ispunct()
checks for any printable character which is not a space or an alphanumeric
character.

isspace()
checks for white-space characters. In the "C" and "POSIX" locales, these
are: space, form-feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal tab
('\t'), and vertical tab ('\v').

isupper()
checks for an uppercase letter.

isxdigit()
checks for hexadecimal digits, that is, one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F.

RETURN VALUE
The values returned are nonzero if the character c falls into the tested class, and zero
if not.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeisalnum(), isalpha(), isascii(), isblank(), iscntrl(),
isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit()

STANDARDS
isalnum()
isalpha()
iscntrl()
isdigit()
isgraph()
islower()
isprint()
ispunct()
isspace()
isupper()
isxdigit()
isblank()

C11, POSIX.1-2008.

isascii()
isalnum_l()
isalpha_l()
isblank_l()
iscntrl_l()
isdigit_l()
isgraph_l()
islower_l()
isprint_l()

Linux man-pages 6.13 2024-12-11 1869

isalpha(3) Library Functions Manual isalpha(3)

ispunct_l()
isspace_l()
isupper_l()
isxdigit_l()

POSIX.1-2008.

isascii_l()
GNU.

HISTORY
isalnum()
isalpha()
iscntrl()
isdigit()
isgraph()
islower()
isprint()
ispunct()
isspace()
isupper()
isxdigit()

C89, POSIX.1-2001.

isblank()
C99, POSIX.1-2001.

isascii()
POSIX.1-2001 (XSI).

POSIX.1-2008 marks it as obsolete, noting that it cannot be used portably in a
localized application.

isalnum_l()
isalpha_l()
isblank_l()
iscntrl_l()
isdigit_l()
isgraph_l()
islower_l()
isprint_l()
ispunct_l()
isspace_l()
isupper_l()
isxdigit_l()

glibc 2.3. POSIX.1-2008.

isascii_l()
glibc 2.3.

CAVEATS
The standards require that the argument c for these functions is either EOF or a value
that is representable in the type unsigned char; otherwise, the behavior is undefined.
If the argument c is of type char, it must be cast to unsigned char, as in the following

Linux man-pages 6.13 2024-12-11 1870

isalpha(3) Library Functions Manual isalpha(3)

example:

char c;
...
res = toupper((unsigned char) c);

This is necessary because char may be the equivalent of signed char, in which case a
byte where the top bit is set would be sign extended when converting to int, yielding a
value that is outside the range of unsigned char.

The details of what characters belong to which class depend on the locale. For exam-
ple, isupper() will not recognize an A-umlaut (Ä) as an uppercase letter in the default
C locale.

SEE ALSO
iswalnum(3), iswalpha(3), iswblank(3), iswcntrl(3), iswdigit(3), iswgraph(3),
iswlower(3), iswprint(3), iswpunct(3), iswspace(3), iswupper(3), iswxdigit(3), newlo-
cale(3), setlocale(3), toascii(3), tolower(3), toupper(3), uselocale(3), ascii(7), lo-
cale(7)

Linux man-pages 6.13 2024-12-11 1871

isatty(3) Library Functions Manual isatty(3)

NAME
isatty - test whether a file descriptor refers to a terminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int isatty(int fd);

DESCRIPTION
The isatty() function tests whether fd is an open file descriptor referring to a terminal.

RETURN VALUE
isatty() returns 1 if fd is an open file descriptor referring to a terminal; otherwise 0 is
returned, and errno is set to indicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

ENOTTY
fd refers to a file other than a terminal. On some older kernels, some types of
files resulted in the error EINVAL in this case (which is a violation of POSIX,
which specifies the error ENOTTY).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeisatty()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
fstat(2), ttyname(3)

Linux man-pages 6.13 2024-07-23 1872

isfdtype(3) Library Functions Manual isfdtype(3)

NAME
isfdtype - test file type of a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>
#include <sys/socket.h>

int isfdtype(int fd , int fdtype);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

isfdtype():
Since glibc 2.20:

_DEFAULT_SOURCE
Before glibc 2.20:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The isfdtype() function tests whether the file descriptor fd refers to a file of type fd-
type. The fdtype argument specifies one of the S_IF* constants defined in
<sys/stat.h> and documented in stat(2) (e.g., S_IFREG).

RETURN VALUE
The isfdtype() function returns 1 if the file descriptor fd is of type fdtype and 0 if it is
not. On failure, -1 is returned and errno is set to indicate the error.

ERRORS
The isfdtype() function can fail with any of the same errors as fstat(2).

VERSIONS
Portable applications should use fstat(2) instead.

STANDARDS
None.

HISTORY
It appeared in the draft POSIX.1g standard. It is present on OpenBSD and Tru64
UNIX (where the required header file in both cases is just <sys/stat.h>, as shown in
the POSIX.1g draft).

SEE ALSO
fstat(2)

Linux man-pages 6.13 2024-07-23 1873

isgreater(3) Library Functions Manual isgreater(3)

NAME
isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered - floating-point
relational tests without exception for NaN

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

int isgreater(x, y);
int isgreaterequal(x, y);
int isless(x, y);
int islessequal(x, y);
int islessgreater(x, y);
int isunordered(x, y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions described here:
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The normal relational operations (like <, "less than") fail if one of the operands is
NaN. This will cause an exception. To avoid this, C99 defines the macros listed be-
low.

These macros are guaranteed to evaluate their arguments only once. The arguments
must be of real floating-point type (note: do not pass integer values as arguments to
these macros, since the arguments will not be promoted to real-floating types).

isgreater()
determines (x) > (y) without an exception if x or y is NaN.

isgreaterequal()
determines (x) >= (y) without an exception if x or y is NaN.

isless()
determines (x) < (y) without an exception if x or y is NaN.

islessequal()
determines (x) <= (y) without an exception if x or y is NaN.

islessgreater()
determines (x) < (y) || (x) > (y) without an exception if x or y is NaN. This
macro is not equivalent to x != y because that expression is true if x or y is
NaN.

isunordered()
determines whether its arguments are unordered, that is, whether at least one
of the arguments is a NaN.

RETURN VALUE
The macros other than isunordered() return the result of the relational comparison;
these macros return 0 if either argument is a NaN.

isunordered() returns 1 if x or y is NaN and 0 otherwise.

Linux man-pages 6.13 2024-07-23 1874

isgreater(3) Library Functions Manual isgreater(3)

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeisgreater(), isgreaterequal(), isless(), islessequal(),
islessgreater(), isunordered()

VERSIONS
Not all hardware supports these functions, and where hardware support isn’t provided,
they will be emulated by macros. This will result in a performance penalty. Don’t
use these functions if NaN is of no concern for you.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
fpclassify(3), isnan(3)

Linux man-pages 6.13 2024-07-23 1875

iswalnum(3) Library Functions Manual iswalnum(3)

NAME
iswalnum - test for alphanumeric wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswalnum(wint_t wc);

DESCRIPTION
The iswalnum() function is the wide-character equivalent of the isalnum(3) function.
It tests whether wc is a wide character belonging to the wide-character class "alnum".

The wide-character class "alnum" is a subclass of the wide-character class "graph",
and therefore also a subclass of the wide-character class "print".

Being a subclass of the wide-character class "print", the wide-character class "alnum"
is disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "al-
num" is disjoint from the wide-character class "space" and its subclass "blank".

The wide-character class "alnum" is disjoint from the wide-character class "punct".

The wide-character class "alnum" is the union of the wide-character classes "alpha"
and "digit". As such, it also contains the wide-character class "xdigit".

The wide-character class "alnum" always contains at least the letters 'A' to 'Z', 'a' to 'z',
and the digits '0' to '9'.

RETURN VALUE
The iswalnum() function returns nonzero if wc is a wide character belonging to the
wide-character class "alnum". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswalnum()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswalnum() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
isalnum(3), iswctype(3)

Linux man-pages 6.13 2024-07-23 1876

iswalpha(3) Library Functions Manual iswalpha(3)

NAME
iswalpha - test for alphabetic wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswalpha(wint_t wc);

DESCRIPTION
The iswalpha() function is the wide-character equivalent of the isalpha(3) function.
It tests whether wc is a wide character belonging to the wide-character class "alpha".

The wide-character class "alpha" is a subclass of the wide-character class "alnum",
and therefore also a subclass of the wide-character class "graph" and of the wide-char-
acter class "print".

Being a subclass of the wide-character class "print", the wide-character class "alpha"
is disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "alpha"
is disjoint from the wide-character class "space" and its subclass "blank".

Being a subclass of the wide-character class "alnum", the wide-character class "alpha"
is disjoint from the wide-character class "punct".

The wide-character class "alpha" is disjoint from the wide-character class "digit".

The wide-character class "alpha" contains the wide-character classes "upper" and
"lower".

The wide-character class "alpha" always contains at least the letters 'A' to 'Z' and 'a' to
'z'.

RETURN VALUE
The iswalpha() function returns nonzero if wc is a wide character belonging to the
wide-character class "alpha". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswalpha()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswalpha() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
isalpha(3), iswctype(3)

Linux man-pages 6.13 2024-07-23 1877

iswblank(3) Library Functions Manual iswblank(3)

NAME
iswblank - test for whitespace wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswblank(wint_t wc);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

iswblank():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The iswblank() function is the wide-character equivalent of the isblank(3) function.
It tests whether wc is a wide character belonging to the wide-character class "blank".

The wide-character class "blank" is a subclass of the wide-character class "space".

Being a subclass of the wide-character class "space", the wide-character class "blank"
is disjoint from the wide-character class "graph" and therefore also disjoint from its
subclasses "alnum", "alpha", "upper", "lower", "digit", "xdigit", "punct".

The wide-character class "blank" always contains at least the space character and the
control character '\t'.

RETURN VALUE
The iswblank() function returns nonzero if wc is a wide character belonging to the
wide-character class "blank". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswblank()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The behavior of iswblank() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
isblank(3), iswctype(3)

Linux man-pages 6.13 2024-07-23 1878

iswcntrl(3) Library Functions Manual iswcntrl(3)

NAME
iswcntrl - test for control wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswcntrl(wint_t wc);

DESCRIPTION
The iswcntrl() function is the wide-character equivalent of the iscntrl(3) function. It
tests whether wc is a wide character belonging to the wide-character class "cntrl".

The wide-character class "cntrl" is disjoint from the wide-character class "print" and
therefore also disjoint from its subclasses "graph", "alpha", "upper", "lower", "digit",
"xdigit", "punct".

For an unsigned char c, iscntrl(c) implies iswcntrl(btowc(c)), but not vice versa.

RETURN VALUE
The iswcntrl() function returns nonzero if wc is a wide character belonging to the
wide-character class "cntrl". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswcntrl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswcntrl() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
iscntrl(3), iswctype(3)

Linux man-pages 6.13 2024-07-23 1879

iswctype(3) Library Functions Manual iswctype(3)

NAME
iswctype - wide-character classification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswctype(wint_t wc, wctype_t desc);

DESCRIPTION
If wc is a wide character having the character property designated by desc (or in other
words: belongs to the character class designated by desc), then the iswctype() func-
tion returns nonzero. Otherwise, it returns zero. If wc is WEOF, zero is returned.

desc must be a character property descriptor returned by the wctype(3) function.

RETURN VALUE
The iswctype() function returns nonzero if the wc has the designated property. Other-
wise, it returns 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeiswctype()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswctype() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
iswalnum(3), iswalpha(3), iswblank(3), iswcntrl(3), iswdigit(3), iswgraph(3),
iswlower(3), iswprint(3), iswpunct(3), iswspace(3), iswupper(3), iswxdigit(3), wc-
type(3)

Linux man-pages 6.13 2024-07-23 1880

iswdigit(3) Library Functions Manual iswdigit(3)

NAME
iswdigit - test for decimal digit wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswdigit(wint_t wc);

DESCRIPTION
The iswdigit() function is the wide-character equivalent of the isdigit(3) function. It
tests whether wc is a wide character belonging to the wide-character class "digit".

The wide-character class "digit" is a subclass of the wide-character class "xdigit", and
therefore also a subclass of the wide-character class "alnum", of the wide-character
class "graph" and of the wide-character class "print".

Being a subclass of the wide character class "print", the wide-character class "digit" is
disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "digit"
is disjoint from the wide-character class "space" and its subclass "blank".

Being a subclass of the wide-character class "alnum", the wide-character class "digit"
is disjoint from the wide-character class "punct".

The wide-character class "digit" is disjoint from the wide-character class "alpha" and
therefore also disjoint from its subclasses "lower", "upper".

The wide-character class "digit" always contains exactly the digits '0' to '9'.

RETURN VALUE
The iswdigit() function returns nonzero if wc is a wide character belonging to the
wide-character class "digit". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswdigit()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswdigit() depends on the LC_CTYPE category of the current locale.

SEE ALSO
isdigit(3), iswctype(3)

Linux man-pages 6.13 2024-07-23 1881

iswgraph(3) Library Functions Manual iswgraph(3)

NAME
iswgraph - test for graphic wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswgraph(wint_t wc);

DESCRIPTION
The iswgraph() function is the wide-character equivalent of the isgraph(3) function.
It tests whether wc is a wide character belonging to the wide-character class "graph".

The wide-character class "graph" is a subclass of the wide-character class "print".

Being a subclass of the wide-character class "print", the wide-character class "graph"
is disjoint from the wide-character class "cntrl".

The wide-character class "graph" is disjoint from the wide-character class "space" and
therefore also disjoint from its subclass "blank".

The wide-character class "graph" contains all the wide characters from the wide-char-
acter class "print" except the space character. It therefore contains the wide-character
classes "alnum" and "punct".

RETURN VALUE
The iswgraph() function returns nonzero if wc is a wide character belonging to the
wide-character class "graph". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswgraph()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswgraph() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
isgraph(3), iswctype(3)

Linux man-pages 6.13 2024-07-23 1882

iswlower(3) Library Functions Manual iswlower(3)

NAME
iswlower - test for lowercase wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswlower(wint_t wc);

DESCRIPTION
The iswlower() function is the wide-character equivalent of the islower(3) function.
It tests whether wc is a wide character belonging to the wide-character class "lower".

The wide-character class "lower" is a subclass of the wide-character class "alpha", and
therefore also a subclass of the wide-character class "alnum", of the wide-character
class "graph" and of the wide-character class "print".

Being a subclass of the wide-character class "print", the wide-character class "lower"
is disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "lower"
is disjoint from the wide-character class "space" and its subclass "blank".

Being a subclass of the wide-character class "alnum", the wide-character class "lower"
is disjoint from the wide-character class "punct".

Being a subclass of the wide-character class "alpha", the wide-character class "lower"
is disjoint from the wide-character class "digit".

The wide-character class "lower" contains at least those characters wc which are equal
to towlower(wc) and different from towupper(wc).

The wide-character class "lower" always contains at least the letters 'a' to 'z'.

RETURN VALUE
The iswlower() function returns nonzero if wc is a wide character belonging to the
wide-character class "lower". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswlower()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswlower() depends on the LC_CTYPE category of the current lo-
cale.

This function is not very appropriate for dealing with Unicode characters, because
Unicode knows about three cases: upper, lower, and title case.

Linux man-pages 6.13 2024-07-23 1883

iswlower(3) Library Functions Manual iswlower(3)

SEE ALSO
islower(3), iswctype(3), towlower(3)

Linux man-pages 6.13 2024-07-23 1884

iswprint(3) Library Functions Manual iswprint(3)

NAME
iswprint - test for printing wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswprint(wint_t wc);

DESCRIPTION
The iswprint() function is the wide-character equivalent of the isprint(3) function. It
tests whether wc is a wide character belonging to the wide-character class "print".

The wide-character class "print" is disjoint from the wide-character class "cntrl".

The wide-character class "print" contains the wide-character class "graph".

RETURN VALUE
The iswprint() function returns nonzero if wc is a wide character belonging to the
wide-character class "print". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswprint()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswprint() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
isprint(3), iswctype(3)

Linux man-pages 6.13 2024-07-23 1885

iswpunct(3) Library Functions Manual iswpunct(3)

NAME
iswpunct - test for punctuation or symbolic wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswpunct(wint_t wc);

DESCRIPTION
The iswpunct() function is the wide-character equivalent of the ispunct(3) function.
It tests whether wc is a wide character belonging to the wide-character class "punct".

The wide-character class "punct" is a subclass of the wide-character class "graph",
and therefore also a subclass of the wide-character class "print".

The wide-character class "punct" is disjoint from the wide-character class "alnum"
and therefore also disjoint from its subclasses "alpha", "upper", "lower", "digit",
"xdigit".

Being a subclass of the wide-character class "print", the wide-character class "punct"
is disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "punct"
is disjoint from the wide-character class "space" and its subclass "blank".

RETURN VALUE
The iswpunct() function returns nonzero if wc is a wide-character belonging to the
wide-character class "punct". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswpunct()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswpunct() depends on the LC_CTYPE category of the current lo-
cale.

This function’s name is a misnomer when dealing with Unicode characters, because
the wide-character class "punct" contains both punctuation characters and symbol
(math, currency, etc.) characters.

SEE ALSO
ispunct(3), iswctype(3)

Linux man-pages 6.13 2024-07-23 1886

iswspace(3) Library Functions Manual iswspace(3)

NAME
iswspace - test for whitespace wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswspace(wint_t wc);

DESCRIPTION
The iswspace() function is the wide-character equivalent of the isspace(3) function. It
tests whether wc is a wide character belonging to the wide-character class "space".

The wide-character class "space" is disjoint from the wide-character class "graph" and
therefore also disjoint from its subclasses "alnum", "alpha", "upper", "lower", "digit",
"xdigit", "punct".

The wide-character class "space" contains the wide-character class "blank".

The wide-character class "space" always contains at least the space character and the
control characters '\f', '\n', '\r', '\t', and '\v'.

RETURN VALUE
The iswspace() function returns nonzero if wc is a wide character belonging to the
wide-character class "space". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswspace()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswspace() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
isspace(3), iswctype(3)

Linux man-pages 6.13 2024-07-23 1887

iswupper(3) Library Functions Manual iswupper(3)

NAME
iswupper - test for uppercase wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswupper(wint_t wc);

DESCRIPTION
The iswupper() function is the wide-character equivalent of the isupper(3) function.
It tests whether wc is a wide character belonging to the wide-character class "upper".

The wide-character class "upper" is a subclass of the wide-character class "alpha", and
therefore also a subclass of the wide-character class "alnum", of the wide-character
class "graph" and of the wide-character class "print".

Being a subclass of the wide-character class "print", the wide-character class "upper"
is disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "upper"
is disjoint from the wide-character class "space" and its subclass "blank".

Being a subclass of the wide-character class "alnum", the wide-character class "up-
per" is disjoint from the wide-character class "punct".

Being a subclass of the wide-character class "alpha", the wide-character class "upper"
is disjoint from the wide-character class "digit".

The wide-character class "upper" contains at least those characters wc which are equal
to towupper(wc) and different from towlower(wc).

The wide-character class "upper" always contains at least the letters 'A' to 'Z'.

RETURN VALUE
The iswupper() function returns nonzero if wc is a wide character belonging to the
wide-character class "upper". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswupper()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswupper() depends on the LC_CTYPE category of the current lo-
cale.

This function is not very appropriate for dealing with Unicode characters, because
Unicode knows about three cases: upper, lower, and title case.

Linux man-pages 6.13 2024-07-23 1888

iswupper(3) Library Functions Manual iswupper(3)

SEE ALSO
isupper(3), iswctype(3), towupper(3)

Linux man-pages 6.13 2024-07-23 1889

iswxdigit(3) Library Functions Manual iswxdigit(3)

NAME
iswxdigit - test for hexadecimal digit wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswxdigit(wint_t wc);

DESCRIPTION
The iswxdigit() function is the wide-character equivalent of the isxdigit(3) function.
It tests whether wc is a wide character belonging to the wide-character class "xdigit".

The wide-character class "xdigit" is a subclass of the wide-character class "alnum",
and therefore also a subclass of the wide-character class "graph" and of the wide-char-
acter class "print".

Being a subclass of the wide-character class "print", the wide-character class "xdigit"
is disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "xdigit"
is disjoint from the wide-character class "space" and its subclass "blank".

Being a subclass of the wide-character class "alnum", the wide-character class
"xdigit" is disjoint from the wide-character class "punct".

The wide-character class "xdigit" always contains at least the letters 'A' to 'F', 'a' to 'f'
and the digits '0' to '9'.

RETURN VALUE
The iswxdigit() function returns nonzero if wc is a wide character belonging to the
wide-character class "xdigit". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswxdigit()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswxdigit() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
iswctype(3), isxdigit(3)

Linux man-pages 6.13 2024-07-23 1890

j0(3) Library Functions Manual j0(3)

NAME
j0, j0f, j0l, j1, j1f, j1l, jn, jnf, jnl - Bessel functions of the first kind

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double j0(double x);
double j1(double x);
double jn(int n, double x);

float j0f(float x);
float j1f(float x);
float jnf(int n, float x);

long double j0l(long double x);
long double j1l(long double x);
long double jnl(int n, long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

j0(), j1(), jn():
_XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

j0f(), j0l(), j1f(), j1l(), jnf(), jnl():
_XOPEN_SOURCE >= 600

|| (_ISOC99_SOURCE && _XOPEN_SOURCE)
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The j0() and j1() functions return Bessel functions of x of the first kind of orders 0
and 1, respectively. The jn() function returns the Bessel function of x of the first kind
of order n.

The j0f(), j1f(), and jnf(), functions are versions that take and return float values.
The j0l(), j1l(), and jnl() functions are versions that take and return long double val-
ues.

RETURN VALUE
On success, these functions return the appropriate Bessel value of the first kind for x.

If x is a NaN, a NaN is returned.

If x is too large in magnitude, or the result underflows, a range error occurs, and the
return value is 0.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Linux man-pages 6.13 2024-07-23 1891

j0(3) Library Functions Manual j0(3)

Range error: result underflow, or x is too large in magnitude
errno is set to ERANGE.

These functions do not raise exceptions for fetestexcept(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safej0(), j0f(), j0l()
Thread safety MT-Safej1(), j1f(), j1l()
Thread safety MT-Safejn(), jnf(), jnl()

STANDARDS
j0()
j1()
jn() POSIX.1-2008.

Others:
BSD.

HISTORY
j0()
j1()
jn() SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008.

Others:
BSD.

BUGS
There are errors of up to 2e-16 in the values returned by j0(), j1(), and jn() for values
of x between -8 and 8.

SEE ALSO
y0(3)

Linux man-pages 6.13 2024-07-23 1892

key_setsecret(3) Library Functions Manual key_setsecret(3)

NAME
key_decryptsession, key_encryptsession, key_setsecret, key_gendes, key_se-
cretkey_is_set - interfaces to rpc keyserver daemon

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <rpc/rpc.h>

int key_decryptsession(char *remotename, des_block *deskey);
int key_encryptsession(char *remotename, des_block *deskey);

int key_gendes(des_block *deskey);

int key_setsecret(char *key);
int key_secretkey_is_set(void);

DESCRIPTION
The functions here are used within the RPC’s secure authentication mechanism
(AUTH_DES). There should be no need for user programs to use this functions.

The function key_decryptsession() uses the (remote) server netname and takes the
DES key for decrypting. It uses the public key of the server and the secret key associ-
ated with the effective UID of the calling process.

The function key_encryptsession() is the inverse of key_decryptsession(). It en-
crypts the DES keys with the public key of the server and the secret key associated
with the effective UID of the calling process.

The function key_gendes() is used to ask the keyserver for a secure conversation key.

The function key_setsecret() is used to set the key for the effective UID of the calling
process.

The function key_secretkey_is_set() can be used to determine whether a key has been
set for the effective UID of the calling process.

RETURN VALUE
These functions return 1 on success and 0 on failure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safekey_decryptsession(), key_encryptsession(),
key_gendes(), key_setsecret(),
key_secretkey_is_set()

NOTES
Note that we talk about two types of encryption here. One is asymmetric using a pub-
lic and secret key. The other is symmetric, the 64-bit DES.

These routines were part of the Linux/Doors-project, abandoned by now.

SEE ALSO
crypt(3)

Linux man-pages 6.13 2024-07-23 1893

killpg(3) Library Functions Manual killpg(3)

NAME
killpg - send signal to a process group

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int killpg(int pgrp, int sig);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

killpg():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
killpg() sends the signal sig to the process group pgrp. See signal(7) for a list of sig-
nals.

If pgrp is 0, killpg() sends the signal to the calling process’s process group. (POSIX
says: if pgrp is less than or equal to 1, the behavior is undefined.)

For the permissions required to send a signal to another process, see kill(2).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EINVAL

sig is not a valid signal number.

EPERM
The process does not have permission to send the signal to any of the target
processes. For the required permissions, see kill(2).

ESRCH
No process can be found in the process group specified by pgrp.

ESRCH
The process group was given as 0 but the sending process does not have a
process group.

VERSIONS
There are various differences between the permission checking in BSD-type systems
and System V-type systems. See the POSIX rationale for kill(3p)A difference not
mentioned by POSIX concerns the return value EPERM: BSD documents that no sig-
nal is sent and EPERM returned when the permission check failed for at least one tar-
get process, while POSIX documents EPERM only when the permission check failed
for all target processes.

C library/kernel differences
On Linux, killpg() is implemented as a library function that makes the call
kill(-pgrp, sig).

Linux man-pages 6.13 2024-07-23 1894

killpg(3) Library Functions Manual killpg(3)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4BSD).

SEE ALSO
getpgrp(2), kill(2), signal(2), capabilities(7), credentials(7)

Linux man-pages 6.13 2024-07-23 1895

ldexp(3) Library Functions Manual ldexp(3)

NAME
ldexp, ldexpf, ldexpl - multiply floating-point number by integral power of 2

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double ldexp(double x, int exp);
float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ldexpf(), ldexpl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the result of multiplying the floating-point number x by 2
raised to the power exp.

RETURN VALUE
On success, these functions return x * (2^exp).

If exp is zero, then x is returned.

If x is a NaN, a NaN is returned.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is re-
turned.

If the result underflows, a range error occurs, and zero is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with a sign the same as x.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error, overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Range error, underflow
errno is set to ERANGE. An underflow floating-point exception (FE_UN-
DERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeldexp(), ldexpf(), ldexpl()

Linux man-pages 6.13 2024-07-23 1896

ldexp(3) Library Functions Manual ldexp(3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
frexp(3), modf(3), scalbln(3)

Linux man-pages 6.13 2024-07-23 1897

lgamma(3) Library Functions Manual lgamma(3)

NAME
lgamma, lgammaf, lgammal, lgamma_r, lgammaf_r, lgammal_r, signgam - log
gamma function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

double lgamma_r(double x, int *signp);
float lgammaf_r(float x, int *signp);
long double lgammal_r(long double x, int *signp);

extern int signgam;

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lgamma():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

lgammaf(), lgammal():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

lgamma_r(), lgammaf_r(), lgammal_r():
/* Since glibc 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

signgam:
_XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
For the definition of the Gamma function, see tgamma(3).

The lgamma(), lgammaf(), and lgammal() functions return the natural logarithm of
the absolute value of the Gamma function. The sign of the Gamma function is re-
turned in the external integer signgam declared in <math.h>. It is 1 when the Gamma
function is positive or zero, -1 when it is negative.

Since using a constant location signgam is not thread-safe, the functions lgamma_r(),
lgammaf_r(), and lgammal_r() have been introduced; they return the sign via the ar-
gument signp.

RETURN VALUE
On success, these functions return the natural logarithm of Gamma(x).

If x is a NaN, a NaN is returned.

Linux man-pages 6.13 2024-07-23 1898

lgamma(3) Library Functions Manual lgamma(3)

If x is 1 or 2, +0 is returned.

If x is positive infinity or negative infinity, positive infinity is returned.

If x is a nonpositive integer, a pole error occurs, and the functions return
+HUGE_VAL, +HUGE_VALF, or +HUGE_VALL, respectively.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the correct mathematical sign.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Pole error: x is a nonpositive integer
errno is set to ERANGE (but see BUGS). A divide-by-zero floating-point ex-
ception (FE_DIVBYZERO) is raised.

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

STANDARDS
lgamma()
lgammaf()
lgammal()

C11, POSIX.1-2008.

signgam
POSIX.1-2008.

lgamma_r()
lgammaf_r()
lgammal_r()

None.

HISTORY
lgamma()
lgammaf()
lgammal()

C99, POSIX.1-2001.

signgam
POSIX.1-2001.

lgamma_r()
lgammaf_r()
lgammal_r()

None.

BUGS
In glibc 2.9 and earlier, when a pole error occurs, errno is set to EDOM; instead of
the POSIX-mandated ERANGE. Since glibc 2.10, glibc does the right thing.

Linux man-pages 6.13 2024-07-23 1899

lgamma(3) Library Functions Manual lgamma(3)

SEE ALSO
tgamma(3)

Linux man-pages 6.13 2024-07-23 1900

lio_listio(3) Library Functions Manual lio_listio(3)

NAME
lio_listio - initiate a list of I/O requests

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int lio_listio(int mode,
struct aiocb *restrict const aiocb_list[restrict],
int n, struct sigevent *restrict sevp);

DESCRIPTION
The lio_listio() function initiates the list of I/O operations described by the array
aiocb_list.

The mode operation has one of the following values:

LIO_WAIT
The call blocks until all operations are complete. The sevp argument is ig-
nored.

LIO_NOWAIT
The I/O operations are queued for processing and the call returns immediately.
When all of the I/O operations complete, asynchronous notification occurs, as
specified by the sevp argument; see sigevent(3type) for details. If sevp is
NULL, no asynchronous notification occurs.

The aiocb_list argument is an array of pointers to aiocb structures that describe I/O
operations. These operations are executed in an unspecified order. The n argument
specifies the size of the array aiocb_list. Null pointers in aiocb_list are ignored.

In each control block in aiocb_list, the aio_lio_opcode field specifies the I/O opera-
tion to be initiated, as follows:

LIO_READ
Initiate a read operation. The operation is queued as for a call to aio_read(3)
specifying this control block.

LIO_WRITE
Initiate a write operation. The operation is queued as for a call to aio_write(3)
specifying this control block.

LIO_NOP
Ignore this control block.

The remaining fields in each control block have the same meanings as for aio_read(3)
and aio_write(3). The aio_sigevent fields of each control block can be used to specify
notifications for the individual I/O operations (see sigevent(7)).

RETURN VALUE
If mode is LIO_NOWAIT, lio_listio() returns 0 if all I/O operations are successfully
queued. Otherwise, -1 is returned, and errno is set to indicate the error.

If mode is LIO_WAIT, lio_listio() returns 0 when all of the I/O operations have com-
pleted successfully. Otherwise, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.13 2024-11-17 1901

lio_listio(3) Library Functions Manual lio_listio(3)

The return status from lio_listio() provides information only about the call itself, not
about the individual I/O operations. One or more of the I/O operations may fail, but
this does not prevent other operations completing. The status of individual I/O opera-
tions in aiocb_list can be determined using aio_error(3). When an operation has
completed, its return status can be obtained using aio_return(3). Individual I/O opera-
tions can fail for the reasons described in aio_read(3) and aio_write(3).

ERRORS
The lio_listio() function may fail for the following reasons:

EAGAIN
Out of resources.

EAGAIN
The number of I/O operations specified by n would cause the limit
AIO_MAX to be exceeded.

EINTR
mode was LIO_WAIT and a signal was caught before all I/O operations com-
pleted; see signal(7). (This may even be one of the signals used for asynchro-
nous I/O completion notification.)

EINVAL
mode is invalid, or n exceeds the limit AIO_LISTIO_MAX.

EIO One of more of the operations specified by aiocb_list failed. The application
can check the status of each operation using aio_return(3).

If lio_listio() fails with the error EAGAIN, EINTR, or EIO, then some of the opera-
tions in aiocb_list may have been initiated. If lio_listio() fails for any other reason,
then none of the I/O operations has been initiated.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelio_listio()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

NOTES
It is a good idea to zero out the control blocks before use. The control blocks must
not be changed while the I/O operations are in progress. The buffer areas being read
into or written from must not be accessed during the operations or undefined results
may occur. The memory areas involved must remain valid.

Simultaneous I/O operations specifying the same aiocb structure produce undefined
results.

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_return(3), aio_suspend(3),
aio_write(3), aio(7)

Linux man-pages 6.13 2024-11-17 1902

LIST (3) Library Functions Manual LIST (3)

NAME
LIST_EMPTY, LIST_ENTRY, LIST_FIRST, LIST_FOREACH, LIST_HEAD,
LIST_HEAD_INITIALIZER, LIST_INIT, LIST_INSERT_AFTER, LIST_IN-
SERT_BEFORE, LIST_INSERT_HEAD, LIST_NEXT, LIST_REMOVE - imple-
mentation of a doubly linked list

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/queue.h>

LIST_ENTRY(TYPE);

LIST_HEAD(HEADNAME, TYPE);
LIST_HEAD LIST_HEAD_INITIALIZER(LIST_HEAD head);
void LIST_INIT(LIST_HEAD *head);

int LIST_EMPTY(LIST_HEAD *head);

void LIST_INSERT_HEAD(LIST_HEAD *head ,
struct TYPE *elm, LIST_ENTRY NAME);

void LIST_INSERT_BEFORE(struct TYPE *listelm,
struct TYPE *elm, LIST_ENTRY NAME);

void LIST_INSERT_AFTER(struct TYPE *listelm,
struct TYPE *elm, LIST_ENTRY NAME);

struct TYPE *LIST_FIRST(LIST_HEAD *head);
struct TYPE *LIST_NEXT(struct TYPE *elm, LIST_ENTRY NAME);

LIST_FOREACH(struct TYPE *var, LIST_HEAD *head , LIST_ENTRY NAME);

void LIST_REMOVE(struct TYPE *elm, LIST_ENTRY NAME);

DESCRIPTION
These macros define and operate on doubly linked lists.

In the macro definitions, TYPE is the name of a user-defined structure, that must con-
tain a field of type LIST_ENTRY , named NAME. The argument HEADNAME is the
name of a user-defined structure that must be declared using the macro
LIST_HEAD().

Creation
A list is headed by a structure defined by the LIST_HEAD() macro. This structure
contains a single pointer to the first element on the list. The elements are doubly
linked so that an arbitrary element can be removed without traversing the list. New
elements can be added to the list after an existing element, before an existing element,
or at the head of the list. A LIST_HEAD structure is declared as follows:

LIST_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type
of the elements to be linked into the list. A pointer to the head of the list can later be
declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

Linux man-pages 6.13 2024-07-23 1903

LIST (3) Library Functions Manual LIST (3)

LIST_ENTRY() declares a structure that connects the elements in the list.

LIST_HEAD_INITIALIZER() evaluates to an initializer for the list head .

LIST_INIT() initializes the list referenced by head .

LIST_EMPTY() evaluates to true if there are no elements in the list.

Insertion
LIST_INSERT_HEAD() inserts the new element elm at the head of the list.

LIST_INSERT_BEFORE() inserts the new element elm before the element listelm.

LIST_INSERT_AFTER() inserts the new element elm after the element listelm.

Traversal
LIST_FIRST() returns the first element in the list, or NULL if the list is empty.

LIST_NEXT() returns the next element in the list, or NULL if this is the last.

LIST_FOREACH() traverses the list referenced by head in the forward direction, as-
signing each element in turn to var.

Removal
LIST_REMOVE() removes the element elm from the list.

RETURN VALUE
LIST_EMPTY() returns nonzero if the list is empty, and zero if the list contains at
least one entry.

LIST_FIRST(), and LIST_NEXT() return a pointer to the first or next TYPE struc-
ture, respectively.

LIST_HEAD_INITIALIZER() returns an initializer that can be assigned to the list
head .

STANDARDS
BSD.

HISTORY
4.4BSD.

BUGS
LIST_FOREACH() doesn’t allow var to be removed or freed within the loop, as it
would interfere with the traversal. LIST_FOREACH_SAFE(), which is present on
the BSDs but is not present in glibc, fixes this limitation by allowing var to safely be
removed from the list and freed from within the loop without interfering with the tra-
versal.

EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>

struct entry {
int data;
LIST_ENTRY(entry) entries; /* List */

};

Linux man-pages 6.13 2024-07-23 1904

LIST (3) Library Functions Manual LIST (3)

LIST_HEAD(listhead, entry);

int
main(void)
{

struct entry *n1, *n2, *n3, *np;
struct listhead head; /* List head */
int i;

LIST_INIT(&head); /* Initialize the list */

n1 = malloc(sizeof(struct entry)); /* Insert at the head */
LIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after */
LIST_INSERT_AFTER(n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before */
LIST_INSERT_BEFORE(n2, n3, entries);

i = 0; /* Forward traversal */
LIST_FOREACH(np, &head, entries)

np->data = i++;

LIST_REMOVE(n2, entries); /* Deletion */
free(n2);

/* Forward traversal */
LIST_FOREACH(np, &head, entries)

printf("%i\n", np->data);
/* List deletion */

n1 = LIST_FIRST(&head);
while (n1 != NULL) {

n2 = LIST_NEXT(n1, entries);
free(n1);
n1 = n2;

}
LIST_INIT(&head);

exit(EXIT_SUCCESS);
}

SEE ALSO
insque(3), queue(7)

Linux man-pages 6.13 2024-07-23 1905

LIST (3) Library Functions Manual LIST (3)

Linux man-pages 6.13 2024-07-23 1906

localeconv(3) Library Functions Manual localeconv(3)

NAME
localeconv - get numeric formatting information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <locale.h>

struct lconv *localeconv(void);

DESCRIPTION
The localeconv() function returns a pointer to a struct lconv for the current locale.
This structure is shown in locale(7), and contains all values associated with the locale
categories LC_NUMERIC and LC_MONETARY. Programs may also use the func-
tions printf(3) and strfmon(3), which behave according to the actual locale in use.

RETURN VALUE
The localeconv() function returns a pointer to a filled in struct lconv. This structure
may be (in glibc, is) statically allocated, and may be overwritten by subsequent calls.
According to POSIX, the caller should not modify the contents of this structure. The
localeconv() function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetylocaleconv() MT-Unsafe race:localeconv locale

STANDARDS
C11.

HISTORY
C89.

BUGS
The printf(3) family of functions may or may not honor the current locale.

SEE ALSO
locale(1), localedef(1), isalpha(3), nl_langinfo(3), setlocale(3), strcoll(3), strftime(3),
locale(7)

Linux man-pages 6.13 2024-07-23 1907

lockf (3) Library Functions Manual lockf (3)

NAME
lockf - apply, test or remove a POSIX lock on an open file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int lockf(int fd , int op, off_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lockf():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Apply, test, or remove a POSIX lock on a section of an open file. The file is specified
by fd , a file descriptor open for writing, the action by op, and the section consists of
byte positions pos..pos+size-1 if size is positive, and pos-size..pos-1 if size is nega-
tive, where pos is the current file position, and if size is zero, the section extends from
the current file position to infinity, encompassing the present and future end-of-file po-
sitions. In all cases, the section may extend past current end-of-file.

On Linux, lockf() is just an interface on top of fcntl(2) locking. Many other systems
implement lockf() in this way, but note that POSIX.1 leaves the relationship between
lockf() and fcntl(2) locks unspecified. A portable application should probably avoid
mixing calls to these interfaces.

Valid operations are given below:

F_LOCK
Set an exclusive lock on the specified section of the file. If (part of) this sec-
tion is already locked, the call blocks until the previous lock is released. If this
section overlaps an earlier locked section, both are merged. File locks are re-
leased as soon as the process holding the locks closes some file descriptor for
the file. A child process does not inherit these locks.

F_TLOCK
Same as F_LOCK but the call never blocks and returns an error instead if the
file is already locked.

F_ULOCK
Unlock the indicated section of the file. This may cause a locked section to be
split into two locked sections.

F_TEST
Test the lock: return 0 if the specified section is unlocked or locked by this
process; return -1, set errno to EAGAIN (EACCES on some other systems),
if another process holds a lock.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

Linux man-pages 6.13 2024-11-17 1908

lockf (3) Library Functions Manual lockf (3)

ERRORS
EACCES or EAGAIN

The file is locked and F_TLOCK or F_TEST was specified, or the operation
is prohibited because the file has been memory-mapped by another process.

EBADF
fd is not an open file descriptor; or op is F_LOCK or F_TLOCK and fd is
not a writable file descriptor.

EDEADLK
op was F_LOCK and this lock operation would cause a deadlock.

EINTR
While waiting to acquire a lock, the call was interrupted by delivery of a signal
caught by a handler; see signal(7).

EINVAL
An invalid operation was specified in op.

ENOLCK
Too many segment locks open, lock table is full.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelockf()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

SEE ALSO
fcntl(2), flock(2)

locks.txt and mandatory-locking.txt in the Linux kernel source directory Documenta-
tion/filesystems (on older kernels, these files are directly under the Documentation di-
rectory, and mandatory-locking.txt is called mandatory.txt)

Linux man-pages 6.13 2024-11-17 1909

log(3) Library Functions Manual log(3)

NAME
log, logf, logl - natural logarithmic function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double log(double x);
float logf(float x);
long double logl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

logf(), logl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the natural logarithm of x.

RETURN VALUE
On success, these functions return the natural logarithm of x.

If x is a NaN, a NaN is returned.

If x is 1, the result is +0.

If x is positive infinity, positive infinity is returned.

If x is zero, then a pole error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively.

If x is negative (including negative infinity), then a domain error occurs, and a NaN
(not a number) is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is negative
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Pole error: x is zero
errno is set to ERANGE. A divide-by-zero floating-point exception (FE_DI-
VBYZERO) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelog(), logf(), logl()

Linux man-pages 6.13 2024-07-23 1910

log(3) Library Functions Manual log(3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
In glibc 2.5 and earlier, taking the log() of a NaN produces a bogus invalid floating-
point (FE_INVALID) exception.

SEE ALSO
cbrt(3), clog(3), log10(3), log1p(3), log2(3), sqrt(3)

Linux man-pages 6.13 2024-07-23 1911

log2(3) Library Functions Manual log2(3)

NAME
log2, log2f, log2l - base-2 logarithmic function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double log2(double x);
float log2f(float x);
long double log2l(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

log2(), log2f(), log2l():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return the base-2 logarithm of x.

RETURN VALUE
On success, these functions return the base-2 logarithm of x.

For special cases, including where x is 0, 1, negative, infinity, or NaN, see log(3).

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

For a discussion of the errors that can occur for these functions, see log(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelog2(), log2f(), log2l()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
cbrt(3), clog2(3), log(3), log10(3), sqrt(3)

Linux man-pages 6.13 2024-07-23 1912

log10(3) Library Functions Manual log10(3)

NAME
log10, log10f, log10l - base-10 logarithmic function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double log10(double x);
float log10f(float x);
long double log10l(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

log10f(), log10l():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the base-10 logarithm of x.

RETURN VALUE
On success, these functions return the base-10 logarithm of x.

For special cases, including where x is 0, 1, negative, infinity, or NaN, see log(3).

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

For a discussion of the errors that can occur for these functions, see log(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelog10(), log10f(), log10l()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
cbrt(3), clog10(3), exp10(3), log(3), log2(3), sqrt(3)

Linux man-pages 6.13 2024-07-23 1913

log1p(3) Library Functions Manual log1p(3)

NAME
log1p, log1pf, log1pl - logarithm of 1 plus argument

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

log1p():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

log1pf(), log1pl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return a value equivalent to

log (1 + x)

The result is computed in a way that is accurate even if the value of x is near zero.

RETURN VALUE
On success, these functions return the natural logarithm of (1 + x).

If x is a NaN, a NaN is returned.

If x is positive infinity, positive infinity is returned.

If x is -1, a pole error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively.

If x is less than -1 (including negative infinity), a domain error occurs, and a NaN
(not a number) is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is less than -1.
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

Pole error: x is -1.
errno is set to ERANGE (but see BUGS). A divide-by-zero floating-point ex-
ception (FE_DIVBYZERO) is raised.

Linux man-pages 6.13 2024-11-17 1914

log1p(3) Library Functions Manual log1p(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelog1p(), log1pf(), log1pl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

BUGS
Before glibc 2.22, the glibc implementation did not set errno to EDOM when a do-
main error occurred.

Before glibc 2.22, the glibc implementation did not set errno to ERANGE when a
range error occurred.

SEE ALSO
exp(3), expm1(3), log(3)

Linux man-pages 6.13 2024-11-17 1915

logb(3) Library Functions Manual logb(3)

NAME
logb, logbf, logbl - get exponent of a floating-point value

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double logb(double x);
float logbf(float x);
long double logbl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

logb():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

logbf(), logbl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions extract the exponent from the internal floating-point representation of
x and return it as a floating-point value. The integer constant FLT_RADIX, defined
in <float.h>, indicates the radix used for the system’s floating-point representation. If
FLT_RADIX is 2, logb(x) is similar to floor(log2(fabs(x))), except that the latter
may give an incorrect integer due to intermediate rounding.

If x is subnormal, logb() returns the exponent x would have if it were normalized.

RETURN VALUE
On success, these functions return the exponent of x.

If x is a NaN, a NaN is returned.

If x is zero, then a pole error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively.

If x is negative infinity or positive infinity, then positive infinity is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Pole error: x is 0
A divide-by-zero floating-point exception (FE_DIVBYZERO) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1916

logb(3) Library Functions Manual logb(3)

Interface Attribute Value
Thread safety MT-Safelogb(), logbf(), logbl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

logb() 4.3BSD (see IEEE.3 in the 4.3BSD manual).

SEE ALSO
ilogb(3), log(3)

Linux man-pages 6.13 2024-07-23 1917

login(3) Library Functions Manual login(3)

NAME
login, logout - write utmp and wtmp entries

LIBRARY
System utilities library (libutil, -lutil)

SYNOPSIS
#include <utmp.h>

void login(const struct utmp *ut);
int logout(const char *ut_line);

DESCRIPTION
The utmp file records who is currently using the system. The wtmp file records all lo-
gins and logouts. See utmp(5).

The function login() takes the supplied struct utmp, ut, and writes it to both the utmp
and the wtmp file.

The function logout() clears the entry in the utmp file again.

GNU details
More precisely, login() takes the argument ut struct, fills the field ut->ut_type (if
there is such a field) with the value USER_PROCESS, and fills the field ut->ut_pid
(if there is such a field) with the process ID of the calling process. Then it tries to fill
the field ut->ut_line. It takes the first of stdin, stdout, stderr that is a terminal, and
stores the corresponding pathname minus a possible leading /dev/ into this field, and
then writes the struct to the utmp file. On the other hand, if no terminal name was
found, this field is filled with "???" and the struct is not written to the utmp file. After
this, the struct is written to the wtmp file.

The logout() function searches the utmp file for an entry matching the ut_line argu-
ment. If a record is found, it is updated by zeroing out the ut_name and ut_host
fields, updating the ut_tv timestamp field and setting ut_type (if there is such a field)
to DEAD_PROCESS.

RETURN VALUE
The logout() function returns 1 if the entry was successfully written to the database,
or 0 if an error occurred.

FILES
/var/run/utmp

user accounting database, configured through _PATH_UTMP in <paths.h>

/var/log/wtmp
user accounting log file, configured through _PATH_WTMP in <paths.h>

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetylogin(), logout() MT-Unsafe race:utent sig:ALRM timer

In the above table, utent in race:utent signifies that if any of the functions setutent(3),
getutent(3), or endutent(3) are used in parallel in different threads of a program, then
data races could occur. login() and logout() calls those functions, so we use
race:utent to remind users.

Linux man-pages 6.13 2024-07-23 1918

login(3) Library Functions Manual login(3)

VERSIONS
The member ut_user of struct utmp is called ut_name in BSD. Therefore, ut_name is
defined as an alias for ut_user in <utmp.h>.

STANDARDS
BSD.

SEE ALSO
getutent(3), utmp(5)

Linux man-pages 6.13 2024-07-23 1919

lrint(3) Library Functions Manual lrint(3)

NAME
lrint, lrintf, lrintl, llrint, llrintf, llrintl - round to nearest integer

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions round their argument to the nearest integer value, using the current
rounding direction (see fesetround(3)).

Note that unlike the rint(3) family of functions, the return type of these functions dif-
fers from that of their arguments.

RETURN VALUE
These functions return the rounded integer value.

If x is a NaN or an infinity, or the rounded value is too large to be stored in a long
(long long in the case of the ll* functions), then a domain error occurs, and the return
value is unspecified.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is a NaN or infinite, or the rounded value is too large
An invalid floating-point exception (FE_INVALID) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelrint(), lrintf(), lrintl(), llrint(), llrintf(), llrintl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

Linux man-pages 6.13 2024-07-23 1920

lrint(3) Library Functions Manual lrint(3)

SEE ALSO
ceil(3), floor(3), lround(3), nearbyint(3), rint(3), round(3)

Linux man-pages 6.13 2024-07-23 1921

lround(3) Library Functions Manual lround(3)

NAME
lround, lroundf, lroundl, llround, llroundf, llroundl - round to nearest integer

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions round their argument to the nearest integer value, rounding halfway
cases away from zero, regardless of the current rounding direction (see fenv(3)).

Note that unlike the round(3) and ceil(3), functions, the return type of these functions
differs from that of their arguments.

RETURN VALUE
These functions return the rounded integer value.

If x is a NaN or an infinity, or the rounded value is too large to be stored in a long
(long long in the case of the ll* functions), then a domain error occurs, and the return
value is unspecified.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is a NaN or infinite, or the rounded value is too large
An invalid floating-point exception (FE_INVALID) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelround(), lroundf(), lroundl(), llround(), llroundf(),
llroundl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

Linux man-pages 6.13 2024-07-23 1922

lround(3) Library Functions Manual lround(3)

SEE ALSO
ceil(3), floor(3), lrint(3), nearbyint(3), rint(3), round(3)

Linux man-pages 6.13 2024-07-23 1923

lsearch(3) Library Functions Manual lsearch(3)

NAME
lfind, lsearch - linear search of an array

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <search.h>

void *lfind(const void key[.size], const void base[*.n * .size],
size_t *n, size_t size,
typeof(int (const void [.size], const void [.size]))

*compar);
void *lsearch(const void key[.size], void base[*.n * .size],

size_t *n, size_t size,
typeof(int (const void [.size], const void [.size]))

*compar);

DESCRIPTION
lfind() and lsearch() perform a linear search for key in the array base which has *n el-
ements of size bytes each. The comparison function referenced by compar is ex-
pected to have two arguments which point to the key object and to an array member,
in that order, and which returns zero if the key object matches the array member, and
nonzero otherwise.

If lsearch() does not find a matching element, then the key object is inserted at the end
of the table, and *n is incremented. In particular, one should know that a matching el-
ement exists, or that more room is available.

RETURN VALUE
lfind() returns a pointer to a matching member of the array, or NULL if no match is
found. lsearch() returns a pointer to a matching member of the array, or to the newly
added member if no match is found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelfind(), lsearch()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD. libc-4.6.27.

BUGS
The naming is unfortunate.

SEE ALSO
bsearch(3), hsearch(3), tsearch(3)

Linux man-pages 6.13 2024-12-13 1924

lseek64(3) Library Functions Manual lseek64(3)

NAME
lseek64 - reposition 64-bit read/write file offset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _LARGEFILE64_SOURCE /* See feature_test_macros(7) */
#include <sys/types.h>
#include <unistd.h>

off64_t lseek64(int fd , off64_t offset, int whence);

DESCRIPTION
The lseek() family of functions reposition the offset of the open file associated with
the file descriptor fd to offset bytes relative to the start, current position, or end of the
file, when whence has the value SEEK_SET, SEEK_CUR, or SEEK_END, respec-
tively.

For more details, return value, and errors, see lseek(2).

Four interfaces are available: lseek(), lseek64(), llseek(), and _llseek().

lseek()
Prototype:

off_t lseek(int fd, off_t offset, int whence);

The C library’s lseek() wrapper function uses the type off_t. This is a 32-bit signed
type on 32-bit architectures, unless one compiles with

#define _FILE_OFFSET_BITS 64

in which case it is a 64-bit signed type.

lseek64()
Prototype:

off64_t lseek64(int fd, off64_t offset, int whence);

The lseek64() library function uses a 64-bit type even when off_t is a 32-bit type. Its
prototype (and the type off64_t) is available only when one compiles with

#define _LARGEFILE64_SOURCE

The function lseek64() is available since glibc 2.1.

llseek()
Prototype:

loff_t llseek(int fd, loff_t offset, int whence);

The type loff_t is a 64-bit signed type. The llseek() library function is available in
glibc and works without special defines. However, the glibc headers do not provide a
prototype. Users should add the above prototype, or something equivalent, to their
own source. When users complained about data loss caused by a miscompilation of
e2fsck(8), glibc 2.1.3 added the link-time warning

"the `llseek´ function may be dangerous; use `lseek64´ instead."

This makes this function unusable if one desires a warning-free compilation.

Linux man-pages 6.13 2024-07-23 1925

lseek64(3) Library Functions Manual lseek64(3)

Since glibc 2.28, this function symbol is no longer available to newly linked applica-
tions.

_llseek()
On 32-bit architectures, this is the system call that is used (by the C library wrapper
functions) to implement all of the above functions. The prototype is:

int _llseek(int fd, off_t offset_hi, off_t offset_lo,
loff_t *result, int whence);

For more details, see llseek(2).

64-bit systems don’t need an _llseek() system call. Instead, they have an lseek(2) sys-
tem call that supports 64-bit file offsets.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelseek64()

NOTES
lseek64() is one of the functions that was specified in the Large File Summit (LFS)
specification that was completed in 1996. The purpose of the specification was to
provide transitional support that allowed applications on 32-bit systems to access files
whose size exceeds that which can be represented with a 32-bit off_t type. As noted
above, this symbol is exposed by header files if the _LARGEFILE64_SOURCE fea-
ture test macro is defined. ALternatively, on a 32-bit system, the symbol lseek is
aliased to lseek64 if the macro _FILE_OFFSET_BITS is defined with the value 64.

SEE ALSO
llseek(2), lseek(2)

Linux man-pages 6.13 2024-07-23 1926

makecontext(3) Library Functions Manual makecontext(3)

NAME
makecontext, swapcontext - manipulate user context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ucontext.h>

void makecontext(ucontext_t *ucp, typeof(void (int arg0, ...)) * func,
int argc, ...);

int swapcontext(ucontext_t *restrict oucp,
const ucontext_t *restrict ucp);

DESCRIPTION
In a System V-like environment, one has the type ucontext_t (defined in <ucontext.h>
and described in getcontext(3)) and the four functions getcontext(3), setcontext(3),
makecontext(), and swapcontext() that allow user-level context switching between
multiple threads of control within a process.

The makecontext() function modifies the context pointed to by ucp (which was ob-
tained from a call to getcontext(3)). Before invoking makecontext(), the caller must
allocate a new stack for this context and assign its address to ucp->uc_stack, and de-
fine a successor context and assign its address to ucp->uc_link.

When this context is later activated (using setcontext(3) or swapcontext()) the function
func is called, and passed the series of integer (int) arguments that follow argc; the
caller must specify the number of these arguments in argc. When this function re-
turns, the successor context is activated. If the successor context pointer is NULL, the
thread exits.

The swapcontext() function saves the current context in the structure pointed to by
oucp, and then activates the context pointed to by ucp.

RETURN VALUE
When successful, swapcontext() does not return. (But we may return later, in case
oucp is activated, in which case it looks like swapcontext() returns 0.) On error,
swapcontext() returns -1 and sets errno to indicate the error.

ERRORS
ENOMEM

Insufficient stack space left.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetymakecontext() MT-Safe race:ucp
Thread safetyswapcontext() MT-Safe race:oucp race:ucp

STANDARDS
None.

HISTORY
glibc 2.1. SUSv2, POSIX.1-2001. Removed in POSIX.1-2008, citing portability is-
sues, and recommending that applications be rewritten to use POSIX threads instead.

Linux man-pages 6.13 2024-12-13 1927

makecontext(3) Library Functions Manual makecontext(3)

NOTES
The interpretation of ucp->uc_stack is just as in sigaltstack(2), namely, this struct
contains the start and length of a memory area to be used as the stack, regardless of
the direction of growth of the stack. Thus, it is not necessary for the user program to
worry about this direction.

On architectures where int and pointer types are the same size (e.g., x86-32, where
both types are 32 bits), you may be able to get away with passing pointers as argu-
ments to makecontext() following argc. However, doing this is not guaranteed to be
portable, is undefined according to the standards, and won’t work on architectures
where pointers are larger than ints. Nevertheless, starting with glibc 2.8, glibc makes
some changes to makecontext(), to permit this on some 64-bit architectures (e.g.,
x86-64).

EXAMPLES
The example program below demonstrates the use of getcontext(3), makecontext(),
and swapcontext(). Running the program produces the following output:

$./a.out
main: swapcontext(&uctx_main, &uctx_func2)
func2: started
func2: swapcontext(&uctx_func2, &uctx_func1)
func1: started
func1: swapcontext(&uctx_func1, &uctx_func2)
func2: returning
func1: returning
main: exiting

Program source

#include <stdio.h>
#include <stdlib.h>
#include <ucontext.h>

static ucontext_t uctx_main, uctx_func1, uctx_func2;

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

static void
func1(void)
{

printf("%s: started\n", __func__);
printf("%s: swapcontext(&uctx_func1, &uctx_func2)\n", __func__);
if (swapcontext(&uctx_func1, &uctx_func2) == -1)

handle_error("swapcontext");
printf("%s: returning\n", __func__);

}

static void
func2(void)

Linux man-pages 6.13 2024-12-13 1928

makecontext(3) Library Functions Manual makecontext(3)

{
printf("%s: started\n", __func__);
printf("%s: swapcontext(&uctx_func2, &uctx_func1)\n", __func__);
if (swapcontext(&uctx_func2, &uctx_func1) == -1)

handle_error("swapcontext");
printf("%s: returning\n", __func__);

}

int
main(int argc, char *argv[])
{

char func1_stack[16384];
char func2_stack[16384];

if (getcontext(&uctx_func1) == -1)
handle_error("getcontext");

uctx_func1.uc_stack.ss_sp = func1_stack;
uctx_func1.uc_stack.ss_size = sizeof(func1_stack);
uctx_func1.uc_link = &uctx_main;
makecontext(&uctx_func1, func1, 0);

if (getcontext(&uctx_func2) == -1)
handle_error("getcontext");

uctx_func2.uc_stack.ss_sp = func2_stack;
uctx_func2.uc_stack.ss_size = sizeof(func2_stack);
/* Successor context is f1(), unless argc > 1 */
uctx_func2.uc_link = (argc > 1) ? NULL : &uctx_func1;
makecontext(&uctx_func2, func2, 0);

printf("%s: swapcontext(&uctx_main, &uctx_func2)\n", __func__);
if (swapcontext(&uctx_main, &uctx_func2) == -1)

handle_error("swapcontext");

printf("%s: exiting\n", __func__);
exit(EXIT_SUCCESS);

}

SEE ALSO
sigaction(2), sigaltstack(2), sigprocmask(2), getcontext(3), sigsetjmp(3)

Linux man-pages 6.13 2024-12-13 1929

makedev(3) Library Functions Manual makedev(3)

NAME
makedev, major, minor - manage a device number

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sysmacros.h>

dev_t makedev(unsigned int maj, unsigned int min);

unsigned int major(dev_t dev);
unsigned int minor(dev_t dev);

DESCRIPTION
A device ID consists of two parts: a major ID, identifying the class of the device, and
a minor ID, identifying a specific instance of a device in that class. A device ID is
represented using the type dev_t.

Given major and minor device IDs, makedev() combines these to produce a device
ID, returned as the function result. This device ID can be given to mknod(2), for ex-
ample.

The major() and minor() functions perform the converse task: given a device ID, they
return, respectively, the major and minor components. These macros can be useful to,
for example, decompose the device IDs in the structure returned by stat(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemakedev(), major(), minor()

VERSIONS
The BSDs expose the definitions for these macros via <sys/types.h>.

STANDARDS
None.

HISTORY
BSD, HP-UX, Solaris, AIX, Irix.

These interfaces are defined as macros. Since glibc 2.3.3, they have been aliases for
three GNU-specific functions: gnu_dev_makedev(), gnu_dev_major(), and
gnu_dev_minor(). The latter names are exported, but the traditional names are more
portable.

Depending on the version, glibc also exposes definitions for these macros from
<sys/types.h> if suitable feature test macros are defined. However, this behavior was
deprecated in glibc 2.25, and since glibc 2.28, <sys/types.h> no longer provides these
definitions.

SEE ALSO
mknod(2), stat(2)

Linux man-pages 6.13 2024-07-23 1930

mallinfo(3) Library Functions Manual mallinfo(3)

NAME
mallinfo, mallinfo2 - obtain memory allocation information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

struct mallinfo mallinfo(void);
struct mallinfo2 mallinfo2(void);

DESCRIPTION
These functions return a copy of a structure containing information about memory al-
locations performed by malloc(3) and related functions. The structure returned by
each function contains the same fields. However, the older function, mallinfo(), is
deprecated since the type used for the fields is too small (see BUGS).

Note that not all allocations are visible to these functions; see BUGS and consider us-
ing malloc_info(3) instead.

The mallinfo2 structure returned by mallinfo2() is defined as follows:

struct mallinfo2 {
size_t arena; /* Non-mmapped space allocated (bytes) */
size_t ordblks; /* Number of free chunks */
size_t smblks; /* Number of free fastbin blocks */
size_t hblks; /* Number of mmapped regions */
size_t hblkhd; /* Space allocated in mmapped regions

(bytes) */
size_t usmblks; /* See below */
size_t fsmblks; /* Space in freed fastbin blocks (bytes) */
size_t uordblks; /* Total allocated space (bytes) */
size_t fordblks; /* Total free space (bytes) */
size_t keepcost; /* Top-most, releasable space (bytes) */

};

The mallinfo structure returned by the deprecated mallinfo() function is exactly the
same, except that the fields are typed as int.

The structure fields contain the following information:

arena The total amount of memory allocated by means other than mmap(2) (i.e.,
memory allocated on the heap). This figure includes both in-use blocks
and blocks on the free list.

ordblks The number of ordinary (i.e., non-fastbin) free blocks.

smblks The number of fastbin free blocks (see mallopt(3)).

hblks The number of blocks currently allocated using mmap(2). (See the dis-
cussion of M_MMAP_THRESHOLD in mallopt(3).)

hblkhd The number of bytes in blocks currently allocated using mmap(2).

usmblks This field is unused, and is always 0. Historically, it was the "highwater
mark" for allocated space—that is, the maximum amount of space that
was ever allocated (in bytes); this field was maintained only in

Linux man-pages 6.13 2024-07-23 1931

mallinfo(3) Library Functions Manual mallinfo(3)

nonthreading environments.

fsmblks The total number of bytes in fastbin free blocks.

uordblks The total number of bytes used by in-use allocations.

fordblks The total number of bytes in free blocks.

keepcost The total amount of releasable free space at the top of the heap. This is
the maximum number of bytes that could ideally (i.e., ignoring page
alignment restrictions, and so on) be released by malloc_trim(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetymallinfo(), mallinfo2() MT-Unsafe init const:mallopt

mallinfo()/ mallinfo2() would access some global internal objects. If modify them
with non-atomically, may get inconsistent results. The identifier mallopt in
const:mallopt mean that mallopt() would modify the global internal objects with
atomics, that make sure mallinfo()/ mallinfo2() is safe enough, others modify with
non-atomically maybe not.

STANDARDS
None.

HISTORY
mallinfo()

glibc 2.0. SVID.

mallinfo2()
glibc 2.33.

BUGS
Information is returned for only the main memory allocation area. Allocations in
other arenas are excluded. See malloc_stats(3) and malloc_info(3) for alternatives
that include information about other arenas.

The fields of the mallinfo structure that is returned by the older mallinfo() function
are typed as int. However, because some internal bookkeeping values may be of type
long, the reported values may wrap around zero and thus be inaccurate.

EXAMPLES
The program below employs mallinfo2() to retrieve memory allocation statistics be-
fore and after allocating and freeing some blocks of memory. The statistics are dis-
played on standard output.

The first two command-line arguments specify the number and size of blocks to be al-
located with malloc(3).

The remaining three arguments specify which of the allocated blocks should be freed
with free(3). These three arguments are optional, and specify (in order): the step size
to be used in the loop that frees blocks (the default is 1, meaning free all blocks in the
range); the ordinal position of the first block to be freed (default 0, meaning the first
allocated block); and a number one greater than the ordinal position of the last block
to be freed (default is one greater than the maximum block number). If these three ar-
guments are omitted, then the defaults cause all allocated blocks to be freed.

Linux man-pages 6.13 2024-07-23 1932

mallinfo(3) Library Functions Manual mallinfo(3)

In the following example run of the program, 1000 allocations of 100 bytes are per-
formed, and then every second allocated block is freed:

$./a.out 1000 100 2
============== Before allocating blocks ==============
Total non-mmapped bytes (arena): 0
of free chunks (ordblks): 1
of free fastbin blocks (smblks): 0
of mapped regions (hblks): 0
Bytes in mapped regions (hblkhd): 0
Max. total allocated space (usmblks): 0
Free bytes held in fastbins (fsmblks): 0
Total allocated space (uordblks): 0
Total free space (fordblks): 0
Topmost releasable block (keepcost): 0

============== After allocating blocks ==============
Total non-mmapped bytes (arena): 135168
of free chunks (ordblks): 1
of free fastbin blocks (smblks): 0
of mapped regions (hblks): 0
Bytes in mapped regions (hblkhd): 0
Max. total allocated space (usmblks): 0
Free bytes held in fastbins (fsmblks): 0
Total allocated space (uordblks): 104000
Total free space (fordblks): 31168
Topmost releasable block (keepcost): 31168

============== After freeing blocks ==============
Total non-mmapped bytes (arena): 135168
of free chunks (ordblks): 501
of free fastbin blocks (smblks): 0
of mapped regions (hblks): 0
Bytes in mapped regions (hblkhd): 0
Max. total allocated space (usmblks): 0
Free bytes held in fastbins (fsmblks): 0
Total allocated space (uordblks): 52000
Total free space (fordblks): 83168
Topmost releasable block (keepcost): 31168

Program source

#include <malloc.h>
#include <stdlib.h>
#include <string.h>

static void
display_mallinfo2(void)
{

struct mallinfo2 mi;

Linux man-pages 6.13 2024-07-23 1933

mallinfo(3) Library Functions Manual mallinfo(3)

mi = mallinfo2();

printf("Total non-mmapped bytes (arena): %zu\n", mi.arena);
printf("# of free chunks (ordblks): %zu\n", mi.ordblks);
printf("# of free fastbin blocks (smblks): %zu\n", mi.smblks);
printf("# of mapped regions (hblks): %zu\n", mi.hblks);
printf("Bytes in mapped regions (hblkhd): %zu\n", mi.hblkhd);
printf("Max. total allocated space (usmblks): %zu\n", mi.usmblks);
printf("Free bytes held in fastbins (fsmblks): %zu\n", mi.fsmblks);
printf("Total allocated space (uordblks): %zu\n", mi.uordblks);
printf("Total free space (fordblks): %zu\n", mi.fordblks);
printf("Topmost releasable block (keepcost): %zu\n", mi.keepcost);

}

int
main(int argc, char *argv[])
{
#define MAX_ALLOCS 2000000

char *alloc[MAX_ALLOCS];
size_t blockSize, numBlocks, freeBegin, freeEnd, freeStep;

if (argc < 3 || strcmp(argv[1], "--help") == 0) {
fprintf(stderr, "%s num-blocks block-size [free-step "

"[start-free [end-free]]]\n", argv[0]);
exit(EXIT_FAILURE);

}

numBlocks = atoi(argv[1]);
blockSize = atoi(argv[2]);
freeStep = (argc > 3) ? atoi(argv[3]) : 1;
freeBegin = (argc > 4) ? atoi(argv[4]) : 0;
freeEnd = (argc > 5) ? atoi(argv[5]) : numBlocks;

printf("============== Before allocating blocks ==============\n");
display_mallinfo2();

for (size_t j = 0; j < numBlocks; j++) {
if (numBlocks >= MAX_ALLOCS) {

fprintf(stderr, "Too many allocations\n");
exit(EXIT_FAILURE);

}

alloc[j] = malloc(blockSize);
if (alloc[j] == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}
}

Linux man-pages 6.13 2024-07-23 1934

mallinfo(3) Library Functions Manual mallinfo(3)

printf("\n============== After allocating blocks ==============\n");
display_mallinfo2();

for (size_t j = freeBegin; j < freeEnd; j += freeStep)
free(alloc[j]);

printf("\n============== After freeing blocks ==============\n");
display_mallinfo2();

exit(EXIT_SUCCESS);
}

SEE ALSO
mmap(2), malloc(3), malloc_info(3), malloc_stats(3), malloc_trim(3), mallopt(3)

Linux man-pages 6.13 2024-07-23 1935

malloc(3) Library Functions Manual malloc(3)

NAME
malloc, free, calloc, realloc, reallocarray - allocate and free dynamic memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

void *malloc(size_t size);
void free(void *_Nullable ptr);
void *calloc(size_t n, size_t size);
void *realloc(void *_Nullable ptr, size_t size);
void *reallocarray(void *_Nullable ptr, size_t n, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

reallocarray():
Since glibc 2.29:

_DEFAULT_SOURCE
glibc 2.28 and earlier:

_GNU_SOURCE

DESCRIPTION
malloc()

The malloc() function allocates size bytes and returns a pointer to the allocated mem-
ory. The memory is not initialized . If size is 0, then malloc() returns a unique pointer
value that can later be successfully passed to free(). (See "Nonportable behavior" for
portability issues.)

free()
The free() function frees the memory space pointed to by ptr, which must have been
returned by a previous call to malloc() or related functions. Otherwise, or if ptr has
already been freed, undefined behavior occurs. If ptr is NULL, no operation is per-
formed.

calloc()
The calloc() function allocates memory for an array of n elements of size bytes each
and returns a pointer to the allocated memory. The memory is set to zero. If n or size
is 0, then calloc() returns a unique pointer value that can later be successfully passed
to free().

If the multiplication of n and size would result in integer overflow, then calloc() re-
turns an error. By contrast, an integer overflow would not be detected in the following
call to malloc(), with the result that an incorrectly sized block of memory would be
allocated:

malloc(n * size);

realloc()
The realloc() function changes the size of the memory block pointed to by ptr to size
bytes. The contents of the memory will be unchanged in the range from the start of
the region up to the minimum of the old and new sizes. If the new size is larger than
the old size, the added memory will not be initialized.

If ptr is NULL, then the call is equivalent to malloc(size), for all values of size.

Linux man-pages 6.13 2024-11-17 1936

malloc(3) Library Functions Manual malloc(3)

If size is equal to zero, and ptr is not NULL, then the call is equivalent to free(ptr)
(but see "Nonportable behavior" for portability issues).

Unless ptr is NULL, it must have been returned by an earlier call to malloc or related
functions. If the area pointed to was moved, a free(ptr) is done.

reallocarray()
The reallocarray() function changes the size of (and possibly moves) the memory
block pointed to by ptr to be large enough for an array of n elements, each of which
is size bytes. It is equivalent to the call

realloc(ptr, n * size);

However, unlike that realloc() call, reallocarray() fails safely in the case where the
multiplication would overflow. If such an overflow occurs, reallocarray() returns an
error.

RETURN VALUE
The malloc(), calloc(), realloc(), and reallocarray() functions return a pointer to the
allocated memory, which is suitably aligned for any type that fits into the requested
size or less. On error, these functions return NULL and set errno. Attempting to allo-
cate more than PTRDIFF_MAX bytes is considered an error, as an object that large
could cause later pointer subtraction to overflow.

The free() function returns no value, and preserves errno.

The realloc() and reallocarray() functions return NULL if ptr is not NULL and the
requested size is zero; this is not considered an error. (See "Nonportable behavior" for
portability issues.) Otherwise, the returned pointer may be the same as ptr if the allo-
cation was not moved (e.g., there was room to expand the allocation in-place), or dif-
ferent from ptr if the allocation was moved to a new address. If these functions fail,
the original block is left untouched; it is not freed or moved.

ERRORS
calloc(), malloc(), realloc(), and reallocarray() can fail with the following error:

ENOMEM
Out of memory. Possibly, the application hit the RLIMIT_AS or
RLIMIT_DATA limit described in getrlimit(2). Another reason could be that
the number of mappings created by the caller process exceeded the limit speci-
fied by /proc/sys/vm/max_map_count.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc(), free(), calloc(), realloc()

STANDARDS
malloc()
free()
calloc()
realloc()

C11, POSIX.1-2008.

Linux man-pages 6.13 2024-11-17 1937

malloc(3) Library Functions Manual malloc(3)

reallocarray()
None.

HISTORY
malloc()
free()
calloc()
realloc()

POSIX.1-2001, C89.

reallocarray()
glibc 2.26. OpenBSD 5.6, FreeBSD 11.0.

malloc() and related functions rejected sizes greater than PTRDIFF_MAX starting in
glibc 2.30.

free() preserved errno starting in glibc 2.33.

NOTES
By default, Linux follows an optimistic memory allocation strategy. This means that
when malloc() returns non-NULL there is no guarantee that the memory really is
available. In case it turns out that the system is out of memory, one or more processes
will be killed by the OOM killer. For more information, see the description of
/proc/sys/vm/overcommit_memory and /proc/sys/vm/oom_adj in proc(5), and the
Linux kernel source file Documentation/vm/overcommit-accounting.rst.

Normally, malloc() allocates memory from the heap, and adjusts the size of the heap
as required, using sbrk(2). When allocating blocks of memory larger than
MMAP_THRESHOLD bytes, the glibc malloc() implementation allocates the mem-
ory as a private anonymous mapping using mmap(2). MMAP_THRESHOLD is
128 kB by default, but is adjustable using mallopt(3). Prior to Linux 4.7 allocations
performed using mmap(2) were unaffected by the RLIMIT_DATA resource limit;
since Linux 4.7, this limit is also enforced for allocations performed using mmap(2).

To avoid corruption in multithreaded applications, mutexes are used internally to pro-
tect the memory-management data structures employed by these functions. In a mul-
tithreaded application in which threads simultaneously allocate and free memory,
there could be contention for these mutexes. To scalably handle memory allocation in
multithreaded applications, glibc creates additional memory allocation arenas if mu-
tex contention is detected. Each arena is a large region of memory that is internally
allocated by the system (using brk(2) or mmap(2)), and managed with its own mu-
texes.

If your program uses a private memory allocator, it should do so by replacing mal-
loc(), free(), calloc(), and realloc(). The replacement functions must implement the
documented glibc behaviors, including errno handling, size-zero allocations, and
overflow checking; otherwise, other library routines may crash or operate incorrectly.
For example, if the replacement free() does not preserve errno, then seemingly unre-
lated library routines may fail without having a valid reason in errno. Private memory
allocators may also need to replace other glibc functions; see "Replacing malloc" in
the glibc manual for details.

Crashes in memory allocators are almost always related to heap corruption, such as
overflowing an allocated chunk or freeing the same pointer twice.

Linux man-pages 6.13 2024-11-17 1938

malloc(3) Library Functions Manual malloc(3)

The malloc() implementation is tunable via environment variables; see mallopt(3) for
details.

Nonportable behavior
The behavior of these functions when the requested size is zero is glibc specific; other
implementations may return NULL without setting errno, and portable POSIX pro-
grams should tolerate such behavior. See realloc(3p)

POSIX requires memory allocators to set errno upon failure. However, the C stan-
dard does not require this, and applications portable to non-POSIX platforms should
not assume this.

Portable programs should not use private memory allocators, as POSIX and the C
standard do not allow replacement of malloc(), free(), calloc(), and realloc().

EXAMPLES
#include <err.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MALLOCARRAY(n, type) ((type *) my_mallocarray(n, sizeof(type)))
#define MALLOC(type) MALLOCARRAY(1, type)

static inline void *my_mallocarray(size_t n, size_t size);

int
main(void)
{

char *p;

p = MALLOCARRAY(32, char);
if (p == NULL)

err(EXIT_FAILURE, "malloc");

strlcpy(p, "foo", 32);
puts(p);

}

static inline void *
my_mallocarray(size_t n, size_t size)
{

return reallocarray(NULL, n, size);
}

SEE ALSO
valgrind(1), brk(2), mmap(2), alloca(3), malloc_get_state(3), malloc_info(3),
malloc_trim(3), malloc_usable_size(3), mallopt(3), mcheck(3), mtrace(3),
posix_memalign(3)

For details of the GNU C library implementation, see

Linux man-pages 6.13 2024-11-17 1939

malloc(3) Library Functions Manual malloc(3)

〈https://sourceware.org/glibc/wiki/MallocInternals〉.

Linux man-pages 6.13 2024-11-17 1940

malloc_get_state(3) Library Functions Manual malloc_get_state(3)

NAME
malloc_get_state, malloc_set_state - record and restore state of malloc implementa-
tion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

void *malloc_get_state(void);
int malloc_set_state(void *state);

DESCRIPTION
Note: these functions are removed in glibc 2.25.

The malloc_get_state() function records the current state of all malloc(3) internal
bookkeeping variables (but not the actual contents of the heap or the state of mal-
loc_hook(3) functions pointers). The state is recorded in a system-dependent opaque
data structure dynamically allocated via malloc(3), and a pointer to that data structure
is returned as the function result. (It is the caller’s responsibility to free(3) this mem-
ory.)

The malloc_set_state() function restores the state of all malloc(3) internal bookkeep-
ing variables to the values recorded in the opaque data structure pointed to by state.

RETURN VALUE
On success, malloc_get_state() returns a pointer to a newly allocated opaque data
structure. On error (for example, memory could not be allocated for the data struc-
ture), malloc_get_state() returns NULL.

On success, malloc_set_state() returns 0. If the implementation detects that state
does not point to a correctly formed data structure, malloc_set_state() returns -1. If
the implementation detects that the version of the data structure referred to by state is
a more recent version than this implementation knows about, malloc_set_state() re-
turns -2.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc_get_state(), malloc_set_state()

STANDARDS
GNU.

NOTES
These functions are useful when using this malloc(3) implementation as part of a
shared library, and the heap contents are saved/restored via some other method. This
technique is used by GNU Emacs to implement its "dumping" function.

Hook function pointers are never saved or restored by these functions, with two ex-
ceptions: if malloc checking (see mallopt(3)) was in use when malloc_get_state()
was called, then malloc_set_state() resets malloc checking hooks if possible; if mal-
loc checking was not in use in the recorded state, but the caller has requested malloc
checking, then the hooks are reset to 0.

Linux man-pages 6.13 2024-07-23 1941

malloc_get_state(3) Library Functions Manual malloc_get_state(3)

SEE ALSO
malloc(3), mallopt(3)

Linux man-pages 6.13 2024-07-23 1942

__malloc_hook(3) Library Functions Manual __malloc_hook(3)

NAME
__malloc_hook, __malloc_initialize_hook, __memalign_hook, __free_hook, __real-
loc_hook, __after_morecore_hook - malloc debugging variables (DEPRECATED)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

typeof(void *(size_t size, const void *caller))
*volatile __malloc_hook;

typeof(void *(void *p, size_t size, const void *caller))
*volatile __realloc_hook;

typeof(void *(size_t align, size_t size, const void *caller))
*volatile __memalign_hook;

typeof(void *(void *p, const void *caller))
*volatile __free_hook;

typeof(void (void)) *__malloc_initialize_hook;
typeof(void (void)) *volatile __after_mrecore_hook;

DESCRIPTION
The GNU C library lets you modify the behavior of malloc(3), realloc(3), and free(3)
by specifying appropriate hook functions. You can use these hooks to help you debug
programs that use dynamic memory allocation, for example.

The variable __malloc_initialize_hook points at a function that is called once when
the malloc implementation is initialized. This is a weak variable, so it can be overrid-
den in the application with a definition like the following:

typeof(void (void)) *__malloc_initialize_hook = my_init_hook;

Now the function my_init_hook() can do the initialization of all hooks.

The four functions pointed to by __malloc_hook, __realloc_hook, __mema-
lign_hook, __free_hook have a prototype like the functions malloc(3), realloc(3),
memalign(3), free(3), respectively, except that they have a final argument caller that
gives the address of the caller of malloc(3), etc.

The variable __after_morecore_hook points at a function that is called each time af-
ter sbrk(2) was asked for more memory.

STANDARDS
GNU.

NOTES
The use of these hook functions is not safe in multithreaded programs, and they are
now deprecated. From glibc 2.24 onwards, the __malloc_initialize_hook variable
has been removed from the API, and from glibc 2.34 onwards, all the hook variables
have been removed from the API. Programmers should instead preempt calls to the
relevant functions by defining and exporting malloc(), free(), realloc(), and calloc().

Linux man-pages 6.13 2025-01-05 1943

__malloc_hook(3) Library Functions Manual __malloc_hook(3)

EXAMPLES
Here is a short example of how to use these variables.

#include <stdio.h>
#include <malloc.h>

/* Prototypes for our hooks */
static void my_init_hook(void);
static void *my_malloc_hook(size_t, const void *);

/* Variables to save original hooks */
static typeof(void *(size_t, const void *)) *old_malloc_hook;

/* Override initializing hook from the C library */
typeof(void (void)) *__malloc_initialize_hook = my_init_hook;

static void
my_init_hook(void)
{

old_malloc_hook = __malloc_hook;
__malloc_hook = my_malloc_hook;

}

static void *
my_malloc_hook(size_t size, const void *caller)
{

void *result;

/* Restore all old hooks */
__malloc_hook = old_malloc_hook;

/* Call recursively */
result = malloc(size);

/* Save underlying hooks */
old_malloc_hook = __malloc_hook;

/* printf() might call malloc(), so protect it too */
printf("malloc(%zu) called from %p returns %p\n",

size, caller, result);

/* Restore our own hooks */
__malloc_hook = my_malloc_hook;

return result;
}

SEE ALSO
mallinfo(3), malloc(3), mcheck(3), mtrace(3)

Linux man-pages 6.13 2025-01-05 1944

malloc_info(3) Library Functions Manual malloc_info(3)

NAME
malloc_info - export malloc state to a stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

int malloc_info(int options, FILE *stream);

DESCRIPTION
The malloc_info() function exports an XML string that describes the current state of
the memory-allocation implementation in the caller. The string is printed on the file
stream stream. The exported string includes information about all arenas (see mal-
loc(3)).

As currently implemented, options must be zero.

RETURN VALUE
On success, malloc_info() returns 0. On failure, it returns -1, and errno is set to indi-
cate the error.

ERRORS
EINVAL

options was nonzero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc_info()

STANDARDS
GNU.

HISTORY
glibc 2.10.

NOTES
The memory-allocation information is provided as an XML string (rather than a C
structure) because the information may change over time (according to changes in the
underlying implementation). The output XML string includes a version field.

The open_memstream(3) function can be used to send the output of malloc_info() di-
rectly into a buffer in memory, rather than to a file.

The malloc_info() function is designed to address deficiencies in malloc_stats(3) and
mallinfo(3).

EXAMPLES
The program below takes up to four command-line arguments, of which the first three
are mandatory. The first argument specifies the number of threads that the program
should create. All of the threads, including the main thread, allocate the number of
blocks of memory specified by the second argument. The third argument controls the
size of the blocks to be allocated. The main thread creates blocks of this size, the sec-
ond thread created by the program allocates blocks of twice this size, the third thread
allocates blocks of three times this size, and so on.

Linux man-pages 6.13 2024-07-23 1945

malloc_info(3) Library Functions Manual malloc_info(3)

The program calls malloc_info() twice to display the memory-allocation state. The
first call takes place before any threads are created or memory allocated. The second
call is performed after all threads have allocated memory.

In the following example, the command-line arguments specify the creation of one ad-
ditional thread, and both the main thread and the additional thread allocate 10000
blocks of memory. After the blocks of memory have been allocated, malloc_info()
shows the state of two allocation arenas.

$ getconf GNU_LIBC_VERSION
glibc 2.13
$./a.out 1 10000 100
============ Before allocating blocks ============
<malloc version="1">
<heap nr="0">
<sizes>
</sizes>
<total type="fast" count="0" size="0"/>
<total type="rest" count="0" size="0"/>
<system type="current" size="135168"/>
<system type="max" size="135168"/>
<aspace type="total" size="135168"/>
<aspace type="mprotect" size="135168"/>
</heap>
<total type="fast" count="0" size="0"/>
<total type="rest" count="0" size="0"/>
<system type="current" size="135168"/>
<system type="max" size="135168"/>
<aspace type="total" size="135168"/>
<aspace type="mprotect" size="135168"/>
</malloc>

============ After allocating blocks ============
<malloc version="1">
<heap nr="0">
<sizes>
</sizes>
<total type="fast" count="0" size="0"/>
<total type="rest" count="0" size="0"/>
<system type="current" size="1081344"/>
<system type="max" size="1081344"/>
<aspace type="total" size="1081344"/>
<aspace type="mprotect" size="1081344"/>
</heap>
<heap nr="1">
<sizes>
</sizes>
<total type="fast" count="0" size="0"/>
<total type="rest" count="0" size="0"/>
<system type="current" size="1032192"/>

Linux man-pages 6.13 2024-07-23 1946

malloc_info(3) Library Functions Manual malloc_info(3)

<system type="max" size="1032192"/>
<aspace type="total" size="1032192"/>
<aspace type="mprotect" size="1032192"/>
</heap>
<total type="fast" count="0" size="0"/>
<total type="rest" count="0" size="0"/>
<system type="current" size="2113536"/>
<system type="max" size="2113536"/>
<aspace type="total" size="2113536"/>
<aspace type="mprotect" size="2113536"/>
</malloc>

Program source
#include <err.h>
#include <errno.h>
#include <malloc.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

static size_t blockSize;
static size_t numThreads;
static unsigned int numBlocks;

static void *
thread_func(void *arg)
{

int tn = (int) arg;

/* The multiplier '(2 + tn)' ensures that each thread (including
the main thread) allocates a different amount of memory. */

for (unsigned int j = 0; j < numBlocks; j++)
if (malloc(blockSize * (2 + tn)) == NULL)

err(EXIT_FAILURE, "malloc-thread");

sleep(100); /* Sleep until main thread terminates. */
return NULL;

}

int
main(int argc, char *argv[])
{

int sleepTime;
pthread_t *thr;

if (argc < 4) {
fprintf(stderr,

"%s num-threads num-blocks block-size [sleep-time]\n",

Linux man-pages 6.13 2024-07-23 1947

malloc_info(3) Library Functions Manual malloc_info(3)

argv[0]);
exit(EXIT_FAILURE);

}

numThreads = atoi(argv[1]);
numBlocks = atoi(argv[2]);
blockSize = atoi(argv[3]);
sleepTime = (argc > 4) ? atoi(argv[4]) : 0;

thr = calloc(numThreads, sizeof(*thr));
if (thr == NULL)

err(EXIT_FAILURE, "calloc");

printf("============ Before allocating blocks ============\n");
malloc_info(0, stdout);

/* Create threads that allocate different amounts of memory. */

for (size_t tn = 0; tn < numThreads; tn++) {
errno = pthread_create(&thr[tn], NULL, thread_func,

(void *) tn);
if (errno != 0)

err(EXIT_FAILURE, "pthread_create");

/* If we add a sleep interval after the start-up of each
thread, the threads likely won't contend for malloc
mutexes, and therefore additional arenas won't be
allocated (see malloc(3)). */

if (sleepTime > 0)
sleep(sleepTime);

}

/* The main thread also allocates some memory. */

for (unsigned int j = 0; j < numBlocks; j++)
if (malloc(blockSize) == NULL)

err(EXIT_FAILURE, "malloc");

sleep(2); /* Give all threads a chance to
complete allocations. */

printf("\n============ After allocating blocks ============\n");
malloc_info(0, stdout);

exit(EXIT_SUCCESS);
}

Linux man-pages 6.13 2024-07-23 1948

malloc_info(3) Library Functions Manual malloc_info(3)

SEE ALSO
mallinfo(3), malloc(3), malloc_stats(3), mallopt(3), open_memstream(3)

Linux man-pages 6.13 2024-07-23 1949

malloc_stats(3) Library Functions Manual malloc_stats(3)

NAME
malloc_stats - print memory allocation statistics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

void malloc_stats(void);

DESCRIPTION
The malloc_stats() function prints (on standard error) statistics about memory allo-
cated by malloc(3) and related functions. For each arena (allocation area), this func-
tion prints the total amount of memory allocated and the total number of bytes con-
sumed by in-use allocations. (These two values correspond to the arena and uordblks
fields retrieved by mallinfo(3).) In addition, the function prints the sum of these two
statistics for all arenas, and the maximum number of blocks and bytes that were ever
simultaneously allocated using mmap(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc_stats()

STANDARDS
GNU.

HISTORY
glibc 2.0.

NOTES
More detailed information about memory allocations in the main arena can be ob-
tained using mallinfo(3).

SEE ALSO
mmap(2), mallinfo(3), malloc(3), malloc_info(3), mallopt(3)

Linux man-pages 6.13 2024-07-23 1950

malloc_trim(3) Library Functions Manual malloc_trim(3)

NAME
malloc_trim - release free memory from the heap

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

int malloc_trim(size_t pad);

DESCRIPTION
The malloc_trim() function attempts to release free memory from the heap (by call-
ing sbrk(2) or madvise(2) with suitable arguments).

The pad argument specifies the amount of free space to leave untrimmed at the top of
the heap. If this argument is 0, only the minimum amount of memory is maintained at
the top of the heap (i.e., one page or less). A nonzero argument can be used to main-
tain some trailing space at the top of the heap in order to allow future allocations to be
made without having to extend the heap with sbrk(2).

RETURN VALUE
The malloc_trim() function returns 1 if memory was actually released back to the
system, or 0 if it was not possible to release any memory.

ERRORS
No errors are defined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc_trim()

STANDARDS
GNU.

VERSIONS
glibc 2.0.

NOTES
Only the main heap (using sbrk(2)) honors the pad argument; thread heaps do not.

Since glibc 2.8 this function frees memory in all arenas and in all chunks with whole
free pages.

Before glibc 2.8 this function only freed memory at the top of the heap in the main
arena.

SEE ALSO
sbrk(2), malloc(3), mallopt(3)

Linux man-pages 6.13 2024-07-23 1951

malloc_usable_size(3) Library Functions Manual malloc_usable_size(3)

NAME
malloc_usable_size - obtain size of block of memory allocated from heap

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

size_t malloc_usable_size(void *_Nullable ptr);

DESCRIPTION
This function can be used for diagnostics or statistics about allocations from mal-
loc(3) or a related function.

RETURN VALUE
malloc_usable_size() returns a value no less than the size of the block of allocated
memory pointed to by ptr. If ptr is NULL, 0 is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc_usable_size()

STANDARDS
GNU.

CAVEATS
The value returned by malloc_usable_size() may be greater than the requested size of
the allocation because of various internal implementation details, none of which the
programmer should rely on. This function is intended to only be used for diagnostics
and statistics; writing to the excess memory without first calling realloc(3) to resize
the allocation is not supported. The returned value is only valid at the time of the call.

SEE ALSO
malloc(3)

Linux man-pages 6.13 2024-07-23 1952

mallopt(3) Library Functions Manual mallopt(3)

NAME
mallopt - set memory allocation parameters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

int mallopt(int param, int value);

DESCRIPTION
The mallopt() function adjusts parameters that control the behavior of the memory-al-
location functions (see malloc(3)). The param argument specifies the parameter to be
modified, and value specifies the new value for that parameter.

The following values can be specified for param:

M_ARENA_MAX
If this parameter has a nonzero value, it defines a hard limit on the maximum
number of arenas that can be created. An arena represents a pool of memory
that can be used by malloc(3) (and similar) calls to service allocation requests.
Arenas are thread safe and therefore may have multiple concurrent memory re-
quests. The trade-off is between the number of threads and the number of are-
nas. The more arenas you have, the lower the per-thread contention, but the
higher the memory usage.

The default value of this parameter is 0, meaning that the limit on the number
of arenas is determined according to the setting of M_ARENA_TEST.

This parameter has been available since glibc 2.10 via --enable-experimental-
malloc, and since glibc 2.15 by default. In some versions of the allocator
there was no limit on the number of created arenas (e.g., CentOS 5, RHEL 5).

When employing newer glibc versions, applications may in some cases exhibit
high contention when accessing arenas. In these cases, it may be beneficial to
increase M_ARENA_MAX to match the number of threads. This is similar
in behavior to strategies taken by tcmalloc and jemalloc (e.g., per-thread allo-
cation pools).

M_ARENA_TEST
This parameter specifies a value, in number of arenas created, at which point
the system configuration will be examined to determine a hard limit on the
number of created arenas. (See M_ARENA_MAX for the definition of an
arena.)

The computation of the arena hard limit is implementation-defined and is usu-
ally calculated as a multiple of the number of available CPUs. Once the hard
limit is computed, the result is final and constrains the total number of arenas.

The default value for the M_ARENA_TEST parameter is 2 on systems where
sizeof(long) is 4; otherwise the default value is 8.

This parameter has been available since glibc 2.10 via --enable-experimental-
malloc, and since glibc 2.15 by default.

Linux man-pages 6.13 2024-07-23 1953

mallopt(3) Library Functions Manual mallopt(3)

The value of M_ARENA_TEST is not used when M_ARENA_MAX has a
nonzero value.

M_CHECK_ACTION
Setting this parameter controls how glibc responds when various kinds of pro-
gramming errors are detected (e.g., freeing the same pointer twice). The 3
least significant bits (2, 1, and 0) of the value assigned to this parameter deter-
mine the glibc behavior, as follows:

Bit 0 If this bit is set, then print a one-line message on stderr that provides
details about the error. The message starts with the string "*** glibc
detected ***", followed by the program name, the name of the mem-
ory-allocation function in which the error was detected, a brief descrip-
tion of the error, and the memory address where the error was detected.

Bit 1 If this bit is set, then, after printing any error message specified by bit
0, the program is terminated by calling abort(3). Since glibc 2.4, if bit
0 is also set, then, between printing the error message and aborting, the
program also prints a stack trace in the manner of backtrace(3), and
prints the process’s memory mapping in the style of /proc/ pid /maps
(see proc(5)).

Bit 2 (since glibc 2.4)
This bit has an effect only if bit 0 is also set. If this bit is set, then the
one-line message describing the error is simplified to contain just the
name of the function where the error was detected and the brief de-
scription of the error.

The remaining bits in value are ignored.

Combining the above details, the following numeric values are meaningful for
M_CHECK_ACTION:

0 Ignore error conditions; continue execution (with undefined re-
sults).

1 Print a detailed error message and continue execution.

2 Abort the program.

3 Print detailed error message, stack trace, and memory map-
pings, and abort the program.

5 Print a simple error message and continue execution.

7 Print simple error message, stack trace, and memory mappings,
and abort the program.

Since glibc 2.3.4, the default value for the M_CHECK_ACTION parameter
is 3. In glibc 2.3.3 and earlier, the default value is 1.

Using a nonzero M_CHECK_ACTION value can be useful because other-
wise a crash may happen much later, and the true cause of the problem is then
very hard to track down.

M_MMAP_MAX
This parameter specifies the maximum number of allocation requests that may
be simultaneously serviced using mmap(2). This parameter exists because

Linux man-pages 6.13 2024-07-23 1954

mallopt(3) Library Functions Manual mallopt(3)

some systems have a limited number of internal tables for use by mmap(2),
and using more than a few of them may degrade performance.

The default value is 65,536, a value which has no special significance and
which serves only as a safeguard. Setting this parameter to 0 disables the use
of mmap(2) for servicing large allocation requests.

M_MMAP_THRESHOLD
For allocations greater than or equal to the limit specified (in bytes) by
M_MMAP_THRESHOLD that can’t be satisfied from the free list, the mem-
ory-allocation functions employ mmap(2) instead of increasing the program
break using sbrk(2).

Allocating memory using mmap(2) has the significant advantage that the allo-
cated memory blocks can always be independently released back to the sys-
tem. (By contrast, the heap can be trimmed only if memory is freed at the top
end.) On the other hand, there are some disadvantages to the use of mmap(2):
deallocated space is not placed on the free list for reuse by later allocations;
memory may be wasted because mmap(2) allocations must be page-aligned;
and the kernel must perform the expensive task of zeroing out memory allo-
cated via mmap(2). Balancing these factors leads to a default setting of
128*1024 for the M_MMAP_THRESHOLD parameter.

The lower limit for this parameter is 0. The upper limit is DE-
FAULT_MMAP_THRESHOLD_MAX: 512*1024 on 32-bit systems or
4*1024*1024*sizeof(long) on 64-bit systems.

Note: Nowadays, glibc uses a dynamic mmap threshold by default. The initial
value of the threshold is 128*1024, but when blocks larger than the current
threshold and less than or equal to DEFAULT_MMAP_THRESH-
OLD_MAX are freed, the threshold is adjusted upward to the size of the freed
block. When dynamic mmap thresholding is in effect, the threshold for trim-
ming the heap is also dynamically adjusted to be twice the dynamic mmap
threshold. Dynamic adjustment of the mmap threshold is disabled if any of
the M_TRIM_THRESHOLD, M_TOP_PAD, M_MMAP_THRESHOLD,
or M_MMAP_MAX parameters is set.

M_MXFAST (since glibc 2.3)
Set the upper limit for memory allocation requests that are satisfied using
"fastbins". (The measurement unit for this parameter is bytes.) Fastbins are
storage areas that hold deallocated blocks of memory of the same size without
merging adjacent free blocks. Subsequent reallocation of blocks of the same
size can be handled very quickly by allocating from the fastbin, although
memory fragmentation and the overall memory footprint of the program can
increase.

The default value for this parameter is 64*sizeof(size_t)/4 (i.e., 64 on 32-bit ar-
chitectures). The range for this parameter is 0 to 80*sizeof(size_t)/4. Setting
M_MXFAST to 0 disables the use of fastbins.

M_PERTURB (since glibc 2.4)
If this parameter is set to a nonzero value, then bytes of allocated memory
(other than allocations via calloc(3)) are initialized to the complement of the

Linux man-pages 6.13 2024-07-23 1955

mallopt(3) Library Functions Manual mallopt(3)

value in the least significant byte of value, and when allocated memory is re-
leased using free(3), the freed bytes are set to the least significant byte of
value. This can be useful for detecting errors where programs incorrectly rely
on allocated memory being initialized to zero, or reuse values in memory that
has already been freed.

The default value for this parameter is 0.

M_TOP_PAD
This parameter defines the amount of padding to employ when calling sbrk(2)
to modify the program break. (The measurement unit for this parameter is
bytes.) This parameter has an effect in the following circumstances:

• When the program break is increased, then M_TOP_PAD bytes are added
to the sbrk(2) request.

• When the heap is trimmed as a consequence of calling free(3) (see the dis-
cussion of M_TRIM_THRESHOLD) this much free space is preserved
at the top of the heap.

In either case, the amount of padding is always rounded to a system page
boundary.

Modifying M_TOP_PAD is a trade-off between increasing the number of sys-
tem calls (when the parameter is set low) and wasting unused memory at the
top of the heap (when the parameter is set high).

The default value for this parameter is 128*1024.

M_TRIM_THRESHOLD
When the amount of contiguous free memory at the top of the heap grows suf-
ficiently large, free(3) employs sbrk(2) to release this memory back to the sys-
tem. (This can be useful in programs that continue to execute for a long pe-
riod after freeing a significant amount of memory.) The
M_TRIM_THRESHOLD parameter specifies the minimum size (in bytes)
that this block of memory must reach before sbrk(2) is used to trim the heap.

The default value for this parameter is 128*1024. Setting
M_TRIM_THRESHOLD to -1 disables trimming completely.

Modifying M_TRIM_THRESHOLD is a trade-off between increasing the
number of system calls (when the parameter is set low) and wasting unused
memory at the top of the heap (when the parameter is set high).

Environment variables
A number of environment variables can be defined to modify some of the same para-
meters as are controlled by mallopt(). Using these variables has the advantage that
the source code of the program need not be changed. To be effective, these variables
must be defined before the first call to a memory-allocation function. (If the same pa-
rameters are adjusted via mallopt(), then the mallopt() settings take precedence.) For
security reasons, these variables are ignored in set-user-ID and set-group-ID pro-
grams.

The environment variables are as follows (note the trailing underscore at the end of
the name of some variables):

Linux man-pages 6.13 2024-07-23 1956

mallopt(3) Library Functions Manual mallopt(3)

MALLOC_ARENA_MAX
Controls the same parameter as mallopt() M_ARENA_MAX.

MALLOC_ARENA_TEST
Controls the same parameter as mallopt() M_ARENA_TEST.

MALLOC_CHECK_
This environment variable controls the same parameter as mallopt()
M_CHECK_ACTION. If this variable is set to a nonzero value, then a spe-
cial implementation of the memory-allocation functions is used. (This is ac-
complished using the malloc_hook(3) feature.) This implementation performs
additional error checking, but is slower than the standard set of memory-allo-
cation functions. (This implementation does not detect all possible errors;
memory leaks can still occur.)

The value assigned to this environment variable should be a single digit,
whose meaning is as described for M_CHECK_ACTION. Any characters
beyond the initial digit are ignored.

For security reasons, the effect of MALLOC_CHECK_ is disabled by default
for set-user-ID and set-group-ID programs. However, if the file /etc/suid-de-
bug exists (the content of the file is irrelevant), then MALLOC_CHECK_
also has an effect for set-user-ID and set-group-ID programs.

MALLOC_MMAP_MAX_
Controls the same parameter as mallopt() M_MMAP_MAX.

MALLOC_MMAP_THRESHOLD_
Controls the same parameter as mallopt() M_MMAP_THRESHOLD.

MALLOC_PERTURB_
Controls the same parameter as mallopt() M_PERTURB.

MALLOC_TRIM_THRESHOLD_
Controls the same parameter as mallopt() M_TRIM_THRESHOLD.

MALLOC_TOP_PAD_
Controls the same parameter as mallopt() M_TOP_PAD.

RETURN VALUE
On success, mallopt() returns 1. On error, it returns 0.

ERRORS
On error, errno is not set.

VERSIONS
A similar function exists on many System V derivatives, but the range of values for
param varies across systems. The SVID defined options M_MXFAST, M_NL-
BLKS, M_GRAIN, and M_KEEP, but only the first of these is implemented in
glibc.

STANDARDS
None.

HISTORY
glibc 2.0.

Linux man-pages 6.13 2024-07-23 1957

mallopt(3) Library Functions Manual mallopt(3)

BUGS
Specifying an invalid value for param does not generate an error.

A calculation error within the glibc implementation means that a call of the form:

mallopt(M_MXFAST, n)

does not result in fastbins being employed for all allocations of size up to n. To en-
sure desired results, n should be rounded up to the next multiple greater than or equal
to (2k+1)*sizeof(size_t), where k is an integer.

If mallopt() is used to set M_PERTURB, then, as expected, the bytes of allocated
memory are initialized to the complement of the byte in value, and when that memory
is freed, the bytes of the region are initialized to the byte specified in value. However,
there is an off-by-sizeof(size_t) error in the implementation: instead of initializing pre-
cisely the block of memory being freed by the call free(p), the block starting at
p+sizeof(size_t) is initialized.

EXAMPLES
The program below demonstrates the use of M_CHECK_ACTION. If the program
is supplied with an (integer) command-line argument, then that argument is used to
set the M_CHECK_ACTION parameter. The program then allocates a block of
memory, and frees it twice (an error).

The following shell session shows what happens when we run this program under
glibc, with the default value for M_CHECK_ACTION:

$./a.out
main(): returned from first free() call
*** glibc detected *** ./a.out: double free or corruption (top): 0x09d30008 ***
======= Backtrace: =========
/lib/libc.so.6(+0x6c501)[0x523501]
/lib/libc.so.6(+0x6dd70)[0x524d70]
/lib/libc.so.6(cfree+0x6d)[0x527e5d]
./a.out[0x80485db]
/lib/libc.so.6(__libc_start_main+0xe7)[0x4cdce7]
./a.out[0x8048471]
======= Memory map: ========
001e4000-001fe000 r-xp 00000000 08:06 1083555 /lib/libgcc_s.so.1
001fe000-001ff000 r--p 00019000 08:06 1083555 /lib/libgcc_s.so.1
[some lines omitted]
b7814000-b7817000 rw-p 00000000 00:00 0
bff53000-bff74000 rw-p 00000000 00:00 0 [stack]
Aborted (core dumped)

The following runs show the results when employing other values for
M_CHECK_ACTION:

$./a.out 1 # Diagnose error and continue
main(): returned from first free() call
*** glibc detected *** ./a.out: double free or corruption (top): 0x09cbe008 ***
main(): returned from second free() call
$./a.out 2 # Abort without error message
main(): returned from first free() call

Linux man-pages 6.13 2024-07-23 1958

mallopt(3) Library Functions Manual mallopt(3)

Aborted (core dumped)
$./a.out 0 # Ignore error and continue
main(): returned from first free() call
main(): returned from second free() call

The next run shows how to set the same parameter using the MALLOC_CHECK_
environment variable:

$ MALLOC_CHECK_=1 ./a.out
main(): returned from first free() call
*** glibc detected *** ./a.out: free(): invalid pointer: 0x092c2008 ***
main(): returned from second free() call

Program source

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

char *p;

if (argc > 1) {
if (mallopt(M_CHECK_ACTION, atoi(argv[1])) != 1) {

fprintf(stderr, "mallopt() failed");
exit(EXIT_FAILURE);

}
}

p = malloc(1000);
if (p == NULL) {

fprintf(stderr, "malloc() failed");
exit(EXIT_FAILURE);

}

free(p);
printf("%s(): returned from first free() call\n", __func__);

free(p);
printf("%s(): returned from second free() call\n", __func__);

exit(EXIT_SUCCESS);
}

SEE ALSO
mmap(2), sbrk(2), mallinfo(3), malloc(3), malloc_hook(3), malloc_info(3),
malloc_stats(3), malloc_trim(3), mcheck(3), mtrace(3), posix_memalign(3)

Linux man-pages 6.13 2024-07-23 1959

matherr(3) Library Functions Manual matherr(3)

NAME
matherr - SVID math library exception handling

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

[[deprecated]] int matherr(struct exception *exc);

[[deprecated]] extern _LIB_VERSION_TYPE _LIB_VERSION;

DESCRIPTION
Note: the mechanism described in this page is no longer supported by glibc. Before
glibc 2.27, it had been marked as obsolete. Since glibc 2.27, the mechanism has been
removed altogether. New applications should use the techniques described in
math_error(7) and fenv(3). This page documents the matherr() mechanism as an aid
for maintaining and porting older applications.

The System V Interface Definition (SVID) specifies that various math functions
should invoke a function called matherr() if a math exception is detected. This func-
tion is called before the math function returns; after matherr() returns, the system
then returns to the math function, which in turn returns to the caller.

To employ matherr(), the programmer must define the _SVID_SOURCE feature test
macro (before including any header files), and assign the value _SVID_ to the exter-
nal variable _LIB_VERSION.

The system provides a default version of matherr(). This version does nothing, and
returns zero (see below for the significance of this). The default matherr() can be
overridden by a programmer-defined version, which will be invoked when an excep-
tion occurs. The function is invoked with one argument, a pointer to an exception
structure, defined as follows:

struct exception {
int type; /* Exception type */
char *name; /* Name of function causing exception */
double arg1; /* 1st argument to function */
double arg2; /* 2nd argument to function */
double retval; /* Function return value */

}

The type field has one of the following values:

DOMAIN A domain error occurred (the function argument was outside the range
for which the function is defined). The return value depends on the
function; errno is set to EDOM.

SING A pole error occurred (the function result is an infinity). The return
value in most cases is HUGE (the largest single precision floating-
point number), appropriately signed. In most cases, errno is set to
EDOM.

Linux man-pages 6.13 2024-07-23 1960

matherr(3) Library Functions Manual matherr(3)

OVERFLOW
An overflow occurred. In most cases, the value HUGE is returned,
and errno is set to ERANGE.

UNDERFLOW
An underflow occurred. 0.0 is returned, and errno is set to ERANGE.

TLOSS Total loss of significance. 0.0 is returned, and errno is set to
ERANGE.

PLOSS Partial loss of significance. This value is unused on glibc (and many
other systems).

The arg1 and arg2 fields are the arguments supplied to the function (arg2 is undefined
for functions that take only one argument).

The retval field specifies the return value that the math function will return to its
caller. The programmer-defined matherr() can modify this field to change the return
value of the math function.

If the matherr() function returns zero, then the system sets errno as described above,
and may print an error message on standard error (see below).

If the matherr() function returns a nonzero value, then the system does not set errno,
and doesn’t print an error message.

Math functions that employ matherr()
The table below lists the functions and circumstances in which matherr() is called.
The "Type" column indicates the value assigned to exc->type when calling math-
err(). The "Result" column is the default return value assigned to exc->retval.

The "Msg?" and "errno" columns describe the default behavior if matherr() returns
zero. If the "Msg?" columns contains "y", then the system prints an error message on
standard error.

The table uses the following notations and abbreviations:

x first argument to function
y second argument to function
fin finite value for argument
neg negative value for argument
int integral value for argument
o/f result overflowed
u/f result underflowed
|x| absolute value of x
X_TLOSS is a constant defined in <math.h>

Function Type Result Msg? errno
acos(|x|>1) DOMAIN HUGE y EDOM
asin(|x|>1) DOMAIN HUGE y EDOM
atan2(0,0) DOMAIN HUGE y EDOM
acosh(x<1) DOMAIN NAN y EDOM
atanh(|x|>1) DOMAIN NAN y EDOM
atanh(|x|==1) SING (x>0.0)? y EDOM

HUGE_VAL :

Linux man-pages 6.13 2024-07-23 1961

matherr(3) Library Functions Manual matherr(3)

-HUGE_VAL
cosh(fin) o/f OVERFLOW HUGE n ERANGE
sinh(fin) o/f OVERFLOW (x>0.0) ? n ERANGE

HUGE : -HUGE
sqrt(x<0) DOMAIN 0.0 y EDOM
hypot(fin,fin) o/f OVERFLOW HUGE n ERANGE
exp(fin) o/f OVERFLOW HUGE n ERANGE
exp(fin) u/f UNDERFLOW 0.0 n ERANGE
exp2(fin) o/f OVERFLOW HUGE n ERANGE
exp2(fin) u/f UNDERFLOW 0.0 n ERANGE
exp10(fin) o/f OVERFLOW HUGE n ERANGE
exp10(fin) u/f UNDERFLOW 0.0 n ERANGE
j0(|x|>X_TLOSS) TLOSS 0.0 y ERANGE
j1(|x|>X_TLOSS) TLOSS 0.0 y ERANGE
jn(|x|>X_TLOSS) TLOSS 0.0 y ERANGE
y0(x>X_TLOSS) TLOSS 0.0 y ERANGE
y1(x>X_TLOSS) TLOSS 0.0 y ERANGE
yn(x>X_TLOSS) TLOSS 0.0 y ERANGE
y0(0) DOMAIN -HUGE y EDOM
y0(x<0) DOMAIN -HUGE y EDOM
y1(0) DOMAIN -HUGE y EDOM
y1(x<0) DOMAIN -HUGE y EDOM
yn(n,0) DOMAIN -HUGE y EDOM
yn(x<0) DOMAIN -HUGE y EDOM
lgamma(fin) o/f OVERFLOW HUGE n ERANGE
lgamma(-int) or SING HUGE y EDOM
lgamma(0)

tgamma(fin) o/f OVERFLOW HUGE_VAL n ERANGE
tgamma(-int) SING NAN y EDOM
tgamma(0) SING copysign(y ERANGE

HUGE_VAL,x)
log(0) SING -HUGE y EDOM
log(x<0) DOMAIN -HUGE y EDOM
log2(0) SING -HUGE n EDOM
log2(x<0) DOMAIN -HUGE n EDOM
log10(0) SING -HUGE y EDOM
log10(x<0) DOMAIN -HUGE y EDOM
pow(0.0,0.0) DOMAIN 0.0 y EDOM
pow(x,y) o/f OVERFLOW HUGE n ERANGE
pow(x,y) u/f UNDERFLOW 0.0 n ERANGE
pow(NaN,0.0) DOMAIN x n EDOM
0**neg DOMAIN 0.0 y EDOM
neg**non-int DOMAIN 0.0 y EDOM
scalb() o/f OVERFLOW (x>0.0) ? n ERANGE

HUGE_VAL :
-HUGE_VAL

scalb() u/f UNDERFLOW copysign(n ERANGE
0.0,x)

Linux man-pages 6.13 2024-07-23 1962

matherr(3) Library Functions Manual matherr(3)

fmod(x,0) DOMAIN x y EDOM
remainder(x,0) DOMAIN NAN y EDOM

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safematherr()

EXAMPLES
The example program demonstrates the use of matherr() when calling log(3). The
program takes up to three command-line arguments. The first argument is the float-
ing-point number to be given to log(3). If the optional second argument is provided,
then _LIB_VERSION is set to _SVID_ so that matherr() is called, and the integer
supplied in the command-line argument is used as the return value from matherr(). If
the optional third command-line argument is supplied, then it specifies an alternative
return value that matherr() should assign as the return value of the math function.

The following example run, where log(3) is given an argument of 0.0, does not use
matherr():

$./a.out 0.0
errno: Numerical result out of range
x=-inf

In the following run, matherr() is called, and returns 0:

$./a.out 0.0 0
matherr SING exception in log() function

args: 0.000000, 0.000000
retval: -340282346638528859811704183484516925440.000000

log: SING error
errno: Numerical argument out of domain
x=-340282346638528859811704183484516925440.000000

The message "log: SING error" was printed by the C library.

In the following run, matherr() is called, and returns a nonzero value:

$./a.out 0.0 1
matherr SING exception in log() function

args: 0.000000, 0.000000
retval: -340282346638528859811704183484516925440.000000

x=-340282346638528859811704183484516925440.000000

In this case, the C library did not print a message, and errno was not set.

In the following run, matherr() is called, changes the return value of the math func-
tion, and returns a nonzero value:

$./a.out 0.0 1 12345.0
matherr SING exception in log() function

args: 0.000000, 0.000000
retval: -340282346638528859811704183484516925440.000000

x=12345.000000

Linux man-pages 6.13 2024-07-23 1963

matherr(3) Library Functions Manual matherr(3)

Program source

#define _SVID_SOURCE
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

static int matherr_ret = 0; /* Value that matherr()
should return */

static int change_retval = 0; /* Should matherr() change
function's return value? */

static double new_retval; /* New function return value */

int
matherr(struct exception *exc)
{

fprintf(stderr, "matherr %s exception in %s() function\n",
(exc->type == DOMAIN) ? "DOMAIN" :
(exc->type == OVERFLOW) ? "OVERFLOW" :
(exc->type == UNDERFLOW) ? "UNDERFLOW" :
(exc->type == SING) ? "SING" :
(exc->type == TLOSS) ? "TLOSS" :
(exc->type == PLOSS) ? "PLOSS" : "???",
exc->name);

fprintf(stderr, " args: %f, %f\n",
exc->arg1, exc->arg2);

fprintf(stderr, " retval: %f\n", exc->retval);

if (change_retval)
exc->retval = new_retval;

return matherr_ret;
}

int
main(int argc, char *argv[])
{

double x;

if (argc < 2) {
fprintf(stderr, "Usage: %s <argval>"

" [<matherr-ret> [<new-func-retval>]]\n", argv[0]);
exit(EXIT_FAILURE);

}

if (argc > 2) {
_LIB_VERSION = _SVID_;
matherr_ret = atoi(argv[2]);

Linux man-pages 6.13 2024-07-23 1964

matherr(3) Library Functions Manual matherr(3)

}

if (argc > 3) {
change_retval = 1;
new_retval = atof(argv[3]);

}

x = log(atof(argv[1]));
if (errno != 0)

perror("errno");

printf("x=%f\n", x);
exit(EXIT_SUCCESS);

}

SEE ALSO
fenv(3), math_error(7), standards(7)

Linux man-pages 6.13 2024-07-23 1965

MAX(3) Library Functions Manual MAX(3)

NAME
MAX, MIN - maximum or minimum of two values

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/param.h>

MAX(a, b);
MIN(a, b);

DESCRIPTION
These macros return the maximum or minimum of a and b.

RETURN VALUE
These macros return the value of one of their arguments, possibly converted to a dif-
ferent type (see BUGS).

ERRORS
These macros may raise the "invalid" floating-point exception when any of the argu-
ments is NaN.

STANDARDS
GNU, BSD.

NOTES
If either of the arguments is of a floating-point type, you might prefer to use fmax(3)
or fmin(3), which can handle NaN.

The arguments may be evaluated more than once, or not at all.

Some UNIX systems might provide these macros in a different header, or not at all.

BUGS
Due to the usual arithmetic conversions, the result of these macros may be very differ-
ent from either of the arguments. To avoid this, ensure that both arguments have the
same type.

EXAMPLES
#include <stdio.h>
#include <stdlib.h>
#include <sys/param.h>

int
main(int argc, char *argv[])
{

int a, b, x;

if (argc != 3) {
fprintf(stderr, "Usage: %s <num> <num>\n", argv[0]);
exit(EXIT_FAILURE);

}

a = atoi(argv[1]);
b = atoi(argv[2]);

Linux man-pages 6.13 2024-07-23 1966

MAX(3) Library Functions Manual MAX(3)

x = MAX(a, b);
printf("MAX(%d, %d) is %d\n", a, b, x);

exit(EXIT_SUCCESS);
}

SEE ALSO
fmax(3), fmin(3)

Linux man-pages 6.13 2024-07-23 1967

MB_CUR_MAX(3) Library Functions Manual MB_CUR_MAX(3)

NAME
MB_CUR_MAX - maximum length of a multibyte character in the current locale

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdlib.h>

DESCRIPTION
The MB_CUR_MAX macro defines an integer expression giving the maximum num-
ber of bytes needed to represent a single wide character in the current locale. This
value is locale dependent and therefore not a compile-time constant.

RETURN VALUE
An integer in the range [1, MB_LEN_MAX]. The value 1 denotes traditional 8-bit
encoded characters.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
MB_LEN_MAX(3), mblen(3), mbstowcs(3), mbtowc(3), wcstombs(3), wctomb(3)

Linux man-pages 6.13 2024-05-02 1968

MB_LEN_MAX(3) Library Functions Manual MB_LEN_MAX(3)

NAME
MB_LEN_MAX - maximum multibyte length of a character across all locales

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <limits.h>

DESCRIPTION
The MB_LEN_MAX macro is the maximum number of bytes needed to represent a
single wide character, in any of the supported locales.

RETURN VALUE
A constant integer greater than zero.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

NOTES
The entities MB_LEN_MAX and sizeof(wchar_t) are totally unrelated. In glibc,
MB_LEN_MAX is typically 16 (6 in glibc versions earlier than 2.2), while
sizeof(wchar_t) is 4.

SEE ALSO
MB_CUR_MAX(3)

Linux man-pages 6.13 2024-05-02 1969

mblen(3) Library Functions Manual mblen(3)

NAME
mblen - determine number of bytes in next multibyte character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int mblen(const char s[.n], size_t n);

DESCRIPTION
If s is not NULL, the mblen() function inspects at most n bytes of the multibyte string
starting at s and extracts the next complete multibyte character. It uses a static anony-
mous shift state known only to the mblen() function. If the multibyte character is not
the null wide character, it returns the number of bytes that were consumed from s. If
the multibyte character is the null wide character, it returns 0.

If the n bytes starting at s do not contain a complete multibyte character, mblen() re-
turns -1. This can happen even if n is greater than or equal to MB_CUR_MAX , if the
multibyte string contains redundant shift sequences.

If the multibyte string starting at s contains an invalid multibyte sequence before the
next complete character, mblen() also returns -1.

If s is NULL, the mblen() function resets the shift state, known to only this function,
to the initial state, and returns nonzero if the encoding has nontrivial shift state, or
zero if the encoding is stateless.

RETURN VALUE
The mblen() function returns the number of bytes parsed from the multibyte sequence
starting at s, if a non-null wide character was recognized. It returns 0, if a null wide
character was recognized. It returns -1, if an invalid multibyte sequence was encoun-
tered or if it couldn’t parse a complete multibyte character.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe racemblen()

VERSIONS
The function mbrlen(3) provides a better interface to the same functionality.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mblen() depends on the LC_CTYPE category of the current locale.

SEE ALSO
mbrlen(3)

Linux man-pages 6.13 2024-07-23 1970

mbrlen(3) Library Functions Manual mbrlen(3)

NAME
mbrlen - determine number of bytes in next multibyte character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t mbrlen(const char s[restrict .n], size_t n,
mbstate_t *restrict ps);

DESCRIPTION
The mbrlen() function inspects at most n bytes of the multibyte string starting at s
and extracts the next complete multibyte character. It updates the shift state *ps. If
the multibyte character is not the null wide character, it returns the number of bytes
that were consumed from s. If the multibyte character is the null wide character, it re-
sets the shift state *ps to the initial state and returns 0.

If the n bytes starting at s do not contain a complete multibyte character, mbrlen() re-
turns (size_t) -2. This can happen even if n >= MB_CUR_MAX , if the multibyte
string contains redundant shift sequences.

If the multibyte string starting at s contains an invalid multibyte sequence before the
next complete character, mbrlen() returns (size_t) -1 and sets errno to EILSEQ. In
this case, the effects on *ps are undefined.

If ps is NULL, a static anonymous state known only to the mbrlen() function is used
instead.

RETURN VALUE
The mbrlen() function returns the number of bytes parsed from the multibyte se-
quence starting at s, if a non-null wide character was recognized. It returns 0, if a null
wide character was recognized. It returns (size_t) -1 and sets errno to EILSEQ, if an
invalid multibyte sequence was encountered. It returns (size_t) -2 if it couldn’t parse
a complete multibyte character, meaning that n should be increased.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:mbrlen/!psmbrlen()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mbrlen() depends on the LC_CTYPE category of the current locale.

SEE ALSO
mbrtowc(3)

Linux man-pages 6.13 2024-07-23 1971

mbrtowc(3) Library Functions Manual mbrtowc(3)

NAME
mbrtowc - convert a multibyte sequence to a wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t mbrtowc(wchar_t *restrict pwc, const char s[restrict .n],
size_t n, mbstate_t *restrict ps);

DESCRIPTION
The main case for this function is when s is not NULL and pwc is not NULL. In this
case, the mbrtowc() function inspects at most n bytes of the multibyte string starting
at s, extracts the next complete multibyte character, converts it to a wide character and
stores it at *pwc. It updates the shift state *ps. If the converted wide character is not
L'\0' (the null wide character), it returns the number of bytes that were consumed from
s. If the converted wide character is L'\0', it resets the shift state *ps to the initial state
and returns 0.

If the n bytes starting at s do not contain a complete multibyte character, mbrtowc()
returns (size_t) -2. This can happen even if n >= MB_CUR_MAX , if the multibyte
string contains redundant shift sequences.

If the multibyte string starting at s contains an invalid multibyte sequence before the
next complete character, mbrtowc() returns (size_t) -1 and sets errno to EILSEQ.
In this case, the effects on *ps are undefined.

A different case is when s is not NULL but pwc is NULL. In this case, the mbr-
towc() function behaves as above, except that it does not store the converted wide
character in memory.

A third case is when s is NULL. In this case, pwc and n are ignored. If the conver-
sion state represented by *ps denotes an incomplete multibyte character conversion,
the mbrtowc() function returns (size_t) -1, sets errno to EILSEQ, and leaves *ps in
an undefined state. Otherwise, the mbrtowc() function puts *ps in the initial state and
returns 0.

In all of the above cases, if ps is NULL, a static anonymous state known only to the
mbrtowc() function is used instead. Otherwise, *ps must be a valid mbstate_t object.
An mbstate_t object a can be initialized to the initial state by zeroing it, for example
using

memset(&a, 0, sizeof(a));

RETURN VALUE
The mbrtowc() function returns the number of bytes parsed from the multibyte se-
quence starting at s, if a non-L'\0' wide character was recognized. It returns 0, if a
L'\0' wide character was recognized. It returns (size_t) -1 and sets errno to EILSEQ,
if an invalid multibyte sequence was encountered. It returns (size_t) -2 if it couldn’t
parse a complete multibyte character, meaning that n should be increased.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1972

mbrtowc(3) Library Functions Manual mbrtowc(3)

Interface Attribute Value
Thread safety MT-Unsafe race:mbrtowc/!psmbrtowc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mbrtowc() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
mbsinit(3), mbsrtowcs(3)

Linux man-pages 6.13 2024-07-23 1973

mbsinit(3) Library Functions Manual mbsinit(3)

NAME
mbsinit - test for initial shift state

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int mbsinit(const mbstate_t *ps);

DESCRIPTION
The function mbsinit() tests whether *ps corresponds to an initial state.

RETURN VALUE
mbsinit() returns nonzero if *ps is an initial state, or if ps is NULL. Otherwise, it re-
turns 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safembsinit()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mbsinit() depends on the LC_CTYPE category of the current locale.

SEE ALSO
mbstate_t(3type), mbrlen(3), mbrtowc(3), mbsrtowcs(3), wcrtomb(3), wcsrtombs(3)

Linux man-pages 6.13 2024-07-23 1974

mbsnrtowcs(3) Library Functions Manual mbsnrtowcs(3)

NAME
mbsnrtowcs - convert a multibyte string to a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t mbsnrtowcs(wchar_t dest[restrict .size], const char **restrict src,
size_t nms, size_t size, mbstate_t *restrict ps);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mbsnrtowcs():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The mbsnrtowcs() function is like the mbsrtowcs(3) function, except that the number
of bytes to be converted, starting at *src, is limited to at most nms bytes.

If dest is not NULL, the mbsnrtowcs() function converts at most nms bytes from the
multibyte string *src to a wide-character string starting at dest. At most size wide
characters are written to dest. The shift state *ps is updated. The conversion is effec-
tively performed by repeatedly calling mbrtowc(dest, *src, n, ps) where n is some
positive number, as long as this call succeeds, and then incrementing dest by one and
*src by the number of bytes consumed. The conversion can stop for three reasons:

• An invalid multibyte sequence has been encountered. In this case, *src is left
pointing to the invalid multibyte sequence, (size_t) -1 is returned, and errno is set
to EILSEQ.

• The nms limit forces a stop, or size non-L'\0' wide characters have been stored at
dest. In this case, *src is left pointing to the next multibyte sequence to be con-
verted, and the number of wide characters written to dest is returned.

• The multibyte string has been completely converted, including the terminating
null wide character ('\0') (which has the side effect of bringing back *ps to the ini-
tial state). In this case, *src is set to NULL, and the number of wide characters
written to dest, excluding the terminating null wide character, is returned.

According to POSIX.1, if the input buffer ends with an incomplete character, it is un-
specified whether conversion stops at the end of the previous character (if any), or at
the end of the input buffer. The glibc implementation adopts the former behavior.

If dest is NULL, size is ignored, and the conversion proceeds as above, except that the
converted wide characters are not written out to memory, and that no destination size
limit exists.

In both of the above cases, if ps is NULL, a static anonymous state known only to the
mbsnrtowcs() function is used instead.

The programmer must ensure that there is room for at least size wide characters at
dest.

Linux man-pages 6.13 2024-11-17 1975

mbsnrtowcs(3) Library Functions Manual mbsnrtowcs(3)

RETURN VALUE
The mbsnrtowcs() function returns the number of wide characters that make up the
converted part of the wide-character string, not including the terminating null wide
character. If an invalid multibyte sequence was encountered, (size_t) -1 is returned,
and errno set to EILSEQ.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetymbsnrtowcs() MT-Unsafe race:mbsnrtowcs/!ps

STANDARDS
POSIX.1-2008.

NOTES
The behavior of mbsnrtowcs() depends on the LC_CTYPE category of the current
locale.

Passing NULL as ps is not multithread safe.

SEE ALSO
iconv(3), mbrtowc(3), mbsinit(3), mbsrtowcs(3)

Linux man-pages 6.13 2024-11-17 1976

mbsrtowcs(3) Library Functions Manual mbsrtowcs(3)

NAME
mbsrtowcs - convert a multibyte string to a wide-character string (restartable)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t mbsrtowcs(wchar_t dest[restrict .dsize],
const char **restrict src,
size_t dsize, mbstate_t *restrict ps);

DESCRIPTION
If dest is not NULL, convert the multibyte string *src to a wide-character string start-
ing at dest. At most dsize wide characters are written to dest. The shift state *ps is
updated. The conversion is effectively performed by repeatedly calling mbrtowc(dest,
*src, n, ps) where n is some positive number, as long as this call succeeds, and then
incrementing dest by one and *src by the number of bytes consumed. The conversion
can stop for three reasons:

• An invalid multibyte sequence has been encountered. In this case, *src is left
pointing to the invalid multibyte sequence, (size_t) -1 is returned, and errno is set
to EILSEQ.

• dsize non-L'\0' wide characters have been stored at dest. In this case, *src is left
pointing to the next multibyte sequence to be converted, and the number of wide
characters written to dest is returned.

• The multibyte string has been completely converted, including the terminating
null wide character ('\0'), which has the side effect of bringing back *ps to the ini-
tial state. In this case, *src is set to NULL, and the number of wide characters
written to dest, excluding the terminating null wide character, is returned.

If dest is NULL, dsize is ignored, and the conversion proceeds as above, except that
the converted wide characters are not written out to memory, and that no length limit
exists.

In both of the above cases, if ps is NULL, a static anonymous state known only to the
mbsrtowcs() function is used instead.

In order to avoid the case 2 above, the programmer should make sure dsize is greater
than or equal to mbsrtowcs(NULL,src,0,ps)+1.

The programmer must ensure that there is room for at least dsize wide characters at
dest.

This function is a restartable version of mbstowcs(3).

RETURN VALUE
The number of wide characters that make up the converted part of the wide-character
string, not including the terminating null wide character. If an invalid multibyte se-
quence was encountered, (size_t) -1 is returned, and errno set to EILSEQ.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 1977

mbsrtowcs(3) Library Functions Manual mbsrtowcs(3)

Interface Attribute Value
Thread safetymbsrtowcs() MT-Unsafe race:mbsrtowcs/!ps

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mbsrtowcs() depends on the LC_CTYPE category of the current lo-
cale.

Passing NULL as ps is not multithread safe.

SEE ALSO
iconv(3), mbrtowc(3), mbsinit(3), mbsnrtowcs(3), mbstowcs(3)

Linux man-pages 6.13 2024-07-23 1978

mbstowcs(3) Library Functions Manual mbstowcs(3)

NAME
mbstowcs - convert a multibyte string to a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

size_t mbstowcs(wchar_t dest[restrict .dsize], const char *restrict src,
size_t dsize);

DESCRIPTION
If dest is not NULL, convert the multibyte string src to a wide-character string start-
ing at dest. At most dsize wide characters are written to dest. The sequence of char-
acters in the string src shall begin in the initial shift state. The conversion can stop for
three reasons:

• An invalid multibyte sequence has been encountered. In this case, (size_t) -1 is
returned.

• dsize non-L'\0' wide characters have been stored at dest. In this case, the number
of wide characters written to dest is returned, but the shift state at this point is lost.

• The multibyte string has been completely converted, including the terminating
null character ('\0'). In this case, the number of wide characters written to dest,
excluding the terminating null wide character, is returned.

If dest is NULL, dsize is ignored, and the conversion proceeds as above, except that
the converted wide characters are not written out to memory, and that no length limit
exists.

In order to avoid the case 2 above, the programmer should make sure dsize is greater
than or equal to mbstowcs(NULL,src,0)+1.

The programmer must ensure that there is room for at least dsize wide characters at
dest.

RETURN VALUE
The number of wide characters that make up the converted part of the wide-character
string, not including the terminating null wide character. If an invalid multibyte se-
quence was encountered, (size_t) -1 is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safembstowcs()

VERSIONS
The function mbsrtowcs(3) provides a better interface to the same functionality.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

Linux man-pages 6.13 2024-07-23 1979

mbstowcs(3) Library Functions Manual mbstowcs(3)

NOTES
The behavior of mbstowcs() depends on the LC_CTYPE category of the current lo-
cale.

EXAMPLES
The program below illustrates the use of mbstowcs(), as well as some of the wide
character classification functions. An example run is the following:

$./t_mbstowcs de_DE.UTF-8 Grüße!
Length of source string (excluding terminator):

8 bytes
6 multibyte characters

Wide character string is: Grüße! (6 characters)
G alpha upper
r alpha lower
ü alpha lower
ß alpha lower
e alpha lower
! !alpha

Program source

#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <wctype.h>

int
main(int argc, char *argv[])
{

size_t mbslen; /* Number of multibyte characters in source */
wchar_t *wcs; /* Pointer to converted wide character string */

if (argc < 3) {
fprintf(stderr, "Usage: %s <locale> <string>\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Apply the specified locale. */

if (setlocale(LC_ALL, argv[1]) == NULL) {
perror("setlocale");
exit(EXIT_FAILURE);

}

/* Calculate the length required to hold argv[2] converted to
a wide character string. */

Linux man-pages 6.13 2024-07-23 1980

mbstowcs(3) Library Functions Manual mbstowcs(3)

mbslen = mbstowcs(NULL, argv[2], 0);
if (mbslen == (size_t) -1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* Describe the source string to the user. */

printf("Length of source string (excluding terminator):\n");
printf(" %zu bytes\n", strlen(argv[2]));
printf(" %zu multibyte characters\n\n", mbslen);

/* Allocate wide character string of the desired size. Add 1
to allow for terminating null wide character (L'\0'). */

wcs = calloc(mbslen + 1, sizeof(*wcs));
if (wcs == NULL) {

perror("calloc");
exit(EXIT_FAILURE);

}

/* Convert the multibyte character string in argv[2] to a
wide character string. */

if (mbstowcs(wcs, argv[2], mbslen + 1) == (size_t) -1) {
perror("mbstowcs");
exit(EXIT_FAILURE);

}

printf("Wide character string is: %ls (%zu characters)\n",
wcs, mbslen);

/* Now do some inspection of the classes of the characters in
the wide character string. */

for (wchar_t *wp = wcs; *wp != 0; wp++) {
printf(" %lc ", (wint_t) *wp);

if (!iswalpha(*wp))
printf("!");

printf("alpha ");

if (iswalpha(*wp)) {
if (iswupper(*wp))

printf("upper ");

if (iswlower(*wp))
printf("lower ");

Linux man-pages 6.13 2024-07-23 1981

mbstowcs(3) Library Functions Manual mbstowcs(3)

}

putchar('\n');
}

exit(EXIT_SUCCESS);
}

SEE ALSO
mblen(3), mbsrtowcs(3), mbtowc(3), wcstombs(3), wctomb(3)

Linux man-pages 6.13 2024-07-23 1982

mbtowc(3) Library Functions Manual mbtowc(3)

NAME
mbtowc - convert a multibyte sequence to a wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int mbtowc(wchar_t *restrict pwc, const char s[restrict .n], size_t n);

DESCRIPTION
The main case for this function is when s is not NULL and pwc is not NULL. In this
case, the mbtowc() function inspects at most n bytes of the multibyte string starting at
s, extracts the next complete multibyte character, converts it to a wide character and
stores it at *pwc. It updates an internal shift state known only to the mbtowc() func-
tion. If s does not point to a null byte ('\0'), it returns the number of bytes that were
consumed from s, otherwise it returns 0.

If the n bytes starting at s do not contain a complete multibyte character, or if they
contain an invalid multibyte sequence, mbtowc() returns -1. This can happen even if
n >= MB_CUR_MAX , if the multibyte string contains redundant shift sequences.

A different case is when s is not NULL but pwc is NULL. In this case, the mbtowc()
function behaves as above, except that it does not store the converted wide character
in memory.

A third case is when s is NULL. In this case, pwc and n are ignored. The mbtowc()
function resets the shift state, only known to this function, to the initial state, and re-
turns nonzero if the encoding has nontrivial shift state, or zero if the encoding is state-
less.

RETURN VALUE
If s is not NULL, the mbtowc() function returns the number of consumed bytes start-
ing at s, or 0 if s points to a null byte, or -1 upon failure.

If s is NULL, the mbtowc() function returns nonzero if the encoding has nontrivial
shift state, or zero if the encoding is stateless.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe racembtowc()

VERSIONS
This function is not multithread safe. The function mbrtowc(3) provides a better in-
terface to the same functionality.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mbtowc() depends on the LC_CTYPE category of the current lo-
cale.

Linux man-pages 6.13 2024-07-23 1983

mbtowc(3) Library Functions Manual mbtowc(3)

SEE ALSO
MB_CUR_MAX(3), mblen(3), mbrtowc(3), mbstowcs(3), wcstombs(3), wctomb(3)

Linux man-pages 6.13 2024-07-23 1984

mcheck(3) Library Functions Manual mcheck(3)

NAME
mcheck, mcheck_check_all, mcheck_pedantic, mprobe - heap consistency checking

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <mcheck.h>

int mcheck(typeof(void (enum mcheck_status mstatus)) *abortfunc);
int mcheck_pedantic(

typeof(void (enum mcheck_status mstatus)) *abortfunc);
void mcheck_check_all(void);

enum mcheck_status mprobe(void *ptr);

DESCRIPTION
The mcheck() function installs a set of debugging hooks for the malloc(3) family of
memory-allocation functions. These hooks cause certain consistency checks to be
performed on the state of the heap. The checks can detect application errors such as
freeing a block of memory more than once or corrupting the bookkeeping data struc-
tures that immediately precede a block of allocated memory.

To be effective, the mcheck() function must be called before the first call to malloc(3)
or a related function. In cases where this is difficult to ensure, linking the program
with -lmcheck inserts an implicit call to mcheck() (with a NULL argument) before
the first call to a memory-allocation function.

The mcheck_pedantic() function is similar to mcheck(), but performs checks on all
allocated blocks whenever one of the memory-allocation functions is called. This can
be very slow!

The mcheck_check_all() function causes an immediate check on all allocated blocks.
This call is effective only if mcheck() is called beforehand.

If the system detects an inconsistency in the heap, the caller-supplied function pointed
to by abortfunc is invoked with a single argument, mstatus, that indicates what type of
inconsistency was detected. If abortfunc is NULL, a default function prints an error
message on stderr and calls abort(3).

The mprobe() function performs a consistency check on the block of allocated mem-
ory pointed to by ptr. The mcheck() function should be called beforehand (otherwise
mprobe() returns MCHECK_DISABLED).

The following list describes the values returned by mprobe() or passed as the mstatus
argument when abortfunc is invoked:

MCHECK_DISABLED (mprobe() only)
mcheck() was not called before the first memory allocation function was
called. Consistency checking is not possible.

MCHECK_OK (mprobe() only)
No inconsistency detected.

MCHECK_HEAD
Memory preceding an allocated block was clobbered.

Linux man-pages 6.13 2024-12-13 1985

mcheck(3) Library Functions Manual mcheck(3)

MCHECK_TAIL
Memory following an allocated block was clobbered.

MCHECK_FREE
A block of memory was freed twice.

RETURN VALUE
mcheck() and mcheck_pedantic() return 0 on success, or -1 on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetymcheck(), mcheck_pedantic(),
mcheck_check_all(), mprobe()

MT-Unsafe
race:mcheck
const:malloc_hooks

STANDARDS
GNU.

HISTORY
mcheck_pedantic()
mcheck_check_all()

glibc 2.2.

mcheck()
mprobe()

glibc 2.0.

NOTES
Linking a program with -lmcheck and using the MALLOC_CHECK_ environment
variable (described in mallopt(3)) cause the same kinds of errors to be detected. But,
using MALLOC_CHECK_ does not require the application to be relinked.

EXAMPLES
The program below calls mcheck() with a NULL argument and then frees the same
block of memory twice. The following shell session demonstrates what happens
when running the program:

$./a.out
About to free

About to free a second time
block freed twice
Aborted (core dumped)

Program source

#include <mcheck.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

Linux man-pages 6.13 2024-12-13 1986

mcheck(3) Library Functions Manual mcheck(3)

char *p;

if (mcheck(NULL) != 0) {
fprintf(stderr, "mcheck() failed\n");

exit(EXIT_FAILURE);
}

p = malloc(1000);

fprintf(stderr, "About to free\n");
free(p);
fprintf(stderr, "\nAbout to free a second time\n");
free(p);

exit(EXIT_SUCCESS);
}

SEE ALSO
malloc(3), mallopt(3), mtrace(3)

Linux man-pages 6.13 2024-12-13 1987

memccpy(3) Library Functions Manual memccpy(3)

NAME
memccpy - copy memory area

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

void *memccpy(void dest[restrict .n], const void src[restrict .n],
int c, size_t n);

DESCRIPTION
The memccpy() function copies no more than n bytes from memory area src to mem-
ory area dest, stopping when the character c is found (c is copied).

If the memory areas overlap, the results are undefined.

RETURN VALUE
The memccpy() function returns a pointer to the next character in dest after c, or
NULL if c was not found in the first n characters of src.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememccpy()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
bcopy(3), bstring(3), memcpy(3), memmove(3), strcpy(3), strncpy(3)

Linux man-pages 6.13 2024-07-31 1988

memchr(3) Library Functions Manual memchr(3)

NAME
memchr, memrchr, rawmemchr - scan memory for a character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

void *memchr(const void s[.n], int c, size_t n);
void *memrchr(const void s[.n], int c, size_t n);

[[deprecated]] void *rawmemchr(const void *s, int c);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

memrchr(), rawmemchr():
_GNU_SOURCE

DESCRIPTION
The memchr() function scans the initial n bytes of the memory area pointed to by s
for the first instance of c. Both c and the bytes of the memory area pointed to by s are
interpreted as unsigned char.

The memrchr() function is like the memchr() function, except that it searches back-
ward from the end of the n bytes pointed to by s instead of forward from the begin-
ning.

The rawmemchr() function is similar to memchr(), but it assumes (i.e., the program-
mer knows for certain) that an instance of c lies somewhere in the memory area start-
ing at the location pointed to by s. If an instance of c is not found, the behavior is un-
defined. Use either strlen(3) or memchr(3) instead.

RETURN VALUE
The memchr() and memrchr() functions return a pointer to the matching byte or
NULL if the character does not occur in the given memory area.

The rawmemchr() function returns a pointer to the matching byte.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememchr(), memrchr(), rawmemchr()

STANDARDS
memchr()

C11, POSIX.1-2008.

memrchr()
rawmemchr()

GNU.

HISTORY
memchr()

POSIX.1-2001, C89, SVr4, 4.3BSD.

Linux man-pages 6.13 2024-07-23 1989

memchr(3) Library Functions Manual memchr(3)

memrchr()
glibc 2.2.

rawmemchr()
glibc 2.1.

SEE ALSO
bstring(3), ffs(3), memmem(3), strchr(3), strpbrk(3), strrchr(3), strsep(3), strspn(3),
strstr(3), wmemchr(3)

Linux man-pages 6.13 2024-07-23 1990

memcmp(3) Library Functions Manual memcmp(3)

NAME
memcmp - compare memory areas

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

int memcmp(const void s1[.n], const void s2[.n], size_t n);

DESCRIPTION
The memcmp() function compares the first n bytes (each interpreted as unsigned
char) of the memory areas s1 and s2.

RETURN VALUE
The memcmp() function returns an integer less than, equal to, or greater than zero if
the first n bytes of s1 is found, respectively, to be less than, to match, or be greater
than the first n bytes of s2.

For a nonzero return value, the sign is determined by the sign of the difference be-
tween the first pair of bytes (interpreted as unsigned char) that differ in s1 and s2.

If n is zero, the return value is zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememcmp()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

CAVEATS
Do not use memcmp() to compare confidential data, such as cryptographic secrets,
because the CPU time required for the comparison depends on the contents of the ad-
dresses compared, this function is subject to timing-based side-channel attacks. In
such cases, a function that performs comparisons in deterministic time, depending
only on n (the quantity of bytes compared) is required. Some operating systems pro-
vide such a function (e.g., NetBSD’s consttime_memequal()), but no such function is
specified in POSIX. On Linux, you may need to implement such a function yourself.

SEE ALSO
bstring(3), strcasecmp(3), strcmp(3), strcoll(3), strncasecmp(3), strncmp(3), wmem-
cmp(3)

Linux man-pages 6.13 2024-07-23 1991

memcpy(3) Library Functions Manual memcpy(3)

NAME
memcpy - copy memory area

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

void *memcpy(void dest[restrict .n], const void src[restrict .n],
size_t n);

DESCRIPTION
The memcpy() function copies n bytes from memory area src to memory area dest.
The memory areas must not overlap. Use memmove(3) if the memory areas do over-
lap.

RETURN VALUE
The memcpy() function returns a pointer to dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememcpy()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

CAVEATS
Failure to observe the requirement that the memory areas do not overlap has been the
source of significant bugs. (POSIX and the C standards are explicit that employing
memcpy() with overlapping areas produces undefined behavior.) Most notably, in
glibc 2.13 a performance optimization of memcpy() on some platforms (including
x86-64) included changing the order in which bytes were copied from src to dest.

This change revealed breakages in a number of applications that performed copying
with overlapping areas. Under the previous implementation, the order in which the
bytes were copied had fortuitously hidden the bug, which was revealed when the
copying order was reversed. In glibc 2.14, a versioned symbol was added so that old
binaries (i.e., those linked against glibc versions earlier than 2.14) employed a mem-
cpy() implementation that safely handles the overlapping buffers case (by providing
an "older" memcpy() implementation that was aliased to memmove(3)).

SEE ALSO
bcopy(3), bstring(3), memccpy(3), memmove(3), mempcpy(3), strcpy(3), strncpy(3),
wmemcpy(3)

Linux man-pages 6.13 2024-07-23 1992

memfrob(3) Library Functions Manual memfrob(3)

NAME
memfrob - frobnicate (obfuscate) a memory area

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

void *memfrob(void s[.n], size_t n);

DESCRIPTION
The memfrob() function obfuscates the first n bytes of the memory area s by exclu-
sive-ORing each character with the number 42. The effect can be reversed by using
memfrob() on the obfuscated memory area.

Note that this function is not a proper encryption routine as the XOR constant is fixed,
and is suitable only for hiding strings.

RETURN VALUE
The memfrob() function returns a pointer to the obfuscated memory area.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememfrob()

STANDARDS
GNU.

SEE ALSO
bstring(3), strfry(3)

Linux man-pages 6.13 2024-07-23 1993

memmem(3) Library Functions Manual memmem(3)

NAME
memmem - locate a substring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

void *memmem(const void haystack[.haystacklen], size_t haystacklen,
const void needle[.needlelen], size_t needlelen);

DESCRIPTION
The memmem() function finds the start of the first occurrence of the substring needle
of length needlelen in the memory area haystack of length haystacklen.

RETURN VALUE
The memmem() function returns a pointer to the beginning of the substring, or NULL
if the substring is not found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememmem()

STANDARDS
None.

HISTORY
musl libc 0.9.7; FreeBSD 6.0, OpenBSD 5.4, NetBSD, Illumos.

BUGS
In glibc 2.0, if needle is empty, memmem() returns a pointer to the last byte of
haystack. This is fixed in glibc 2.1.

SEE ALSO
bstring(3), strstr(3)

Linux man-pages 6.13 2024-07-23 1994

memmove(3) Library Functions Manual memmove(3)

NAME
memmove - copy memory area

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

void *memmove(void dest[.n], const void src[.n], size_t n);

DESCRIPTION
The memmove() function copies n bytes from memory area src to memory area dest.
The memory areas may overlap: copying takes place as though the bytes in src are
first copied into a temporary array that does not overlap src or dest, and the bytes are
then copied from the temporary array to dest.

RETURN VALUE
The memmove() function returns a pointer to dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememmove()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
bcopy(3), bstring(3), memccpy(3), memcpy(3), strcpy(3), strncpy(3), wmemmove(3)

Linux man-pages 6.13 2024-07-23 1995

mempcpy(3) Library Functions Manual mempcpy(3)

NAME
mempcpy, wmempcpy - copy memory area

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

void *mempcpy(void dest[restrict .n], const void src[restrict .n],
size_t n);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <wchar.h>

wchar_t *wmempcpy(wchar_t dest[restrict .n],
const wchar_t src[restrict .n],
size_t n);

DESCRIPTION
The mempcpy() function is nearly identical to the memcpy(3) function. It copies n
bytes from the object beginning at src into the object pointed to by dest. But instead
of returning the value of dest it returns a pointer to the byte following the last written
byte.

This function is useful in situations where a number of objects shall be copied to con-
secutive memory positions.

The wmempcpy() function is identical but takes wchar_t type arguments and copies
n wide characters.

RETURN VALUE
dest + n.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemempcpy(), wmempcpy()

STANDARDS
GNU.

HISTORY
glibc 2.1.

EXAMPLES
void *
combine(void *o1, size_t s1, void *o2, size_t s2)
{

void *result = malloc(s1 + s2);
if (result != NULL)

mempcpy(mempcpy(result, o1, s1), o2, s2);
return result;

}

Linux man-pages 6.13 2024-07-23 1996

mempcpy(3) Library Functions Manual mempcpy(3)

SEE ALSO
memccpy(3), memcpy(3), memmove(3), wmemcpy(3)

Linux man-pages 6.13 2024-07-23 1997

memset(3) Library Functions Manual memset(3)

NAME
memset - fill memory with a constant byte

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

void *memset(void s[.n], int c, size_t n);

DESCRIPTION
The memset() function fills the first n bytes of the memory area pointed to by s with
the constant byte c.

RETURN VALUE
The memset() function returns a pointer to the memory area s.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememset()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
bstring(3), bzero(3), swab(3), wmemset(3)

Linux man-pages 6.13 2024-07-23 1998

mkdtemp(3) Library Functions Manual mkdtemp(3)

NAME
mkdtemp - create a unique temporary directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

char *mkdtemp(char *template);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mkdtemp():
/* Since glibc 2.19: */ _DEFAULT_SOURCE

|| /* glibc 2.19 and earlier: */ _BSD_SOURCE
|| /* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200809L

DESCRIPTION
The mkdtemp() function generates a uniquely named temporary directory from tem-
plate. The last six characters of template must be XXXXXX and these are replaced
with a string that makes the directory name unique. The directory is then created with
permissions 0700. Since it will be modified, template must not be a string constant,
but should be declared as a character array.

RETURN VALUE
The mkdtemp() function returns a pointer to the modified template string on success,
and NULL on failure, in which case errno is set to indicate the error.

ERRORS
EINVAL

The last six characters of template were not XXXXXX. Now template is un-
changed.

Also see mkdir(2) for other possible values for errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemkdtemp()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1.91. NetBSD 1.4. POSIX.1-2008.

SEE ALSO
mktemp(1), mkdir(2), mkstemp(3), mktemp(3), tempnam(3), tmpfile(3), tmpnam(3)

Linux man-pages 6.13 2024-07-23 1999

mkfifo(3) Library Functions Manual mkfifo(3)

NAME
mkfifo, mkfifoat - make a FIFO special file (a named pipe)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int mkfifoat(int dirfd , const char *pathname, mode_t mode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mkfifoat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
mkfifo() makes a FIFO special file with name pathname. mode specifies the FIFO’s
permissions. It is modified by the process’s umask in the usual way: the permissions
of the created file are (mode & ~umask).

A FIFO special file is similar to a pipe, except that it is created in a different way. In-
stead of being an anonymous communications channel, a FIFO special file is entered
into the filesystem by calling mkfifo().

Once you have created a FIFO special file in this way, any process can open it for
reading or writing, in the same way as an ordinary file. However, it has to be open at
both ends simultaneously before you can proceed to do any input or output operations
on it. Opening a FIFO for reading normally blocks until some other process opens the
same FIFO for writing, and vice versa. See fifo(7) for nonblocking handling of FIFO
special files.

mkfifoat()
The mkfifoat() function operates in exactly the same way as mkfifo(), except for the
differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the di-
rectory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by mkfifo() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is
interpreted relative to the current working directory of the calling process (like mk-
fifo())

If pathname is absolute, then dirfd is ignored.

See openat(2) for an explanation of the need for mkfifoat().

Linux man-pages 6.13 2024-07-23 2000

mkfifo(3) Library Functions Manual mkfifo(3)

RETURN VALUE
On success mkfifo() and mkfifoat() return 0. On error, -1 is returned and errno is set
to indicate the error.

ERRORS
EACCES

One of the directories in pathname did not allow search (execute) permission.

EBADF
(mkfifoat()) pathname is relative but dirfd is neither AT_FDCWD nor a valid
file descriptor.

EDQUOT
The user’s quota of disk blocks or inodes on the filesystem has been ex-
hausted.

EEXIST
pathname already exists. This includes the case where pathname is a sym-
bolic link, dangling or not.

ENAMETOOLONG
Either the total length of pathname is greater than PATH_MAX, or an individ-
ual filename component has a length greater than NAME_MAX. In the GNU
system, there is no imposed limit on overall filename length, but some filesys-
tems may place limits on the length of a component.

ENOENT
A directory component in pathname does not exist or is a dangling symbolic
link.

ENOSPC
The directory or filesystem has no room for the new file.

ENOTDIR
A component used as a directory in pathname is not, in fact, a directory.

ENOTDIR
(mkfifoat()) pathname is a relative pathname and dirfd is a file descriptor re-
ferring to a file other than a directory.

EROFS
pathname refers to a read-only filesystem.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemkfifo(), mkfifoat()

VERSIONS
It is implemented using mknodat(2).

STANDARDS
POSIX.1-2008.

HISTORY

Linux man-pages 6.13 2024-07-23 2001

mkfifo(3) Library Functions Manual mkfifo(3)

mkfifo()
POSIX.1-2001.

mkfifoat()
glibc 2.4. POSIX.1-2008.

SEE ALSO
mkfifo(1), close(2), open(2), read(2), stat(2), umask(2), write(2), fifo(7)

Linux man-pages 6.13 2024-07-23 2002

mkstemp(3) Library Functions Manual mkstemp(3)

NAME
mkstemp, mkostemp, mkstemps, mkostemps - create a unique temporary file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int mkstemp(char *template);
int mkostemp(char *template, int flags);
int mkstemps(char *template, int suffixlen);
int mkostemps(char *template, int suffixlen, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mkstemp():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

mkostemp():
_GNU_SOURCE

mkstemps():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

mkostemps():
_GNU_SOURCE

DESCRIPTION
The mkstemp() function generates a unique temporary filename from template, cre-
ates and opens the file, and returns an open file descriptor for the file.

The last six characters of template must be "XXXXXX" and these are replaced with a
string that makes the filename unique. Since it will be modified, template must not be
a string constant, but should be declared as a character array.

The file is created with permissions 0600, that is, read plus write for owner only. The
returned file descriptor provides both read and write access to the file. The file is
opened with the open(2) O_EXCL flag, guaranteeing that the caller is the process that
creates the file.

The mkostemp() function is like mkstemp(), with the difference that the following
bits—with the same meaning as for open(2)—may be specified in flags: O_AP-
PEND, O_CLOEXEC, and O_SYNC. Note that when creating the file, mkostemp()
includes the values O_RDWR, O_CREAT, and O_EXCL in the flags argument
given to open(2); including these values in the flags argument given to mkostemp() is
unnecessary, and produces errors on some systems.

The mkstemps() function is like mkstemp(), except that the string in template con-
tains a suffix of suffixlen characters. Thus, template is of the form prefixXXXXXXsuf-
fix, and the string XXXXXX is modified as for mkstemp().

The mkostemps() function is to mkstemps() as mkostemp() is to mkstemp().

Linux man-pages 6.13 2024-07-23 2003

mkstemp(3) Library Functions Manual mkstemp(3)

RETURN VALUE
On success, these functions return the file descriptor of the temporary file. On error,
-1 is returned, and errno is set to indicate the error.

ERRORS
EEXIST

Could not create a unique temporary filename. Now the contents of template
are undefined.

EINVAL
For mkstemp() and mkostemp(): The last six characters of template were not
XXXXXX; now template is unchanged.

For mkstemps() and mkostemps(): template is less than (6 + suffixlen) char-
acters long, or the last 6 characters before the suffix in template were not
XXXXXX.

These functions may also fail with any of the errors described for open(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemkstemp(), mkostemp(), mkstemps(),
mkostemps()

STANDARDS
mkstemp()

POSIX.1-2001.

mkstemps()
BSD.

mkostemp()
mkostemps()

GNU.

HISTORY
mkstemp()

4.3BSD, POSIX.1-2001.

mkstemps()
glibc 2.11. BSD, Mac OS X, Solaris, Tru64.

mkostemp()
glibc 2.7.

mkostemps()
glibc 2.11.

In glibc versions 2.06 and earlier, the file is created with permissions 0666, that is,
read and write for all users. This old behavior may be a security risk, especially since
other UNIX flavors use 0600, and somebody might overlook this detail when porting
programs. POSIX.1-2008 adds a requirement that the file be created with mode 0600.

More generally, the POSIX specification of mkstemp() does not say anything about
file modes, so the application should make sure its file mode creation mask (see
umask(2)) is set appropriately before calling mkstemp() (and mkostemp())

Linux man-pages 6.13 2024-07-23 2004

mkstemp(3) Library Functions Manual mkstemp(3)

SEE ALSO
mkdtemp(3), mktemp(3), tempnam(3), tmpfile(3), tmpnam(3)

Linux man-pages 6.13 2024-07-23 2005

mktemp(3) Library Functions Manual mktemp(3)

NAME
mktemp - make a unique temporary filename

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

char *mktemp(char *template);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mktemp():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200112L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
Never use this function; see BUGS.

The mktemp() function generates a unique temporary filename from template. The
last six characters of template must be XXXXXX and these are replaced with a string
that makes the filename unique. Since it will be modified, template must not be a
string constant, but should be declared as a character array.

RETURN VALUE
The mktemp() function always returns template. If a unique name was created, the
last six bytes of template will have been modified in such a way that the resulting
name is unique (i.e., does not exist already) If a unique name could not be created,
template is made an empty string, and errno is set to indicate the error.

ERRORS
EINVAL

The last six characters of template were not XXXXXX.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemktemp()

STANDARDS
None.

HISTORY
4.3BSD, POSIX.1-2001. Removed in POSIX.1-2008.

BUGS
Never use mktemp(). Some implementations follow 4.3BSD and replace XXXXXX
by the current process ID and a single letter, so that at most 26 different names can be
returned. Since on the one hand the names are easy to guess, and on the other hand
there is a race between testing whether the name exists and opening the file, every use
of mktemp() is a security risk. The race is avoided by mkstemp(3) and mkdtemp(3).

Linux man-pages 6.13 2024-07-23 2006

mktemp(3) Library Functions Manual mktemp(3)

SEE ALSO
mktemp(1), mkdtemp(3), mkstemp(3), tempnam(3), tmpfile(3), tmpnam(3)

Linux man-pages 6.13 2024-07-23 2007

modf (3) Library Functions Manual modf (3)

NAME
modf, modff, modfl - extract signed integral and fractional values from floating-point
number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double modf(double x, double *iptr);
float modff(float x, float *iptr);
long double modfl(long double x, long double *iptr);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

modff(), modfl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions break the argument x into an integral part and a fractional part, each
of which has the same sign as x. The integral part is stored in the location pointed to
by iptr.

RETURN VALUE
These functions return the fractional part of x.

If x is a NaN, a NaN is returned, and *iptr is set to a NaN.

If x is positive infinity (negative infinity), +0 (-0) is returned, and *iptr is set to posi-
tive infinity (negative infinity).

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemodf(), modff(), modfl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
frexp(3), ldexp(3)

Linux man-pages 6.13 2024-07-23 2008

mpool(3) Library Functions Manual mpool(3)

NAME
mpool - shared memory buffer pool

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <db.h>
#include <mpool.h>

MPOOL *mpool_open(DBT *key, int fd , pgno_t pagesize, pgno_t maxcache);

void mpool_filter(MPOOL *mp,
typeof(void (void *, pgno_t, void *)) *pgin,
typeof(void (void *, pgno_t, void *)) *pgout,
void *pgcookie);

void *mpool_new(MPOOL *mp, pgno_t *pgnoaddr);
void *mpool_get(MPOOL *mp, pgno_t pgno, unsigned int flags);
int mpool_put(MPOOL *mp, void *pgaddr, unsigned int flags);

int mpool_sync(MPOOL *mp);
int mpool_close(MPOOL *mp);

DESCRIPTION
Note well: This page documents interfaces provided up until glibc 2.1. Since glibc
2.2, glibc no longer provides these interfaces. Probably, you are looking for the APIs
provided by the libdb library instead.

Mpool is the library interface intended to provide page oriented buffer management of
files. The buffers may be shared between processes.

The function mpool_open() initializes a memory pool. The key argument is the byte
string used to negotiate between multiple processes wishing to share buffers. If the
file buffers are mapped in shared memory, all processes using the same key will share
the buffers. If key is NULL, the buffers are mapped into private memory. The fd ar-
gument is a file descriptor for the underlying file, which must be seekable. If key is
non-NULL and matches a file already being mapped, the fd argument is ignored.

The pagesize argument is the size, in bytes, of the pages into which the file is broken
up. The maxcache argument is the maximum number of pages from the underlying
file to cache at any one time. This value is not relative to the number of processes
which share a file’s buffers, but will be the largest value specified by any of the
processes sharing the file.

The mpool_filter() function is intended to make transparent input and output process-
ing of the pages possible. If the pgin function is specified, it is called each time a
buffer is read into the memory pool from the backing file. If the pgout function is
specified, it is called each time a buffer is written into the backing file. Both functions
are called with the pgcookie pointer, the page number and a pointer to the page to be-
ing read or written.

The function mpool_new() takes an MPOOL pointer and an address as arguments. If
a new page can be allocated, a pointer to the page is returned and the page number is
stored into the pgnoaddr address. Otherwise, NULL is returned and errno is set.

4.4 Berkeley Distribution 2024-12-13 2009

mpool(3) Library Functions Manual mpool(3)

The function mpool_get() takes an MPOOL pointer and a page number as arguments.
If the page exists, a pointer to the page is returned. Otherwise, NULL is returned and
errno is set. The flags argument is not currently used.

The function mpool_put() unpins the page referenced by pgaddr. pgaddr must be
an address previously returned by mpool_get() or mpool_new(). The flag value is
specified by ORing any of the following values:

MPOOL_DIRTY
The page has been modified and needs to be written to the backing file.

mpool_put() returns 0 on success and -1 if an error occurs.

The function mpool_sync() writes all modified pages associated with the MPOOL
pointer to the backing file. mpool_sync() returns 0 on success and -1 if an error oc-
curs.

The mpool_close() function free’s up any allocated memory associated with the mem-
ory pool cookie. Modified pages are not written to the backing file. mpool_close()
returns 0 on success and -1 if an error occurs.

ERRORS
The mpool_open() function may fail and set errno for any of the errors specified for
the library routine malloc(3).

The mpool_get() function may fail and set errno for the following:

EINVAL The requested record doesn’t exist.

The mpool_new() and mpool_get() functions may fail and set errno for any of the er-
rors specified for the library routines read(2), write(2), and malloc(3).

The mpool_sync() function may fail and set errno for any of the errors specified for
the library routine write(2).

The mpool_close() function may fail and set errno for any of the errors specified for
the library routine free(3).

STANDARDS
BSD.

SEE ALSO
btree(3), dbopen(3), hash(3), recno(3)

4.4 Berkeley Distribution 2024-12-13 2010

mq_close(3) Library Functions Manual mq_close(3)

NAME
mq_close - close a message queue descriptor

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>

int mq_close(mqd_t mqdes);

DESCRIPTION
mq_close() closes the message queue descriptor mqdes.

If the calling process has attached a notification request (see mq_notify(3)) to this
message queue via mqdes, then this request is removed, and another process can now
attach a notification request.

RETURN VALUE
On success mq_close() returns 0; on error, -1 is returned, with errno set to indicate
the error.

ERRORS
EBADF

The message queue descriptor specified in mqdes is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_close()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
All open message queues are automatically closed on process termination, or upon ex-
ecve(2).

SEE ALSO
mq_getattr(3), mq_notify(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3),
mq_overview(7)

Linux man-pages 6.13 2024-07-23 2011

mq_getattr(3) Library Functions Manual mq_getattr(3)

NAME
mq_getattr, mq_setattr - get/set message queue attributes

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *attr);
int mq_setattr(mqd_t mqdes, const struct mq_attr *restrict newattr,

struct mq_attr *restrict oldattr);

DESCRIPTION
mq_getattr() and mq_setattr() respectively retrieve and modify attributes of the mes-
sage queue referred to by the message queue descriptor mqdes.

mq_getattr() returns an mq_attr structure in the buffer pointed by attr. This struc-
ture is defined as:

struct mq_attr {
long mq_flags; /* Flags: 0 or O_NONBLOCK */
long mq_maxmsg; /* Max. # of messages on queue */
long mq_msgsize; /* Max. message size (bytes) */
long mq_curmsgs; /* # of messages currently in queue */

};

The mq_flags field contains flags associated with the open message queue description.
This field is initialized when the queue is created by mq_open(3). The only flag that
can appear in this field is O_NONBLOCK.

The mq_maxmsg and mq_msgsize fields are set when the message queue is created by
mq_open(3). The mq_maxmsg field is an upper limit on the number of messages that
may be placed on the queue using mq_send(3). The mq_msgsize field is an upper
limit on the size of messages that may be placed on the queue. Both of these fields
must have a value greater than zero. Two /proc files that place ceilings on the values
for these fields are described in mq_overview(7).

The mq_curmsgs field returns the number of messages currently held in the queue.

mq_setattr() sets message queue attributes using information supplied in the mq_attr
structure pointed to by newattr. The only attribute that can be modified is the setting
of the O_NONBLOCK flag in mq_flags. The other fields in newattr are ignored. If
the oldattr field is not NULL, then the buffer that it points to is used to return an
mq_attr structure that contains the same information that is returned by mq_getattr().

RETURN VALUE
On success mq_getattr() and mq_setattr() return 0; on error, -1 is returned, with er-
rno set to indicate the error.

ERRORS
EBADF

The message queue descriptor specified in mqdes is invalid.

Linux man-pages 6.13 2024-07-23 2012

mq_getattr(3) Library Functions Manual mq_getattr(3)

EINVAL
newattr->mq_flags contained set bits other than O_NONBLOCK.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_getattr(), mq_setattr()

VERSIONS
On Linux, mq_getattr() and mq_setattr() are library functions layered on top of the
mq_getsetattr(2) system call.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The program below can be used to show the default mq_maxmsg and mq_msgsize val-
ues that are assigned to a message queue that is created with a call to mq_open(3) in
which the attr argument is NULL. Here is an example run of the program:

$./a.out /testq
Maximum # of messages on queue: 10
Maximum message size: 8192

Since Linux 3.5, the following /proc files (described in mq_overview(7)) can be used
to control the defaults:

$ uname -sr
Linux 3.8.0
$ cat /proc/sys/fs/mqueue/msg_default
10
$ cat /proc/sys/fs/mqueue/msgsize_default
8192

Program source

#include <fcntl.h>
#include <mqueue.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

int
main(int argc, char *argv[])
{

mqd_t mqd;
struct mq_attr attr;

Linux man-pages 6.13 2024-07-23 2013

mq_getattr(3) Library Functions Manual mq_getattr(3)

if (argc != 2) {
fprintf(stderr, "Usage: %s mq-name\n", argv[0]);
exit(EXIT_FAILURE);

}

mqd = mq_open(argv[1], O_CREAT | O_EXCL, 0600, NULL);
if (mqd == (mqd_t) -1)

errExit("mq_open");

if (mq_getattr(mqd, &attr) == -1)
errExit("mq_getattr");

printf("Maximum # of messages on queue: %ld\n", attr.mq_maxmsg);
printf("Maximum message size: %ld\n", attr.mq_msgsize);

if (mq_unlink(argv[1]) == -1)
errExit("mq_unlink");

exit(EXIT_SUCCESS);
}

SEE ALSO
mq_close(3), mq_notify(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3),
mq_overview(7)

Linux man-pages 6.13 2024-07-23 2014

mq_notify(3) Library Functions Manual mq_notify(3)

NAME
mq_notify - register for notification when a message is available

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>
#include <signal.h> /* Definition of SIGEV_* constants */

int mq_notify(mqd_t mqdes, const struct sigevent *sevp);

DESCRIPTION
mq_notify() allows the calling process to register or unregister for delivery of an
asynchronous notification when a new message arrives on the empty message queue
referred to by the message queue descriptor mqdes.

The sevp argument is a pointer to a sigevent structure. For the definition and general
details of this structure, see sigevent(3type).

If sevp is a non-null pointer, then mq_notify() registers the calling process to receive
message notification. The sigev_notify field of the sigevent structure to which sevp
points specifies how notification is to be performed. This field has one of the follow-
ing values:

SIGEV_NONE
A "null" notification: the calling process is registered as the target for notifica-
tion, but when a message arrives, no notification is sent.

SIGEV_SIGNAL
Notify the process by sending the signal specified in sigev_signo. See
sigevent(3type) for general details. The si_code field of the siginfo_t structure
will be set to SI_MESGQ. In addition, si_pid will be set to the PID of the
process that sent the message, and si_uid will be set to the real user ID of the
sending process.

SIGEV_THREAD
Upon message delivery, invoke sigev_notify_function as if it were the start
function of a new thread. See sigevent(3type) for details.

Only one process can be registered to receive notification from a message queue.

If sevp is NULL, and the calling process is currently registered to receive notifications
for this message queue, then the registration is removed; another process can then reg-
ister to receive a message notification for this queue.

Message notification occurs only when a new message arrives and the queue was pre-
viously empty. If the queue was not empty at the time mq_notify() was called, then a
notification will occur only after the queue is emptied and a new message arrives.

If another process or thread is waiting to read a message from an empty queue using
mq_receive(3), then any message notification registration is ignored: the message is
delivered to the process or thread calling mq_receive(3), and the message notification
registration remains in effect.

Notification occurs once: after a notification is delivered, the notification registration
is removed, and another process can register for message notification. If the notified

Linux man-pages 6.13 2024-07-23 2015

mq_notify(3) Library Functions Manual mq_notify(3)

process wishes to receive the next notification, it can use mq_notify() to request a fur-
ther notification. This should be done before emptying all unread messages from the
queue. (Placing the queue in nonblocking mode is useful for emptying the queue of
messages without blocking once it is empty.)

RETURN VALUE
On success mq_notify() returns 0; on error, -1 is returned, with errno set to indicate
the error.

ERRORS
EBADF

The message queue descriptor specified in mqdes is invalid.

EBUSY
Another process has already registered to receive notification for this message
queue.

EINVAL
sevp->sigev_notify is not one of the permitted values; or sevp->sigev_notify
is SIGEV_SIGNAL and sevp->sigev_signo is not a valid signal number.

ENOMEM
Insufficient memory.

POSIX.1-2008 says that an implementation may generate an EINVAL error if sevp is
NULL, and the caller is not currently registered to receive notifications for the queue
mqdes.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_notify()

VERSIONS
C library/kernel differences

In the glibc implementation, the mq_notify() library function is implemented on top
of the system call of the same name. When sevp is NULL, or specifies a notification
mechanism other than SIGEV_THREAD, the library function directly invokes the
system call. For SIGEV_THREAD, much of the implementation resides within the
library, rather than the kernel. (This is necessarily so, since the thread involved in
handling the notification is one that must be managed by the C library POSIX threads
implementation.) The implementation involves the use of a raw netlink(7) socket and
creates a new thread for each notification that is delivered to the process.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The following program registers a notification request for the message queue named
in its command-line argument. Notification is performed by creating a thread. The
thread executes a function which reads one message from the queue and then termi-
nates the process.

Linux man-pages 6.13 2024-07-23 2016

mq_notify(3) Library Functions Manual mq_notify(3)

Program source
#include <mqueue.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

static void /* Thread start function */
tfunc(union sigval sv)
{

struct mq_attr attr;
ssize_t nr;
void *buf;
mqd_t mqdes = *((mqd_t *) sv.sival_ptr);

/* Determine max. msg size; allocate buffer to receive msg */

if (mq_getattr(mqdes, &attr) == -1)
handle_error("mq_getattr");

buf = malloc(attr.mq_msgsize);
if (buf == NULL)

handle_error("malloc");

nr = mq_receive(mqdes, buf, attr.mq_msgsize, NULL);
if (nr == -1)

handle_error("mq_receive");

printf("Read %zd bytes from MQ\n", nr);
free(buf);
exit(EXIT_SUCCESS); /* Terminate the process */

}

int
main(int argc, char *argv[])
{

mqd_t mqdes;
struct sigevent sev;

if (argc != 2) {
fprintf(stderr, "Usage: %s <mq-name>\n", argv[0]);
exit(EXIT_FAILURE);

}

mqdes = mq_open(argv[1], O_RDONLY);
if (mqdes == (mqd_t) -1)

Linux man-pages 6.13 2024-07-23 2017

mq_notify(3) Library Functions Manual mq_notify(3)

handle_error("mq_open");

sev.sigev_notify = SIGEV_THREAD;
sev.sigev_notify_function = tfunc;
sev.sigev_notify_attributes = NULL;
sev.sigev_value.sival_ptr = &mqdes; /* Arg. to thread func. */
if (mq_notify(mqdes, &sev) == -1)

handle_error("mq_notify");

pause(); /* Process will be terminated by thread function */
}

SEE ALSO
mq_close(3), mq_getattr(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3),
mq_overview(7), sigevent(3type)

Linux man-pages 6.13 2024-07-23 2018

mq_open(3) Library Functions Manual mq_open(3)

NAME
mq_open - open a message queue

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <fcntl.h> /* For O_* constants */
#include <sys/stat.h> /* For mode constants */
#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag);
mqd_t mq_open(const char *name, int oflag, mode_t mode,

struct mq_attr *attr);

DESCRIPTION
mq_open() creates a new POSIX message queue or opens an existing queue. The
queue is identified by name. For details of the construction of name, see
mq_overview(7).

The oflag argument specifies flags that control the operation of the call. (Definitions
of the flags values can be obtained by including <fcntl.h>.) Exactly one of the fol-
lowing must be specified in oflag:

O_RDONLY
Open the queue to receive messages only.

O_WRONLY
Open the queue to send messages only.

O_RDWR
Open the queue to both send and receive messages.

Zero or more of the following flags can additionally be ORed in oflag:

O_CLOEXEC (since Linux 2.6.26)
Set the close-on-exec flag for the message queue descriptor. See open(2) for a
discussion of why this flag is useful.

O_CREAT
Create the message queue if it does not exist. The owner (user ID) of the mes-
sage queue is set to the effective user ID of the calling process. The group
ownership (group ID) is set to the effective group ID of the calling process.

O_EXCL
If O_CREAT was specified in oflag, and a queue with the given name already
exists, then fail with the error EEXIST.

O_NONBLOCK
Open the queue in nonblocking mode. In circumstances where mq_receive(3)
and mq_send(3) would normally block, these functions instead fail with the er-
ror EAGAIN.

If O_CREAT is specified in oflag, then two additional arguments must be supplied.
The mode argument specifies the permissions to be placed on the new queue, as for
open(2). (Symbolic definitions for the permissions bits can be obtained by including
<sys/stat.h>.) The permissions settings are masked against the process umask.

Linux man-pages 6.13 2024-07-23 2019

mq_open(3) Library Functions Manual mq_open(3)

The fields of the struct mq_attr pointed to attr specify the maximum number of mes-
sages and the maximum size of messages that the queue will allow. This structure is
defined as follows:

struct mq_attr {
long mq_flags; /* Flags (ignored for mq_open()) */
long mq_maxmsg; /* Max. # of messages on queue */
long mq_msgsize; /* Max. message size (bytes) */
long mq_curmsgs; /* # of messages currently in queue

(ignored for mq_open()) */
};

Only the mq_maxmsg and mq_msgsize fields are employed when calling mq_open();
the values in the remaining fields are ignored.

If attr is NULL, then the queue is created with implementation-defined default attrib-
utes. Since Linux 3.5, two /proc files can be used to control these defaults; see
mq_overview(7) for details.

RETURN VALUE
On success, mq_open() returns a message queue descriptor for use by other message
queue functions. On error, mq_open() returns (mqd_t) -1, with errno set to indicate
the error.

ERRORS
EACCES

The queue exists, but the caller does not have permission to open it in the
specified mode.

EACCES
name contained more than one slash.

EEXIST
Both O_CREAT and O_EXCL were specified in oflag, but a queue with this
name already exists.

EINVAL
name doesn’t follow the format in mq_overview(7).

EINVAL
O_CREAT was specified in oflag, and attr was not NULL, but
attr->mq_maxmsg or attr->mq_msqsize was invalid. Both of these fields
must be greater than zero. In a process that is unprivileged (does not have the
CAP_SYS_RESOURCE capability), attr->mq_maxmsg must be less than or
equal to the msg_max limit, and attr->mq_msgsize must be less than or equal
to the msgsize_max limit. In addition, even in a privileged process,
attr->mq_maxmsg cannot exceed the HARD_MAX limit. (See
mq_overview(7) for details of these limits.)

EMFILE
The per-process limit on the number of open file and message queue descrip-
tors has been reached (see the description of RLIMIT_NOFILE in getr-
limit(2)).

Linux man-pages 6.13 2024-07-23 2020

mq_open(3) Library Functions Manual mq_open(3)

ENAMETOOLONG
name was too long.

ENFILE
The system-wide limit on the total number of open files and message queues
has been reached.

ENOENT
The O_CREAT flag was not specified in oflag, and no queue with this name
exists.

ENOENT
name was just "/" followed by no other characters.

ENOMEM
Insufficient memory.

ENOSPC
Insufficient space for the creation of a new message queue. This probably oc-
curred because the queues_max limit was encountered; see mq_overview(7).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_open()

VERSIONS
C library/kernel differences

The mq_open() library function is implemented on top of a system call of the same
name. The library function performs the check that the name starts with a slash (/),
giving the EINVAL error if it does not. The kernel system call expects name to con-
tain no preceding slash, so the C library function passes name without the preceding
slash (i.e., name+1) to the system call.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

BUGS
Before Linux 2.6.14, the process umask was not applied to the permissions specified
in mode.

SEE ALSO
mq_close(3), mq_getattr(3), mq_notify(3), mq_receive(3), mq_send(3), mq_unlink(3),
mq_overview(7)

Linux man-pages 6.13 2024-07-23 2021

mq_receive(3) Library Functions Manual mq_receive(3)

NAME
mq_receive, mq_timedreceive - receive a message from a message queue

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char msg_ptr[.msg_len],
size_t msg_len, unsigned int *msg_prio);

#include <time.h>
#include <mqueue.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr[.msg_len],
size_t msg_len, unsigned int *restrict msg_prio,
const struct timespec *restrict abs_timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mq_timedreceive():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
mq_receive() removes the oldest message with the highest priority from the message
queue referred to by the message queue descriptor mqdes, and places it in the buffer
pointed to by msg_ptr. The msg_len argument specifies the size of the buffer pointed
to by msg_ptr; this must be greater than or equal to the mq_msgsize attribute of the
queue (see mq_getattr(3)). If msg_prio is not NULL, then the buffer to which it
points is used to return the priority associated with the received message.

If the queue is empty, then, by default, mq_receive() blocks until a message becomes
available, or the call is interrupted by a signal handler. If the O_NONBLOCK flag is
enabled for the message queue description, then the call instead fails immediately
with the error EAGAIN.

mq_timedreceive() behaves just like mq_receive(), except that if the queue is empty
and the O_NONBLOCK flag is not enabled for the message queue description, then
abs_timeout points to a structure which specifies how long the call will block. This
value is an absolute timeout in seconds and nanoseconds since the Epoch, 1970-01-01
00:00:00 +0000 (UTC), specified in a timespec(3) structure.

If no message is available, and the timeout has already expired by the time of the call,
mq_timedreceive() returns immediately.

RETURN VALUE
On success, mq_receive() and mq_timedreceive() return the number of bytes in the
received message; on error, -1 is returned, with errno set to indicate the error.

ERRORS
EAGAIN

The queue was empty, and the O_NONBLOCK flag was set for the message
queue description referred to by mqdes.

Linux man-pages 6.13 2024-07-23 2022

mq_receive(3) Library Functions Manual mq_receive(3)

EBADF
The descriptor specified in mqdes was invalid or not opened for reading.

EINTR
The call was interrupted by a signal handler; see signal(7).

EINVAL
The call would have blocked, and abs_timeout was invalid, either because
tv_sec was less than zero, or because tv_nsec was less than zero or greater
than 1000 million.

EMSGSIZE
msg_len was less than the mq_msgsize attribute of the message queue.

ETIMEDOUT
The call timed out before a message could be transferred.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_receive(), mq_timedreceive()

VERSIONS
On Linux, mq_timedreceive() is a system call, and mq_receive() is a library function
layered on top of that system call.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
mq_close(3), mq_getattr(3), mq_notify(3), mq_open(3), mq_send(3), mq_unlink(3),
timespec(3), mq_overview(7), time(7)

Linux man-pages 6.13 2024-07-23 2023

mq_send(3) Library Functions Manual mq_send(3)

NAME
mq_send, mq_timedsend - send a message to a message queue

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>

int mq_send(mqd_t mqdes, const char msg_ptr[.msg_len],
size_t msg_len, unsigned int msg_prio);

#include <time.h>
#include <mqueue.h>

int mq_timedsend(mqd_t mqdes, const char msg_ptr[.msg_len],
size_t msg_len, unsigned int msg_prio,
const struct timespec *abs_timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mq_timedsend():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
mq_send() adds the message pointed to by msg_ptr to the message queue referred to
by the message queue descriptor mqdes. The msg_len argument specifies the length
of the message pointed to by msg_ptr; this length must be less than or equal to the
queue’s mq_msgsize attribute. Zero-length messages are allowed.

The msg_prio argument is a nonnegative integer that specifies the priority of this mes-
sage. Messages are placed on the queue in decreasing order of priority, with newer
messages of the same priority being placed after older messages with the same prior-
ity. See mq_overview(7) for details on the range for the message priority.

If the message queue is already full (i.e., the number of messages on the queue equals
the queue’s mq_maxmsg attribute), then, by default, mq_send() blocks until sufficient
space becomes available to allow the message to be queued, or until the call is inter-
rupted by a signal handler. If the O_NONBLOCK flag is enabled for the message
queue description, then the call instead fails immediately with the error EAGAIN.

mq_timedsend() behaves just like mq_send(), except that if the queue is full and the
O_NONBLOCK flag is not enabled for the message queue description, then
abs_timeout points to a structure which specifies how long the call will block. This
value is an absolute timeout in seconds and nanoseconds since the Epoch, 1970-01-01
00:00:00 +0000 (UTC), specified in a timespec(3) structure.

If the message queue is full, and the timeout has already expired by the time of the
call, mq_timedsend() returns immediately.

RETURN VALUE
On success, mq_send() and mq_timedsend() return zero; on error, -1 is returned,
with errno set to indicate the error.

ERRORS

Linux man-pages 6.13 2024-07-23 2024

mq_send(3) Library Functions Manual mq_send(3)

EAGAIN
The queue was full, and the O_NONBLOCK flag was set for the message
queue description referred to by mqdes.

EBADF
The descriptor specified in mqdes was invalid or not opened for writing.

EINTR
The call was interrupted by a signal handler; see signal(7).

EINVAL
The call would have blocked, and abs_timeout was invalid, either because
tv_sec was less than zero, or because tv_nsec was less than zero or greater
than 1000 million.

EMSGSIZE
msg_len was greater than the mq_msgsize attribute of the message queue.

ETIMEDOUT
The call timed out before a message could be transferred.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_send(), mq_timedsend()

VERSIONS
On Linux, mq_timedsend() is a system call, and mq_send() is a library function lay-
ered on top of that system call.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
mq_close(3), mq_getattr(3), mq_notify(3), mq_open(3), mq_receive(3), mq_unlink(3),
timespec(3), mq_overview(7), time(7)

Linux man-pages 6.13 2024-07-23 2025

mq_unlink(3) Library Functions Manual mq_unlink(3)

NAME
mq_unlink - remove a message queue

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>

int mq_unlink(const char *name);

DESCRIPTION
mq_unlink() removes the specified message queue name. The message queue name
is removed immediately. The queue itself is destroyed once any other processes that
have the queue open close their descriptors referring to the queue.

RETURN VALUE
On success mq_unlink() returns 0; on error, -1 is returned, with errno set to indicate
the error.

ERRORS
EACCES

The caller does not have permission to unlink this message queue.

ENAMETOOLONG
name was too long.

ENOENT
There is no message queue with the given name.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_unlink()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
mq_close(3), mq_getattr(3), mq_notify(3), mq_open(3), mq_receive(3), mq_send(3),
mq_overview(7)

Linux man-pages 6.13 2024-07-23 2026

mtrace(3) Library Functions Manual mtrace(3)

NAME
mtrace, muntrace - malloc tracing

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <mcheck.h>

void mtrace(void);
void muntrace(void);

DESCRIPTION
The mtrace() function installs hook functions for the memory-allocation functions
(malloc(3), realloc(3) memalign(3), free(3)). These hook functions record tracing in-
formation about memory allocation and deallocation. The tracing information can be
used to discover memory leaks and attempts to free nonallocated memory in a pro-
gram.

The muntrace() function disables the hook functions installed by mtrace(), so that
tracing information is no longer recorded for the memory-allocation functions. If no
hook functions were successfully installed by mtrace(), muntrace() does nothing.

When mtrace() is called, it checks the value of the environment variable MAL-
LOC_TRACE, which should contain the pathname of a file in which the tracing in-
formation is to be recorded. If the pathname is successfully opened, it is truncated to
zero length.

If MALLOC_TRACE is not set, or the pathname it specifies is invalid or not
writable, then no hook functions are installed, and mtrace() has no effect. In set-user-
ID and set-group-ID programs, MALLOC_TRACE is ignored, and mtrace() has no
effect.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafemtrace(), muntrace()

STANDARDS
GNU.

NOTES
In normal usage, mtrace() is called once at the start of execution of a program, and
muntrace() is never called.

The tracing output produced after a call to mtrace() is textual, but not designed to be
human readable. The GNU C library provides a Perl script, mtrace(1), that interprets
the trace log and produces human-readable output. For best results, the traced pro-
gram should be compiled with debugging enabled, so that line-number information is
recorded in the executable.

The tracing performed by mtrace() incurs a performance penalty (if MAL-
LOC_TRACE points to a valid, writable pathname).

Linux man-pages 6.13 2024-07-23 2027

mtrace(3) Library Functions Manual mtrace(3)

BUGS
The line-number information produced by mtrace(1) is not always precise: the line
number references may refer to the previous or following (nonblank) line of the
source code.

EXAMPLES
The shell session below demonstrates the use of the mtrace() function and the
mtrace(1) command in a program that has memory leaks at two different locations.
The demonstration uses the following program:

$ cat t_mtrace.c
#include <mcheck.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

mtrace();

for (unsigned int j = 0; j < 2; j++)
malloc(100); /* Never freed--a memory leak */

calloc(16, 16); /* Never freed--a memory leak */
exit(EXIT_SUCCESS);

}

When we run the program as follows, we see that mtrace() diagnosed memory leaks
at two different locations in the program:

$ cc -g t_mtrace.c -o t_mtrace
$ export MALLOC_TRACE=/tmp/t
$./t_mtrace
$ mtrace ./t_mtrace $MALLOC_TRACE
Memory not freed:

Address Size Caller
0x084c9378 0x64 at /home/cecilia/t_mtrace.c:12
0x084c93e0 0x64 at /home/cecilia/t_mtrace.c:12
0x084c9448 0x100 at /home/cecilia/t_mtrace.c:16

The first two messages about unfreed memory correspond to the two malloc(3) calls
inside the for loop. The final message corresponds to the call to calloc(3) (which in
turn calls malloc(3)).

SEE ALSO
mtrace(1), malloc(3), malloc_hook(3), mcheck(3)

Linux man-pages 6.13 2024-07-23 2028

nan(3) Library Functions Manual nan(3)

NAME
nan, nanf, nanl - return ’Not a Number’

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nan(), nanf(), nanl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return a representation (determined by tagp) of a quiet NaN. If the
implementation does not support quiet NaNs, these functions return zero.

The call nan("char-sequence") is equivalent to:

strtod("NAN(char-sequence)", NULL);

Similarly, calls to nanf() and nanl() are equivalent to analogous calls to strtof(3) and
strtold(3).

The argument tagp is used in an unspecified manner. On IEEE 754 systems, there are
many representations of NaN, and tagp selects one. On other systems it may do noth-
ing.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localenan(), nanf(), nanl()

STANDARDS
C11, POSIX.1-2008.

See also IEC 559 and the appendix with recommended functions in IEEE 754/IEEE
854.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
isnan(3), strtod(3), math_error(7)

Linux man-pages 6.13 2024-07-23 2029

netlink(3) Library Functions Manual netlink(3)

NAME
netlink - Netlink macros

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/types.h>
#include <linux/netlink.h>

int NLMSG_ALIGN(size_t size);
int NLMSG_LENGTH(size_t size);
int NLMSG_SPACE(size_t size);
void *NLMSG_DATA(struct nlmsghdr *nlh);
struct nlmsghdr *NLMSG_NEXT(struct nlmsghdr *nlh, int size);
int NLMSG_OK(struct nlmsghdr *nlh, int size);
int NLMSG_PAYLOAD(struct nlmsghdr *nlh, int size);

DESCRIPTION
<linux/netlink.h> defines several standard macros to access or create a netlink data-
gram. They are similar in spirit to the macros defined in cmsg(3) for auxiliary data.
The buffer passed to and from a netlink socket should be accessed using only these
macros.

NLMSG_ALIGN()
Round the size of a netlink message up to align it properly.

NLMSG_LENGTH()
Given the payload size, size, this macro returns the aligned size to store in the
nlmsg_len field of the nlmsghdr.

NLMSG_SPACE()
Return the number of bytes that a netlink message with payload of size would
occupy.

NLMSG_DATA()
Return a pointer to the payload associated with the passed nlmsghdr.

NLMSG_NEXT()
Get the next nlmsghdr in a multipart message. The caller must check if the
current nlmsghdr didn’t have the NLMSG_DONE set—this function doesn’t
return NULL on end. The size argument is an lvalue containing the remaining
size of the message buffer. This macro decrements it by the size of the mes-
sage header.

NLMSG_OK()
Return true if the netlink message is not truncated and is in a form suitable for
parsing.

NLMSG_PAYLOAD()
Return the size of the payload associated with the nlmsghdr.

VERSIONS
It is often better to use netlink via libnetlink than via the low-level kernel interface.

Linux man-pages 6.13 2024-11-17 2030

netlink(3) Library Functions Manual netlink(3)

STANDARDS
Linux.

SEE ALSO
libnetlink(3), netlink(7)

Linux man-pages 6.13 2024-11-17 2031

newlocale(3) Library Functions Manual newlocale(3)

NAME
newlocale, freelocale - create, modify, and free a locale object

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <locale.h>

locale_t newlocale(int category_mask, const char *locale,
locale_t base);

void freelocale(locale_t locobj);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

newlocale(), freelocale():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The newlocale() function creates a new locale object, or modifies an existing object,
returning a reference to the new or modified object as the function result. Whether the
call creates a new object or modifies an existing object is determined by the value of
base:

• If base is (locale_t) 0, a new object is created.

• If base refers to valid existing locale object (i.e., an object returned by a previous
call to newlocale() or duplocale(3)), then that object is modified by the call. If the
call is successful, the contents of base are unspecified (in particular, the object re-
ferred to by base may be freed, and a new object created). Therefore, the caller
should ensure that it stops using base before the call to newlocale(), and should
subsequently refer to the modified object via the reference returned as the function
result. If the call fails, the contents of base remain valid and unchanged.

If base is the special locale object LC_GLOBAL_LOCALE (see duplocale(3)), or is
not (locale_t) 0 and is not a valid locale object handle, the behavior is undefined.

The category_mask argument is a bit mask that specifies the locale categories that are
to be set in a newly created locale object or modified in an existing object. The mask
is constructed by a bitwise OR of the constants LC_ADDRESS_MASK,
LC_CTYPE_MASK, LC_COLLATE_MASK, LC_IDENTIFICATION_MASK,
LC_MEASUREMENT_MASK, LC_MESSAGES_MASK, LC_MONE-
TARY_MASK, LC_NUMERIC_MASK, LC_NAME_MASK, LC_PA-
PER_MASK, LC_TELEPHONE_MASK, and LC_TIME_MASK. Alternatively,
the mask can be specified as LC_ALL_MASK, which is equivalent to ORing all of
the preceding constants.

For each category specified in category_mask, the locale data from locale will be used
in the object returned by newlocale(). If a new locale object is being created, data for
all categories not specified in category_mask is taken from the default ("POSIX") lo-
cale.

The following preset values of locale are defined for all categories that can be

Linux man-pages 6.13 2024-07-23 2032

newlocale(3) Library Functions Manual newlocale(3)

specified in category_mask:

"POSIX"
A minimal locale environment for C language programs.

"C" Equivalent to "POSIX".

"" An implementation-defined native environment corresponding to the values of
the LC_* and LANG environment variables (see locale(7)).

freelocale()
The freelocale() function deallocates the resources associated with locobj, a locale
object previously returned by a call to newlocale() or duplocale(3). If locobj is
LC_GLOBAL_LOCALE or is not valid locale object handle, the results are unde-
fined.

Once a locale object has been freed, the program should make no further use of it.

RETURN VALUE
On success, newlocale() returns a handle that can be used in calls to duplocale(3),
freelocale(), and other functions that take a locale_t argument. On error, newlocale()
returns (locale_t) 0, and sets errno to indicate the error.

ERRORS
EINVAL

One or more bits in category_mask do not correspond to a valid locale cate-
gory.

EINVAL
locale is NULL.

ENOENT
locale is not a string pointer referring to a valid locale.

ENOMEM
Insufficient memory to create a locale object.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.3.

NOTES
Each locale object created by newlocale() should be deallocated using freelocale().

EXAMPLES
The program below takes up to two command-line arguments, which each identify lo-
cales. The first argument is required, and is used to set the LC_NUMERIC category
in a locale object created using newlocale(). The second command-line argument is
optional; if it is present, it is used to set the LC_TIME category of the locale object.

Having created and initialized the locale object, the program then applies it using use-
locale(3), and then tests the effect of the locale changes by:

(1) Displaying a floating-point number with a fractional part. This output will be
affected by the LC_NUMERIC setting. In many European-language locales,
the fractional part of the number is separated from the integer part using a

Linux man-pages 6.13 2024-07-23 2033

newlocale(3) Library Functions Manual newlocale(3)

comma, rather than a period.

(2) Displaying the date. The format and language of the output will be affected by
the LC_TIME setting.

The following shell sessions show some example runs of this program.

Set the LC_NUMERIC category to fr_FR (French):

$./a.out fr_FR
123456,789
Fri Mar 7 00:25:08 2014

Set the LC_NUMERIC category to fr_FR (French), and the LC_TIME category to
it_IT (Italian):

$./a.out fr_FR it_IT
123456,789
ven 07 mar 2014 00:26:01 CET

Specify the LC_TIME setting as an empty string, which causes the value to be taken
from environment variable settings (which, here, specify mi_NZ , New Zealand
Māori):

$ LC_ALL=mi_NZ ./a.out fr_FR ""
123456,789
Te Paraire, te 07 o Poutū-te-rangi, 2014 00:38:44 CET

Program source
#define _XOPEN_SOURCE 700
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

int
main(int argc, char *argv[])
{

char buf[100];
time_t t;
size_t s;
struct tm *tm;
locale_t loc, nloc;

if (argc < 2) {
fprintf(stderr, "Usage: %s locale1 [locale2]\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Create a new locale object, taking the LC_NUMERIC settings
from the locale specified in argv[1]. */

Linux man-pages 6.13 2024-07-23 2034

newlocale(3) Library Functions Manual newlocale(3)

loc = newlocale(LC_NUMERIC_MASK, argv[1], (locale_t) 0);
if (loc == (locale_t) 0)

errExit("newlocale");

/* If a second command-line argument was specified, modify the
locale object to take the LC_TIME settings from the locale
specified in argv[2]. We assign the result of this newlocale()
call to 'nloc' rather than 'loc', since in some cases, we might
want to preserve 'loc' if this call fails. */

if (argc > 2) {
nloc = newlocale(LC_TIME_MASK, argv[2], loc);
if (nloc == (locale_t) 0)

errExit("newlocale");
loc = nloc;

}

/* Apply the newly created locale to this thread. */

uselocale(loc);

/* Test effect of LC_NUMERIC. */

printf("%8.3f\n", 123456.789);

/* Test effect of LC_TIME. */

t = time(NULL);
tm = localtime(&t);
if (tm == NULL)

errExit("time");

s = strftime(buf, sizeof(buf), "%c", tm);
if (s == 0)

errExit("strftime");

printf("%s\n", buf);

/* Free the locale object. */

uselocale(LC_GLOBAL_LOCALE); /* So 'loc' is no longer in use */
freelocale(loc);

exit(EXIT_SUCCESS);
}

Linux man-pages 6.13 2024-07-23 2035

newlocale(3) Library Functions Manual newlocale(3)

SEE ALSO
locale(1), duplocale(3), setlocale(3), uselocale(3), locale(5), locale(7)

Linux man-pages 6.13 2024-07-23 2036

nextafter(3) Library Functions Manual nextafter(3)

NAME
nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl - floating-point
number manipulation

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nextafter():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

nextafterf(), nextafterl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

nexttoward(), nexttowardf(), nexttowardl():
_XOPEN_SOURCE >= 600 || _ISOC99_SOURCE

|| _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The nextafter(), nextafterf(), and nextafterl() functions return the next representable
floating-point value following x in the direction of y. If y is less than x, these func-
tions will return the largest representable number less than x.

If x equals y, the functions return y.

The nexttoward(), nexttowardf(), and nexttowardl() functions do the same as the
corresponding nextafter() functions, except that they have a long double second argu-
ment.

RETURN VALUE
On success, these functions return the next representable floating-point value after x
in the direction of y.

If x equals y, then y (cast to the same type as x) is returned.

If x or y is a NaN, a NaN is returned.

If x is finite, and the result would overflow, a range error occurs, and the functions re-
turn HUGE_VAL, HUGE_VALF, or HUGE_VALL, respectively, with the correct
mathematical sign.

Linux man-pages 6.13 2024-07-23 2037

nextafter(3) Library Functions Manual nextafter(3)

If x is not equal to y, and the correct function result would be subnormal, zero, or un-
derflow, a range error occurs, and either the correct value (if it can be represented), or
0.0, is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Range error: result is subnormal or underflows
errno is set to ERANGE. An underflow floating-point exception (FE_UN-
DERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safenextafter(), nextafterf(), nextafterl(), nexttoward(),
nexttowardf(), nexttowardl()

STANDARDS
C11, POSIX.1-2008.

This function is defined in IEC 559 (and the appendix with recommended functions in
IEEE 754/IEEE 854).

HISTORY
C99, POSIX.1-2001.

BUGS
In glibc 2.5 and earlier, these functions do not raise an underflow floating-point
(FE_UNDERFLOW) exception when an underflow occurs.

Before glibc 2.23 these functions did not set errno.

SEE ALSO
nearbyint(3)

Linux man-pages 6.13 2024-07-23 2038

nextup(3) Library Functions Manual nextup(3)

NAME
nextup, nextupf, nextupl, nextdown, nextdownf, nextdownl - return next floating-
point number toward positive/negative infinity

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <math.h>

double nextup(double x);
float nextupf(float x);
long double nextupl(long double x);

double nextdown(double x);
float nextdownf(float x);
long double nextdownl(long double x);

DESCRIPTION
The nextup(), nextupf(), and nextupl() functions return the next representable float-
ing-point number greater than x.

If x is the smallest representable negative number in the corresponding type, these
functions return -0. If x is +0 or -0, the returned value is the smallest representable
positive number of the corresponding type.

If x is positive infinity, the returned value is positive infinity. If x is negative infinity,
the returned value is the largest representable finite negative number of the corre-
sponding type.

If x is NaN, the returned value is NaN.

The value returned by nextdown(x) is -nextup(-x), and similarly for the other types.

RETURN VALUE
See DESCRIPTION.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safenextup(), nextupf(), nextupl(), nextdown(),
nextdownf(), nextdownl()

STANDARDS
These functions are described in IEEE Std 754-2008 - Standard for Floating-Point
Arithmetic and ISO/IEC TS 18661.

HISTORY
glibc 2.24.

SEE ALSO
nearbyint(3), nextafter(3)

Linux man-pages 6.13 2024-08-21 2039

nl_langinfo(3) Library Functions Manual nl_langinfo(3)

NAME
nl_langinfo, nl_langinfo_l - query language and locale information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <langinfo.h>

char *nl_langinfo(nl_item item);
char *nl_langinfo_l(nl_item item, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nl_langinfo_l():
Since glibc 2.24:

_POSIX_C_SOURCE >= 200809L
glibc 2.23 and earlier:

_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The nl_langinfo() and nl_langinfo_l() functions provide access to locale information
in a more flexible way than localeconv(3). nl_langinfo() returns a string which is the
value corresponding to item in the program’s current global locale. nl_langinfo_l()
returns a string which is the value corresponding to item for the locale identified by
the locale object locale, which was previously created by newlocale(3). Individual
and additional elements of the locale categories can be queried.

Examples for the locale elements that can be specified in item using the constants de-
fined in <langinfo.h> are:

CODESET (LC_CTYPE)
Return a string with the name of the character encoding used in the selected
locale, such as "UTF-8", "ISO-8859-1", or "ANSI_X3.4-1968" (better
known as US-ASCII). This is the same string that you get with "locale
charmap". For a list of character encoding names, try "locale -m" (see lo-
cale(1)).

D_T_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) to represent
time and date in a locale-specific way (%c conversion specification).

D_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) to represent a
date in a locale-specific way (%x conversion specification).

T_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) to represent a
time in a locale-specific way (%X conversion specification).

AM_STR (LC_TIME)
Return a string that represents affix for ante meridiem (before noon, "AM")
time. (Used in %p strftime(3) conversion specification.)

Linux man-pages 6.13 2024-07-23 2040

nl_langinfo(3) Library Functions Manual nl_langinfo(3)

PM_STR (LC_TIME)
Return a string that represents affix for post meridiem (before midnight, "PM")
time. (Used in %p strftime(3) conversion specification.)

T_FMT_AMPM (LC_TIME)
Return a string that can be used as a format string for strftime(3) to represent a
time in a.m. or p.m. notation in a locale-specific way (%r conversion specifi-
cation).

ERA (LC_TIME)
Return era description, which contains information about how years are
counted and displayed for each era in a locale. Each era description segment
shall have the format:

direction:offset:start_date:end_date:era_name:era_format

according to the definitions below:

direction Either a "+" or a "-" character. The "+" means that years in-
crease from the start_date towards the end_date, "-" means the
opposite.

offset The epoch year of the start_date.

start_date A date in the form yyyy/mm/dd , where yyyy, mm, and dd are
the year, month, and day numbers respectively of the start of
the era.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values "-*" (minus infinity) or "+*"
(plus infinity).

era_name The name of the era, corresponding to the %EC strftime(3)
conversion specification.

era_format The format of the year in the era, corresponding to the %EY
strftime(3) conversion specification.

Era description segments are separated by semicolons. Most locales do not
define this value. Examples of locales that do define this value are the Japan-
ese and Thai locales.

ERA_D_T_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) for alternative
representation of time and date in a locale-specific way (%Ec conversion
specification).

ERA_D_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) for alternative
representation of a date in a locale-specific way (%Ex conversion specifica-
tion).

ERA_T_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) for alternative
representation of a time in a locale-specific way (%EX conversion specifica-
tion).

Linux man-pages 6.13 2024-07-23 2041

nl_langinfo(3) Library Functions Manual nl_langinfo(3)

DAY_{1–7} (LC_TIME)
Return name of the n-th day of the week. [Warning: this follows the US con-
vention DAY_1 = Sunday, not the international convention (ISO 8601) that
Monday is the first day of the week.] (Used in %A strftime(3) conversion
specification.)

ABDAY_{1–7} (LC_TIME)
Return abbreviated name of the n-th day of the week. (Used in %a strftime(3)
conversion specification.)

MON_{1–12} (LC_TIME)
Return name of the n-th month. (Used in %B strftime(3) conversion specifica-
tion.)

ABMON_{1–12} (LC_TIME)
Return abbreviated name of the n-th month. (Used in %b strftime(3) conver-
sion specification.)

RADIXCHAR (LC_NUMERIC)
Return radix character (decimal dot, decimal comma, etc.).

THOUSEP (LC_NUMERIC)
Return separator character for thousands (groups of three digits).

YESEXPR (LC_MESSAGES)
Return a regular expression that can be used with the regex(3) function to rec-
ognize a positive response to a yes/no question.

NOEXPR (LC_MESSAGES)
Return a regular expression that can be used with the regex(3) function to rec-
ognize a negative response to a yes/no question.

CRNCYSTR (LC_MONETARY)
Return the currency symbol, preceded by "-" if the symbol should appear be-
fore the value, "+" if the symbol should appear after the value, or "." if the
symbol should replace the radix character.

The above list covers just some examples of items that can be requested. For a more
detailed list, consult The GNU C Library Reference Manual.

RETURN VALUE
On success, these functions return a pointer to a string which is the value correspond-
ing to item in the specified locale.

If no locale has been selected by setlocale(3) for the appropriate category, nl_lang-
info() return a pointer to the corresponding string in the "C" locale. The same is true
of nl_langinfo_l() if locale specifies a locale where langinfo data is not defined.

If item is not valid, a pointer to an empty string is returned.

The pointer returned by these functions may point to static data that may be overwrit-
ten, or the pointer itself may be invalidated, by a subsequent call to nl_langinfo(),
nl_langinfo_l(), or setlocale(3). The same statements apply to nl_langinfo_l() if the
locale object referred to by locale is freed or modified by freelocale(3) or newlo-
cale(3).

POSIX specifies that the application may not modify the string returned by these

Linux man-pages 6.13 2024-07-23 2042

nl_langinfo(3) Library Functions Manual nl_langinfo(3)

functions.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localenl_langinfo()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SUSv2.

NOTES
The behavior of nl_langinfo_l() is undefined if locale is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

EXAMPLES
The following program sets the character type and the numeric locale according to the
environment and queries the terminal character set and the radix character.

#include <langinfo.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

setlocale(LC_CTYPE, "");
setlocale(LC_NUMERIC, "");

printf("%s\n", nl_langinfo(CODESET));
printf("%s\n", nl_langinfo(RADIXCHAR));

exit(EXIT_SUCCESS);
}

SEE ALSO
locale(1), localeconv(3), setlocale(3), charsets(7), locale(7)

The GNU C Library Reference Manual

Linux man-pages 6.13 2024-07-23 2043

ntp_gettime(3) Library Functions Manual ntp_gettime(3)

NAME
ntp_gettime, ntp_gettimex - get time parameters (NTP daemon interface)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/timex.h>

int ntp_gettime(struct ntptimeval *ntv);
int ntp_gettimex(struct ntptimeval *ntv);

DESCRIPTION
Both of these APIs return information to the caller via the ntv argument, a structure of
the following type:

struct ntptimeval {
struct timeval time; /* Current time */
long maxerror; /* Maximum error */
long esterror; /* Estimated error */
long tai; /* TAI offset */

/* Further padding bytes allowing for future expansion */
};

The fields of this structure are as follows:

time The current time, expressed as a timeval structure:

struct timeval {
time_t tv_sec; /* Seconds since the Epoch */
suseconds_t tv_usec; /* Microseconds */

};

maxerror
Maximum error, in microseconds. This value can be initialized by ntp_adj-
time(3), and is increased periodically (on Linux: each second), but is clamped
to an upper limit (the kernel constant NTP_PHASE_MAX, with a value of
16,000).

esterror
Estimated error, in microseconds. This value can be set via ntp_adjtime(3) to
contain an estimate of the difference between the system clock and the true
time. This value is not used inside the kernel.

tai TAI (Atomic International Time) offset.

ntp_gettime() returns an ntptimeval structure in which the time, maxerror, and ester-
ror fields are filled in.

ntp_gettimex() performs the same task as ntp_gettime(), but also returns information
in the tai field.

RETURN VALUE
The return values for ntp_gettime() and ntp_gettimex() are as for adjtimex(2). Given
a correct pointer argument, these functions always succeed.

Linux man-pages 6.13 2024-07-23 2044

ntp_gettime(3) Library Functions Manual ntp_gettime(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safentp_gettime(), ntp_gettimex()

STANDARDS
ntp_gettime()

NTP Kernel Application Program Interface.

ntp_gettimex()
GNU.

HISTORY
ntp_gettime()

glibc 2.1.

ntp_gettimex()
glibc 2.12.

SEE ALSO
adjtimex(2), ntp_adjtime(3), time(7)

NTP "Kernel Application Program Interface"
〈http://www.slac.stanford.edu/comp/unix/package/rtems/src/ssrlApps/ntpNanoclock/
api.htm〉

Linux man-pages 6.13 2024-07-23 2045

offsetof (3) Library Functions Manual offsetof (3)

NAME
offsetof - offset of a structure member

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stddef.h>

size_t offsetof(type, member);

DESCRIPTION
The macro offsetof() returns the offset of the field member from the start of the struc-
ture type.

This macro is useful because the sizes of the fields that compose a structure can vary
across implementations, and compilers may insert different numbers of padding bytes
between fields. Consequently, an element’s offset is not necessarily given by the sum
of the sizes of the previous elements.

A compiler error will result if member is not aligned to a byte boundary (i.e., it is a bit
field).

RETURN VALUE
offsetof() returns the offset of the given member within the given type, in units of
bytes.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

EXAMPLES
On a Linux/i386 system, when compiled using the default gcc(1) options, the pro-
gram below produces the following output:

$./a.out
offsets: i=0; c=4; d=8 a=16
sizeof(struct s)=16

Program source

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

struct s {
int i;
char c;
double d;
char a[];

};

Linux man-pages 6.13 2024-07-23 2046

offsetof (3) Library Functions Manual offsetof (3)

/* Output is compiler dependent */

printf("offsets: i=%zu; c=%zu; d=%zu a=%zu\n",
offsetof(struct s, i), offsetof(struct s, c),
offsetof(struct s, d), offsetof(struct s, a));

printf("sizeof(struct s)=%zu\n", sizeof(struct s));

exit(EXIT_SUCCESS);
}

Linux man-pages 6.13 2024-07-23 2047

on_exit(3) Library Functions Manual on_exit(3)

NAME
on_exit - register a function to be called at normal process termination

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int on_exit(typeof(void (int, void *)) * function, void *arg);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

on_exit():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The on_exit() function registers the given function to be called at normal process ter-
mination, whether via exit(3) or via return from the program’s main(). The function
is passed the status argument given to the last call to exit(3) and the arg argument
from on_exit().

The same function may be registered multiple times: it is called once for each regis-
tration.

When a child process is created via fork(2), it inherits copies of its parent’s registra-
tions. Upon a successful call to one of the exec(3) functions, all registrations are re-
moved.

RETURN VALUE
The on_exit() function returns the value 0 if successful; otherwise it returns a nonzero
value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeon_exit()

STANDARDS
None.

HISTORY
SunOS 4, glibc. Removed in Solaris (SunOS 5). Use the standard atexit(3) instead.

CAVEATS
By the time function is executed, stack (auto) variables may already have gone out of
scope. Therefore, arg should not be a pointer to a stack variable; it may however be a
pointer to a heap variable or a global variable.

SEE ALSO
_exit(2), atexit(3), exit(3)

Linux man-pages 6.13 2024-12-13 2048

open_memstream(3) Library Functions Manual open_memstream(3)

NAME
open_memstream, open_wmemstream - open a dynamic memory buffer stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

FILE *open_memstream(char **ptr, size_t *sizeloc);

#include <wchar.h>

FILE *open_wmemstream(wchar_t **ptr, size_t *sizeloc);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

open_memstream(), open_wmemstream():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The open_memstream() function opens a stream for writing to a memory buffer. The
function dynamically allocates the buffer, and the buffer automatically grows as
needed. Initially, the buffer has a size of zero. After closing the stream, the caller
should free(3) this buffer.

The locations pointed to by ptr and sizeloc are used to report, respectively, the current
location and the size of the buffer. The locations referred to by these pointers are up-
dated each time the stream is flushed (fflush(3)) and when the stream is closed
(fclose(3)). These values remain valid only as long as the caller performs no further
output on the stream. If further output is performed, then the stream must again be
flushed before trying to access these values.

A null byte is maintained at the end of the buffer. This byte is not included in the size
value stored at sizeloc.

The stream maintains the notion of a current position, which is initially zero (the start
of the buffer). Each write operation implicitly adjusts the buffer position. The
stream’s buffer position can be explicitly changed with fseek(3) or fseeko(3). Moving
the buffer position past the end of the data already written fills the intervening space
with null characters.

The open_wmemstream() is similar to open_memstream(), but operates on wide
characters instead of bytes.

RETURN VALUE
Upon successful completion, open_memstream() and open_wmemstream() return a
FILE pointer. Otherwise, NULL is returned and errno is set to indicate the error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeopen_memstream(), open_wmemstream()

Linux man-pages 6.13 2024-07-23 2049

open_memstream(3) Library Functions Manual open_memstream(3)

STANDARDS
POSIX.1-2008.

HISTORY
open_memstream()

glibc 1.0.x.

open_wmemstream()
glibc 2.4.

NOTES
There is no file descriptor associated with the file stream returned by these functions
(i.e., fileno(3) will return an error if called on the returned stream).

BUGS
Before glibc 2.7, seeking past the end of a stream created by open_memstream()
does not enlarge the buffer; instead the fseek(3) call fails, returning -1.

EXAMPLES
See fmemopen(3).

SEE ALSO
fmemopen(3), fopen(3), setbuf(3)

Linux man-pages 6.13 2024-07-23 2050

opendir(3) Library Functions Manual opendir(3)

NAME
opendir, fdopendir - open a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);
DIR *fdopendir(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fdopendir():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The opendir() function opens a directory stream corresponding to the directory name,
and returns a pointer to the directory stream. The stream is positioned at the first en-
try in the directory.

The fdopendir() function is like opendir(), but returns a directory stream for the di-
rectory referred to by the open file descriptor fd . After a successful call to
fdopendir(), fd is used internally by the implementation, and should not otherwise be
used by the application.

RETURN VALUE
The opendir() and fdopendir() functions return a pointer to the directory stream. On
error, NULL is returned, and errno is set to indicate the error.

ERRORS
EACCES

Permission denied.

EBADF
fd is not a valid file descriptor opened for reading.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
Directory does not exist, or name is an empty string.

ENOMEM
Insufficient memory to complete the operation.

ENOTDIR
name is not a directory.

Linux man-pages 6.13 2024-07-23 2051

opendir(3) Library Functions Manual opendir(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeopendir(), fdopendir()

STANDARDS
POSIX.1-2008.

STANDARDS
opendir()

SVr4, 4.3BSD, POSIX.1-2001.

fdopendir()
POSIX.1-2008. glibc 2.4.

NOTES
Filename entries can be read from a directory stream using readdir(3).

The underlying file descriptor of the directory stream can be obtained using dirfd(3).

The opendir() function sets the close-on-exec flag for the file descriptor underlying
the DIR *. The fdopendir() function leaves the setting of the close-on-exec flag un-
changed for the file descriptor, fd . POSIX.1-200x leaves it unspecified whether a
successful call to fdopendir() will set the close-on-exec flag for the file descriptor, fd .

SEE ALSO
open(2), closedir(3), dirfd(3), readdir(3), rewinddir(3), scandir(3), seekdir(3),
telldir(3)

Linux man-pages 6.13 2024-07-23 2052

openpty(3) Library Functions Manual openpty(3)

NAME
openpty, login_tty, forkpty - terminal utility functions

LIBRARY
System utilities library (libutil, -lutil)

SYNOPSIS
#include <pty.h>

int openpty(int *amaster, int *aslave, char *name,
const struct termios *termp,
const struct winsize *winp);

pid_t forkpty(int *amaster, char *name,
const struct termios *termp,
const struct winsize *winp);

#include <utmp.h>

int login_tty(int fd);

DESCRIPTION
The openpty() function finds an available pseudoterminal and returns file descriptors
for the master and slave in amaster and aslave. If name is not NULL, the filename of
the slave is returned in name. If termp is not NULL, the terminal parameters of the
slave will be set to the values in termp. If winp is not NULL, the window size of the
slave will be set to the values in winp.

The login_tty() function prepares for a login on the terminal referred to by the file de-
scriptor fd (which may be a real terminal device, or the slave of a pseudoterminal as
returned by openpty()) by creating a new session, making fd the controlling terminal
for the calling process, setting fd to be the standard input, output, and error streams of
the current process, and closing fd .

The forkpty() function combines openpty(), fork(2), and login_tty() to create a new
process operating in a pseudoterminal. A file descriptor referring to master side of the
pseudoterminal is returned in amaster. If name is not NULL, the buffer it points to is
used to return the filename of the slave. The termp and winp arguments, if not NULL,
will determine the terminal attributes and window size of the slave side of the
pseudoterminal.

RETURN VALUE
If a call to openpty(), login_tty(), or forkpty() is not successful, -1 is returned and
errno is set to indicate the error. Otherwise, openpty(), login_tty(), and the child
process of forkpty() return 0, and the parent process of forkpty() returns the process
ID of the child process.

ERRORS
openpty() fails if:

ENOENT
There are no available terminals.

login_tty() fails if ioctl(2) fails to set fd to the controlling terminal of the calling
process.

forkpty() fails if either openpty() or fork(2) fails.

Linux man-pages 6.13 2024-07-23 2053

openpty(3) Library Functions Manual openpty(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeforkpty(), openpty()
Thread safety MT-Unsafe race:ttynamelogin_tty()

STANDARDS
BSD.

HISTORY
The const modifiers were added to the structure pointer arguments of openpty() and
forkpty() in glibc 2.8.

Before glibc 2.0.92, openpty() returns file descriptors for a BSD pseudoterminal pair;
since glibc 2.0.92, it first attempts to open a UNIX 98 pseudoterminal pair, and falls
back to opening a BSD pseudoterminal pair if that fails.

BUGS
Nobody knows how much space should be reserved for name. So, calling openpty()
or forkpty() with non-NULL name may not be secure.

SEE ALSO
fork(2), ttyname(3), pty(7)

Linux man-pages 6.13 2024-07-23 2054

perror(3) Library Functions Manual perror(3)

NAME
perror - print a system error message

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

void perror(const char *s);

#include <errno.h>

int errno; /* Not really declared this way; see errno(3) */

[[deprecated]] const char *const sys_errlist[];
[[deprecated]] int sys_nerr;

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sys_errlist, sys_nerr:
From glibc 2.19 to glibc 2.31:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The perror() function produces a message on standard error describing the last error
encountered during a call to a system or library function.

First (if s is not NULL and *s is not a null byte ('\0')), the argument string s is printed,
followed by a colon and a blank. Then an error message corresponding to the current
value of errno and a new-line.

To be of most use, the argument string should include the name of the function that in-
curred the error.

The global error list sys_errlist[], which can be indexed by errno, can be used to ob-
tain the error message without the newline. The largest message number provided in
the table is sys_nerr-1. Be careful when directly accessing this list, because new error
values may not have been added to sys_errlist[]. The use of sys_errlist[] is nowadays
deprecated; use strerror(3) instead.

When a system call fails, it usually returns -1 and sets the variable errno to a value
describing what went wrong. (These values can be found in <errno.h>.) Many li-
brary functions do likewise. The function perror() serves to translate this error code
into human-readable form. Note that errno is undefined after a successful system call
or library function call: this call may well change this variable, even though it suc-
ceeds, for example because it internally used some other library function that failed.
Thus, if a failing call is not immediately followed by a call to perror(), the value of
errno should be saved.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:stderrperror()

Linux man-pages 6.13 2024-07-23 2055

perror(3) Library Functions Manual perror(3)

STANDARDS
errno
perror()

C11, POSIX.1-2008.

sys_nerr
sys_errlist

BSD.

HISTORY
errno
perror()

POSIX.1-2001, C89, 4.3BSD.

sys_nerr
sys_errlist

Removed in glibc 2.32.

SEE ALSO
err(3), errno(3), error(3), strerror(3)

Linux man-pages 6.13 2024-07-23 2056

popen(3) Library Functions Manual popen(3)

NAME
popen, pclose - pipe stream to or from a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

FILE *popen(const char *command , const char *type);
int pclose(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

popen(), pclose():
_POSIX_C_SOURCE >= 2

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The popen() function opens a process by creating a pipe, forking, and invoking the
shell. Since a pipe is by definition unidirectional, the type argument may specify only
reading or writing, not both; the resulting stream is correspondingly read-only or
write-only.

The command argument is a pointer to a null-terminated string containing a shell
command line. This command is passed to /bin/sh using the -c flag; interpretation, if
any, is performed by the shell.

The type argument is a pointer to a null-terminated string which must contain either
the letter 'r' for reading or the letter 'w' for writing. Since glibc 2.9, this argument can
additionally include the letter 'e', which causes the close-on-exec flag
(FD_CLOEXEC) to be set on the underlying file descriptor; see the description of
the O_CLOEXEC flag in open(2) for reasons why this may be useful.

The return value from popen() is a normal standard I/O stream in all respects save
that it must be closed with pclose() rather than fclose(3). Writing to such a stream
writes to the standard input of the command; the command’s standard output is the
same as that of the process that called popen(), unless this is altered by the command
itself. Conversely, reading from the stream reads the command’s standard output, and
the command’s standard input is the same as that of the process that called popen().

Note that output popen() streams are block buffered by default.

The pclose() function waits for the associated process to terminate and returns the exit
status of the command as returned by wait4(2).

RETURN VALUE
popen(): on success, returns a pointer to an open stream that can be used to read or
write to the pipe; if the fork(2) or pipe(2) calls fail, or if the function cannot allocate
memory, NULL is returned.

pclose(): on success, returns the exit status of the command; if wait4(2) returns an er-
ror, or some other error is detected, -1 is returned.

On failure, both functions set errno to indicate the error.

Linux man-pages 6.13 2024-07-23 2057

popen(3) Library Functions Manual popen(3)

ERRORS
The popen() function does not set errno if memory allocation fails. If the underlying
fork(2) or pipe(2) fails, errno is set to indicate the error. If the type argument is in-
valid, and this condition is detected, errno is set to EINVAL.

If pclose() cannot obtain the child status, errno is set to ECHILD.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepopen(), pclose()

VERSIONS
The 'e' value for type is a Linux extension.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

CAVEATS
Carefully read Caveats in system(3).

BUGS
Since the standard input of a command opened for reading shares its seek offset with
the process that called popen(), if the original process has done a buffered read, the
command’s input position may not be as expected. Similarly, the output from a com-
mand opened for writing may become intermingled with that of the original process.
The latter can be avoided by calling fflush(3) before popen().

Failure to execute the shell is indistinguishable from the shell’s failure to execute the
command, or an immediate exit of the command. The only hint is an exit status of
127.

SEE ALSO
sh(1), fork(2), pipe(2), wait4(2), fclose(3), fflush(3), fopen(3), stdio(3), system(3)

Linux man-pages 6.13 2024-07-23 2058

posix_fallocate(3) Library Functions Manual posix_fallocate(3)

NAME
posix_fallocate - allocate file space

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int posix_fallocate(int fd , off_t offset, off_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_fallocate():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The function posix_fallocate() ensures that disk space is allocated for the file referred
to by the file descriptor fd for the bytes in the range starting at offset and continuing
for size bytes. After a successful call to posix_fallocate(), subsequent writes to bytes
in the specified range are guaranteed not to fail because of lack of disk space.

If the size of the file is less than offset+size, then the file is increased to this size; oth-
erwise the file size is left unchanged.

RETURN VALUE
posix_fallocate() returns zero on success, or an error number on failure. Note that er-
rno is not set.

ERRORS
EBADF

fd is not a valid file descriptor, or is not opened for writing.

EFBIG
offset+size exceeds the maximum file size.

EINTR
A signal was caught during execution.

EINVAL
offset was less than 0, or size was less than or equal to 0, or the underlying
filesystem does not support the operation.

ENODEV
fd does not refer to a regular file.

ENOSPC
There is not enough space left on the device containing the file referred to by
fd .

EOPNOTSUPP
The filesystem containing the file referred to by fd does not support this oper-
ation. This error code can be returned by C libraries that don’t perform the
emulation shown in CAVEATS, such as musl libc.

ESPIPE
fd refers to a pipe.

Linux man-pages 6.13 2024-11-17 2059

posix_fallocate(3) Library Functions Manual posix_fallocate(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyposix_fallocate() MT-Safe (but see CAVEATS)

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1.94. POSIX.1-2001

POSIX.1-2008 says that an implementation shall give the EINVAL error if size was
0, or offset was less than 0. POSIX.1-2001 says that an implementation shall give the
EINVAL error if size is less than 0, or offset was less than 0, and may give the error if
size equals zero.

CAVEATS
In the glibc implementation, posix_fallocate() is implemented using the fallocate(2)
system call, which is MT-safe. If the underlying filesystem does not support fallo-
cate(2), then the operation is emulated with the following caveats:

• The emulation is inefficient.

• There is a race condition where concurrent writes from another thread or process
could be overwritten with null bytes.

• There is a race condition where concurrent file size increases by another thread or
process could result in a file whose size is smaller than expected.

• If fd has been opened with the O_APPEND or O_WRONLY flags, the function
fails with the error EBADF.

In general, the emulation is not MT-safe. On Linux, applications may use fallocate(2)
if they cannot tolerate the emulation caveats. In general, this is only recommended if
the application plans to terminate the operation if EOPNOTSUPP is returned, other-
wise the application itself will need to implement a fallback with all the same prob-
lems as the emulation provided by glibc.

SEE ALSO
fallocate(1), fallocate(2), lseek(2), posix_fadvise(2)

Linux man-pages 6.13 2024-11-17 2060

posix_madvise(3) Library Functions Manual posix_madvise(3)

NAME
posix_madvise - give advice about patterns of memory usage

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int posix_madvise(void addr[.size], size_t size, int advice);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_madvise():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The posix_madvise() function allows an application to advise the system about its ex-
pected patterns of usage of memory in the address range starting at addr and continu-
ing for size bytes. The system is free to use this advice in order to improve the perfor-
mance of memory accesses (or to ignore the advice altogether), but calling
posix_madvise() shall not affect the semantics of access to memory in the specified
range.

The advice argument is one of the following:

POSIX_MADV_NORMAL
The application has no special advice regarding its memory usage patterns for
the specified address range. This is the default behavior.

POSIX_MADV_SEQUENTIAL
The application expects to access the specified address range sequentially, run-
ning from lower addresses to higher addresses. Hence, pages in this region
can be aggressively read ahead, and may be freed soon after they are accessed.

POSIX_MADV_RANDOM
The application expects to access the specified address range randomly. Thus,
read ahead may be less useful than normally.

POSIX_MADV_WILLNEED
The application expects to access the specified address range in the near fu-
ture. Thus, read ahead may be beneficial.

POSIX_MADV_DONTNEED
The application expects that it will not access the specified address range in
the near future.

RETURN VALUE
On success, posix_madvise() returns 0. On failure, it returns a positive error number.

ERRORS
EINVAL

addr is not a multiple of the system page size or size is negative.

EINVAL
advice is invalid.

Linux man-pages 6.13 2024-11-17 2061

posix_madvise(3) Library Functions Manual posix_madvise(3)

ENOMEM
Addresses in the specified range are partially or completely outside the caller’s
address space.

VERSIONS
POSIX.1 permits an implementation to generate an error if size is 0. On Linux, speci-
fying size as 0 is permitted (as a successful no-op).

In glibc, this function is implemented using madvise(2). However, since glibc 2.6,
POSIX_MADV_DONTNEED is treated as a no-op, because the corresponding mad-
vise(2) value, MADV_DONTNEED, has destructive semantics.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

SEE ALSO
madvise(2), posix_fadvise(2)

Linux man-pages 6.13 2024-11-17 2062

posix_memalign(3) Library Functions Manual posix_memalign(3)

NAME
posix_memalign, aligned_alloc, memalign, valloc, pvalloc - allocate aligned memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment, size_t size);
void *aligned_alloc(size_t alignment, size_t size);
[[deprecated]] void *valloc(size_t size);

#include <malloc.h>

[[deprecated]] void *memalign(size_t alignment, size_t size);
[[deprecated]] void *pvalloc(size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_memalign():
_POSIX_C_SOURCE >= 200112L

aligned_alloc():
_ISOC11_SOURCE

valloc():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && !(_POSIX_C_SOURCE >= 200112L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
posix_memalign() allocates size bytes and places the address of the allocated mem-
ory in *memptr. The address of the allocated memory will be a multiple of align-
ment, which must be a power of two and a multiple of sizeof(void *). This address
can later be successfully passed to free(3). If size is 0, then the value placed in
*memptr is either NULL or a unique pointer value.

The obsolete function memalign() allocates size bytes and returns a pointer to the al-
located memory. The memory address will be a multiple of alignment, which must be
a power of two.

aligned_alloc() is the same as memalign(), except for the added restriction that align-
ment must be a power of two.

The obsolete function valloc() allocates size bytes and returns a pointer to the allo-
cated memory. The memory address will be a multiple of the page size. It is equiva-
lent to memalign(sysconf(_SC_PAGESIZE),size).

The obsolete function pvalloc() is similar to valloc(), but rounds the size of the alloca-
tion up to the next multiple of the system page size.

For all of these functions, the memory is not zeroed.

Linux man-pages 6.13 2024-07-23 2063

posix_memalign(3) Library Functions Manual posix_memalign(3)

RETURN VALUE
aligned_alloc(), memalign(), valloc(), and pvalloc() return a pointer to the allocated
memory on success. On error, NULL is returned, and errno is set to indicate the er-
ror.

posix_memalign() returns zero on success, or one of the error values listed in the next
section on failure. The value of errno is not set. On Linux (and other systems),
posix_memalign() does not modify memptr on failure. A requirement standardizing
this behavior was added in POSIX.1-2008 TC2.

ERRORS
EINVAL

The alignment argument was not a power of two, or was not a multiple of
sizeof(void *).

ENOMEM
Out of memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safealigned_alloc(), memalign(),
posix_memalign()

Thread safety MT-Unsafe initvalloc(), pvalloc()

STANDARDS
aligned_alloc()

C11.

posix_memalign()
POSIX.1-2008.

memalign()
valloc()

None.

pvalloc()
GNU.

HISTORY
aligned_alloc()

glibc 2.16. C11.

posix_memalign()
glibc 2.1.91. POSIX.1d, POSIX.1-2001.

memalign()
glibc 2.0. SunOS 4.1.3.

valloc()
glibc 2.0. 3.0BSD. Documented as obsolete in 4.3BSD, and as legacy in
SUSv2.

pvalloc()
glibc 2.0.

Linux man-pages 6.13 2024-07-23 2064

posix_memalign(3) Library Functions Manual posix_memalign(3)

Headers
Everybody agrees that posix_memalign() is declared in <stdlib.h>.

On some systems memalign() is declared in <stdlib.h> instead of <malloc.h>.

According to SUSv2, valloc() is declared in <stdlib.h>. glibc declares it in <mal-
loc.h>, and also in <stdlib.h> if suitable feature test macros are defined (see above).

NOTES
On many systems there are alignment restrictions, for example, on buffers used for di-
rect block device I/O. POSIX specifies the pathconf(path,_PC_REC_XFER_ALIGN)
call that tells what alignment is needed. Now one can use posix_memalign() to sat-
isfy this requirement.

posix_memalign() verifies that alignment matches the requirements detailed above.
memalign() may not check that the alignment argument is correct.

POSIX requires that memory obtained from posix_memalign() can be freed using
free(3). Some systems provide no way to reclaim memory allocated with memalign()
or valloc() (because one can pass to free(3) only a pointer obtained from malloc(3),
while, for example, memalign() would call malloc(3) and then align the obtained
value). The glibc implementation allows memory obtained from any of these func-
tions to be reclaimed with free(3).

The glibc malloc(3) always returns 8-byte aligned memory addresses, so these func-
tions are needed only if you require larger alignment values.

SEE ALSO
brk(2), getpagesize(2), free(3), malloc(3)

Linux man-pages 6.13 2024-07-23 2065

posix_openpt(3) Library Functions Manual posix_openpt(3)

NAME
posix_openpt - open a pseudoterminal device

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>
#include <fcntl.h>

int posix_openpt(int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_openpt():
_XOPEN_SOURCE >= 600

DESCRIPTION
The posix_openpt() function opens an unused pseudoterminal master device, return-
ing a file descriptor that can be used to refer to that device.

The flags argument is a bit mask that ORs together zero or more of the following
flags:

O_RDWR
Open the device for both reading and writing. It is usual to specify this flag.

O_NOCTTY
Do not make this device the controlling terminal for the process.

RETURN VALUE
On success, posix_openpt() returns a file descriptor (a nonnegative integer) which is
the lowest numbered unused file descriptor. On failure, -1 is returned, and errno is
set to indicate the error.

ERRORS
See open(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeposix_openpt()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2.1. POSIX.1-2001.

It is part of the UNIX 98 pseudoterminal support (see pts(4)).

NOTES
Some older UNIX implementations that support System V (aka UNIX 98) pseudoter-
minals don’t have this function, but it can be easily implemented by opening the
pseudoterminal multiplexor device:

int
posix_openpt(int flags)
{

Linux man-pages 6.13 2024-07-23 2066

posix_openpt(3) Library Functions Manual posix_openpt(3)

return open("/dev/ptmx", flags);
}

Calling posix_openpt() creates a pathname for the corresponding pseudoterminal
slave device. The pathname of the slave device can be obtained using ptsname(3).
The slave device pathname exists only as long as the master device is open.

SEE ALSO
open(2), getpt(3), grantpt(3), ptsname(3), unlockpt(3), pts(4), pty(7)

Linux man-pages 6.13 2024-07-23 2067

posix_spawn(3) Library Functions Manual posix_spawn(3)

NAME
posix_spawn, posix_spawnp - spawn a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <spawn.h>

int posix_spawn(pid_t *restrict pid , const char *restrict path,
const posix_spawn_file_actions_t *restrict file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict],
char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid , const char *restrict file,
const posix_spawn_file_actions_t *restrict file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict],
char *const envp[restrict]);

DESCRIPTION
The posix_spawn() and posix_spawnp() functions are used to create a new child
process that executes a specified file. These functions were specified by POSIX to
provide a standardized method of creating new processes on machines that lack the
capability to support the fork(2) system call. These machines are generally small, em-
bedded systems lacking MMU support.

The posix_spawn() and posix_spawnp() functions provide the functionality of a
combined fork(2) and exec(3), with some optional housekeeping steps in the child
process before the exec(3). These functions are not meant to replace the fork(2) and
execve(2) system calls. In fact, they provide only a subset of the functionality that can
be achieved by using the system calls.

The only difference between posix_spawn() and posix_spawnp() is the manner in
which they specify the file to be executed by the child process. With posix_spawn(),
the executable file is specified as a pathname (which can be absolute or relative).
With posix_spawnp(), the executable file is specified as a simple filename; the system
searches for this file in the list of directories specified by PATH (in the same way as
for execvp(3)). For the remainder of this page, the discussion is phrased in terms of
posix_spawn(), with the understanding that posix_spawnp() differs only on the point
just described.

The remaining arguments to these two functions are as follows:

pid points to a buffer that is used to return the process ID of the new child process.

file_actions
points to a spawn file actions object that specifies file-related actions to be per-
formed in the child between the fork(2) and exec(3) steps. This object is ini-
tialized and populated before the posix_spawn() call using
posix_spawn_file_actions_init(3) and the posix_spawn_file_actions_*()
functions.

Linux man-pages 6.13 2024-07-23 2068

posix_spawn(3) Library Functions Manual posix_spawn(3)

attrp points to an attributes objects that specifies various attributes of the created
child process. This object is initialized and populated before the
posix_spawn() call using posix_spawnattr_init(3) and the posix_spaw-
nattr_*() functions.

argv
envp specify the argument list and environment for the program that is executed in

the child process, as for execve(2).

Below, the functions are described in terms of a three-step process: the fork() step, the
pre-exec() step (executed in the child), and the exec() step (executed in the child).

fork() step
Since glibc 2.24, the posix_spawn() function commences by calling clone(2) with
CLONE_VM and CLONE_VFORK flags. Older implementations use fork(2), or
possibly vfork(2) (see below).

The PID of the new child process is placed in *pid . The posix_spawn() function then
returns control to the parent process.

Subsequently, the parent can use one of the system calls described in wait(2) to check
the status of the child process. If the child fails in any of the housekeeping steps de-
scribed below, or fails to execute the desired file, it exits with a status of 127.

Before glibc 2.24, the child process is created using vfork(2) instead of fork(2) when
either of the following is true:

• the spawn-flags element of the attributes object pointed to by attrp contains the
GNU-specific flag POSIX_SPAWN_USEVFORK; or

• file_actions is NULL and the spawn-flags element of the attributes object pointed
to by attrp does not contain POSIX_SPAWN_SETSIGMASK,
POSIX_SPAWN_SETSIGDEF, POSIX_SPAWN_SETSCHEDPARAM,
POSIX_SPAWN_SETSCHEDULER, POSIX_SPAWN_SETPGROUP, or
POSIX_SPAWN_RESETIDS.

In other words, vfork(2) is used if the caller requests it, or if there is no cleanup ex-
pected in the child before it exec(3)s the requested file.

pre-exec() step: housekeeping
In between the fork() and the exec() steps, a child process may need to perform a set
of housekeeping actions. The posix_spawn() and posix_spawnp() functions support
a small, well-defined set of system tasks that the child process can accomplish before
it executes the executable file. These operations are controlled by the attributes object
pointed to by attrp and the file actions object pointed to by file_actions. In the child,
processing is done in the following sequence:

(1) Process attribute actions: signal mask, signal default handlers, scheduling algo-
rithm and parameters, process group, and effective user and group IDs are
changed as specified by the attributes object pointed to by attrp.

(2) File actions, as specified in the file_actions argument, are performed in the or-
der that they were specified using calls to the posix_spawn_file_ac-
tions_add*() functions.

Linux man-pages 6.13 2024-07-23 2069

posix_spawn(3) Library Functions Manual posix_spawn(3)

(3) File descriptors with the FD_CLOEXEC flag set are closed.

All process attributes in the child, other than those affected by attributes specified in
the object pointed to by attrp and the file actions in the object pointed to by file_ac-
tions, will be affected as though the child was created with fork(2) and it executed the
program with execve(2).

The process attributes actions are defined by the attributes object pointed to by attrp.
The spawn-flags attribute (set using posix_spawnattr_setflags(3)) controls the general
actions that occur, and other attributes in the object specify values to be used during
those actions.

The effects of the flags that may be specified in spawn-flags are as follows:

POSIX_SPAWN_SETSIGMASK
Set the signal mask to the signal set specified in the spawn-sigmask attribute
of the object pointed to by attrp. If the POSIX_SPAWN_SETSIGMASK
flag is not set, then the child inherits the parent’s signal mask.

POSIX_SPAWN_SETSIGDEF
Reset the disposition of all signals in the set specified in the spawn-sigdefault
attribute of the object pointed to by attrp to the default. For the treatment of
the dispositions of signals not specified in the spawn-sigdefault attribute, or
the treatment when POSIX_SPAWN_SETSIGDEF is not specified, see ex-
ecve(2).

POSIX_SPAWN_SETSCHEDPARAM
If this flag is set, and the POSIX_SPAWN_SETSCHEDULER flag is not set,
then set the scheduling parameters to the parameters specified in the spawn-
schedparam attribute of the object pointed to by attrp.

POSIX_SPAWN_SETSCHEDULER
Set the scheduling policy algorithm and parameters of the child, as follows:

• The scheduling policy is set to the value specified in the spawn-schedpol-
icy attribute of the object pointed to by attrp.

• The scheduling parameters are set to the value specified in the spawn-
schedparam attribute of the object pointed to by attrp (but see BUGS).

If the POSIX_SPAWN_SETSCHEDPARAM and
POSIX_SPAWN_SETSCHEDPOLICY flags are not specified, the child in-
herits the corresponding scheduling attributes from the parent.

POSIX_SPAWN_RESETIDS
If this flag is set, reset the effective UID and GID to the real UID and GID of
the parent process. If this flag is not set, then the child retains the effective
UID and GID of the parent. In either case, if the set-user-ID and set-group-ID
permission bits are enabled on the executable file, their effect will override the
setting of the effective UID and GID (se execve(2)).

POSIX_SPAWN_SETPGROUP
Set the process group to the value specified in the spawn-pgroup attribute of
the object pointed to by attrp. If the spawn-pgroup attribute has the value 0,
the child’s process group ID is made the same as its process ID. If the
POSIX_SPAWN_SETPGROUP flag is not set, the child inherits the parent’s

Linux man-pages 6.13 2024-07-23 2070

posix_spawn(3) Library Functions Manual posix_spawn(3)

process group ID.

POSIX_SPAWN_USEVFORK
Since glibc 2.24, this flag has no effect. On older implementations, setting this
flag forces the fork() step to use vfork(2) instead of fork(2). The
_GNU_SOURCE feature test macro must be defined to obtain the definition
of this constant.

POSIX_SPAWN_SETSID (since glibc 2.26)
If this flag is set, the child process shall create a new session and become the
session leader. The child process shall also become the process group leader
of the new process group in the session (see setsid(2)). The _GNU_SOURCE
feature test macro must be defined to obtain the definition of this constant.

If attrp is NULL, then the default behaviors described above for each flag apply.

The file_actions argument specifies a sequence of file operations that are performed
in the child process after the general processing described above, and before it per-
forms the exec(3). If file_actions is NULL, then no special action is taken, and stan-
dard exec(3) semantics apply—file descriptors open before the exec remain open in
the new process, except those for which the FD_CLOEXEC flag has been set. File
locks remain in place.

If file_actions is not NULL, then it contains an ordered set of requests to open(2),
close(2), and dup2(2) files. These requests are added to the file_actions by
posix_spawn_file_actions_addopen(3), posix_spawn_file_actions_addclose(3), and
posix_spawn_file_actions_adddup2(3)The requested operations are performed in the
order they were added to file_actions.

If any of the housekeeping actions fails (due to bogus values being passed or other
reasons why signal handling, process scheduling, process group ID functions, and file
descriptor operations might fail), the child process exits with exit value 127.

exec() step
Once the child has successfully forked and performed all requested pre-exec steps, the
child runs the requested executable.

The child process takes its environment from the envp argument, which is interpreted
as if it had been passed to execve(2). The arguments to the created process come from
the argv argument, which is processed as for execve(2).

RETURN VALUE
Upon successful completion, posix_spawn() and posix_spawnp() place the PID of
the child process in pid , and return 0. If there is an error during the fork() step, then
no child is created, the contents of *pid are unspecified, and these functions return an
error number as described below.

Even when these functions return a success status, the child process may still fail for a
plethora of reasons related to its pre-exec() initialization. In addition, the exec(3) may
fail. In all of these cases, the child process will exit with the exit value of 127.

ERRORS
The posix_spawn() and posix_spawnp() functions fail only in the case where the un-
derlying fork(2), vfork(2), or clone(2) call fails; in these cases, these functions return
an error number, which will be one of the errors described for fork(2), vfork(2), or

Linux man-pages 6.13 2024-07-23 2071

posix_spawn(3) Library Functions Manual posix_spawn(3)

clone(2).

In addition, these functions fail if:

ENOSYS
Function not supported on this system.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

NOTES
The housekeeping activities in the child are controlled by the objects pointed to by at-
trp (for non-file actions) and file_actions In POSIX parlance, the posix_spawnattr_t
and posix_spawn_file_actions_t data types are referred to as objects, and their ele-
ments are not specified by name. Portable programs should initialize these objects us-
ing only the POSIX-specified functions. (In other words, although these objects may
be implemented as structures containing fields, portable programs must avoid depen-
dence on such implementation details.)

According to POSIX, it is unspecified whether fork handlers established with
pthread_atfork(3) are called when posix_spawn() is invoked. Since glibc 2.24, the
fork handlers are not executed in any case. On older implementations, fork handlers
are called only if the child is created using fork(2).

There is no "posix_fspawn" function (i.e., a function that is to posix_spawn() as fex-
ecve(3) is to execve(2)). However, this functionality can be obtained by specifying the
path argument as one of the files in the caller’s /proc/self/fd directory.

BUGS
POSIX.1 says that when POSIX_SPAWN_SETSCHEDULER is specified in spawn-
flags, then the POSIX_SPAWN_SETSCHEDPARAM (if present) is ignored. How-
ever, before glibc 2.14, calls to posix_spawn() failed with an error if
POSIX_SPAWN_SETSCHEDULER was specified without also specifying
POSIX_SPAWN_SETSCHEDPARAM.

EXAMPLES
The program below demonstrates the use of various functions in the POSIX spawn
API. The program accepts command-line attributes that can be used to create file ac-
tions and attributes objects. The remaining command-line arguments are used as the
executable name and command-line arguments of the program that is executed in the
child.

In the first run, the date(1) command is executed in the child, and the posix_spawn()
call employs no file actions or attributes objects.

$./a.out date
PID of child: 7634
Tue Feb 1 19:47:50 CEST 2011
Child status: exited, status=0

In the next run, the -c command-line option is used to create a file actions object that
closes standard output in the child. Consequently, date(1) fails when trying to per-
form output and exits with a status of 1.

Linux man-pages 6.13 2024-07-23 2072

posix_spawn(3) Library Functions Manual posix_spawn(3)

$./a.out -c date
PID of child: 7636
date: write error: Bad file descriptor
Child status: exited, status=1

In the next run, the -s command-line option is used to create an attributes object that
specifies that all (blockable) signals in the child should be blocked. Consequently,
trying to kill child with the default signal sent by kill(1) (i.e., SIGTERM) fails, be-
cause that signal is blocked. Therefore, to kill the child, SIGKILL is necessary
(SIGKILL can’t be blocked).

$./a.out -s sleep 60 &
[1] 7637
$ PID of child: 7638

$ kill 7638
$ kill -KILL 7638
$ Child status: killed by signal 9
[1]+ Done ./a.out -s sleep 60

When we try to execute a nonexistent command in the child, the exec(3) fails and the
child exits with a status of 127.

$./a.out xxxxx
PID of child: 10190
Child status: exited, status=127

Program source

#include <errno.h>
#include <spawn.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <wait.h>

#define errExit(msg) do { perror(msg); \
exit(EXIT_FAILURE); } while (0)

#define errExitEN(en, msg) \
do { errno = en; perror(msg); \

exit(EXIT_FAILURE); } while (0)

char **environ;

int
main(int argc, char *argv[])
{

pid_t child_pid;
int s, opt, status;

Linux man-pages 6.13 2024-07-23 2073

posix_spawn(3) Library Functions Manual posix_spawn(3)

sigset_t mask;
posix_spawnattr_t attr;
posix_spawnattr_t *attrp;
posix_spawn_file_actions_t file_actions;
posix_spawn_file_actions_t *file_actionsp;

/* Parse command-line options, which can be used to specify an
attributes object and file actions object for the child. */

attrp = NULL;
file_actionsp = NULL;

while ((opt = getopt(argc, argv, "sc")) != -1) {
switch (opt) {
case 'c': /* -c: close standard output in child */

/* Create a file actions object and add a "close"
action to it. */

s = posix_spawn_file_actions_init(&file_actions);
if (s != 0)

errExitEN(s, "posix_spawn_file_actions_init");

s = posix_spawn_file_actions_addclose(&file_actions,
STDOUT_FILENO);

if (s != 0)
errExitEN(s, "posix_spawn_file_actions_addclose");

file_actionsp = &file_actions;
break;

case 's': /* -s: block all signals in child */

/* Create an attributes object and add a "set signal mask"
action to it. */

s = posix_spawnattr_init(&attr);
if (s != 0)

errExitEN(s, "posix_spawnattr_init");
s = posix_spawnattr_setflags(&attr, POSIX_SPAWN_SETSIGMASK);
if (s != 0)

errExitEN(s, "posix_spawnattr_setflags");

sigfillset(&mask);
s = posix_spawnattr_setsigmask(&attr, &mask);
if (s != 0)

errExitEN(s, "posix_spawnattr_setsigmask");

attrp = &attr;

Linux man-pages 6.13 2024-07-23 2074

posix_spawn(3) Library Functions Manual posix_spawn(3)

break;
}

}

/* Spawn the child. The name of the program to execute and the
command-line arguments are taken from the command-line arguments
of this program. The environment of the program execed in the
child is made the same as the parent's environment. */

s = posix_spawnp(&child_pid, argv[optind], file_actionsp, attrp,
&argv[optind], environ);

if (s != 0)
errExitEN(s, "posix_spawn");

/* Destroy any objects that we created earlier. */

if (attrp != NULL) {
s = posix_spawnattr_destroy(attrp);
if (s != 0)

errExitEN(s, "posix_spawnattr_destroy");
}

if (file_actionsp != NULL) {
s = posix_spawn_file_actions_destroy(file_actionsp);
if (s != 0)

errExitEN(s, "posix_spawn_file_actions_destroy");
}

printf("PID of child: %jd\n", (intmax_t) child_pid);

/* Monitor status of the child until it terminates. */

do {
s = waitpid(child_pid, &status, WUNTRACED | WCONTINUED);
if (s == -1)

errExit("waitpid");

printf("Child status: ");
if (WIFEXITED(status)) {

printf("exited, status=%d\n", WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {

printf("killed by signal %d\n", WTERMSIG(status));
} else if (WIFSTOPPED(status)) {

printf("stopped by signal %d\n", WSTOPSIG(status));
} else if (WIFCONTINUED(status)) {

printf("continued\n");
}

} while (!WIFEXITED(status) && !WIFSIGNALED(status));

Linux man-pages 6.13 2024-07-23 2075

posix_spawn(3) Library Functions Manual posix_spawn(3)

exit(EXIT_SUCCESS);
}

SEE ALSO
close(2), dup2(2), execl(2), execlp(2), fork(2), open(2), sched_setparam(2),
sched_setscheduler(2), setpgid(2), setuid(2), sigaction(2), sigprocmask(2),
posix_spawn_file_actions_addclose(3), posix_spawn_file_actions_adddup2(3),
posix_spawn_file_actions_addopen(3), posix_spawn_file_actions_destroy(3),
posix_spawn_file_actions_init(3), posix_spawnattr_destroy(3),
posix_spawnattr_getflags(3), posix_spawnattr_getpgroup(3),
posix_spawnattr_getschedparam(3), posix_spawnattr_getschedpolicy(3),
posix_spawnattr_getsigdefault(3), posix_spawnattr_getsigmask(3),
posix_spawnattr_init(3), posix_spawnattr_setflags(3),
posix_spawnattr_setpgroup(3), posix_spawnattr_setschedparam(3),
posix_spawnattr_setschedpolicy(3), posix_spawnattr_setsigdefault(3),
posix_spawnattr_setsigmask(3), pthread_atfork(3), <spawn.h>, Base Definitions
volume of POSIX.1-2001, http://www.opengroup.org/unix/online.html

Linux man-pages 6.13 2024-07-23 2076

pow(3) Library Functions Manual pow(3)

NAME
pow, powf, powl - power functions

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

powf(), powl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the value of x raised to the power of y.

RETURN VALUE
On success, these functions return the value of x to the power of y.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the mathematically correct sign.

If result underflows, and is not representable, a range error occurs, and 0.0 with the
appropriate sign is returned.

If x is +0 or -0, and y is an odd integer less than 0, a pole error occurs and
HUGE_VAL, HUGE_VALF, or HUGE_VALL, is returned, with the same sign as x.

If x is +0 or -0, and y is less than 0 and not an odd integer, a pole error occurs and
+HUGE_VAL, +HUGE_VALF, or +HUGE_VALL, is returned.

If x is +0 (-0), and y is an odd integer greater than 0, the result is +0 (-0).

If x is 0, and y greater than 0 and not an odd integer, the result is +0.

If x is -1, and y is positive infinity or negative infinity, the result is 1.0.

If x is +1, the result is 1.0 (even if y is a NaN).

If y is 0, the result is 1.0 (even if x is a NaN).

If x is a finite value less than 0, and y is a finite noninteger, a domain error occurs, and
a NaN is returned.

If the absolute value of x is less than 1, and y is negative infinity, the result is positive
infinity.

If the absolute value of x is greater than 1, and y is negative infinity, the result is +0.

If the absolute value of x is less than 1, and y is positive infinity, the result is +0.

If the absolute value of x is greater than 1, and y is positive infinity, the result is posi-
tive infinity.

If x is negative infinity, and y is an odd integer less than 0, the result is -0.

Linux man-pages 6.13 2024-07-23 2077

pow(3) Library Functions Manual pow(3)

If x is negative infinity, and y less than 0 and not an odd integer, the result is +0.

If x is negative infinity, and y is an odd integer greater than 0, the result is negative in-
finity.

If x is negative infinity, and y greater than 0 and not an odd integer, the result is posi-
tive infinity.

If x is positive infinity, and y less than 0, the result is +0.

If x is positive infinity, and y greater than 0, the result is positive infinity.

Except as specified above, if x or y is a NaN, the result is a NaN.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is negative, and y is a finite noninteger
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Pole error: x is zero, and y is negative
errno is set to ERANGE (but see BUGS). A divide-by-zero floating-point ex-
ception (FE_DIVBYZERO) is raised.

Range error: the result overflows
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Range error: the result underflows
errno is set to ERANGE. An underflow floating-point exception (FE_UN-
DERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepow(), powf(), powl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
Historical bugs (now fixed)

Before glibc 2.28, on some architectures (e.g., x86-64) pow() may be more than
10,000 times slower for some inputs than for other nearby inputs. This affects only
pow(), and not powf() nor powl(). This problem was fixed in glibc 2.28.

A number of bugs in the glibc implementation of pow() were fixed in glibc 2.16.

In glibc 2.9 and earlier, when a pole error occurs, errno is set to EDOM instead of the
POSIX-mandated ERANGE. Since glibc 2.10, glibc does the right thing.

Linux man-pages 6.13 2024-07-23 2078

pow(3) Library Functions Manual pow(3)

In glibc 2.3.2 and earlier, when an overflow or underflow error occurs, glibc’s pow()
generates a bogus invalid floating-point exception (FE_INVALID) in addition to the
overflow or underflow exception.

SEE ALSO
cbrt(3), cpow(3), sqrt(3)

Linux man-pages 6.13 2024-07-23 2079

pow10(3) Library Functions Manual pow10(3)

NAME
pow10, pow10f, pow10l - base-10 power functions

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <math.h>

double pow10(double x);
float pow10f(float x);
long double pow10l(long double x);

DESCRIPTION
These functions return the value of 10 raised to the power x.

Note well: These functions perform exactly the same task as the functions described
in exp10(3), with the difference that the latter functions are now standardized in
TS 18661-4:2015. Those latter functions should be used in preference to the func-
tions described in this page.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepow10(), pow10f(), pow10l()

STANDARDS
GNU.

VERSIONS
glibc 2.1. Removed in glibc 2.27.

SEE ALSO
exp10(3), pow(3)

Linux man-pages 6.13 2024-07-23 2080

powerof2(3) Library Functions Manual powerof2(3)

NAME
powerof2 - test if a value is a power of 2

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/param.h>

int powerof2(x);

DESCRIPTION
This macro returns true if x is a power of 2, and false otherwise.

0 is considered a power of 2. This can make sense considering wrapping of unsigned
integers, and has interesting properties.

RETURN VALUE
True or false, if x is a power of 2 or not, respectively.

STANDARDS
BSD.

CAVEATS
The arguments may be evaluated more than once.

Because this macro is implemented using bitwise operations, some negative values
can invoke undefined behavior. For example, the following invokes undefined behav-
ior: powerof2(INT_MIN); . Call it only with unsigned types to be safe.

SEE ALSO
stdc_bit_ceil(3), stdc_bit_floor(3)

Linux man-pages 6.13 2024-05-02 2081

__ppc_get_timebase(3) Library Functions Manual __ppc_get_timebase(3)

NAME
__ppc_get_timebase, __ppc_get_timebase_freq - get the current value of the Time
Base Register on Power architecture and its frequency.

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/platform/ppc.h>

uint64_t __ppc_get_timebase(void);
uint64_t __ppc_get_timebase_freq(void);

DESCRIPTION
__ppc_get_timebase() reads the current value of the Time Base Register and returns
its value, while __ppc_get_timebase_freq() returns the frequency in which the Time
Base Register is updated.

The Time Base Register is a 64-bit register provided by Power Architecture proces-
sors. It stores a monotonically incremented value that is updated at a system-depen-
dent frequency that may be different from the processor frequency.

RETURN VALUE
__ppc_get_timebase() returns a 64-bit unsigned integer that represents the current
value of the Time Base Register.

__ppc_get_timebase_freq() returns a 64-bit unsigned integer that represents the fre-
quency at which the Time Base Register is updated.

STANDARDS
GNU.

HISTORY
__ppc_get_timebase()

glibc 2.16.

__ppc_get_timebase_freq()
glibc 2.17.

EXAMPLES
The following program will calculate the time, in microseconds, spent between two
calls to __ppc_get_timebase().

Program source

#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/platform/ppc.h>

/* Maximum value of the Time Base Register: 2^60 - 1.
Source: POWER ISA. */

#define MAX_TB 0xFFFFFFFFFFFFFFF

int

Linux man-pages 6.13 2024-07-23 2082

__ppc_get_timebase(3) Library Functions Manual __ppc_get_timebase(3)

main(void)
{

uint64_t tb1, tb2, diff;
uint64_t freq;

freq = __ppc_get_timebase_freq();
printf("Time Base frequency = %"PRIu64" Hz\n", freq);

tb1 = __ppc_get_timebase();

// Do some stuff...

tb2 = __ppc_get_timebase();

if (tb2 > tb1) {
diff = tb2 - tb1;

} else {
/* Treat Time Base Register overflow. */
diff = (MAX_TB - tb2) + tb1;

}

printf("Elapsed time = %1.2f usecs\n",
(double) diff * 1000000 / freq);

exit(EXIT_SUCCESS);
}

SEE ALSO
time(2), usleep(3)

Linux man-pages 6.13 2024-07-23 2083

__ppc_set_ppr_med(3) Library Functions Manual __ppc_set_ppr_med(3)

Programmer’s Manual"

NAME
__ppc_set_ppr_med, __ppc_set_ppr_very_low, __ppc_set_ppr_low,
__ppc_set_ppr_med_low, __ppc_set_ppr_med_high - Set the Program Priority Regis-
ter

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/platform/ppc.h>

void __ppc_set_ppr_med(void);
void __ppc_set_ppr_very_low(void);
void __ppc_set_ppr_low(void);
void __ppc_set_ppr_med_low(void);
void __ppc_set_ppr_med_high(void);

DESCRIPTION
These functions provide access to the Program Priority Register (PPR) on the Power
architecture.

The PPR is a 64-bit register that controls the program’s priority. By adjusting the PPR
value the programmer may improve system throughput by causing system resources
to be used more efficiently, especially in contention situations. The available unprivi-
leged states are covered by the following functions:

__ppc_set_ppr_med()
sets the Program Priority Register value to medium (default).

__ppc_set_ppr_very_low()
sets the Program Priority Register value to very low.

__ppc_set_ppr_low()
sets the Program Priority Register value to low.

__ppc_set_ppr_med_low()
sets the Program Priority Register value to medium low.

The privileged state medium high may also be set during certain time intervals by
problem-state (unprivileged) programs, with the following function:

__ppc_set_ppr_med_high()
sets the Program Priority to medium high.

If the program priority is medium high when the time interval expires or if an attempt
is made to set the priority to medium high when it is not allowed, the priority is set to
medium.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe__ppc_set_ppr_med(), __ppc_set_ppr_very_low(),
__ppc_set_ppr_low(), __ppc_set_ppr_med_low(),
__ppc_set_ppr_med_high()

Linux man-pages 6.13 2024-07-23 2084

__ppc_set_ppr_med(3) Library Functions Manual __ppc_set_ppr_med(3)

STANDARDS
GNU.

HISTORY
__ppc_set_ppr_med()
__ppc_set_ppr_low()
__ppc_set_ppr_med_low()

glibc 2.18.

__ppc_set_ppr_very_low()
__ppc_set_ppr_med_high()

glibc 2.23.

NOTES
The functions __ppc_set_ppr_very_low() and __ppc_set_ppr_med_high() will be
defined by <sys/platform/ppc.h> if _ARCH_PWR8 is defined. Availability of these
functions can be tested using #ifdef _ARCH_PWR8.

SEE ALSO
__ppc_yield(3)

Power ISA, Book II - Section 3.1 (Program Priority Registers)

Linux man-pages 6.13 2024-07-23 2085

__ppc_yield(3) Library Functions Manual __ppc_yield(3)

NAME
__ppc_yield, __ppc_mdoio, __ppc_mdoom - Hint the processor to release shared re-
sources

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/platform/ppc.h>

void __ppc_yield(void);
void __ppc_mdoio(void);
void __ppc_mdoom(void);

DESCRIPTION
These functions provide hints about the usage of resources that are shared with other
processors on the Power architecture. They can be used, for example, if a program
waiting on a lock intends to divert the shared resources to be used by other processors.

__ppc_yield() provides a hint that performance will probably be improved if shared
resources dedicated to the executing processor are released for use by other proces-
sors.

__ppc_mdoio() provides a hint that performance will probably be improved if shared
resources dedicated to the executing processor are released until all outstanding stor-
age accesses to caching-inhibited storage have been completed.

__ppc_mdoom() provides a hint that performance will probably be improved if
shared resources dedicated to the executing processor are released until all outstand-
ing storage accesses to cacheable storage for which the data is not in the cache have
been completed.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe__ppc_yield(), __ppc_mdoio(), __ppc_mdoom()

STANDARDS
GNU.

HISTORY
glibc 2.18.

SEE ALSO
__ppc_set_ppr_med(3)

Power ISA, Book II - Section 3.2 ("or" architecture)

Linux man-pages 6.13 2024-07-23 2086

printf (3) Library Functions Manual printf (3)

NAME
printf, fprintf, dprintf, sprintf, snprintf, vprintf, vfprintf, vdprintf, vsprintf, vsnprintf -
formatted output conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int printf(const char *restrict format, ...);
int fprintf(FILE *restrict stream,

const char *restrict format, ...);
int dprintf(int fd ,

const char *restrict format, ...);
int sprintf(char *restrict str,

const char *restrict format, ...);
int snprintf(char str[restrict .size], size_t size,

const char *restrict format, ...);

int vprintf(const char *restrict format, va_list ap);
int vfprintf(FILE *restrict stream,

const char *restrict format, va_list ap);
int vdprintf(int fd ,

const char *restrict format, va_list ap);
int vsprintf(char *restrict str,

const char *restrict format, va_list ap);
int vsnprintf(char str[restrict .size], size_t size,

const char *restrict format, va_list ap);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

snprintf(), vsnprintf():
_XOPEN_SOURCE >= 500 || _ISOC99_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE

dprintf(), vdprintf():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The functions in the printf() family produce output according to a format as de-
scribed below. The functions printf() and vprintf() write output to stdout, the stan-
dard output stream; fprintf() and vfprintf() write output to the given output stream;
sprintf(), snprintf(), vsprintf(), and vsnprintf() write to the character string str.

The function dprintf() is the same as fprintf() except that it outputs to a file descrip-
tor, fd , instead of to a stdio(3) stream.

The functions snprintf() and vsnprintf() write at most size bytes (including the termi-
nating null byte ('\0')) to str.

The functions vprintf(), vfprintf(), vdprintf(), vsprintf(), vsnprintf() are equivalent

Linux man-pages 6.13 2024-11-17 2087

printf (3) Library Functions Manual printf (3)

to the functions printf(), fprintf(), dprintf(), sprintf(), snprintf(), respectively, ex-
cept that they are called with a va_list instead of a variable number of arguments.
These functions do not call the va_end macro. Because they invoke the va_arg
macro, the value of ap is undefined after the call. See stdarg(3).

All of these functions write the output under the control of a format string that speci-
fies how subsequent arguments (or arguments accessed via the variable-length argu-
ment facilities of stdarg(3)) are converted for output.

C99 and POSIX.1-2001 specify that the results are undefined if a call to sprintf(),
snprintf(), vsprintf(), or vsnprintf() would cause copying to take place between ob-
jects that overlap (e.g., if the target string array and one of the supplied input argu-
ments refer to the same buffer). See CAVEATS.

Format of the format string
The format string is a character string, beginning and ending in its initial shift state, if
any. The format string is composed of zero or more directives: ordinary characters
(not %), which are copied unchanged to the output stream; and conversion specifica-
tions, each of which results in fetching zero or more subsequent arguments. Each
conversion specification is introduced by the character %, and ends with a conversion
specifier. In between there may be (in this order) zero or more flags, an optional
minimum field width, an optional precision and an optional length modifier.

The overall syntax of a conversion specification is:

%[argument$][flags][width][.precision][length modifier]conversion

The arguments must correspond properly (after type promotion) with the conversion
specifier. By default, the arguments are used in the order given, where each '*' (see
Field width and Precision below) and each conversion specifier asks for the next argu-
ment (and it is an error if insufficiently many arguments are given). One can also
specify explicitly which argument is taken, at each place where an argument is re-
quired, by writing "%m$" instead of '%' and "*m$" instead of '*', where the decimal
integer m denotes the position in the argument list of the desired argument, indexed
starting from 1. Thus,

printf("%*d", width, num);

and

printf("%2$*1$d", width, num);

are equivalent. The second style allows repeated references to the same argument.
The C99 standard does not include the style using '$', which comes from the Single
UNIX Specification. If the style using '$' is used, it must be used throughout for all
conversions taking an argument and all width and precision arguments, but it may be
mixed with "%%" formats, which do not consume an argument. There may be no
gaps in the numbers of arguments specified using '$'; for example, if arguments 1 and
3 are specified, argument 2 must also be specified somewhere in the format string.

For some numeric conversions a radix character ("decimal point") or thousands’
grouping character is used. The actual character used depends on the LC_NU-
MERIC part of the locale. (See setlocale(3).) The POSIX locale uses '.' as radix
character, and does not have a grouping character. Thus,

printf("%'.2f", 1234567.89);

Linux man-pages 6.13 2024-11-17 2088

printf (3) Library Functions Manual printf (3)

results in "1234567.89" in the POSIX locale, in "1234567,89" in the nl_NL locale,
and in "1.234.567,89" in the da_DK locale.

Flag characters
The character % is followed by zero or more of the following flags:

The value should be converted to an "alternate form". For o conversions, the
first character of the output string is made zero (by prefixing a 0 if it was not
zero already). For x and X conversions, a nonzero result has the string "0x"
(or "0X" for X conversions) prepended to it. For a, A, e, E, f, F, g, and G con-
versions, the result will always contain a decimal point, even if no digits fol-
low it (normally, a decimal point appears in the results of those conversions
only if a digit follows). For g and G conversions, trailing zeros are not re-
moved from the result as they would otherwise be. For m, if errno contains a
valid error code, the output of strerrorname_np(errno) is printed; otherwise,
the value stored in errno is printed as a decimal number. For other conver-
sions, the result is undefined.

0 The value should be zero padded. For d, i, o, u, x, X, a, A, e, E, f, F, g, and G
conversions, the converted value is padded on the left with zeros rather than
blanks. If the 0 and - flags both appear, the 0 flag is ignored. If a precision is
given with an integer conversion (d, i, o, u, x, and X), the 0 flag is ignored.
For other conversions, the behavior is undefined.

- The converted value is to be left adjusted on the field boundary. (The default
is right justification.) The converted value is padded on the right with blanks,
rather than on the left with blanks or zeros. A - overrides a 0 if both are
given.

' ' (a space) A blank should be left before a positive number (or empty string)
produced by a signed conversion.

+ A sign (+ or -) should always be placed before a number produced by a signed
conversion. By default, a sign is used only for negative numbers. A + over-
rides a space if both are used.

The five flag characters above are defined in the C99 standard. POSIX specifies one
further flag character.

' For decimal conversion (i, d, u, f, F, g, G) the output is to be grouped with
thousands’ grouping characters as a non-monetary quantity. Misleadingly, this
isn’t necessarily every thousand: for example Karbi ("mjw_IN"), groups its
digits into 3 once, then 2 repeatedly. Compare locale(7) grouping and thou-
sands_sep, contrast with mon_grouping/mon_thousands_sep and strfmon(3).
This is a no-op in the default "C" locale.

glibc 2.2 adds one further flag character.

I For decimal integer conversion (i, d, u) the output uses the locale’s alternative
output digits, if any. For example, since glibc 2.2.3 this will give Arabic-Indic
digits in the Persian ("fa_IR") locale.

Field width
An optional decimal digit string (with nonzero first digit) specifying a minimum field
width. If the converted value has fewer characters than the field width, it will be

Linux man-pages 6.13 2024-11-17 2089

printf (3) Library Functions Manual printf (3)

padded with spaces on the left (or right, if the left-adjustment flag has been given).
Instead of a decimal digit string one may write "*" or "*m$" (for some decimal inte-
ger m) to specify that the field width is given in the next argument, or in the m-th argu-
ment, respectively, which must be of type int. A negative field width is taken as a '-'
flag followed by a positive field width. In no case does a nonexistent or small field
width cause truncation of a field; if the result of a conversion is wider than the field
width, the field is expanded to contain the conversion result.

Precision
An optional precision, in the form of a period ('.') followed by an optional decimal
digit string. Instead of a decimal digit string one may write "*" or "*m$" (for some
decimal integer m) to specify that the precision is given in the next argument, or in the
m-th argument, respectively, which must be of type int. If the precision is given as
just '.', the precision is taken to be zero. A negative precision is taken as if the preci-
sion were omitted. This gives the minimum number of digits to appear for d, i, o, u,
x, and X conversions, the number of digits to appear after the radix character for a, A,
e, E, f, and F conversions, the maximum number of significant digits for g and G con-
versions, or the maximum number of characters to be printed from a string for s and S
conversions.

Length modifier
Here, "integer conversion" stands for d, i, o, u, x, or X conversion.

hh A following integer conversion corresponds to a signed char or unsigned char
argument, or a following n conversion corresponds to a pointer to a signed
char argument.

h A following integer conversion corresponds to a short or unsigned short argu-
ment, or a following n conversion corresponds to a pointer to a short argu-
ment.

l (ell) A following integer conversion corresponds to a long or unsigned long ar-
gument, or a following n conversion corresponds to a pointer to a long argu-
ment, or a following c conversion corresponds to a wint_t argument, or a fol-
lowing s conversion corresponds to a pointer to wchar_t argument. On a fol-
lowing a, A, e, E, f, F, g, or G conversion, this length modifier is ignored
(C99; not in SUSv2).

ll (ell-ell). A following integer conversion corresponds to a long long or un-
signed long long argument, or a following n conversion corresponds to a
pointer to a long long argument.

q A synonym for ll. This is a nonstandard extension, derived from BSD; avoid
its use in new code.

L A following a, A, e, E, f, F, g, or G conversion corresponds to a long double
argument. (C99 allows %LF, but SUSv2 does not.)

j A following integer conversion corresponds to an intmax_t or uintmax_t argu-
ment, or a following n conversion corresponds to a pointer to an intmax_t ar-
gument.

z A following integer conversion corresponds to a size_t or ssize_t argument, or
a following n conversion corresponds to a pointer to a size_t argument.

Linux man-pages 6.13 2024-11-17 2090

printf (3) Library Functions Manual printf (3)

Z A nonstandard synonym for z that predates the appearance of z. Do not use in
new code.

t A following integer conversion corresponds to a ptrdiff_t argument, or a fol-
lowing n conversion corresponds to a pointer to a ptrdiff_t argument.

SUSv3 specifies all of the above, except for those modifiers explicitly noted as being
nonstandard extensions. SUSv2 specified only the length modifiers h (in hd, hi, ho,
hx, hX, hn) and l (in ld, li, lo, lx, lX, ln, lc, ls) and L (in Le, LE, Lf, Lg, LG).

As a nonstandard extension, the GNU implementations treats ll and L as synonyms,
so that one can, for example, write llg (as a synonym for the standards-compliant Lg)
and Ld (as a synonym for the standards compliant lld). Such usage is nonportable.

Conversion specifiers
A character that specifies the type of conversion to be applied. The conversion speci-
fiers and their meanings are:

d, i The int argument is converted to signed decimal notation. The precision, if
any, gives the minimum number of digits that must appear; if the converted
value requires fewer digits, it is padded on the left with zeros. The default pre-
cision is 1. When 0 is printed with an explicit precision 0, the output is empty.

o, u, x, X
The unsigned int argument is converted to unsigned octal (o), unsigned deci-
mal (u), or unsigned hexadecimal (x and X) notation. The letters abcdef are
used for x conversions; the letters ABCDEF are used for X conversions. The
precision, if any, gives the minimum number of digits that must appear; if the
converted value requires fewer digits, it is padded on the left with zeros. The
default precision is 1. When 0 is printed with an explicit precision 0, the out-
put is empty.

e, E The double argument is rounded and converted in the style [-]d.ddde±dd
where there is one digit (which is nonzero if the argument is nonzero) before
the decimal-point character and the number of digits after it is equal to the pre-
cision; if the precision is missing, it is taken as 6; if the precision is zero, no
decimal-point character appears. An E conversion uses the letter E (rather
than e) to introduce the exponent. The exponent always contains at least two
digits; if the value is zero, the exponent is 00.

f, F The double argument is rounded and converted to decimal notation in the style
[-]ddd.ddd, where the number of digits after the decimal-point character is
equal to the precision specification. If the precision is missing, it is taken as 6;
if the precision is explicitly zero, no decimal-point character appears. If a dec-
imal point appears, at least one digit appears before it.

(SUSv2 does not know about F and says that character string representations
for infinity and NaN may be made available. SUSv3 adds a specification for
F. The C99 standard specifies "[-]inf" or "[-]infinity" for infinity, and a string
starting with "nan" for NaN, in the case of f conversion, and "[-]INF" or
"[-]INFINITY" or "NAN" in the case of F conversion.)

g, G The double argument is converted in style f or e (or F or E for G conversions).
The precision specifies the number of significant digits. If the precision is
missing, 6 digits are given; if the precision is zero, it is treated as 1. Style e is

Linux man-pages 6.13 2024-11-17 2091

printf (3) Library Functions Manual printf (3)

used if the exponent from its conversion is less than -4 or greater than or equal
to the precision. Trailing zeros are removed from the fractional part of the re-
sult; a decimal point appears only if it is followed by at least one digit.

a, A (C99; not in SUSv2, but added in SUSv3) For a conversion, the double argu-
ment is converted to hexadecimal notation (using the letters abcdef) in the
style [-]0xh.hhhhp±d; for A conversion the prefix 0X, the letters ABCDEF,
and the exponent separator P is used. There is one hexadecimal digit before
the radix point, and the number of digits after it is equal to the precision. The
default precision suffices for an exact representation of the value if an exact
representation in base 2 exists and otherwise is sufficiently large to distinguish
values of type double. The digit before the radix point is unspecified for non-
normalized numbers, and nonzero but otherwise unspecified for normalized
numbers. The exponent, d , is the appropriate exponent of 2 expressed as a
decimal integer; it always contains at least one digit; if the value is zero, the
exponent is 0.

c If no l modifier is present, the int argument is converted to an unsigned char,
and the resulting character is written. If an l modifier is present, the wint_t
(wide character) argument is converted to a multibyte sequence by a call to the
wcrtomb(3) function, with a conversion state starting in the initial state, and
the resulting multibyte string is written.

s If no l modifier is present: the const char * argument is expected to be a
pointer to an array of character type (pointer to a string). Characters from the
array are written up to (but not including) a terminating null byte ('\0'); if a
precision is specified, no more than the number specified are written. If a pre-
cision is given, no null byte need be present; if the precision is not specified, or
is greater than the size of the array, the array must contain a terminating null
byte.

If an l modifier is present: the const wchar_t * argument is expected to be a
pointer to an array of wide characters. Wide characters from the array are con-
verted to multibyte characters (each by a call to the wcrtomb(3) function, with
a conversion state starting in the initial state before the first wide character), up
to and including a terminating null wide character. The resulting multibyte
characters are written up to (but not including) the terminating null byte. If a
precision is specified, no more bytes than the number specified are written, but
no partial multibyte characters are written. Note that the precision determines
the number of bytes written, not the number of wide characters or screen posi-
tions. The array must contain a terminating null wide character, unless a pre-
cision is given and it is so small that the number of bytes written exceeds it be-
fore the end of the array is reached.

C (Not in C99 or C11, but in SUSv2, SUSv3, and SUSv4.) Synonym for lc.
Don’t use.

S (Not in C99 or C11, but in SUSv2, SUSv3, and SUSv4.) Synonym for ls.
Don’t use.

p The void * pointer argument is printed in hexadecimal (as if by %#x or
%#lx).

Linux man-pages 6.13 2024-11-17 2092

printf (3) Library Functions Manual printf (3)

n The number of characters written so far is stored into the integer pointed to by
the corresponding argument. That argument shall be an int *, or variant whose
size matches the (optionally) supplied integer length modifier. No argument is
converted. (This specifier is not supported by the bionic C library.) The be-
havior is undefined if the conversion specification includes any flags, a field
width, or a precision.

m (glibc extension; supported by uClibc and musl.) Print output of strerror(er-
rno) (or strerrorname_np(errno) in the alternate form). No argument is re-
quired.

% A '%' is written. No argument is converted. The complete conversion specifi-
cation is '%%'.

RETURN VALUE
Upon successful return, these functions return the number of bytes printed (excluding
the null byte used to end output to strings).

The functions snprintf() and vsnprintf() do not write more than size bytes (including
the terminating null byte ('\0')). If the output was truncated due to this limit, then the
return value is the number of characters (excluding the terminating null byte) which
would have been written to the final string if enough space had been available. Thus,
a return value of size or more means that the output was truncated. (See also below
under CAVEATS.)

If an output error is encountered, a negative value is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeprintf(), fprintf(), sprintf(), snprintf(),
vprintf(), vfprintf(), vsprintf(), vsnprintf()

STANDARDS
fprintf()
printf()
sprintf()
vprintf()
vfprintf()
vsprintf()
snprintf()
vsnprintf()

C11, POSIX.1-2008.

dprintf()
vdprintf()

GNU, POSIX.1-2008.

HISTORY
fprintf()
printf()
sprintf()

Linux man-pages 6.13 2024-11-17 2093

printf (3) Library Functions Manual printf (3)

vprintf()
vfprintf()
vsprintf()

C89, POSIX.1-2001.

snprintf()
vsnprintf()

SUSv2, C99, POSIX.1-2001.

Concerning the return value of snprintf(), SUSv2 and C99 contradict each
other: when snprintf() is called with size=0 then SUSv2 stipulates an unspeci-
fied return value less than 1, while C99 allows str to be NULL in this case,
and gives the return value (as always) as the number of characters that would
have been written in case the output string has been large enough.
POSIX.1-2001 and later align their specification of snprintf() with C99.

dprintf()
vdprintf()

GNU, POSIX.1-2008.

Issue 4 of the X/Open Portability Guide (SUSv1, 1994) adds '.

glibc 2.1 adds length modifiers hh, j, t, and z and conversion characters a and A.

glibc 2.2 adds the conversion character F with C99 semantics, and the flag character I.

glibc 2.35 gives a meaning to the alternate form (#) of the m conversion specifier, that
is %#m.

CAVEATS
Some programs imprudently rely on code such as the following

sprintf(buf, "%s some further text", buf);

to append text to buf . However, the standards explicitly note that the results are unde-
fined if source and destination buffers overlap when calling sprintf(), snprintf(),
vsprintf(), and vsnprintf(). Depending on the version of gcc(1) used, and the com-
piler options employed, calls such as the above will not produce the expected results.

The glibc implementation of the functions snprintf() and vsnprintf() conforms to the
C99 standard, that is, behaves as described above, since glibc 2.1. Until glibc 2.0.6,
they would return -1 when the output was truncated.

BUGS
Because sprintf() and vsprintf() assume an arbitrarily long string, callers must be
careful not to overflow the actual space; this is often impossible to assure. Note that
the length of the strings produced is locale-dependent and difficult to predict. Use
snprintf() and vsnprintf() instead (or asprintf(3) and vasprintf(3)).

Code such as printf(foo); often indicates a bug, since foo may contain a % character.
If foo comes from untrusted user input, it may contain %n, causing the printf() call
to write to memory and creating a security hole.

EXAMPLES
To print Pi to five decimal places:

#include <math.h>
#include <stdio.h>

Linux man-pages 6.13 2024-11-17 2094

printf (3) Library Functions Manual printf (3)

fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

To print a date and time in the form "Sunday, July 3, 10:02", where weekday and
month are pointers to strings:

#include <stdio.h>
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

Many countries use the day-month-year order. Hence, an internationalized version
must be able to print the arguments in an order specified by the format:

#include <stdio.h>
fprintf(stdout, format,

weekday, month, day, hour, min);

where format depends on locale, and may permute the arguments. With the value:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

one might obtain "Sonntag, 3. Juli, 10:02".

To allocate a sufficiently large string and print into it (code correct for both glibc 2.0
and glibc 2.1):

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

char *
make_message(const char *fmt, ...)
{

int n = 0;
size_t size = 0;
char *p = NULL;
va_list ap;

/* Determine required size. */

va_start(ap, fmt);
n = vsnprintf(p, size, fmt, ap);
va_end(ap);

if (n < 0)
return NULL;

size = (size_t) n + 1; /* One extra byte for '\0' */
p = malloc(size);
if (p == NULL)

return NULL;

va_start(ap, fmt);
n = vsnprintf(p, size, fmt, ap);
va_end(ap);

Linux man-pages 6.13 2024-11-17 2095

printf (3) Library Functions Manual printf (3)

if (n < 0) {
free(p);
return NULL;

}

return p;
}

If truncation occurs in glibc versions prior to glibc 2.0.6, this is treated as an error in-
stead of being handled gracefully.

SEE ALSO
printf (1), asprintf(3), puts(3), scanf(3), setlocale(3), strfromd(3), wcrtomb(3),
wprintf(3), locale(5)

Linux man-pages 6.13 2024-11-17 2096

profil(3) Library Functions Manual profil(3)

NAME
profil - execution time profile

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int profil(unsigned short *buf , size_t bufsiz,
size_t offset, unsigned int scale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

profil():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
This routine provides a means to find out in what areas your program spends most of
its time. The argument buf points to bufsiz bytes of core. Every virtual 10 millisec-
onds, the user’s program counter (PC) is examined: offset is subtracted and the result
is multiplied by scale and divided by 65536. If the resulting value is less than bufsiz,
then the corresponding entry in buf is incremented. If buf is NULL, profiling is dis-
abled.

RETURN VALUE
Zero is always returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafeprofil()

STANDARDS
None.

HISTORY
Similar to a call in SVr4.

BUGS
profil() cannot be used on a program that also uses ITIMER_PROF interval timers
(see setitimer(2)).

True kernel profiling provides more accurate results.

SEE ALSO
gprof (1), sprof(1), setitimer(2), sigaction(2), signal(2)

Linux man-pages 6.13 2024-07-23 2097

program_invocation_name(3) Library Functions Manual program_invocation_name(3)

NAME
program_invocation_name, program_invocation_short_name - obtain name used to
invoke calling program

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <errno.h>

extern char *program_invocation_name;
extern char *program_invocation_short_name;

DESCRIPTION
program_invocation_name contains the name that was used to invoke the calling pro-
gram. This is the same as the value of argv[0] in main(), with the difference that the
scope of program_invocation_name is global.

program_invocation_short_name contains the basename component of name that was
used to invoke the calling program. That is, it is the same value as program_invoca-
tion_name, with all text up to and including the final slash (/), if any, removed.

These variables are automatically initialized by the glibc run-time startup code.

VERSIONS
The Linux-specific /proc/ pid /cmdline file provides access to similar information.

STANDARDS
GNU.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-07-23 2098

psignal(3) Library Functions Manual psignal(3)

NAME
psignal, psiginfo - print signal description

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

void psignal(int sig, const char *s);
void psiginfo(const siginfo_t *pinfo, const char *s);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

psignal():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

psiginfo():
_POSIX_C_SOURCE >= 200809L

DESCRIPTION
The psignal() function displays a message on stderr consisting of the string s, a colon,
a space, a string describing the signal number sig, and a trailing newline. If the string
s is NULL or empty, the colon and space are omitted. If sig is invalid, the message
displayed will indicate an unknown signal.

The psiginfo() function is like psignal(), except that it displays information about the
signal described by pinfo, which should point to a valid siginfo_t structure. As well
as the signal description, psiginfo() displays information about the origin of the sig-
nal, and other information relevant to the signal (e.g., the relevant memory address for
hardware-generated signals, the child process ID for SIGCHLD, and the user ID and
process ID of the sender, for signals set using kill(2) or sigqueue(3)).

RETURN VALUE
The psignal() and psiginfo() functions return no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localepsignal(), psiginfo()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.10. POSIX.1-2008, 4.3BSD.

BUGS
Up to glibc 2.12, psiginfo() had the following bugs:

• In some circumstances, a trailing newline is not printed.

Linux man-pages 6.13 2024-07-23 2099

psignal(3) Library Functions Manual psignal(3)

• Additional details are not displayed for real-time signals.

SEE ALSO
sigaction(2), perror(3), strsignal(3), signal(7)

Linux man-pages 6.13 2024-07-23 2100

pthread_atfork(3) Library Functions Manual pthread_atfork(3)

NAME
pthread_atfork - register fork handlers

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_atfork(typeof(void (void)) *prepare,
typeof(void (void)) *parent,
typeof(void (void)) *child);

DESCRIPTION
The pthread_atfork() function registers fork handlers that are to be executed when
fork(2) is called by any thread in a process. The handlers are executed in the context
of the thread that calls fork(2).

Three kinds of handler can be registered:

• prepare specifies a handler that is executed in the parent process before fork(2)
processing starts.

• parent specifies a handler that is executed in the parent process after fork(2) pro-
cessing completes.

• child specifies a handler that is executed in the child process after fork(2) process-
ing completes.

Any of the three arguments may be NULL if no handler is needed in the correspond-
ing phase of fork(2) processing.

RETURN VALUE
On success, pthread_atfork() returns zero. On error, it returns an error number.
pthread_atfork() may be called multiple times by a process to register additional
handlers. The handlers for each phase are called in a specified order: the prepare
handlers are called in reverse order of registration; the parent and child handlers are
called in the order of registration.

ERRORS
ENOMEM

Could not allocate memory to record the fork handler list entry.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
When fork(2) is called in a multithreaded process, only the calling thread is duplicated
in the child process. The original intention of pthread_atfork() was to allow the
child process to be returned to a consistent state. For example, at the time of the call
to fork(2), other threads may have locked mutexes that are visible in the user-space
memory duplicated in the child. Such mutexes would never be unlocked, since the
threads that placed the locks are not duplicated in the child. The intent of
pthread_atfork() was to provide a mechanism whereby the application (or a library)

Linux man-pages 6.13 2024-12-13 2101

pthread_atfork(3) Library Functions Manual pthread_atfork(3)

could ensure that mutexes and other process and thread state would be restored to a
consistent state. In practice, this task is generally too difficult to be practicable.

After a fork(2) in a multithreaded process returns in the child, the child should call
only async-signal-safe functions (see signal-safety(7)) until such time as it calls ex-
ecve(2) to execute a new program.

POSIX.1 specifies that pthread_atfork() shall not fail with the error EINTR.

SEE ALSO
fork(2), atexit(3), pthreads(7)

Linux man-pages 6.13 2024-12-13 2102

pthread_attr_init(3) Library Functions Manual pthread_attr_init(3)

NAME
pthread_attr_init, pthread_attr_destroy - initialize and destroy thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);

DESCRIPTION
The pthread_attr_init() function initializes the thread attributes object pointed to by
attr with default attribute values. After this call, individual attributes of the object can
be set using various related functions (listed under SEE ALSO), and then the object
can be used in one or more pthread_create(3) calls that create threads.

Calling pthread_attr_init() on a thread attributes object that has already been initial-
ized results in undefined behavior.

When a thread attributes object is no longer required, it should be destroyed using the
pthread_attr_destroy() function. Destroying a thread attributes object has no effect
on threads that were created using that object.

Once a thread attributes object has been destroyed, it can be reinitialized using
pthread_attr_init(). Any other use of a destroyed thread attributes object has unde-
fined results.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
POSIX.1 documents an ENOMEM error for pthread_attr_init(); on Linux these
functions always succeed (but portable and future-proof applications should neverthe-
less handle a possible error return).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_init(), pthread_attr_destroy()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The pthread_attr_t type should be treated as opaque: any access to the object other
than via pthreads functions is nonportable and produces undefined results.

EXAMPLES
The program below optionally makes use of pthread_attr_init() and various related
functions to initialize a thread attributes object that is used to create a single thread.
Once created, the thread uses the pthread_getattr_np(3) function (a nonstandard GNU
extension) to retrieve the thread’s attributes, and then displays those attributes.

Linux man-pages 6.13 2024-07-23 2103

pthread_attr_init(3) Library Functions Manual pthread_attr_init(3)

If the program is run with no command-line argument, then it passes NULL as the
attr argument of pthread_create(3), so that the thread is created with default attrib-
utes. Running the program on Linux/x86-32 with the NPTL threading implementa-
tion, we see the following:

$ ulimit -s # No stack limit ==> default stack size is 2 MB
unlimited
$./a.out
Thread attributes:

Detach state = PTHREAD_CREATE_JOINABLE
Scope = PTHREAD_SCOPE_SYSTEM
Inherit scheduler = PTHREAD_INHERIT_SCHED
Scheduling policy = SCHED_OTHER
Scheduling priority = 0
Guard size = 4096 bytes
Stack address = 0x40196000
Stack size = 0x201000 bytes

When we supply a stack size as a command-line argument, the program initializes a
thread attributes object, sets various attributes in that object, and passes a pointer to
the object in the call to pthread_create(3). Running the program on Linux/x86-32
with the NPTL threading implementation, we see the following:

$./a.out 0x3000000
posix_memalign() allocated at 0x40197000
Thread attributes:

Detach state = PTHREAD_CREATE_DETACHED
Scope = PTHREAD_SCOPE_SYSTEM
Inherit scheduler = PTHREAD_EXPLICIT_SCHED
Scheduling policy = SCHED_OTHER
Scheduling priority = 0
Guard size = 0 bytes
Stack address = 0x40197000
Stack size = 0x3000000 bytes

Program source

#define _GNU_SOURCE /* To get pthread_getattr_np() declaration */
#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void
display_pthread_attr(pthread_attr_t *attr, char *prefix)
{

int s, i;
size_t v;
void *stkaddr;

Linux man-pages 6.13 2024-07-23 2104

pthread_attr_init(3) Library Functions Manual pthread_attr_init(3)

struct sched_param sp;

s = pthread_attr_getdetachstate(attr, &i);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getdetachstate");
printf("%sDetach state = %s\n", prefix,

(i == PTHREAD_CREATE_DETACHED) ? "PTHREAD_CREATE_DETACHED" :
(i == PTHREAD_CREATE_JOINABLE) ? "PTHREAD_CREATE_JOINABLE" :
"???");

s = pthread_attr_getscope(attr, &i);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getscope");
printf("%sScope = %s\n", prefix,

(i == PTHREAD_SCOPE_SYSTEM) ? "PTHREAD_SCOPE_SYSTEM" :
(i == PTHREAD_SCOPE_PROCESS) ? "PTHREAD_SCOPE_PROCESS" :
"???");

s = pthread_attr_getinheritsched(attr, &i);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getinheritsched");
printf("%sInherit scheduler = %s\n", prefix,

(i == PTHREAD_INHERIT_SCHED) ? "PTHREAD_INHERIT_SCHED" :
(i == PTHREAD_EXPLICIT_SCHED) ? "PTHREAD_EXPLICIT_SCHED" :
"???");

s = pthread_attr_getschedpolicy(attr, &i);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getschedpolicy");
printf("%sScheduling policy = %s\n", prefix,

(i == SCHED_OTHER) ? "SCHED_OTHER" :
(i == SCHED_FIFO) ? "SCHED_FIFO" :
(i == SCHED_RR) ? "SCHED_RR" :
"???");

s = pthread_attr_getschedparam(attr, &sp);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getschedparam");
printf("%sScheduling priority = %d\n", prefix, sp.sched_priority);

s = pthread_attr_getguardsize(attr, &v);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getguardsize");
printf("%sGuard size = %zu bytes\n", prefix, v);

s = pthread_attr_getstack(attr, &stkaddr, &v);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getstack");
printf("%sStack address = %p\n", prefix, stkaddr);

Linux man-pages 6.13 2024-07-23 2105

pthread_attr_init(3) Library Functions Manual pthread_attr_init(3)

printf("%sStack size = %#zx bytes\n", prefix, v);
}

static void *
thread_start(void *arg)
{

int s;
pthread_attr_t gattr;

/* pthread_getattr_np() is a non-standard GNU extension that
retrieves the attributes of the thread specified in its
first argument. */

s = pthread_getattr_np(pthread_self(), &gattr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getattr_np");

printf("Thread attributes:\n");
display_pthread_attr(&gattr, "\t");

exit(EXIT_SUCCESS); /* Terminate all threads */
}

int
main(int argc, char *argv[])
{

pthread_t thr;
pthread_attr_t attr;
pthread_attr_t *attrp; /* NULL or &attr */
int s;

attrp = NULL;

/* If a command-line argument was supplied, use it to set the
stack-size attribute and set a few other thread attributes,
and set attrp pointing to thread attributes object. */

if (argc > 1) {
size_t stack_size;
void *sp;

attrp = &attr;

s = pthread_attr_init(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_init");

s = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
if (s != 0)

Linux man-pages 6.13 2024-07-23 2106

pthread_attr_init(3) Library Functions Manual pthread_attr_init(3)

errc(EXIT_FAILURE, s, "pthread_attr_setdetachstate");

s = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setinheritsched");

stack_size = strtoul(argv[1], NULL, 0);

s = posix_memalign(&sp, sysconf(_SC_PAGESIZE), stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "posix_memalign");

printf("posix_memalign() allocated at %p\n", sp);

s = pthread_attr_setstack(&attr, sp, stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setstack");
}

s = pthread_create(&thr, attrp, &thread_start, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_create");

if (attrp != NULL) {
s = pthread_attr_destroy(attrp);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_destroy");
}

pause(); /* Terminates when other thread calls exit() */
}

SEE ALSO
pthread_attr_setaffinity_np(3), pthread_attr_setdetachstate(3),
pthread_attr_setguardsize(3), pthread_attr_setinheritsched(3),
pthread_attr_setschedparam(3), pthread_attr_setschedpolicy(3),
pthread_attr_setscope(3), pthread_attr_setsigmask_np(3), pthread_attr_setstack(3),
pthread_attr_setstackaddr(3), pthread_attr_setstacksize(3), pthread_create(3),
pthread_getattr_np(3), pthread_setattr_default_np(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2107

pthread_attr_setaffinity_np(3) Library Functions Manual pthread_attr_setaffinity_np(3)

NAME
pthread_attr_setaffinity_np, pthread_attr_getaffinity_np - set/get CPU affinity at-
tribute in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_attr_setaffinity_np(pthread_attr_t *attr,
size_t cpusetsize, const cpu_set_t *cpuset);

int pthread_attr_getaffinity_np(const pthread_attr_t *attr,
size_t cpusetsize, cpu_set_t *cpuset);

DESCRIPTION
The pthread_attr_setaffinity_np() function sets the CPU affinity mask attribute of
the thread attributes object referred to by attr to the value specified in cpuset. This at-
tribute determines the CPU affinity mask of a thread created using the thread attrib-
utes object attr.

The pthread_attr_getaffinity_np() function returns the CPU affinity mask attribute
of the thread attributes object referred to by attr in the buffer pointed to by cpuset.

The argument cpusetsize is the length (in bytes) of the buffer pointed to by cpuset.
Typically, this argument would be specified as sizeof(cpu_set_t).

For more details on CPU affinity masks, see sched_setaffinity(2). For a description of
a set of macros that can be used to manipulate and inspect CPU sets, see
CPU_SET(3).

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
EINVAL

(pthread_attr_setaffinity_np()) cpuset specified a CPU that was outside the
set supported by the kernel. (The kernel configuration option CON-
FIG_NR_CPUS defines the range of the set supported by the kernel data type
used to represent CPU sets.)

EINVAL
(pthread_attr_getaffinity_np()) A CPU in the affinity mask of the thread at-
tributes object referred to by attr lies outside the range specified by cpusetsize
(i.e., cpuset/cpusetsize is too small).

ENOMEM
(pthread_attr_setaffinity_np()) Could not allocate memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setaffinity_np(),
pthread_attr_getaffinity_np()

Linux man-pages 6.13 2024-07-23 2108

pthread_attr_setaffinity_np(3) Library Functions Manual pthread_attr_setaffinity_np(3)

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

HISTORY
glibc 2.3.4.

NOTES
In glibc 2.3.3 only, versions of these functions were provided that did not have a
cpusetsize argument. Instead the CPU set size given to the underlying system calls
was always sizeof(cpu_set_t).

SEE ALSO
sched_setaffinity(2), pthread_attr_init(3), pthread_setaffinity_np(3), cpuset(7),
pthreads(7)

Linux man-pages 6.13 2024-07-23 2109

pthread_attr_setdetachstate(3) Library Functions Manual pthread_attr_setdetachstate(3)

NAME
pthread_attr_setdetachstate, pthread_attr_getdetachstate - set/get detach state attribute
in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t *attr,

int *detachstate);

DESCRIPTION
The pthread_attr_setdetachstate() function sets the detach state attribute of the
thread attributes object referred to by attr to the value specified in detachstate. The
detach state attribute determines whether a thread created using the thread attributes
object attr will be created in a joinable or a detached state.

The following values may be specified in detachstate:

PTHREAD_CREATE_DETACHED
Threads that are created using attr will be created in a detached state.

PTHREAD_CREATE_JOINABLE
Threads that are created using attr will be created in a joinable state.

The default setting of the detach state attribute in a newly initialized thread attributes
object is PTHREAD_CREATE_JOINABLE.

The pthread_attr_getdetachstate() returns the detach state attribute of the thread at-
tributes object attr in the buffer pointed to by detachstate.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setdetachstate() can fail with the following error:

EINVAL
An invalid value was specified in detachstate.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setdetachstate(),
pthread_attr_getdetachstate()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
See pthread_create(3) for more details on detached and joinable threads.

A thread that is created in a joinable state should eventually either be joined using

Linux man-pages 6.13 2024-07-23 2110

pthread_attr_setdetachstate(3) Library Functions Manual pthread_attr_setdetachstate(3)

pthread_join(3) or detached using pthread_detach(3); see pthread_create(3).

It is an error to specify the thread ID of a thread that was created in a detached state in
a later call to pthread_detach(3) or pthread_join(3).

EXAMPLES
See pthread_attr_init(3).

SEE ALSO
pthread_attr_init(3), pthread_create(3), pthread_detach(3), pthread_join(3),
pthreads(7)

Linux man-pages 6.13 2024-07-23 2111

pthread_attr_setguardsize(3) Library Functions Manual pthread_attr_setguardsize(3)

NAME
pthread_attr_setguardsize, pthread_attr_getguardsize - set/get guard size attribute in
thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);
int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,

size_t *restrict guardsize);

DESCRIPTION
The pthread_attr_setguardsize() function sets the guard size attribute of the thread
attributes object referred to by attr to the value specified in guardsize.

If guardsize is greater than 0, then for each new thread created using attr the system
allocates an additional region of at least guardsize bytes at the end of the thread’s
stack to act as the guard area for the stack (but see BUGS).

If guardsize is 0, then new threads created with attr will not have a guard area.

The default guard size is the same as the system page size.

If the stack address attribute has been set in attr (using pthread_attr_setstack(3) or
pthread_attr_setstackaddr(3)), meaning that the caller is allocating the thread’s stack,
then the guard size attribute is ignored (i.e., no guard area is created by the system): it
is the application’s responsibility to handle stack overflow (perhaps by using mpro-
tect(2) to manually define a guard area at the end of the stack that it has allocated).

The pthread_attr_getguardsize() function returns the guard size attribute of the
thread attributes object referred to by attr in the buffer pointed to by guardsize.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
POSIX.1 documents an EINVAL error if attr or guardsize is invalid. On Linux these
functions always succeed (but portable and future-proof applications should neverthe-
less handle a possible error return).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setguardsize(),
pthread_attr_getguardsize()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

Linux man-pages 6.13 2024-07-23 2112

pthread_attr_setguardsize(3) Library Functions Manual pthread_attr_setguardsize(3)

NOTES
A guard area consists of virtual memory pages that are protected to prevent read and
write access. If a thread overflows its stack into the guard area, then, on most hard ar-
chitectures, it receives a SIGSEGV signal, thus notifying it of the overflow. Guard
areas start on page boundaries, and the guard size is internally rounded up to the sys-
tem page size when creating a thread. (Nevertheless, pthread_attr_getguardsize()
returns the guard size that was set by pthread_attr_setguardsize().)

Setting a guard size of 0 may be useful to save memory in an application that creates
many threads and knows that stack overflow can never occur.

Choosing a guard size larger than the default size may be necessary for detecting
stack overflows if a thread allocates large data structures on the stack.

BUGS
As at glibc 2.8, the NPTL threading implementation includes the guard area within
the stack size allocation, rather than allocating extra space at the end of the stack, as
POSIX.1 requires. (This can result in an EINVAL error from pthread_create(3) if the
guard size value is too large, leaving no space for the actual stack.)

The obsolete LinuxThreads implementation did the right thing, allocating extra space
at the end of the stack for the guard area.

EXAMPLES
See pthread_getattr_np(3).

SEE ALSO
mmap(2), mprotect(2), pthread_attr_init(3), pthread_attr_setstack(3),
pthread_attr_setstacksize(3), pthread_create(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2113

pthread_attr_setinheritsched(3) Library Functions Manual pthread_attr_setinheritsched(3)

NAME
pthread_attr_setinheritsched, pthread_attr_getinheritsched - set/get inherit-scheduler
attribute in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);

int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,
int *restrict inheritsched);

DESCRIPTION
The pthread_attr_setinheritsched() function sets the inherit-scheduler attribute of
the thread attributes object referred to by attr to the value specified in inheritsched .
The inherit-scheduler attribute determines whether a thread created using the thread
attributes object attr will inherit its scheduling attributes from the calling thread or
whether it will take them from attr.

The following scheduling attributes are affected by the inherit-scheduler attribute:
scheduling policy (pthread_attr_setschedpolicy(3)), scheduling priority
(pthread_attr_setschedparam(3)), and contention scope
(pthread_attr_setscope(3)).

The following values may be specified in inheritsched:

PTHREAD_INHERIT_SCHED
Threads that are created using attr inherit scheduling attributes from the creat-
ing thread; the scheduling attributes in attr are ignored.

PTHREAD_EXPLICIT_SCHED
Threads that are created using attr take their scheduling attributes from the
values specified by the attributes object.

The default setting of the inherit-scheduler attribute in a newly initialized thread at-
tributes object is PTHREAD_INHERIT_SCHED.

The pthread_attr_getinheritsched() returns the inherit-scheduler attribute of the
thread attributes object attr in the buffer pointed to by inheritsched .

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setinheritsched() can fail with the following error:

EINVAL
Invalid value in inheritsched .

POSIX.1 also documents an optional ENOTSUP error ("attempt was made to set the
attribute to an unsupported value") for pthread_attr_setinheritsched().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 2114

pthread_attr_setinheritsched(3) Library Functions Manual pthread_attr_setinheritsched(3)

Interface Attribute Value
Thread safety MT-Safepthread_attr_setinheritsched(),

pthread_attr_getinheritsched()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0. POSIX.1-2001.

BUGS
As at glibc 2.8, if a thread attributes object is initialized using pthread_attr_init(3),
then the scheduling policy of the attributes object is set to SCHED_OTHER and the
scheduling priority is set to 0. However, if the inherit-scheduler attribute is then set to
PTHREAD_EXPLICIT_SCHED, then a thread created using the attribute object
wrongly inherits its scheduling attributes from the creating thread. This bug does not
occur if either the scheduling policy or scheduling priority attribute is explicitly set in
the thread attributes object before calling pthread_create(3).

EXAMPLES
See pthread_setschedparam(3).

SEE ALSO
pthread_attr_init(3), pthread_attr_setschedparam(3), pthread_attr_setschedpolicy(3),
pthread_attr_setscope(3), pthread_create(3), pthread_setschedparam(3),
pthread_setschedprio(3), pthreads(7), sched(7)

Linux man-pages 6.13 2024-07-23 2115

pthread_attr_setschedparam(3) Library Functions Manual pthread_attr_setschedparam(3)

NAME
pthread_attr_setschedparam, pthread_attr_getschedparam - set/get scheduling para-
meter attributes in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

int pthread_attr_getschedparam(const pthread_attr_t *restrict attr,
struct sched_param *restrict param);

DESCRIPTION
The pthread_attr_setschedparam() function sets the scheduling parameter attributes
of the thread attributes object referred to by attr to the values specified in the buffer
pointed to by param. These attributes determine the scheduling parameters of a
thread created using the thread attributes object attr.

The pthread_attr_getschedparam() returns the scheduling parameter attributes of
the thread attributes object attr in the buffer pointed to by param.

Scheduling parameters are maintained in the following structure:

struct sched_param {
int sched_priority; /* Scheduling priority */

};

As can be seen, only one scheduling parameter is supported. For details of the per-
mitted ranges for scheduling priorities in each scheduling policy, see sched(7).

In order for the parameter setting made by pthread_attr_setschedparam() to have
effect when calling pthread_create(3), the caller must use pthread_attr_setinher-
itsched(3) to set the inherit-scheduler attribute of the attributes object attr to
PTHREAD_EXPLICIT_SCHED.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setschedparam() can fail with the following error:

EINVAL
The priority specified in param does not make sense for the current schedul-
ing policy of attr.

POSIX.1 also documents an ENOTSUP error for pthread_attr_setschedparam().
This value is never returned on Linux (but portable and future-proof applications
should nevertheless handle this error return value).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 2116

pthread_attr_setschedparam(3) Library Functions Manual pthread_attr_setschedparam(3)

Interface Attribute Value
Thread safety MT-Safepthread_attr_setschedparam(),

pthread_attr_getschedparam()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. glibc 2.0.

NOTES
See pthread_attr_setschedpolicy(3) for a list of the thread scheduling policies sup-
ported on Linux.

EXAMPLES
See pthread_setschedparam(3).

SEE ALSO
sched_get_priority_min(2), pthread_attr_init(3), pthread_attr_setinheritsched(3),
pthread_attr_setschedpolicy(3), pthread_create(3), pthread_setschedparam(3),
pthread_setschedprio(3), pthreads(7), sched(7)

Linux man-pages 6.13 2024-07-23 2117

pthread_attr_setschedpolicy(3) Library Functions Manual pthread_attr_setschedpolicy(3)

NAME
pthread_attr_setschedpolicy, pthread_attr_getschedpolicy - set/get scheduling policy
attribute in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,

int *restrict policy);

DESCRIPTION
The pthread_attr_setschedpolicy() function sets the scheduling policy attribute of
the thread attributes object referred to by attr to the value specified in policy. This at-
tribute determines the scheduling policy of a thread created using the thread attributes
object attr.

The supported values for policy are SCHED_FIFO, SCHED_RR, and
SCHED_OTHER, with the semantics described in sched(7).

The pthread_attr_getschedpolicy() returns the scheduling policy attribute of the
thread attributes object attr in the buffer pointed to by policy.

In order for the policy setting made by pthread_attr_setschedpolicy() to have effect
when calling pthread_create(3), the caller must use pthread_attr_setinheritsched(3) to
set the inherit-scheduler attribute of the attributes object attr to PTHREAD_EX-
PLICIT_SCHED.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setschedpolicy() can fail with the following error:

EINVAL
Invalid value in policy.

POSIX.1 also documents an optional ENOTSUP error ("attempt was made to set the
attribute to an unsupported value") for pthread_attr_setschedpolicy().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setschedpolicy(),
pthread_attr_getschedpolicy()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0. POSIX.1-2001.

Linux man-pages 6.13 2024-07-23 2118

pthread_attr_setschedpolicy(3) Library Functions Manual pthread_attr_setschedpolicy(3)

EXAMPLES
See pthread_setschedparam(3).

SEE ALSO
pthread_attr_init(3), pthread_attr_setinheritsched(3),
pthread_attr_setschedparam(3), pthread_create(3), pthread_setschedparam(3),
pthread_setschedprio(3), pthreads(7), sched(7)

Linux man-pages 6.13 2024-07-23 2119

pthread_attr_setscope(3) Library Functions Manual pthread_attr_setscope(3)

NAME
pthread_attr_setscope, pthread_attr_getscope - set/get contention scope attribute in
thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int scope);
int pthread_attr_getscope(const pthread_attr_t *restrict attr,

int *restrict scope);

DESCRIPTION
The pthread_attr_setscope() function sets the contention scope attribute of the
thread attributes object referred to by attr to the value specified in scope. The con-
tention scope attribute defines the set of threads against which a thread competes for
resources such as the CPU. POSIX.1 specifies two possible values for scope:

PTHREAD_SCOPE_SYSTEM
The thread competes for resources with all other threads in all processes on the
system that are in the same scheduling allocation domain (a group of one or
more processors). PTHREAD_SCOPE_SYSTEM threads are scheduled rel-
ative to one another according to their scheduling policy and priority.

PTHREAD_SCOPE_PROCESS
The thread competes for resources with all other threads in the same process
that were also created with the PTHREAD_SCOPE_PROCESS contention
scope. PTHREAD_SCOPE_PROCESS threads are scheduled relative to
other threads in the process according to their scheduling policy and priority.
POSIX.1 leaves it unspecified how these threads contend with other threads in
other process on the system or with other threads in the same process that were
created with the PTHREAD_SCOPE_SYSTEM contention scope.

POSIX.1 requires that an implementation support at least one of these contention
scopes. Linux supports PTHREAD_SCOPE_SYSTEM, but not
PTHREAD_SCOPE_PROCESS.

On systems that support multiple contention scopes, then, in order for the parameter
setting made by pthread_attr_setscope() to have effect when calling pthread_cre-
ate(3), the caller must use pthread_attr_setinheritsched(3) to set the inherit-scheduler
attribute of the attributes object attr to PTHREAD_EXPLICIT_SCHED.

The pthread_attr_getscope() function returns the contention scope attribute of the
thread attributes object referred to by attr in the buffer pointed to by scope.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setscope() can fail with the following errors:

EINVAL
An invalid value was specified in scope.

Linux man-pages 6.13 2024-07-23 2120

pthread_attr_setscope(3) Library Functions Manual pthread_attr_setscope(3)

ENOTSUP
scope specified the value PTHREAD_SCOPE_PROCESS, which is not sup-
ported on Linux.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setscope(), pthread_attr_getscope()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The PTHREAD_SCOPE_SYSTEM contention scope typically indicates that a user-
space thread is bound directly to a single kernel-scheduling entity. This is the case on
Linux for the obsolete LinuxThreads implementation and the modern NPTL imple-
mentation, which are both 1:1 threading implementations.

POSIX.1 specifies that the default contention scope is implementation-defined.

SEE ALSO
pthread_attr_init(3), pthread_attr_setaffinity_np(3), pthread_attr_setinheritsched(3),
pthread_attr_setschedparam(3), pthread_attr_setschedpolicy(3), pthread_create(3),
pthreads(7)

Linux man-pages 6.13 2024-07-23 2121

pthread_attr_setsigmask_np(3) Library Functions Manual pthread_attr_setsigmask_np(3)

NAME
pthread_attr_setsigmask_np, pthread_attr_getsigmask_np - set/get signal mask at-
tribute in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_attr_setsigmask_np(pthread_attr_t *attr,
const sigset_t *sigmask);

int pthread_attr_getsigmask_np(const pthread_attr_t *attr,
sigset_t *sigmask);

DESCRIPTION
The pthread_attr_setsigmask_np() function sets the signal mask attribute of the
thread attributes object referred to by attr to the value specified in *sigmask. If sig-
mask is specified as NULL, then any existing signal mask attribute in attr is unset.

The pthread_attr_getsigmask_np() function returns the signal mask attribute of the
thread attributes object referred to by attr in the buffer pointed to by sigmask. If the
signal mask attribute is currently unset, then this function returns the special value
PTHREAD_ATTR_NO_SIGMASK_NP as its result.

RETURN VALUE
The pthread_attr_setsigmask_np() function returns 0 on success, or a nonzero error
number on failure.

the pthread_attr_getsigmask_np() function returns either 0 or
PTHREAD_ATTR_NO_SIGMASK_NP. When 0 is returned, the signal mask at-
tribute is returned via sigmask. A return value of PTHREAD_ATTR_NO_SIG-
MASK_NP indicates that the signal mask attribute is not set in attr.

On error, these functions return a positive error number.

ERRORS
ENOMEM

(pthread_attr_setsigmask_np()) Could not allocate memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setsigmask_np(),
pthread_attr_getsigmask_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

HISTORY
glibc 2.32.

NOTES
The signal mask attribute determines the signal mask that will be assigned to a thread
created using the thread attributes object attr. If this attribute is not set, then a thread

Linux man-pages 6.13 2024-07-23 2122

pthread_attr_setsigmask_np(3) Library Functions Manual pthread_attr_setsigmask_np(3)

created using attr will inherit a copy of the creating thread’s signal mask.

For more details on signal masks, see sigprocmask(2). For a description of a set of
macros that can be used to manipulate and inspect signal sets, see sigsetops(3).

In the absence of pthread_attr_setsigmask_np() it is possible to create a thread with
a desired signal mask as follows:

• The creating thread uses pthread_sigmask(3) to save its current signal mask and
set its mask to block all signals.

• The new thread is then created using pthread_create(); the new thread will inherit
the creating thread’s signal mask.

• The new thread sets its signal mask to the desired value using pthread_sigmask(3).

• The creating thread restores its signal mask to the original value.

Following the above steps, there is no possibility for the new thread to receive a signal
before it has adjusted its signal mask to the desired value.

SEE ALSO
sigprocmask(2), pthread_attr_init(3), pthread_sigmask(3), pthreads(7), signal(7)

Linux man-pages 6.13 2024-07-23 2123

pthread_attr_setstack(3) Library Functions Manual pthread_attr_setstack(3)

NAME
pthread_attr_setstack, pthread_attr_getstack - set/get stack attributes in thread attrib-
utes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setstack(pthread_attr_t *attr,
void stackaddr[.stacksize],
size_t stacksize);

int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr,
size_t *restrict stacksize);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_attr_getstack(), pthread_attr_setstack():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The pthread_attr_setstack() function sets the stack address and stack size attributes
of the thread attributes object referred to by attr to the values specified in stackaddr
and stacksize, respectively. These attributes specify the location and size of the stack
that should be used by a thread that is created using the thread attributes object attr.

stackaddr should point to the lowest addressable byte of a buffer of stacksize bytes
that was allocated by the caller. The pages of the allocated buffer should be both
readable and writable.

The pthread_attr_getstack() function returns the stack address and stack size attrib-
utes of the thread attributes object referred to by attr in the buffers pointed to by
stackaddr and stacksize, respectively.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setstack() can fail with the following error:

EINVAL
stacksize is less than PTHREAD_STACK_MIN (16384) bytes. On some
systems, this error may also occur if stackaddr or stackaddr + stacksize is not
suitably aligned.

POSIX.1 also documents an EACCES error if the stack area described by stackaddr
and stacksize is not both readable and writable by the caller.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setstack(), pthread_attr_getstack()

Linux man-pages 6.13 2024-07-23 2124

pthread_attr_setstack(3) Library Functions Manual pthread_attr_setstack(3)

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

NOTES
These functions are provided for applications that must ensure that a thread’s stack is
placed in a particular location. For most applications, this is not necessary, and the
use of these functions should be avoided. (Use pthread_attr_setstacksize(3) if an ap-
plication simply requires a stack size other than the default.)

When an application employs pthread_attr_setstack(), it takes over the responsibil-
ity of allocating the stack. Any guard size value that was set using pthread_attr_set-
guardsize(3) is ignored. If deemed necessary, it is the application’s responsibility to
allocate a guard area (one or more pages protected against reading and writing) to
handle the possibility of stack overflow.

The address specified in stackaddr should be suitably aligned: for full portability,
align it on a page boundary (sysconf(_SC_PAGESIZE)). posix_memalign(3) may be
useful for allocation. Probably, stacksize should also be a multiple of the system page
size.

If attr is used to create multiple threads, then the caller must change the stack address
attribute between calls to pthread_create(3); otherwise, the threads will attempt to use
the same memory area for their stacks, and chaos will ensue.

EXAMPLES
See pthread_attr_init(3).

SEE ALSO
mmap(2), mprotect(2), posix_memalign(3), pthread_attr_init(3),
pthread_attr_setguardsize(3), pthread_attr_setstackaddr(3),
pthread_attr_setstacksize(3), pthread_create(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2125

pthread_attr_setstackaddr(3) Library Functions Manual pthread_attr_setstackaddr(3)

NAME
pthread_attr_setstackaddr, pthread_attr_getstackaddr - set/get stack address attribute
in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

[[deprecated]]
int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr);
[[deprecated]]
int pthread_attr_getstackaddr(const pthread_attr_t *restrict attr,

void **restrict stackaddr);

DESCRIPTION
These functions are obsolete: do not use them. Use pthread_attr_setstack(3) and
pthread_attr_getstack(3) instead.

The pthread_attr_setstackaddr() function sets the stack address attribute of the
thread attributes object referred to by attr to the value specified in stackaddr. This at-
tribute specifies the location of the stack that should be used by a thread that is created
using the thread attributes object attr.

stackaddr should point to a buffer of at least PTHREAD_STACK_MIN bytes that
was allocated by the caller. The pages of the allocated buffer should be both readable
and writable.

The pthread_attr_getstackaddr() function returns the stack address attribute of the
thread attributes object referred to by attr in the buffer pointed to by stackaddr.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
No errors are defined (but applications should nevertheless handle a possible error re-
turn).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setstackaddr(),
pthread_attr_getstackaddr()

STANDARDS
None.

HISTORY
glibc 2.1. Marked obsolete in POSIX.1-2001. Removed in POSIX.1-2008.

NOTES
Do not use these functions! They cannot be portably used, since they provide no way
of specifying the direction of growth or the range of the stack. For example, on archi-
tectures with a stack that grows downward, stackaddr specifies the next address past
the highest address of the allocated stack area. However, on architectures with a stack

Linux man-pages 6.13 2024-07-23 2126

pthread_attr_setstackaddr(3) Library Functions Manual pthread_attr_setstackaddr(3)

that grows upward, stackaddr specifies the lowest address in the allocated stack area.
By contrast, the stackaddr used by pthread_attr_setstack(3) and pthread_attr_get-
stack(3), is always a pointer to the lowest address in the allocated stack area (and the
stacksize argument specifies the range of the stack).

SEE ALSO
pthread_attr_init(3), pthread_attr_setstack(3), pthread_attr_setstacksize(3),
pthread_create(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2127

pthread_attr_setstacksize(3) Library Functions Manual pthread_attr_setstacksize(3)

NAME
pthread_attr_setstacksize, pthread_attr_getstacksize - set/get stack size attribute in
thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);
int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,

size_t *restrict stacksize);

DESCRIPTION
The pthread_attr_setstacksize() function sets the stack size attribute of the thread at-
tributes object referred to by attr to the value specified in stacksize.

The stack size attribute determines the minimum size (in bytes) that will be allocated
for threads created using the thread attributes object attr.

The pthread_attr_getstacksize() function returns the stack size attribute of the thread
attributes object referred to by attr in the buffer pointed to by stacksize.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setstacksize() can fail with the following error:

EINVAL
The stack size is less than PTHREAD_STACK_MIN (16384) bytes.

On some systems, pthread_attr_setstacksize() can fail with the error EINVAL if
stacksize is not a multiple of the system page size.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setstacksize(),
pthread_attr_getstacksize()

VERSIONS
These functions are provided since glibc 2.1.

STANDARDS
POSIX.1-2001, POSIX.1-2008.

NOTES
For details on the default stack size of new threads, see pthread_create(3).

A thread’s stack size is fixed at the time of thread creation. Only the main thread can
dynamically grow its stack.

The pthread_attr_setstack(3) function allows an application to set both the size and
location of a caller-allocated stack that is to be used by a thread.

Linux man-pages 6.13 2024-07-23 2128

pthread_attr_setstacksize(3) Library Functions Manual pthread_attr_setstacksize(3)

BUGS
As at glibc 2.8, if the specified stacksize is not a multiple of STACK_ALIGN (16
bytes on most architectures), it may be rounded downward , in violation of POSIX.1,
which says that the allocated stack will be at least stacksize bytes.

EXAMPLES
See pthread_create(3).

SEE ALSO
getrlimit(2), pthread_attr_init(3), pthread_attr_setguardsize(3), pthread_attr_set-
stack(3), pthread_create(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2129

pthread_cancel(3) Library Functions Manual pthread_cancel(3)

NAME
pthread_cancel - send a cancelation request to a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_cancel(pthread_t thread);

DESCRIPTION
The pthread_cancel() function sends a cancelation request to the thread thread .
Whether and when the target thread reacts to the cancelation request depends on two
attributes that are under the control of that thread: its cancelability state and type.

A thread’s cancelability state, determined by pthread_setcancelstate(3), can be en-
abled (the default for new threads) or disabled . If a thread has disabled cancelation,
then a cancelation request remains queued until the thread enables cancelation. If a
thread has enabled cancelation, then its cancelability type determines when cancela-
tion occurs.

A thread’s cancelation type, determined by pthread_setcanceltype(3), may be either
asynchronous or deferred (the default for new threads). Asynchronous cancelability
means that the thread can be canceled at any time (usually immediately, but the sys-
tem does not guarantee this). Deferred cancelability means that cancelation will be
delayed until the thread next calls a function that is a cancelation point. A list of
functions that are or may be cancelation points is provided in pthreads(7).

When a cancelation request is acted on, the following steps occur for thread (in this
order):

(1) Cancelation clean-up handlers are popped (in the reverse of the order in which
they were pushed) and called. (See pthread_cleanup_push(3).)

(2) Thread-specific data destructors are called, in an unspecified order. (See
pthread_key_create(3).)

(3) The thread is terminated. (See pthread_exit(3).)

The above steps happen asynchronously with respect to the pthread_cancel() call; the
return status of pthread_cancel() merely informs the caller whether the cancelation
request was successfully queued.

After a canceled thread has terminated, a join with that thread using pthread_join(3)
obtains PTHREAD_CANCELED as the thread’s exit status. (Joining with a thread
is the only way to know that cancelation has completed.)

RETURN VALUE
On success, pthread_cancel() returns 0; on error, it returns a nonzero error number.

ERRORS
ESRCH

No thread with the ID thread could be found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-11-05 2130

pthread_cancel(3) Library Functions Manual pthread_cancel(3)

Interface Attribute Value
Thread safety MT-Safepthread_cancel()

VERSIONS
On Linux, cancelation is implemented using signals. Under the NPTL threading im-
plementation, the first real-time signal (i.e., signal 32) is used for this purpose. On
LinuxThreads, the second real-time signal is used, if real-time signals are available,
otherwise SIGUSR2 is used.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0 POSIX.1-2001.

EXAMPLES
The program below creates a thread and then cancels it. The main thread joins with
the canceled thread to check that its exit status was PTHREAD_CANCELED. The
following shell session shows what happens when we run the program:

$./a.out
thread_func(): started; cancelation disabled
main(): sending cancelation request
thread_func(): about to enable cancelation
main(): thread was canceled

Program source

#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

static void *
thread_func(void *ignored_argument)
{

int s;

/* Disable cancelation for a while, so that we don't
immediately react to a cancelation request. */

s = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
if (s != 0)

handle_error_en(s, "pthread_setcancelstate");

printf("%s(): started; cancelation disabled\n", __func__);
sleep(5);
printf("%s(): about to enable cancelation\n", __func__);

Linux man-pages 6.13 2024-11-05 2131

pthread_cancel(3) Library Functions Manual pthread_cancel(3)

s = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
if (s != 0)

handle_error_en(s, "pthread_setcancelstate");

/* sleep() is a cancelation point. */

sleep(1000); /* Should get canceled while we sleep */

/* Should never get here. */

printf("%s(): not canceled!\n", __func__);
return NULL;

}

int
main(void)
{

pthread_t thr;
void *res;
int s;

/* Start a thread and then send it a cancelation request. */

s = pthread_create(&thr, NULL, &thread_func, NULL);
if (s != 0)

handle_error_en(s, "pthread_create");

sleep(2); /* Give thread a chance to get started */

printf("%s(): sending cancelation request\n", __func__);
s = pthread_cancel(thr);
if (s != 0)

handle_error_en(s, "pthread_cancel");

/* Join with thread to see what its exit status was. */

s = pthread_join(thr, &res);
if (s != 0)

handle_error_en(s, "pthread_join");

if (res == PTHREAD_CANCELED)
printf("%s(): thread was canceled\n", __func__);

else
printf("%s(): thread wasn't canceled (shouldn't happen!)\n",

__func__);
exit(EXIT_SUCCESS);

}

Linux man-pages 6.13 2024-11-05 2132

pthread_cancel(3) Library Functions Manual pthread_cancel(3)

SEE ALSO
pthread_cleanup_push(3), pthread_create(3), pthread_exit(3), pthread_join(3),
pthread_key_create(3), pthread_setcancelstate(3), pthread_setcanceltype(3),
pthread_testcancel(3), pthreads(7)

Linux man-pages 6.13 2024-11-05 2133

pthread_cleanup_push(3) Library Functions Manual pthread_cleanup_push(3)

NAME
pthread_cleanup_push, pthread_cleanup_pop - push and pop thread cancelation
clean-up handlers

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

void pthread_cleanup_push(typeof(void (void *)) *routine, void *arg);
void pthread_cleanup_pop(int execute);

DESCRIPTION
These functions manipulate the calling thread’s stack of thread-cancelation clean-up
handlers. A clean-up handler is a function that is automatically executed when a
thread is canceled (or in various other circumstances described below); it might, for
example, unlock a mutex so that it becomes available to other threads in the process.

The pthread_cleanup_push() function pushes routine onto the top of the stack of
clean-up handlers. When routine is later invoked, it will be given arg as its argument.

The pthread_cleanup_pop() function removes the routine at the top of the stack of
clean-up handlers, and optionally executes it if execute is nonzero.

A cancelation clean-up handler is popped from the stack and executed in the follow-
ing circumstances:

• When a thread is canceled, all of the stacked clean-up handlers are popped and ex-
ecuted in the reverse of the order in which they were pushed onto the stack.

• When a thread terminates by calling pthread_exit(3), all clean-up handlers are ex-
ecuted as described in the preceding point. (Clean-up handlers are not called if
the thread terminates by performing a return from the thread start function.)

• When a thread calls pthread_cleanup_pop() with a nonzero execute argument,
the top-most clean-up handler is popped and executed.

POSIX.1 permits pthread_cleanup_push() and pthread_cleanup_pop() to be imple-
mented as macros that expand to text containing '{' and '}', respectively. For this rea-
son, the caller must ensure that calls to these functions are paired within the same
function, and at the same lexical nesting level. (In other words, a clean-up handler is
established only during the execution of a specified section of code.)

Calling longjmp(3) (siglongjmp(3)) produces undefined results if any call has been
made to pthread_cleanup_push() or pthread_cleanup_pop() without the matching
call of the pair since the jump buffer was filled by setjmp(3) (sigsetjmp(3)). Like-
wise, calling longjmp(3) (siglongjmp(3)) from inside a clean-up handler produces un-
defined results unless the jump buffer was also filled by setjmp(3) (sigsetjmp(3)) in-
side the handler.

RETURN VALUE
These functions do not return a value.

ERRORS
There are no errors.

Linux man-pages 6.13 2024-12-13 2134

pthread_cleanup_push(3) Library Functions Manual pthread_cleanup_push(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_cleanup_push(), pthread_cleanup_pop()

VERSIONS
On glibc, the pthread_cleanup_push() and pthread_cleanup_pop() functions are
implemented as macros that expand to text containing '{' and '}', respectively. This
means that variables declared within the scope of paired calls to these functions will
be visible within only that scope.

POSIX.1 says that the effect of using return, break, continue, or goto to prematurely
leave a block bracketed pthread_cleanup_push() and pthread_cleanup_pop() is un-
defined. Portable applications should avoid doing this.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. glibc 2.0.

EXAMPLES
The program below provides a simple example of the use of the functions described in
this page. The program creates a thread that executes a loop bracketed by
pthread_cleanup_push() and pthread_cleanup_pop(). This loop increments a
global variable, cnt, once each second. Depending on what command-line arguments
are supplied, the main thread sends the other thread a cancelation request, or sets a
global variable that causes the other thread to exit its loop and terminate normally (by
doing a return).

In the following shell session, the main thread sends a cancelation request to the other
thread:

$./a.out
New thread started
cnt = 0
cnt = 1
Canceling thread
Called clean-up handler
Thread was canceled; cnt = 0

From the above, we see that the thread was canceled, and that the cancelation clean-
up handler was called and it reset the value of the global variable cnt to 0.

In the next run, the main program sets a global variable that causes other thread to ter-
minate normally:

$./a.out x
New thread started
cnt = 0
cnt = 1
Thread terminated normally; cnt = 2

From the above, we see that the clean-up handler was not executed (because
cleanup_pop_arg was 0), and therefore the value of cnt was not reset.

Linux man-pages 6.13 2024-12-13 2135

pthread_cleanup_push(3) Library Functions Manual pthread_cleanup_push(3)

In the next run, the main program sets a global variable that causes the other thread to
terminate normally, and supplies a nonzero value for cleanup_pop_arg:

$./a.out x 1
New thread started
cnt = 0
cnt = 1
Called clean-up handler
Thread terminated normally; cnt = 0

In the above, we see that although the thread was not canceled, the clean-up handler
was executed, because the argument given to pthread_cleanup_pop() was nonzero.

Program source

#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

static int done = 0;
static int cleanup_pop_arg = 0;
static int cnt = 0;

static void
cleanup_handler(void *arg)
{

printf("Called clean-up handler\n");
cnt = 0;

}

static void *
thread_start(void *arg)
{

time_t curr;

printf("New thread started\n");

pthread_cleanup_push(cleanup_handler, NULL);

curr = time(NULL);

while (!done) {
pthread_testcancel(); /* A cancelation point */
if (curr < time(NULL)) {

Linux man-pages 6.13 2024-12-13 2136

pthread_cleanup_push(3) Library Functions Manual pthread_cleanup_push(3)

curr = time(NULL);
printf("cnt = %d\n", cnt); /* A cancelation point */
cnt++;

}
}

pthread_cleanup_pop(cleanup_pop_arg);
return NULL;

}

int
main(int argc, char *argv[])
{

pthread_t thr;
int s;
void *res;

s = pthread_create(&thr, NULL, thread_start, NULL);
if (s != 0)

handle_error_en(s, "pthread_create");

sleep(2); /* Allow new thread to run a while */

if (argc > 1) {
if (argc > 2)

cleanup_pop_arg = atoi(argv[2]);
done = 1;

} else {
printf("Canceling thread\n");
s = pthread_cancel(thr);
if (s != 0)

handle_error_en(s, "pthread_cancel");
}

s = pthread_join(thr, &res);
if (s != 0)

handle_error_en(s, "pthread_join");

if (res == PTHREAD_CANCELED)
printf("Thread was canceled; cnt = %d\n", cnt);

else
printf("Thread terminated normally; cnt = %d\n", cnt);

exit(EXIT_SUCCESS);
}

SEE ALSO
pthread_cancel(3), pthread_cleanup_push_defer_np(3), pthread_setcancelstate(3),
pthread_testcancel(3), pthreads(7)

Linux man-pages 6.13 2024-12-13 2137

pthread_cle . . . ush_defer_np(3) Library Functions Manual pthread_cle . . . ush_defer_np(3)

NAME
pthread_cleanup_push_defer_np, pthread_cleanup_pop_restore_np - push and pop
thread cancelation clean-up handlers while saving cancelability type

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

void pthread_cleanup_push_defer_np(typeof(void (void *)) *routine,
void *arg);

void pthread_cleanup_pop_restore_np(int execute);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_cleanup_push_defer_np(), pthread_cleanup_pop_defer_np():
_GNU_SOURCE

DESCRIPTION
These functions are the same as pthread_cleanup_push(3) and
pthread_cleanup_pop(3), except for the differences noted on this page.

Like pthread_cleanup_push(3), pthread_cleanup_push_defer_np() pushes routine
onto the thread’s stack of cancelation clean-up handlers. In addition, it also saves the
thread’s current cancelability type, and sets the cancelability type to "deferred" (see
pthread_setcanceltype(3)); this ensures that cancelation clean-up will occur even if
the thread’s cancelability type was "asynchronous" before the call.

Like pthread_cleanup_pop(3), pthread_cleanup_pop_restore_np() pops the top-
most clean-up handler from the thread’s stack of cancelation clean-up handlers. In ad-
dition, it restores the thread’s cancelability type to its value at the time of the matching
pthread_cleanup_push_defer_np().

The caller must ensure that calls to these functions are paired within the same func-
tion, and at the same lexical nesting level. Other restrictions apply, as described in
pthread_cleanup_push(3).

This sequence of calls:

pthread_cleanup_push_defer_np(routine, arg);
pthread_cleanup_pop_restore_np(execute);

is equivalent to (but shorter and more efficient than):

int oldtype;

pthread_cleanup_push(routine, arg);
pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype);
...
pthread_setcanceltype(oldtype, NULL);
pthread_cleanup_pop(execute);

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

Linux man-pages 6.13 2024-12-13 2138

pthread_cle . . . ush_defer_np(3) Library Functions Manual pthread_cle . . . ush_defer_np(3)

HISTORY
glibc 2.0

SEE ALSO
pthread_cancel(3), pthread_cleanup_push(3), pthread_setcancelstate(3),
pthread_testcancel(3), pthreads(7)

Linux man-pages 6.13 2024-12-13 2139

pthread_cond_init(3) Library Functions Manual pthread_cond_init(3)

NAME
pthread_cond_init, pthread_cond_signal, pthread_cond_broadcast,
pthread_cond_wait, pthread_cond_timedwait, pthread_cond_destroy - operations on
conditions

SYNOPSIS
#include <pthread.h>

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond ,
pthread_condattr_t *cond_attr);

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond , pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond , pthread_mutex_t *mutex,

const struct timespec *abstime);
int pthread_cond_destroy(pthread_cond_t *cond);

DESCRIPTION
A condition (short for ‘‘condition variable’’) is a synchronization device that allows
threads to suspend execution and relinquish the processors until some predicate on
shared data is satisfied. The basic operations on conditions are: signal the condition
(when the predicate becomes true), and wait for the condition, suspending the thread
execution until another thread signals the condition.

A condition variable must always be associated with a mutex, to avoid the race condi-
tion where a thread prepares to wait on a condition variable and another thread signals
the condition just before the first thread actually waits on it.

pthread_cond_init initializes the condition variable cond, using the condition attrib-
utes specified in cond_attr, or default attributes if cond_attr is NULL. The Linux-
Threads implementation supports no attributes for conditions, hence the cond_attr pa-
rameter is actually ignored.

Variables of type pthread_cond_t can also be initialized statically, using the constant
PTHREAD_COND_INITIALIZER.

pthread_cond_signal restarts one of the threads that are waiting on the condition
variable cond. If no threads are waiting on cond, nothing happens. If several threads
are waiting on cond, exactly one is restarted, but it is not specified which.

pthread_cond_broadcast restarts all the threads that are waiting on the condition
variable cond. Nothing happens if no threads are waiting on cond.

pthread_cond_wait atomically unlocks the mutex (as per pthread_unlock_mutex)
and waits for the condition variable cond to be signaled. The thread execution is sus-
pended and does not consume any CPU time until the condition variable is signaled.
The mutex must be locked by the calling thread on entrance to pthread_cond_wait.
Before returning to the calling thread, pthread_cond_wait re-acquires mutex (as per
pthread_mutex_lock).

Unlocking the mutex and suspending on the condition variable is done atomically.
Thus, if all threads always acquire the mutex before signaling the condition, this guar-
antees that the condition cannot be signaled (and thus ignored) between the time a

Linux man-pages 6.13 2025-01-04 2140

pthread_cond_init(3) Library Functions Manual pthread_cond_init(3)

thread locks the mutex and the time it waits on the condition variable.

pthread_cond_timedwait atomically unlocks mutex and waits on cond, as
pthread_cond_wait does, but it also bounds the duration of the wait. If cond has not
been signaled within the amount of time specified by abstime, the mutex mutex is re-
acquired and pthread_cond_timedwait returns the error ETIMEDOUT. The ab-
stime parameter specifies an absolute time, with the same origin as time(2) and get-
timeofday(2): an abstime of 0 corresponds to 00:00:00 GMT, January 1, 1970.

pthread_cond_destroy destroys a condition variable, freeing the resources it might
hold. No threads must be waiting on the condition variable on entrance to
pthread_cond_destroy. In the LinuxThreads implementation, no resources are asso-
ciated with condition variables, thus pthread_cond_destroy actually does nothing ex-
cept checking that the condition has no waiting threads.

CANCELLATION
pthread_cond_wait and pthread_cond_timedwait are cancelation points. If a
thread is cancelled while suspended in one of these functions, the thread immediately
resumes execution, then locks again the mutex argument to pthread_cond_wait and
pthread_cond_timedwait, and finally executes the cancelation. Consequently,
cleanup handlers are assured that mutex is locked when they are called.

ASYNC-SIGNAL SAFETY
The condition functions are not async-signal safe, and should not be called from a sig-
nal handler. In particular, calling pthread_cond_signal or pthread_cond_broadcast
from a signal handler may deadlock the calling thread.

RETURN VALUE
All condition variable functions return 0 on success and a non-zero error code on er-
ror.

ERRORS
pthread_cond_init, pthread_cond_signal, pthread_cond_broadcast, and
pthread_cond_wait never return an error code.

The pthread_cond_timedwait function returns the following error codes on error:

ETIMEDOUT
The condition variable was not signaled until the timeout specified by
abstime.

The pthread_cond_destroy function returns the following error code on error:

EBUSY
Some threads are currently waiting on cond.

SEE ALSO
pthread_condattr_init(3), pthread_mutex_lock(3), pthread_mutex_unlock(3),
gettimeofday(2), nanosleep(2).

EXAMPLE
Consider two shared variables x and y, protected by the mutex mut, and a condition
variable cond that is to be signaled whenever x becomes greater than y.

int x,y;
pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

Linux man-pages 6.13 2025-01-04 2141

pthread_cond_init(3) Library Functions Manual pthread_cond_init(3)

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Waiting until x is greater than y is performed as follows:

pthread_mutex_lock(&mut);
while (x <= y) {

pthread_cond_wait(&cond, &mut);
}
/* operate on x and y */
pthread_mutex_unlock(&mut);

Modifications on x and y that may cause x to become greater than y should signal the
condition if needed:

pthread_mutex_lock(&mut);
/* modify x and y */
if (x > y) pthread_cond_broadcast(&cond);
pthread_mutex_unlock(&mut);

If it can be proved that at most one waiting thread needs to be waken up (for instance,
if there are only two threads communicating through x and y), pthread_cond_signal
can be used as a slightly more efficient alternative to pthread_cond_broadcast. In
doubt, use pthread_cond_broadcast.

To wait for x to become greater than y with a timeout of 5 seconds, do:

struct timeval now;
struct timespec timeout;
int retcode;

pthread_mutex_lock(&mut);
gettimeofday(&now);
timeout.tv_sec = now.tv_sec + 5;
timeout.tv_nsec = now.tv_usec * 1000;
retcode = 0;
while (x <= y && retcode != ETIMEDOUT) {

retcode = pthread_cond_timedwait(&cond, &mut, &timeout);
}
if (retcode == ETIMEDOUT) {

/* timeout occurred */
} else {

/* operate on x and y */
}
pthread_mutex_unlock(&mut);

Linux man-pages 6.13 2025-01-04 2142

pthread_condattr_init(3) Library Functions Manual pthread_condattr_init(3)

NAME
pthread_condattr_init, pthread_condattr_destroy - condition creation attributes

SYNOPSIS
#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *attr); int pthread_condattr_de-
stroy(pthread_condattr_t *attr);

DESCRIPTION
Condition attributes can be specified at condition creation time, by passing a condition
attribute object as second argument to pthread_cond_init(3). Passing NULL is
equivalent to passing a condition attribute object with all attributes set to their default
values.

The LinuxThreads implementation supports no attributes for conditions. The func-
tions on condition attributes are included only for compliance with the POSIX stan-
dard.

pthread_condattr_init initializes the condition attribute object attr and fills it with
default values for the attributes. pthread_condattr_destroy destroys a condition at-
tribute object, which must not be reused until it is reinitialized. Both functions do
nothing in the LinuxThreads implementation.

RETURN VALUE
pthread_condattr_init and pthread_condattr_destroy always return 0.

SEE ALSO
pthread_cond_init(3).

Linux man-pages 6.13 2024-05-02 2143

pthread_create(3) Library Functions Manual pthread_create(3)

NAME
pthread_create - create a new thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_create(pthread_t *restrict thread ,
const pthread_attr_t *restrict attr,
typeof(void *(void *)) *start_routine,
void *restrict arg);

DESCRIPTION
The pthread_create() function starts a new thread in the calling process. The new
thread starts execution by invoking start_routine(); arg is passed as the sole argument
of start_routine().

The new thread terminates in one of the following ways:

• It calls pthread_exit(3), specifying an exit status value that is available to another
thread in the same process that calls pthread_join(3).

• It returns from start_routine(). This is equivalent to calling pthread_exit(3) with
the value supplied in the return statement.

• It is canceled (see pthread_cancel(3)).

• Any of the threads in the process calls exit(3), or the main thread performs a return
from main(). This causes the termination of all threads in the process.

The attr argument points to a pthread_attr_t structure whose contents are used at
thread creation time to determine attributes for the new thread; this structure is initial-
ized using pthread_attr_init(3) and related functions. If attr is NULL, then the thread
is created with default attributes.

Before returning, a successful call to pthread_create() stores the ID of the new thread
in the buffer pointed to by thread; this identifier is used to refer to the thread in subse-
quent calls to other pthreads functions.

The new thread inherits a copy of the creating thread’s signal mask (pthread_sig-
mask(3)). The set of pending signals for the new thread is empty (sigpending(2)).
The new thread does not inherit the creating thread’s alternate signal stack (sigalt-
stack(2)).

The new thread inherits the calling thread’s floating-point environment (fenv(3)).

The initial value of the new thread’s CPU-time clock is 0 (see pthread_getcpu-
clockid(3)).

Linux-specific details
The new thread inherits copies of the calling thread’s capability sets (see capabili-
ties(7)) and CPU affinity mask (see sched_setaffinity(2)).

RETURN VALUE
On success, pthread_create() returns 0; on error, it returns an error number, and the
contents of *thread are undefined.

Linux man-pages 6.13 2024-12-13 2144

pthread_create(3) Library Functions Manual pthread_create(3)

ERRORS
EAGAIN

Insufficient resources to create another thread.

EAGAIN
A system-imposed limit on the number of threads was encountered. There are
a number of limits that may trigger this error: the RLIMIT_NPROC soft re-
source limit (set via setrlimit(2)), which limits the number of processes and
threads for a real user ID, was reached; the kernel’s system-wide limit on the
number of processes and threads, /proc/sys/kernel/threads-max, was reached
(see proc(5)); or the maximum number of PIDs, /proc/sys/kernel/pid_max,
was reached (see proc(5)).

EINVAL
Invalid settings in attr.

EPERM
No permission to set the scheduling policy and parameters specified in attr.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_create()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
See pthread_self(3) for further information on the thread ID returned in *thread by
pthread_create(). Unless real-time scheduling policies are being employed, after a
call to pthread_create(), it is indeterminate which thread—the caller or the new
thread—will next execute.

A thread may either be joinable or detached . If a thread is joinable, then another
thread can call pthread_join(3) to wait for the thread to terminate and fetch its exit
status. Only when a terminated joinable thread has been joined are the last of its re-
sources released back to the system. When a detached thread terminates, its resources
are automatically released back to the system: it is not possible to join with the thread
in order to obtain its exit status. Making a thread detached is useful for some types of
daemon threads whose exit status the application does not need to care about. By de-
fault, a new thread is created in a joinable state, unless attr was set to create the thread
in a detached state (using pthread_attr_setdetachstate(3)).

Under the NPTL threading implementation, if the RLIMIT_STACK soft resource
limit at the time the program started has any value other than "unlimited", then it de-
termines the default stack size of new threads. Using pthread_attr_setstacksize(3), the
stack size attribute can be explicitly set in the attr argument used to create a thread, in
order to obtain a stack size other than the default. If the RLIMIT_STACK resource
limit is set to "unlimited", a per-architecture value is used for the stack size: 2 MB on
most architectures; 4 MB on POWER and Sparc-64.

Linux man-pages 6.13 2024-12-13 2145

pthread_create(3) Library Functions Manual pthread_create(3)

BUGS
In the obsolete LinuxThreads implementation, each of the threads in a process has a
different process ID. This is in violation of the POSIX threads specification, and is
the source of many other nonconformances to the standard; see pthreads(7).

EXAMPLES
The program below demonstrates the use of pthread_create(), as well as a number of
other functions in the pthreads API.

In the following run, on a system providing the NPTL threading implementation, the
stack size defaults to the value given by the "stack size" resource limit:

$ ulimit -s
8192 # The stack size limit is 8 MB (0x800000 bytes)
$./a.out hola salut servus
Thread 1: top of stack near 0xb7dd03b8; argv_string=hola
Thread 2: top of stack near 0xb75cf3b8; argv_string=salut
Thread 3: top of stack near 0xb6dce3b8; argv_string=servus
Joined with thread 1; returned value was HOLA
Joined with thread 2; returned value was SALUT
Joined with thread 3; returned value was SERVUS

In the next run, the program explicitly sets a stack size of 1 MB (using
pthread_attr_setstacksize(3)) for the created threads:

$./a.out -s 0x100000 hola salut servus
Thread 1: top of stack near 0xb7d723b8; argv_string=hola
Thread 2: top of stack near 0xb7c713b8; argv_string=salut
Thread 3: top of stack near 0xb7b703b8; argv_string=servus
Joined with thread 1; returned value was HOLA
Joined with thread 2; returned value was SALUT
Joined with thread 3; returned value was SERVUS

Program source

#include <ctype.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

struct thread_info { /* Used as argument to thread_start() */
pthread_t thread_id; /* ID returned by pthread_create() */

Linux man-pages 6.13 2024-12-13 2146

pthread_create(3) Library Functions Manual pthread_create(3)

int thread_num; /* Application-defined thread # */
char *argv_string; /* From command-line argument */

};

/* Thread start function: display address near top of our stack,
and return upper-cased copy of argv_string. */

static void *
thread_start(void *arg)
{

struct thread_info *tinfo = arg;
char *uargv;

printf("Thread %d: top of stack near %p; argv_string=%s\n",
tinfo->thread_num, (void *) &tinfo, tinfo->argv_string);

uargv = strdup(tinfo->argv_string);
if (uargv == NULL)

handle_error("strdup");

for (char *p = uargv; *p != '\0'; p++)
*p = toupper(*p);

return uargv;
}

int
main(int argc, char *argv[])
{

int s, opt;
void *res;
size_t num_threads;
ssize_t stack_size;
pthread_attr_t attr;
struct thread_info *tinfo;

/* The "-s" option specifies a stack size for our threads. */

stack_size = -1;
while ((opt = getopt(argc, argv, "s:")) != -1) {

switch (opt) {
case 's':

stack_size = strtoul(optarg, NULL, 0);
break;

default:
fprintf(stderr, "Usage: %s [-s stack-size] arg...\n",

argv[0]);
exit(EXIT_FAILURE);

Linux man-pages 6.13 2024-12-13 2147

pthread_create(3) Library Functions Manual pthread_create(3)

}
}

num_threads = argc - optind;

/* Initialize thread creation attributes. */

s = pthread_attr_init(&attr);
if (s != 0)

handle_error_en(s, "pthread_attr_init");

if (stack_size > 0) {
s = pthread_attr_setstacksize(&attr, stack_size);
if (s != 0)

handle_error_en(s, "pthread_attr_setstacksize");
}

/* Allocate memory for pthread_create() arguments. */

tinfo = calloc(num_threads, sizeof(*tinfo));
if (tinfo == NULL)

handle_error("calloc");

/* Create one thread for each command-line argument. */

for (size_t tnum = 0; tnum < num_threads; tnum++) {
tinfo[tnum].thread_num = tnum + 1;
tinfo[tnum].argv_string = argv[optind + tnum];

/* The pthread_create() call stores the thread ID into
corresponding element of tinfo[]. */

s = pthread_create(&tinfo[tnum].thread_id, &attr,
&thread_start, &tinfo[tnum]);

if (s != 0)
handle_error_en(s, "pthread_create");

}

/* Destroy the thread attributes object, since it is no
longer needed. */

s = pthread_attr_destroy(&attr);
if (s != 0)

handle_error_en(s, "pthread_attr_destroy");

/* Now join with each thread, and display its returned value. */

for (size_t tnum = 0; tnum < num_threads; tnum++) {
s = pthread_join(tinfo[tnum].thread_id, &res);

Linux man-pages 6.13 2024-12-13 2148

pthread_create(3) Library Functions Manual pthread_create(3)

if (s != 0)
handle_error_en(s, "pthread_join");

printf("Joined with thread %d; returned value was %s\n",
tinfo[tnum].thread_num, (char *) res);

free(res); /* Free memory allocated by thread */
}

free(tinfo);
exit(EXIT_SUCCESS);

}

SEE ALSO
getrlimit(2), pthread_attr_init(3), pthread_cancel(3), pthread_detach(3),
pthread_equal(3), pthread_exit(3), pthread_getattr_np(3), pthread_join(3),
pthread_self(3), pthread_setattr_default_np(3), pthreads(7)

Linux man-pages 6.13 2024-12-13 2149

pthread_detach(3) Library Functions Manual pthread_detach(3)

NAME
pthread_detach - detach a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_detach(pthread_t thread);

DESCRIPTION
The pthread_detach() function marks the thread identified by thread as detached.
When a detached thread terminates, its resources are automatically released back to
the system without the need for another thread to join with the terminated thread.

Attempting to detach an already detached thread results in unspecified behavior.

RETURN VALUE
On success, pthread_detach() returns 0; on error, it returns an error number.

ERRORS
EINVAL

thread is not a joinable thread.

ESRCH
No thread with the ID thread could be found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_detach()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Once a thread has been detached, it can’t be joined with pthread_join(3) or be made
joinable again.

A new thread can be created in a detached state using pthread_attr_setdetachstate(3)
to set the detached attribute of the attr argument of pthread_create(3).

The detached attribute merely determines the behavior of the system when the thread
terminates; it does not prevent the thread from being terminated if the process termi-
nates using exit(3) (or equivalently, if the main thread returns).

Either pthread_join(3) or pthread_detach() should be called for each thread that an
application creates, so that system resources for the thread can be released. (But note
that the resources of any threads for which one of these actions has not been done will
be freed when the process terminates.)

EXAMPLES
The following statement detaches the calling thread:

pthread_detach(pthread_self());

Linux man-pages 6.13 2024-07-23 2150

pthread_detach(3) Library Functions Manual pthread_detach(3)

SEE ALSO
pthread_attr_setdetachstate(3), pthread_cancel(3), pthread_create(3),
pthread_exit(3), pthread_join(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2151

pthread_equal(3) Library Functions Manual pthread_equal(3)

NAME
pthread_equal - compare thread IDs

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

DESCRIPTION
The pthread_equal() function compares two thread identifiers.

RETURN VALUE
If the two thread IDs are equal, pthread_equal() returns a nonzero value; otherwise,
it returns 0.

ERRORS
This function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_equal()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The pthread_equal() function is necessary because thread IDs should be considered
opaque: there is no portable way for applications to directly compare two pthread_t
values.

SEE ALSO
pthread_create(3), pthread_self(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2152

pthread_exit(3) Library Functions Manual pthread_exit(3)

NAME
pthread_exit - terminate calling thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

[[noreturn]] void pthread_exit(void *retval);

DESCRIPTION
The pthread_exit() function terminates the calling thread and returns a value via ret-
val that (if the thread is joinable) is available to another thread in the same process
that calls pthread_join(3).

Any clean-up handlers established by pthread_cleanup_push(3) that have not yet been
popped, are popped (in the reverse of the order in which they were pushed) and exe-
cuted. If the thread has any thread-specific data, then, after the clean-up handlers have
been executed, the corresponding destructor functions are called, in an unspecified or-
der.

When a thread terminates, process-shared resources (e.g., mutexes, condition vari-
ables, semaphores, and file descriptors) are not released, and functions registered us-
ing atexit(3) are not called.

After the last thread in a process terminates, the process terminates as by calling
exit(3) with an exit status of zero; thus, process-shared resources are released and
functions registered using atexit(3) are called.

RETURN VALUE
This function does not return to the caller.

ERRORS
This function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_exit()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Performing a return from the start function of any thread other than the main thread
results in an implicit call to pthread_exit(), using the function’s return value as the
thread’s exit status.

To allow other threads to continue execution, the main thread should terminate by
calling pthread_exit() rather than exit(3).

The value pointed to by retval should not be located on the calling thread’s stack,
since the contents of that stack are undefined after the thread terminates.

Linux man-pages 6.13 2024-07-23 2153

pthread_exit(3) Library Functions Manual pthread_exit(3)

BUGS
Currently, there are limitations in the kernel implementation logic for wait(2)ing on a
stopped thread group with a dead thread group leader. This can manifest in problems
such as a locked terminal if a stop signal is sent to a foreground process whose thread
group leader has already called pthread_exit().

SEE ALSO
pthread_create(3), pthread_join(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2154

pthread_getattr_default_np(3) Library Functions Manual pthread_getattr_default_np(3)

NAME
pthread_getattr_default_np, pthread_setattr_default_np, - get or set default thread-
creation attributes

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_getattr_default_np(pthread_attr_t *attr);
int pthread_setattr_default_np(const pthread_attr_t *attr);

DESCRIPTION
The pthread_setattr_default_np() function sets the default attributes used for cre-
ation of a new thread—that is, the attributes that are used when pthread_create(3) is
called with a second argument that is NULL. The default attributes are set using the
attributes supplied in *attr, a previously initialized thread attributes object. Note the
following details about the supplied attributes object:

• The attribute settings in the object must be valid.

• The stack address attribute must not be set in the object.

• Setting the stack size attribute to zero means leave the default stack size un-
changed.

The pthread_getattr_default_np() function initializes the thread attributes object re-
ferred to by attr so that it contains the default attributes used for thread creation.

ERRORS
EINVAL

(pthread_setattr_default_np()) One of the attribute settings in attr is invalid,
or the stack address attribute is set in attr.

ENOMEM
(pthread_setattr_default_np()) Insufficient memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_getattr_default_np(),
pthread_setattr_default_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in their names.

HISTORY
glibc 2.18.

EXAMPLES
The program below uses pthread_getattr_default_np() to fetch the default thread-
creation attributes and then displays various settings from the returned thread attrib-
utes object. When running the program, we see the following output:

$./a.out

Linux man-pages 6.13 2024-11-03 2155

pthread_getattr_default_np(3) Library Functions Manual pthread_getattr_default_np(3)

Stack size: 8388608
Guard size: 4096
Scheduling policy: SCHED_OTHER
Scheduling priority: 0
Detach state: JOINABLE
Inherit scheduler: INHERIT

Program source

#define _GNU_SOURCE
#include <err.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>

static void
display_pthread_attr(pthread_attr_t *attr)
{

int s;
size_t stacksize;
size_t guardsize;
int policy;
struct sched_param schedparam;
int detachstate;
int inheritsched;

s = pthread_attr_getstacksize(attr, &stacksize);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getstacksize");
printf("Stack size: %zu\n", stacksize);

s = pthread_attr_getguardsize(attr, &guardsize);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getguardsize");
printf("Guard size: %zu\n", guardsize);

s = pthread_attr_getschedpolicy(attr, &policy);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getschedpolicy");
printf("Scheduling policy: %s\n",

(policy == SCHED_FIFO) ? "SCHED_FIFO" :
(policy == SCHED_RR) ? "SCHED_RR" :
(policy == SCHED_OTHER) ? "SCHED_OTHER" : "[unknown]");

s = pthread_attr_getschedparam(attr, &schedparam);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getschedparam");
printf("Scheduling priority: %d\n", schedparam.sched_priority);

Linux man-pages 6.13 2024-11-03 2156

pthread_getattr_default_np(3) Library Functions Manual pthread_getattr_default_np(3)

s = pthread_attr_getdetachstate(attr, &detachstate);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getdetachstate");
printf("Detach state: %s\n",

(detachstate == PTHREAD_CREATE_DETACHED) ? "DETACHED" :
(detachstate == PTHREAD_CREATE_JOINABLE) ? "JOINABLE" :
"???");

s = pthread_attr_getinheritsched(attr, &inheritsched);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getinheritsched");
printf("Inherit scheduler: %s\n",

(inheritsched == PTHREAD_INHERIT_SCHED) ? "INHERIT" :
(inheritsched == PTHREAD_EXPLICIT_SCHED) ? "EXPLICIT" :
"???");

}

int
main(void)
{

int s;
pthread_attr_t attr;

s = pthread_getattr_default_np(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getattr_default_np");

display_pthread_attr(&attr);

exit(EXIT_SUCCESS);
}

SEE ALSO
pthread_attr_getaffinity_np(3), pthread_attr_getdetachstate(3),
pthread_attr_getguardsize(3), pthread_attr_getinheritsched(3),
pthread_attr_getschedparam(3), pthread_attr_getschedpolicy(3),
pthread_attr_getscope(3), pthread_attr_getstack(3), pthread_attr_getstackaddr(3),
pthread_attr_getstacksize(3), pthread_attr_init(3), pthread_create(3), pthreads(7)

Linux man-pages 6.13 2024-11-03 2157

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

NAME
pthread_getattr_np - get attributes of created thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_getattr_np(pthread_t thread , pthread_attr_t *attr);

DESCRIPTION
The pthread_getattr_np() function initializes the thread attributes object referred to
by attr so that it contains actual attribute values describing the running thread thread .

The returned attribute values may differ from the corresponding attribute values
passed in the attr object that was used to create the thread using pthread_create(3).
In particular, the following attributes may differ:

• the detach state, since a joinable thread may have detached itself after creation;

• the stack size, which the implementation may align to a suitable boundary.

• and the guard size, which the implementation may round upward to a multiple of
the page size, or ignore (i.e., treat as 0), if the application is allocating its own
stack.

Furthermore, if the stack address attribute was not set in the thread attributes object
used to create the thread, then the returned thread attributes object will report the ac-
tual stack address that the implementation selected for the thread.

When the thread attributes object returned by pthread_getattr_np() is no longer re-
quired, it should be destroyed using pthread_attr_destroy(3).

RETURN VALUE
On success, this function returns 0; on error, it returns a nonzero error number.

ERRORS
ENOMEM

Insufficient memory.

In addition, if thread refers to the main thread, then pthread_getattr_np() can fail
because of errors from various underlying calls: fopen(3), if /proc/self/maps can’t be
opened; and getrlimit(2), if the RLIMIT_STACK resource limit is not supported.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_getattr_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the name.

HISTORY
glibc 2.2.3.

Linux man-pages 6.13 2024-07-23 2158

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

EXAMPLES
The program below demonstrates the use of pthread_getattr_np(). The program cre-
ates a thread that then uses pthread_getattr_np() to retrieve and display its guard
size, stack address, and stack size attributes. Command-line arguments can be used to
set these attributes to values other than the default when creating the thread. The shell
sessions below demonstrate the use of the program.

In the first run, on an x86-32 system, a thread is created using default attributes:

$ ulimit -s # No stack limit ==> default stack size is 2 MB
unlimited
$./a.out
Attributes of created thread:

Guard size = 4096 bytes
Stack address = 0x40196000 (EOS = 0x40397000)
Stack size = 0x201000 (2101248) bytes

In the following run, we see that if a guard size is specified, it is rounded up to the
next multiple of the system page size (4096 bytes on x86-32):

$./a.out -g 4097
Thread attributes object after initializations:

Guard size = 4097 bytes
Stack address = (nil)
Stack size = 0x0 (0) bytes

Attributes of created thread:
Guard size = 8192 bytes
Stack address = 0x40196000 (EOS = 0x40397000)
Stack size = 0x201000 (2101248) bytes

In the last run, the program manually allocates a stack for the thread. In this case, the
guard size attribute is ignored.

$./a.out -g 4096 -s 0x8000 -a
Allocated thread stack at 0x804d000

Thread attributes object after initializations:
Guard size = 4096 bytes
Stack address = 0x804d000 (EOS = 0x8055000)
Stack size = 0x8000 (32768) bytes

Attributes of created thread:
Guard size = 0 bytes
Stack address = 0x804d000 (EOS = 0x8055000)
Stack size = 0x8000 (32768) bytes

Program source

#define _GNU_SOURCE /* To get pthread_getattr_np() declaration */
#include <err.h>
#include <errno.h>
#include <pthread.h>

Linux man-pages 6.13 2024-07-23 2159

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void
display_stack_related_attributes(pthread_attr_t *attr, char *prefix)
{

int s;
size_t stack_size, guard_size;
void *stack_addr;

s = pthread_attr_getguardsize(attr, &guard_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getguardsize");
printf("%sGuard size = %zu bytes\n", prefix, guard_size);

s = pthread_attr_getstack(attr, &stack_addr, &stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getstack");
printf("%sStack address = %p", prefix, stack_addr);
if (stack_size > 0)

printf(" (EOS = %p)", (char *) stack_addr + stack_size);
printf("\n");
printf("%sStack size = %#zx (%zu) bytes\n",

prefix, stack_size, stack_size);
}

static void
display_thread_attributes(pthread_t thread, char *prefix)
{

int s;
pthread_attr_t attr;

s = pthread_getattr_np(thread, &attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getattr_np");

display_stack_related_attributes(&attr, prefix);

s = pthread_attr_destroy(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_destroy");
}

static void * /* Start function for thread we create */
thread_start(void *arg)
{

printf("Attributes of created thread:\n");
display_thread_attributes(pthread_self(), "\t");

Linux man-pages 6.13 2024-07-23 2160

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

exit(EXIT_SUCCESS); /* Terminate all threads */
}

static void
usage(char *pname, char *msg)
{

if (msg != NULL)
fputs(msg, stderr);

fprintf(stderr, "Usage: %s [-s stack-size [-a]]"
" [-g guard-size]\n", pname);

fprintf(stderr, "\t\t-a means program should allocate stack\n");
exit(EXIT_FAILURE);

}

static pthread_attr_t * /* Get thread attributes from command line */
get_thread_attributes_from_cl(int argc, char *argv[],

pthread_attr_t *attrp)
{

int s, opt, allocate_stack;
size_t stack_size, guard_size;
void *stack_addr;
pthread_attr_t *ret_attrp = NULL; /* Set to attrp if we initialize

a thread attributes object */
allocate_stack = 0;
stack_size = -1;
guard_size = -1;

while ((opt = getopt(argc, argv, "ag:s:")) != -1) {
switch (opt) {
case 'a': allocate_stack = 1; break;
case 'g': guard_size = strtoul(optarg, NULL, 0); break;
case 's': stack_size = strtoul(optarg, NULL, 0); break;
default: usage(argv[0], NULL);
}

}

if (allocate_stack && stack_size == -1)
usage(argv[0], "Specifying -a without -s makes no sense\n");

if (argc > optind)
usage(argv[0], "Extraneous command-line arguments\n");

if (stack_size != -1 || guard_size > 0) {
ret_attrp = attrp;

s = pthread_attr_init(attrp);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_init");

Linux man-pages 6.13 2024-07-23 2161

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

}

if (stack_size != -1) {
if (!allocate_stack) {

s = pthread_attr_setstacksize(attrp, stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setstacksize");
} else {

s = posix_memalign(&stack_addr, sysconf(_SC_PAGESIZE),
stack_size);

if (s != 0)
errc(EXIT_FAILURE, s, "posix_memalign");

printf("Allocated thread stack at %p\n\n", stack_addr);

s = pthread_attr_setstack(attrp, stack_addr, stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setstacksize");
}

}

if (guard_size != -1) {
s = pthread_attr_setguardsize(attrp, guard_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setstacksize");
}

return ret_attrp;
}

int
main(int argc, char *argv[])
{

int s;
pthread_t thr;
pthread_attr_t attr;
pthread_attr_t *attrp = NULL; /* Set to &attr if we initialize

a thread attributes object */

attrp = get_thread_attributes_from_cl(argc, argv, &attr);

if (attrp != NULL) {
printf("Thread attributes object after initializations:\n");
display_stack_related_attributes(attrp, "\t");
printf("\n");

}

s = pthread_create(&thr, attrp, &thread_start, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_create");

Linux man-pages 6.13 2024-07-23 2162

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

if (attrp != NULL) {
s = pthread_attr_destroy(attrp);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_destroy");
}

pause(); /* Terminates when other thread calls exit() */
}

SEE ALSO
pthread_attr_getaffinity_np(3), pthread_attr_getdetachstate(3),
pthread_attr_getguardsize(3), pthread_attr_getinheritsched(3),
pthread_attr_getschedparam(3), pthread_attr_getschedpolicy(3),
pthread_attr_getscope(3), pthread_attr_getstack(3), pthread_attr_getstackaddr(3),
pthread_attr_getstacksize(3), pthread_attr_init(3), pthread_create(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2163

pthread_getcpuclockid(3) Library Functions Manual pthread_getcpuclockid(3)

NAME
pthread_getcpuclockid - retrieve ID of a thread’s CPU time clock

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_getcpuclockid(pthread_t thread , clockid_t *clockid);

DESCRIPTION
The pthread_getcpuclockid() function obtains the ID of the CPU-time clock of the
thread whose ID is given in thread , and returns it in the location pointed to by
clockid .

RETURN VALUE
On success, this function returns 0; on error, it returns a nonzero error number.

ERRORS
ENOENT

Per-thread CPU time clocks are not supported by the system.

ESRCH
No thread with the ID thread could be found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_getcpuclockid()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

NOTES
When thread refers to the calling thread, this function returns an identifier that refers
to the same clock manipulated by clock_gettime(2) and clock_settime(2) when given
the clock ID CLOCK_THREAD_CPUTIME_ID.

EXAMPLES
The program below creates a thread and then uses clock_gettime(2) to retrieve the to-
tal process CPU time, and the per-thread CPU time consumed by the two threads.
The following shell session shows an example run:

$./a.out
Main thread sleeping
Subthread starting infinite loop
Main thread consuming some CPU time...
Process total CPU time: 1.368
Main thread CPU time: 0.376
Subthread CPU time: 0.992

Linux man-pages 6.13 2024-11-03 2164

pthread_getcpuclockid(3) Library Functions Manual pthread_getcpuclockid(3)

Program source

/* Link with "-lrt" */

#include <errno.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

static void *
thread_start(void *arg)
{

printf("Subthread starting infinite loop\n");
for (;;)

continue;
}

static void
pclock(char *msg, clockid_t cid)
{

struct timespec ts;

printf("%s", msg);
if (clock_gettime(cid, &ts) == -1)

handle_error("clock_gettime");
printf("%4jd.%03ld\n", (intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);

}

int
main(void)
{

pthread_t thread;
clockid_t cid;
int s;

s = pthread_create(&thread, NULL, thread_start, NULL);
if (s != 0)

handle_error_en(s, "pthread_create");

Linux man-pages 6.13 2024-11-03 2165

pthread_getcpuclockid(3) Library Functions Manual pthread_getcpuclockid(3)

printf("Main thread sleeping\n");
sleep(1);

printf("Main thread consuming some CPU time...\n");
for (unsigned int j = 0; j < 2000000; j++)

getppid();

pclock("Process total CPU time: ", CLOCK_PROCESS_CPUTIME_ID);

s = pthread_getcpuclockid(pthread_self(), &cid);
if (s != 0)

handle_error_en(s, "pthread_getcpuclockid");
pclock("Main thread CPU time: ", cid);

/* The preceding 4 lines of code could have been replaced by:
pclock("Main thread CPU time: ", CLOCK_THREAD_CPUTIME_ID); */

s = pthread_getcpuclockid(thread, &cid);
if (s != 0)

handle_error_en(s, "pthread_getcpuclockid");
pclock("Subthread CPU time: 1 ", cid);

exit(EXIT_SUCCESS); /* Terminates both threads */
}

SEE ALSO
clock_gettime(2), clock_settime(2), timer_create(2), clock_getcpuclockid(3),
pthread_self(3), pthreads(7), time(7)

Linux man-pages 6.13 2024-11-03 2166

pthread_join(3) Library Functions Manual pthread_join(3)

NAME
pthread_join - join with a terminated thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_join(pthread_t thread , void **retval);

DESCRIPTION
The pthread_join() function waits for the thread specified by thread to terminate. If
that thread has already terminated, then pthread_join() returns immediately. The
thread specified by thread must be joinable.

If retval is not NULL, then pthread_join() copies the exit status of the target thread
(i.e., the value that the target thread supplied to pthread_exit(3)) into the location
pointed to by retval. If the target thread was canceled, then PTHREAD_CAN-
CELED is placed in the location pointed to by retval.

If multiple threads simultaneously try to join with the same thread, the results are un-
defined. If the thread calling pthread_join() is canceled, then the target thread will
remain joinable (i.e., it will not be detached).

RETURN VALUE
On success, pthread_join() returns 0; on error, it returns an error number.

ERRORS
EDEADLK

A deadlock was detected (e.g., two threads tried to join with each other); or
thread specifies the calling thread.

EINVAL
thread is not a joinable thread.

EINVAL
Another thread is already waiting to join with this thread.

ESRCH
No thread with the ID thread could be found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_join()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
After a successful call to pthread_join(), the caller is guaranteed that the target thread
has terminated. The caller may then choose to do any clean-up that is required after
termination of the thread (e.g., freeing memory or other resources that were allocated

Linux man-pages 6.13 2024-07-23 2167

pthread_join(3) Library Functions Manual pthread_join(3)

to the target thread).

Joining with a thread that has previously been joined results in undefined behavior.

Failure to join with a thread that is joinable (i.e., one that is not detached), produces a
"zombie thread". Avoid doing this, since each zombie thread consumes some system
resources, and when enough zombie threads have accumulated, it will no longer be
possible to create new threads (or processes).

There is no pthreads analog of waitpid(-1, &status, 0), that is, "join with any termi-
nated thread". If you believe you need this functionality, you probably need to rethink
your application design.

All of the threads in a process are peers: any thread can join with any other thread in
the process.

EXAMPLES
See pthread_create(3).

SEE ALSO
pthread_cancel(3), pthread_create(3), pthread_detach(3), pthread_exit(3),
pthread_tryjoin_np(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2168

pthread_key_create(3) Library Functions Manual pthread_key_create(3)

NAME
pthread_key_create, pthread_key_delete, pthread_setspecific, pthread_getspecific -
management of thread-specific data

SYNOPSIS
#include <pthread.h>

int pthread_key_create(pthread_key_t *key,
typeof(void (void *)) *destr_function;

int pthread_key_delete(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, const void *pointer);
void * pthread_getspecific(pthread_key_t key);

DESCRIPTION
Programs often need global or static variables that have different values in different
threads. Since threads share one memory space, this cannot be achieved with regular
variables. Thread-specific data is the POSIX threads answer to this need.

Each thread possesses a private memory block, the thread-specific data area, or TSD
area for short. This area is indexed by TSD keys. The TSD area associates values of
type void * to TSD keys. TSD keys are common to all threads, but the value associ-
ated with a given TSD key can be different in each thread.

For concreteness, the TSD areas can be viewed as arrays of void * pointers, TSD keys
as integer indices into these arrays, and the value of a TSD key as the value of the cor-
responding array element in the calling thread.

When a thread is created, its TSD area initially associates NULL with all keys.

pthread_key_create allocates a new TSD key. The key is stored in the location
pointed to by key. There is a limit of PTHREAD_KEYS_MAX on the number of
keys allocated at a given time. The value initially associated with the returned key is
NULL in all currently executing threads.

The destr_function argument, if not NULL, specifies a destructor function associated
with the key. When a thread terminates via pthread_exit or by cancelation, de-
str_function is called with arguments the value associated with the key in that thread.
The destr_function is not called if that value is NULL. The order in which destructor
functions are called at thread termination time is unspecified.

Before the destructor function is called, the NULL value is associated with the key in
the current thread. A destructor function might, however, re-associate non-NULL
values to that key or some other key. To deal with this, if after all the destructors have
been called for all non-NULL values, there are still some non-NULL values with as-
sociated destructors, then the process is repeated. The glibc implementation stops the
process after PTHREAD_DESTRUCTOR_ITERATIONS iterations, even if some
non-NULL values with associated descriptors remain. Other implementations may
loop indefinitely.

pthread_key_delete deallocates a TSD key. It does not check whether non-NULL
values are associated with that key in the currently executing threads, nor call the de-
structor function associated with the key.

pthread_setspecific changes the value associated with key in the calling thread, stor-
ing the given pointer instead.

Linux man-pages 6.13 2025-01-11 2169

pthread_key_create(3) Library Functions Manual pthread_key_create(3)

pthread_getspecific returns the value currently associated with key in the calling
thread.

RETURN VALUE
pthread_key_create, pthread_key_delete, and pthread_setspecific return 0 on suc-
cess and a non-zero error code on failure. If successful, pthread_key_create stores
the newly allocated key in the location pointed to by its key argument.

pthread_getspecific returns the value associated with key on success, and NULL on
error.

ERRORS
pthread_key_create returns the following error code on error:

EAGAIN
PTHREAD_KEYS_MAX keys are already allocated.

pthread_key_delete and pthread_setspecific return the following error code on er-
ror:

EINVAL
key is not a valid, allocated TSD key.

pthread_getspecific returns NULL if key is not a valid, allocated TSD key.

SEE ALSO
pthread_create(3), pthread_exit(3), pthread_testcancel(3).

EXAMPLE
The following code fragment allocates a thread-specific array of 100 characters, with
automatic reclamation at thread exit:

/* Key for the thread-specific buffer */
static pthread_key_t buffer_key;

/* Once-only initialisation of the key */
static pthread_once_t buffer_key_once = PTHREAD_ONCE_INIT;

/* Allocate the thread-specific buffer */
void buffer_alloc(void)
{
pthread_once(&buffer_key_once, buffer_key_alloc);
pthread_setspecific(buffer_key, malloc(100));

}

/* Return the thread-specific buffer */
char * get_buffer(void)
{
return (char *) pthread_getspecific(buffer_key);

}

/* Allocate the key */
static void buffer_key_alloc()
{
pthread_key_create(&buffer_key, buffer_destroy);

Linux man-pages 6.13 2025-01-11 2170

pthread_key_create(3) Library Functions Manual pthread_key_create(3)

}

/* Free the thread-specific buffer */
static void buffer_destroy(void * buf)
{
free(buf);

}

Linux man-pages 6.13 2025-01-11 2171

pthread_kill(3) Library Functions Manual pthread_kill(3)

NAME
pthread_kill - send a signal to a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <signal.h>

int pthread_kill(pthread_t thread , int sig);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_kill():
_POSIX_C_SOURCE >= 199506L || _XOPEN_SOURCE >= 500

DESCRIPTION
The pthread_kill() function sends the signal sig to thread , a thread in the same
process as the caller. The signal is asynchronously directed to thread .

If sig is 0, then no signal is sent, but error checking is still performed.

RETURN VALUE
On success, pthread_kill() returns 0; on error, it returns an error number, and no sig-
nal is sent.

ERRORS
EINVAL

An invalid signal was specified.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_kill()

VERSIONS
The glibc implementation of pthread_kill() gives an error (EINVAL) on attempts to
send either of the real-time signals used internally by the NPTL threading implemen-
tation. See nptl(7) for details.

POSIX.1-2008 recommends that if an implementation detects the use of a thread ID
after the end of its lifetime, pthread_kill() should return the error ESRCH. The glibc
implementation returns this error in the cases where an invalid thread ID can be de-
tected. But note also that POSIX says that an attempt to use a thread ID whose life-
time has ended produces undefined behavior, and an attempt to use an invalid thread
ID in a call to pthread_kill() can, for example, cause a segmentation fault.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Signal dispositions are process-wide: if a signal handler is installed, the handler will
be invoked in the thread thread , but if the disposition of the signal is "stop", "con-
tinue", or "terminate", this action will affect the whole process.

Linux man-pages 6.13 2024-07-23 2172

pthread_kill(3) Library Functions Manual pthread_kill(3)

SEE ALSO
kill(2), sigaction(2), sigpending(2), pthread_self(3), pthread_sigmask(3), raise(3),
pthreads(7), signal(7)

Linux man-pages 6.13 2024-07-23 2173

pthread_kill_other_threads_np(3)Library Functions Manualpthread_kill_other_threads_np(3)

NAME
pthread_kill_other_threads_np - terminate all other threads in process

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

void pthread_kill_other_threads_np(void);

DESCRIPTION
pthread_kill_other_threads_np() has an effect only in the LinuxThreads threading
implementation. On that implementation, calling this function causes the immediate
termination of all threads in the application, except the calling thread. The cancela-
tion state and cancelation type of the to-be-terminated threads are ignored, and the
cleanup handlers are not called in those threads.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_kill_other_threads_np()

VERSIONS
In the NPTL threading implementation, pthread_kill_other_threads_np() exists, but
does nothing. (Nothing needs to be done, because the implementation does the right
thing during an execve(2).)

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the name.

HISTORY
glibc 2.0

NOTES
pthread_kill_other_threads_np() is intended to be called just before a thread calls
execve(2) or a similar function. This function is designed to address a limitation in
the obsolete LinuxThreads implementation whereby the other threads of an applica-
tion are not automatically terminated (as POSIX.1-2001 requires) during execve(2).

SEE ALSO
execve(2), pthread_cancel(3), pthread_setcancelstate(3), pthread_setcanceltype(3),
pthreads(7)

Linux man-pages 6.13 2024-07-23 2174

pthread_mutex_consistent(3) Library Functions Manual pthread_mutex_consistent(3)

NAME
pthread_mutex_consistent - make a robust mutex consistent

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_mutex_consistent(pthread_mutex_t *mutex);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_mutex_consistent():
_POSIX_C_SOURCE >= 200809L

DESCRIPTION
This function makes a robust mutex consistent if it is in an inconsistent state. A mu-
tex can be left in an inconsistent state if its owner terminates while holding the mutex,
in which case the next owner who acquires the mutex will succeed and be notified by
a return value of EOWNERDEAD from a call to pthread_mutex_lock().

RETURN VALUE
On success, pthread_mutex_consistent() returns 0. Otherwise, it returns a positive er-
ror number to indicate the error.

ERRORS
EINVAL

The mutex is either not robust or is not in an inconsistent state.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.12. POSIX.1-2008.

Before the addition of pthread_mutex_consistent() to POSIX, glibc defined the fol-
lowing equivalent nonstandard function if _GNU_SOURCE was defined:

[[deprecated]]
int pthread_mutex_consistent_np(const pthread_mutex_t *mutex);

This GNU-specific API, which first appeared in glibc 2.4, is nowadays obsolete and
should not be used in new programs; since glibc 2.34 it has been marked as depre-
cated.

NOTES
pthread_mutex_consistent() simply informs the implementation that the state
(shared data) guarded by the mutex has been restored to a consistent state and that
normal operations can now be performed with the mutex. It is the application’s re-
sponsibility to ensure that the shared data has been restored to a consistent state before
calling pthread_mutex_consistent().

EXAMPLES
See pthread_mutexattr_setrobust(3).

Linux man-pages 6.13 2024-07-23 2175

pthread_mutex_consistent(3) Library Functions Manual pthread_mutex_consistent(3)

SEE ALSO
pthread_mutex_lock(3), pthread_mutexattr_getrobust(3), pthread_mutexattr_init(3),
pthread_mutexattr_setrobust(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2176

pthread_mutex_init(3) Library Functions Manual pthread_mutex_init(3)

NAME
pthread_mutex_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_mu-
tex_unlock, pthread_mutex_destroy - operations on mutexes

SYNOPSIS
#include <pthread.h>

pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
pthread_mutex_t errchkmutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

DESCRIPTION
A mutex is a MUTual EXclusion device, and is useful for protecting shared data struc-
tures from concurrent modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by any thread), and locked
(owned by one thread). A mutex can never be owned by two different threads simul-
taneously. A thread attempting to lock a mutex that is already locked by another
thread is suspended until the owning thread unlocks the mutex first.

pthread_mutex_init initializes the mutex object pointed to by mutex according to the
mutex attributes specified in mutexattr. If mutexattr is NULL, default attributes are
used instead.

The LinuxThreads implementation supports only one mutex attributes, the mutex kind,
which is either ‘‘fast’’, ‘‘recursive’’, or ‘‘error checking’’. The kind of a mutex deter-
mines whether it can be locked again by a thread that already owns it. The default
kind is ‘‘fast’’. See pthread_mutexattr_init(3) for more information on mutex at-
tributes.

Variables of type pthread_mutex_t can also be initialized statically, using the con-
stants PTHREAD_MUTEX_INITIALIZER (for fast mutexes), PTHREAD_RE-
CURSIVE_MUTEX_INITIALIZER_NP (for recursive mutexes), and
PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP (for error checking
mutexes).

pthread_mutex_lock locks the given mutex. If the mutex is currently unlocked, it
becomes locked and owned by the calling thread, and pthread_mutex_lock returns
immediately. If the mutex is already locked by another thread, pthread_mutex_lock
suspends the calling thread until the mutex is unlocked.

If the mutex is already locked by the calling thread, the behavior of pthread_mu-
tex_lock depends on the kind of the mutex. If the mutex is of the ‘‘fast’’ kind, the
calling thread is suspended until the mutex is unlocked, thus effectively causing the
calling thread to deadlock. If the mutex is of the ‘‘error checking’’ kind,
pthread_mutex_lock returns immediately with the error code EDEADLK. If the
mutex is of the ‘‘recursive’’ kind, pthread_mutex_lock succeeds and returns immedi-
ately, recording the number of times the calling thread has locked the mutex. An

Linux man-pages 6.13 2024-06-16 2177

pthread_mutex_init(3) Library Functions Manual pthread_mutex_init(3)

equal number of pthread_mutex_unlock operations must be performed before the
mutex returns to the unlocked state.

pthread_mutex_trylock behaves identically to pthread_mutex_lock, except that it
does not block the calling thread if the mutex is already locked by another thread (or
by the calling thread in the case of a ‘‘fast’’ mutex). Instead, pthread_mutex_try-
lock returns immediately with the error code EBUSY.

pthread_mutex_unlock unlocks the given mutex. The mutex is assumed to be
locked and owned by the calling thread on entrance to pthread_mutex_unlock. If
the mutex is of the ‘‘fast’’ kind, pthread_mutex_unlock always returns it to the un-
locked state. If it is of the ‘‘recursive’’ kind, it decrements the locking count of the
mutex (number of pthread_mutex_lock operations performed on it by the calling
thread), and only when this count reaches zero is the mutex actually unlocked.

On ‘‘error checking’’ and ‘‘recursive’’ mutexes, pthread_mutex_unlock actually
checks at run-time that the mutex is locked on entrance, and that it was locked by the
same thread that is now calling pthread_mutex_unlock. If these conditions are not
met, an error code is returned and the mutex remains unchanged. ‘‘Fast’’ mutexes
perform no such checks, thus allowing a locked mutex to be unlocked by a thread
other than its owner. This is non-portable behavior and must not be relied upon.

pthread_mutex_destroy destroys a mutex object, freeing the resources it might hold.
The mutex must be unlocked on entrance. In the LinuxThreads implementation, no
resources are associated with mutex objects, thus pthread_mutex_destroy actually
does nothing except checking that the mutex is unlocked.

CANCELLATION
None of the mutex functions is a cancelation point, not even pthread_mutex_lock, in
spite of the fact that it can suspend a thread for arbitrary durations. This way, the sta-
tus of mutexes at cancelation points is predictable, allowing cancelation handlers to
unlock precisely those mutexes that need to be unlocked before the thread stops exe-
cuting. Consequently, threads using deferred cancelation should never hold a mutex
for extended periods of time.

ASYNC-SIGNAL SAFETY
The mutex functions are not async-signal safe. What this means is that they should
not be called from a signal handler. In particular, calling pthread_mutex_lock or
pthread_mutex_unlock from a signal handler may deadlock the calling thread.

RETURN VALUE
pthread_mutex_init always returns 0. The other mutex functions return 0 on success
and a non-zero error code on error.

ERRORS
The pthread_mutex_lock function returns the following error code on error:

EINVAL
The mutex has not been properly initialized.

EDEADLK
The mutex is already locked by the calling thread (‘‘error checking’’
mutexes only).

The pthread_mutex_trylock function returns the following error codes on error:

Linux man-pages 6.13 2024-06-16 2178

pthread_mutex_init(3) Library Functions Manual pthread_mutex_init(3)

EBUSY
The mutex could not be acquired because it was currently locked.

EINVAL
The mutex has not been properly initialized.

The pthread_mutex_unlock function returns the following error code on error:

EINVAL
The mutex has not been properly initialized.

EPERM
The calling thread does not own the mutex (‘‘error checking’’ mutexes
only).

The pthread_mutex_destroy function returns the following error code on error:

EBUSY
The mutex is currently locked.

SEE ALSO
pthread_mutexattr_init(3), pthread_mutexattr_setkind_np(3), pthread_can-
cel(3).

EXAMPLE
A shared global variable x can be protected by a mutex as follows:

int x;
pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

All accesses and modifications to x should be bracketed by calls to pthread_mu-
tex_lock and pthread_mutex_unlock as follows:

pthread_mutex_lock(&mut);
/* operate on x */
pthread_mutex_unlock(&mut);

Linux man-pages 6.13 2024-06-16 2179

pthread_mutexattr_getpshared(3)Library Functions Manualpthread_mutexattr_getpshared(3)

NAME
pthread_mutexattr_getpshared, pthread_mutexattr_setpshared - get/set process-shared
mutex attribute

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getpshared(
const pthread_mutexattr_t *restrict attr,
int *restrict pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

DESCRIPTION
These functions get and set the process-shared attribute in a mutex attributes object.
This attribute must be appropriately set to ensure correct, efficient operation of a mu-
tex created using this attributes object.

The process-shared attribute can have one of the following values:

PTHREAD_PROCESS_PRIVATE
Mutexes created with this attributes object are to be shared only among
threads in the same process that initialized the mutex. This is the default value
for the process-shared mutex attribute.

PTHREAD_PROCESS_SHARED
Mutexes created with this attributes object can be shared between any threads
that have access to the memory containing the object, including threads in dif-
ferent processes.

pthread_mutexattr_getpshared() places the value of the process-shared attribute of
the mutex attributes object referred to by attr in the location pointed to by pshared .

pthread_mutexattr_setpshared() sets the value of the process-shared attribute of the
mutex attributes object referred to by attr to the value specified in pshared.

If attr does not refer to an initialized mutex attributes object, the behavior is unde-
fined.

RETURN VALUE
On success, these functions return 0. On error, they return a positive error number.

ERRORS
pthread_mutexattr_setpshared() can fail with the following errors:

EINVAL
The value specified in pshared is invalid.

ENOTSUP
pshared is PTHREAD_PROCESS_SHARED but the implementation does
not support process-shared mutexes.

STANDARDS
POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 2180

pthread_mutexattr_getpshared(3)Library Functions Manualpthread_mutexattr_getpshared(3)

HISTORY
POSIX.1-2001.

SEE ALSO
pthread_mutexattr_init(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2181

pthread_mutexattr_init(3) Library Functions Manual pthread_mutexattr_init(3)

NAME
pthread_mutexattr_init, pthread_mutexattr_destroy - initialize and destroy a mutex at-
tributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

DESCRIPTION
The pthread_mutexattr_init() function initializes the mutex attributes object pointed
to by attr with default values for all attributes defined by the implementation.

The results of initializing an already initialized mutex attributes object are undefined.

The pthread_mutexattr_destroy() function destroys a mutex attribute object (mak-
ing it uninitialized). Once a mutex attributes object has been destroyed, it can be
reinitialized with pthread_mutexattr_init().

The results of destroying an uninitialized mutex attributes object are undefined.

RETURN VALUE
On success, these functions return 0. On error, they return a positive error number.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Subsequent changes to a mutex attributes object do not affect mutex that have already
been initialized using that object.

SEE ALSO
pthread_mutex_init(3), pthread_mutexattr_getpshared(3),
pthread_mutexattr_getrobust(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2182

pthread_mutexattr_setkind_np(3)Library Functions Manual pthread_mutexattr_setkind_np(3)

NAME
pthread_mutexattr_setkind_np, pthread_mutexattr_getkind_np - deprecated mutex
creation attributes

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_setkind_np(pthread_mutexattr_t *attr, int kind);
int pthread_mutexattr_getkind_np(const pthread_mutexattr_t *attr,

int *kind);

DESCRIPTION
These functions are deprecated, use pthread_mutexattr_settype(3) and
pthread_mutexattr_gettype(3) instead.

RETURN VALUE
pthread_mutexattr_getkind_np always returns 0.

pthread_mutexattr_setkind_np returns 0 on success and a non-zero error code on
error.

ERRORS
On error, pthread_mutexattr_setkind_np returns the following error code:

EINVAL
kind is neither PTHREAD_MUTEX_FAST_NP nor PTHREAD_MU-
TEX_RECURSIVE_NP nor PTHREAD_MUTEX_ERRORCHECK_NP.

SEE ALSO
pthread_mutexattr_settype(3), pthread_mutexattr_gettype(3).

Linux man-pages 6.13 2024-05-19 2183

pthread_mutexattr_setrobust(3) Library Functions Manual pthread_mutexattr_setrobust(3)

NAME
pthread_mutexattr_getrobust, pthread_mutexattr_setrobust - get and set the robust-
ness attribute of a mutex attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *attr,
int *robustness);

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,
int robustness);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_mutexattr_getrobust(), pthread_mutexattr_setrobust():
_POSIX_C_SOURCE >= 200809L

DESCRIPTION
The pthread_mutexattr_getrobust() function places the value of the robustness at-
tribute of the mutex attributes object referred to by attr in *robustness. The
pthread_mutexattr_setrobust() function sets the value of the robustness attribute of
the mutex attributes object referred to by attr to the value specified in *robustness.

The robustness attribute specifies the behavior of the mutex when the owning thread
dies without unlocking the mutex. The following values are valid for robustness:

PTHREAD_MUTEX_STALLED
This is the default value for a mutex attributes object. If a mutex is initialized
with the PTHREAD_MUTEX_STALLED attribute and its owner dies with-
out unlocking it, the mutex remains locked afterwards and any future attempts
to call pthread_mutex_lock(3) on the mutex will block indefinitely.

PTHREAD_MUTEX_ROBUST
If a mutex is initialized with the PTHREAD_MUTEX_ROBUST attribute
and its owner dies without unlocking it, any future attempts to call
pthread_mutex_lock(3) on this mutex will succeed and return EOWN-
ERDEAD to indicate that the original owner no longer exists and the mutex is
in an inconsistent state. Usually after EOWNERDEAD is returned, the next
owner should call pthread_mutex_consistent(3) on the acquired mutex to make
it consistent again before using it any further.

If the next owner unlocks the mutex using pthread_mutex_unlock(3) before
making it consistent, the mutex will be permanently unusable and any subse-
quent attempts to lock it using pthread_mutex_lock(3) will fail with the error
ENOTRECOVERABLE. The only permitted operation on such a mutex is
pthread_mutex_destroy(3).

If the next owner terminates before calling pthread_mutex_consistent(3), fur-
ther pthread_mutex_lock(3) operations on this mutex will still return EOWN-
ERDEAD.

Note that the attr argument of pthread_mutexattr_getrobust() and pthread_mutex-
attr_setrobust() should refer to a mutex attributes object that was initialized by

Linux man-pages 6.13 2024-07-23 2184

pthread_mutexattr_setrobust(3) Library Functions Manual pthread_mutexattr_setrobust(3)

pthread_mutexattr_init(3), otherwise the behavior is undefined.

RETURN VALUE
On success, these functions return 0. On error, they return a positive error number.

In the glibc implementation, pthread_mutexattr_getrobust() always return zero.

ERRORS
EINVAL

A value other than PTHREAD_MUTEX_STALLED or PTHREAD_MU-
TEX_ROBUST was passed to pthread_mutexattr_setrobust().

VERSIONS
In the Linux implementation, when using process-shared robust mutexes, a waiting
thread also receives the EOWNERDEAD notification if the owner of a robust mutex
performs an execve(2) without first unlocking the mutex. POSIX.1 does not specify
this detail, but the same behavior also occurs in at least some other implementations.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.12. POSIX.1-2008.

Before the addition of pthread_mutexattr_getrobust() and pthread_mutex-
attr_setrobust() to POSIX, glibc defined the following equivalent nonstandard func-
tions if _GNU_SOURCE was defined:

[[deprecated]]
int pthread_mutexattr_getrobust_np(const pthread_mutexattr_t *attr,

int *robustness);
[[deprecated]]
int pthread_mutexattr_setrobust_np(const pthread_mutexattr_t *attr,

int robustness);

Correspondingly, the constants PTHREAD_MUTEX_STALLED_NP and
PTHREAD_MUTEX_ROBUST_NP were also defined.

These GNU-specific APIs, which first appeared in glibc 2.4, are nowadays obsolete
and should not be used in new programs; since glibc 2.34 these APIs are marked as
deprecated.

EXAMPLES
The program below demonstrates the use of the robustness attribute of a mutex attrib-
utes object. In this program, a thread holding the mutex dies prematurely without un-
locking the mutex. The main thread subsequently acquires the mutex successfully and
gets the error EOWNERDEAD, after which it makes the mutex consistent.

The following shell session shows what we see when running this program:

$./a.out
[original owner] Setting lock...
[original owner] Locked. Now exiting without unlocking.
[main] Attempting to lock the robust mutex.
[main] pthread_mutex_lock() returned EOWNERDEAD
[main] Now make the mutex consistent

Linux man-pages 6.13 2024-07-23 2185

pthread_mutexattr_setrobust(3) Library Functions Manual pthread_mutexattr_setrobust(3)

[main] Mutex is now consistent; unlocking

Program source
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

static pthread_mutex_t mtx;

static void *
original_owner_thread(void *ptr)
{

printf("[original owner] Setting lock...\n");
pthread_mutex_lock(&mtx);
printf("[original owner] Locked. Now exiting without unlocking.\n");
pthread_exit(NULL);

}

int
main(void)
{

pthread_t thr;
pthread_mutexattr_t attr;
int s;

pthread_mutexattr_init(&attr);

pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST);

pthread_mutex_init(&mtx, &attr);

pthread_create(&thr, NULL, original_owner_thread, NULL);

sleep(2);

/* "original_owner_thread" should have exited by now. */

printf("[main] Attempting to lock the robust mutex.\n");
s = pthread_mutex_lock(&mtx);
if (s == EOWNERDEAD) {

printf("[main] pthread_mutex_lock() returned EOWNERDEAD\n");
printf("[main] Now make the mutex consistent\n");
s = pthread_mutex_consistent(&mtx);
if (s != 0)

Linux man-pages 6.13 2024-07-23 2186

pthread_mutexattr_setrobust(3) Library Functions Manual pthread_mutexattr_setrobust(3)

handle_error_en(s, "pthread_mutex_consistent");
printf("[main] Mutex is now consistent; unlocking\n");
s = pthread_mutex_unlock(&mtx);
if (s != 0)

handle_error_en(s, "pthread_mutex_unlock");

exit(EXIT_SUCCESS);
} else if (s == 0) {

printf("[main] pthread_mutex_lock() unexpectedly succeeded\n");
exit(EXIT_FAILURE);

} else {
printf("[main] pthread_mutex_lock() unexpectedly failed\n");
handle_error_en(s, "pthread_mutex_lock");

}
}

SEE ALSO
get_robust_list(2), set_robust_list(2), pthread_mutex_consistent(3),
pthread_mutex_init(3), pthread_mutex_lock(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2187

pthread_once(3) Library Functions Manual pthread_once(3)

NAME
pthread_once - once-only initialization

SYNOPSIS
#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;

int pthread_once(pthread_once_t *once_control, typeof(void (void)) *init_routine;

DESCRIPTION
The purpose of pthread_once is to ensure that a piece of initialization code is exe-
cuted at most once. The once_control argument points to a static or extern variable
statically initialized to PTHREAD_ONCE_INIT.

The first time pthread_once is called with a given once_control argument, it calls
init_routine with no argument and changes the value of the once_control variable to
record that initialization has been performed. Subsequent calls to pthread_once with
the same once_control argument do nothing.

RETURN VALUE
pthread_once always returns 0.

ERRORS
None.

Linux man-pages 6.13 2025-01-11 2188

pthread_rwlo . . . tr_setkind_np(3)Library Functions Manualpthread_rwlo . . . tr_setkind_np(3)

NAME
pthread_rwlockattr_setkind_np, pthread_rwlockattr_getkind_np - set/get the read-
write lock kind of the thread read-write lock attribute object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_setkind_np(pthread_rwlockattr_t *attr,
int pref);

int pthread_rwlockattr_getkind_np(
const pthread_rwlockattr_t *restrict attr,
int *restrict pref);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_rwlockattr_setkind_np(), pthread_rwlockattr_getkind_np():
_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200809L

DESCRIPTION
The pthread_rwlockattr_setkind_np() function sets the "lock kind" attribute of the
read-write lock attribute object referred to by attr to the value specified in pref . The
argument pref may be set to one of the following:

PTHREAD_RWLOCK_PREFER_READER_NP
This is the default. A thread may hold multiple read locks; that is, read locks
are recursive. According to The Single Unix Specification, the behavior is un-
specified when a reader tries to place a lock, and there is no write lock but
writers are waiting. Giving preference to the reader, as is set by
PTHREAD_RWLOCK_PREFER_READER_NP, implies that the reader
will receive the requested lock, even if a writer is waiting. As long as there are
readers, the writer will be starved.

PTHREAD_RWLOCK_PREFER_WRITER_NP
This is intended as the write lock analog of PTHREAD_RWLOCK_PRE-
FER_READER_NP. This is ignored by glibc because the POSIX require-
ment to support recursive read locks would cause this option to create trivial
deadlocks; instead use PTHREAD_RWLOCK_PREFER_WRITER_NON-
RECURSIVE_NP which ensures the application developer will not take re-
cursive read locks thus avoiding deadlocks.

PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP
Setting the lock kind to this avoids writer starvation as long as any read lock-
ing is not done in a recursive fashion.

The pthread_rwlockattr_getkind_np() function returns the value of the lock kind at-
tribute of the read-write lock attribute object referred to by attr in the pointer pref .

RETURN VALUE
On success, these functions return 0. Given valid pointer arguments,
pthread_rwlockattr_getkind_np() always succeeds. On error, pthread_rwlock-
attr_setkind_np() returns a nonzero error number.

Linux man-pages 6.13 2024-07-23 2189

pthread_rwlo . . . tr_setkind_np(3)Library Functions Manualpthread_rwlo . . . tr_setkind_np(3)

ERRORS
EINVAL

pref specifies an unsupported value.

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

HISTORY
glibc 2.1.

SEE ALSO
pthreads(7)

Linux man-pages 6.13 2024-07-23 2190

pthread_self (3) Library Functions Manual pthread_self (3)

NAME
pthread_self - obtain ID of the calling thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

pthread_t pthread_self(void);

DESCRIPTION
The pthread_self() function returns the ID of the calling thread. This is the same
value that is returned in *thread in the pthread_create(3) call that created this thread.

RETURN VALUE
This function always succeeds, returning the calling thread’s ID.

ERRORS
This function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_self()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
POSIX.1 allows an implementation wide freedom in choosing the type used to repre-
sent a thread ID; for example, representation using either an arithmetic type or a struc-
ture is permitted. Therefore, variables of type pthread_t can’t portably be compared
using the C equality operator (==); use pthread_equal(3) instead.

Thread identifiers should be considered opaque: any attempt to use a thread ID other
than in pthreads calls is nonportable and can lead to unspecified results.

Thread IDs are guaranteed to be unique only within a process. A thread ID may be
reused after a terminated thread has been joined, or a detached thread has terminated.

The thread ID returned by pthread_self() is not the same thing as the kernel thread ID
returned by a call to gettid(2).

SEE ALSO
pthread_create(3), pthread_equal(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2191

pthread_setaffinity_np(3) Library Functions Manual pthread_setaffinity_np(3)

NAME
pthread_setaffinity_np, pthread_getaffinity_np - set/get CPU affinity of a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_setaffinity_np(pthread_t thread , size_t cpusetsize,
const cpu_set_t *cpuset);

int pthread_getaffinity_np(pthread_t thread , size_t cpusetsize,
cpu_set_t *cpuset);

DESCRIPTION
The pthread_setaffinity_np() function sets the CPU affinity mask of the thread
thread to the CPU set pointed to by cpuset. If the call is successful, and the thread is
not currently running on one of the CPUs in cpuset, then it is migrated to one of those
CPUs.

The pthread_getaffinity_np() function returns the CPU affinity mask of the thread
thread in the buffer pointed to by cpuset.

For more details on CPU affinity masks, see sched_setaffinity(2). For a description of
a set of macros that can be used to manipulate and inspect CPU sets, see
CPU_SET(3).

The argument cpusetsize is the length (in bytes) of the buffer pointed to by cpuset.
Typically, this argument would be specified as sizeof(cpu_set_t). (It may be some
other value, if using the macros described in CPU_SET(3) for dynamically allocating
a CPU set.)

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
EFAULT

A supplied memory address was invalid.

EINVAL
(pthread_setaffinity_np()) The affinity bit mask mask contains no processors
that are currently physically on the system and permitted to the thread accord-
ing to any restrictions that may be imposed by the "cpuset" mechanism de-
scribed in cpuset(7).

EINVAL
(pthread_setaffinity_np()) cpuset specified a CPU that was outside the set
supported by the kernel. (The kernel configuration option CON-
FIG_NR_CPUS defines the range of the set supported by the kernel data type
used to represent CPU sets.)

EINVAL
(pthread_getaffinity_np()) cpusetsize is smaller than the size of the affinity
mask used by the kernel.

Linux man-pages 6.13 2024-11-03 2192

pthread_setaffinity_np(3) Library Functions Manual pthread_setaffinity_np(3)

ESRCH
No thread with the ID thread could be found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_setaffinity_np(), pthread_getaffinity_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

HISTORY
glibc 2.3.4.

In glibc 2.3.3 only, versions of these functions were provided that did not have a
cpusetsize argument. Instead the CPU set size given to the underlying system calls
was always sizeof(cpu_set_t).

NOTES
After a call to pthread_setaffinity_np(), the set of CPUs on which the thread will ac-
tually run is the intersection of the set specified in the cpuset argument and the set of
CPUs actually present on the system. The system may further restrict the set of CPUs
on which the thread runs if the "cpuset" mechanism described in cpuset(7) is being
used. These restrictions on the actual set of CPUs on which the thread will run are
silently imposed by the kernel.

These functions are implemented on top of the sched_setaffinity(2) and
sched_getaffinity(2) system calls.

A new thread created by pthread_create(3) inherits a copy of its creator’s CPU affin-
ity mask.

EXAMPLES
In the following program, the main thread uses pthread_setaffinity_np() to set its
CPU affinity mask to include CPUs 0 to 7 (which may not all be available on the sys-
tem), and then calls pthread_getaffinity_np() to check the resulting CPU affinity
mask of the thread.

#define _GNU_SOURCE
#include <err.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

int s;
cpu_set_t cpuset;
pthread_t thread;

thread = pthread_self();

Linux man-pages 6.13 2024-11-03 2193

pthread_setaffinity_np(3) Library Functions Manual pthread_setaffinity_np(3)

/* Set affinity mask to include CPUs 0 to 7. */

CPU_ZERO(&cpuset);
for (size_t j = 0; j < 8; j++)

CPU_SET(j, &cpuset);

s = pthread_setaffinity_np(thread, sizeof(cpuset), &cpuset);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_setaffinity_np");

/* Check the actual affinity mask assigned to the thread. */

s = pthread_getaffinity_np(thread, sizeof(cpuset), &cpuset);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getaffinity_np");

printf("Set returned by pthread_getaffinity_np() contained:\n");
for (size_t j = 0; j < CPU_SETSIZE; j++)

if (CPU_ISSET(j, &cpuset))
printf(" CPU %zu\n", j);

exit(EXIT_SUCCESS);
}

SEE ALSO
sched_setaffinity(2), CPU_SET(3), pthread_attr_setaffinity_np(3), pthread_self(3),
sched_getcpu(3), cpuset(7), pthreads(7), sched(7)

Linux man-pages 6.13 2024-11-03 2194

pthread_setcancelstate(3) Library Functions Manual pthread_setcancelstate(3)

NAME
pthread_setcancelstate, pthread_setcanceltype - set cancelability state and type

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);

DESCRIPTION
The pthread_setcancelstate() sets the cancelability state of the calling thread to the
value given in state. The previous cancelability state of the thread is returned in the
buffer pointed to by oldstate. The state argument must have one of the following val-
ues:

PTHREAD_CANCEL_ENABLE
The thread is cancelable. This is the default cancelability state in all new
threads, including the initial thread. The thread’s cancelability type deter-
mines when a cancelable thread will respond to a cancelation request.

PTHREAD_CANCEL_DISABLE
The thread is not cancelable. If a cancelation request is received, it is blocked
until cancelability is enabled.

The pthread_setcanceltype() sets the cancelability type of the calling thread to the
value given in type. The previous cancelability type of the thread is returned in the
buffer pointed to by oldtype. The type argument must have one of the following val-
ues:

PTHREAD_CANCEL_DEFERRED
A cancelation request is deferred until the thread next calls a function that is a
cancelation point (see pthreads(7)). This is the default cancelability type in all
new threads, including the initial thread.

Even with deferred cancelation, a cancelation point in an asynchronous signal
handler may still be acted upon and the effect is as if it was an asynchronous
cancelation.

PTHREAD_CANCEL_ASYNCHRONOUS
The thread can be canceled at any time. (Typically, it will be canceled imme-
diately upon receiving a cancelation request, but the system doesn’t guarantee
this.)

The set-and-get operation performed by each of these functions is atomic with respect
to other threads in the process calling the same function.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
The pthread_setcancelstate() can fail with the following error:

Linux man-pages 6.13 2024-07-23 2195

pthread_setcancelstate(3) Library Functions Manual pthread_setcancelstate(3)

EINVAL
Invalid value for state.

The pthread_setcanceltype() can fail with the following error:

EINVAL
Invalid value for type.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetypthread_setcancelstate(),
pthread_setcanceltype()

MT-Safe

Async-cancel safetypthread_setcancelstate(),
pthread_setcanceltype()

AC-Safe

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0 POSIX.1-2001.

NOTES
For details of what happens when a thread is canceled, see pthread_cancel(3).

Briefly disabling cancelability is useful if a thread performs some critical action that
must not be interrupted by a cancelation request. Beware of disabling cancelability
for long periods, or around operations that may block for long periods, since that will
render the thread unresponsive to cancelation requests.

Asynchronous cancelability
Setting the cancelability type to PTHREAD_CANCEL_ASYNCHRONOUS is
rarely useful. Since the thread could be canceled at any time, it cannot safely reserve
resources (e.g., allocating memory with malloc(3)), acquire mutexes, semaphores, or
locks, and so on. Reserving resources is unsafe because the application has no way of
knowing what the state of these resources is when the thread is canceled; that is, did
cancelation occur before the resources were reserved, while they were reserved, or af-
ter they were released? Furthermore, some internal data structures (e.g., the linked list
of free blocks managed by the malloc(3) family of functions) may be left in an incon-
sistent state if cancelation occurs in the middle of the function call. Consequently,
clean-up handlers cease to be useful.

Functions that can be safely asynchronously canceled are called async-cancel-safe
functions. POSIX.1-2001 and POSIX.1-2008 require only that pthread_cancel(3),
pthread_setcancelstate(), and pthread_setcanceltype() be async-cancel-safe. In
general, other library functions can’t be safely called from an asynchronously cance-
lable thread.

One of the few circumstances in which asynchronous cancelability is useful is for can-
celation of a thread that is in a pure compute-bound loop.

Portability notes
The Linux threading implementations permit the oldstate argument of pthread_set-
cancelstate() to be NULL, in which case the information about the previous cancela-
bility state is not returned to the caller. Many other implementations also permit a

Linux man-pages 6.13 2024-07-23 2196

pthread_setcancelstate(3) Library Functions Manual pthread_setcancelstate(3)

NULL oldstat argument, but POSIX.1 does not specify this point, so portable applica-
tions should always specify a non-NULL value in oldstate. A precisely analogous set
of statements applies for the oldtype argument of pthread_setcanceltype().

EXAMPLES
See pthread_cancel(3).

SEE ALSO
pthread_cancel(3), pthread_cleanup_push(3), pthread_testcancel(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2197

pthread_setconcurrency(3) Library Functions Manual pthread_setconcurrency(3)

NAME
pthread_setconcurrency, pthread_getconcurrency - set/get the concurrency level

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_setconcurrency(int new_level);
int pthread_getconcurrency(void);

DESCRIPTION
The pthread_setconcurrency() function informs the implementation of the applica-
tion’s desired concurrency level, specified in new_level. The implementation takes
this only as a hint: POSIX.1 does not specify the level of concurrency that should be
provided as a result of calling pthread_setconcurrency().

Specifying new_level as 0 instructs the implementation to manage the concurrency
level as it deems appropriate.

pthread_getconcurrency() returns the current value of the concurrency level for this
process.

RETURN VALUE
On success, pthread_setconcurrency() returns 0; on error, it returns a nonzero error
number.

pthread_getconcurrency() always succeeds, returning the concurrency level set by a
previous call to pthread_setconcurrency(), or 0, if pthread_setconcurrency() has
not previously been called.

ERRORS
pthread_setconcurrency() can fail with the following error:

EINVAL
new_level is negative.

POSIX.1 also documents an EAGAIN error ("the value specified by new_level would
cause a system resource to be exceeded").

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_setconcurrency(),
pthread_getconcurrency()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

NOTES
The default concurrency level is 0.

Concurrency levels are meaningful only for M:N threading implementations, where at
any moment a subset of a process’s set of user-level threads may be bound to a

Linux man-pages 6.13 2024-07-23 2198

pthread_setconcurrency(3) Library Functions Manual pthread_setconcurrency(3)

smaller number of kernel-scheduling entities. Setting the concurrency level allows the
application to give the system a hint as to the number of kernel-scheduling entities
that should be provided for efficient execution of the application.

Both LinuxThreads and NPTL are 1:1 threading implementations, so setting the con-
currency level has no meaning. In other words, on Linux these functions merely exist
for compatibility with other systems, and they have no effect on the execution of a
program.

SEE ALSO
pthread_attr_setscope(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2199

pthread_setname_np(3) Library Functions Manual pthread_setname_np(3)

NAME
pthread_setname_np, pthread_getname_np - set/get the name of a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_setname_np(pthread_t thread , const char *name);
int pthread_getname_np(pthread_t thread , char name[.size], size_t size);

DESCRIPTION
By default, all the threads created using pthread_create() inherit the program name.
The pthread_setname_np() function can be used to set a unique name for a thread,
which can be useful for debugging multithreaded applications. The thread name is a
meaningful C language string, whose length is restricted to 16 characters, including
the terminating null byte ('\0'). The thread argument specifies the thread whose name
is to be changed; name specifies the new name.

The pthread_getname_np() function can be used to retrieve the name of the thread.
The thread argument specifies the thread whose name is to be retrieved. The buffer
name is used to return the thread name; size specifies the number of bytes available in
name. The buffer specified by name should be at least 16 characters in length. The
returned thread name in the output buffer will be null terminated.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
The pthread_setname_np() function can fail with the following error:

ERANGE
The length of the string specified pointed to by name exceeds the allowed
limit.

The pthread_getname_np() function can fail with the following error:

ERANGE
The buffer specified by name and size is too small to hold the thread name.

If either of these functions fails to open /proc/self/task/ tid /comm, then the call may
fail with one of the errors described in open(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_setname_np(), pthread_getname_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

HISTORY
glibc 2.12.

Linux man-pages 6.13 2024-07-23 2200

pthread_setname_np(3) Library Functions Manual pthread_setname_np(3)

NOTES
pthread_setname_np() internally writes to the thread-specific comm file under the
/proc filesystem: /proc/self/task/ tid /comm. pthread_getname_np() retrieves it from
the same location.

EXAMPLES
The program below demonstrates the use of pthread_setname_np() and
pthread_getname_np().

The following shell session shows a sample run of the program:

$./a.out
Created a thread. Default name is: a.out
The thread name after setting it is THREADFOO.
^Z # Suspend the program
[1]+ Stopped ./a.out
$ ps H -C a.out -o 'pid tid cmd comm'

PID TID CMD COMMAND
5990 5990 ./a.out a.out
5990 5991 ./a.out THREADFOO

$ cat /proc/5990/task/5990/comm
a.out
$ cat /proc/5990/task/5991/comm
THREADFOO

Program source

#define _GNU_SOURCE
#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define NAMELEN 16

static void *
threadfunc(void *parm)
{

sleep(5); // allow main program to set the thread name
return NULL;

}

int
main(int argc, char *argv[])
{

pthread_t thread;
int rc;
char thread_name[NAMELEN];

Linux man-pages 6.13 2024-07-23 2201

pthread_setname_np(3) Library Functions Manual pthread_setname_np(3)

rc = pthread_create(&thread, NULL, threadfunc, NULL);
if (rc != 0)

errc(EXIT_FAILURE, rc, "pthread_create");

rc = pthread_getname_np(thread, thread_name, NAMELEN);
if (rc != 0)

errc(EXIT_FAILURE, rc, "pthread_getname_np");

printf("Created a thread. Default name is: %s\n", thread_name);
rc = pthread_setname_np(thread, (argc > 1) ? argv[1] : "THREADFOO");
if (rc != 0)

errc(EXIT_FAILURE, rc, "pthread_setname_np");

sleep(2);

rc = pthread_getname_np(thread, thread_name, NAMELEN);
if (rc != 0)

errc(EXIT_FAILURE, rc, "pthread_getname_np");
printf("The thread name after setting it is %s.\n", thread_name);

rc = pthread_join(thread, NULL);
if (rc != 0)

errc(EXIT_FAILURE, rc, "pthread_join");

printf("Done\n");
exit(EXIT_SUCCESS);

}

SEE ALSO
prctl(2), pthread_create(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2202

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

NAME
pthread_setschedparam, pthread_getschedparam - set/get scheduling policy and para-
meters of a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_setschedparam(pthread_t thread , int policy,
const struct sched_param *param);

int pthread_getschedparam(pthread_t thread , int *restrict policy,
struct sched_param *restrict param);

DESCRIPTION
The pthread_setschedparam() function sets the scheduling policy and parameters of
the thread thread .

policy specifies the new scheduling policy for thread . The supported values for pol-
icy, and their semantics, are described in sched(7).

The structure pointed to by param specifies the new scheduling parameters for
thread . Scheduling parameters are maintained in the following structure:

struct sched_param {
int sched_priority; /* Scheduling priority */

};

As can be seen, only one scheduling parameter is supported. For details of the per-
mitted ranges for scheduling priorities in each scheduling policy, see sched(7).

The pthread_getschedparam() function returns the scheduling policy and parameters
of the thread thread , in the buffers pointed to by policy and param, respectively. The
returned priority value is that set by the most recent pthread_setschedparam(),
pthread_setschedprio(3), or pthread_create(3) call that affected thread . The returned
priority does not reflect any temporary priority adjustments as a result of calls to any
priority inheritance or priority ceiling functions (see, for example, pthread_mutex-
attr_setprioceiling(3) and pthread_mutexattr_setprotocol(3)).

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number. If
pthread_setschedparam() fails, the scheduling policy and parameters of thread are
not changed.

ERRORS
Both of these functions can fail with the following error:

ESRCH
No thread with the ID thread could be found.

pthread_setschedparam() may additionally fail with the following errors:

EINVAL
policy is not a recognized policy, or param does not make sense for the pol-
icy.

Linux man-pages 6.13 2024-07-23 2203

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

EPERM
The caller does not have appropriate privileges to set the specified scheduling
policy and parameters.

POSIX.1 also documents an ENOTSUP ("attempt was made to set the policy or
scheduling parameters to an unsupported value") error for pthread_setschedparam().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_setschedparam(),
pthread_getschedparam()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0 POSIX.1-2001.

NOTES
For a description of the permissions required to, and the effect of, changing a thread’s
scheduling policy and priority, and details of the permitted ranges for priorities in
each scheduling policy, see sched(7).

EXAMPLES
The program below demonstrates the use of pthread_setschedparam() and
pthread_getschedparam(), as well as the use of a number of other scheduling-related
pthreads functions.

In the following run, the main thread sets its scheduling policy to SCHED_FIFO
with a priority of 10, and initializes a thread attributes object with a scheduling policy
attribute of SCHED_RR and a scheduling priority attribute of 20. The program then
sets (using pthread_attr_setinheritsched(3)) the inherit scheduler attribute of the
thread attributes object to PTHREAD_EXPLICIT_SCHED, meaning that threads
created using this attributes object should take their scheduling attributes from the
thread attributes object. The program then creates a thread using the thread attributes
object, and that thread displays its scheduling policy and priority.

$ su # Need privilege to set real-time scheduling policies
Password:
./a.out -mf10 -ar20 -i e
Scheduler settings of main thread

policy=SCHED_FIFO, priority=10

Scheduler settings in 'attr'
policy=SCHED_RR, priority=20
inheritsched is EXPLICIT

Scheduler attributes of new thread
policy=SCHED_RR, priority=20

In the above output, one can see that the scheduling policy and priority were taken
from the values specified in the thread attributes object.

Linux man-pages 6.13 2024-07-23 2204

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

The next run is the same as the previous, except that the inherit scheduler attribute is
set to PTHREAD_INHERIT_SCHED, meaning that threads created using the
thread attributes object should ignore the scheduling attributes specified in the attrib-
utes object and instead take their scheduling attributes from the creating thread.

./a.out -mf10 -ar20 -i i
Scheduler settings of main thread

policy=SCHED_FIFO, priority=10

Scheduler settings in 'attr'
policy=SCHED_RR, priority=20
inheritsched is INHERIT

Scheduler attributes of new thread
policy=SCHED_FIFO, priority=10

In the above output, one can see that the scheduling policy and priority were taken
from the creating thread, rather than the thread attributes object.

Note that if we had omitted the -i i option, the output would have been the same,
since PTHREAD_INHERIT_SCHED is the default for the inherit scheduler at-
tribute.

Program source

/* pthreads_sched_test.c */

#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

[[noreturn]]
static void
usage(char *prog_name, char *msg)
{

if (msg != NULL)
fputs(msg, stderr);

fprintf(stderr, "Usage: %s [options]\n", prog_name);
fprintf(stderr, "Options are:\n");

#define fpe(msg) fprintf(stderr, "\t%s", msg) /* Shorter */
fpe("-a<policy><prio> Set scheduling policy and priority in\n");
fpe(" thread attributes object\n");
fpe(" <policy> can be\n");
fpe(" f SCHED_FIFO\n");
fpe(" r SCHED_RR\n");

Linux man-pages 6.13 2024-07-23 2205

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

fpe(" o SCHED_OTHER\n");
fpe("-A Use default thread attributes object\n");
fpe("-i {e|i} Set inherit scheduler attribute to\n");
fpe(" 'explicit' or 'inherit'\n");
fpe("-m<policy><prio> Set scheduling policy and priority on\n");
fpe(" main thread before pthread_create() call\n");
exit(EXIT_FAILURE);

}

static int
get_policy(char p, int *policy)
{

switch (p) {
case 'f': *policy = SCHED_FIFO; return 1;
case 'r': *policy = SCHED_RR; return 1;
case 'o': *policy = SCHED_OTHER; return 1;
default: return 0;
}

}

static void
display_sched_attr(int policy, const struct sched_param *param)
{

printf(" policy=%s, priority=%d\n",
(policy == SCHED_FIFO) ? "SCHED_FIFO" :
(policy == SCHED_RR) ? "SCHED_RR" :
(policy == SCHED_OTHER) ? "SCHED_OTHER" :
"???",
param->sched_priority);

}

static void
display_thread_sched_attr(char *msg)
{

int policy, s;
struct sched_param param;

s = pthread_getschedparam(pthread_self(), &policy, ¶m);
if (s != 0)

handle_error_en(s, "pthread_getschedparam");

printf("%s\n", msg);
display_sched_attr(policy, ¶m);

}

static void *
thread_start(void *arg)
{

display_thread_sched_attr("Scheduler attributes of new thread");

Linux man-pages 6.13 2024-07-23 2206

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

return NULL;
}

int
main(int argc, char *argv[])
{

int s, opt, inheritsched, use_null_attrib, policy;
pthread_t thread;
pthread_attr_t attr;
pthread_attr_t *attrp;
char *attr_sched_str, *main_sched_str, *inheritsched_str;
struct sched_param param;

/* Process command-line options. */

use_null_attrib = 0;
attr_sched_str = NULL;
main_sched_str = NULL;
inheritsched_str = NULL;

while ((opt = getopt(argc, argv, "a:Ai:m:")) != -1) {
switch (opt) {
case 'a': attr_sched_str = optarg; break;
case 'A': use_null_attrib = 1; break;
case 'i': inheritsched_str = optarg; break;
case 'm': main_sched_str = optarg; break;
default: usage(argv[0], "Unrecognized option\n");
}

}

if (use_null_attrib
&& (inheritsched_str != NULL || attr_sched_str != NULL))

{
usage(argv[0], "Can't specify -A with -i or -a\n");

}

/* Optionally set scheduling attributes of main thread,
and display the attributes. */

if (main_sched_str != NULL) {
if (!get_policy(main_sched_str[0], &policy))

usage(argv[0], "Bad policy for main thread (-m)\n");
param.sched_priority = strtol(&main_sched_str[1], NULL, 0);

s = pthread_setschedparam(pthread_self(), policy, ¶m);
if (s != 0)

handle_error_en(s, "pthread_setschedparam");
}

Linux man-pages 6.13 2024-07-23 2207

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

display_thread_sched_attr("Scheduler settings of main thread");
printf("\n");

/* Initialize thread attributes object according to options. */

attrp = NULL;

if (!use_null_attrib) {
s = pthread_attr_init(&attr);
if (s != 0)

handle_error_en(s, "pthread_attr_init");
attrp = &attr;

}

if (inheritsched_str != NULL) {
if (inheritsched_str[0] == 'e')

inheritsched = PTHREAD_EXPLICIT_SCHED;
else if (inheritsched_str[0] == 'i')

inheritsched = PTHREAD_INHERIT_SCHED;
else

usage(argv[0], "Value for -i must be 'e' or 'i'\n");

s = pthread_attr_setinheritsched(&attr, inheritsched);
if (s != 0)

handle_error_en(s, "pthread_attr_setinheritsched");
}

if (attr_sched_str != NULL) {
if (!get_policy(attr_sched_str[0], &policy))

usage(argv[0], "Bad policy for 'attr' (-a)\n");
param.sched_priority = strtol(&attr_sched_str[1], NULL, 0);

s = pthread_attr_setschedpolicy(&attr, policy);
if (s != 0)

handle_error_en(s, "pthread_attr_setschedpolicy");
s = pthread_attr_setschedparam(&attr, ¶m);
if (s != 0)

handle_error_en(s, "pthread_attr_setschedparam");
}

/* If we initialized a thread attributes object, display
the scheduling attributes that were set in the object. */

if (attrp != NULL) {
s = pthread_attr_getschedparam(&attr, ¶m);
if (s != 0)

handle_error_en(s, "pthread_attr_getschedparam");
s = pthread_attr_getschedpolicy(&attr, &policy);

Linux man-pages 6.13 2024-07-23 2208

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

if (s != 0)
handle_error_en(s, "pthread_attr_getschedpolicy");

printf("Scheduler settings in 'attr'\n");
display_sched_attr(policy, ¶m);

pthread_attr_getinheritsched(&attr, &inheritsched);
printf(" inheritsched is %s\n",

(inheritsched == PTHREAD_INHERIT_SCHED) ? "INHERIT" :
(inheritsched == PTHREAD_EXPLICIT_SCHED) ? "EXPLICIT" :
"???");

printf("\n");
}

/* Create a thread that will display its scheduling attributes. */

s = pthread_create(&thread, attrp, &thread_start, NULL);
if (s != 0)

handle_error_en(s, "pthread_create");

/* Destroy unneeded thread attributes object. */

if (!use_null_attrib) {
s = pthread_attr_destroy(&attr);
if (s != 0)

handle_error_en(s, "pthread_attr_destroy");
}

s = pthread_join(thread, NULL);
if (s != 0)

handle_error_en(s, "pthread_join");

exit(EXIT_SUCCESS);
}

SEE ALSO
getrlimit(2), sched_get_priority_min(2), pthread_attr_init(3),
pthread_attr_setinheritsched(3), pthread_attr_setschedparam(3),
pthread_attr_setschedpolicy(3), pthread_create(3), pthread_self(3),
pthread_setschedprio(3), pthreads(7), sched(7)

Linux man-pages 6.13 2024-07-23 2209

pthread_setschedprio(3) Library Functions Manual pthread_setschedprio(3)

NAME
pthread_setschedprio - set scheduling priority of a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_setschedprio(pthread_t thread , int prio);

DESCRIPTION
The pthread_setschedprio() function sets the scheduling priority of the thread thread
to the value specified in prio. (By contrast pthread_setschedparam(3) changes both
the scheduling policy and priority of a thread.)

RETURN VALUE
On success, this function returns 0; on error, it returns a nonzero error number. If
pthread_setschedprio() fails, the scheduling priority of thread is not changed.

ERRORS
EINVAL

prio is not valid for the scheduling policy of the specified thread.

EPERM
The caller does not have appropriate privileges to set the specified priority.

ESRCH
No thread with the ID thread could be found.

POSIX.1 also documents an ENOTSUP ("attempt was made to set the priority to an
unsupported value") error for pthread_setschedparam(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_setschedprio()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.3.4. POSIX.1-2001.

NOTES
For a description of the permissions required to, and the effect of, changing a thread’s
scheduling priority, and details of the permitted ranges for priorities in each schedul-
ing policy, see sched(7).

SEE ALSO
getrlimit(2), sched_get_priority_min(2), pthread_attr_init(3),
pthread_attr_setinheritsched(3), pthread_attr_setschedparam(3),
pthread_attr_setschedpolicy(3), pthread_create(3), pthread_self(3),
pthread_setschedparam(3), pthreads(7), sched(7)

Linux man-pages 6.13 2024-07-23 2210

pthread_sigmask(3) Library Functions Manual pthread_sigmask(3)

NAME
pthread_sigmask - examine and change mask of blocked signals

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <signal.h>

int pthread_sigmask(int how, const sigset_t *set, sigset_t *oldset);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_sigmask():
_POSIX_C_SOURCE >= 199506L || _XOPEN_SOURCE >= 500

DESCRIPTION
The pthread_sigmask() function is just like sigprocmask(2), with the difference that
its use in multithreaded programs is explicitly specified by POSIX.1. Other differ-
ences are noted in this page.

For a description of the arguments and operation of this function, see sigprocmask(2).

RETURN VALUE
On success, pthread_sigmask() returns 0; on error, it returns an error number.

ERRORS
See sigprocmask(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_sigmask()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
A new thread inherits a copy of its creator’s signal mask.

The glibc pthread_sigmask() function silently ignores attempts to block the two real-
time signals that are used internally by the NPTL threading implementation. See
nptl(7) for details.

EXAMPLES
The program below blocks some signals in the main thread, and then creates a dedi-
cated thread to fetch those signals via sigwait(3). The following shell session demon-
strates its use:

$./a.out &
[1] 5423
$ kill -QUIT %1
Signal handling thread got signal 3
$ kill -USR1 %1
Signal handling thread got signal 10

Linux man-pages 6.13 2024-07-23 2211

pthread_sigmask(3) Library Functions Manual pthread_sigmask(3)

$ kill -TERM %1
[1]+ Terminated ./a.out

Program source

#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

/* Simple error handling functions */

#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

static void *
sig_thread(void *arg)
{

sigset_t *set = arg;
int s, sig;

for (;;) {
s = sigwait(set, &sig);
if (s != 0)

handle_error_en(s, "sigwait");
printf("Signal handling thread got signal %d\n", sig);

}
}

int
main(void)
{

pthread_t thread;
sigset_t set;
int s;

/* Block SIGQUIT and SIGUSR1; other threads created by main()
will inherit a copy of the signal mask. */

sigemptyset(&set);
sigaddset(&set, SIGQUIT);
sigaddset(&set, SIGUSR1);
s = pthread_sigmask(SIG_BLOCK, &set, NULL);
if (s != 0)

handle_error_en(s, "pthread_sigmask");

s = pthread_create(&thread, NULL, &sig_thread, &set);

Linux man-pages 6.13 2024-07-23 2212

pthread_sigmask(3) Library Functions Manual pthread_sigmask(3)

if (s != 0)
handle_error_en(s, "pthread_create");

/* Main thread carries on to create other threads and/or do
other work. */

pause(); /* Dummy pause so we can test program */
}

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), pthread_attr_setsigmask_np(3),
pthread_create(3), pthread_kill(3), sigsetops(3), pthreads(7), signal(7)

Linux man-pages 6.13 2024-07-23 2213

pthread_sigqueue(3) Library Functions Manual pthread_sigqueue(3)

NAME
pthread_sigqueue - queue a signal and data to a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <signal.h>
#include <pthread.h>

int pthread_sigqueue(pthread_t thread , int sig,
const union sigval value);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_sigqueue():
_GNU_SOURCE

DESCRIPTION
The pthread_sigqueue() function performs a similar task to sigqueue(3), but, rather
than sending a signal to a process, it sends a signal to a thread in the same process as
the calling thread.

The thread argument is the ID of a thread in the same process as the caller. The sig
argument specifies the signal to be sent. The value argument specifies data to accom-
pany the signal; see sigqueue(3) for details.

RETURN VALUE
On success, pthread_sigqueue() returns 0; on error, it returns an error number.

ERRORS
EAGAIN

The limit of signals which may be queued has been reached. (See signal(7)
for further information.)

EINVAL
sig was invalid.

ENOSYS
pthread_sigqueue() is not supported on this system.

ESRCH
thread is not valid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_sigqueue()

VERSIONS
The glibc implementation of pthread_sigqueue() gives an error (EINVAL) on at-
tempts to send either of the real-time signals used internally by the NPTL threading
implementation. See nptl(7) for details.

STANDARDS
GNU.

Linux man-pages 6.13 2024-07-23 2214

pthread_sigqueue(3) Library Functions Manual pthread_sigqueue(3)

HISTORY
glibc 2.11.

SEE ALSO
rt_tgsigqueueinfo(2), sigaction(2), pthread_sigmask(3), sigqueue(3), sigwait(3),
pthreads(7), signal(7)

Linux man-pages 6.13 2024-07-23 2215

pthread_spin_init(3) Library Functions Manual pthread_spin_init(3)

NAME
pthread_spin_init, pthread_spin_destroy - initialize or destroy a spin lock

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_spin_init(pthread_spinlock_t *lock, int pshared);
int pthread_spin_destroy(pthread_spinlock_t *lock);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_spin_init(), pthread_spin_destroy():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
General note: Most programs should use mutexes instead of spin locks. Spin locks
are primarily useful in conjunction with real-time scheduling policies. See NOTES.

The pthread_spin_init() function allocates any resources required for the use of the
spin lock referred to by lock and initializes the lock to be in the unlocked state. The
pshared argument must have one of the following values:

PTHREAD_PROCESS_PRIVATE
The spin lock is to be operated on only by threads in the same process as the
thread that calls pthread_spin_init(). (Attempting to share the spin lock be-
tween processes results in undefined behavior.)

PTHREAD_PROCESS_SHARED
The spin lock may be operated on by any thread in any process that has access
to the memory containing the lock (i.e., the lock may be in a shared memory
object that is shared among multiple processes).

Calling pthread_spin_init() on a spin lock that has already been initialized results in
undefined behavior.

The pthread_spin_destroy() function destroys a previously initialized spin lock, free-
ing any resources that were allocated for that lock. Destroying a spin lock that has not
been previously been initialized or destroying a spin lock while another thread holds
the lock results in undefined behavior.

Once a spin lock has been destroyed, performing any operation on the lock other than
once more initializing it with pthread_spin_init() results in undefined behavior.

The result of performing operations such as pthread_spin_lock(3), pthread_spin_un-
lock(3), and pthread_spin_destroy() on copies of the object referred to by lock is un-
defined.

RETURN VALUE
On success, there functions return zero. On failure, they return an error number. In
the event that pthread_spin_init() fails, the lock is not initialized.

ERRORS
pthread_spin_init() may fail with the following errors:

Linux man-pages 6.13 2024-07-23 2216

pthread_spin_init(3) Library Functions Manual pthread_spin_init(3)

EAGAIN
The system has insufficient resources to initialize a new spin lock.

ENOMEM
Insufficient memory to initialize the spin lock.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

Support for process-shared spin locks is a POSIX option. The option is supported in
the glibc implementation.

NOTES
Spin locks should be employed in conjunction with real-time scheduling policies
(SCHED_FIFO, or possibly SCHED_RR). Use of spin locks with nondeterministic
scheduling policies such as SCHED_OTHER probably indicates a design mistake.
The problem is that if a thread operating under such a policy is scheduled off the CPU
while it holds a spin lock, then other threads will waste time spinning on the lock until
the lock holder is once more rescheduled and releases the lock.

If threads create a deadlock situation while employing spin locks, those threads will
spin forever consuming CPU time.

User-space spin locks are not applicable as a general locking solution. They are, by
definition, prone to priority inversion and unbounded spin times. A programmer us-
ing spin locks must be exceptionally careful not only in the code, but also in terms of
system configuration, thread placement, and priority assignment.

SEE ALSO
pthread_mutex_init(3), pthread_mutex_lock(3), pthread_spin_lock(3),
pthread_spin_unlock(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2217

pthread_spin_lock(3) Library Functions Manual pthread_spin_lock(3)

NAME
pthread_spin_lock, pthread_spin_trylock, pthread_spin_unlock - lock and unlock a
spin lock

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);
int pthread_spin_trylock(pthread_spinlock_t *lock);
int pthread_spin_unlock(pthread_spinlock_t *lock);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_spin_lock(), pthread_spin_trylock():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The pthread_spin_lock() function locks the spin lock referred to by lock. If the spin
lock is currently unlocked, the calling thread acquires the lock immediately. If the
spin lock is currently locked by another thread, the calling thread spins, testing the
lock until it becomes available, at which point the calling thread acquires the lock.

Calling pthread_spin_lock() on a lock that is already held by the caller or a lock that
has not been initialized with pthread_spin_init(3) results in undefined behavior.

The pthread_spin_trylock() function is like pthread_spin_lock(), except that if the
spin lock referred to by lock is currently locked, then, instead of spinning, the call re-
turns immediately with the error EBUSY.

The pthread_spin_unlock() function unlocks the spin lock referred to lock. If any
threads are spinning on the lock, one of those threads will then acquire the lock.

Calling pthread_spin_unlock() on a lock that is not held by the caller results in unde-
fined behavior.

RETURN VALUE
On success, these functions return zero. On failure, they return an error number.

ERRORS
pthread_spin_lock() may fail with the following errors:

EDEADLOCK
The system detected a deadlock condition.

pthread_spin_trylock() fails with the following errors:

EBUSY
The spin lock is currently locked by another thread.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

Linux man-pages 6.13 2024-07-23 2218

pthread_spin_lock(3) Library Functions Manual pthread_spin_lock(3)

CAVEATS
Applying any of the functions described on this page to an uninitialized spin lock re-
sults in undefined behavior.

Carefully read NOTES in pthread_spin_init(3).

SEE ALSO
pthread_spin_destroy(3), pthread_spin_init(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2219

pthread_testcancel(3) Library Functions Manual pthread_testcancel(3)

NAME
pthread_testcancel - request delivery of any pending cancelation request

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

void pthread_testcancel(void);

DESCRIPTION
Calling pthread_testcancel() creates a cancelation point within the calling thread, so
that a thread that is otherwise executing code that contains no cancelation points will
respond to a cancelation request.

If cancelability is disabled (using pthread_setcancelstate(3)), or no cancelation re-
quest is pending, then a call to pthread_testcancel() has no effect.

RETURN VALUE
This function does not return a value. If the calling thread is canceled as a conse-
quence of a call to this function, then the function does not return.

ERRORS
This function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_testcancel()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0. POSIX.1-2001.

EXAMPLES
See pthread_cleanup_push(3).

SEE ALSO
pthread_cancel(3), pthread_cleanup_push(3), pthread_setcancelstate(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2220

pthread_tryjoin_np(3) Library Functions Manual pthread_tryjoin_np(3)

NAME
pthread_tryjoin_np, pthread_timedjoin_np - try to join with a terminated thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_tryjoin_np(pthread_t thread , void **retval);
int pthread_timedjoin_np(pthread_t thread , void **retval,

const struct timespec *abstime);

DESCRIPTION
These functions operate in the same way as pthread_join(3), except for the differences
described on this page.

The pthread_tryjoin_np() function performs a nonblocking join with the thread
thread , returning the exit status of the thread in *retval. If thread has not yet termi-
nated, then instead of blocking, as is done by pthread_join(3), the call returns an error.

The pthread_timedjoin_np() function performs a join-with-timeout. If thread has
not yet terminated, then the call blocks until a maximum time, specified in abstime,
measured against the CLOCK_REALTIME clock. If the timeout expires before
thread terminates, the call returns an error. The abstime argument is a timespec(3)
structure, specifying an absolute time measured since the Epoch (see time(2)).

RETURN VALUE
On success, these functions return 0; on error, they return an error number.

ERRORS
These functions can fail with the same errors as pthread_join(3).
pthread_tryjoin_np() can in addition fail with the following error:

EBUSY
thread had not yet terminated at the time of the call.

pthread_timedjoin_np() can in addition fail with the following errors:

EINVAL
abstime value is invalid (tv_sec is less than 0 or tv_nsec is greater than 1e9).

ETIMEDOUT
The call timed out before thread terminated.

pthread_timedjoin_np() never returns the error EINTR.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_tryjoin_np(), pthread_timedjoin_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

Linux man-pages 6.13 2024-07-23 2221

pthread_tryjoin_np(3) Library Functions Manual pthread_tryjoin_np(3)

HISTORY
glibc 2.3.3.

BUGS
The pthread_timedjoin_np() function measures time by internally calculating a rela-
tive sleep interval that is then measured against the CLOCK_MONOTONIC clock
instead of the CLOCK_REALTIME clock. Consequently, the timeout is unaffected
by discontinuous changes to the CLOCK_REALTIME clock.

EXAMPLES
The following code waits to join for up to 5 seconds:

struct timespec ts;
int s;

...

if (clock_gettime(CLOCK_REALTIME, &ts) == -1) {
/* Handle error */

}

ts.tv_sec += 5;

s = pthread_timedjoin_np(thread, NULL, &ts);
if (s != 0) {

/* Handle error */
}

SEE ALSO
clock_gettime(2), pthread_exit(3), pthread_join(3), timespec(3), pthreads(7)

Linux man-pages 6.13 2024-07-23 2222

pthread_yield(3) Library Functions Manual pthread_yield(3)

NAME
pthread_yield - yield the processor

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

[[deprecated]] int pthread_yield(void);

DESCRIPTION
Note: This function is deprecated; see below.

pthread_yield() causes the calling thread to relinquish the CPU. The thread is placed
at the end of the run queue for its static priority and another thread is scheduled to run.
For further details, see sched_yield(2)

RETURN VALUE
On success, pthread_yield() returns 0; on error, it returns an error number.

ERRORS
On Linux, this call always succeeds (but portable and future-proof applications should
nevertheless handle a possible error return).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_yield()

VERSIONS
On Linux, this function is implemented as a call to sched_yield(2).

STANDARDS
None.

HISTORY
Deprecated since glibc 2.34. Use the standardized sched_yield(2) instead.

NOTES
pthread_yield() is intended for use with real-time scheduling policies (i.e.,
SCHED_FIFO or SCHED_RR). Use of pthread_yield() with nondeterministic
scheduling policies such as SCHED_OTHER is unspecified and very likely means
your application design is broken.

SEE ALSO
sched_yield(2), pthreads(7), sched(7)

Linux man-pages 6.13 2024-07-23 2223

ptsname(3) Library Functions Manual ptsname(3)

NAME
ptsname, ptsname_r - get the name of the slave pseudoterminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

char *ptsname(int fd);
int ptsname_r(int fd , char buf [.size], size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ptsname():
Since glibc 2.24:

_XOPEN_SOURCE >= 500
glibc 2.23 and earlier:

_XOPEN_SOURCE

ptsname_r():
_GNU_SOURCE

DESCRIPTION
The ptsname() function returns the name of the slave pseudoterminal device corre-
sponding to the master referred to by the file descriptor fd .

The ptsname_r() function is the reentrant equivalent of ptsname(). It returns the
name of the slave pseudoterminal device as a null-terminated string in the buffer
pointed to by buf . The size argument specifies the number of bytes available in buf .

RETURN VALUE
On success, ptsname() returns a pointer to a string in static storage which will be
overwritten by subsequent calls. This pointer must not be freed. On failure, NULL is
returned.

On success, ptsname_r() returns 0. On failure, an error number is returned to indi-
cate the error.

ERRORS
EINVAL

(ptsname_r() only) buf is NULL. (This error is returned only for glibc 2.25
and earlier.)

ENOTTY
fd does not refer to a pseudoterminal master device.

ERANGE
(ptsname_r() only) buf is too small.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:ptsnameptsname()
Thread safety MT-Safeptsname_r()

Linux man-pages 6.13 2024-12-24 2224

ptsname(3) Library Functions Manual ptsname(3)

VERSIONS
A version of ptsname_r() is documented on Tru64 and HP-UX, but on those imple-
mentations, -1 is returned on error, with errno set to indicate the error. Avoid using
this function in portable programs.

STANDARDS
ptsname():

POSIX.1-2008.

ptsname_r() is a Linux extension, that is proposed for inclusion in the next major re-
vision of POSIX.1 (Issue 8).

HISTORY
ptsname():

POSIX.1-2001. glibc 2.1.

ptsname() is part of the UNIX 98 pseudoterminal support (see pts(4)).

SEE ALSO
grantpt(3), posix_openpt(3), ttyname(3), unlockpt(3), pts(4), pty(7)

Linux man-pages 6.13 2024-12-24 2225

putenv(3) Library Functions Manual putenv(3)

NAME
putenv - change or add an environment variable

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int putenv(char *string);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

putenv():
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

DESCRIPTION
The putenv() function adds or changes the value of environment variables. The argu-
ment string is of the form name=value. If name does not already exist in the environ-
ment, then string is added to the environment. If name does exist, then the value of
name in the environment is changed to value. The string pointed to by string becomes
part of the environment, so altering the string changes the environment.

RETURN VALUE
The putenv() function returns zero on success. On failure, it returns a nonzero value,
and errno is set to indicate the error.

ERRORS
ENOMEM

Insufficient space to allocate new environment.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe const:envputenv()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr2, 4.3BSD-Reno.

The putenv() function is not required to be reentrant, and the one in glibc 2.0 is not,
but the glibc 2.1 version is.

Since glibc 2.1.2, the glibc implementation conforms to SUSv2: the pointer string
given to putenv() is used. In particular, this string becomes part of the environment;
changing it later will change the environment. (Thus, it is an error to call putenv()
with an automatic variable as the argument, then return from the calling function
while string is still part of the environment.) However, from glibc 2.0 to glibc 2.1.1, it
differs: a copy of the string is used. On the one hand this causes a memory leak, and
on the other hand it violates SUSv2.

The 4.3BSD-Reno version, like glibc 2.0, uses a copy; this is fixed in all modern
BSDs.

Linux man-pages 6.13 2024-07-23 2226

putenv(3) Library Functions Manual putenv(3)

SUSv2 removes the const from the prototype, and so does glibc 2.1.3.

The GNU C library implementation provides a nonstandard extension. If string does
not include an equal sign:

putenv("NAME");

then the named variable is removed from the caller’s environment.

SEE ALSO
clearenv(3), getenv(3), setenv(3), unsetenv(3), environ(7)

Linux man-pages 6.13 2024-07-23 2227

putgrent(3) Library Functions Manual putgrent(3)

NAME
putgrent - write a group database entry to a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <grp.h>

int putgrent(const struct group *restrict grp, FILE *restrict stream);

DESCRIPTION
The putgrent() function is the counterpart for fgetgrent(3). The function writes the
content of the provided struct group into the stream. The list of group members must
be NULL-terminated or NULL-initialized.

The struct group is defined as follows:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
gid_t gr_gid; /* group ID */
char **gr_mem; /* group members */

};

RETURN VALUE
The function returns zero on success, and a nonzero value on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeputgrent()

STANDARDS
GNU.

SEE ALSO
fgetgrent(3), getgrent(3), group(5)

Linux man-pages 6.13 2024-07-23 2228

putpwent(3) Library Functions Manual putpwent(3)

NAME
putpwent - write a password file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <sys/types.h>
#include <pwd.h>

int putpwent(const struct passwd *restrict p, FILE *restrict stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

putpwent():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
The putpwent() function writes a password entry from the structure p in the file asso-
ciated with stream.

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* real name */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

RETURN VALUE
The putpwent() function returns 0 on success. On failure, it returns -1, and errno is
set to indicate the error.

ERRORS
EINVAL

Invalid (NULL) argument given.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeputpwent()

STANDARDS
None.

HISTORY
SVr4.

Linux man-pages 6.13 2024-07-23 2229

putpwent(3) Library Functions Manual putpwent(3)

SEE ALSO
endpwent(3), fgetpwent(3), getpw(3), getpwent(3), getpwnam(3), getpwuid(3), setp-
went(3)

Linux man-pages 6.13 2024-07-23 2230

puts(3) Library Functions Manual puts(3)

NAME
fputc, fputs, putc, putchar, puts - output of characters and strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fputc(int c, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);

int fputs(const char *restrict s, FILE *restrict stream);
int puts(const char *s);

DESCRIPTION
fputc() writes the character c, cast to an unsigned char, to stream.

putc() is equivalent to fputc() except that it may be implemented as a macro which
evaluates stream more than once.

putchar(c) is equivalent to putc(c, stdout).

fputs() writes the string s to stream, without its terminating null byte ('\0').

puts() writes the string s and a trailing newline to stdout.

Calls to the functions described here can be mixed with each other and with calls to
other output functions from the stdio library for the same output stream.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
fputc(), putc(), and putchar() return the character written as an unsigned char cast to
an int or EOF on error.

puts() and fputs() return a nonnegative number on success, or EOF on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefputc(), fputs(), putc(), putchar(), puts()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, C99.

BUGS
It is not advisable to mix calls to output functions from the stdio library with low-
level calls to write(2) for the file descriptor associated with the same output stream;
the results will be undefined and very probably not what you want.

SEE ALSO
write(2), ferror(3), fgets(3), fopen(3), fputwc(3), fputws(3), fseek(3), fwrite(3),
putwchar(3), scanf(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-07-23 2231

puts(3) Library Functions Manual puts(3)

Linux man-pages 6.13 2024-07-23 2232

putwchar(3) Library Functions Manual putwchar(3)

NAME
putwchar - write a wide character to standard output

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wint_t putwchar(wchar_t wc);

DESCRIPTION
The putwchar() function is the wide-character equivalent of the putchar(3) function.
It writes the wide character wc to stdout. If ferror(stdout) becomes true, it returns
WEOF. If a wide character conversion error occurs, it sets errno to EILSEQ and re-
turns WEOF. Otherwise, it returns wc.

For a nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
The putwchar() function returns wc if no error occurred, or WEOF to indicate an er-
ror.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeputwchar()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of putwchar() depends on the LC_CTYPE category of the current lo-
cale.

It is reasonable to expect that putwchar() will actually write the multibyte sequence
corresponding to the wide character wc.

SEE ALSO
fputwc(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-07-23 2233

qecvt(3) Library Functions Manual qecvt(3)

NAME
qecvt, qfcvt, qgcvt - convert a floating-point number to a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

[[deprecated]] char *qecvt(long double number, int ndigits,
int *restrict decpt, int *restrict sign);

[[deprecated]] char *qfcvt(long double number, int ndigits,
int *restrict decpt, int *restrict sign);

[[deprecated]] char *qgcvt(long double number, int ndigit, char *buf);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

qecvt(), qfcvt(), qgcvt():
Since glibc 2.19:

_DEFAULT_SOURCE
In glibc up to and including 2.19:

_SVID_SOURCE

DESCRIPTION
The functions qecvt(), qfcvt(), and qgcvt() are identical to ecvt(3), fcvt(3), and gcvt(3)
respectively, except that they use a long double argument number. See ecvt(3) and
gcvt(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:qecvtqecvt()
Thread safety MT-Unsafe race:qfcvtqfcvt()
Thread safety MT-Safeqgcvt()

STANDARDS
None.

HISTORY
SVr4, SunOS, GNU.

These functions are obsolete. Instead, snprintf(3) is recommended.

SEE ALSO
ecvt(3), ecvt_r(3), gcvt(3), sprintf(3)

Linux man-pages 6.13 2024-07-23 2234

qsort(3) Library Functions Manual qsort(3)

NAME
qsort, qsort_r - sort an array

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

void qsort(void base[.size * .n], size_t n, size_t size,
typeof(int (const void [.size], const void [.size]))

*compar);
void qsort_r(void base[.size * .n], size_t n, size_t size,

typeof(int (const void [.size], const void [.size], void *))
*compar,

void *arg);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

qsort_r():
_GNU_SOURCE

DESCRIPTION
The qsort() function sorts an array with n elements of size size. The base argument
points to the start of the array.

The contents of the array are sorted in ascending order according to a comparison
function pointed to by compar, which is called with two arguments that point to the
objects being compared.

The comparison function must return an integer less than, equal to, or greater than
zero if the first argument is considered to be respectively less than, equal to, or greater
than the second. If two members compare as equal, their order in the sorted array is
undefined.

The qsort_r() function is identical to qsort() except that the comparison function
compar takes a third argument. A pointer is passed to the comparison function via
arg. In this way, the comparison function does not need to use global variables to
pass through arbitrary arguments, and is therefore reentrant and safe to use in threads.

RETURN VALUE
The qsort() and qsort_r() functions return no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeqsort(), qsort_r()

STANDARDS
qsort()

C11, POSIX.1-2008.

HISTORY
qsort()

POSIX.1-2001, C89, SVr4, 4.3BSD.

Linux man-pages 6.13 2024-12-13 2235

qsort(3) Library Functions Manual qsort(3)

qsort_r()
glibc 2.8.

NOTES
To compare C strings, the comparison function can call strcmp(3), as shown in the ex-
ample below.

EXAMPLES
For one example of use, see the example under bsearch(3).

Another example is the following program, which sorts the strings given in its com-
mand-line arguments:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int
cmpstringp(const void *p1, const void *p2)
{

/* The actual arguments to this function are "pointers to
pointers to char", but strcmp(3) arguments are "pointers
to char", hence the following cast plus dereference. */

return strcmp(*(const char **) p1, *(const char **) p2);
}

int
main(int argc, char *argv[])
{

if (argc < 2) {
fprintf(stderr, "Usage: %s <string>...\n", argv[0]);
exit(EXIT_FAILURE);

}

qsort(&argv[1], argc - 1, sizeof(char *), cmpstringp);

for (size_t j = 1; j < argc; j++)
puts(argv[j]);

exit(EXIT_SUCCESS);
}

SEE ALSO
sort(1), alphasort(3), strcmp(3), versionsort(3)

Linux man-pages 6.13 2024-12-13 2236

raise(3) Library Functions Manual raise(3)

NAME
raise - send a signal to the caller

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int raise(int sig);

DESCRIPTION
The raise() function sends a signal to the calling process or thread. In a single-
threaded program it is equivalent to

kill(getpid(), sig);

In a multithreaded program it is equivalent to

pthread_kill(pthread_self(), sig);

If the signal causes a handler to be called, raise() will return only after the signal han-
dler has returned.

RETURN VALUE
raise() returns 0 on success, and nonzero for failure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferaise()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

Since glibc 2.3.3, raise() is implemented by calling tgkill(2), if the kernel supports
that system call. Older glibc versions implemented raise() using kill(2).

SEE ALSO
getpid(2), kill(2), sigaction(2), signal(2), pthread_kill(3), signal(7)

Linux man-pages 6.13 2024-07-23 2237

rand(3) Library Functions Manual rand(3)

NAME
rand, rand_r, srand - pseudo-random number generator

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int rand(void);
void srand(unsigned int seed);

[[deprecated]] int rand_r(unsigned int *seedp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

rand_r():
Since glibc 2.24:

_POSIX_C_SOURCE >= 199506L
glibc 2.23 and earlier

_POSIX_C_SOURCE

DESCRIPTION
The rand() function returns a pseudo-random integer in the range 0 to RAND_MAX
inclusive (i.e., the mathematical range [0, RAND_MAX]).

The srand() function sets its argument as the seed for a new sequence of pseudo-ran-
dom integers to be returned by rand(). These sequences are repeatable by calling
srand() with the same seed value.

If no seed value is provided, the rand() function is automatically seeded with a value
of 1.

The function rand() is not reentrant, since it uses hidden state that is modified on each
call. This might just be the seed value to be used by the next call, or it might be
something more elaborate. In order to get reproducible behavior in a threaded appli-
cation, this state must be made explicit; this can be done using the reentrant function
rand_r().

Like rand(), rand_r() returns a pseudo-random integer in the range
[0, RAND_MAX]. The seedp argument is a pointer to an unsigned int that is used to
store state between calls. If rand_r() is called with the same initial value for the inte-
ger pointed to by seedp, and that value is not modified between calls, then the same
pseudo-random sequence will result.

The value pointed to by the seedp argument of rand_r() provides only a very small
amount of state, so this function will be a weak pseudo-random generator. Try
drand48_r(3) instead.

RETURN VALUE
The rand() and rand_r() functions return a value between 0 and RAND_MAX (in-
clusive). The srand() function returns no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2025-01-05 2238

rand(3) Library Functions Manual rand(3)

Interface Attribute Value
Thread safety MT-Saferand(), rand_r(), srand()

VERSIONS
The versions of rand() and srand() in the Linux C Library use the same random num-
ber generator as random(3) and srandom(3), so the lower-order bits should be as ran-
dom as the higher-order bits. However, on older rand() implementations, and on cur-
rent implementations on different systems, the lower-order bits are much less random
than the higher-order bits. Do not use this function in applications intended to be
portable when good randomness is needed. (Use random(3) instead.)

STANDARDS
rand()
srand()

C11, POSIX.1-2008.

rand_r()
POSIX.1-2008.

HISTORY
rand()
srand()

SVr4, 4.3BSD, C89, POSIX.1-2001.

rand_r()
POSIX.1-2001. Obsolete in POSIX.1-2008.

EXAMPLES
POSIX.1-2001 gives the following example of an implementation of rand() and
srand(), possibly useful when one needs the same sequence on two different ma-
chines.

static unsigned long next = 1;

/* RAND_MAX assumed to be 32767 */
int myrand(void) {

next = next * 1103515245 + 12345;
return((unsigned) (next/65536) % 32768);

}

void mysrand(unsigned int seed) {
next = seed;

}

The following program can be used to display the pseudo-random sequence produced
by rand() when given a particular seed. When the seed is -1, the program uses a ran-
dom seed.

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

Linux man-pages 6.13 2025-01-05 2239

rand(3) Library Functions Manual rand(3)

int r;
unsigned int seed, nloops;

if (argc != 3) {
fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
exit(EXIT_FAILURE);

}

seed = atoi(argv[1]);
nloops = atoi(argv[2]);

if (seed == -1) {
seed = arc4random();
printf("seed: %u\n", seed);

}

srand(seed);
for (unsigned int j = 0; j < nloops; j++) {

r = rand();
printf("%d\n", r);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
drand48(3), random(3)

Linux man-pages 6.13 2025-01-05 2240

random(3) Library Functions Manual random(3)

NAME
random, srandom, initstate, setstate - random number generator

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

long random(void);
void srandom(unsigned int seed);

char *initstate(unsigned int seed , char state[.n], size_t n);
char *setstate(char *state);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

random(), srandom(), initstate(), setstate():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The random() function uses a nonlinear additive feedback random number generator
employing a default table of size 31 long integers to return successive pseudo-random
numbers in the range from 0 to 2^31 - 1. The period of this random number genera-
tor is very large, approximately 16 * ((2^31) - 1).

The srandom() function sets its argument as the seed for a new sequence of pseudo-
random integers to be returned by random(). These sequences are repeatable by call-
ing srandom() with the same seed value. If no seed value is provided, the random()
function is automatically seeded with a value of 1.

The initstate() function allows a state array state to be initialized for use by ran-
dom(). The size of the state array n is used by initstate() to decide how sophisticated
a random number generator it should use—the larger the state array, the better the ran-
dom numbers will be. Current "optimal" values for the size of the state array n are 8,
32, 64, 128, and 256 bytes; other amounts will be rounded down to the nearest known
amount. Using less than 8 bytes results in an error. seed is the seed for the initializa-
tion, which specifies a starting point for the random number sequence, and provides
for restarting at the same point.

The setstate() function changes the state array used by the random() function. The
state array state is used for random number generation until the next call to initstate()
or setstate(). state must first have been initialized using initstate() or be the result of
a previous call of setstate().

RETURN VALUE
The random() function returns a value between 0 and (2^31) - 1. The srandom()
function returns no value.

The initstate() function returns a pointer to the previous state array. On failure, it re-
turns NULL, and errno is set to indicate the error.

On success, setstate() returns a pointer to the previous state array. On failure, it re-
turns NULL, and errno is set to indicate the error.

Linux man-pages 6.13 2024-07-23 2241

random(3) Library Functions Manual random(3)

ERRORS
EINVAL

The state argument given to setstate() was NULL.

EINVAL
A state array of less than 8 bytes was specified to initstate().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferandom(), srandom(), initstate(), setstate()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

NOTES
Random-number generation is a complex topic. Numerical Recipes in C: The Art of
Scientific Computing (William H. Press, Brian P. Flannery, Saul A. Teukolsky,
William T. Vetterling; New York: Cambridge University Press, 2007, 3rd ed.) pro-
vides an excellent discussion of practical random-number generation issues in Chapter
7 (Random Numbers).

For a more theoretical discussion which also covers many practical issues in depth,
see Chapter 3 (Random Numbers) in Donald E. Knuth’s The Art of Computer Pro-
gramming, volume 2 (Seminumerical Algorithms), 2nd ed.; Reading, Massachusetts:
Addison-Wesley Publishing Company, 1981.

CAVEATS
The random() function should not be used in multithreaded programs where repro-
ducible behavior is required. Use random_r(3) for that purpose.

BUGS
According to POSIX, initstate() should return NULL on error. In the glibc imple-
mentation, errno is (as specified) set on error, but the function does not return NULL.

SEE ALSO
getrandom(2), drand48(3), rand(3), random_r(3), srand(3)

Linux man-pages 6.13 2024-07-23 2242

random_r(3) Library Functions Manual random_r(3)

NAME
random_r, srandom_r, initstate_r, setstate_r - reentrant random number generator

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int random_r(struct random_data *restrict buf ,
int32_t *restrict result);

int srandom_r(unsigned int seed , struct random_data *buf);

int initstate_r(unsigned int seed , char statebuf [restrict .statelen],
size_t statelen, struct random_data *restrict buf);

int setstate_r(char *restrict statebuf ,
struct random_data *restrict buf);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

random_r(), srandom_r(), initstate_r(), setstate_r():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
These functions are the reentrant equivalents of the functions described in random(3).
They are suitable for use in multithreaded programs where each thread needs to obtain
an independent, reproducible sequence of random numbers.

The random_r() function is like random(3), except that instead of using state infor-
mation maintained in a global variable, it uses the state information in the argument
pointed to by buf , which must have been previously initialized by initstate_r(). The
generated random number is returned in the argument result.

The srandom_r() function is like srandom(3), except that it initializes the seed for the
random number generator whose state is maintained in the object pointed to by buf ,
which must have been previously initialized by initstate_r(), instead of the seed asso-
ciated with the global state variable.

The initstate_r() function is like initstate(3) except that it initializes the state in the
object pointed to by buf , rather than initializing the global state variable. Before call-
ing this function, the buf.state field must be initialized to NULL. The initstate_r()
function records a pointer to the statebuf argument inside the structure pointed to by
buf . Thus, statebuf should not be deallocated so long as buf is still in use. (So,
statebuf should typically be allocated as a static variable, or allocated on the heap us-
ing malloc(3) or similar.)

The setstate_r() function is like setstate(3) except that it modifies the state in the ob-
ject pointed to by buf , rather than modifying the global state variable. state must first
have been initialized using initstate_r() or be the result of a previous call of set-
state_r().

RETURN VALUE
All of these functions return 0 on success. On error, -1 is returned, with errno set to
indicate the error.

Linux man-pages 6.13 2024-07-23 2243

random_r(3) Library Functions Manual random_r(3)

ERRORS
EINVAL

A state array of less than 8 bytes was specified to initstate_r().

EINVAL
The statebuf or buf argument to setstate_r() was NULL.

EINVAL
The buf or result argument to random_r() was NULL.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:bufrandom_r(), srandom_r(), initstate_r(),
setstate_r()

STANDARDS
GNU.

BUGS
The initstate_r() interface is confusing. It appears that the random_data type is in-
tended to be opaque, but the implementation requires the user to either initialize the
buf.state field to NULL or zero out the entire structure before the call.

SEE ALSO
drand48(3), rand(3), random(3)

Linux man-pages 6.13 2024-07-23 2244

rcmd(3) Library Functions Manual rcmd(3)

NAME
rcmd, rresvport, iruserok, ruserok, rcmd_af, rresvport_af, iruserok_af, ruserok_af -
routines for returning a stream to a remote command

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h> /* Or <unistd.h> on some systems */

int rcmd(char **restrict ahost, unsigned short inport,
const char *restrict locuser,
const char *restrict remuser,
const char *restrict cmd , int *restrict fd2p);

int rresvport(int *port);

int iruserok(uint32_t raddr, int superuser,
const char *ruser, const char *luser);

int ruserok(const char *rhost, int superuser,
const char *ruser, const char *luser);

int rcmd_af(char **restrict ahost, unsigned short inport,
const char *restrict locuser,
const char *restrict remuser,
const char *restrict cmd , int *restrict fd2p,
sa_family_t af);

int rresvport_af(int *port, sa_family_t af);

int iruserok_af(const void *restrict raddr, int superuser,
const char *restrict ruser, const char *restrict luser,
sa_family_t af);

int ruserok_af(const char *rhost, int superuser,
const char *ruser, const char *luser,
sa_family_t af);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

rcmd(), rcmd_af(), rresvport(), rresvport_af(), iruserok(), iruserok_af(),
ruserok(), ruserok_af():

Since glibc 2.19:
_DEFAULT_SOURCE

glibc 2.19 and earlier:
_BSD_SOURCE

DESCRIPTION
The rcmd() function is used by the superuser to execute a command on a remote ma-
chine using an authentication scheme based on privileged port numbers. The rresv-
port() function returns a file descriptor to a socket with an address in the privileged
port space. The iruserok() and ruserok() functions are used by servers to authenti-
cate clients requesting service with rcmd(). All four functions are used by the
rshd(8) server (among others).

Linux man-pages 6.13 2024-07-23 2245

rcmd(3) Library Functions Manual rcmd(3)

rcmd()
The rcmd() function looks up the host *ahost using gethostbyname(3), returning -1 if
the host does not exist. Otherwise, *ahost is set to the standard name of the host and a
connection is established to a server residing at the well-known Internet port inport.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM
is returned to the caller, and given to the remote command as stdin and stdout. If
fd2p is nonzero, then an auxiliary channel to a control process will be set up, and a
file descriptor for it will be placed in *fd2p. The control process will return diagnostic
output from the command (unit 2) on this channel, and will also accept bytes on this
channel as being UNIX signal numbers, to be forwarded to the process group of the
command. If fd2p is 0, then the stderr (unit 2 of the remote command) will be made
the same as the stdout and no provision is made for sending arbitrary signals to the re-
mote process, although you may be able to get its attention by using out-of-band data.

The protocol is described in detail in rshd(8)

rresvport()
The rresvport() function is used to obtain a socket with a privileged port bound to it.
This socket is suitable for use by rcmd() and several other functions. Privileged ports
are those in the range 0 to 1023. Only a privileged process (on Linux, a process that
has the CAP_NET_BIND_SERVICE capability in the user namespace governing its
network namespace) is allowed to bind to a privileged port. In the glibc implementa-
tion, this function restricts its search to the ports from 512 to 1023. The port argu-
ment is value-result: the value it supplies to the call is used as the starting point for a
circular search of the port range; on (successful) return, it contains the port number
that was bound to.

iruserok() and ruserok()
The iruserok() and ruserok() functions take a remote host’s IP address or name, re-
spectively, two usernames and a flag indicating whether the local user’s name is that
of the superuser. Then, if the user is not the superuser, it checks the /etc/hosts.equiv
file. If that lookup is not done, or is unsuccessful, the .rhosts in the local user’s home
directory is checked to see if the request for service is allowed.

If this file does not exist, is not a regular file, is owned by anyone other than the user
or the superuser, is writable by anyone other than the owner, or is hardlinked any-
where, the check automatically fails. Zero is returned if the machine name is listed in
the hosts.equiv file, or the host and remote username are found in the .rhosts file; oth-
erwise iruserok() and ruserok() return -1. If the local domain (as obtained from
gethostname(2)) is the same as the remote domain, only the machine name need be
specified.

If the IP address of the remote host is known, iruserok() should be used in preference
to ruserok(), as it does not require trusting the DNS server for the remote host’s do-
main.

*_af() variants
All of the functions described above work with IPv4 (AF_INET) sockets. The "_af"
variants take an extra argument that allows the socket address family to be specified.
For these functions, the af argument can be specified as AF_INET or AF_INET6. In
addition, rcmd_af() supports the use of AF_UNSPEC.

Linux man-pages 6.13 2024-07-23 2246

rcmd(3) Library Functions Manual rcmd(3)

RETURN VALUE
The rcmd() function returns a valid socket descriptor on success. It returns -1 on er-
ror and prints a diagnostic message on the standard error.

The rresvport() function returns a valid, bound socket descriptor on success. On fail-
ure, it returns -1 and sets errno to indicate the error. The error code EAGAIN is
overloaded to mean: "All network ports in use".

For information on the return from ruserok() and iruserok(), see above.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafercmd(), rcmd_af()
Thread safety MT-Saferresvport(), rresvport_af()
Thread safety MT-Safe localeiruserok(), ruserok(), iruserok_af(),

ruserok_af()

STANDARDS
BSD.

HISTORY
iruserok_af()
rcmd_af()
rresvport_af()
ruserok_af()

glibc 2.2.

Solaris, 4.2BSD. The "_af" variants are more recent additions, and are not present on
as wide a range of systems.

BUGS
iruserok() and iruserok_af() are declared in glibc headers only since glibc 2.12.

SEE ALSO
rlogin(1), rsh(1), rexec(3), rexecd(8), rlogind(8), rshd(8)

Linux man-pages 6.13 2024-07-23 2247

re_comp(3) Library Functions Manual re_comp(3)

NAME
re_comp, re_exec - BSD regex functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _REGEX_RE_COMP
#include <sys/types.h>
#include <regex.h>

[[deprecated]] char *re_comp(const char *regex);
[[deprecated]] int re_exec(const char *string);

DESCRIPTION
re_comp() is used to compile the null-terminated regular expression pointed to by
regex. The compiled pattern occupies a static area, the pattern buffer, which is over-
written by subsequent use of re_comp(). If regex is NULL, no operation is performed
and the pattern buffer’s contents are not altered.

re_exec() is used to assess whether the null-terminated string pointed to by string
matches the previously compiled regex.

RETURN VALUE
re_comp() returns NULL on successful compilation of regex otherwise it returns a
pointer to an appropriate error message.

re_exec() returns 1 for a successful match, zero for failure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafere_comp(), re_exec()

STANDARDS
None.

HISTORY
4.3BSD.

These functions are obsolete; the functions documented in regcomp(3) should be used
instead.

SEE ALSO
regcomp(3), regex(7), GNU regex manual

Linux man-pages 6.13 2024-07-23 2248

readdir(3) Library Functions Manual readdir(3)

NAME
readdir - read a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

struct dirent *readdir(DIR *dirp);

DESCRIPTION
The readdir() function returns a pointer to a dirent structure representing the next di-
rectory entry in the directory stream pointed to by dirp. It returns NULL on reaching
the end of the directory stream or if an error occurred.

In the glibc implementation, the dirent structure is defined as follows:

struct dirent {
ino_t d_ino; /* Inode number */
off_t d_off; /* Not an offset; see below */
unsigned short d_reclen; /* Length of this record */
unsigned char d_type; /* Type of file; not supported

by all filesystem types */
char d_name[256]; /* Null-terminated filename */

};

The only fields in the dirent structure that are mandated by POSIX.1 are d_name and
d_ino. The other fields are unstandardized, and not present on all systems; see VER-
SIONS.

The fields of the dirent structure are as follows:

d_ino This is the inode number of the file.

d_off The value returned in d_off is the same as would be returned by calling
telldir(3) at the current position in the directory stream. Be aware that despite
its type and name, the d_off field is seldom any kind of directory offset on
modern filesystems. Applications should treat this field as an opaque value,
making no assumptions about its contents; see also telldir(3).

d_reclen
This is the size (in bytes) of the returned record. This may not match the size
of the structure definition shown above; see VERSIONS.

d_type
This field contains a value indicating the file type, making it possible to avoid
the expense of calling lstat(2) if further actions depend on the type of the file.

When a suitable feature test macro is defined (_DEFAULT_SOURCE since
glibc 2.19, or _BSD_SOURCE on glibc 2.19 and earlier), glibc defines the
following macro constants for the value returned in d_type:

DT_BLK This is a block device.

DT_CHR This is a character device.

Linux man-pages 6.13 2024-07-23 2249

readdir(3) Library Functions Manual readdir(3)

DT_DIR This is a directory.

DT_FIFO This is a named pipe (FIFO).

DT_LNK This is a symbolic link.

DT_REG This is a regular file.

DT_SOCK This is a UNIX domain socket.

DT_UNKNOWN
The file type could not be determined.

Currently, only some filesystems (among them: Btrfs, ext2, ext3, and ext4)
have full support for returning the file type in d_type. All applications must
properly handle a return of DT_UNKNOWN.

d_name
This field contains the null terminated filename; see VERSIONS.

The data returned by readdir() may be overwritten by subsequent calls to readdir()
for the same directory stream.

RETURN VALUE
On success, readdir() returns a pointer to a dirent structure. (This structure may be
statically allocated; do not attempt to free(3) it.)

If the end of the directory stream is reached, NULL is returned and errno is not
changed. If an error occurs, NULL is returned and errno is set to indicate the error.
To distinguish end of stream from an error, set errno to zero before calling readdir()
and then check the value of errno if NULL is returned.

ERRORS
EBADF

Invalid directory stream descriptor dirp.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:dirstreamreaddir()

In the current POSIX.1 specification (POSIX.1-2008), readdir() is not required to be
thread-safe. However, in modern implementations (including the glibc implementa-
tion), concurrent calls to readdir() that specify different directory streams are thread-
safe. In cases where multiple threads must read from the same directory stream, using
readdir() with external synchronization is still preferable to the use of the deprecated
readdir_r(3) function. It is expected that a future version of POSIX.1 will require that
readdir() be thread-safe when concurrently employed on different directory streams.

VERSIONS
Only the fields d_name and (as an XSI extension) d_ino are specified in POSIX.1.
Other than Linux, the d_type field is available mainly only on BSD systems. The re-
maining fields are available on many, but not all systems. Under glibc, programs can
check for the availability of the fields not defined in POSIX.1 by testing whether the
macros _DIRENT_HAVE_D_NAMLEN, _DIRENT_HAVE_D_RECLEN,
_DIRENT_HAVE_D_OFF, or _DIRENT_HAVE_D_TYPE are defined.

Linux man-pages 6.13 2024-07-23 2250

readdir(3) Library Functions Manual readdir(3)

The d_name field
The dirent structure definition shown above is taken from the glibc headers, and
shows the d_name field with a fixed size.

Warning: applications should avoid any dependence on the size of the d_name field.
POSIX defines it as char d_name[], a character array of unspecified size, with at most
NAME_MAX characters preceding the terminating null byte ('\0').

POSIX.1 explicitly notes that this field should not be used as an lvalue. The standard
also notes that the use of sizeof(d_name) is incorrect; use strlen(d_name) instead.
(On some systems, this field is defined as char d_name[1]!) By implication, the use
sizeof(struct dirent) to capture the size of the record including the size of d_name is
also incorrect.

Note that while the call

fpathconf(fd, _PC_NAME_MAX)

returns the value 255 for most filesystems, on some filesystems (e.g., CIFS, Windows
SMB servers), the null-terminated filename that is (correctly) returned in d_name can
actually exceed this size. In such cases, the d_reclen field will contain a value that ex-
ceeds the size of the glibc dirent structure shown above.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
A directory stream is opened using opendir(3).

The order in which filenames are read by successive calls to readdir() depends on the
filesystem implementation; it is unlikely that the names will be sorted in any fashion.

SEE ALSO
getdents(2), read(2), closedir(3), dirfd(3), ftw(3), offsetof(3), opendir(3), readdir_r(3),
rewinddir(3), scandir(3), seekdir(3), telldir(3)

Linux man-pages 6.13 2024-07-23 2251

readdir_r(3) Library Functions Manual readdir_r(3)

NAME
readdir_r - read a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

[[deprecated]] int readdir_r(DIR *restrict dirp,
struct dirent *restrict entry,
struct dirent **restrict result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

readdir_r():
_POSIX_C_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
This function is deprecated; use readdir(3) instead.

The readdir_r() function was invented as a reentrant version of readdir(3). It reads
the next directory entry from the directory stream dirp, and returns it in the caller-al-
located buffer pointed to by entry. For details of the dirent structure, see readdir(3).

A pointer to the returned buffer is placed in *result; if the end of the directory stream
was encountered, then NULL is instead returned in *result.

It is recommended that applications use readdir(3) instead of readdir_r(). Further-
more, since glibc 2.24, glibc deprecates readdir_r(). The reasons are as follows:

• On systems where NAME_MAX is undefined, calling readdir_r() may be unsafe
because the interface does not allow the caller to specify the length of the buffer
used for the returned directory entry.

• On some systems, readdir_r() can’t read directory entries with very long names.
When the glibc implementation encounters such a name, readdir_r() fails with
the error ENAMETOOLONG after the final directory entry has been read . On
some other systems, readdir_r() may return a success status, but the returned
d_name field may not be null terminated or may be truncated.

• In the current POSIX.1 specification (POSIX.1-2008), readdir(3) is not required
to be thread-safe. However, in modern implementations (including the glibc im-
plementation), concurrent calls to readdir(3) that specify different directory
streams are thread-safe. Therefore, the use of readdir_r() is generally unneces-
sary in multithreaded programs. In cases where multiple threads must read from
the same directory stream, using readdir(3) with external synchronization is still
preferable to the use of readdir_r(), for the reasons given in the points above.

• It is expected that a future version of POSIX.1 will make readdir_r() obsolete,
and require that readdir(3) be thread-safe when concurrently employed on differ-
ent directory streams.

RETURN VALUE
The readdir_r() function returns 0 on success. On error, it returns a positive error
number (listed under ERRORS). If the end of the directory stream is reached,

Linux man-pages 6.13 2024-07-23 2252

readdir_r(3) Library Functions Manual readdir_r(3)

readdir_r() returns 0, and returns NULL in *result.

ERRORS
EBADF

Invalid directory stream descriptor dirp.

ENAMETOOLONG
A directory entry whose name was too long to be read was encountered.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safereaddir_r()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
readdir(3)

Linux man-pages 6.13 2024-07-23 2253

realpath(3) Library Functions Manual realpath(3)

NAME
realpath - return the canonicalized absolute pathname

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <limits.h>
#include <stdlib.h>

char *realpath(const char *restrict path,
char *restrict resolved_path);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

realpath():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
realpath() expands all symbolic links and resolves references to /./ , /../ and extra '/'
characters in the null-terminated string named by path to produce a canonicalized ab-
solute pathname. The resulting pathname is stored as a null-terminated string, up to a
maximum of PATH_MAX bytes, in the buffer pointed to by resolved_path. The re-
sulting path will have no symbolic link, /./ or /../ components.

If resolved_path is specified as NULL, then realpath() uses malloc(3) to allocate a
buffer of up to PATH_MAX bytes to hold the resolved pathname, and returns a
pointer to this buffer. The caller should deallocate this buffer using free(3).

RETURN VALUE
If there is no error, realpath() returns a pointer to the resolved_path.

Otherwise, it returns NULL, the contents of the array resolved_path are undefined,
and errno is set to indicate the error.

ERRORS
EACCES

Read or search permission was denied for a component of the path prefix.

EINVAL
path is NULL. (Before glibc 2.3, this error is also returned if resolved_path is
NULL.)

EIO An I/O error occurred while reading from the filesystem.

ELOOP
Too many symbolic links were encountered in translating the pathname.

ENAMETOOLONG
A component of a pathname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.

ENOENT
The named file does not exist.

Linux man-pages 6.13 2024-07-23 2254

realpath(3) Library Functions Manual realpath(3)

ENOMEM
Out of memory.

ENOTDIR
A component of the path prefix is not a directory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferealpath()

VERSIONS
GNU extensions

If the call fails with either EACCES or ENOENT and resolved_path is not NULL,
then the prefix of path that is not readable or does not exist is returned in
resolved_path.

STANDARDS
POSIX.1-2008.

HISTORY
4.4BSD, POSIX.1-2001, Solaris.

POSIX.1-2001 says that the behavior if resolved_path is NULL is implementation-de-
fined. POSIX.1-2008 specifies the behavior described in this page.

In 4.4BSD and Solaris, the limit on the pathname length is MAXPATHLEN (found
in <sys/param.h>). SUSv2 prescribes PATH_MAX and NAME_MAX, as found in
<limits.h> or provided by the pathconf(3) function. A typical source fragment would
be

#ifdef PATH_MAX
path_max = PATH_MAX;

#else
path_max = pathconf(path, _PC_PATH_MAX);
if (path_max <= 0)

path_max = 4096;
#endif

(But see the BUGS section.)

BUGS
The POSIX.1-2001 standard version of this function is broken by design, since it is
impossible to determine a suitable size for the output buffer, resolved_path. Accord-
ing to POSIX.1-2001 a buffer of size PATH_MAX suffices, but PATH_MAX need
not be a defined constant, and may have to be obtained using pathconf(3). And asking
pathconf(3) does not really help, since, on the one hand POSIX warns that the result
of pathconf(3) may be huge and unsuitable for mallocing memory, and on the other
hand pathconf(3) may return -1 to signify that PATH_MAX is not bounded. The
resolved_path == NULL feature, not standardized in POSIX.1-2001, but standardized
in POSIX.1-2008, allows this design problem to be avoided.

SEE ALSO
realpath(1), readlink(2), canonicalize_file_name(3), getcwd(3), pathconf(3),
sysconf(3)

Linux man-pages 6.13 2024-07-23 2255

recno(3) Library Functions Manual recno(3)

NAME
recno - record number database access method

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <db.h>

DESCRIPTION
Note well: This page documents interfaces provided up until glibc 2.1. Since glibc
2.2, glibc no longer provides these interfaces. Probably, you are looking for the APIs
provided by the libdb library instead.

The routine dbopen(3) is the library interface to database files. One of the supported
file formats is record number files. The general description of the database access
methods is in dbopen(3), this manual page describes only the recno-specific informa-
tion.

The record number data structure is either variable or fixed-length records stored in a
flat-file format, accessed by the logical record number. The existence of record num-
ber five implies the existence of records one through four, and the deletion of record
number one causes record number five to be renumbered to record number four, as
well as the cursor, if positioned after record number one, to shift down one record.

The recno access-method-specific data structure provided to dbopen(3) is defined in
the <db.h> include file as follows:

typedef struct {
unsigned long flags;
unsigned int cachesize;
unsigned int psize;
int lorder;
size_t reclen;
unsigned char bval;
char *bfname;

} RECNOINFO;

The elements of this structure are defined as follows:

flags The flag value is specified by ORing any of the following values:

R_FIXEDLEN
The records are fixed-length, not byte delimited. The structure element
reclen specifies the length of the record, and the structure element bval
is used as the pad character. Any records, inserted into the database,
that are less than reclen bytes long are automatically padded.

R_NOKEY
In the interface specified by dbopen(3), the sequential record retrieval
fills in both the caller’s key and data structures. If the R_NOKEY flag
is specified, the cursor routines are not required to fill in the key struc-
ture. This permits applications to retrieve records at the end of files
without reading all of the intervening records.

4.4 Berkeley Distribution 2024-07-23 2256

recno(3) Library Functions Manual recno(3)

R_SNAPSHOT
This flag requires that a snapshot of the file be taken when dbopen(3) is
called, instead of permitting any unmodified records to be read from
the original file.

cachesize
A suggested maximum size, in bytes, of the memory cache. This value is only
advisory, and the access method will allocate more memory rather than fail. If
cachesize is 0 (no size is specified), a default cache is used.

psize The recno access method stores the in-memory copies of its records in a btree.
This value is the size (in bytes) of the pages used for nodes in that tree. If
psize is 0 (no page size is specified), a page size is chosen based on the under-
lying filesystem I/O block size. See btree(3) for more information.

lorder
The byte order for integers in the stored database metadata. The number
should represent the order as an integer; for example, big endian order would
be the number 4,321. If lorder is 0 (no order is specified), the current host or-
der is used.

reclen The length of a fixed-length record.

bval The delimiting byte to be used to mark the end of a record for variable-length
records, and the pad character for fixed-length records. If no value is speci-
fied, newlines ("\n") are used to mark the end of variable-length records and
fixed-length records are padded with spaces.

bfname
The recno access method stores the in-memory copies of its records in a btree.
If bfname is non-NULL, it specifies the name of the btree file, as if specified
as the filename for a dbopen(3) of a btree file.

The data part of the key/data pair used by the recno access method is the same as
other access methods. The key is different. The data field of the key should be a
pointer to a memory location of type recno_t, as defined in the <db.h> include file.
This type is normally the largest unsigned integral type available to the implementa-
tion. The size field of the key should be the size of that type.

Because there can be no metadata associated with the underlying recno access method
files, any changes made to the default values (e.g., fixed record length or byte separa-
tor value) must be explicitly specified each time the file is opened.

In the interface specified by dbopen(3), using the put interface to create a new record
will cause the creation of multiple, empty records if the record number is more than
one greater than the largest record currently in the database.

ERRORS
The recno access method routines may fail and set errno for any of the errors speci-
fied for the library routine dbopen(3) or the following:

EINVAL
An attempt was made to add a record to a fixed-length database that was too
large to fit.

4.4 Berkeley Distribution 2024-07-23 2257

recno(3) Library Functions Manual recno(3)

BUGS
Only big and little endian byte order is supported.

SEE ALSO
btree(3), dbopen(3), hash(3), mpool(3)

Document Processing in a Relational Database System, Michael Stonebraker, Heidi
Stettner, Joseph Kalash, Antonin Guttman, Nadene Lynn, Memorandum No.
UCB/ERL M82/32, May 1982.

4.4 Berkeley Distribution 2024-07-23 2258

regex(3) Library Functions Manual regex(3)

NAME
regcomp, regexec, regerror, regfree - POSIX regex functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <regex.h>

int regcomp(regex_t *restrict preg, const char *restrict regex,
int cflags);

int regexec(const regex_t *restrict preg, const char *restrict string,
size_t nmatch, regmatch_t pmatch[_Nullable restrict .nmatch],
int eflags);

size_t regerror(int errcode, const regex_t *_Nullable restrict preg,
char errbuf [_Nullable restrict .errbuf_size],
size_t errbuf_size);

void regfree(regex_t *preg);

typedef struct {
size_t re_nsub;

} regex_t;

typedef struct {
regoff_t rm_so;
regoff_t rm_eo;

} regmatch_t;

typedef /* ... */ regoff_t;

DESCRIPTION
Compilation

regcomp() is used to compile a regular expression into a form that is suitable for sub-
sequent regexec() searches.

On success, the pattern buffer at *preg is initialized. regex is a null-terminated string.
The locale must be the same when running regexec().

After regcomp() succeeds, preg->re_nsub holds the number of subexpressions in
regex. Thus, a value of preg->re_nsub + 1 passed as nmatch to regexec() is sufficient
to capture all matches.

cflags is the bitwise OR of zero or more of the following:

REG_EXTENDED
Use POSIX Extended Regular Expression syntax when interpreting regex. If
not set, POSIX Basic Regular Expression syntax is used.

REG_ICASE
Do not differentiate case. Subsequent regexec() searches using this pattern
buffer will be case insensitive.

REG_NOSUB
Report only overall success. regexec() will use only pmatch for REG_STAR-
TEND, ignoring nmatch.

Linux man-pages 6.13 2025-02-10 2259

regex(3) Library Functions Manual regex(3)

REG_NEWLINE
Match-any-character operators don’t match a newline.

A nonmatching list ([^...]) not containing a newline does not match a newline.

Match-beginning-of-line operator (^) matches the empty string immediately
after a newline, regardless of whether eflags, the execution flags of regexec(),
contains REG_NOTBOL.

Match-end-of-line operator ($) matches the empty string immediately before a
newline, regardless of whether eflags contains REG_NOTEOL.

Matching
regexec() is used to match a null-terminated string against the compiled pattern buffer
in *preg, which must have been initialised with regcomp(). eflags is the bitwise OR
of zero or more of the following flags:

REG_NOTBOL
The match-beginning-of-line operator always fails to match (but see the com-
pilation flag REG_NEWLINE above). This flag may be used when different
portions of a string are passed to regexec() and the beginning of the string
should not be interpreted as the beginning of the line.

REG_NOTEOL
The match-end-of-line operator always fails to match (but see the compilation
flag REG_NEWLINE above).

REG_STARTEND
Match [string + pmatch[0].rm_so, string + pmatch[0].rm_eo) instead of
[string, string + strlen(string)). This allows matching embedded NUL bytes
and avoids a strlen(3) on known-length strings. If any matches are returned
(REG_NOSUB wasn’t passed to regcomp(), the match succeeded, and
nmatch > 0), they overwrite pmatch as usual, and the match offsets remain rel-
ative to string (not string + pmatch[0].rm_so). This flag is a BSD extension,
not present in POSIX.

Match offsets
Unless REG_NOSUB was passed to regcomp(), it is possible to obtain the locations
of matches within string: regexec() fills nmatch elements of pmatch with results:
pmatch[0] corresponds to the entire match, pmatch[1] to the first subexpression, etc.
If there were more matches than nmatch, they are discarded; if fewer, unused ele-
ments of pmatch are filled with -1s.

Each returned valid (non--1) match corresponds to the range [string + rm_so, string
+ rm_eo).

regoff_t is a signed integer type capable of storing the largest value that can be stored
in either an ptrdiff_t type or a ssize_t type.

Error reporting
regerror() is used to turn the error codes that can be returned by both regcomp() and
regexec() into error message strings.

If preg isn’t a null pointer, errcode must be the latest error returned from an operation
on preg.

Linux man-pages 6.13 2025-02-10 2260

regex(3) Library Functions Manual regex(3)

If errbuf_size isn’t 0, up to errbuf_size bytes are copied to errbuf ; the error string is
always null-terminated, and truncated to fit.

Freeing
regfree() deinitializes the pattern buffer at *preg, freeing any associated memory;
*preg must have been initialized via regcomp().

RETURN VALUE
regcomp() returns zero for a successful compilation or an error code for failure.

regexec() returns zero for a successful match or REG_NOMATCH for failure.

regerror() returns the size of the buffer required to hold the string.

ERRORS
The following errors can be returned by regcomp():

REG_BADBR
Invalid use of back reference operator.

REG_BADPAT
Invalid use of pattern operators such as group or list.

REG_BADRPT
Invalid use of repetition operators such as using '*' as the first character.

REG_EBRACE
Un-matched brace interval operators.

REG_EBRACK
Un-matched bracket list operators.

REG_ECOLLATE
Invalid collating element.

REG_ECTYPE
Unknown character class name.

REG_EEND
Nonspecific error. This is not defined by POSIX.

REG_EESCAPE
Trailing backslash.

REG_EPAREN
Un-matched parenthesis group operators.

REG_ERANGE
Invalid use of the range operator; for example, the ending point of the range
occurs prior to the starting point.

REG_ESIZE
Compiled regular expression requires a pattern buffer larger than 64 kB. This
is not defined by POSIX.

REG_ESPACE
The regex routines ran out of memory.

Linux man-pages 6.13 2025-02-10 2261

regex(3) Library Functions Manual regex(3)

REG_ESUBREG
Invalid back reference to a subexpression.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeregcomp(), regexec()
Thread safety MT-Safe envregerror()
Thread safety MT-Saferegfree()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Prior to POSIX.1-2008, regoff_t was required to be capable of storing the largest
value that can be stored in either an off_t type or a ssize_t type.

CAVEATS
re_nsub is only required to be initialized if REG_NOSUB wasn’t specified, but all
known implementations initialize it regardless.

Both regex_t and regmatch_t may (and do) have more members, in any order. Always
reference them by name.

EXAMPLES
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <regex.h>

#define ARRAY_SIZE(arr) (sizeof((arr)) / sizeof((arr)[0]))

static const char *const str =
"1) John Driverhacker;\n2) John Doe;\n3) John Foo;\n";

static const char *const re = "John.*o";

int main(void)
{

static const char *s = str;
regex_t regex;
regmatch_t pmatch[1];
regoff_t off, len;

if (regcomp(®ex, re, REG_NEWLINE))
exit(EXIT_FAILURE);

printf("String = \"%s\"\n", str);
printf("Matches:\n");

for (unsigned int i = 0; ; i++) {

Linux man-pages 6.13 2025-02-10 2262

regex(3) Library Functions Manual regex(3)

if (regexec(®ex, s, ARRAY_SIZE(pmatch), pmatch, 0))
break;

off = pmatch[0].rm_so + (s - str);
len = pmatch[0].rm_eo - pmatch[0].rm_so;
printf("#%u:\n", i);
printf("offset = %jd; length = %jd\n", (intmax_t) off,

(intmax_t) len);
printf("substring = \"%.*s\"\n", len, s + pmatch[0].rm_so);

s += pmatch[0].rm_eo;
}

exit(EXIT_SUCCESS);
}

SEE ALSO
grep(1), regex(7)

The glibc manual section, Regular Expressions

Linux man-pages 6.13 2025-02-10 2263

remainder(3) Library Functions Manual remainder(3)

NAME
drem, dremf, dreml, remainder, remainderf, remainderl - floating-point remainder
function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

/* Obsolete synonyms */
[[deprecated]] double drem(double x, double y);
[[deprecated]] float dremf(float x, float y);
[[deprecated]] long double dreml(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

remainder():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

remainderf(), remainderl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

drem(), dremf(), dreml():
/* Since glibc 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions compute the remainder of dividing x by y. The return value is x-n*y,
where n is the value x / y, rounded to the nearest integer. If the absolute value of
x-n*y is 0.5, n is chosen to be even.

These functions are unaffected by the current rounding mode (see fenv(3)).

The drem() function does precisely the same thing.

RETURN VALUE
On success, these functions return the floating-point remainder, x-n*y. If the return
value is 0, it has the sign of x.

If x or y is a NaN, a NaN is returned.

If x is an infinity, and y is not a NaN, a domain error occurs, and a NaN is returned.

If y is zero, and x is not a NaN, a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

Linux man-pages 6.13 2024-07-23 2264

remainder(3) Library Functions Manual remainder(3)

The following errors can occur:

Domain error: x is an infinity and y is not a NaN
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

These functions do not set errno for this case.

Domain error: y is zero
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedrem(), dremf(), dreml(), remainder(),
remainderf(), remainderl()

STANDARDS
remainder()
remainderf()
remainderl()

C11, POSIX.1-2008.

drem()
dremf()
dreml()

None.

HISTORY
remainder()
remainderf()
remainderl()

C99, POSIX.1-2001.

drem()
4.3BSD.

dremf()
dreml()

Tru64, glibc2.

BUGS
Before glibc 2.15, the call

remainder(nan(""), 0);

returned a NaN, as expected, but wrongly caused a domain error. Since glibc 2.15, a
silent NaN (i.e., no domain error) is returned.

Before glibc 2.15, errno was not set to EDOM for the domain error that occurs when
x is an infinity and y is not a NaN.

EXAMPLES
The call "remainder(29.0, 3.0)" returns -1.

Linux man-pages 6.13 2024-07-23 2265

remainder(3) Library Functions Manual remainder(3)

SEE ALSO
div(3), fmod(3), remquo(3)

Linux man-pages 6.13 2024-07-23 2266

remove(3) Library Functions Manual remove(3)

NAME
remove - remove a file or directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int remove(const char *pathname);

DESCRIPTION
remove() deletes a name from the filesystem. It calls unlink(2) for files, and rmdir(2)
for directories.

If the removed name was the last link to a file and no processes have the file open, the
file is deleted and the space it was using is made available for reuse.

If the name was the last link to a file, but any processes still have the file open, the file
will remain in existence until the last file descriptor referring to it is closed.

If the name referred to a symbolic link, the link is removed.

If the name referred to a socket, FIFO, or device, the name is removed, but processes
which have the object open may continue to use it.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
The errors that occur are those for unlink(2) and rmdir(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferemove()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, 4.3BSD.

BUGS
Infelicities in the protocol underlying NFS can cause the unexpected disappearance of
files which are still being used.

SEE ALSO
rm(1), unlink(1), link(2), mknod(2), open(2), rename(2), rmdir(2), unlink(2),
mkfifo(3), symlink(7)

Linux man-pages 6.13 2024-07-23 2267

remquo(3) Library Functions Manual remquo(3)

NAME
remquo, remquof, remquol - remainder and part of quotient

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

remquo(), remquof(), remquol():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions compute the remainder and part of the quotient upon division of x by
y. A few bits of the quotient are stored via the quo pointer. The remainder is returned
as the function result.

The value of the remainder is the same as that computed by the remainder(3) func-
tion.

The value stored via the quo pointer has the sign of x / y and agrees with the quotient
in at least the low order 3 bits.

For example, remquo(29.0, 3.0) returns -1.0 and might store 2. Note that the actual
quotient might not fit in an integer.

RETURN VALUE
On success, these functions return the same value as the analogous functions de-
scribed in remainder(3).

If x or y is a NaN, a NaN is returned.

If x is an infinity, and y is not a NaN, a domain error occurs, and a NaN is returned.

If y is zero, and x is not a NaN, a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity or y is 0, and the other argument is not a NaN.
An invalid floating-point exception (FE_INVALID) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferemquo(), remquof(), remquol()

Linux man-pages 6.13 2024-11-17 2268

remquo(3) Library Functions Manual remquo(3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
fmod(3), logb(3), remainder(3)

Linux man-pages 6.13 2024-11-17 2269

resolver(3) Library Functions Manual resolver(3)

NAME
res_ninit, res_nquery, res_nsearch, res_nquerydomain, res_nmkquery, res_nsend,
res_nclose, res_init, res_query, res_search, res_querydomain, res_mkquery, res_send,
dn_comp, dn_expand - resolver routines

LIBRARY
Resolver library (libresolv, -lresolv)

SYNOPSIS
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

struct __res_state;
typedef struct __res_state *res_state;

int res_ninit(res_state statep);

void res_nclose(res_state statep);

int res_nquery(res_state statep,
const char *dname, int class, int type,
unsigned char answer[.anslen], int anslen);

int res_nsearch(res_state statep,
const char *dname, int class, int type,
unsigned char answer[.anslen], int anslen);

int res_nquerydomain(res_state statep,
const char *name, const char *domain,
int class, int type, unsigned char answer[.anslen],
int anslen);

int res_nmkquery(res_state statep,
int op, const char *dname, int class,
int type, const unsigned char data[.datalen], int datalen,
const unsigned char *newrr,
unsigned char buf [.buflen], int buflen);

int res_nsend(res_state statep,
const unsigned char msg[.msglen], int msglen,
unsigned char answer[.anslen], int anslen);

int dn_comp(const char *exp_dn, unsigned char comp_dn[.length],
int length, unsigned char **dnptrs,
unsigned char **lastdnptr);

int dn_expand(const unsigned char *msg,
const unsigned char *eomorig,
const unsigned char *comp_dn, char exp_dn[.length],
int length);

[[deprecated]] extern struct __res_state _res;

[[deprecated]] int res_init(void);

[[deprecated]]
int res_query(const char *dname, int class, int type,

Linux man-pages 6.13 2024-07-23 2270

resolver(3) Library Functions Manual resolver(3)

unsigned char answer[.anslen], int anslen);

[[deprecated]]
int res_search(const char *dname, int class, int type,

unsigned char answer[.anslen], int anslen);

[[deprecated]]
int res_querydomain(const char *name, const char *domain,

int class, int type, unsigned char answer[.anslen],
int anslen);

[[deprecated]]
int res_mkquery(int op, const char *dname, int class,

int type, const unsigned char data[.datalen], int datalen,
const unsigned char *newrr,
unsigned char buf [.buflen], int buflen);

[[deprecated]]
int res_send(const unsigned char msg[.msglen], int msglen,

unsigned char answer[.anslen], int anslen);

DESCRIPTION
Note: This page is incomplete (various resolver functions provided by glibc are not
described) and likely out of date.

The functions described below make queries to and interpret the responses from Inter-
net domain name servers.

The API consists of a set of more modern, reentrant functions and an older set of non-
reentrant functions that have been superseded. The traditional resolver interfaces such
as res_init() and res_query() use some static (global) state stored in the _res struc-
ture, rendering these functions non-thread-safe. BIND 8.2 introduced a set of new in-
terfaces res_ninit(), res_nquery(), and so on, which take a res_state as their first ar-
gument, so you can use a per-thread resolver state.

The res_ninit() and res_init() functions read the configuration files (see
resolv.conf(5)) to get the default domain name and name server address(es). If no
server is given, the local host is tried. If no domain is given, that associated with the
local host is used. It can be overridden with the environment variable LOCALDO-
MAIN. res_ninit() or res_init() is normally executed by the first call to one of the
other functions. Every call to res_ninit() requires a corresponding call to
res_nclose() to free memory allocated by res_ninit() and subsequent calls to
res_nquery().

The res_nquery() and res_query() functions query the name server for the fully qual-
ified domain name name of specified type and class. The reply is left in the buffer an-
swer of length anslen supplied by the caller.

The res_nsearch() and res_search() functions make a query and waits for the re-
sponse like res_nquery() and res_query(), but in addition they implement the default
and search rules controlled by RES_DEFNAMES and RES_DNSRCH (see descrip-
tion of _res options below).

The res_nquerydomain() and res_querydomain() functions make a query using
res_nquery()/res_query() on the concatenation of name and domain.

Linux man-pages 6.13 2024-07-23 2271

resolver(3) Library Functions Manual resolver(3)

The following functions are lower-level routines used by res_nquery()/res_query()

The res_nmkquery() and res_mkquery() functions construct a query message in buf
of length buflen for the domain name dname. The query type op is one of the follow-
ing (typically QUERY):

QUERY
Standard query.

IQUERY
Inverse query. This option was removed in glibc 2.26, since it has not been
supported by DNS servers for a very long time.

NS_NOTIFY_OP
Notify secondary of SOA (Start of Authority) change.

newrr is currently unused.

The res_nsend() and res_send() function send a preformatted query given in msg of
length msglen and returns the answer in answer which is of length anslen. They will
call res_ninit()/res_init() if it has not already been called.

The dn_comp() function compresses the domain name exp_dn and stores it in the
buffer comp_dn of length length. The compression uses an array of pointers dnptrs to
previously compressed names in the current message. The first pointer points to the
beginning of the message and the list ends with NULL. The limit of the array is spec-
ified by lastdnptr. If dnptr is NULL, domain names are not compressed. If lastdnptr
is NULL, the list of labels is not updated.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name, which is placed in the buffer exp_dn of size length. The compressed
name is contained in a query or reply message, and msg points to the beginning of the
message.

The resolver routines use configuration and state information contained in a
__res_state structure (either passed as the statep argument, or in the global variable
_res, in the case of the older nonreentrant functions). The only field of this structure
that is normally manipulated by the user is the options field. This field can contain
the bitwise "OR" of the following options:

RES_INIT
True if res_ninit() or res_init() has been called.

RES_DEBUG
Print debugging messages. This option is available only if glibc was built with
debugging enabled, which is not the default.

RES_AAONLY (unimplemented; deprecated in glibc 2.25)
Accept authoritative answers only. res_send() continues until it finds an au-
thoritative answer or returns an error. This option was present but unimple-
mented until glibc 2.24; since glibc 2.25, it is deprecated, and its usage pro-
duces a warning.

RES_USEVC
Use TCP connections for queries rather than UDP datagrams.

Linux man-pages 6.13 2024-07-23 2272

resolver(3) Library Functions Manual resolver(3)

RES_PRIMARY (unimplemented; deprecated in glibc 2.25)
Query primary domain name server only. This option was present but unim-
plemented until glibc 2.24; since glibc 2.25, it is deprecated, and its usage pro-
duces a warning.

RES_IGNTC
Ignore truncation errors. Don’t retry with TCP.

RES_RECURSE
Set the recursion desired bit in queries. Recursion is carried out by the domain
name server, not by res_send(). [Enabled by default].

RES_DEFNAMES
If set, res_search() will append the default domain name to single component
names—that is, those that do not contain a dot. [Enabled by default].

RES_STAYOPEN
Used with RES_USEVC to keep the TCP connection open between queries.

RES_DNSRCH
If set, res_search() will search for hostnames in the current domain and in par-
ent domains. This option is used by gethostbyname(3). [Enabled by default].

RES_INSECURE1
Accept a response from a wrong server. This can be used to detect potential
security hazards, but you need to compile glibc with debugging enabled and
use RES_DEBUG option (for debug purpose only).

RES_INSECURE2
Accept a response which contains a wrong query. This can be used to detect
potential security hazards, but you need to compile glibc with debugging en-
abled and use RES_DEBUG option (for debug purpose only).

RES_NOALIASES
Disable usage of HOSTALIASES environment variable.

RES_USE_INET6
Try an AAAA query before an A query inside the gethostbyname(3) function,
and map IPv4 responses in IPv6 "tunneled form" if no AAAA records are
found but an A record set exists. Since glibc 2.25, this option is deprecated,
and its usage produces a warning; applications should use getaddrinfo(3),
rather than gethostbyname(3).

RES_ROTATE
Causes round-robin selection of name servers from among those listed. This
has the effect of spreading the query load among all listed servers, rather than
having all clients try the first listed server first every time.

RES_NOCHECKNAME (unimplemented; deprecated in glibc 2.25)
Disable the modern BIND checking of incoming hostnames and mail names
for invalid characters such as underscore (_), non-ASCII, or control characters.
This option was present until glibc 2.24; since glibc 2.25, it is deprecated, and
its usage produces a warning.

Linux man-pages 6.13 2024-07-23 2273

resolver(3) Library Functions Manual resolver(3)

RES_KEEPTSIG (unimplemented; deprecated in glibc 2.25)
Do not strip TSIG records. This option was present but unimplemented until
glibc 2.24; since glibc 2.25, it is deprecated, and its usage produces a warning.

RES_BLAST (unimplemented; deprecated in glibc 2.25)
Send each query simultaneously and recursively to all servers. This option
was present but unimplemented until glibc 2.24; since glibc 2.25, it is depre-
cated, and its usage produces a warning.

RES_USEBSTRING (glibc 2.3.4 to glibc 2.24)
Make reverse IPv6 lookups using the bit-label format described in RFC 2673;
if this option is not set (which is the default), then nibble format is used. This
option was removed in glibc 2.25, since it relied on a backward-incompatible
DNS extension that was never deployed on the Internet.

RES_NOIP6DOTINT (glibc 2.24 and earlier)
Use ip6.arpa zone in IPv6 reverse lookup instead of ip6.int, which is depre-
cated since glibc 2.3.4. This option is present up to and including glibc 2.24,
where it is enabled by default. In glibc 2.25, this option was removed.

RES_USE_EDNS0 (since glibc 2.6)
Enables support for the DNS extensions (EDNS0) described in RFC 2671.

RES_SNGLKUP (since glibc 2.10)
By default, glibc performs IPv4 and IPv6 lookups in parallel since glibc 2.9.
Some appliance DNS servers cannot handle these queries properly and make
the requests time out. This option disables the behavior and makes glibc per-
form the IPv6 and IPv4 requests sequentially (at the cost of some slowdown of
the resolving process).

RES_SNGLKUPREOP
When RES_SNGLKUP option is enabled, opens a new socket for the each re-
quest.

RES_USE_DNSSEC
Use DNSSEC with OK bit in OPT record. This option implies
RES_USE_EDNS0.

RES_NOTLDQUERY
Do not look up unqualified name as a top-level domain (TLD).

RES_DEFAULT
Default option which implies: RES_RECURSE, RES_DEFNAMES,
RES_DNSRCH, and RES_NOIP6DOTINT.

RETURN VALUE
The res_ninit() and res_init() functions return 0 on success, or -1 if an error occurs.

The res_nquery(), res_query(), res_nsearch(), res_search(), res_nquerydomain(),
res_querydomain(), res_nmkquery(), res_mkquery(), res_nsend(), and res_send()
functions return the length of the response, or -1 if an error occurs.

The dn_comp() and dn_expand() functions return the length of the compressed
name, or -1 if an error occurs.

In the case of an error return from res_nquery(), res_query(), res_nsearch(),

Linux man-pages 6.13 2024-07-23 2274

resolver(3) Library Functions Manual resolver(3)

res_search(), res_nquerydomain(), or res_querydomain(), the global variable h_er-
rno (see gethostbyname(3)) can be consulted to determine the error.

FILES
/etc/resolv.conf

resolver configuration file

/etc/host.conf
resolver configuration file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeres_ninit(), res_nclose(), res_nquery(),
res_nsearch(), res_nquerydomain(),
res_nsend()

Thread safety MT-Saferes_nmkquery(), dn_comp(), dn_expand()

STANDARDS
None.

HISTORY
4.3BSD.

SEE ALSO
gethostbyname(3), resolv.conf(5), resolver(5), hostname(7), named(8)

The GNU C library source file resolv/README.

Linux man-pages 6.13 2024-07-23 2275

rewinddir(3) Library Functions Manual rewinddir(3)

NAME
rewinddir - reset directory stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

void rewinddir(DIR *dirp);

DESCRIPTION
The rewinddir() function resets the position of the directory stream dirp to the begin-
ning of the directory.

RETURN VALUE
The rewinddir() function returns no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferewinddir()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
closedir(3), opendir(3), readdir(3), scandir(3), seekdir(3), telldir(3)

Linux man-pages 6.13 2024-07-23 2276

rexec(3) Library Functions Manual rexec(3)

NAME
rexec, rexec_af - return stream to a remote command

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

[[deprecated]]
int rexec(char **restrict ahost, int inport,

const char *restrict user, const char *restrict passwd ,
const char *restrict cmd , int *restrict fd2p);

[[deprecated]]
int rexec_af(char **restrict ahost, int inport,

const char *restrict user, const char *restrict passwd ,
const char *restrict cmd , int *restrict fd2p,
sa_family_t af);

rexec(), rexec_af():
Since glibc 2.19:

_DEFAULT_SOURCE
In glibc up to and including 2.19:

_BSD_SOURCE

DESCRIPTION
This interface is obsoleted by rcmd(3).

The rexec() function looks up the host *ahost using gethostbyname(3), returning -1 if
the host does not exist. Otherwise, *ahost is set to the standard name of the host. If a
username and password are both specified, then these are used to authenticate to the
foreign host; otherwise the environment and then the .netrc file in user’s home direc-
tory are searched for appropriate information. If all this fails, the user is prompted for
the information.

The port inport specifies which well-known DARPA Internet port to use for the con-
nection; the call getservbyname("exec", "tcp") (see getservent(3)) will return a pointer
to a structure that contains the necessary port. The protocol for connection is de-
scribed in detail in rexecd(8)

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM
is returned to the caller, and given to the remote command as stdin and stdout. If
fd2p is nonzero, then an auxiliary channel to a control process will be setup, and a file
descriptor for it will be placed in *fd2p. The control process will return diagnostic
output from the command (unit 2) on this channel, and will also accept bytes on this
channel as being UNIX signal numbers, to be forwarded to the process group of the
command. The diagnostic information returned does not include remote authorization
failure, as the secondary connection is set up after authorization has been verified. If
fd2p is 0, then the stderr (unit 2 of the remote command) will be made the same as
the stdout and no provision is made for sending arbitrary signals to the remote
process, although you may be able to get its attention by using out-of-band data.

Linux man-pages 6.13 2024-07-23 2277

rexec(3) Library Functions Manual rexec(3)

rexec_af()
The rexec() function works over IPv4 (AF_INET). By contrast, the rexec_af() func-
tion provides an extra argument, af , that allows the caller to select the protocol. This
argument can be specified as AF_INET, AF_INET6, or AF_UNSPEC (to allow the
implementation to select the protocol).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsaferexec(), rexec_af()

STANDARDS
None.

HISTORY
rexec()

4.2BSD, BSD, Solaris.

rexec_af()
glibc 2.2.

BUGS
The rexec() function sends the unencrypted password across the network.

The underlying service is considered a big security hole and therefore not enabled on
many sites; see rexecd(8) for explanations.

SEE ALSO
rcmd(3), rexecd(8)

Linux man-pages 6.13 2024-07-23 2278

rint(3) Library Functions Manual rint(3)

NAME
nearbyint, nearbyintf, nearbyintl, rint, rintf, rintl - round to nearest integer

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

double rint(double x);
float rintf(float x);
long double rintl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nearbyint(), nearbyintf(), nearbyintl():
_POSIX_C_SOURCE >= 200112L || _ISOC99_SOURCE

rint():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

rintf(), rintl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The nearbyint(), nearbyintf(), and nearbyintl() functions round their argument to an
integer value in floating-point format, using the current rounding direction (see fes-
etround(3)) and without raising the inexact exception. When the current rounding di-
rection is to nearest, these functions round halfway cases to the even integer in accor-
dance with IEEE-754.

The rint(), rintf(), and rintl() functions do the same, but will raise the inexact excep-
tion (FE_INEXACT, checkable via fetestexcept(3)) when the result differs in value
from the argument.

RETURN VALUE
These functions return the rounded integer value.

If x is integral, +0, -0, NaN, or infinite, x itself is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 2279

rint(3) Library Functions Manual rint(3)

Interface Attribute Value
Thread safety MT-Safenearbyint(), nearbyintf(), nearbyintl(), rint(),

rintf(), rintl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

SUSv2 and POSIX.1-2001 contain text about overflow (which might set errno to
ERANGE, or raise an FE_OVERFLOW exception). In practice, the result cannot
overflow on any current machine, so this error-handling stuff was just nonsense.
(More precisely, overflow can happen only when the maximum value of the exponent
is smaller than the number of mantissa bits. For the IEEE-754 standard 32-bit and
64-bit floating-point numbers the maximum value of the exponent is 127 (respec-
tively, 1023), and the number of mantissa bits including the implicit bit is 24 (respec-
tively, 53).) This was removed in POSIX.1-2008.

If you want to store the rounded value in an integer type, you probably want to use
one of the functions described in lrint(3) instead.

SEE ALSO
ceil(3), floor(3), lrint(3), round(3), trunc(3)

Linux man-pages 6.13 2024-07-23 2280

__riscv_flush_icache(3) Library Functions Manual __riscv_flush_icache(3)

NAME
__riscv_flush_icache - Flush icaches on RISC-V

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/cachectl.h>

int __riscv_flush_icache(void *start, void *end, unsigned long flags);

DESCRIPTION
__riscv_flush_icache() enforces ordering between stores and instruction cache
fetches.

The range of addresses over which ordering is enforced is specified by start and end .

The flags argument controls the extent of this ordering, with the default behavior (a
flags value of 0) being to enforce the fence on all threads in the current process. Set-
ting the SYS_RISCV_FLUSH_ICACHE_LOCAL bit allows users to indicate that
enforcing ordering on only the current thread is necessary. All other flag bits are re-
served.

STANDARDS
Linux on RISC-V.

HISTORY
Linux 4.15. glibc 2.27.

SEE ALSO
syscall(2)

Linux man-pages 6.13 2024-07-23 2281

round(3) Library Functions Manual round(3)

NAME
round, roundf, roundl - round to nearest integer, away from zero

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double round(double x);
float roundf(float x);
long double roundl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

round(), roundf(), roundl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions round x to the nearest integer, but round halfway cases away from
zero (regardless of the current rounding direction, see fenv(3)), instead of to the near-
est even integer like rint(3).

For example, round(0.5) is 1.0, and round(-0.5) is -1.0.

RETURN VALUE
These functions return the rounded integer value.

If x is integral, +0, -0, NaN, or infinite, x itself is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferound(), roundf(), roundl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

POSIX.1-2001 contains text about overflow (which might set errno to ERANGE, or
raise an FE_OVERFLOW exception). In practice, the result cannot overflow on any
current machine, so this error-handling stuff was just nonsense. (More precisely,
overflow can happen only when the maximum value of the exponent is smaller than
the number of mantissa bits. For the IEEE-754 standard 32-bit and 64-bit floating-
point numbers the maximum value of the exponent is 127 (respectively, 1023), and the
number of mantissa bits including the implicit bit is 24 (respectively, 53).) This was
removed in POSIX.1-2008.

If you want to store the rounded value in an integer type, you probably want to use
one of the functions described in lround(3) instead.

Linux man-pages 6.13 2024-07-23 2282

round(3) Library Functions Manual round(3)

SEE ALSO
ceil(3), floor(3), lround(3), nearbyint(3), rint(3), trunc(3)

Linux man-pages 6.13 2024-07-23 2283

roundup(3) Library Functions Manual roundup(3)

NAME
roundup - round up in steps

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/param.h>

roundup(x, step);

DESCRIPTION
This macro rounds x to the nearest multiple of step that is not less than x.

It is typically used for rounding up a pointer to align it or increasing a buffer to be al-
located.

This API is not designed to be generic, and doesn’t work in some cases that are not
important for the typical use cases described above. See CAVEATS.

RETURN VALUE
This macro returns the rounded value.

STANDARDS
None.

CAVEATS
The arguments may be evaluated more than once.

x should be nonnegative, and step should be positive.

If x + step would overflow or wrap around, the behavior is undefined.

SEE ALSO
ceil(3), floor(3), lrint(3), rint(3), lround(3), round(3)

Linux man-pages 6.13 2024-05-02 2284

rpc(3) Library Functions Manual rpc(3)

NAME
rpc - library routines for remote procedure calls

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS AND DESCRIPTION
These routines allow C programs to make procedure calls on other machines across
the network. First, the client calls a procedure to send a data packet to the server.
Upon receipt of the packet, the server calls a dispatch routine to perform the requested
service, and then sends back a reply. Finally, the procedure call returns to the client.

To take use of these routines, include the header file <rpc/rpc.h>.

The prototypes below make use of the following types:

typedef int bool_t;

typedef typeof(bool_t (XDR *, void *, ...)) *xdrproc_t;

typedef typeof(bool_t (caddr_t resp, struct sockaddr_in *raddr)
*resultproc_t;

See the header files for the declarations of the AUTH , CLIENT , SVCXPRT , and XDR
types.

void auth_destroy(AUTH *auth);

A macro that destroys the authentication information associated with auth.
Destruction usually involves deallocation of private data structures. The use of
auth is undefined after calling auth_destroy().

AUTH *authnone_create(void);

Create and return an RPC authentication handle that passes nonusable authen-
tication information with each remote procedure call. This is the default au-
thentication used by RPC.

AUTH *authunix_create(char *host, uid_t uid , gid_t gid ,
int n, gid_t aup_gids[.n]);

Create and return an RPC authentication handle that contains authentication
information. The parameter host is the name of the machine on which the in-
formation was created; uid is the user’s user ID; gid is the user’s current group
ID; n and aup_gids refer to a counted array of groups to which the user be-
longs. It is easy to impersonate a user.

AUTH *authunix_create_default(void);

Calls authunix_create() with the appropriate parameters.

int callrpc(char *host, unsigned long prognum,
unsigned long versnum, unsigned long procnum,
xdrproc_t inproc, const char *in,
xdrproc_t outproc, char *out);

Call the remote procedure associated with prognum, versnum, and procnum
on the machine, host. The parameter in is the address of the procedure’s

Linux man-pages 6.13 2025-01-05 2285

rpc(3) Library Functions Manual rpc(3)

argument(s), and out is the address of where to place the result(s); inproc is
used to encode the procedure’s parameters, and outproc is used to decode the
procedure’s results. This routine returns zero if it succeeds, or the value of
enum clnt_stat cast to an integer if it fails. The routine clnt_perrno() is
handy for translating failure statuses into messages.

Warning: calling remote procedures with this routine uses UDP/IP as a trans-
port; see clntudp_create() for restrictions. You do not have control of time-
outs or authentication using this routine.

enum clnt_stat clnt_broadcast(unsigned long prognum,
unsigned long versnum, unsigned long procnum,
xdrproc_t inproc, char *in,
xdrproc_t outproc, char *out,
resultproc_t eachresult);

Like callrpc(), except the call message is broadcast to all locally connected
broadcast nets. Each time it receives a response, this routine calls eachre-
sult(), whose form is:

eachresult(char *out, struct sockaddr_in *addr);

where out is the same as out passed to clnt_broadcast(), except that the re-
mote procedure’s output is decoded there; addr points to the address of the
machine that sent the results. If eachresult() returns zero, clnt_broadcast()
waits for more replies; otherwise it returns with appropriate status.

Warning: broadcast sockets are limited in size to the maximum transfer unit of
the data link. For ethernet, this value is 1500 bytes.

enum clnt_stat clnt_call(CLIENT *clnt, unsigned long procnum,
xdrproc_t inproc, char *in,
xdrproc_t outproc, char *out,
struct timeval tout);

A macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create(). The parameter in is the address of the procedure’s argument(s),
and out is the address of where to place the result(s); inproc is used to encode
the procedure’s parameters, and outproc is used to decode the procedure’s re-
sults; tout is the time allowed for results to come back.

clnt_destroy(CLIENT *clnt);

A macro that destroys the client’s RPC handle. Destruction usually involves
deallocation of private data structures, including clnt itself. Use of clnt is un-
defined after calling clnt_destroy(). If the RPC library opened the associated
socket, it will close it also. Otherwise, the socket remains open.

CLIENT *clnt_create(const char *host, unsigned long prog,
unsigned long vers, const char *proto);

Generic client creation routine. host identifies the name of the remote host
where the server is located. proto indicates which kind of transport protocol
to use. The currently supported values for this field are “udp” and “tcp”. De-
fault timeouts are set, but can be modified using clnt_control().

Linux man-pages 6.13 2025-01-05 2286

rpc(3) Library Functions Manual rpc(3)

Warning: using UDP has its shortcomings. Since UDP-based RPC messages
can hold only up to 8 Kbytes of encoded data, this transport cannot be used for
procedures that take large arguments or return huge results.

bool_t clnt_control(CLIENT *cl, int req, char *info);

A macro used to change or retrieve various information about a client object.
req indicates the type of operation, and info is a pointer to the information.
For both UDP and TCP, the supported values of req and their argument types
and what they do are:

CLSET_TIMEOUT struct timeval // set total timeout
CLGET_TIMEOUT struct timeval // get total timeout

Note: if you set the timeout using clnt_control(), the timeout parameter
passed to clnt_call() will be ignored in all future calls.

CLGET_SERVER_ADDR struct sockaddr_in
// get server's address

The following operations are valid for UDP only:

CLSET_RETRY_TIMEOUT struct timeval // set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval // get the retry timeout

The retry timeout is the time that "UDP RPC" waits for the server to reply be-
fore retransmitting the request.

clnt_freeres(CLIENT * clnt, xdrproc_t outproc, char *out);

A macro that frees any data allocated by the RPC/XDR system when it de-
coded the results of an RPC call. The parameter out is the address of the re-
sults, and outproc is the XDR routine describing the results. This routine re-
turns one if the results were successfully freed, and zero otherwise.

void clnt_geterr(CLIENT *clnt, struct rpc_err *errp);

A macro that copies the error structure out of the client handle to the structure
at address errp.

void clnt_pcreateerror(const char *s);

Print a message to standard error indicating why a client RPC handle could not
be created. The message is prepended with string s and a colon. Used when a
clnt_create(), clntraw_create(), clnttcp_create(), or clntudp_create() call
fails.

void clnt_perrno(enum clnt_stat stat);

Print a message to standard error corresponding to the condition indicated by
stat. Used after callrpc().

clnt_perror(CLIENT *clnt, const char *s);

Print a message to standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a
colon. Used after clnt_call().

char *clnt_spcreateerror(const char *s);

Linux man-pages 6.13 2025-01-05 2287

rpc(3) Library Functions Manual rpc(3)

Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error.

Bugs: returns pointer to static data that is overwritten on each call.

char *clnt_sperrno(enum clnt_stat stat);

Take the same arguments as clnt_perrno(), but instead of sending a message
to the standard error indicating why an RPC call failed, return a pointer to a
string which contains the message. The string ends with a NEWLINE.

clnt_sperrno() is used instead of clnt_perrno() if the program does not have a
standard error (as a program running as a server quite likely does not), or if the
programmer does not want the message to be output with printf(3), or if a
message format different than that supported by clnt_perrno() is to be used.
Note: unlike clnt_sperror() and clnt_spcreateerror(), clnt_sperrno() returns
pointer to static data, but the result will not get overwritten on each call.

char *clnt_sperror(CLIENT *rpch, const char *s);

Like clnt_perror(), except that (like clnt_sperrno()) it returns a string instead
of printing to standard error.

Bugs: returns pointer to static data that is overwritten on each call.

CLIENT *clntraw_create(unsigned long prognum, unsigned long versnum);

This routine creates a toy RPC client for the remote program prognum, ver-
sion versnum. The transport used to pass messages to the service is actually a
buffer within the process’s address space, so the corresponding RPC server
should live in the same address space; see svcraw_create(). This allows simu-
lation of RPC and acquisition of RPC overheads, such as round trip times,
without any kernel interference. This routine returns NULL if it fails.

CLIENT *clnttcp_create(struct sockaddr_in *addr,
unsigned long prognum, unsigned long versnum,
int *sockp, unsigned int sendsz, unsigned int recvsz);

This routine creates an RPC client for the remote program prognum, version
versnum; the client uses TCP/IP as a transport. The remote program is located
at Internet address *addr. If addr->sin_port is zero, then it is set to the ac-
tual port that the remote program is listening on (the remote portmap service
is consulted for this information). The parameter sockp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets sockp. Since
TCP-based RPC uses buffered I/O, the user may specify the size of the send
and receive buffers with the parameters sendsz and recvsz; values of zero
choose suitable defaults. This routine returns NULL if it fails.

CLIENT *clntudp_create(struct sockaddr_in *addr,
unsigned long prognum, unsigned long versnum,
struct timeval wait, int *sockp);

This routine creates an RPC client for the remote program prognum, version
versnum; the client uses use UDP/IP as a transport. The remote program is lo-
cated at Internet address addr. If addr->sin_port is zero, then it is set to ac-
tual port that the remote program is listening on (the remote portmap service

Linux man-pages 6.13 2025-01-05 2288

rpc(3) Library Functions Manual rpc(3)

is consulted for this information). The parameter sockp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets sockp. The
UDP transport resends the call message in intervals of wait time until a re-
sponse is received or until the call times out. The total time for the call to time
out is specified by clnt_call().

Warning: since UDP-based RPC messages can hold only up to 8 Kbytes of en-
coded data, this transport cannot be used for procedures that take large argu-
ments or return huge results.

CLIENT *clntudp_bufcreate(struct sockaddr_in *addr,
unsigned long prognum, unsigned long versnum,
struct timeval wait, int *sockp,
unsigned int sendsize, unsigned int recosize);

This routine creates an RPC client for the remote program prognum, on ver-
snum; the client uses use UDP/IP as a transport. The remote program is lo-
cated at Internet address addr. If addr->sin_port is zero, then it is set to ac-
tual port that the remote program is listening on (the remote portmap service
is consulted for this information). The parameter sockp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets sockp. The
UDP transport resends the call message in intervals of wait time until a re-
sponse is received or until the call times out. The total time for the call to time
out is specified by clnt_call().

This allows the user to specify the maximum packet size for sending and re-
ceiving UDP-based RPC messages.

void get_myaddress(struct sockaddr_in *addr);

Stuff the machine’s IP address into *addr, without consulting the library rou-
tines that deal with /etc/hosts. The port number is always set to
htons(PMAPPORT).

struct pmaplist *pmap_getmaps(struct sockaddr_in *addr);

A user interface to the portmap service, which returns a list of the current
RPC program-to-port mappings on the host located at IP address *addr. This
routine can return NULL. The command rpcinfo -p uses this routine.

unsigned short pmap_getport(struct sockaddr_in *addr,
unsigned long prognum, unsigned long versnum,
unsigned int protocol);

A user interface to the portmap service, which returns the port number on
which waits a service that supports program number prognum, version ver-
snum, and speaks the transport protocol associated with protocol. The value
of protocol is most likely IPPROTO_UDP or IPPROTO_TCP. A return
value of zero means that the mapping does not exist or that the RPC system
failed to contact the remote portmap service. In the latter case, the global
variable rpc_createerr contains the RPC status.

enum clnt_stat pmap_rmtcall(struct sockaddr_in *addr,
unsigned long prognum, unsigned long versnum,
unsigned long procnum,

Linux man-pages 6.13 2025-01-05 2289

rpc(3) Library Functions Manual rpc(3)

xdrproc_t inproc, char *in,
xdrproc_t outproc, char *out,
struct timeval tout, unsigned long *portp);

A user interface to the portmap service, which instructs portmap on the host
at IP address *addr to make an RPC call on your behalf to a procedure on that
host. The parameter *portp will be modified to the program’s port number if
the procedure succeeds. The definitions of other parameters are discussed in
callrpc() and clnt_call(). This procedure should be used for a “ping” and
nothing else. See also clnt_broadcast().

bool_t pmap_set(unsigned long prognum, unsigned long versnum,
int protocol, unsigned short port);

A user interface to the portmap service, which establishes a mapping between
the triple [prognum,versnum,protocol] and port on the machine’s portmap
service. The value of protocol is most likely IPPROTO_UDP or IP-
PROTO_TCP. This routine returns one if it succeeds, zero otherwise. Auto-
matically done by svc_register().

bool_t pmap_unset(unsigned long prognum, unsigned long versnum);

A user interface to the portmap service, which destroys all mapping between
the triple [prognum,versnum,*] and ports on the machine’s portmap service.
This routine returns one if it succeeds, zero otherwise.

int registerrpc(unsigned long prognum, unsigned long versnum,
unsigned long procnum, typeof(char *(char *)) *procname,
xdrproc_t inproc, xdrproc_t outproc);

Register procedure procname with the RPC service package. If a request ar-
rives for program prognum, version versnum, and procedure procnum, proc-
name is called with a pointer to its parameter(s); procname should return a
pointer to its static result(s); inproc is used to decode the parameters while
outproc is used to encode the results. This routine returns zero if the registra-
tion succeeded, -1 otherwise.

Warning: remote procedures registered in this form are accessed using the
UDP/IP transport; see svcudp_create() for restrictions.

struct rpc_createerr rpc_createerr;

A global variable whose value is set by any RPC client creation routine that
does not succeed. Use the routine clnt_pcreateerror() to print the reason
why.

void svc_destroy(SVCXPRT *xprt);

A macro that destroys the RPC service transport handle, xprt. Destruction
usually involves deallocation of private data structures, including xprt itself.
Use of xprt is undefined after calling this routine.

fd_set svc_fdset;

A global variable reflecting the RPC service side’s read file descriptor bit
mask; it is suitable as a parameter to the select(2) system call. This is of inter-
est only if a service implementor does their own asynchronous event

Linux man-pages 6.13 2025-01-05 2290

rpc(3) Library Functions Manual rpc(3)

processing, instead of calling svc_run(). This variable is read-only (do not
pass its address to select(2)!), yet it may change after calls to svc_getreqset()
or any creation routines.

int svc_fds;

Similar to svc_fdset, but limited to 32 file descriptors. This interface is obso-
leted by svc_fdset.

svc_freeargs(SVCXPRT *xprt, xdrproc_t inproc, char *in);

A macro that frees any data allocated by the RPC/XDR system when it de-
coded the arguments to a service procedure using svc_getargs(). This routine
returns 1 if the results were successfully freed, and zero otherwise.

svc_getargs(SVCXPRT *xprt, xdrproc_t inproc, char *in);

A macro that decodes the arguments of an RPC request associated with the
RPC service transport handle, xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the argu-
ments. This routine returns one if decoding succeeds, and zero otherwise.

struct sockaddr_in *svc_getcaller(SVCXPRT *xprt);

The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle, xprt.

void svc_getreqset(fd_set *rdfds);

This routine is of interest only if a service implementor does not call
svc_run(), but instead implements custom asynchronous event processing. It
is called when the select(2) system call has determined that an RPC request
has arrived on some RPC socket(s); rdfds is the resultant read file descriptor
bit mask. The routine returns when all sockets associated with the value of
rdfds have been serviced.

void svc_getreq(int rdfds);

Similar to svc_getreqset(), but limited to 32 file descriptors. This interface is
obsoleted by svc_getreqset().

bool_t svc_register(SVCXPRT *xprt, unsigned long prognum,
unsigned long versnum,
typeof(void (struct svc_req *, SVCXPRT *)) *dispatch,
unsigned long protocol);

Associates prognum and versnum with the service dispatch procedure, dis-
patch. If protocol is zero, the service is not registered with the portmap ser-
vice. If protocol is nonzero, then a mapping of the triple [prognum,ver-
snum,protocol] to xprt->xp_port is established with the local portmap ser-
vice (generally protocol is zero, IPPROTO_UDP or IPPROTO_TCP). The
procedure dispatch has the following form:

dispatch(struct svc_req *request, SVCXPRT *xprt);

The svc_register() routine returns one if it succeeds, and zero otherwise.

void svc_run(void);

Linux man-pages 6.13 2025-01-05 2291

rpc(3) Library Functions Manual rpc(3)

This routine never returns. It waits for RPC requests to arrive, and calls the
appropriate service procedure using svc_getreq() when one arrives. This pro-
cedure is usually waiting for a select(2) system call to return.

bool_t svc_sendreply(SVCXPRT *xprt, xdrproc_t outproc, char *out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport han-
dle; outproc is the XDR routine which is used to encode the results; and out is
the address of the results. This routine returns one if it succeeds, zero other-
wise.

void svc_unregister(unsigned long prognum, unsigned long versnum);

Remove all mapping of the double [prognum,versnum] to dispatch routines,
and of the triple [prognum,versnum,*] to port number.

void svcerr_auth(SVCXPRT *xprt, enum auth_stat why);

Called by a service dispatch routine that refuses to perform a remote procedure
call due to an authentication error.

void svcerr_decode(SVCXPRT *xprt);

Called by a service dispatch routine that cannot successfully decode its para-
meters. See also svc_getargs().

void svcerr_noproc(SVCXPRT *xprt);

Called by a service dispatch routine that does not implement the procedure
number that the caller requests.

void svcerr_noprog(SVCXPRT *xprt);

Called when the desired program is not registered with the RPC package. Ser-
vice implementors usually do not need this routine.

void svcerr_progvers(SVCXPRT *xprt, unsigned long low_vers,
unsigned long high_vers);

Called when the desired version of a program is not registered with the RPC
package. Service implementors usually do not need this routine.

void svcerr_systemerr(SVCXPRT *xprt);

Called by a service dispatch routine when it detects a system error not covered
by any particular protocol. For example, if a service can no longer allocate
storage, it may call this routine.

void svcerr_weakauth(SVCXPRT *xprt);

Called by a service dispatch routine that refuses to perform a remote procedure
call due to insufficient authentication parameters. The routine calls
svcerr_auth(xprt, AUTH_TOOWEAK).

SVCXPRT *svcfd_create(int fd , unsigned int sendsize,
unsigned int recvsize);

Create a service on top of any open file descriptor. Typically, this file descrip-
tor is a connected socket for a stream protocol such as TCP. sendsize and
recvsize indicate sizes for the send and receive buffers. If they are zero, a

Linux man-pages 6.13 2025-01-05 2292

rpc(3) Library Functions Manual rpc(3)

reasonable default is chosen.

SVCXPRT *svcraw_create(void);

This routine creates a toy RPC service transport, to which it returns a pointer.
The transport is really a buffer within the process’s address space, so the corre-
sponding RPC client should live in the same address space; see clntraw_cre-
ate(). This routine allows simulation of RPC and acquisition of RPC over-
heads (such as round trip times), without any kernel interference. This routine
returns NULL if it fails.

SVCXPRT *svctcp_create(int sock, unsigned int send_buf_size,
unsigned int recv_buf_size);

This routine creates a TCP/IP-based RPC service transport, to which it returns
a pointer. The transport is associated with the socket sock, which may be
RPC_ANYSOCK, in which case a new socket is created. If the socket is not
bound to a local TCP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_sock is the transport’s socket descriptor, and
xprt->xp_port is the transport’s port number. This routine returns NULL if it
fails. Since TCP-based RPC uses buffered I/O, users may specify the size of
buffers; values of zero choose suitable defaults.

SVCXPRT *svcudp_bufcreate(int sock, unsigned int sendsize,
unsigned int recosize);

This routine creates a UDP/IP-based RPC service transport, to which it returns
a pointer. The transport is associated with the socket sock, which may be
RPC_ANYSOCK, in which case a new socket is created. If the socket is not
bound to a local UDP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_sock is the transport’s socket descriptor, and
xprt->xp_port is the transport’s port number. This routine returns NULL if it
fails.

This allows the user to specify the maximum packet size for sending and re-
ceiving UDP-based RPC messages.

SVCXPRT *svcudp_create(int sock);

This call is equivalent to svcudp_bufcreate(sock,SZ,SZ) for some default size
SZ .

bool_t xdr_accepted_reply(XDR *xdrs, struct accepted_reply *ar);

Used for encoding RPC reply messages. This routine is useful for users who
wish to generate RPC-style messages without using the RPC package.

bool_t xdr_authunix_parms(XDR *xdrs, struct authunix_parms *aupp);

Used for describing UNIX credentials. This routine is useful for users who
wish to generate these credentials without using the RPC authentication pack-
age.

void xdr_callhdr(XDR *xdrs, struct rpc_msg *chdr);

Used for describing RPC call header messages. This routine is useful for users
who wish to generate RPC-style messages without using the RPC package.

Linux man-pages 6.13 2025-01-05 2293

rpc(3) Library Functions Manual rpc(3)

bool_t xdr_callmsg(XDR *xdrs, struct rpc_msg *cmsg);

Used for describing RPC call messages. This routine is useful for users who
wish to generate RPC-style messages without using the RPC package.

bool_t xdr_opaque_auth(XDR *xdrs, struct opaque_auth *ap);

Used for describing RPC authentication information messages. This routine is
useful for users who wish to generate RPC-style messages without using the
RPC package.

bool_t xdr_pmap(XDR *xdrs, struct pmap *regs);

Used for describing parameters to various portmap procedures, externally.
This routine is useful for users who wish to generate these parameters without
using the pmap interface.

bool_t xdr_pmaplist(XDR *xdrs, struct pmaplist **rp);

Used for describing a list of port mappings, externally. This routine is useful
for users who wish to generate these parameters without using the pmap inter-
face.

bool_t xdr_rejected_reply(XDR *xdrs, struct rejected_reply *rr);

Used for describing RPC reply messages. This routine is useful for users who
wish to generate RPC-style messages without using the RPC package.

bool_t xdr_replymsg(XDR *xdrs, struct rpc_msg *rmsg);

Used for describing RPC reply messages. This routine is useful for users who
wish to generate RPC style messages without using the RPC package.

void xprt_register(SVCXPRT *xprt);

After RPC service transport handles are created, they should register them-
selves with the RPC service package. This routine modifies the global vari-
able svc_fds. Service implementors usually do not need this routine.

void xprt_unregister(SVCXPRT *xprt);

Before an RPC service transport handle is destroyed, it should unregister itself
with the RPC service package. This routine modifies the global variable
svc_fds. Service implementors usually do not need this routine.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2025-01-05 2294

rpc(3) Library Functions Manual rpc(3)

Interface Attribute Value
Thread safety MT-Safeauth_destroy(), authnone_create(),

authunix_create(), authunix_create_default(),
callrpc(), clnt_broadcast(), clnt_call(),
clnt_destroy(), clnt_create(), clnt_control(),
clnt_freeres(), clnt_geterr(), clnt_pcreateerror(),
clnt_perrno(), clnt_perror(), clnt_spcreateerror(),
clnt_sperrno(), clnt_sperror(), clntraw_create(),
clnttcp_create(), clntudp_create(),
clntudp_bufcreate(), get_myaddress(),
pmap_getmaps(), pmap_getport(),
pmap_rmtcall(), pmap_set(), pmap_unset(),
registerrpc(), svc_destroy(), svc_freeargs(),
svc_getargs(), svc_getcaller(), svc_getreqset(),
svc_getreq(), svc_register(), svc_run(),
svc_sendreply(), svc_unregister(), svcerr_auth(),
svcerr_decode(), svcerr_noproc(),
svcerr_noprog(), svcerr_progvers(),
svcerr_systemerr(), svcerr_weakauth(),
svcfd_create(), svcraw_create(), svctcp_create(),
svcudp_bufcreate(), svcudp_create(),
xdr_accepted_reply(), xdr_authunix_parms(),
xdr_callhdr(), xdr_callmsg(), xdr_opaque_auth(),
xdr_pmap(), xdr_pmaplist(), xdr_rejected_reply(),
xdr_replymsg(), xprt_register(), xprt_unregister()

SEE ALSO
xdr(3)

The following manuals:
Remote Procedure Calls: Protocol Specification
Remote Procedure Call Programming Guide
rpcgen Programming Guide

RPC: Remote Procedure Call Protocol Specification, RFC 1050, Sun Microsystems,
Inc., USC-ISI.

Linux man-pages 6.13 2025-01-05 2295

rpmatch(3) Library Functions Manual rpmatch(3)

NAME
rpmatch - determine if the answer to a question is affirmative or negative

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int rpmatch(const char *response);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

rpmatch():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
rpmatch() handles a user response to yes or no questions, with support for interna-
tionalization.

response should be a null-terminated string containing a user-supplied response, per-
haps obtained with fgets(3) or getline(3).

The user’s language preference is taken into account per the environment variables
LANG, LC_MESSAGES, and LC_ALL, if the program has called setlocale(3) to
effect their changes.

Regardless of the locale, responses matching ^[Yy] are always accepted as affirma-
tive, and those matching ^[Nn] are always accepted as negative.

RETURN VALUE
After examining response, rpmatch() returns 0 for a recognized negative response
("no"), 1 for a recognized positive response ("yes"), and -1 when the value of
response is unrecognized.

ERRORS
A return value of -1 may indicate either an invalid input, or some other error. It is in-
correct to only test if the return value is nonzero.

rpmatch() can fail for any of the reasons that regcomp(3) or regexec(3) can fail; the
error is not available from errno or anywhere else, but indicates a failure of the regex
engine (but this case is indistinguishable from that of an unrecognized value of
response).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localerpmatch()

STANDARDS
None.

Linux man-pages 6.13 2024-07-23 2296

rpmatch(3) Library Functions Manual rpmatch(3)

HISTORY
GNU, FreeBSD, AIX.

BUGS
The YESEXPR and NOEXPR of some locales (including "C") only inspect the first
character of the response. This can mean that "yno" et al. resolve to 1. This is an un-
fortunate historical side-effect which should be fixed in time with proper localisation,
and should not deter from rpmatch() being the proper way to distinguish between bi-
nary answers.

EXAMPLES
The following program displays the results when rpmatch() is applied to the string
given in the program’s command-line argument.

#define _DEFAULT_SOURCE
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

if (argc != 2 || strcmp(argv[1], "--help") == 0) {
fprintf(stderr, "%s response\n", argv[0]);
exit(EXIT_FAILURE);

}

setlocale(LC_ALL, "");
printf("rpmatch() returns: %d\n", rpmatch(argv[1]));
exit(EXIT_SUCCESS);

}

SEE ALSO
fgets(3), getline(3), nl_langinfo(3), regcomp(3), setlocale(3)

Linux man-pages 6.13 2024-07-23 2297

rtime(3) Library Functions Manual rtime(3)

NAME
rtime - get time from a remote machine

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <rpc/auth_des.h>

int rtime(struct sockaddr_in *addrp, struct rpc_timeval *timep,
struct rpc_timeval *timeout);

DESCRIPTION
This function uses the Time Server Protocol as described in RFC 868 to obtain the
time from a remote machine.

The Time Server Protocol gives the time in seconds since 00:00:00 UTC, 1 Jan 1900,
and this function subtracts the appropriate constant in order to convert the result to
seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

When timeout is non-NULL, the udp/time socket (port 37) is used. Otherwise, the
tcp/time socket (port 37) is used.

RETURN VALUE
On success, 0 is returned, and the obtained 32-bit time value is stored in
timep->tv_sec. In case of error -1 is returned, and errno is set to indicate the error.

ERRORS
All errors for underlying functions (sendto(2), poll(2), recvfrom(2), connect(2),
read(2)) can occur. Moreover:

EIO The number of returned bytes is not 4.

ETIMEDOUT
The waiting time as defined in timeout has expired.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safertime()

NOTES
Only IPv4 is supported.

Some in.timed versions support only TCP. Try the example program with use_tcp set
to 1.

BUGS
rtime() in glibc 2.2.5 and earlier does not work properly on 64-bit machines.

EXAMPLES
This example requires that port 37 is up and open. You may check that the time entry
within /etc/inetd.conf is not commented out.

The program connects to a computer called "linux". Using "localhost" does not work.
The result is the localtime of the computer "linux".

#include <errno.h>
#include <netdb.h>

Linux man-pages 6.13 2024-07-23 2298

rtime(3) Library Functions Manual rtime(3)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#include <rpc/auth_des.h>

static int use_tcp = 0;
static const char servername[] = "linux";

int
main(void)
{

int ret;
time_t t;
struct hostent *hent;
struct rpc_timeval time1 = {0, 0};
struct rpc_timeval timeout = {1, 0};
struct sockaddr_in name;

memset(&name, 0, sizeof(name));
sethostent(1);
hent = gethostbyname(servername);
memcpy(&name.sin_addr, hent->h_addr, hent->h_length);

ret = rtime(&name, &time1, use_tcp ? NULL : &timeout);
if (ret < 0)

perror("rtime error");
else {

t = time1.tv_sec;
printf("%s\n", ctime(&t));

}

exit(EXIT_SUCCESS);
}

SEE ALSO
ntpdate(1), inetd(8)

Linux man-pages 6.13 2024-07-23 2299

rtnetlink(3) Library Functions Manual rtnetlink(3)

NAME
rtnetlink - macros to manipulate rtnetlink messages

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/types.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <sys/socket.h>

rtnetlink_socket = socket(AF_NETLINK, int socket_type, NETLINK_ROUTE);

int RTA_OK(struct rtattr *rta, int size);

void *RTA_DATA(struct rtattr *rta);
unsigned int RTA_PAYLOAD(struct rtattr *rta);

struct rtattr *RTA_NEXT(struct rtattr *rta, unsigned int size);

unsigned int RTA_LENGTH(unsigned int size);
unsigned int RTA_SPACE(unsigned int size);

DESCRIPTION
All rtnetlink(7) messages consist of a netlink(7) message header and appended attrib-
utes. The attributes should be manipulated only using the macros provided here.

RTA_OK(rta, size) returns true if rta points to a valid routing attribute; size is the
running size of the attribute buffer. When not true then you must assume there are no
more attributes in the message, even if size is nonzero.

RTA_DATA(rta) returns a pointer to the start of this attribute’s data.

RTA_PAYLOAD(rta) returns the size of this attribute’s data.

RTA_NEXT(rta, size) gets the next attribute after rta. Calling this macro will update
size. You should use RTA_OK to check the validity of the returned pointer.

RTA_LENGTH(size) returns the size which is required for size bytes of data plus the
header.

RTA_SPACE(size) returns the amount of space which will be needed in a message
with size bytes of data.

STANDARDS
Linux.

BUGS
This manual page is incomplete.

EXAMPLES
Creating a rtnetlink message to set the MTU of a device:

#include <linux/rtnetlink.h>

...

struct {

Linux man-pages 6.13 2025-01-05 2300

rtnetlink(3) Library Functions Manual rtnetlink(3)

struct nlmsghdr nh;
struct ifinfomsg if;
char attrbuf[512];

} req;

struct rtattr *rta;
unsigned int mtu = 1000;

int rtnetlink_sk = socket(AF_NETLINK, SOCK_DGRAM, NETLINK_ROUTE);

memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.if));
req.nh.nlmsg_flags = NLM_F_REQUEST;
req.nh.nlmsg_type = RTM_NEWLINK;
req.if.ifi_family = AF_UNSPEC;
req.if.ifi_index = INTERFACE_INDEX;
req.if.ifi_change = 0xffffffff; /* ??? */
rta = (struct rtattr *) ((char *) &req +

NLMSG_ALIGN(req.nh.nlmsg_len));
rta->rta_type = IFLA_MTU;
rta->rta_len = RTA_LENGTH(sizeof(mtu));
req.nh.nlmsg_len = NLMSG_ALIGN(req.nh.nlmsg_len) +

RTA_LENGTH(sizeof(mtu));
memcpy(RTA_DATA(rta), &mtu, sizeof(mtu));
send(rtnetlink_sk, &req, req.nh.nlmsg_len, 0);

SEE ALSO
netlink(3), netlink(7), rtnetlink(7)

Linux man-pages 6.13 2025-01-05 2301

scalb(3) Library Functions Manual scalb(3)

NAME
scalb, scalbf, scalbl - multiply floating-point number by integral power of radix (OB-
SOLETE)

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

[[deprecated]] double scalb(double x, double exp);
[[deprecated]] float scalbf(float x, float exp);
[[deprecated]] long double scalbl(long double x, long double exp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

scalb():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

scalbf(), scalbl():
_XOPEN_SOURCE >= 600

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions multiply their first argument x by FLT_RADIX (probably 2) to the
power of exp, that is:

x * FLT_RADIX ** exp

The definition of FLT_RADIX can be obtained by including <float.h>.

RETURN VALUE
On success, these functions return x * FLT_RADIX ** exp.

If x or exp is a NaN, a NaN is returned.

If x is positive infinity (negative infinity), and exp is not negative infinity, positive in-
finity (negative infinity) is returned.

If x is +0 (-0), and exp is not positive infinity, +0 (-0) is returned.

If x is zero, and exp is positive infinity, a domain error occurs, and a NaN is returned.

If x is an infinity, and exp is negative infinity, a domain error occurs, and a NaN is re-
turned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with a sign the same as x.

If the result underflows, a range error occurs, and the functions return zero, with a
sign the same as x.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Linux man-pages 6.13 2024-07-23 2302

scalb(3) Library Functions Manual scalb(3)

Domain error: x is 0, and exp is positive infinity, or x is positive infinity and exp is
negative infinity and the other argument is not a NaN

errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Range error, overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Range error, underflow
errno is set to ERANGE. An underflow floating-point exception (FE_UN-
DERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safescalb(), scalbf(), scalbl()

STANDARDS
None.

HISTORY
scalb()

4.3BSD. Obsolescent in POSIX.1-2001; Removed in POSIX.1-2008, recom-
mending the use of scalbln(3), scalblnf(3), or scalblnl(3) instead.

BUGS
Before glibc 2.20, these functions did not set errno for domain and range errors.

SEE ALSO
ldexp(3), scalbln(3)

Linux man-pages 6.13 2024-07-23 2303

scalbln(3) Library Functions Manual scalbln(3)

NAME
scalbn, scalbnf, scalbnl, scalbln, scalblnf, scalblnl - multiply floating-point number by
integral power of radix

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double scalbln(double x, long exp);
float scalblnf(float x, long exp);
long double scalblnl(long double x, long exp);

double scalbn(double x, int exp);
float scalbnf(float x, int exp);
long double scalbnl(long double x, int exp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

scalbln(), scalblnf(), scalblnl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE

scalbn(), scalbnf(), scalbnl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions multiply their first argument x by FLT_RADIX (probably 2) to the
power of exp, that is:

x * FLT_RADIX ** exp

The definition of FLT_RADIX can be obtained by including <float.h>.

RETURN VALUE
On success, these functions return x * FLT_RADIX ** exp.

If x is a NaN, a NaN is returned.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is re-
turned.

If x is +0 (-0), +0 (-0) is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with a sign the same as x.

If the result underflows, a range error occurs, and the functions return zero, with a
sign the same as x.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Linux man-pages 6.13 2024-07-23 2304

scalbln(3) Library Functions Manual scalbln(3)

Range error, overflow
An overflow floating-point exception (FE_OVERFLOW) is raised.

Range error, underflow
errno is set to ERANGE. An underflow floating-point exception (FE_UN-
DERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safescalbn(), scalbnf(), scalbnl(), scalbln(), scalblnf(),
scalblnl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

HISTORY
These functions differ from the obsolete functions described in scalb(3) in the type of
their second argument. The functions described on this page have a second argument
of an integral type, while those in scalb(3) have a second argument of type double.

NOTES
If FLT_RADIX equals 2 (which is usual), then scalbn() is equivalent to ldexp(3).

BUGS
Before glibc 2.20, these functions did not set errno for range errors.

SEE ALSO
ldexp(3), scalb(3)

Linux man-pages 6.13 2024-07-23 2305

scandir(3) Library Functions Manual scandir(3)

NAME
scandir, scandirat, alphasort, versionsort - scan a directory for matching entries

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

int scandir(const char *restrict dirp,
struct dirent ***restrict namelist,
typeof(int (const struct dirent *)) * filter,
typeof(int (const struct dirent **, const struct dirent **))

*compar);

int alphasort(const struct dirent **a, const struct dirent **b);
int versionsort(const struct dirent **a, const struct dirent **b);

#include <fcntl.h> /* Definition of AT_* constants */
#include <dirent.h>

int scandirat(int dirfd , const char *restrict dirp,
struct dirent ***restrict namelist,
typeof(int (const struct dirent *)) * filter,
typeof(int (const struct dirent **, const struct dirent **))

*compar);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

scandir(), alphasort():
/* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200809L

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

versionsort():
_GNU_SOURCE

scandirat():
_GNU_SOURCE

DESCRIPTION
The scandir() function scans the directory dirp, calling filter() on each directory entry.
Entries for which filter() returns nonzero are stored in strings allocated via malloc(3),
sorted using qsort(3) with the comparison function compar(), and collected in array
namelist which is allocated via malloc(3). If filter is NULL, all entries are selected.

The alphasort() and versionsort() functions can be used as the comparison function
compar(). The former sorts directory entries using strcoll(3), the latter using strver-
scmp(3) on the strings (*a)->d_name and (*b)->d_name.

scandirat()
The scandirat() function operates in exactly the same way as scandir(), except for
the differences described here.

If the pathname given in dirp is relative, then it is interpreted relative to the directory
referred to by the file descriptor dirfd (rather than relative to the current working di-
rectory of the calling process, as is done by scandir() for a relative pathname).

If dirp is relative and dirfd is the special value AT_FDCWD, then dirp is interpreted

Linux man-pages 6.13 2024-12-13 2306

scandir(3) Library Functions Manual scandir(3)

relative to the current working directory of the calling process (like scandir())

If dirp is absolute, then dirfd is ignored.

See openat(2) for an explanation of the need for scandirat().

RETURN VALUE
The scandir() function returns the number of directory entries selected. On error, -1
is returned, with errno set to indicate the error.

The alphasort() and versionsort() functions return an integer less than, equal to, or
greater than zero if the first argument is considered to be respectively less than, equal
to, or greater than the second.

ERRORS
EBADF

(scandirat()) dirp is relative but dirfd is neither AT_FDCWD nor a valid file
descriptor.

ENOENT
The path in dirp does not exist.

ENOMEM
Insufficient memory to complete the operation.

ENOTDIR
The path in dirp is not a directory.

ENOTDIR
(scandirat()) dirp is a relative pathname and dirfd is a file descriptor referring
to a file other than a directory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safescandir(), scandirat()
Thread safety MT-Safe localealphasort(), versionsort()

STANDARDS
alphasort()
scandir()

POSIX.1-2008.

versionsort()
scandirat()

GNU.

HISTORY
alphasort()
scandir()

4.3BSD, POSIX.1-2008.

versionsort()
glibc 2.1.

Linux man-pages 6.13 2024-12-13 2307

scandir(3) Library Functions Manual scandir(3)

scandirat()
glibc 2.15.

NOTES
Since glibc 2.1, alphasort() calls strcoll(3); earlier it used strcmp(3).

Before glibc 2.10, the two arguments of alphasort() and versionsort() were typed as
const void *. When alphasort() was standardized in POSIX.1-2008, the argument
type was specified as the type-safe const struct dirent **, and glibc 2.10 changed the
definition of alphasort() (and the nonstandard versionsort()) to match the standard.

EXAMPLES
The program below prints a list of the files in the current directory in reverse order.

Program source

#define _DEFAULT_SOURCE
#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

struct dirent **namelist;
int n;

n = scandir(".", &namelist, NULL, alphasort);
if (n == -1) {

perror("scandir");
exit(EXIT_FAILURE);

}

while (n--) {
printf("%s\n", namelist[n]->d_name);
free(namelist[n]);

}
free(namelist);

exit(EXIT_SUCCESS);
}

SEE ALSO
closedir(3), fnmatch(3), opendir(3), readdir(3), rewinddir(3), seekdir(3), strcmp(3),
strcoll(3), strverscmp(3), telldir(3)

Linux man-pages 6.13 2024-12-13 2308

scanf (3) Library Functions Manual scanf (3)

NAME
scanf, fscanf, vscanf, vfscanf - input FILE format conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int scanf(const char *restrict format, ...);
int fscanf(FILE *restrict stream,

const char *restrict format, ...);

#include <stdarg.h>

int vscanf(const char *restrict format, va_list ap);
int vfscanf(FILE *restrict stream,

const char *restrict format, va_list ap);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vscanf(), vfscanf():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The scanf() family of functions scans formatted input like sscanf(3), but read from a
FILE. It is very difficult to use these functions correctly, and it is preferable to read
entire lines with fgets(3) or getline(3) and parse them later with sscanf(3) or more spe-
cialized functions such as strtol(3).

The scanf() function reads input from the standard input stream stdin and fscanf()
reads input from the stream pointer stream.

The vfscanf() function is analogous to vfprintf(3) and reads input from the stream
pointer stream using a variable argument list of pointers (see stdarg(3). The vscanf()
function is analogous to vprintf(3) and reads from the standard input.

RETURN VALUE
On success, these functions return the number of input items successfully matched
and assigned; this can be fewer than provided for, or even zero, in the event of an
early matching failure.

The value EOF is returned if the end of input is reached before either the first suc-
cessful conversion or a matching failure occurs. EOF is also returned if a read error
occurs, in which case the error indicator for the stream (see ferror(3)) is set, and errno
is set to indicate the error.

ERRORS
EAGAIN

The file descriptor underlying stream is marked nonblocking, and the read op-
eration would block.

EBADF
The file descriptor underlying stream is invalid, or not open for reading.

EILSEQ
Input byte sequence does not form a valid character.

Linux man-pages 6.13 2024-11-17 2309

scanf (3) Library Functions Manual scanf (3)

EINTR
The read operation was interrupted by a signal; see signal(7).

EINVAL
Not enough arguments; or format is NULL.

ENOMEM
Out of memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localescanf(), fscanf(), vscanf(), vfscanf()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

CAVEATS
These functions make it difficult to distinguish newlines from other white space. This
is especially problematic with line-buffered input, like the standard input stream.

These functions can’t report errors after the last non-suppressed conversion specifica-
tion.

BUGS
It is impossible to accurately know how many characters these functions have con-
sumed from the input stream, since they only report the number of successful conver-
sions. For example, if the input is "123\n a", scanf("%d %d", &a, &b) will consume
the digits, the newline, and the space, but not the letter a. This makes it difficult to re-
cover from invalid input.

SEE ALSO
fgets(3), getline(3), sscanf(3)

Linux man-pages 6.13 2024-11-17 2310

sched_getcpu(3) Library Functions Manual sched_getcpu(3)

NAME
sched_getcpu - determine CPU on which the calling thread is running

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_getcpu(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sched_getcpu():
Since glibc 2.14:

_GNU_SOURCE
Before glibc 2.14:

_BSD_SOURCE || _SVID_SOURCE
/* _GNU_SOURCE also suffices */

DESCRIPTION
sched_getcpu() returns the number of the CPU on which the calling thread is cur-
rently executing.

RETURN VALUE
On success, sched_getcpu() returns a nonnegative CPU number. On error, -1 is re-
turned and errno is set to indicate the error.

ERRORS
ENOSYS

This kernel does not implement getcpu(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesched_getcpu()

STANDARDS
GNU.

HISTORY
glibc 2.6.

NOTES
The call

cpu = sched_getcpu();

is equivalent to the following getcpu(2) call:

int c, s;
s = getcpu(&c, NULL);
cpu = (s == -1) ? s : c;

SEE ALSO
getcpu(2), sched(7)

Linux man-pages 6.13 2024-07-23 2311

sched_getcpu(3) Library Functions Manual sched_getcpu(3)

Linux man-pages 6.13 2024-07-23 2312

seekdir(3) Library Functions Manual seekdir(3)

NAME
seekdir - set the position of the next readdir() call in the directory stream.

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

void seekdir(DIR *dirp, long loc);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

seekdir():
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The seekdir() function sets the location in the directory stream from which the next
readdir(2) call will start. The loc argument should be a value returned by a previous
call to telldir(3).

RETURN VALUE
The seekdir() function returns no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeseekdir()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

CAVEATS
Up to glibc 2.1.1, the type of the loc argument was off_t. POSIX.1-2001 specifies
long, and this is the type used since glibc 2.1.2. See telldir(3) for information on why
you should be careful in making any assumptions about the value in this argument.

SEE ALSO
lseek(2), closedir(3), opendir(3), readdir(3), rewinddir(3), scandir(3), telldir(3)

Linux man-pages 6.13 2024-07-23 2313

sem_close(3) Library Functions Manual sem_close(3)

NAME
sem_close - close a named semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_close(sem_t *sem);

DESCRIPTION
sem_close() closes the named semaphore referred to by sem, allowing any resources
that the system has allocated to the calling process for this semaphore to be freed.

RETURN VALUE
On success sem_close() returns 0; on error, -1 is returned, with errno set to indicate
the error.

ERRORS
EINVAL

sem is not a valid semaphore.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_close()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
All open named semaphores are automatically closed on process termination, or upon
execve(2).

SEE ALSO
sem_getvalue(3), sem_open(3), sem_post(3), sem_unlink(3), sem_wait(3),
sem_overview(7)

Linux man-pages 6.13 2024-07-23 2314

sem_destroy(3) Library Functions Manual sem_destroy(3)

NAME
sem_destroy - destroy an unnamed semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_destroy(sem_t *sem);

DESCRIPTION
sem_destroy() destroys the unnamed semaphore at the address pointed to by sem.

Only a semaphore that has been initialized by sem_init(3) should be destroyed using
sem_destroy().

Destroying a semaphore that other processes or threads are currently blocked on (in
sem_wait(3)) produces undefined behavior.

Using a semaphore that has been destroyed produces undefined results, until the sem-
aphore has been reinitialized using sem_init(3).

RETURN VALUE
sem_destroy() returns 0 on success; on error, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
EINVAL

sem is not a valid semaphore.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_destroy()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
An unnamed semaphore should be destroyed with sem_destroy() before the memory
in which it is located is deallocated. Failure to do this can result in resource leaks on
some implementations.

SEE ALSO
sem_init(3), sem_post(3), sem_wait(3), sem_overview(7)

Linux man-pages 6.13 2024-07-23 2315

sem_getvalue(3) Library Functions Manual sem_getvalue(3)

NAME
sem_getvalue - get the value of a semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_getvalue(sem_t *restrict sem, int *restrict sval);

DESCRIPTION
sem_getvalue() places the current value of the semaphore pointed to sem into the in-
teger pointed to by sval.

If one or more processes or threads are blocked waiting to lock the semaphore with
sem_wait(3), POSIX.1 permits two possibilities for the value returned in sval: either 0
is returned; or a negative number whose absolute value is the count of the number of
processes and threads currently blocked in sem_wait(3). Linux adopts the former be-
havior.

RETURN VALUE
sem_getvalue() returns 0 on success; on error, -1 is returned and errno is set to indi-
cate the error.

ERRORS
EINVAL

sem is not a valid semaphore. (The glibc implementation currently does not
check whether sem is valid.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_getvalue()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The value of the semaphore may already have changed by the time sem_getvalue()
returns.

SEE ALSO
sem_post(3), sem_wait(3), sem_overview(7)

Linux man-pages 6.13 2024-07-23 2316

sem_init(3) Library Functions Manual sem_init(3)

NAME
sem_init - initialize an unnamed semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_init(sem_t *sem, int pshared , unsigned int value);

DESCRIPTION
sem_init() initializes the unnamed semaphore at the address pointed to by sem. The
value argument specifies the initial value for the semaphore.

The pshared argument indicates whether this semaphore is to be shared between the
threads of a process, or between processes.

If pshared has the value 0, then the semaphore is shared between the threads of a
process, and should be located at some address that is visible to all threads (e.g., a
global variable, or a variable allocated dynamically on the heap).

If pshared is nonzero, then the semaphore is shared between processes, and should be
located in a region of shared memory (see shm_open(3), mmap(2), and shmget(2)).
(Since a child created by fork(2) inherits its parent’s memory mappings, it can also ac-
cess the semaphore.) Any process that can access the shared memory region can op-
erate on the semaphore using sem_post(3), sem_wait(3), and so on.

Initializing a semaphore that has already been initialized results in undefined behavior.

RETURN VALUE
sem_init() returns 0 on success; on error, -1 is returned, and errno is set to indicate
the error.

ERRORS
EINVAL

value exceeds SEM_VALUE_MAX.

ENOSYS
pshared is nonzero, but the system does not support process-shared sema-
phores (see sem_overview(7)).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_init()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Bizarrely, POSIX.1-2001 does not specify the value that should be returned by a suc-
cessful call to sem_init(). POSIX.1-2008 rectifies this, specifying the zero return on
success.

Linux man-pages 6.13 2024-07-23 2317

sem_init(3) Library Functions Manual sem_init(3)

EXAMPLES
See shm_open(3) and sem_wait(3).

SEE ALSO
sem_destroy(3), sem_post(3), sem_wait(3), sem_overview(7)

Linux man-pages 6.13 2024-07-23 2318

sem_open(3) Library Functions Manual sem_open(3)

NAME
sem_open - initialize and open a named semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <fcntl.h> /* For O_* constants */
#include <sys/stat.h> /* For mode constants */
#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, ...
/* mode_t mode, unsigned int value */);

DESCRIPTION
sem_open() creates a new POSIX semaphore or opens an existing semaphore. The
semaphore is identified by name. For details of the construction of name, see
sem_overview(7).

The oflag argument specifies flags that control the operation of the call. (Definitions
of the flags values can be obtained by including <fcntl.h>.) If O_CREAT is specified
in oflag, then the semaphore is created if it does not already exist. The owner (user
ID) of the semaphore is set to the effective user ID of the calling process. The group
ownership (group ID) is set to the effective group ID of the calling process. If both
O_CREAT and O_EXCL are specified in oflag, then an error is returned if a sema-
phore with the given name already exists.

If O_CREAT is specified in oflag, then two additional arguments must be supplied.
The mode argument specifies the permissions to be placed on the new semaphore, as
for open(2). (Symbolic definitions for the permissions bits can be obtained by includ-
ing <sys/stat.h>.) The permissions settings are masked against the process umask.
Both read and write permission should be granted to each class of user that will access
the semaphore. The value argument specifies the initial value for the new semaphore.
If O_CREAT is specified, and a semaphore with the given name already exists, then
mode and value are ignored.

RETURN VALUE
On success, sem_open() returns the address of the new semaphore; this address is
used when calling other semaphore-related functions. On error, sem_open() returns
SEM_FAILED, with errno set to indicate the error.

ERRORS
EACCES

The semaphore exists, but the caller does not have permission to open it.

EEXIST
Both O_CREAT and O_EXCL were specified in oflag, but a semaphore with
this name already exists.

EINVAL
value was greater than SEM_VALUE_MAX.

EINVAL
name consists of just "/", followed by no other characters.

Linux man-pages 6.13 2025-01-05 2319

sem_open(3) Library Functions Manual sem_open(3)

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG
name was too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The O_CREAT flag was not specified in oflag and no semaphore with this
name exists; or, O_CREAT was specified, but name wasn’t well formed.

ENOMEM
Insufficient memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_open()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
sem_close(3), sem_getvalue(3), sem_post(3), sem_unlink(3), sem_wait(3),
sem_overview(7)

Linux man-pages 6.13 2025-01-05 2320

sem_post(3) Library Functions Manual sem_post(3)

NAME
sem_post - unlock a semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_post(sem_t *sem);

DESCRIPTION
sem_post() increments (unlocks) the semaphore pointed to by sem. If the sema-
phore’s value consequently becomes greater than zero, then another process or thread
blocked in a sem_wait(3) call will be woken up and proceed to lock the semaphore.

RETURN VALUE
sem_post() returns 0 on success; on error, the value of the semaphore is left un-
changed, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

sem is not a valid semaphore.

EOVERFLOW
The maximum allowable value for a semaphore would be exceeded.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_post()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
sem_post() is async-signal-safe: it may be safely called within a signal handler.

EXAMPLES
See sem_wait(3) and shm_open(3).

SEE ALSO
sem_getvalue(3), sem_wait(3), sem_overview(7), signal-safety(7)

Linux man-pages 6.13 2024-07-23 2321

sem_unlink(3) Library Functions Manual sem_unlink(3)

NAME
sem_unlink - remove a named semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_unlink(const char *name);

DESCRIPTION
sem_unlink() removes the named semaphore referred to by name. The semaphore
name is removed immediately. The semaphore is destroyed once all other processes
that have the semaphore open close it.

RETURN VALUE
On success sem_unlink() returns 0; on error, -1 is returned, with errno set to indicate
the error.

ERRORS
EACCES

The caller does not have permission to unlink this semaphore.

ENAMETOOLONG
name was too long.

ENOENT
There is no semaphore with the given name.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_unlink()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
sem_getvalue(3), sem_open(3), sem_post(3), sem_wait(3), sem_overview(7)

Linux man-pages 6.13 2024-07-23 2322

sem_wait(3) Library Functions Manual sem_wait(3)

NAME
sem_wait, sem_timedwait, sem_trywait - lock a semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_timedwait(sem_t *restrict sem,

const struct timespec *restrict abs_timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sem_timedwait():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
sem_wait() decrements (locks) the semaphore pointed to by sem. If the semaphore’s
value is greater than zero, then the decrement proceeds, and the function returns, im-
mediately. If the semaphore currently has the value zero, then the call blocks until ei-
ther it becomes possible to perform the decrement (i.e., the semaphore value rises
above zero), or a signal handler interrupts the call.

sem_trywait() is the same as sem_wait(), except that if the decrement cannot be im-
mediately performed, then call returns an error (errno set to EAGAIN) instead of
blocking.

sem_timedwait() is the same as sem_wait(), except that abs_timeout specifies a limit
on the amount of time that the call should block if the decrement cannot be immedi-
ately performed. The abs_timeout argument points to a timespec(3) structure that
specifies an absolute timeout in seconds and nanoseconds since the Epoch,
1970-01-01 00:00:00 +0000 (UTC).

If the timeout has already expired by the time of the call, and the semaphore could not
be locked immediately, then sem_timedwait() fails with a timeout error (errno set to
ETIMEDOUT).

If the operation can be performed immediately, then sem_timedwait() never fails with
a timeout error, regardless of the value of abs_timeout. Furthermore, the validity of
abs_timeout is not checked in this case.

RETURN VALUE
All of these functions return 0 on success; on error, the value of the semaphore is left
unchanged, -1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

(sem_trywait()) The operation could not be performed without blocking (i.e.,
the semaphore currently has the value zero).

EINTR
The call was interrupted by a signal handler; see signal(7).

Linux man-pages 6.13 2024-07-23 2323

sem_wait(3) Library Functions Manual sem_wait(3)

EINVAL
sem is not a valid semaphore.

EINVAL
(sem_timedwait()) The value of abs_timeout.tv_nsecs is less than 0, or
greater than or equal to 1000 million.

ETIMEDOUT
(sem_timedwait()) The call timed out before the semaphore could be locked.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_wait(), sem_trywait(), sem_timedwait()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The (somewhat trivial) program shown below operates on an unnamed semaphore.
The program expects two command-line arguments. The first argument specifies a
seconds value that is used to set an alarm timer to generate a SIGALRM signal. This
handler performs a sem_post(3) to increment the semaphore that is being waited on in
main() using sem_timedwait(). The second command-line argument specifies the
length of the timeout, in seconds, for sem_timedwait(). The following shows what
happens on two different runs of the program:

$./a.out 2 3
About to call sem_timedwait()
sem_post() from handler
sem_timedwait() succeeded
$./a.out 2 1
About to call sem_timedwait()
sem_timedwait() timed out

Program source

#include <errno.h>
#include <semaphore.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

#include <assert.h>

sem_t sem;

#define handle_error(msg) \

Linux man-pages 6.13 2024-07-23 2324

sem_wait(3) Library Functions Manual sem_wait(3)

do { perror(msg); exit(EXIT_FAILURE); } while (0)

static void
handler(int sig)
{

write(STDOUT_FILENO, "sem_post() from handler\n", 24);
if (sem_post(&sem) == -1) {

write(STDERR_FILENO, "sem_post() failed\n", 18);
_exit(EXIT_FAILURE);

}
}

int
main(int argc, char *argv[])
{

struct sigaction sa;
struct timespec ts;
int s;

if (argc != 3) {
fprintf(stderr, "Usage: %s <alarm-secs> <wait-secs>\n",

argv[0]);
exit(EXIT_FAILURE);

}

if (sem_init(&sem, 0, 0) == -1)
handle_error("sem_init");

/* Establish SIGALRM handler; set alarm timer using argv[1]. */

sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGALRM, &sa, NULL) == -1)

handle_error("sigaction");

alarm(atoi(argv[1]));

/* Calculate relative interval as current time plus
number of seconds given argv[2]. */

if (clock_gettime(CLOCK_REALTIME, &ts) == -1)
handle_error("clock_gettime");

ts.tv_sec += atoi(argv[2]);

printf("%s() about to call sem_timedwait()\n", __func__);
while ((s = sem_timedwait(&sem, &ts)) == -1 && errno == EINTR)

continue; /* Restart if interrupted by handler. */

Linux man-pages 6.13 2024-07-23 2325

sem_wait(3) Library Functions Manual sem_wait(3)

/* Check what happened. */

if (s == -1) {
if (errno == ETIMEDOUT)

printf("sem_timedwait() timed out\n");
else

perror("sem_timedwait");
} else

printf("sem_timedwait() succeeded\n");

exit((s == 0) ? EXIT_SUCCESS : EXIT_FAILURE);
}

SEE ALSO
clock_gettime(2), sem_getvalue(3), sem_post(3), timespec(3), sem_overview(7),
time(7)

Linux man-pages 6.13 2024-07-23 2326

setaliasent(3) Library Functions Manual setaliasent(3)

NAME
setaliasent, endaliasent, getaliasent, getaliasent_r, getaliasbyname, getaliasbyname_r -
read an alias entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <aliases.h>

void setaliasent(void);
void endaliasent(void);

struct aliasent *getaliasent(void);
int getaliasent_r(struct aliasent *restrict result,

char buffer[restrict .size], size_t size,
struct aliasent **restrict res);

struct aliasent *getaliasbyname(const char *name);
int getaliasbyname_r(const char *restrict name,

struct aliasent *restrict result,
char buffer[restrict .size], size_t size,
struct aliasent **restrict res);

DESCRIPTION
One of the databases available with the Name Service Switch (NSS) is the aliases
database, that contains mail aliases. (To find out which databases are supported, try
getent --help.) Six functions are provided to access the aliases database.

The getaliasent() function returns a pointer to a structure containing the group infor-
mation from the aliases database. The first time it is called it returns the first entry;
thereafter, it returns successive entries.

The setaliasent() function rewinds the file pointer to the beginning of the aliases data-
base.

The endaliasent() function closes the aliases database.

getaliasent_r() is the reentrant version of the previous function. The requested struc-
ture is stored via the first argument but the programmer needs to fill the other argu-
ments also. Not providing enough space causes the function to fail.

The function getaliasbyname() takes the name argument and searches the aliases
database. The entry is returned as a pointer to a struct aliasent.

getaliasbyname_r() is the reentrant version of the previous function. The requested
structure is stored via the second argument but the programmer needs to fill the other
arguments also. Not providing enough space causes the function to fail.

The struct aliasent is defined in <aliases.h>:

struct aliasent {
char *alias_name; /* alias name */
size_t alias_members_len;
char **alias_members; /* alias name list */
int alias_local;

};

Linux man-pages 6.13 2024-12-24 2327

setaliasent(3) Library Functions Manual setaliasent(3)

RETURN VALUE
The functions getaliasent_r() and getaliasbyname_r() return a nonzero value on er-
ror.

FILES
The default alias database is the file /etc/aliases. This can be changed in the /etc/nss-
witch.conf file.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localesetaliasent(), endaliasent(), getaliasent_r(),
getaliasbyname_r()

Thread safety MT-Unsafegetaliasent(), getaliasbyname()

STANDARDS
GNU.

HISTORY
The NeXT system has similar routines:

#include <aliasdb.h>

void alias_setent(void);
void alias_endent(void);
alias_ent *alias_getent(void);
alias_ent *alias_getbyname(char *name);

EXAMPLES
The following example compiles with gcc example.c -o example. It will dump all
names in the alias database.

#include <aliases.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

struct aliasent *al;

setaliasent();
for (;;) {

al = getaliasent();
if (al == NULL)

break;
printf("Name: %s\n", al->alias_name);

}
if (errno) {

perror("reading alias");
exit(EXIT_FAILURE);

Linux man-pages 6.13 2024-12-24 2328

setaliasent(3) Library Functions Manual setaliasent(3)

}
endaliasent();
exit(EXIT_SUCCESS);

}

SEE ALSO
getgrent(3), getpwent(3), getspent(3), aliases(5)

Linux man-pages 6.13 2024-12-24 2329

setbuf (3) Library Functions Manual setbuf (3)

NAME
setbuf, setbuffer, setlinebuf, setvbuf - stream buffering operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int setvbuf(FILE *restrict stream, char buf [restrict .size],
int mode, size_t size);

void setbuf(FILE *restrict stream, char *restrict buf);
void setbuffer(FILE *restrict stream, char buf [restrict .size],

size_t size);
void setlinebuf(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setbuffer(), setlinebuf():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line
buffered. When an output stream is unbuffered, information appears on the destina-
tion file or terminal as soon as written; when it is block buffered, many characters are
saved up and written as a block; when it is line buffered, characters are saved up until
a newline is output or input is read from any stream attached to a terminal device (typ-
ically stdin). The function fflush(3) may be used to force the block out early. (See
fclose(3).)

Normally all files are block buffered. If a stream refers to a terminal (as stdout nor-
mally does), it is line buffered. The standard error stream stderr is always unbuffered
by default.

The setvbuf() function may be used on any open stream to change its buffer. The
mode argument must be one of the following three macros:

_IONBF
unbuffered

_IOLBF
line buffered

_IOFBF
fully buffered

Except for unbuffered files, the buf argument should point to a buffer at least size
bytes long; this buffer will be used instead of the current buffer. If the argument buf
is NULL, only the mode is affected; a new buffer will be allocated on the next read or
write operation. The setvbuf() function may be used only after opening a stream and
before any other operations have been performed on it.

The other three calls are, in effect, simply aliases for calls to setvbuf(). The setbuf()

Linux man-pages 6.13 2024-07-23 2330

setbuf (3) Library Functions Manual setbuf (3)

function is exactly equivalent to the call

setvbuf(stream, buf, buf ? _IOFBF : _IONBF, BUFSIZ);

The setbuffer() function is the same, except that the size of the buffer is up to the
caller, rather than being determined by the default BUFSIZ. The setlinebuf() func-
tion is exactly equivalent to the call:

setvbuf(stream, NULL, _IOLBF, 0);

RETURN VALUE
The function setvbuf() returns 0 on success. It returns nonzero on failure (mode is in-
valid or the request cannot be honored). It may set errno on failure.

The other functions do not return a value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesetbuf(), setbuffer(), setlinebuf(), setvbuf()

STANDARDS
setbuf()
setvbuf()

C11, POSIX.1-2008.

HISTORY
setbuf()
setvbuf()

C89, POSIX.1-2001.

CAVEATS
POSIX notes that the value of errno is unspecified after a call to setbuf() and further
notes that, since the value of errno is not required to be unchanged after a successful
call to setbuf(), applications should instead use setvbuf() in order to detect errors.

BUGS
You must make sure that the space that buf points to still exists by the time stream is
closed, which also happens at program termination. For example, the following is in-
valid:

#include <stdio.h>

int
main(void)
{

char buf[BUFSIZ];

setbuf(stdout, buf);
printf("Hello, world!\n");
return 0;

}

SEE ALSO
stdbuf (1), fclose(3), fflush(3), fopen(3), fread(3), malloc(3), printf(3), puts(3)

Linux man-pages 6.13 2024-07-23 2331

setbuf (3) Library Functions Manual setbuf (3)

Linux man-pages 6.13 2024-07-23 2332

setenv(3) Library Functions Manual setenv(3)

NAME
setenv - change or add an environment variable

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);
int unsetenv(const char *name);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setenv(), unsetenv():
_POSIX_C_SOURCE >= 200112L

|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
The setenv() function adds the variable name to the environment with the value value,
if name does not already exist. If name does exist in the environment, then its value is
changed to value if overwrite is nonzero; if overwrite is zero, then the value of name
is not changed (and setenv() returns a success status). This function makes copies of
the strings pointed to by name and value (by contrast with putenv(3)).

The unsetenv() function deletes the variable name from the environment. If name
does not exist in the environment, then the function succeeds, and the environment is
unchanged.

RETURN VALUE
setenv() and unsetenv() functions return zero on success, or -1 on error, with errno
set to indicate the error.

ERRORS
EINVAL

name is NULL, points to a string of length 0, or contains an '=' character.

ENOMEM
Insufficient memory to add a new variable to the environment.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe const:envsetenv(), unsetenv()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

Prior to glibc 2.2.2, unsetenv() was prototyped as returning void; more recent glibc
versions follow the POSIX.1-compliant prototype shown in the SYNOPSIS.

CAVEATS
POSIX.1 does not require setenv() or unsetenv() to be reentrant.

Linux man-pages 6.13 2024-07-23 2333

setenv(3) Library Functions Manual setenv(3)

BUGS
POSIX.1 specifies that if name contains an '=' character, then setenv() should fail with
the error EINVAL; however, versions of glibc before glibc 2.3.4 allowed an '=' sign in
name.

SEE ALSO
clearenv(3), getenv(3), putenv(3), environ(7)

Linux man-pages 6.13 2024-07-23 2334

__setfpucw(3) Library Functions Manual __setfpucw(3)

NAME
__setfpucw - set FPU control word on i386 architecture (obsolete)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <i386/fpu_control.h>

[[deprecated]] void __setfpucw(unsigned short control_word);

DESCRIPTION
__setfpucw() transfers control_word to the registers of the FPU (floating-point unit)
on the i386 architecture. This was used to control floating-point precision, rounding
and floating-point exceptions.

STANDARDS
GNU.

HISTORY
Removed in glibc 2.1.

NOTES
There are new functions from C99, with prototypes in <fenv.h>, to control FPU
rounding modes, like fegetround(3), fesetround(3), and the floating-point environment,
like fegetenv(3), feholdexcept(3), fesetenv(3), feupdateenv(3), and FPU exception han-
dling, like feclearexcept(3), fegetexceptflag(3), feraiseexcept(3), fesetexceptflag(3),
and fetestexcept(3).

If direct access to the FPU control word is still needed, the _FPU_GETCW and
_FPU_SETCW macros from <fpu_control.h> can be used.

EXAMPLES
__setfpucw(0x1372)

Set FPU control word on the i386 architecture to
• extended precision
• rounding to nearest
• exceptions on overflow, zero divide and NaN

SEE ALSO
feclearexcept(3)

<fpu_control.h>

Linux man-pages 6.13 2024-07-23 2335

setjmp(3) Library Functions Manual setjmp(3)

NAME
setjmp, sigsetjmp, longjmp, siglongjmp - performing a nonlocal goto

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <setjmp.h>

int setjmp(jmp_buf env);
int sigsetjmp(sigjmp_buf env, int savesigs);

[[noreturn]] void longjmp(jmp_buf env, int val);
[[noreturn]] void siglongjmp(sigjmp_buf env, int val);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setjmp(): see HISTORY.

sigsetjmp():
_POSIX_C_SOURCE

DESCRIPTION
The functions described on this page are used for performing "nonlocal gotos": trans-
ferring execution from one function to a predetermined location in another function.
The setjmp() function dynamically establishes the target to which control will later be
transferred, and longjmp() performs the transfer of execution.

The setjmp() function saves various information about the calling environment (typi-
cally, the stack pointer, the instruction pointer, possibly the values of other registers
and the signal mask) in the buffer env for later use by longjmp(). In this case,
setjmp() returns 0.

The longjmp() function uses the information saved in env to transfer control back to
the point where setjmp() was called and to restore ("rewind") the stack to its state at
the time of the setjmp() call. In addition, and depending on the implementation (see
NOTES and HISTORY), the values of some other registers and the process signal
mask may be restored to their state at the time of the setjmp() call.

Following a successful longjmp(), execution continues as if setjmp() had returned for
a second time. This "fake" return can be distinguished from a true setjmp() call be-
cause the "fake" return returns the value provided in val. If the programmer mistak-
enly passes the value 0 in val, the "fake" return will instead return 1.

sigsetjmp() and siglongjmp()
sigsetjmp() and siglongjmp() also perform nonlocal gotos, but provide predictable
handling of the process signal mask.

If, and only if, the savesigs argument provided to sigsetjmp() is nonzero, the
process’s current signal mask is saved in env and will be restored if a siglongjmp() is
later performed with this env.

RETURN VALUE
setjmp() and sigsetjmp() return 0 when called directly; on the "fake" return that oc-
curs after longjmp() or siglongjmp(), the nonzero value specified in val is returned.

The longjmp() or siglongjmp() functions do not return.

Linux man-pages 6.13 2024-11-17 2336

setjmp(3) Library Functions Manual setjmp(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesetjmp(), sigsetjmp()
Thread safety MT-Safelongjmp(), siglongjmp()

STANDARDS
setjmp()
longjmp()

C11, POSIX.1-2008.

sigsetjmp()
siglongjmp()

POSIX.1-2008.

HISTORY
setjmp()
longjmp()

POSIX.1-2001, C89.

sigsetjmp()
siglongjmp()

POSIX.1-2001.

POSIX does not specify whether setjmp() will save the signal mask (to be later re-
stored during longjmp())In System V it will not. In 4.3BSD it will, and there is a
function _setjmp() that will not. The behavior under Linux depends on the glibc ver-
sion and the setting of feature test macros. Before glibc 2.19, setjmp() follows the
System V behavior by default, but the BSD behavior is provided if the
_BSD_SOURCE feature test macro is explicitly defined and none of
_POSIX_SOURCE, _POSIX_C_SOURCE, _XOPEN_SOURCE,
_GNU_SOURCE, or _SVID_SOURCE is defined. Since glibc 2.19, <setjmp.h> ex-
poses only the System V version of setjmp(). Programs that need the BSD semantics
should replace calls to setjmp() with calls to sigsetjmp() with a nonzero savesigs ar-
gument.

NOTES
setjmp() and longjmp() can be useful for dealing with errors inside deeply nested
function calls or to allow a signal handler to pass control to a specific point in the pro-
gram, rather than returning to the point where the handler interrupted the main pro-
gram. In the latter case, if you want to portably save and restore signal masks, use
sigsetjmp() and siglongjmp(). See also the discussion of program readability below.

CAVEATS
The compiler may optimize variables into registers, and longjmp() may restore the
values of other registers in addition to the stack pointer and program counter. Conse-
quently, the values of automatic variables are unspecified after a call to longjmp() if
they meet all the following criteria:

• they are local to the function that made the corresponding setjmp() call;

• their values are changed between the calls to setjmp() and longjmp(); and

Linux man-pages 6.13 2024-11-17 2337

setjmp(3) Library Functions Manual setjmp(3)

• they are not declared as volatile.

Analogous remarks apply for siglongjmp().

Nonlocal gotos and program readability
While it can be abused, the traditional C "goto" statement at least has the benefit that
lexical cues (the goto statement and the target label) allow the programmer to easily
perceive the flow of control. Nonlocal gotos provide no such cues: multiple setjmp()
calls might employ the same jmp_buf variable so that the content of the variable may
change over the lifetime of the application. Consequently, the programmer may be
forced to perform detailed reading of the code to determine the dynamic target of a
particular longjmp() call. (To make the programmer’s life easier, each setjmp() call
should employ a unique jmp_buf variable.)

Adding further difficulty, the setjmp() and longjmp() calls may not even be in the
same source code module.

In summary, nonlocal gotos can make programs harder to understand and maintain,
and an alternative should be used if possible.

Undefined behavior
If the function which called setjmp() returns before longjmp() is called, the behavior
is undefined. Some kind of subtle or unsubtle chaos is sure to result.

If, in a multithreaded program, a longjmp() call employs an env buffer that was ini-
tialized by a call to setjmp() in a different thread, the behavior is undefined.

POSIX.1-2008 Technical Corrigendum 2 adds longjmp() and siglongjmp() to the list
of async-signal-safe functions. However, the standard recommends avoiding the use
of these functions from signal handlers and goes on to point out that if these functions
are called from a signal handler that interrupted a call to a non-async-signal-safe func-
tion (or some equivalent, such as the steps equivalent to exit(3) that occur upon a re-
turn from the initial call to main()), the behavior is undefined if the program subse-
quently makes a call to a non-async-signal-safe function. The only way of avoiding
undefined behavior is to ensure one of the following:

• After long jumping from the signal handler, the program does not call any non-
async-signal-safe functions and does not return from the initial call to main().

• Any signal whose handler performs a long jump must be blocked during every call
to a non-async-signal-safe function and no non-async-signal-safe functions are
called after returning from the initial call to main().

SEE ALSO
signal(7), signal-safety(7)

Linux man-pages 6.13 2024-11-17 2338

setlocale(3) Library Functions Manual setlocale(3)

NAME
setlocale - set the current locale

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <locale.h>

char *setlocale(int category, const char *locale);

DESCRIPTION
The setlocale() function is used to set or query the program’s current locale.

If locale is not NULL, the program’s current locale is modified according to the argu-
ments. The argument category determines which parts of the program’s current locale
should be modified.
Category Governs
LC_ALL All of the locale
LC_ADDRESS Formatting of addresses and geography-related items (*)
LC_COLLATE String collation
LC_CTYPE Character classification
LC_IDENTIFICATION Metadata describing the locale (*)
LC_MEASUREMENT Settings related to measurements (metric versus US cus-

tomary) (*)
LC_MESSAGES Localizable natural-language messages
LC_MONETARY Formatting of monetary values
LC_NAME Formatting of salutations for persons (*)
LC_NUMERIC Formatting of nonmonetary numeric values
LC_PAPER Settings related to the standard paper size (*)
LC_TELEPHONE Formats to be used with telephone services (*)
LC_TIME Formatting of date and time values

The categories marked with an asterisk in the above table are GNU extensions. For
further information on these locale categories, see locale(7).

The argument locale is a pointer to a character string containing the required setting
of category. Such a string is either a well-known constant like "C" or "da_DK" (see
below), or an opaque string that was returned by another call of setlocale().

If locale is an empty string, "", each part of the locale that should be modified is set
according to the environment variables. The details are implementation-dependent.
For glibc, first (regardless of category), the environment variable LC_ALL is in-
spected, next the environment variable with the same name as the category (see the ta-
ble above), and finally the environment variable LANG. The first existing environ-
ment variable is used. If its value is not a valid locale specification, the locale is un-
changed, and setlocale() returns NULL.

The locale "C" or "POSIX" is a portable locale; it exists on all conforming systems.

A locale name is typically of the form language[_territory][.codeset][@modifier],
where language is an ISO 639 language code, territory is an ISO 3166 country code,
and codeset is a character set or encoding identifier like ISO-8859-1 or UTF-8. For
a list of all supported locales, try "locale -a" (see locale(1)).

Linux man-pages 6.13 2024-07-23 2339

setlocale(3) Library Functions Manual setlocale(3)

If locale is NULL, the current locale is only queried, not modified.

On startup of the main program, the portable "C" locale is selected as default. A pro-
gram may be made portable to all locales by calling:

setlocale(LC_ALL, "");

after program initialization, and then:

• using the values returned from a localeconv(3) call for locale-dependent informa-
tion;

• using the multibyte and wide character functions for text processing if
MB_CUR_MAX > 1;

• using strcoll(3) and strxfrm(3) to compare strings; and

• using wcscoll(3) and wcsxfrm(3) to compare wide-character strings.

RETURN VALUE
A successful call to setlocale() returns an opaque string that corresponds to the locale
set. This string may be allocated in static storage. The string returned is such that a
subsequent call with that string and its associated category will restore that part of the
process’s locale. The return value is NULL if the request cannot be honored.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe const:locale envsetlocale()

STANDARDS
C11, POSIX.1-2008.

Categories
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

C11, POSIX.1-2008.

LC_MESSAGES
POSIX.1-2008.

Others:
GNU.

HISTORY
POSIX.1-2001, C89.

Categories
LC_ALL
LC_COLLATE
LC_CTYPE

Linux man-pages 6.13 2024-07-23 2340

setlocale(3) Library Functions Manual setlocale(3)

LC_MONETARY
LC_NUMERIC
LC_TIME

C89, POSIX.1-2001.

LC_MESSAGES
POSIX.1-2001.

Others:
GNU.

SEE ALSO
locale(1), localedef(1), isalpha(3), localeconv(3), nl_langinfo(3), rpmatch(3), str-
coll(3), strftime(3), charsets(7), locale(7)

Linux man-pages 6.13 2024-07-23 2341

setlogmask(3) Library Functions Manual setlogmask(3)

NAME
setlogmask - set log priority mask

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <syslog.h>

int setlogmask(int mask);

DESCRIPTION
A process has a log priority mask that determines which calls to syslog(3) may be
logged. All other calls will be ignored. Logging is enabled for the priorities that have
the corresponding bit set in mask. The initial mask is such that logging is enabled for
all priorities.

The setlogmask() function sets this logmask for the calling process, and returns the
previous mask. If the mask argument is 0, the current logmask is not modified.

The eight priorities are LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR,
LOG_WARNING, LOG_NOTICE, LOG_INFO, and LOG_DEBUG. The bit cor-
responding to a priority p is LOG_MASK(p). Some systems also provide a macro
LOG_UPTO(p) for the mask of all priorities in the above list up to and including p.

RETURN VALUE
This function returns the previous log priority mask.

ERRORS
None.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:LogMasksetlogmask()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

LOG_UPTO() will be included in the next release of the POSIX specification (Issue
8).

SEE ALSO
closelog(3), openlog(3), syslog(3)

Linux man-pages 6.13 2024-07-23 2342

setnetgrent(3) Library Functions Manual setnetgrent(3)

NAME
setnetgrent, endnetgrent, getnetgrent, getnetgrent_r, innetgr - handle network group
entries

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

int setnetgrent(const char *netgroup);
void endnetgrent(void);

int getnetgrent(char **restrict host,
char **restrict user, char **restrict domain);

int getnetgrent_r(char **restrict host,
char **restrict user, char **restrict domain,
char buf [restrict .size], size_t size);

int innetgr(const char *netgroup, const char *host,
const char *user, const char *domain);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setnetgrent(), endnetgrent(), getnetgrent(), getnetgrent_r(), innetgr():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The netgroup is a SunOS invention. A netgroup database is a list of string triples
(hostname, username, domainname) or other netgroup names. Any of the elements in
a triple can be empty, which means that anything matches. The functions described
here allow access to the netgroup databases. The file /etc/nsswitch.conf defines what
database is searched.

The setnetgrent() call defines the netgroup that will be searched by subsequent get-
netgrent() calls. The getnetgrent() function retrieves the next netgroup entry, and re-
turns pointers in host, user, domain. A null pointer means that the corresponding en-
try matches any string. The pointers are valid only as long as there is no call to other
netgroup-related functions. To avoid this problem you can use the GNU function get-
netgrent_r() that stores the strings in the supplied buffer. To free all allocated buffers
use endnetgrent().

In most cases you want to check only if the triplet (hostname, username, domain-
name) is a member of a netgroup. The function innetgr() can be used for this without
calling the above three functions. Again, a null pointer is a wildcard and matches any
string. The function is thread-safe.

RETURN VALUE
These functions return 1 on success and 0 for failure.

FILES
/etc/netgroup
/etc/nsswitch.conf

Linux man-pages 6.13 2024-12-24 2343

setnetgrent(3) Library Functions Manual setnetgrent(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetysetnetgrent(),
getnetgrent_r(),
innetgr()

MT-Unsafe race:netgrent locale

Thread safetyendnetgrent() MT-Unsafe race:netgrent
Thread safetygetnetgrent() MT-Unsafe race:netgrent race:netgrentbuf

locale

In the above table, netgrent in race:netgrent signifies that if any of the functions set-
netgrent(), getnetgrent_r(), innetgr(), getnetgrent(), or endnetgrent() are used in
parallel in different threads of a program, then data races could occur.

VERSIONS
In the BSD implementation, setnetgrent() returns void.

STANDARDS
None.

HISTORY
setnetgrent(), endnetgrent(), getnetgrent(), and innetgr() are available on most
UNIX systems. getnetgrent_r() is not widely available on other systems.

SEE ALSO
sethostent(3), setprotoent(3), setservent(3)

Linux man-pages 6.13 2024-12-24 2344

shm_open(3) Library Functions Manual shm_open(3)

NAME
shm_open, shm_unlink - create/open or unlink POSIX shared memory objects

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <sys/mman.h>
#include <sys/stat.h> /* For mode constants */
#include <fcntl.h> /* For O_* constants */

int shm_open(const char *name, int oflag, mode_t mode);
int shm_unlink(const char *name);

DESCRIPTION
shm_open() creates and opens a new, or opens an existing, POSIX shared memory
object. A POSIX shared memory object is in effect a handle which can be used by
unrelated processes to mmap(2) the same region of shared memory. The shm_un-
link() function performs the converse operation, removing an object previously cre-
ated by shm_open().

The operation of shm_open() is analogous to that of open(2). name specifies the
shared memory object to be created or opened. For portable use, a shared memory
object should be identified by a name of the form /somename; that is, a null-termi-
nated string of up to NAME_MAX (i.e., 255) characters consisting of an initial slash,
followed by one or more characters, none of which are slashes.

oflag is a bit mask created by ORing together exactly one of O_RDONLY or
O_RDWR and any of the other flags listed here:

O_RDONLY
Open the object for read access. A shared memory object opened in this way
can be mmap(2)ed only for read (PROT_READ) access.

O_RDWR
Open the object for read-write access.

O_CREAT
Create the shared memory object if it does not exist. The user and group own-
ership of the object are taken from the corresponding effective IDs of the call-
ing process, and the object’s permission bits are set according to the low-order
9 bits of mode, except that those bits set in the process file mode creation mask
(see umask(2)) are cleared for the new object. A set of macro constants which
can be used to define mode is listed in open(2). (Symbolic definitions of these
constants can be obtained by including <sys/stat.h>.)

A new shared memory object initially has zero length—the size of the object
can be set using ftruncate(2). The newly allocated bytes of a shared memory
object are automatically initialized to 0.

O_EXCL
If O_CREAT was also specified, and a shared memory object with the given
name already exists, return an error. The check for the existence of the object,
and its creation if it does not exist, are performed atomically.

Linux man-pages 6.13 2024-07-23 2345

shm_open(3) Library Functions Manual shm_open(3)

O_TRUNC
If the shared memory object already exists, truncate it to zero bytes.

Definitions of these flag values can be obtained by including <fcntl.h>.

On successful completion shm_open() returns a new file descriptor referring to the
shared memory object. This file descriptor is guaranteed to be the lowest-numbered
file descriptor not previously opened within the process. The FD_CLOEXEC flag
(see fcntl(2)) is set for the file descriptor.

The file descriptor is normally used in subsequent calls to ftruncate(2) (for a newly
created object) and mmap(2). After a call to mmap(2) the file descriptor may be
closed without affecting the memory mapping.

The operation of shm_unlink() is analogous to unlink(2): it removes a shared mem-
ory object name, and, once all processes have unmapped the object, deallocates and
destroys the contents of the associated memory region. After a successful shm_un-
link(), attempts to shm_open() an object with the same name fail (unless O_CREAT
was specified, in which case a new, distinct object is created).

RETURN VALUE
On success, shm_open() returns a file descriptor (a nonnegative integer). On success,
shm_unlink() returns 0. On failure, both functions return -1 and set errno to indicate
the error.

ERRORS
EACCES

Permission to shm_unlink() the shared memory object was denied.

EACCES
Permission was denied to shm_open() name in the specified mode, or
O_TRUNC was specified and the caller does not have write permission on the
object.

EEXIST
Both O_CREAT and O_EXCL were specified to shm_open() and the shared
memory object specified by name already exists.

EINVAL
The name argument to shm_open() was invalid.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG
The length of name exceeds PATH_MAX.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
An attempt was made to shm_open() a name that did not exist, and
O_CREAT was not specified.

ENOENT
An attempt was to made to shm_unlink() a name that does not exist.

Linux man-pages 6.13 2024-07-23 2346

shm_open(3) Library Functions Manual shm_open(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeshm_open(), shm_unlink()

VERSIONS
POSIX leaves the behavior of the combination of O_RDONLY and O_TRUNC un-
specified. On Linux, this will successfully truncate an existing shared memory ob-
ject—this may not be so on other UNIX systems.

The POSIX shared memory object implementation on Linux makes use of a dedicated
tmpfs(5) filesystem that is normally mounted under /dev/shm.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

POSIX.1-2001 says that the group ownership of a newly created shared memory ob-
ject is set to either the calling process’s effective group ID or "a system default group
ID". POSIX.1-2008 says that the group ownership may be set to either the calling
process’s effective group ID or, if the object is visible in the filesystem, the group ID
of the parent directory.

EXAMPLES
The programs below employ POSIX shared memory and POSIX unnamed sema-
phores to exchange a piece of data. The "bounce" program (which must be run first)
raises the case of a string that is placed into the shared memory by the "send" pro-
gram. Once the data has been modified, the "send" program then prints the contents
of the modified shared memory. An example execution of the two programs is the fol-
lowing:

$./pshm_ucase_bounce /myshm &
[1] 270171
$./pshm_ucase_send /myshm hello
HELLO

Further detail about these programs is provided below.

Program source: pshm_ucase.h
The following header file is included by both programs below. Its primary purpose is
to define a structure that will be imposed on the memory object that is shared between
the two programs.

#ifndef PSHM_UCASE_H
#define PSHM_UCASE_H

#include <semaphore.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

Linux man-pages 6.13 2024-07-23 2347

shm_open(3) Library Functions Manual shm_open(3)

} while (0)

#define BUF_SIZE 1024 /* Maximum size for exchanged string */

/* Define a structure that will be imposed on the shared
memory object */

struct shmbuf {
sem_t sem1; /* POSIX unnamed semaphore */
sem_t sem2; /* POSIX unnamed semaphore */
size_t cnt; /* Number of bytes used in 'buf' */
char buf[BUF_SIZE]; /* Data being transferred */

};

#endif // include guard

Program source: pshm_ucase_bounce.c
The "bounce" program creates a new shared memory object with the name given in its
command-line argument and sizes the object to match the size of the shmbuf structure
defined in the header file. It then maps the object into the process’s address space, and
initializes two POSIX semaphores inside the object to 0.

After the "send" program has posted the first of the semaphores, the "bounce" pro-
gram upper cases the data that has been placed in the memory by the "send" program
and then posts the second semaphore to tell the "send" program that it may now ac-
cess the shared memory.

/* pshm_ucase_bounce.c

Licensed under GNU General Public License v2 or later.
*/
#include <ctype.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <unistd.h>

#include "pshm_ucase.h"

int
main(int argc, char *argv[])
{

int fd;
char *shmpath;
struct shmbuf *shmp;

if (argc != 2) {
fprintf(stderr, "Usage: %s /shm-path\n", argv[0]);
exit(EXIT_FAILURE);

Linux man-pages 6.13 2024-07-23 2348

shm_open(3) Library Functions Manual shm_open(3)

}

shmpath = argv[1];

/* Create shared memory object and set its size to the size
of our structure. */

fd = shm_open(shmpath, O_CREAT | O_EXCL | O_RDWR, 0600);
if (fd == -1)

errExit("shm_open");

if (ftruncate(fd, sizeof(struct shmbuf)) == -1)
errExit("ftruncate");

/* Map the object into the caller's address space. */

shmp = mmap(NULL, sizeof(*shmp), PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

if (shmp == MAP_FAILED)
errExit("mmap");

/* Initialize semaphores as process-shared, with value 0. */

if (sem_init(&shmp->sem1, 1, 0) == -1)
errExit("sem_init-sem1");

if (sem_init(&shmp->sem2, 1, 0) == -1)
errExit("sem_init-sem2");

/* Wait for 'sem1' to be posted by peer before touching
shared memory. */

if (sem_wait(&shmp->sem1) == -1)
errExit("sem_wait");

/* Convert data in shared memory into upper case. */

for (size_t j = 0; j < shmp->cnt; j++)
shmp->buf[j] = toupper((unsigned char) shmp->buf[j]);

/* Post 'sem2' to tell the peer that it can now
access the modified data in shared memory. */

if (sem_post(&shmp->sem2) == -1)
errExit("sem_post");

/* Unlink the shared memory object. Even if the peer process
is still using the object, this is okay. The object will
be removed only after all open references are closed. */

Linux man-pages 6.13 2024-07-23 2349

shm_open(3) Library Functions Manual shm_open(3)

shm_unlink(shmpath);

exit(EXIT_SUCCESS);
}

Program source: pshm_ucase_send.c
The "send" program takes two command-line arguments: the pathname of a shared
memory object previously created by the "bounce" program and a string that is to be
copied into that object.

The program opens the shared memory object and maps the object into its address
space. It then copies the data specified in its second argument into the shared mem-
ory, and posts the first semaphore, which tells the "bounce" program that it can now
access that data. After the "bounce" program posts the second semaphore, the "send"
program prints the contents of the shared memory on standard output.

/* pshm_ucase_send.c

Licensed under GNU General Public License v2 or later.
*/
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>

#include "pshm_ucase.h"

int
main(int argc, char *argv[])
{

int fd;
char *shmpath, *string;
size_t len;
struct shmbuf *shmp;

if (argc != 3) {
fprintf(stderr, "Usage: %s /shm-path string\n", argv[0]);
exit(EXIT_FAILURE);

}

shmpath = argv[1];
string = argv[2];
len = strlen(string);

if (len > BUF_SIZE) {
fprintf(stderr, "String is too long\n");
exit(EXIT_FAILURE);

Linux man-pages 6.13 2024-07-23 2350

shm_open(3) Library Functions Manual shm_open(3)

}

/* Open the existing shared memory object and map it
into the caller's address space. */

fd = shm_open(shmpath, O_RDWR, 0);
if (fd == -1)

errExit("shm_open");

shmp = mmap(NULL, sizeof(*shmp), PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

if (shmp == MAP_FAILED)
errExit("mmap");

/* Copy data into the shared memory object. */

shmp->cnt = len;
memcpy(&shmp->buf, string, len);

/* Tell peer that it can now access shared memory. */

if (sem_post(&shmp->sem1) == -1)
errExit("sem_post");

/* Wait until peer says that it has finished accessing
the shared memory. */

if (sem_wait(&shmp->sem2) == -1)
errExit("sem_wait");

/* Write modified data in shared memory to standard output. */

if (write(STDOUT_FILENO, &shmp->buf, len) == -1)
errExit("write");

if (write(STDOUT_FILENO, "\n", 1) == -1)
errExit("write");

exit(EXIT_SUCCESS);
}

SEE ALSO
close(2), fchmod(2), fchown(2), fcntl(2), fstat(2), ftruncate(2), memfd_create(2),
mmap(2), open(2), umask(2), shm_overview(7)

Linux man-pages 6.13 2024-07-23 2351

shm_open(3) Library Functions Manual shm_open(3)

Linux man-pages 6.13 2024-07-23 2352

siginterrupt(3) Library Functions Manual siginterrupt(3)

NAME
siginterrupt - allow signals to interrupt system calls

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

[[deprecated]] int siginterrupt(int sig, int flag);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

siginterrupt():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
The siginterrupt() function changes the restart behavior when a system call is inter-
rupted by the signal sig. If the flag argument is false (0), then system calls will be
restarted if interrupted by the specified signal sig. This is the default behavior in
Linux.

If the flag argument is true (1) and no data has been transferred, then a system call in-
terrupted by the signal sig will return -1 and errno will be set to EINTR.

If the flag argument is true (1) and data transfer has started, then the system call will
be interrupted and will return the actual amount of data transferred.

RETURN VALUE
The siginterrupt() function returns 0 on success. It returns -1 if the signal number
sig is invalid, with errno set to indicate the error.

ERRORS
EINVAL

The specified signal number is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetysiginterrupt() MT-Unsafe const:sigintr

STANDARDS
POSIX.1-2008.

HISTORY
4.3BSD, POSIX.1-2001. Obsolete in POSIX.1-2008, recommending the use of sigac-
tion(2) with the SA_RESTART flag instead.

SEE ALSO
signal(2)

Linux man-pages 6.13 2024-07-23 2353

signbit(3) Library Functions Manual signbit(3)

NAME
signbit - test sign of a real floating-point number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

int signbit(x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

signbit():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
signbit() is a generic macro which can work on all real floating-point types. It returns
a nonzero value if the value of x has its sign bit set.

This is not the same as x < 0.0, because IEEE 754 floating point allows zero to be
signed. The comparison -0.0 < 0.0 is false, but signbit(-0.0) will return a nonzero
value.

NaNs and infinities have a sign bit.

RETURN VALUE
The signbit() macro returns nonzero if the sign of x is negative; otherwise it returns
zero.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesignbit()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

This function is defined in IEC 559 (and the appendix with recommended functions in
IEEE 754/IEEE 854).

SEE ALSO
copysign(3)

Linux man-pages 6.13 2024-07-23 2354

significand(3) Library Functions Manual significand(3)

NAME
significand, significandf, significandl - get mantissa of floating-point number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double significand(double x);
float significandf(float x);
long double significandl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

significand(), significandf(), significandl():
/* Since glibc 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the mantissa of x scaled to the range [1, FLT_RADIX). They
are equivalent to

scalb(x, (double) -ilogb(x))

This function exists mainly for use in certain standardized tests for IEEE 754 confor-
mance.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesignificand(), significandf(), significandl()

STANDARDS
None.

significand()
BSD.

HISTORY
significand()

BSD.

SEE ALSO
ilogb(3), scalb(3)

Linux man-pages 6.13 2024-07-23 2355

sigpause(3) Library Functions Manual sigpause(3)

NAME
sigpause - atomically release blocked signals and wait for interrupt

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

[[deprecated]] int sigpause(int sigmask); /* BSD (but see VERSIONS) */

[[deprecated]] int sigpause(int sig); /* POSIX.1 / SysV / UNIX 95 */

DESCRIPTION
Don’t use this function. Use sigsuspend(2) instead.

The function sigpause() is designed to wait for some signal. It changes the process’s
signal mask (set of blocked signals), and then waits for a signal to arrive. Upon ar-
rival of a signal, the original signal mask is restored.

RETURN VALUE
If sigpause() returns, it was interrupted by a signal and the return value is -1 with er-
rno set to EINTR.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigpause()

VERSIONS
On Linux, this routine is a system call only on the Sparc (sparc64) architecture.

glibc uses the BSD version if the _BSD_SOURCE feature test macro is defined and
none of _POSIX_SOURCE, _POSIX_C_SOURCE, _XOPEN_SOURCE,
_GNU_SOURCE, or _SVID_SOURCE is defined. Otherwise, the System V version
is used, and feature test macros must be defined as follows to obtain the declaration:

• Since glibc 2.26: _XOPEN_SOURCE >= 500

• glibc 2.25 and earlier: _XOPEN_SOURCE

Since glibc 2.19, only the System V version is exposed by <signal.h>; applications
that formerly used the BSD sigpause() should be amended to use sigsuspend(2).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. Obsoleted in POSIX.1-2008.

The classical BSD version of this function appeared in 4.2BSD. It sets the process’s
signal mask to sigmask. UNIX 95 standardized the incompatible System V version of
this function, which removes only the specified signal sig from the process’s signal
mask. The unfortunate situation with two incompatible functions with the same name
was solved by the sigsuspend(2) function, that takes a sigset_t * argument (instead of
an int).

Linux man-pages 6.13 2024-07-23 2356

sigpause(3) Library Functions Manual sigpause(3)

SEE ALSO
kill(2), sigaction(2), sigprocmask(2), sigsuspend(2), sigblock(3), sigvec(3), fea-
ture_test_macros(7)

Linux man-pages 6.13 2024-07-23 2357

sigqueue(3) Library Functions Manual sigqueue(3)

NAME
sigqueue - queue a signal and data to a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigqueue(pid_t pid , int sig, const union sigval value);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigqueue():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
sigqueue() sends the signal specified in sig to the process whose PID is given in pid .
The permissions required to send a signal are the same as for kill(2). As with kill(2),
the null signal (0) can be used to check if a process with a given PID exists.

The value argument is used to specify an accompanying item of data (either an integer
or a pointer value) to be sent with the signal, and has the following type:

union sigval {
int sival_int;
void *sival_ptr;

};

If the receiving process has installed a handler for this signal using the SA_SIGINFO
flag to sigaction(2), then it can obtain this data via the si_value field of the siginfo_t
structure passed as the second argument to the handler. Furthermore, the si_code field
of that structure will be set to SI_QUEUE.

RETURN VALUE
On success, sigqueue() returns 0, indicating that the signal was successfully queued to
the receiving process. Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The limit of signals which may be queued has been reached. (See signal(7)
for further information.)

EINVAL
sig was invalid.

EPERM
The process does not have permission to send the signal to the receiving
process. For the required permissions, see kill(2).

ESRCH
No process has a PID matching pid .

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 2358

sigqueue(3) Library Functions Manual sigqueue(3)

Interface Attribute Value
Thread safety MT-Safesigqueue()

VERSIONS
C library/kernel differences

On Linux, sigqueue() is implemented using the rt_sigqueueinfo(2) system call. The
system call differs in its third argument, which is the siginfo_t structure that will be
supplied to the receiving process’s signal handler or returned by the receiving
process’s sigtimedwait(2) call. Inside the glibc sigqueue() wrapper, this argument,
uinfo, is initialized as follows:

uinfo.si_signo = sig; /* Argument supplied to sigqueue() */
uinfo.si_code = SI_QUEUE;
uinfo.si_pid = getpid(); /* Process ID of sender */
uinfo.si_uid = getuid(); /* Real UID of sender */
uinfo.si_value = val; /* Argument supplied to sigqueue() */

STANDARDS
POSIX.1-2008.

HISTORY
Linux 2.2. POSIX.1-2001.

NOTES
If this function results in the sending of a signal to the process that invoked it, and that
signal was not blocked by the calling thread, and no other threads were willing to han-
dle this signal (either by having it unblocked, or by waiting for it using sigwait(3)),
then at least some signal must be delivered to this thread before this function returns.

SEE ALSO
kill(2), rt_sigqueueinfo(2), sigaction(2), signal(2), pthread_sigqueue(3), sigwait(3),
signal(7)

Linux man-pages 6.13 2024-07-23 2359

sigset(3) Library Functions Manual sigset(3)

NAME
sigset, sighold, sigrelse, sigignore - System V signal API

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

typedef typeof(void (int)) *sighandler_t;

[[deprecated]] sighandler_t sigset(int sig, sighandler_t disp);

[[deprecated]] int sighold(int sig);
[[deprecated]] int sigrelse(int sig);
[[deprecated]] int sigignore(int sig);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigset(), sighold(), sigrelse(), sigignore():
_XOPEN_SOURCE >= 500

DESCRIPTION
These functions are provided in glibc as a compatibility interface for programs that
make use of the historical System V signal API. This API is obsolete: new applica-
tions should use the POSIX signal API (sigaction(2), sigprocmask(2), etc.)

The sigset() function modifies the disposition of the signal sig. The disp argument
can be the address of a signal handler function, or one of the following constants:

SIG_DFL
Reset the disposition of sig to the default.

SIG_IGN
Ignore sig.

SIG_HOLD
Add sig to the process’s signal mask, but leave the disposition of sig un-
changed.

If disp specifies the address of a signal handler, then sig is added to the process’s sig-
nal mask during execution of the handler.

If disp was specified as a value other than SIG_HOLD, then sig is removed from the
process’s signal mask.

The dispositions for SIGKILL and SIGSTOP cannot be changed.

The sighold() function adds sig to the calling process’s signal mask.

The sigrelse() function removes sig from the calling process’s signal mask.

The sigignore() function sets the disposition of sig to SIG_IGN.

RETURN VALUE
On success, sigset() returns SIG_HOLD if sig was blocked before the call, or the sig-
nal’s previous disposition if it was not blocked before the call. On error, sigset() re-
turns -1, with errno set to indicate the error. (But see BUGS below.)

The sighold(), sigrelse(), and sigignore() functions return 0 on success; on error,
these functions return -1 and set errno to indicate the error.

Linux man-pages 6.13 2024-12-13 2360

sigset(3) Library Functions Manual sigset(3)

ERRORS
For sigset() see the ERRORS under sigaction(2) and sigprocmask(2).

For sighold() and sigrelse() see the ERRORS under sigprocmask(2).

For sigignore(), see the errors under sigaction(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigset(), sighold(), sigrelse(), sigignore()

STANDARDS
POSIX.1-2008.

sighandler_t
GNU. POSIX.1 uses the same type but without a typedef .

HISTORY
glibc 2.1. SVr4, POSIX.1-2001. POSIX.1-2008 marks these functions as obsolete,
recommending the use of sigaction(2), sigprocmask(2), pthread_sigmask(3), and sig-
suspend(2) instead.

NOTES
The sigset() function provides reliable signal handling semantics (as when calling
sigaction(2) with sa_mask equal to 0).

On System V, the signal() function provides unreliable semantics (as when calling
sigaction(2) with sa_mask equal to SA_RESETHAND | SA_NODEFER). On BSD,
signal() provides reliable semantics. POSIX.1-2001 leaves these aspects of signal()
unspecified. See signal(2) for further details.

In order to wait for a signal, BSD and System V both provided a function named sig-
pause(3), but this function has a different argument on the two systems. See sig-
pause(3) for details.

BUGS
Before glibc 2.2, sigset() did not unblock sig if disp was specified as a value other
than SIG_HOLD.

Before glibc 2.5, sigset() does not correctly return the previous disposition of the sig-
nal in two cases. First, if disp is specified as SIG_HOLD, then a successful sigset()
always returns SIG_HOLD. Instead, it should return the previous disposition of the
signal (unless the signal was blocked, in which case SIG_HOLD should be returned).
Second, if the signal is currently blocked, then the return value of a successful sigset()
should be SIG_HOLD. Instead, the previous disposition of the signal is returned.
These problems have been fixed since glibc 2.5.

SEE ALSO
kill(2), pause(2), sigaction(2), signal(2), sigprocmask(2), raise(3), sigpause(3),
sigvec(3), signal(7)

Linux man-pages 6.13 2024-12-13 2361

SIGSETOPS(3) Library Functions Manual SIGSETOPS(3)

NAME
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember - POSIX signal set opera-
tions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signum);
int sigdelset(sigset_t *set, int signum);

int sigismember(const sigset_t *set, int signum);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigemptyset(), sigfillset(), sigaddset(), sigdelset(), sigismember():
_POSIX_C_SOURCE

DESCRIPTION
These functions allow the manipulation of POSIX signal sets.

sigemptyset() initializes the signal set given by set to empty, with all signals excluded
from the set.

sigfillset() initializes set to full, including all signals.

sigaddset() and sigdelset() add and delete respectively signal signum from set.

sigismember() tests whether signum is a member of set.

Objects of type sigset_t must be initialized by a call to either sigemptyset() or sig-
fillset() before being passed to the functions sigaddset(), sigdelset(), and sigismem-
ber() or the additional glibc functions described below (sigisemptyset(), sigandset(),
and sigorset())The results are undefined if this is not done.

RETURN VALUE
sigemptyset(), sigfillset(), sigaddset(), and sigdelset() return 0 on success and -1 on
error.

sigismember() returns 1 if signum is a member of set, 0 if signum is not a member,
and -1 on error.

On error, these functions set errno to indicate the error.

ERRORS
EINVAL

signum is not a valid signal.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 2362

SIGSETOPS(3) Library Functions Manual SIGSETOPS(3)

Interface Attribute Value
Thread safety MT-Safesigemptyset(), sigfillset(), sigaddset(), sigdelset(),

sigismember(), sigisemptyset(), sigorset(),
sigandset()

VERSIONS
GNU

If the _GNU_SOURCE feature test macro is defined, then <signal.h> exposes three
other functions for manipulating signal sets:

int sigisemptyset(const sigset_t *set);
int sigorset(sigset_t *dest, const sigset_t *left,

const sigset_t *right);
int sigandset(sigset_t *dest, const sigset_t *left,

const sigset_t *right);

sigisemptyset() returns 1 if set contains no signals, and 0 otherwise.

sigorset() places the union of the sets left and right in dest. sigandset() places the in-
tersection of the sets left and right in dest. Both functions return 0 on success, and -1
on failure.

These functions are nonstandard (a few other systems provide similar functions) and
their use should be avoided in portable applications.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
When creating a filled signal set, the glibc sigfillset() function does not include the
two real-time signals used internally by the NPTL threading implementation. See
nptl(7) for details.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2)

Linux man-pages 6.13 2024-07-23 2363

sigvec(3) Library Functions Manual sigvec(3)

NAME
sigvec, sigblock, sigsetmask, siggetmask, sigmask - BSD signal API

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

[[deprecated]] int sigvec(int sig, const struct sigvec *vec,
struct sigvec *ovec);

[[deprecated]] int sigmask(int signum);

[[deprecated]] int sigblock(int mask);
[[deprecated]] int sigsetmask(int mask);
[[deprecated]] int siggetmask(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
These functions are provided in glibc as a compatibility interface for programs that
make use of the historical BSD signal API. This API is obsolete: new applications
should use the POSIX signal API (sigaction(2), sigprocmask(2), etc.).

The sigvec() function sets and/or gets the disposition of the signal sig (like the POSIX
sigaction(2)). If vec is not NULL, it points to a sigvec structure that defines the new
disposition for sig. If ovec is not NULL, it points to a sigvec structure that is used to
return the previous disposition of sig. To obtain the current disposition of sig without
changing it, specify NULL for vec, and a non-null pointer for ovec.

The dispositions for SIGKILL and SIGSTOP cannot be changed.

The sigvec structure has the following form:

struct sigvec {
void (*sv_handler)(int); /* Signal disposition */
int sv_mask; /* Signals to be blocked in handler */
int sv_flags; /* Flags */

};

The sv_handler field specifies the disposition of the signal, and is either: the address
of a signal handler function; SIG_DFL, meaning the default disposition applies for
the signal; or SIG_IGN, meaning that the signal is ignored.

If sv_handler specifies the address of a signal handler, then sv_mask specifies a mask
of signals that are to be blocked while the handler is executing. In addition, the signal
for which the handler is invoked is also blocked. Attempts to block SIGKILL or
SIGSTOP are silently ignored.

If sv_handler specifies the address of a signal handler, then the sv_flags field specifies
flags controlling what happens when the handler is called. This field may contain

Linux man-pages 6.13 2024-07-23 2364

sigvec(3) Library Functions Manual sigvec(3)

zero or more of the following flags:

SV_INTERRUPT
If the signal handler interrupts a blocking system call, then upon return from
the handler the system call is not restarted: instead it fails with the error
EINTR. If this flag is not specified, then system calls are restarted by default.

SV_RESETHAND
Reset the disposition of the signal to the default before calling the signal han-
dler. If this flag is not specified, then the handler remains established until ex-
plicitly removed by a later call to sigvec() or until the process performs an ex-
ecve(2).

SV_ONSTACK
Handle the signal on the alternate signal stack (historically established under
BSD using the obsolete sigstack() function; the POSIX replacement is sigalt-
stack(2)).

The sigmask() macro constructs and returns a "signal mask" for signum. For exam-
ple, we can initialize the vec.sv_mask field given to sigvec() using code such as the
following:

vec.sv_mask = sigmask(SIGQUIT) | sigmask(SIGABRT);
/* Block SIGQUIT and SIGABRT during

handler execution */

The sigblock() function adds the signals in mask to the process’s signal mask (like
POSIX sigprocmask(SIG_BLOCK)), and returns the process’s previous signal mask.
Attempts to block SIGKILL or SIGSTOP are silently ignored.

The sigsetmask() function sets the process’s signal mask to the value given in mask
(like POSIX sigprocmask(SIG_SETMASK)), and returns the process’s previous signal
mask.

The siggetmask() function returns the process’s current signal mask. This call is
equivalent to sigblock(0).

RETURN VALUE
The sigvec() function returns 0 on success; on error, it returns -1 and sets errno to in-
dicate the error.

The sigblock() and sigsetmask() functions return the previous signal mask.

The sigmask() macro returns the signal mask for signum.

ERRORS
See the ERRORS under sigaction(2) and sigprocmask(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigvec(), sigmask(), sigblock(), sigsetmask(),
siggetmask()

STANDARDS
None.

Linux man-pages 6.13 2024-07-23 2365

sigvec(3) Library Functions Manual sigvec(3)

HISTORY
sigvec()
sigblock()
sigmask()
sigsetmask()

4.3BSD.

siggetmask()
Unclear origin.

sigvec()
Removed in glibc 2.21.

NOTES
On 4.3BSD, the signal() function provided reliable semantics (as when calling
sigvec() with vec.sv_mask equal to 0). On System V, signal() provides unreliable se-
mantics. POSIX.1 leaves these aspects of signal() unspecified. See signal(2) for fur-
ther details.

In order to wait for a signal, BSD and System V both provided a function named sig-
pause(3), but this function has a different argument on the two systems. See sig-
pause(3) for details.

SEE ALSO
kill(2), pause(2), sigaction(2), signal(2), sigprocmask(2), raise(3), sigpause(3),
sigset(3), signal(7)

Linux man-pages 6.13 2024-07-23 2366

sigwait(3) Library Functions Manual sigwait(3)

NAME
sigwait - wait for a signal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigwait(const sigset_t *restrict set, int *restrict sig);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigwait():
Since glibc 2.26:

_POSIX_C_SOURCE >= 199506L
glibc 2.25 and earlier:

_POSIX_C_SOURCE

DESCRIPTION
The sigwait() function suspends execution of the calling thread until one of the sig-
nals specified in the signal set set becomes pending. For a signal to become pending,
it must first be blocked with sigprocmask(2). The function accepts the signal (re-
moves it from the pending list of signals), and returns the signal number in sig.

The operation of sigwait() is the same as sigwaitinfo(2), except that:

• sigwait() returns only the signal number, rather than a siginfo_t structure describ-
ing the signal.

• The return values of the two functions are different.

RETURN VALUE
On success, sigwait() returns 0. On error, it returns a positive error number (listed in
ERRORS).

ERRORS
EINVAL

set contains an invalid signal number.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigwait()

VERSIONS
sigwait() is implemented using sigtimedwait(2); consult its NOTES.

The glibc implementation of sigwait() silently ignores attempts to wait for the two
real-time signals that are used internally by the NPTL threading implementation. See
nptl(7) for details.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Linux man-pages 6.13 2024-07-23 2367

sigwait(3) Library Functions Manual sigwait(3)

EXAMPLES
See pthread_sigmask(3).

SEE ALSO
sigaction(2), signalfd(2), sigpending(2), sigsuspend(2), sigwaitinfo(2), sigsetops(3),
signal(7)

Linux man-pages 6.13 2024-07-23 2368

sin(3) Library Functions Manual sin(3)

NAME
sin, sinf, sinl - sine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double sin(double x);
float sinf(float x);
long double sinl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sinf(), sinl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the sine of x, where x is given in radians.

RETURN VALUE
On success, these functions return the sine of x.

If x is a NaN, a NaN is returned.

If x is positive infinity or negative infinity, a domain error occurs, and a NaN is re-
turned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesin(), sinf(), sinl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
Before glibc 2.10, the glibc implementation did not set errno to EDOM when a do-
main error occurred.

Linux man-pages 6.13 2024-07-23 2369

sin(3) Library Functions Manual sin(3)

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), cos(3), csin(3), sincos(3), tan(3)

Linux man-pages 6.13 2024-07-23 2370

sincos(3) Library Functions Manual sincos(3)

NAME
sincos, sincosf, sincosl - calculate sin and cos simultaneously

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <math.h>

void sincos(double x, double *sin, double *cos);
void sincosf(float x, float *sin, float *cos);
void sincosl(long double x, long double *sin, long double *cos);

DESCRIPTION
Several applications need sine and cosine of the same angle x. These functions com-
pute both at the same time, and store the results in *sin and *cos. Using this function
can be more efficient than two separate calls to sin(3) and cos(3).

If x is a NaN, a NaN is returned in *sin and *cos.

If x is positive infinity or negative infinity, a domain error occurs, and a NaN is re-
turned in *sin and *cos.

RETURN VALUE
These functions return void .

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesincos(), sincosf(), sincosl()

STANDARDS
GNU.

HISTORY
glibc 2.1.

NOTES
To see the performance advantage of sincos(), it may be necessary to disable gcc(1)
built-in optimizations, using flags such as:

cc -O -lm -fno-builtin prog.c

BUGS
Before glibc 2.22, the glibc implementation did not set errno to EDOM when a do-
main error occurred.

Linux man-pages 6.13 2024-07-23 2371

sincos(3) Library Functions Manual sincos(3)

SEE ALSO
cos(3), sin(3), tan(3)

Linux man-pages 6.13 2024-07-23 2372

sinh(3) Library Functions Manual sinh(3)

NAME
sinh, sinhf, sinhl - hyperbolic sine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sinhf(), sinhl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the hyperbolic sine of x, which is defined mathematically as:

sinh(x) = (exp(x) - exp(-x)) / 2

RETURN VALUE
On success, these functions return the hyperbolic sine of x.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is re-
turned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the same sign as x.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesinh(), sinhf(), sinhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

Linux man-pages 6.13 2024-07-23 2373

sinh(3) Library Functions Manual sinh(3)

SEE ALSO
acosh(3), asinh(3), atanh(3), cosh(3), csinh(3), tanh(3)

Linux man-pages 6.13 2024-07-23 2374

sleep(3) Library Functions Manual sleep(3)

NAME
sleep - sleep for a specified number of seconds

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

unsigned int sleep(unsigned int seconds);

DESCRIPTION
sleep() causes the calling thread to sleep either until the number of real-time seconds
specified in seconds have elapsed or until a signal arrives which is not ignored.

RETURN VALUE
Zero if the requested time has elapsed, or the number of seconds left to sleep, if the
call was interrupted by a signal handler.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe sig:SIGCHLD/linuxsleep()

VERSIONS
On Linux, sleep() is implemented via nanosleep(2). See the nanosleep(2) man page
for a discussion of the clock used.

On some systems, sleep() may be implemented using alarm(2) and SIGALRM
(POSIX.1 permits this); mixing calls to alarm(2) and sleep() is a bad idea.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

CAVEATS
Using longjmp(3) from a signal handler or modifying the handling of SIGALRM
while sleeping will cause undefined results.

SEE ALSO
sleep(1), alarm(2), nanosleep(2), signal(2), signal(7)

Linux man-pages 6.13 2024-07-23 2375

SLIST (3) Library Functions Manual SLIST (3)

NAME
SLIST_EMPTY, SLIST_ENTRY, SLIST_FIRST, SLIST_FOREACH, SLIST_HEAD,
SLIST_HEAD_INITIALIZER, SLIST_INIT, SLIST_INSERT_AFTER, SLIST_IN-
SERT_HEAD, SLIST_NEXT, SLIST_REMOVE, SLIST_REMOVE_HEAD - imple-
mentation of a singly linked list

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/queue.h>

SLIST_ENTRY(TYPE);

SLIST_HEAD(HEADNAME, TYPE);
SLIST_HEAD SLIST_HEAD_INITIALIZER(SLIST_HEAD head);
void SLIST_INIT(SLIST_HEAD *head);

int SLIST_EMPTY(SLIST_HEAD *head);

void SLIST_INSERT_HEAD(SLIST_HEAD *head ,
struct TYPE *elm, SLIST_ENTRY NAME);

void SLIST_INSERT_AFTER(struct TYPE *listelm,
struct TYPE *elm, SLIST_ENTRY NAME);

struct TYPE *SLIST_FIRST(SLIST_HEAD *head);
struct TYPE *SLIST_NEXT(struct TYPE *elm, SLIST_ENTRY NAME);

SLIST_FOREACH(struct TYPE *var, SLIST_HEAD *head , SLIST_ENTRY NAME);

void SLIST_REMOVE(SLIST_HEAD *head , struct TYPE *elm,
SLIST_ENTRY NAME);

void SLIST_REMOVE_HEAD(SLIST_HEAD *head ,
SLIST_ENTRY NAME);

DESCRIPTION
These macros define and operate on singly linked lists.

In the macro definitions, TYPE is the name of a user-defined structure, that must con-
tain a field of type SLIST_ENTRY , named NAME. The argument HEADNAME is the
name of a user-defined structure that must be declared using the macro
SLIST_HEAD().

Creation
A singly linked list is headed by a structure defined by the SLIST_HEAD() macro.
This structure contains a single pointer to the first element on the list. The elements
are singly linked for minimum space and pointer manipulation overhead at the ex-
pense of O(n) removal for arbitrary elements. New elements can be added to the list
after an existing element or at the head of the list. An SLIST_HEAD structure is de-
clared as follows:

SLIST_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type
of the elements to be linked into the list. A pointer to the head of the list can later be
declared as:

struct HEADNAME *headp;

Linux man-pages 6.13 2024-07-23 2376

SLIST (3) Library Functions Manual SLIST (3)

(The names head and headp are user selectable.)

SLIST_ENTRY() declares a structure that connects the elements in the list.

SLIST_HEAD_INITIALIZER() evaluates to an initializer for the list head .

SLIST_INIT() initializes the list referenced by head .

SLIST_EMPTY() evaluates to true if there are no elements in the list.

Insertion
SLIST_INSERT_HEAD() inserts the new element elm at the head of the list.

SLIST_INSERT_AFTER() inserts the new element elm after the element listelm.

Traversal
SLIST_FIRST() returns the first element in the list, or NULL if the list is empty.

SLIST_NEXT() returns the next element in the list.

SLIST_FOREACH() traverses the list referenced by head in the forward direction,
assigning each element in turn to var.

Removal
SLIST_REMOVE() removes the element elm from the list.

SLIST_REMOVE_HEAD() removes the element elm from the head of the list. For
optimum efficiency, elements being removed from the head of the list should explic-
itly use this macro instead of the generic SLIST_REMOVE().

RETURN VALUE
SLIST_EMPTY() returns nonzero if the list is empty, and zero if the list contains at
least one entry.

SLIST_FIRST(), and SLIST_NEXT() return a pointer to the first or next TYPE
structure, respectively.

SLIST_HEAD_INITIALIZER() returns an initializer that can be assigned to the list
head .

STANDARDS
BSD.

HISTORY
4.4BSD.

BUGS
SLIST_FOREACH() doesn’t allow var to be removed or freed within the loop, as it
would interfere with the traversal. SLIST_FOREACH_SAFE(), which is present on
the BSDs but is not present in glibc, fixes this limitation by allowing var to safely be
removed from the list and freed from within the loop without interfering with the tra-
versal.

EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>

Linux man-pages 6.13 2024-07-23 2377

SLIST (3) Library Functions Manual SLIST (3)

struct entry {
int data;
SLIST_ENTRY(entry) entries; /* Singly linked list */

};

SLIST_HEAD(slisthead, entry);

int
main(void)
{

struct entry *n1, *n2, *n3, *np;
struct slisthead head; /* Singly linked list

head */

SLIST_INIT(&head); /* Initialize the queue */

n1 = malloc(sizeof(struct entry)); /* Insert at the head */
SLIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after */
SLIST_INSERT_AFTER(n1, n2, entries);

SLIST_REMOVE(&head, n2, entry, entries);/* Deletion */
free(n2);

n3 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries); /* Deletion from the head */
free(n3);

for (unsigned int i = 0; i < 5; i++) {
n1 = malloc(sizeof(struct entry));
SLIST_INSERT_HEAD(&head, n1, entries);
n1->data = i;

}

/* Forward traversal */
SLIST_FOREACH(np, &head, entries)

printf("%i\n", np->data);

while (!SLIST_EMPTY(&head)) { /* List deletion */
n1 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries);
free(n1);

}
SLIST_INIT(&head);

exit(EXIT_SUCCESS);
}

Linux man-pages 6.13 2024-07-23 2378

SLIST (3) Library Functions Manual SLIST (3)

SEE ALSO
insque(3), queue(7)

Linux man-pages 6.13 2024-07-23 2379

sockatmark(3) Library Functions Manual sockatmark(3)

NAME
sockatmark - determine whether socket is at out-of-band mark

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int sockatmark(int sockfd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sockatmark():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
sockatmark() returns a value indicating whether or not the socket referred to by the
file descriptor sockfd is at the out-of-band mark. If the socket is at the mark, then 1 is
returned; if the socket is not at the mark, 0 is returned. This function does not remove
the out-of-band mark.

RETURN VALUE
A successful call to sockatmark() returns 1 if the socket is at the out-of-band mark,
or 0 if it is not. On error, -1 is returned and errno is set to indicate the error.

ERRORS
EBADF

sockfd is not a valid file descriptor.

EINVAL
sockfd is not a file descriptor to which sockatmark() can be applied.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesockatmark()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2.4. POSIX.1-2001.

NOTES
If sockatmark() returns 1, then the out-of-band data can be read using the
MSG_OOB flag of recv(2).

Out-of-band data is supported only on some stream socket protocols.

sockatmark() can safely be called from a handler for the SIGURG signal.

sockatmark() is implemented using the SIOCATMARK ioctl(2) operation.

BUGS
Prior to glibc 2.4, sockatmark() did not work.

Linux man-pages 6.13 2024-07-23 2380

sockatmark(3) Library Functions Manual sockatmark(3)

EXAMPLES
The following code can be used after receipt of a SIGURG signal to read (and dis-
card) all data up to the mark, and then read the byte of data at the mark:

char buf[BUF_LEN];
char oobdata;
int atmark, s;

for (;;) {
atmark = sockatmark(sockfd);
if (atmark == -1) {

perror("sockatmark");
break;

}

if (atmark)
break;

s = read(sockfd, buf, BUF_LEN);
if (s == -1)

perror("read");
if (s <= 0)

break;
}

if (atmark == 1) {
if (recv(sockfd, &oobdata, 1, MSG_OOB) == -1) {

perror("recv");
...

}
}

SEE ALSO
fcntl(2), recv(2), send(2), tcp(7)

Linux man-pages 6.13 2024-07-23 2381

sqrt(3) Library Functions Manual sqrt(3)

NAME
sqrt, sqrtf, sqrtl - square root function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sqrtf(), sqrtl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the nonnegative square root of x.

RETURN VALUE
On success, these functions return the square root of x.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity, positive infinity is returned.

If x is less than -0, a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x less than -0
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesqrt(), sqrtf(), sqrtl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
cbrt(3), csqrt(3), hypot(3)

Linux man-pages 6.13 2024-07-23 2382

sqrt(3) Library Functions Manual sqrt(3)

Linux man-pages 6.13 2024-07-23 2383

sscanf (3) Library Functions Manual sscanf (3)

NAME
sscanf, vsscanf - input string format conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int sscanf(const char *restrict str,
const char *restrict format, ...);

#include <stdarg.h>

int vsscanf(const char *restrict str,
const char *restrict format, va_list ap);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vsscanf():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The sscanf() family of functions scans formatted input according to format as de-
scribed below. This format may contain conversion specifications; the results from
such conversions, if any, are stored in the locations pointed to by the pointer argu-
ments that follow format. Each pointer argument must be of a type that is appropri-
ate for the value returned by the corresponding conversion specification.

If the number of conversion specifications in format exceeds the number of pointer
arguments, the results are undefined. If the number of pointer arguments exceeds the
number of conversion specifications, then the excess pointer arguments are evaluated,
but are otherwise ignored.

sscanf() These functions read their input from the string pointed to by str.

The vsscanf() function is analogous to vsprintf(3).

The format string consists of a sequence of directives which describe how to process
the sequence of input characters. If processing of a directive fails, no further input is
read, and sscanf() returns. A "failure" can be either of the following: input failure,
meaning that input characters were unavailable, or matching failure, meaning that the
input was inappropriate (see below).

A directive is one of the following:

• A sequence of white-space characters (space, tab, newline, etc.; see
isspace(3)). This directive matches any amount of white space, including
none, in the input.

• An ordinary character (i.e., one other than white space or '%'). This character
must exactly match the next character of input.

• A conversion specification, which commences with a '%' (percent) character.
A sequence of characters from the input is converted according to this specifi-
cation, and the result is placed in the corresponding pointer argument. If the
next item of input does not match the conversion specification, the conversion
fails—this is a matching failure.

Linux man-pages 6.13 2024-11-17 2384

sscanf (3) Library Functions Manual sscanf (3)

Each conversion specification in format begins with either the character '%' or the
character sequence "%n$" (see below for the distinction) followed by:

• An optional '*' assignment-suppression character: sscanf() reads input as di-
rected by the conversion specification, but discards the input. No correspond-
ing pointer argument is required, and this specification is not included in the
count of successful assignments returned by sscanf().

• For decimal conversions, an optional quote character ('). This specifies that
the input number may include thousands’ separators as defined by the
LC_NUMERIC category of the current locale. (See setlocale(3).) The quote
character may precede or follow the '*' assignment-suppression character.

• An optional 'm' character. This is used with string conversions (%s, %c, %[),
and relieves the caller of the need to allocate a corresponding buffer to hold
the input: instead, sscanf() allocates a buffer of sufficient size, and assigns the
address of this buffer to the corresponding pointer argument, which should be
a pointer to a char * variable (this variable does not need to be initialized be-
fore the call). The caller should subsequently free(3) this buffer when it is no
longer required.

• An optional decimal integer which specifies the maximum field width. Read-
ing of characters stops either when this maximum is reached or when a non-
matching character is found, whichever happens first. Most conversions dis-
card initial white space characters (the exceptions are noted below), and these
discarded characters don’t count toward the maximum field width. String in-
put conversions store a terminating null byte ('\0') to mark the end of the input;
the maximum field width does not include this terminator.

• An optional type modifier character. For example, the l type modifier is used
with integer conversions such as %d to specify that the corresponding pointer
argument refers to a long rather than a pointer to an int.

• A conversion specifier that specifies the type of input conversion to be per-
formed.

The conversion specifications in format are of two forms, either beginning with '%' or
beginning with "%n$". The two forms should not be mixed in the same format
string, except that a string containing "%n$" specifications can include %% and %*.
If format contains '%' specifications, then these correspond in order with successive
pointer arguments. In the "%n$" form (which is specified in POSIX.1-2001, but not
C99), n is a decimal integer that specifies that the converted input should be placed in
the location referred to by the n-th pointer argument following format.

Conversions
The following type modifier characters can appear in a conversion specification:

h Indicates that the conversion will be one of d, i, o, u, x, X, or n and the next
pointer is a pointer to a short or unsigned short (rather than int).

hh As for h, but the next pointer is a pointer to a signed char or unsigned char.

j As for h, but the next pointer is a pointer to an intmax_t or a uintmax_t. This
modifier was introduced in C99.

Linux man-pages 6.13 2024-11-17 2385

sscanf (3) Library Functions Manual sscanf (3)

l Indicates either that the conversion will be one of d, i, o, u, x, X, or n and the
next pointer is a pointer to a long or unsigned long (rather than int), or that the
conversion will be one of e, f, or g and the next pointer is a pointer to double
(rather than float). If used with %c or %s, the corresponding parameter is
considered as a pointer to a wide character or wide-character string respec-
tively.

ll (ell-ell) Indicates that the conversion will be one of b, d, i, o, u, x, X, or n and
the next pointer is a pointer to a long long or unsigned long long (rather than
int).

L Indicates that the conversion will be either e, f, or g and the next pointer is a
pointer to long double or (as a GNU extension) the conversion will be d, i, o,
u, or x and the next pointer is a pointer to long long.

q equivalent to L. This specifier does not exist in ANSI C.

t As for h, but the next pointer is a pointer to a ptrdiff_t. This modifier was in-
troduced in C99.

z As for h, but the next pointer is a pointer to a size_t. This modifier was intro-
duced in C99.

The following conversion specifiers are available:

% Matches a literal '%'. That is, %% in the format string matches a single input
'%' character. No conversion is done (but initial white space characters are
discarded), and assignment does not occur.

d Matches an optionally signed decimal integer; the next pointer must be a
pointer to int.

i Matches an optionally signed integer; the next pointer must be a pointer to int.
The integer is read in base 16 if it begins with 0x or 0X , in base 8 if it begins
with 0, and in base 10 otherwise. Only characters that correspond to the base
are used.

o Matches an unsigned octal integer; the next pointer must be a pointer to un-
signed int.

u Matches an unsigned decimal integer; the next pointer must be a pointer to un-
signed int.

x Matches an unsigned hexadecimal integer (that may optionally begin with a
prefix of 0x or 0X , which is discarded); the next pointer must be a pointer to
unsigned int.

X Equivalent to x.

f Matches an optionally signed floating-point number; the next pointer must be
a pointer to float.

e Equivalent to f.

g Equivalent to f.

E Equivalent to f.

Linux man-pages 6.13 2024-11-17 2386

sscanf (3) Library Functions Manual sscanf (3)

a (C99) Equivalent to f.

s Matches a sequence of non-white-space characters; the next pointer must be a
pointer to the initial element of a character array that is long enough to hold
the input sequence and the terminating null byte ('\0'), which is added automat-
ically. The input string stops at white space or at the maximum field width,
whichever occurs first.

c Matches a sequence of characters whose length is specified by the maximum
field width (default 1); the next pointer must be a pointer to char, and there
must be enough room for all the characters (no terminating null byte is added).
The usual skip of leading white space is suppressed. To skip white space first,
use an explicit space in the format.

[Matches a nonempty sequence of characters from the specified set of accepted
characters; the next pointer must be a pointer to char, and there must be
enough room for all the characters in the string, plus a terminating null byte.
The usual skip of leading white space is suppressed. The string is to be made
up of characters in (or not in) a particular set; the set is defined by the charac-
ters between the open bracket [character and a close bracket] character. The
set excludes those characters if the first character after the open bracket is a
circumflex (^). To include a close bracket in the set, make it the first character
after the open bracket or the circumflex; any other position will end the set.
The hyphen character - is also special; when placed between two other char-
acters, it adds all intervening characters to the set. To include a hyphen, make
it the last character before the final close bracket. For instance, [^]0-9-]
means the set "everything except close bracket, zero through nine, and hy-
phen". The string ends with the appearance of a character not in the (or, with a
circumflex, in) set or when the field width runs out.

p Matches a pointer value (as printed by %p in printf(3)); the next pointer must
be a pointer to a pointer to void .

n Nothing is expected; instead, the number of characters consumed thus far from
the input is stored through the next pointer, which must be a pointer to int, or
variant whose size matches the (optionally) supplied integer length modifier.
This is not a conversion and does not increase the count returned by the func-
tion. The assignment can be suppressed with the * assignment-suppression
character, but the effect on the return value is undefined. Therefore %*n con-
versions should not be used.

RETURN VALUE
On success, these functions return the number of input items successfully matched
and assigned; this can be fewer than provided for, or even zero, in the event of an
early matching failure.

The value EOF is returned if the end of input is reached before either the first suc-
cessful conversion or a matching failure occurs.

ERRORS
EILSEQ

Input byte sequence does not form a valid character.

Linux man-pages 6.13 2024-11-17 2387

sscanf (3) Library Functions Manual sscanf (3)

EINVAL
Not enough arguments; or format is NULL.

ENOMEM
Out of memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localesscanf(), vsscanf()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

The q specifier is the 4.4BSD notation for long long, while ll or the usage of L in inte-
ger conversions is the GNU notation.

The Linux version of these functions is based on the GNU libio library. Take a look
at the info(1) documentation of GNU libc (glibc-1.08) for a more concise description.

NOTES
The ’a’ assignment-allocation modifier

Originally, the GNU C library supported dynamic allocation for string inputs (as a
nonstandard extension) via the a character. (This feature is present at least as far back
as glibc 2.0.) Thus, one could write the following to have sscanf() allocate a buffer
for a string, with a pointer to that buffer being returned in *buf :

char *buf;
sscanf(str, "%as", &buf);

The use of the letter a for this purpose was problematic, since a is also specified by
the ISO C standard as a synonym for f (floating-point input). POSIX.1-2008 instead
specifies the m modifier for assignment allocation (as documented in DESCRIPTION,
above).

Note that the a modifier is not available if the program is compiled with
gcc -std=c99 or gcc -D_ISOC99_SOURCE (unless _GNU_SOURCE is also speci-
fied), in which case the a is interpreted as a specifier for floating-point numbers (see
above).

Support for the m modifier was added to glibc 2.7, and new programs should use that
modifier instead of a.

As well as being standardized by POSIX, the m modifier has the following further ad-
vantages over the use of a:

• It may also be applied to %c conversion specifiers (e.g., %3mc).

• It avoids ambiguity with respect to the %a floating-point conversion specifier (and
is unaffected by gcc -std=c99 etc.).

BUGS

Linux man-pages 6.13 2024-11-17 2388

sscanf (3) Library Functions Manual sscanf (3)

Numeric conversion specifiers
Use of the numeric conversion specifiers produces undefined behavior for invalid in-
put. See C11 7.21.6.2/10 〈https://port70.net/%7Ensz/c/c11/n1570.html#7.21.6.2p10〉.
This is a bug in the ISO C standard, and not an inherent design issue with the API.
However, current implementations are not safe from that bug, so it is not recom-
mended to use them. Instead, programs should use functions such as strtol(3) to parse
numeric input. Alternatively, mitigate it by specifying a maximum field width.

Nonstandard modifiers
These functions are fully C99 conformant, but provide the additional modifiers q and
a as well as an additional behavior of the L and ll modifiers. The latter may be con-
sidered to be a bug, as it changes the behavior of modifiers defined in C99.

Some combinations of the type modifiers and conversion specifiers defined by C99 do
not make sense (e.g., %Ld). While they may have a well-defined behavior on Linux,
this need not to be so on other systems. Therefore it usually is better to use modifiers
that are not defined by C99 at all, that is, use q instead of L in combination with d, i,
o, u, x, and X conversions or ll.

The usage of q is not the same as on 4.4BSD, as it may be used in float conversions
equivalently to L.

EXAMPLES
To use the dynamic allocation conversion specifier, specify m as a length modifier
(thus %ms or %m[range]). The caller must free(3) the returned string, as in the fol-
lowing example:

char *p;
int n;

errno = 0;
n = sscanf(str, "%m[a-z]", &p);
if (n == 1) {

printf("read: %s\n", p);
free(p);

} else if (errno != 0) {
perror("sscanf");

} else {
fprintf(stderr, "No matching characters\n");

}

As shown in the above example, it is necessary to call free(3) only if the sscanf() call
successfully read a string.

SEE ALSO
getc(3), printf(3), setlocale(3), strtod(3), strtol(3), strtoul(3)

Linux man-pages 6.13 2024-11-17 2389

STAILQ(3) Library Functions Manual STAILQ(3)

NAME
SIMPLEQ_EMPTY, SIMPLEQ_ENTRY, SIMPLEQ_FIRST, SIMPLEQ_FOREACH,
SIMPLEQ_HEAD, SIMPLEQ_HEAD_INITIALIZER, SIMPLEQ_INIT, SIM-
PLEQ_INSERT_AFTER, SIMPLEQ_INSERT_HEAD, SIMPLEQ_INSERT_TAIL,
SIMPLEQ_NEXT, SIMPLEQ_REMOVE, SIMPLEQ_REMOVE_HEAD,
STAILQ_CONCAT, STAILQ_EMPTY, STAILQ_ENTRY, STAILQ_FIRST,
STAILQ_FOREACH, STAILQ_HEAD, STAILQ_HEAD_INITIALIZER,
STAILQ_INIT, STAILQ_INSERT_AFTER, STAILQ_INSERT_HEAD, STAILQ_IN-
SERT_TAIL, STAILQ_NEXT, STAILQ_REMOVE, STAILQ_REMOVE_HEAD, -
implementation of a singly linked tail queue

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/queue.h>

STAILQ_ENTRY(TYPE);

STAILQ_HEAD(HEADNAME, TYPE);
STAILQ_HEAD STAILQ_HEAD_INITIALIZER(STAILQ_HEAD head);
void STAILQ_INIT(STAILQ_HEAD *head);

int STAILQ_EMPTY(STAILQ_HEAD *head);

void STAILQ_INSERT_HEAD(STAILQ_HEAD *head ,
struct TYPE *elm, STAILQ_ENTRY NAME);

void STAILQ_INSERT_TAIL(STAILQ_HEAD *head ,
struct TYPE *elm, STAILQ_ENTRY NAME);

void STAILQ_INSERT_AFTER(STAILQ_HEAD *head , struct TYPE *listelm,
struct TYPE *elm, STAILQ_ENTRY NAME);

struct TYPE *STAILQ_FIRST(STAILQ_HEAD *head);
struct TYPE *STAILQ_NEXT(struct TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_FOREACH(struct TYPE *var, STAILQ_HEAD *head , STAILQ_ENTRY NAME);

void STAILQ_REMOVE(STAILQ_HEAD *head , struct TYPE *elm, TYPE,
STAILQ_ENTRY NAME);

void STAILQ_REMOVE_HEAD(STAILQ_HEAD *head ,
STAILQ_ENTRY NAME);

void STAILQ_CONCAT(STAILQ_HEAD *head1, STAILQ_HEAD *head2);
Note: Identical macros prefixed with SIMPLEQ instead of STAILQ exist; see VER-
SIONS.

DESCRIPTION
These macros define and operate on singly linked tail queues.

In the macro definitions, TYPE is the name of a user-defined structure, that must con-
tain a field of type STAILQ_ENTRY , named NAME. The argument HEADNAME is
the name of a user-defined structure that must be declared using the macro
STAILQ_HEAD().

Linux man-pages 6.13 2024-07-23 2390

STAILQ(3) Library Functions Manual STAILQ(3)

Creation
A singly linked tail queue is headed by a structure defined by the STAILQ_HEAD()
macro. This structure contains a pair of pointers, one to the first element in the tail
queue and the other to the last element in the tail queue. The elements are singly
linked for minimum space and pointer manipulation overhead at the expense of O(n)
removal for arbitrary elements. New elements can be added to the tail queue after an
existing element, at the head of the tail queue, or at the end of the tail queue. A
STAILQ_HEAD structure is declared as follows:

STAILQ_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type
of the elements to be linked into the tail queue. A pointer to the head of the tail queue
can later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

STAILQ_ENTRY() declares a structure that connects the elements in the tail queue.

STAILQ_HEAD_INITIALIZER() evaluates to an initializer for the tail queue head .

STAILQ_INIT() initializes the tail queue referenced by head .

STAILQ_EMPTY() evaluates to true if there are no items on the tail queue.

Insertion
STAILQ_INSERT_HEAD() inserts the new element elm at the head of the tail
queue.

STAILQ_INSERT_TAIL() inserts the new element elm at the end of the tail queue.

STAILQ_INSERT_AFTER() inserts the new element elm after the element listelm.

Traversal
STAILQ_FIRST() returns the first item on the tail queue or NULL if the tail queue is
empty.

STAILQ_NEXT() returns the next item on the tail queue, or NULL this item is the
last.

STAILQ_FOREACH() traverses the tail queue referenced by head in the forward di-
rection, assigning each element in turn to var.

Removal
STAILQ_REMOVE() removes the element elm from the tail queue.

STAILQ_REMOVE_HEAD() removes the element at the head of the tail queue.
For optimum efficiency, elements being removed from the head of the tail queue
should use this macro explicitly rather than the generic STAILQ_REMOVE() macro.

Other features
STAILQ_CONCAT() concatenates the tail queue headed by head2 onto the end of
the one headed by head1 removing all entries from the former.

RETURN VALUE
STAILQ_EMPTY() returns nonzero if the queue is empty, and zero if the queue con-
tains at least one entry.

Linux man-pages 6.13 2024-07-23 2391

STAILQ(3) Library Functions Manual STAILQ(3)

STAILQ_FIRST(), and STAILQ_NEXT() return a pointer to the first or next TYPE
structure, respectively.

STAILQ_HEAD_INITIALIZER() returns an initializer that can be assigned to the
queue head .

VERSIONS
Some BSDs provide SIMPLEQ instead of STAILQ. They are identical, but for histor-
ical reasons they were named differently on different BSDs. STAILQ originated on
FreeBSD, and SIMPLEQ originated on NetBSD. For compatibility reasons, some
systems provide both sets of macros. glibc provides both STAILQ and SIMPLEQ,
which are identical except for a missing SIMPLEQ equivalent to STAILQ_CON-
CAT().

BUGS
STAILQ_FOREACH() doesn’t allow var to be removed or freed within the loop, as
it would interfere with the traversal. STAILQ_FOREACH_SAFE(), which is
present on the BSDs but is not present in glibc, fixes this limitation by allowing var to
safely be removed from the list and freed from within the loop without interfering
with the traversal.

STANDARDS
BSD.

HISTORY
4.4BSD.

EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>

struct entry {
int data;
STAILQ_ENTRY(entry) entries; /* Singly linked tail queue */

};

STAILQ_HEAD(stailhead, entry);

int
main(void)
{

struct entry *n1, *n2, *n3, *np;
struct stailhead head; /* Singly linked tail queue

head */

STAILQ_INIT(&head); /* Initialize the queue */

n1 = malloc(sizeof(struct entry)); /* Insert at the head */
STAILQ_INSERT_HEAD(&head, n1, entries);

Linux man-pages 6.13 2024-07-23 2392

STAILQ(3) Library Functions Manual STAILQ(3)

n1 = malloc(sizeof(struct entry)); /* Insert at the tail */
STAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after */
STAILQ_INSERT_AFTER(&head, n1, n2, entries);

STAILQ_REMOVE(&head, n2, entry, entries); /* Deletion */
free(n2);

n3 = STAILQ_FIRST(&head);
STAILQ_REMOVE_HEAD(&head, entries); /* Deletion from the head */
free(n3);

n1 = STAILQ_FIRST(&head);
n1->data = 0;
for (unsigned int i = 1; i < 5; i++) {

n1 = malloc(sizeof(struct entry));
STAILQ_INSERT_HEAD(&head, n1, entries);
n1->data = i;

}
/* Forward traversal */

STAILQ_FOREACH(np, &head, entries)
printf("%i\n", np->data);

/* TailQ deletion */
n1 = STAILQ_FIRST(&head);
while (n1 != NULL) {

n2 = STAILQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
STAILQ_INIT(&head);

exit(EXIT_SUCCESS);
}

SEE ALSO
insque(3), queue(7)

Linux man-pages 6.13 2024-07-23 2393

STAILQ(3) Library Functions Manual STAILQ(3)

Linux man-pages 6.13 2024-07-23 2394

static_assert(3) Library Functions Manual static_assert(3)

NAME
static_assert, _Static_assert - fail compilation if assertion is false

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <assert.h>

void static_assert(scalar constant-expression, const char *msg);

/* Since C23: */
void static_assert(scalar constant-expression);

DESCRIPTION
This macro is similar to assert(3), but it works at compile time, generating a compila-
tion error (with an optional message) when the input is false (i.e., compares equal to
zero).

If the input is nonzero, no code is emitted.

msg must be a string literal. Since C23, this argument is optional.

There’s a keyword, _Static_assert(), that behaves identically, and can be used without
including <assert.h>.

RETURN VALUE
No value is returned.

VERSIONS
In C11, the second argument (msg) was mandatory; since C23, it can be omitted.

STANDARDS
C11 and later.

EXAMPLES
static_assert() can’t be used in some places, like for example at global scope. For
that, a macro must_be() can be written in terms of static_assert(). The following
program uses the macro to get the size of an array safely.

#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
* This macro behaves like static_assert(), failing to
* compile if its argument is not true. However, it always
* returns 0, which allows using it everywhere an expression
* can be used.
*/

#define must_be(e) \
(\

0 * (int) sizeof(\
struct { \

Linux man-pages 6.13 2025-02-24 2395

static_assert(3) Library Functions Manual static_assert(3)

static_assert(e); \
int ISO_C_forbids_a_struct_with_no_members; \

} \
) \

)

#define is_same_type(a, b) \
__builtin_types_compatible_p(typeof(a), typeof(b))

#define is_array(arr) (!is_same_type((arr), &*(arr)))
#define must_be_array(arr) must_be(is_array(arr))

#define sizeof_array(arr) (sizeof(arr) + must_be_array(arr))
#define nitems(arr) (sizeof((arr)) / sizeof((arr)[0]) \

+ must_be_array(arr))

int foo[10];
int8_t bar[sizeof_array(foo)];

int
main(void)
{

for (size_t i = 0; i < nitems(foo); i++) {
foo[i] = i;

}

memcpy(bar, foo, sizeof_array(bar));

for (size_t i = 0; i < nitems(bar); i++) {
printf("%d,", bar[i]);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
assert(3)

Linux man-pages 6.13 2025-02-24 2396

statvfs(3) Library Functions Manual statvfs(3)

NAME
statvfs, fstatvfs - get filesystem statistics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/statvfs.h>

int statvfs(const char *restrict path, struct statvfs *restrict buf);
int fstatvfs(int fd , struct statvfs *buf);

DESCRIPTION
The function statvfs() returns information about a mounted filesystem. path is the
pathname of any file within the mounted filesystem. buf is a pointer to a statvfs struc-
ture defined approximately as follows:

struct statvfs {
unsigned long f_bsize; /* Filesystem block size */
unsigned long f_frsize; /* Fragment size */
fsblkcnt_t f_blocks; /* Size of fs in f_frsize units */
fsblkcnt_t f_bfree; /* Number of free blocks */
fsblkcnt_t f_bavail; /* Number of free blocks for

unprivileged users */
fsfilcnt_t f_files; /* Number of inodes */
fsfilcnt_t f_ffree; /* Number of free inodes */
fsfilcnt_t f_favail; /* Number of free inodes for

unprivileged users */
unsigned long f_fsid; /* Filesystem ID */
unsigned long f_flag; /* Mount flags */
unsigned long f_namemax; /* Maximum filename length */

};

Here the types fsblkcnt_t and fsfilcnt_t are defined in <sys/types.h>. Both used to be
unsigned long.

The field f_flag is a bit mask indicating various options that were employed when
mounting this filesystem. It contains zero or more of the following flags:

ST_MANDLOCK
Mandatory locking is permitted on the filesystem (see fcntl(2)).

ST_NOATIME
Do not update access times; see mount(2).

ST_NODEV
Disallow access to device special files on this filesystem.

ST_NODIRATIME
Do not update directory access times; see mount(2).

ST_NOEXEC
Execution of programs is disallowed on this filesystem.

Linux man-pages 6.13 2024-07-23 2397

statvfs(3) Library Functions Manual statvfs(3)

ST_NOSUID
The set-user-ID and set-group-ID bits are ignored by exec(3) for executable
files on this filesystem

ST_RDONLY
This filesystem is mounted read-only.

ST_RELATIME
Update atime relative to mtime/ctime; see mount(2).

ST_SYNCHRONOUS
Writes are synched to the filesystem immediately (see the description of
O_SYNC in open(2)).

It is unspecified whether all members of the returned struct have meaningful values on
all filesystems.

fstatvfs() returns the same information about an open file referenced by descriptor fd .

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

(statvfs()) Search permission is denied for a component of the path prefix of
path. (See also path_resolution(7).)

EBADF
(fstatvfs()) fd is not a valid open file descriptor.

EFAULT
Buf or path points to an invalid address.

EINTR
This call was interrupted by a signal; see signal(7).

EIO An I/O error occurred while reading from the filesystem.

ELOOP
(statvfs()) Too many symbolic links were encountered in translating path.

ENAMETOOLONG
(statvfs()) path is too long.

ENOENT
(statvfs()) The file referred to by path does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOSYS
The filesystem does not support this call.

ENOTDIR
(statvfs()) A component of the path prefix of path is not a directory.

Linux man-pages 6.13 2024-07-23 2398

statvfs(3) Library Functions Manual statvfs(3)

EOVERFLOW
Some values were too large to be represented in the returned struct.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestatvfs(), fstatvfs()

VERSIONS
Only the ST_NOSUID and ST_RDONLY flags of the f_flag field are specified in
POSIX.1. To obtain definitions of the remaining flags, one must define
_GNU_SOURCE.

NOTES
The Linux kernel has system calls statfs(2) and fstatfs(2) to support this library call.

The glibc implementations of

pathconf(path, _PC_REC_XFER_ALIGN);
pathconf(path, _PC_ALLOC_SIZE_MIN);
pathconf(path, _PC_REC_MIN_XFER_SIZE);

respectively use the f_frsize, f_frsize, and f_bsize fields returned by a call to statvfs()
with the argument path.

Under Linux, f_favail is always the same as f_ffree, and there’s no way for a filesys-
tem to report otherwise. This is not an issue, since no filesystems with an inode root
reservation exist.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Before glibc 2.13, statvfs() populated the bits of the f_flag field by scanning the
mount options shown in /proc/mounts. However, starting with Linux 2.6.36, the un-
derlying statfs(2) system call provides the necessary information via the f_flags field,
and since glibc 2.13, the statvfs() function will use information from that field rather
than scanning /proc/mounts.

SEE ALSO
statfs(2)

Linux man-pages 6.13 2024-07-23 2399

stdarg(3) Library Functions Manual stdarg(3)

NAME
stdarg, va_start, va_arg, va_end, va_copy - variable argument lists

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdarg.h>

void va_start(va_list ap, last);
type va_arg(va_list ap, type);
void va_end(va_list ap);
void va_copy(va_list dest, va_list src);

DESCRIPTION
A function may be called with a varying number of arguments of varying types. The
include file <stdarg.h> declares a type va_list and defines three macros for stepping
through a list of arguments whose number and types are not known to the called func-
tion.

The called function must declare an object of type va_list which is used by the
macros va_start(), va_arg(), and va_end().

va_start()
The va_start() macro initializes ap for subsequent use by va_arg() and va_end(), and
must be called first.

The argument last is the name of the last argument before the variable argument list,
that is, the last argument of which the calling function knows the type.

Because the address of this argument may be used in the va_start() macro, it should
not be declared as a register variable, or as a function or an array type.

va_arg()
The va_arg() macro expands to an expression that has the type and value of the next
argument in the call. The argument ap is the va_list ap initialized by va_start().
Each call to va_arg() modifies ap so that the next call returns the next argument. The
argument type is a type name specified so that the type of a pointer to an object that
has the specified type can be obtained simply by adding a * to type.

The first use of the va_arg() macro after that of the va_start() macro returns the argu-
ment after last. Successive invocations return the values of the remaining arguments.

If there is no next argument, or if type is not compatible with the type of the actual
next argument (as promoted according to the default argument promotions), random
errors will occur.

If ap is passed to a function that uses va_arg(ap,type), then the value of ap is unde-
fined after the return of that function.

va_end()
Each invocation of va_start() must be matched by a corresponding invocation of
va_end() in the same function. After the call va_end(ap) the variable ap is unde-
fined. Multiple traversals of the list, each bracketed by va_start() and va_end() are
possible. va_end() may be a macro or a function.

Linux man-pages 6.13 2024-07-23 2400

stdarg(3) Library Functions Manual stdarg(3)

va_copy()
The va_copy() macro copies the (previously initialized) variable argument list src to
dest. The behavior is as if va_start() were applied to dest with the same last argu-
ment, followed by the same number of va_arg() invocations that was used to reach
the current state of src.

An obvious implementation would have a va_list be a pointer to the stack frame of
the variadic function. In such a setup (by far the most common) there seems nothing
against an assignment

va_list aq = ap;

Unfortunately, there are also systems that make it an array of pointers (of length 1),
and there one needs

va_list aq;
*aq = *ap;

Finally, on systems where arguments are passed in registers, it may be necessary for
va_start() to allocate memory, store the arguments there, and also an indication of
which argument is next, so that va_arg() can step through the list. Now va_end() can
free the allocated memory again. To accommodate this situation, C99 adds a macro
va_copy(), so that the above assignment can be replaced by

va_list aq;
va_copy(aq, ap);
...
va_end(aq);

Each invocation of va_copy() must be matched by a corresponding invocation of
va_end() in the same function. Some systems that do not supply va_copy() have
__va_copy instead, since that was the name used in the draft proposal.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeva_start(), va_end(), va_copy()
Thread safety MT-Safe race:apva_arg()

STANDARDS
C11, POSIX.1-2008.

HISTORY
va_start()
va_arg()
va_end()

C89, POSIX.1-2001.

va_copy()
C99, POSIX.1-2001.

CAVEATS
Unlike the historical varargs macros, the stdarg macros do not permit programmers
to code a function with no fixed arguments. This problem generates work mainly
when converting varargs code to stdarg code, but it also creates difficulties for

Linux man-pages 6.13 2024-07-23 2401

stdarg(3) Library Functions Manual stdarg(3)

variadic functions that wish to pass all of their arguments on to a function that takes a
va_list argument, such as vfprintf(3).

EXAMPLES
The function foo takes a string of format characters and prints out the argument asso-
ciated with each format character based on the type.

#include <stdio.h>
#include <stdarg.h>

void
foo(char *fmt, ...) /* '...' is C syntax for a variadic function */

{
va_list ap;
int d;
char c;
char *s;

va_start(ap, fmt);
while (*fmt)

switch (*fmt++) {
case 's': /* string */

s = va_arg(ap, char *);
printf("string %s\n", s);
break;

case 'd': /* int */
d = va_arg(ap, int);
printf("int %d\n", d);
break;

case 'c': /* char */
/* need a cast here since va_arg only

takes fully promoted types */
c = (char) va_arg(ap, int);
printf("char %c\n", c);
break;

}
va_end(ap);

}

SEE ALSO
vprintf(3), vscanf(3), vsyslog(3)

Linux man-pages 6.13 2024-07-23 2402

stdin(3) Library Functions Manual stdin(3)

NAME
stdin, stdout, stderr - standard I/O streams

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

DESCRIPTION
Under normal circumstances every UNIX program has three streams opened for it
when it starts up, one for input, one for output, and one for printing diagnostic or error
messages. These are typically attached to the user’s terminal (see tty(4)) but might in-
stead refer to files or other devices, depending on what the parent process chose to set
up. (See also the "Redirection" section of sh(1)

The input stream is referred to as "standard input"; the output stream is referred to as
"standard output"; and the error stream is referred to as "standard error". These terms
are abbreviated to form the symbols used to refer to these files, namely stdin, stdout,
and stderr.

Each of these symbols is a stdio(3) macro of type pointer to FILE, and can be used
with functions like fprintf(3) or fread(3).

Since FILEs are a buffering wrapper around UNIX file descriptors, the same underly-
ing files may also be accessed using the raw UNIX file interface, that is, the functions
like read(2) and lseek(2).

On program startup, the integer file descriptors associated with the streams stdin, std-
out, and stderr are 0, 1, and 2, respectively. The preprocessor symbols
STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO are defined with
these values in <unistd.h>. (Applying freopen(3) to one of these streams can change
the file descriptor number associated with the stream.)

Note that mixing use of FILEs and raw file descriptors can produce unexpected re-
sults and should generally be avoided. (For the masochistic among you: POSIX.1,
section 8.2.3, describes in detail how this interaction is supposed to work.) A general
rule is that file descriptors are handled in the kernel, while stdio is just a library. This
means for example, that after an exec(3), the child inherits all open file descriptors,
but all old streams have become inaccessible.

Since the symbols stdin, stdout, and stderr are specified to be macros, assigning to
them is nonportable. The standard streams can be made to refer to different files with
help of the library function freopen(3), specially introduced to make it possible to re-
assign stdin, stdout, and stderr. The standard streams are closed by a call to exit(3)
and by normal program termination.

STANDARDS
C11, POSIX.1-2008.

The standards also stipulate that these three streams shall be open at program startup.

Linux man-pages 6.13 2024-12-24 2403

stdin(3) Library Functions Manual stdin(3)

HISTORY
C89, POSIX.1-2001.

NOTES
The stream stderr is unbuffered. The stream stdout is line-buffered when it points to
a terminal. Partial lines will not appear until fflush(3) or exit(3) is called, or a newline
is printed. This can produce unexpected results, especially with debugging output.
The buffering mode of the standard streams (or any other stream) can be changed us-
ing the setbuf(3) or setvbuf(3) call. Note that in case stdin is associated with a termi-
nal, there may also be input buffering in the terminal driver, entirely unrelated to stdio
buffering. (Indeed, normally terminal input is line buffered in the kernel.) This kernel
input handling can be modified using calls like tcsetattr(3); see also stty(1), and
termios(3).

SEE ALSO
csh(1), sh(1), open(2), fopen(3), stdio(3)

Linux man-pages 6.13 2024-12-24 2404

stdio(3) Library Functions Manual stdio(3)

NAME
stdio - standard input/output library functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

DESCRIPTION
The standard I/O library provides a simple and efficient buffered stream I/O interface.
Input and output is mapped into logical data streams and the physical I/O characteris-
tics are concealed. The functions and macros are listed below; more information is
available from the individual man pages.

A stream is associated with an external file (which may be a physical device) by open-
ing a file, which may involve creating a new file. Creating an existing file causes its
former contents to be discarded. If a file can support positioning requests (such as a
disk file, as opposed to a terminal), then a file position indicator associated with the
stream is positioned at the start of the file (byte zero), unless the file is opened with
append mode. If append mode is used, it is unspecified whether the position indicator
will be placed at the start or the end of the file. The position indicator is maintained
by subsequent reads, writes, and positioning requests. All input occurs as if the char-
acters were read by successive calls to the fgetc(3) function; all output takes place as
if all characters were written by successive calls to the fputc(3) function.

A file is disassociated from a stream by closing the file. Output streams are flushed
(any unwritten buffer contents are transferred to the host environment) before the
stream is disassociated from the file. The value of a pointer to a FILE object is inde-
terminate after a file is closed (garbage).

A file may be subsequently reopened, by the same or another program execution, and
its contents reclaimed or modified (if it can be repositioned at the start). If the main
function returns to its original caller, or the exit(3) function is called, all open files are
closed (hence all output streams are flushed) before program termination. Other
methods of program termination, such as abort(3) do not bother about closing files
properly.

At program startup, three text streams are predefined and need not be opened explic-
itly: standard input (for reading conventional input), standard output (for writing
conventional output), and standard error (for writing diagnostic output). These
streams are abbreviated stdin, stdout, and stderr. When opened, the standard error
stream is not fully buffered; the standard input and output streams are fully buffered if
and only if the streams do not refer to an interactive device.

Output streams that refer to terminal devices are always line buffered by default;
pending output to such streams is written automatically whenever an input stream that
refers to a terminal device is read. In cases where a large amount of computation is
done after printing part of a line on an output terminal, it is necessary to fflush(3) the
standard output before going off and computing so that the output will appear.

Linux man-pages 6.13 2024-12-24 2405

stdio(3) Library Functions Manual stdio(3)

The stdio library is a part of the library libc and routines are automatically loaded as
needed by cc(1)The SYNOPSIS sections of the following manual pages indicate
which include files are to be used, what the compiler declaration for the function
looks like and which external variables are of interest.

The following are defined as macros; these names may not be reused without first re-
moving their current definitions with #undef: BUFSIZ, EOF, FILENAME_MAX,
FOPEN_MAX, L_cuserid, L_ctermid, L_tmpnam, NULL, SEEK_END,
SEEK_SET, SEEK_CUR, TMP_MAX, clearerr, feof, ferror, fileno, getc,
getchar, putc, putchar, stderr, stdin, stdout. Function versions of the macro func-
tions feof, ferror, clearerr, fileno, getc, getchar, putc, and putchar exist and will be
used if the macros definitions are explicitly removed.

List of functions
Function Description
clearerr(3) check and reset stream status
fclose(3) close a stream
fdopen(3) stream open functions
feof(3) check and reset stream status
ferror(3) check and reset stream status
fflush(3) flush a stream
fgetc(3) get next character or word from input stream
fgetpos(3) reposition a stream
fgets(3) get a line from a stream
fileno(3) return the integer descriptor of the argument stream
fmemopen(3) open memory as stream
fopen(3) stream open functions
fopencookie(3) open a custom stream
fprintf(3) formatted output conversion
fpurge(3) flush a stream
fputc(3) output a character or word to a stream
fputs(3) output a line to a stream
fread(3) binary stream input/output
freopen(3) stream open functions
fscanf(3) input format conversion
fseek(3) reposition a stream
fsetpos(3) reposition a stream
ftell(3) reposition a stream
fwrite(3) binary stream input/output
getc(3) get next character or word from input stream
getchar(3) get next character or word from input stream
gets(3) get a line from a stream
getw(3) get next character or word from input stream
mktemp(3) make temporary filename (unique)
open_memstream(3) open a dynamic memory buffer stream
open_wmemstream(3) open a dynamic memory buffer stream
perror(3) system error messages
printf(3) formatted output conversion
putc(3) output a character or word to a stream

Linux man-pages 6.13 2024-12-24 2406

stdio(3) Library Functions Manual stdio(3)

putchar(3) output a character or word to a stream
puts(3) output a line to a stream
putw(3) output a character or word to a stream
remove(3) remove directory entry
rewind(3) reposition a stream
scanf(3) input format conversion
setbuf(3) stream buffering operations
setbuffer(3) stream buffering operations
setlinebuf(3) stream buffering operations
setvbuf(3) stream buffering operations
sprintf(3) formatted output conversion
sscanf(3) input format conversion
strerror(3) system error messages
sys_errlist(3) system error messages
sys_nerr(3) system error messages
tempnam(3) temporary file routines
tmpfile(3) temporary file routines
tmpnam(3) temporary file routines
ungetc(3) un-get character from input stream
vfprintf(3) formatted output conversion
vfscanf(3) input format conversion
vprintf(3) formatted output conversion
vscanf(3) input format conversion
vsprintf(3) formatted output conversion
vsscanf(3) input format conversion

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

SEE ALSO
close(2), open(2), read(2), write(2), stdout(3), unlocked_stdio(3)

Linux man-pages 6.13 2024-12-24 2407

stdio_ext(3) Library Functions Manual stdio_ext(3)

NAME
__fbufsize, __flbf, __fpending, __fpurge, __freadable, __freading, __fsetlocking,
__fwritable, __fwriting, _flushlbf - interfaces to stdio FILE structure

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <stdio_ext.h>

size_t __fbufsize(FILE *stream);
size_t __fpending(FILE *stream);
int __flbf(FILE *stream);
int __freadable(FILE *stream);
int __fwritable(FILE *stream);
int __freading(FILE *stream);
int __fwriting(FILE *stream);
int __fsetlocking(FILE *stream, int type);
void _flushlbf(void);
void __fpurge(FILE *stream);

DESCRIPTION
Solaris introduced routines to allow portable access to the internals of the FILE struc-
ture, and glibc also implemented these.

The __fbufsize() function returns the size of the buffer currently used by the given
stream.

The __fpending() function returns the number of characters in the output buffer. For
wide-oriented streams the unit is wide characters. This function is undefined on
buffers in reading mode, or opened read-only.

The __flbf() function returns a nonzero value if the stream is line-buffered, and zero
otherwise.

The __freadable() function returns a nonzero value if the stream allows reading, and
zero otherwise.

The __fwritable() function returns a nonzero value if the stream allows writing, and
zero otherwise.

The __freading() function returns a nonzero value if the stream is read-only, or if the
last operation on the stream was a read operation, and zero otherwise.

The __fwriting() function returns a nonzero value if the stream is write-only (or ap-
pend-only), or if the last operation on the stream was a write operation, and zero oth-
erwise.

The __fsetlocking() function can be used to select the desired type of locking on the
stream. It returns the current type. The type argument can take the following three
values:

FSETLOCKING_INTERNAL
Perform implicit locking around every operation on the given stream (except
for the *_unlocked ones). This is the default.

Linux man-pages 6.13 2024-12-24 2408

stdio_ext(3) Library Functions Manual stdio_ext(3)

FSETLOCKING_BYCALLER
The caller will take care of the locking (possibly using flockfile(3) in case there
is more than one thread), and the stdio routines will not do locking until the
state is reset to FSETLOCKING_INTERNAL.

FSETLOCKING_QUERY
Don’t change the type of locking. (Only return it.)

The _flushlbf() function flushes all line-buffered streams. (Presumably so that output
to a terminal is forced out, say before reading keyboard input.)

The __fpurge() function discards the contents of the stream’s buffer.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:stream__fbufsize(), __fpending(), __fpurge(),
__fsetlocking()

Thread safety MT-Safe__flbf(), __freadable(), __freading(),
__fwritable(), __fwriting(), _flushlbf()

SEE ALSO
flockfile(3), fpurge(3)

Linux man-pages 6.13 2024-12-24 2409

stpncpy(3) Library Functions Manual stpncpy(3)

NAME
stpncpy, strncpy - fill a fixed-size buffer with non-null bytes from a string, padding
with null bytes as needed

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strncpy(char dst[restrict .dsize], const char *restrict src,
size_t dsize);

char *stpncpy(char dst[restrict .dsize], const char *restrict src,
size_t dsize);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

stpncpy():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
These functions copy non-null bytes from the string pointed to by src into the array
pointed to by dst. If the source has too few non-null bytes to fill the destination, the
functions pad the destination with trailing null bytes. If the destination buffer, limited
by its size, isn’t large enough to hold the copy, the resulting character sequence is
truncated. For the difference between the two functions, see RETURN VALUE.

An implementation of these functions might be:

char *
strncpy(char *restrict dst, const char *restrict src, size_t dsize)
{

stpncpy(dst, src, dsize);
return dst;

}

char *
stpncpy(char *restrict dst, const char *restrict src, size_t dsize)
{

size_t dlen;

dlen = strnlen(src, dsize);
return memset(mempcpy(dst, src, dlen), 0, dsize - dlen);

}

RETURN VALUE
strncpy()

returns dst.

stpncpy()
returns a pointer to one after the last character in the destination character se-
quence.

Linux man-pages 6.13 2024-07-23 2410

stpncpy(3) Library Functions Manual stpncpy(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestpncpy(), strncpy()

STANDARDS
strncpy()

C11, POSIX.1-2008.

stpncpy()
POSIX.1-2008.

HISTORY
strncpy()

C89, POSIX.1-2001, SVr4, 4.3BSD.

stpncpy()
glibc 1.07. POSIX.1-2008.

CAVEATS
The name of these functions is confusing. These functions produce a null-padded
character sequence, not a string (see string_copying(7)). For example:

strncpy(buf, "1", 5); // { '1', 0, 0, 0, 0 }
strncpy(buf, "1234", 5); // { '1', '2', '3', '4', 0 }
strncpy(buf, "12345", 5); // { '1', '2', '3', '4', '5' }
strncpy(buf, "123456", 5); // { '1', '2', '3', '4', '5' }

It’s impossible to distinguish truncation by the result of the call, from a character se-
quence that just fits the destination buffer; truncation should be detected by comparing
the length of the input string with the size of the destination buffer.

If you’re going to use this function in chained calls, it would be useful to develop a
similar function that accepts a pointer to the end (one after the last element) of the
destination buffer instead of its size.

EXAMPLES
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(void)
{

char *p;
char buf1[20];
char buf2[20];
size_t len;

if (sizeof(buf2) < strlen("Hello world!"))
errx("strncpy: truncating character sequence");

strncpy(buf2, "Hello world!", sizeof(buf2));
len = strnlen(buf2, sizeof(buf2));

Linux man-pages 6.13 2024-07-23 2411

stpncpy(3) Library Functions Manual stpncpy(3)

printf("[len = %zu]: ", len);
fwrite(buf2, 1, len, stdout);
putchar('\n');

if (sizeof(buf1) < strlen("Hello world!"))
errx("stpncpy: truncating character sequence");

p = stpncpy(buf1, "Hello world!", sizeof(buf1));
len = p - buf1;

printf("[len = %zu]: ", len);
fwrite(buf1, 1, len, stdout);
putchar('\n');

exit(EXIT_SUCCESS);
}

SEE ALSO
wcpncpy(3), string_copying(7)

Linux man-pages 6.13 2024-07-23 2412

strcasecmp(3) Library Functions Manual strcasecmp(3)

NAME
strcasecmp, strncasecmp - compare two strings ignoring case

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

int strcasecmp(const char *s1, const char *s2);
int strncasecmp(const char s1[.n], const char s2[.n], size_t n);

DESCRIPTION
The strcasecmp() function performs a byte-by-byte comparison of the strings s1 and
s2, ignoring the case of the characters. It returns an integer less than, equal to, or
greater than zero if s1 is found, respectively, to be less than, to match, or be greater
than s2.

The strncasecmp() function is similar, except that it compares no more than n bytes
of s1 and s2.

RETURN VALUE
The strcasecmp() and strncasecmp() functions return an integer less than, equal to,
or greater than zero if s1 is, after ignoring case, found to be less than, to match, or be
greater than s2, respectively.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrcasecmp(), strncasecmp()

STANDARDS
POSIX.1-2008.

HISTORY
4.4BSD, POSIX.1-2001.

The strcasecmp() and strncasecmp() functions first appeared in 4.4BSD, where they
were declared in <string.h>. Thus, for reasons of historical compatibility, the glibc
<string.h> header file also declares these functions, if the _DEFAULT_SOURCE
(or, in glibc 2.19 and earlier, _BSD_SOURCE) feature test macro is defined.

The POSIX.1-2008 standard says of these functions:

When the LC_CTYPE category of the locale being used is from the POSIX
locale, these functions shall behave as if the strings had been converted to low-
ercase and then a byte comparison performed. Otherwise, the results are un-
specified.

SEE ALSO
memcmp(3), strcmp(3), strcoll(3), string(3), strncmp(3), wcscasecmp(3), wc-
sncasecmp(3)

Linux man-pages 6.13 2024-07-23 2413

strchr(3) Library Functions Manual strchr(3)

NAME
strchr, strrchr, strchrnul - locate character in string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strchr(const char *s, int c);
char *strrchr(const char *s, int c);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

char *strchrnul(const char *s, int c);

DESCRIPTION
The strchr() function returns a pointer to the first occurrence of the character c in the
string s.

The strrchr() function returns a pointer to the last occurrence of the character c in the
string s.

The strchrnul() function is like strchr() except that if c is not found in s, then it re-
turns a pointer to the null byte at the end of s, rather than NULL.

Here "character" means "byte"; these functions do not work with wide or multibyte
characters.

RETURN VALUE
The strchr() and strrchr() functions return a pointer to the matched character or
NULL if the character is not found. The terminating null byte is considered part of
the string, so that if c is specified as '\0', these functions return a pointer to the termi-
nator.

The strchrnul() function returns a pointer to the matched character, or a pointer to the
null byte at the end of s (i.e., s+strlen(s)) if the character is not found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrchr(), strrchr(), strchrnul()

STANDARDS
strchr()
strrchr()

C11, POSIX.1-2008.

strchrnul()
GNU.

HISTORY
strchr()
strrchr()

POSIX.1-2001, C89, SVr4, 4.3BSD.

Linux man-pages 6.13 2024-07-23 2414

strchr(3) Library Functions Manual strchr(3)

strchrnul()
glibc 2.1.1, FreeBSD 10, NetBSD 8.

SEE ALSO
memchr(3), string(3), strlen(3), strpbrk(3), strsep(3), strspn(3), strstr(3), strtok(3),
wcschr(3), wcsrchr(3)

Linux man-pages 6.13 2024-07-23 2415

strcmp(3) Library Functions Manual strcmp(3)

NAME
strcmp, strncmp - compare two strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

int strcmp(const char *s1, const char *s2);
int strncmp(const char s1[.n], const char s2[.n], size_t n);

DESCRIPTION
The strcmp() function compares the two strings s1 and s2. The locale is not taken
into account (for a locale-aware comparison, see strcoll(3)). The comparison is done
using unsigned characters.

strcmp() returns an integer indicating the result of the comparison, as follows:

• 0, if the s1 and s2 are equal;

• a negative value if s1 is less than s2;

• a positive value if s1 is greater than s2.

The strncmp() function is similar, except it compares only the first (at most) n bytes
of s1 and s2.

RETURN VALUE
The strcmp() and strncmp() functions return an integer less than, equal to, or greater
than zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrcmp(), strncmp()

VERSIONS
POSIX.1 specifies only that:

The sign of a nonzero return value shall be determined by the sign of the dif-
ference between the values of the first pair of bytes (both interpreted as type
unsigned char) that differ in the strings being compared.

In glibc, as in most other implementations, the return value is the arithmetic result of
subtracting the last compared byte in s2 from the last compared byte in s1. (If the two
characters are equal, this difference is 0.)

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

EXAMPLES
The program below can be used to demonstrate the operation of strcmp() (when given
two arguments) and strncmp() (when given three arguments). First, some examples
using strcmp():

Linux man-pages 6.13 2024-11-17 2416

strcmp(3) Library Functions Manual strcmp(3)

$./string_comp ABC ABC
<str1> and <str2> are equal
$./string_comp ABC AB # 'C' is ASCII 67; 'C' - '\0' = 67
<str1> is greater than <str2> (67)
$./string_comp ABA ABZ # 'A' is ASCII 65; 'Z' is ASCII 90
<str1> is less than <str2> (-25)
$./string_comp ABJ ABC
<str1> is greater than <str2> (7)
$./string_comp $'\201' A # 0201 - 0101 = 0100 (or 64 decimal)
<str1> is greater than <str2> (64)

The last example uses bash(1)-specific syntax to produce a string containing an 8-bit
ASCII code; the result demonstrates that the string comparison uses unsigned charac-
ters.

And then some examples using strncmp():

$./string_comp ABC AB 3
<str1> is greater than <str2> (67)
$./string_comp ABC AB 2
<str1> and <str2> are equal in the first 2 bytes

Program source

/* string_comp.c

Licensed under GNU General Public License v2 or later.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

int res;

if (argc < 3) {
fprintf(stderr, "Usage: %s <str1> <str2> [<n>]\n", argv[0]);
exit(EXIT_FAILURE);

}

if (argc == 3)
res = strcmp(argv[1], argv[2]);

else
res = strncmp(argv[1], argv[2], atoi(argv[3]));

if (res == 0) {
printf("<str1> and <str2> are equal");
if (argc > 3)

printf(" in the first %d bytes\n", atoi(argv[3]));

Linux man-pages 6.13 2024-11-17 2417

strcmp(3) Library Functions Manual strcmp(3)

printf("\n");
} else if (res < 0) {

printf("<str1> is less than <str2> (%d)\n", res);
} else {

printf("<str1> is greater than <str2> (%d)\n", res);
}

exit(EXIT_SUCCESS);
}

SEE ALSO
memcmp(3), strcasecmp(3), strcoll(3), string(3), strncasecmp(3), strverscmp(3), wc-
scmp(3), wcsncmp(3), ascii(7)

Linux man-pages 6.13 2024-11-17 2418

strcoll(3) Library Functions Manual strcoll(3)

NAME
strcoll - compare two strings using the current locale

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

int strcoll(const char *s1, const char *s2);

DESCRIPTION
The strcoll() function compares the two strings s1 and s2. It returns an integer less
than, equal to, or greater than zero if s1 is found, respectively, to be less than, to
match, or be greater than s2. The comparison is based on strings interpreted as appro-
priate for the program’s current locale for category LC_COLLATE. (See setlo-
cale(3).)

RETURN VALUE
The strcoll() function returns an integer less than, equal to, or greater than zero if s1 is
found, respectively, to be less than, to match, or be greater than s2, when both are in-
terpreted as appropriate for the current locale.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrcoll()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

NOTES
In the POSIX or C locales strcoll() is equivalent to strcmp(3).

SEE ALSO
memcmp(3), setlocale(3), strcasecmp(3), strcmp(3), string(3), strxfrm(3)

Linux man-pages 6.13 2024-07-23 2419

strcpy(3) Library Functions Manual strcpy(3)

NAME
stpcpy, strcpy, strcat - copy or catenate a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *stpcpy(char *restrict dst, const char *restrict src);
char *strcpy(char *restrict dst, const char *restrict src);
char *strcat(char *restrict dst, const char *restrict src);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

stpcpy():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
stpcpy()
strcpy()

These functions copy the string pointed to by src, into a string at the buffer
pointed to by dst. The programmer is responsible for allocating a destination
buffer large enough, that is, strlen(src) + 1. For the difference between the
two functions, see RETURN VALUE.

strcat()
This function catenates the string pointed to by src, after the string pointed to
by dst (overwriting its terminating null byte). The programmer is responsible
for allocating a destination buffer large enough, that is, strlen(dst) +
strlen(src) + 1.

An implementation of these functions might be:

char *
stpcpy(char *restrict dst, const char *restrict src)
{

char *p;

p = mempcpy(dst, src, strlen(src));
*p = '\0';

return p;
}

char *
strcpy(char *restrict dst, const char *restrict src)
{

stpcpy(dst, src);
return dst;

}

Linux man-pages 6.13 2024-11-17 2420

strcpy(3) Library Functions Manual strcpy(3)

char *
strcat(char *restrict dst, const char *restrict src)
{

stpcpy(dst + strlen(dst), src);
return dst;

}

RETURN VALUE
stpcpy()

This function returns a pointer to the terminating null byte of the copied string.

strcpy()
strcat()

These functions return dst.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestpcpy(), strcpy(), strcat()

STANDARDS
stpcpy()

POSIX.1-2008.

strcpy()
strcat()

C11, POSIX.1-2008.

STANDARDS
stpcpy()

POSIX.1-2008.

strcpy()
strcat()

POSIX.1-2001, C89, SVr4, 4.3BSD.

CAVEATS
The strings src and dst may not overlap.

If the destination buffer is not large enough, the behavior is undefined. See _FOR-
TIFY_SOURCE in feature_test_macros(7).

strcat() can be very inefficient. Read about Shlemiel the painter
〈https://www.joelonsoftware.com/2001/12/11/back-to-basics/〉.

EXAMPLES
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(void)
{

Linux man-pages 6.13 2024-11-17 2421

strcpy(3) Library Functions Manual strcpy(3)

char *p;
char *buf1;
char *buf2;
size_t len, size;

size = strlen("Hello ") + strlen("world") + strlen("!") + 1;
buf1 = malloc(sizeof(*buf1) * size);
if (buf1 == NULL)

err(EXIT_FAILURE, "malloc()");
buf2 = malloc(sizeof(*buf2) * size);
if (buf2 == NULL)

err(EXIT_FAILURE, "malloc()");

p = buf1;
p = stpcpy(p, "Hello ");
p = stpcpy(p, "world");
p = stpcpy(p, "!");
len = p - buf1;

printf("[len = %zu]: ", len);
puts(buf1); // "Hello world!"
free(buf1);

strcpy(buf2, "Hello ");
strcat(buf2, "world");
strcat(buf2, "!");
len = strlen(buf2);

printf("[len = %zu]: ", len);
puts(buf2); // "Hello world!"
free(buf2);

exit(EXIT_SUCCESS);
}

SEE ALSO
strdup(3), string(3), wcscpy(3), string_copying(7)

Linux man-pages 6.13 2024-11-17 2422

strdup(3) Library Functions Manual strdup(3)

NAME
strdup, strndup, strdupa, strndupa - duplicate a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strdup(const char *s);

char *strndup(const char s[.n], size_t n);
char *strdupa(const char *s);
char *strndupa(const char s[.n], size_t n);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strdup():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

strndup():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

strdupa(), strndupa():
_GNU_SOURCE

DESCRIPTION
The strdup() function returns a pointer to a new string which is a duplicate of the
string s. Memory for the new string is obtained with malloc(3), and can be freed with
free(3).

The strndup() function is similar, but copies at most n bytes. If s is longer than n,
only n bytes are copied, and a terminating null byte ('\0') is added.

strdupa() and strndupa() are similar, but use alloca(3) to allocate the buffer.

RETURN VALUE
On success, the strdup() function returns a pointer to the duplicated string. It returns
NULL if insufficient memory was available, with errno set to indicate the error.

ERRORS
ENOMEM

Insufficient memory available to allocate duplicate string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrdup(), strndup(), strdupa(), strndupa()

STANDARDS

Linux man-pages 6.13 2024-07-23 2423

strdup(3) Library Functions Manual strdup(3)

strdup()
strndup()

POSIX.1-2008.

strdupa()
strndupa()

GNU.

HISTORY
strdup()

SVr4, 4.3BSD-Reno, POSIX.1-2001.

strndup()
POSIX.1-2008.

strdupa()
strndupa()

GNU.

SEE ALSO
alloca(3), calloc(3), free(3), malloc(3), realloc(3), string(3), wcsdup(3)

Linux man-pages 6.13 2024-07-23 2424

strerror(3) Library Functions Manual strerror(3)

NAME
strerror, strerrorname_np, strerrordesc_np, strerror_r, strerror_l - return string de-
scribing error number

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strerror(int errnum);
const char *strerrorname_np(int errnum);
const char *strerrordesc_np(int errnum);

int strerror_r(int errnum, char buf [.size], size_t size);
/* XSI-compliant */

char *strerror_r(int errnum, char buf [.size], size_t size);
/* GNU-specific */

char *strerror_l(int errnum, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strerrorname_np(), strerrordesc_np():
_GNU_SOURCE

strerror_r():
The XSI-compliant version is provided if:

(_POSIX_C_SOURCE >= 200112L) && ! _GNU_SOURCE
Otherwise, the GNU-specific version is provided.

DESCRIPTION
The strerror() function returns a pointer to a string that describes the error code
passed in the argument errnum, possibly using the LC_MESSAGES part of the cur-
rent locale to select the appropriate language. (For example, if errnum is EINVAL,
the returned description will be "Invalid argument".) This string must not be modified
by the application, and the returned pointer will be invalidated on a subsequent call to
strerror() or strerror_l(), or if the thread that obtained the string exits. No other li-
brary function, including perror(3), will modify this string.

Like strerror(), the strerrordesc_np() function returns a pointer to a string that de-
scribes the error code passed in the argument errnum, with the difference that the re-
turned string is not translated according to the current locale.

The strerrorname_np() function returns a pointer to a string containing the name of
the error code passed in the argument errnum. For example, given EPERM as an ar-
gument, this function returns a pointer to the string "EPERM". Given 0 as an argu-
ment, this function returns a pointer to the string "0".

strerror_r()
strerror_r() is like strerror(), but might use the supplied buffer buf instead of allo-
cating one internally. This function is available in two versions: an XSI-compliant
version specified in POSIX.1-2001 (available since glibc 2.3.4, but not POSIX-com-
pliant until glibc 2.13), and a GNU-specific version (available since glibc 2.0). The
XSI-compliant version is provided with the feature test macros settings shown in the

Linux man-pages 6.13 2024-12-24 2425

strerror(3) Library Functions Manual strerror(3)

SYNOPSIS; otherwise the GNU-specific version is provided. If no feature test
macros are explicitly defined, then (since glibc 2.4) _POSIX_C_SOURCE is defined
by default with the value 200112L, so that the XSI-compliant version of strerror_r()
is provided by default.

The XSI-compliant strerror_r() is preferred for portable applications. It returns the
error string in the user-supplied buffer buf of size size.

The GNU-specific strerror_r() returns a pointer to a string containing the error mes-
sage. This may be either a pointer to a string that the function stores in buf , or a
pointer to some (immutable) static string (in which case buf is unused). If the func-
tion stores a string in buf , then at most size bytes are stored (the string may be trun-
cated if size is too small and errnum is unknown). The string always includes a termi-
nating null byte ('\0').

strerror_l()
strerror_l() is like strerror(), but maps errnum to a locale-dependent error message
in the locale specified by locale. The behavior of strerror_l() is undefined if locale is
the special locale object LC_GLOBAL_LOCALE or is not a valid locale object han-
dle.

RETURN VALUE
The strerror(), strerror_l(), and the GNU-specific strerror_r() functions return the
appropriate error description string, or an "Unknown error nnn" message if the error
number is unknown.

On success, strerrorname_np() and strerrordesc_np() return the appropriate error
description string. If errnum is an invalid error number, these functions return NULL.

The XSI-compliant strerror_r() function returns 0 on success. On error, a (positive)
error number is returned (since glibc 2.13), or -1 is returned and errno is set to indi-
cate the error (before glibc 2.13).

POSIX.1-2001 and POSIX.1-2008 require that a successful call to strerror() or str-
error_l() shall leave errno unchanged, and note that, since no function return value is
reserved to indicate an error, an application that wishes to check for errors should ini-
tialize errno to zero before the call, and then check errno after the call.

ERRORS
EINVAL

The value of errnum is not a valid error number.

ERANGE
Insufficient storage was supplied to contain the error description string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetystrerror() MT-Safe
Thread safety MT-Safestrerrorname_np(),

strerrordesc_np()
Thread safety MT-Safestrerror_r(),

strerror_l()

Before glibc 2.32, strerror() is not MT-Safe.

Linux man-pages 6.13 2024-12-24 2426

strerror(3) Library Functions Manual strerror(3)

STANDARDS
strerror()

C11, POSIX.1-2008.

strerror_r()
strerror_l()

POSIX.1-2008.

strerrorname_np()
strerrordesc_np()

GNU.

POSIX.1-2001 permits strerror() to set errno if the call encounters an error, but does
not specify what value should be returned as the function result in the event of an er-
ror. On some systems, strerror() returns NULL if the error number is unknown. On
other systems, strerror() returns a string something like "Error nnn occurred" and sets
errno to EINVAL if the error number is unknown. C99 and POSIX.1-2008 require
the return value to be non-NULL.

HISTORY
strerror()

POSIX.1-2001, C89.

strerror_r()
POSIX.1-2001.

strerror_l()
glibc 2.6. POSIX.1-2008.

strerrorname_np()
strerrordesc_np()

glibc 2.32.

NOTES
strerrorname_np() and strerrordesc_np() are thread-safe and async-signal-safe.

SEE ALSO
err(3), errno(3), error(3), perror(3), strsignal(3), locale(7), signal-safety(7)

Linux man-pages 6.13 2024-12-24 2427

strfmon(3) Library Functions Manual strfmon(3)

NAME
strfmon, strfmon_l - convert monetary value to a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <monetary.h>

ssize_t strfmon(char s[restrict .max], size_t max,
const char *restrict format, ...);

ssize_t strfmon_l(char s[restrict .max], size_t max, locale_t locale,
const char *restrict format, ...);

DESCRIPTION
The strfmon() function formats the specified monetary amount according to the cur-
rent locale and format specification format and places the result in the character array
s of size max.

The strfmon_l() function performs the same task, but uses the locale specified by lo-
cale. The behavior of strfmon_l() is undefined if locale is the special locale object
LC_GLOBAL_LOCALE (see duplocale(3)) or is not a valid locale object handle.

Ordinary characters in format are copied to s without conversion. Conversion speci-
fiers are introduced by a '%' character. Immediately following it there can be zero or
more of the following flags:

= f The single-byte character f is used as the numeric fill character (to be used
with a left precision, see below). When not specified, the space character is
used.

^ Do not use any grouping characters that might be defined for the current lo-
cale. By default, grouping is enabled.

(or + The (flag indicates that negative amounts should be enclosed between paren-
theses. The + flag indicates that signs should be handled in the default way,
that is, amounts are preceded by the locale’s sign indication, for example,
nothing for positive, "-" for negative.

! Omit the currency symbol.

- Left justify all fields. The default is right justification.

Next, there may be a field width: a decimal digit string specifying a minimum field
width in bytes. The default is 0. A result smaller than this width is padded with
spaces (on the left, unless the left-justify flag was given).

Next, there may be a left precision of the form "#" followed by a decimal digit string.
If the number of digits left of the radix character is smaller than this, the representa-
tion is padded on the left with the numeric fill character. Grouping characters are not
counted in this field width.

Next, there may be a right precision of the form "." followed by a decimal digit string.
The amount being formatted is rounded to the specified number of digits prior to for-
matting. The default is specified in the frac_digits and int_frac_digits items of the
current locale. If the right precision is 0, no radix character is printed. (The radix
character here is determined by LC_MONETARY, and may differ from that

Linux man-pages 6.13 2024-07-23 2428

strfmon(3) Library Functions Manual strfmon(3)

specified by LC_NUMERIC.)

Finally, the conversion specification must be ended with a conversion character. The
three conversion characters are

% (In this case, the entire specification must be exactly "%%".) Put a '%' charac-
ter in the result string.

i One argument of type double is converted using the locale’s international cur-
rency format.

n One argument of type double is converted using the locale’s national currency
format.

RETURN VALUE
The strfmon() function returns the number of characters placed in the array s, not in-
cluding the terminating null byte, provided the string, including the terminating null
byte, fits. Otherwise, it sets errno to E2BIG, returns -1, and the contents of the array
is undefined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrfmon()
Thread safety MT-Safestrfmon_l()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The call

strfmon(buf, sizeof(buf), "[%^=*#6n] [%=*#6i]",
1234.567, 1234.567);

outputs

[€ **1234,57] [EUR **1 234,57]

in the nl_NL locale. The de_DE, de_CH , en_AU , and en_GB locales yield

[**1234,57 €] [**1.234,57 EUR]
[Fr. **1234.57] [CHF **1'234.57]
[$**1234.57] [AUD**1,234.57]
[£**1234.57] [GBP**1,234.57]

SEE ALSO
duplocale(3), setlocale(3), sprintf(3), locale(7)

Linux man-pages 6.13 2024-07-23 2429

strfromd(3) Library Functions Manual strfromd(3)

NAME
strfromd, strfromf, strfroml - convert a floating-point value into a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int strfromd(char str[restrict .n], size_t n,
const char *restrict format, double fp);

int strfromf(char str[restrict .n], size_t n,
const char *restrict format, float fp);

int strfroml(char str[restrict .n], size_t n,
const char *restrict format, long double fp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strfromd(), strfromf(), strfroml():
__STDC_WANT_IEC_60559_BFP_EXT__

DESCRIPTION
These functions convert a floating-point value, fp, into a string of characters, str, with
a configurable format string. At most n characters are stored into str.

The terminating null byte (’\0’) is written if and only if n is sufficiently large, other-
wise the written string is truncated at n characters.

The strfromd(), strfromf(), and strfroml() functions are equivalent to

snprintf(str, n, format, fp);

except for the format string.

Format of the format string
The format string must start with the character '%'. This is followed by an optional
precision which starts with the period character (.), followed by an optional decimal
integer. If no integer is specified after the period character, a precision of zero is used.
Finally, the format string should have one of the conversion specifiers a, A, e, E, f, F,
g, or G.

The conversion specifier is applied based on the floating-point type indicated by the
function suffix. Therefore, unlike snprintf(), the format string does not have a length
modifier character. See snprintf(3) for a detailed description of these conversion spec-
ifiers.

The implementation conforms to the C99 standard on conversion of NaN and infinity
values:

If fp is a NaN, +NaN, or -NaN, and f (or a, e, g) is the conversion specifier,
the conversion is to "nan", "nan", or "-nan", respectively. If F (or A, E, G) is
the conversion specifier, the conversion is to "NAN" or "-NAN".

Likewise if fp is infinity, it is converted to [-]inf or [-]INF.

A malformed format string results in undefined behavior.

Linux man-pages 6.13 2024-07-23 2430

strfromd(3) Library Functions Manual strfromd(3)

RETURN VALUE
The strfromd(), strfromf(), and strfroml() functions return the number of characters
that would have been written in str if n had enough space, not counting the terminat-
ing null byte. Thus, a return value of n or greater means that the output was trun-
cated.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7) and the POSIX
Safety Concepts section in GNU C Library manual.

Interface Attribute Value
Thread safety MT-Safe locale
Async-signal safety AS-Unsafe heap
Async-cancel safety AC-Unsafe mem

strfromd(), strfromf(), strfroml()

Note: these attributes are preliminary.

STANDARDS
ISO/IEC TS 18661-1.

VERSIONS
strfromd()
strfromf()
strfroml()

glibc 2.25.

NOTES
These functions take account of the LC_NUMERIC category of the current locale.

EXAMPLES
To convert the value 12.1 as a float type to a string using decimal notation, resulting in
"12.100000":

#define __STDC_WANT_IEC_60559_BFP_EXT__
#include <stdlib.h>
int ssize = 10;
char s[ssize];
strfromf(s, ssize, "%f", 12.1);

To convert the value 12.3456 as a float type to a string using decimal notation with
two digits of precision, resulting in "12.35":

#define __STDC_WANT_IEC_60559_BFP_EXT__
#include <stdlib.h>
int ssize = 10;
char s[ssize];
strfromf(s, ssize, "%.2f", 12.3456);

To convert the value 12.345e19 as a double type to a string using scientific notation
with zero digits of precision, resulting in "1E+20":

#define __STDC_WANT_IEC_60559_BFP_EXT__
#include <stdlib.h>
int ssize = 10;
char s[ssize];

Linux man-pages 6.13 2024-07-23 2431

strfromd(3) Library Functions Manual strfromd(3)

strfromd(s, ssize, "%.E", 12.345e19);

SEE ALSO
atof(3), snprintf(3), strtod(3)

Linux man-pages 6.13 2024-07-23 2432

strfry(3) Library Functions Manual strfry(3)

NAME
strfry - randomize a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

char *strfry(char *string);

DESCRIPTION
The strfry() function randomizes the contents of string by randomly swapping char-
acters in the string. The result is an anagram of string.

RETURN VALUE
The strfry() functions returns a pointer to the randomized string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrfry()

STANDARDS
GNU.

SEE ALSO
memfrob(3), string(3)

Linux man-pages 6.13 2024-07-23 2433

strftime(3) Library Functions Manual strftime(3)

NAME
strftime - format date and time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

size_t strftime(char s[restrict .max], size_t max,
const char *restrict format,
const struct tm *restrict tm);

size_t strftime_l(char s[restrict .max], size_t max,
const char *restrict format,
const struct tm *restrict tm,
locale_t locale);

DESCRIPTION
The strftime() function formats the broken-down time tm according to the format
specification format and places the result in the character array s of size max. The
broken-down time structure tm is defined in <time.h>. See also ctime(3).

The format specification is a null-terminated string and may contain special character
sequences called conversion specifications, each of which is introduced by a '%' char-
acter and terminated by some other character known as a conversion specifier charac-
ter. All other character sequences are ordinary character sequences.

The characters of ordinary character sequences (including the null byte) are copied
verbatim from format to s. However, the characters of conversion specifications are
replaced as shown in the list below. In this list, the field(s) employed from the tm
structure are also shown.

%a The abbreviated name of the day of the week according to the current locale.
(Calculated from tm_wday.) (The specific names used in the current locale
can be obtained by calling nl_langinfo(3) with ABDAY_{1–7} as an argu-
ment.)

%A The full name of the day of the week according to the current locale. (Calcu-
lated from tm_wday.) (The specific names used in the current locale can be
obtained by calling nl_langinfo(3) with DAY_{1–7} as an argument.)

%b The abbreviated month name according to the current locale. (Calculated
from tm_mon.) (The specific names used in the current locale can be obtained
by calling nl_langinfo(3) with ABMON_{1–12} as an argument.)

%B The full month name according to the current locale. (Calculated from
tm_mon.) (The specific names used in the current locale can be obtained by
calling nl_langinfo(3) with MON_{1–12} as an argument.)

%c The preferred date and time representation for the current locale. (The specific
format used in the current locale can be obtained by calling nl_langinfo(3)
with D_T_FMT as an argument for the %c conversion specification, and with
ERA_D_T_FMT for the %Ec conversion specification.) (In the POSIX lo-
cale this is equivalent to %a %b %e %H:%M:%S %Y.)

Linux man-pages 6.13 2024-07-23 2434

strftime(3) Library Functions Manual strftime(3)

%C The century number (year/100) as a 2-digit integer. (SU) (The %EC conver-
sion specification corresponds to the name of the era.) (Calculated from
tm_year.)

%d The day of the month as a decimal number (range 01 to 31). (Calculated from
tm_mday.)

%D Equivalent to %m/%d/%y. (Yecch—for Americans only. Americans should
note that in other countries %d/%m/%y is rather common. This means that
in international context this format is ambiguous and should not be used.)
(SU)

%e Like %d, the day of the month as a decimal number, but a leading zero is re-
placed by a space. (SU) (Calculated from tm_mday.)

%E Modifier: use alternative ("era-based") format, see below. (SU)

%F Equivalent to %Y-%m-%d (the ISO 8601 date format). (C99)

%G The ISO 8601 week-based year (see NOTES) with century as a decimal num-
ber. The 4-digit year corresponding to the ISO week number (see %V). This
has the same format and value as %Y, except that if the ISO week number be-
longs to the previous or next year, that year is used instead. (TZ) (Calculated
from tm_year, tm_yday, and tm_wday.)

%g Like %G, but without century, that is, with a 2-digit year (00–99). (TZ) (Cal-
culated from tm_year, tm_yday, and tm_wday.)

%h Equivalent to %b. (SU)

%H The hour as a decimal number using a 24-hour clock (range 00 to 23). (Calcu-
lated from tm_hour.)

%I The hour as a decimal number using a 12-hour clock (range 01 to 12). (Calcu-
lated from tm_hour.)

%j The day of the year as a decimal number (range 001 to 366). (Calculated from
tm_yday.)

%k The hour (24-hour clock) as a decimal number (range 0 to 23); single digits
are preceded by a blank. (See also %H.) (Calculated from tm_hour.) (TZ)

%l The hour (12-hour clock) as a decimal number (range 1 to 12); single digits
are preceded by a blank. (See also %I.) (Calculated from tm_hour.) (TZ)

%m The month as a decimal number (range 01 to 12). (Calculated from tm_mon.)

%M The minute as a decimal number (range 00 to 59). (Calculated from tm_min.)

%n A newline character. (SU)

%O Modifier: use alternative numeric symbols, see below. (SU)

%p Either "AM" or "PM" according to the given time value, or the corresponding
strings for the current locale. Noon is treated as "PM" and midnight as "AM".
(Calculated from tm_hour.) (The specific string representations used for
"AM" and "PM" in the current locale can be obtained by calling nl_lang-
info(3) with AM_STR and PM_STR, respectively.)

Linux man-pages 6.13 2024-07-23 2435

strftime(3) Library Functions Manual strftime(3)

%P Like %p but in lowercase: "am" or "pm" or a corresponding string for the cur-
rent locale. (Calculated from tm_hour.) (GNU)

%r The time in a.m. or p.m. notation. (SU) (The specific format used in the cur-
rent locale can be obtained by calling nl_langinfo(3) with T_FMT_AMPM as
an argument.) (In the POSIX locale this is equivalent to %I:%M:%S %p.)

%R The time in 24-hour notation (%H:%M). (SU) For a version including the
seconds, see %T below.

%s The number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).
(TZ) (Calculated from mktime(tm).)

%S The second as a decimal number (range 00 to 60). (The range is up to 60 to
allow for occasional leap seconds.) (Calculated from tm_sec.)

%t A tab character. (SU)

%T The time in 24-hour notation (%H:%M:%S). (SU)

%u The day of the week as a decimal, range 1 to 7, Monday being 1. See also
%w. (Calculated from tm_wday.) (SU)

%U The week number of the current year as a decimal number, range 00 to 53,
starting with the first Sunday as the first day of week 01. See also %V and
%W. (Calculated from tm_yday and tm_wday.)

%V The ISO 8601 week number (see NOTES) of the current year as a decimal
number, range 01 to 53, where week 1 is the first week that has at least 4 days
in the new year. See also %U and %W. (Calculated from tm_year, tm_yday,
and tm_wday.) (SU)

%w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u.
(Calculated from tm_wday.)

%W The week number of the current year as a decimal number, range 00 to 53,
starting with the first Monday as the first day of week 01. (Calculated from
tm_yday and tm_wday.)

%x The preferred date representation for the current locale without the time. (The
specific format used in the current locale can be obtained by calling nl_lang-
info(3) with D_FMT as an argument for the %x conversion specification, and
with ERA_D_FMT for the %Ex conversion specification.) (In the POSIX lo-
cale this is equivalent to %m/%d/%y.)

%X The preferred time representation for the current locale without the date. (The
specific format used in the current locale can be obtained by calling nl_lang-
info(3) with T_FMT as an argument for the %X conversion specification, and
with ERA_T_FMT for the %EX conversion specification.) (In the POSIX
locale this is equivalent to %H:%M:%S.)

%y The year as a decimal number without a century (range 00 to 99). (The %Ey
conversion specification corresponds to the year since the beginning of the era
denoted by the %EC conversion specification.) (Calculated from tm_year)

%Y The year as a decimal number including the century. (The %EY conversion
specification corresponds to the full alternative year representation.) (Calcu-
lated from tm_year)

Linux man-pages 6.13 2024-07-23 2436

strftime(3) Library Functions Manual strftime(3)

%z The +hhmm or -hhmm numeric timezone (that is, the hour and minute offset
from UTC). (SU)

%Z The timezone name or abbreviation.

%+ The date and time in date(1) format. (TZ) (Not supported in glibc2.)

%% A literal '%' character.

Some conversion specifications can be modified by preceding the conversion specifier
character by the E or O modifier to indicate that an alternative format should be used.
If the alternative format or specification does not exist for the current locale, the be-
havior will be as if the unmodified conversion specification were used. (SU) The Sin-
gle UNIX Specification mentions %Ec, %EC, %Ex, %EX, %Ey, %EY, %Od,
%Oe, %OH, %OI, %Om, %OM, %OS, %Ou, %OU, %OV, %Ow, %OW,
%Oy, where the effect of the O modifier is to use alternative numeric symbols (say,
roman numerals), and that of the E modifier is to use a locale-dependent alternative
representation. The rules governing date representation with the E modifier can be
obtained by supplying ERA as an argument to a nl_langinfo(3). One example of such
alternative forms is the Japanese era calendar scheme in the ja_JP glibc locale.

strftime_l() is equivalent to strftime(), except it uses the specified locale instead of
the current locale. The behaviour is undefined if locale is invalid or
LC_GLOBAL_LOCALE.

RETURN VALUE
Provided that the result string, including the terminating null byte, does not exceed
max bytes, strftime() returns the number of bytes (excluding the terminating null
byte) placed in the array s. If the length of the result string (including the terminating
null byte) would exceed max bytes, then strftime() returns 0, and the contents of the
array are undefined.

Note that the return value 0 does not necessarily indicate an error. For example, in
many locales %p yields an empty string. An empty format string will likewise yield
an empty string.

ENVIRONMENT
The environment variables TZ and LC_TIME are used.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localestrftime(), strftime_l()

STANDARDS
strftime()

C11, POSIX.1-2008.

strftime_l()
POSIX.1-2008.

HISTORY
strftime()

SVr4, C89.

Linux man-pages 6.13 2024-07-23 2437

strftime(3) Library Functions Manual strftime(3)

strftime_l()
POSIX.1-2008.

There are strict inclusions between the set of conversions given in ANSI C (un-
marked), those given in the Single UNIX Specification (marked SU), those given in
Olson’s timezone package (marked TZ), and those given in glibc (marked GNU), ex-
cept that %+ is not supported in glibc2. On the other hand glibc2 has several more
extensions. POSIX.1 only refers to ANSI C; POSIX.2 describes under date(1) several
extensions that could apply to strftime() as well. The %F conversion is in C99 and
POSIX.1-2001.

In SUSv2, the %S specifier allowed a range of 00 to 61, to allow for the theoretical
possibility of a minute that included a double leap second (there never has been such a
minute).

NOTES
ISO 8601 week dates

%G, %g, and %V yield values calculated from the week-based year defined by the
ISO 8601 standard. In this system, weeks start on a Monday, and are numbered from
01, for the first week, up to 52 or 53, for the last week. Week 1 is the first week where
four or more days fall within the new year (or, synonymously, week 01 is: the first
week of the year that contains a Thursday; or, the week that has 4 January in it).
When three or fewer days of the first calendar week of the new year fall within that
year, then the ISO 8601 week-based system counts those days as part of week 52 or
53 of the preceding year. For example, 1 January 2010 is a Friday, meaning that just
three days of that calendar week fall in 2010. Thus, the ISO 8601 week-based system
considers these days to be part of week 53 (%V) of the year 2009 (%G); week 01 of
ISO 8601 year 2010 starts on Monday, 4 January 2010. Similarly, the first two days
of January 2011 are considered to be part of week 52 of the year 2010.

glibc notes
glibc provides some extensions for conversion specifications. (These extensions are
not specified in POSIX.1-2001, but a few other systems provide similar features.) Be-
tween the '%' character and the conversion specifier character, an optional flag and
field width may be specified. (These precede the E or O modifiers, if present.)

The following flag characters are permitted:

_ (underscore) Pad a numeric result string with spaces.

- (dash) Do not pad a numeric result string.

0 Pad a numeric result string with zeros even if the conversion specifier charac-
ter uses space-padding by default.

^ Convert alphabetic characters in result string to uppercase.

Swap the case of the result string. (This flag works only with certain conver-
sion specifier characters, and of these, it is only really useful with %Z.)

An optional decimal width specifier may follow the (possibly absent) flag. If the nat-
ural size of the field is smaller than this width, then the result string is padded (on the
left) to the specified width.

Linux man-pages 6.13 2024-07-23 2438

strftime(3) Library Functions Manual strftime(3)

BUGS
If the output string would exceed max bytes, errno is not set. This makes it impossi-
ble to distinguish this error case from cases where the format string legitimately pro-
duces a zero-length output string. POSIX.1-2001 does not specify any errno settings
for strftime().

Some buggy versions of gcc(1) complain about the use of %c: warning: `%c' yields
only last 2 digits of year in some locales. Of course programmers are encouraged to
use %c, as it gives the preferred date and time representation. One meets all kinds of
strange obfuscations to circumvent this gcc(1) problem. A relatively clean one is to
add an intermediate function

size_t
my_strftime(char *s, size_t max, const char *fmt,

const struct tm *tm)
{

return strftime(s, max, fmt, tm);
}

Nowadays, gcc(1) provides the -Wno-format-y2k option to prevent the warning, so
that the above workaround is no longer required.

EXAMPLES
RFC 2822-compliant date format (with an English locale for %a and %b)

"%a, %d %b %Y %T %z"

RFC 822-compliant date format (with an English locale for %a and %b)

"%a, %d %b %y %T %z"

Example program
The program below can be used to experiment with strftime().

Some examples of the result string produced by the glibc implementation of strf-
time() are as follows:

$./a.out '%m'
Result string is "11"
$./a.out '%5m'
Result string is "00011"
$./a.out '%_5m'
Result string is " 11"

Program source

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int
main(int argc, char *argv[])
{

char outstr[200];
time_t t;

Linux man-pages 6.13 2024-07-23 2439

strftime(3) Library Functions Manual strftime(3)

struct tm *tmp;

t = time(NULL);
tmp = localtime(&t);
if (tmp == NULL) {

perror("localtime");
exit(EXIT_FAILURE);

}

if (strftime(outstr, sizeof(outstr), argv[1], tmp) == 0) {
fprintf(stderr, "strftime returned 0");
exit(EXIT_FAILURE);

}

printf("Result string is \"%s\"\n", outstr);
exit(EXIT_SUCCESS);

}

SEE ALSO
date(1), time(2), ctime(3), nl_langinfo(3), setlocale(3), sprintf(3), strptime(3)

Linux man-pages 6.13 2024-07-23 2440

string(3) Library Functions Manual string(3)

NAME
stpcpy, strcasecmp, strcat, strchr, strcmp, strcoll, strcpy, strcspn, strdup, strfry, strlen,
strncat, strncmp, strncpy, strncasecmp, strpbrk, strrchr, strsep, strspn, strstr, strtok,
strxfrm, index, rindex - string operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

strcasecmp(3)
Compare two strings, ignoring case.

strncasecmp(3)
Compare the first bytes of two strings, ignoring case.

index(3)
Identical to strchr(3).

rindex(3)
Identical to strrchr(3).

#include <string.h>

stpcpy(3)
Copy a string, returning a pointer to the end of the resulting string.

strcat(3)
Append a string into an existing string.

strchr(3)
Find the first occurrence of a character in a string.

strcmp(3)
Compare two strings.

strcoll(3)
Compare two strings, using the current locale.

strcpy(3)
Copy a string.

strcspn(3)
Calculate the length of the initial segment of a string which does not contain
any of the rejected bytes.

strdup(3)
Duplicate a string in memory allocated using malloc(3).

strfry(3)
Randomly swap the characters in a string.

strlen(3)
Return the length of a string.

strncat(3)
Append non-null bytes from an array to a string, and null-terminate the result.

Linux man-pages 6.13 2024-12-22 2441

string(3) Library Functions Manual string(3)

strncmp(3)
Compare the first bytes of two strings.

strpbrk(3)
Find the first occurrence in a string of one of the bytes in the accepted bytes.

strrchr(3)
Find the last occurrence of a character in a string.

strsep(3)
Extract the initial field in a string that is delimited by one of the delimiter
bytes.

strspn(3)
Calculate the length of the initial segment of a string that consists entirely of
accepted bytes.

strstr(3)
Find the first occurrence of a substring in a string.

strtok(3)
Extract tokens from a string that are delimited by one of the delimiter bytes.

strxfrm(3)
Transforms a string to the current locale and copies the first bytes to a buffer.

strncpy(3)
Fill a fixed-size buffer with leading non-null bytes from a source array,
padding with null bytes as needed.

DESCRIPTION
The string functions perform operations on null-terminated strings. See the individual
man pages for descriptions of each function.

SEE ALSO
bstring(3), stpcpy(3), strcasecmp(3), strcat(3), strchr(3), strcmp(3), strcoll(3), str-
cpy(3), strcspn(3), strdup(3), strfry(3), strlen(3), strncasecmp(3), strncat(3),
strncmp(3), strncpy(3), strpbrk(3), strrchr(3), strsep(3), strspn(3), strstr(3), strtok(3),
strxfrm(3)

Linux man-pages 6.13 2024-12-22 2442

strlen(3) Library Functions Manual strlen(3)

NAME
strlen - calculate the length of a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

size_t strlen(const char *s);

DESCRIPTION
The strlen() function calculates the length of the string pointed to by s, excluding the
terminating null byte ('\0').

RETURN VALUE
The strlen() function returns the number of bytes in the string pointed to by s.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrlen()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

NOTES
In cases where the input buffer may not contain a terminating null byte, strnlen(3)
should be used instead.

SEE ALSO
string(3), strnlen(3), wcslen(3), wcsnlen(3)

Linux man-pages 6.13 2024-07-23 2443

strncat(3) Library Functions Manual strncat(3)

NAME
strncat - append non-null bytes from a source array to a string, and null-terminate the
result

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strncat(char *restrict dst, const char src[restrict .ssize],
size_t ssize);

DESCRIPTION
This function appends at most ssize non-null bytes from the array pointed to by src,
followed by a null character, to the end of the string pointed to by dst. dst must point
to a string contained in a buffer that is large enough, that is, the buffer size must be at
least strlen(dst) + strnlen(src, ssize) + 1.

An implementation of this function might be:

char *
strncat(char *restrict dst, const char *restrict src, size_t ssize)
{

#define strnul(s) (s + strlen(s))

stpcpy(mempcpy(strnul(dst), src, strnlen(src, ssize)), "");
return dst;

}

RETURN VALUE
strncat() returns dst.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrncat()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

CAVEATS
The name of this function is confusing; it has no relation to strncpy(3).

If the destination buffer does not already contain a string, or is not large enough, the
behavior is undefined. See _FORTIFY_SOURCE in feature_test_macros(7).

BUGS
This function can be very inefficient. Read about Shlemiel the painter
〈https://www.joelonsoftware.com/2001/12/11/back-to-basics/〉.

EXAMPLES
#include <err.h>
#include <stdio.h>

Linux man-pages 6.13 2024-07-23 2444

strncat(3) Library Functions Manual strncat(3)

#include <stdlib.h>
#include <string.h>

#define nitems(arr) (sizeof((arr)) / sizeof((arr)[0]))

int
main(void)
{

size_t n;

// Null-padded fixed-size character sequences
char pre[4] = "pre.";
char new_post[50] = ".foo.bar";

// Strings
char post[] = ".post";
char src[] = "some_long_body.post";
char *dest;

n = nitems(pre) + strlen(src) - strlen(post) + nitems(new_post) + 1;
dest = malloc(sizeof(*dest) * n);
if (dest == NULL)

err(EXIT_FAILURE, "malloc()");

dest[0] = '\0'; // There’s no ’cpy’ function to this ’cat’.
strncat(dest, pre, nitems(pre));
strncat(dest, src, strlen(src) - strlen(post));
strncat(dest, new_post, nitems(new_post));

puts(dest); // "pre.some_long_body.foo.bar"
free(dest);
exit(EXIT_SUCCESS);

}

SEE ALSO
string(3), string_copying(7)

Linux man-pages 6.13 2024-07-23 2445

strnlen(3) Library Functions Manual strnlen(3)

NAME
strnlen - determine the length of a fixed-size string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

size_t strnlen(const char s[.maxlen], size_t maxlen);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strnlen():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The strnlen() function returns the number of bytes in the string pointed to by s, ex-
cluding the terminating null byte ('\0'), but at most maxlen. In doing this, strnlen()
looks only at the first maxlen characters in the string pointed to by s and never beyond
s[maxlen-1].

RETURN VALUE
The strnlen() function returns strlen(s), if that is less than maxlen, or maxlen if there
is no null terminating ('\0') among the first maxlen characters pointed to by s.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrnlen()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2008.

SEE ALSO
strlen(3)

Linux man-pages 6.13 2024-07-23 2446

strpbrk(3) Library Functions Manual strpbrk(3)

NAME
strpbrk - search a string for any of a set of bytes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strpbrk(const char *s, const char *accept);

DESCRIPTION
The strpbrk() function locates the first occurrence in the string s of any of the bytes
in the string accept.

RETURN VALUE
The strpbrk() function returns a pointer to the byte in s that matches one of the bytes
in accept, or NULL if no such byte is found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrpbrk()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
memchr(3), strchr(3), string(3), strsep(3), strspn(3), strstr(3), strtok(3), wcspbrk(3)

Linux man-pages 6.13 2024-07-23 2447

strptime(3) Library Functions Manual strptime(3)

NAME
strptime - convert a string representation of time to a time tm structure

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <time.h>

char *strptime(const char *restrict s, const char *restrict format,
struct tm *restrict tm);

DESCRIPTION
The strptime() function is the converse of strftime(3); it converts the character string
pointed to by s to values which are stored in the "broken-down time" structure pointed
to by tm, using the format specified by format.

The broken-down time structure tm is described in tm(3type).

The format argument is a character string that consists of field descriptors and text
characters, reminiscent of scanf(3). Each field descriptor consists of a % character
followed by another character that specifies the replacement for the field descriptor.
All other characters in the format string must have a matching character in the input
string, except for whitespace, which matches zero or more whitespace characters in
the input string. There should be whitespace or other alphanumeric characters be-
tween any two field descriptors.

The strptime() function processes the input string from left to right. Each of the three
possible input elements (whitespace, literal, or format) are handled one after the other.
If the input cannot be matched to the format string, the function stops. The remainder
of the format and input strings are not processed.

The supported input field descriptors are listed below. In case a text string (such as
the name of a day of the week or a month name) is to be matched, the comparison is
case insensitive. In case a number is to be matched, leading zeros are permitted but
not required.

%% The % character.

%a or %A
The name of the day of the week according to the current locale, in abbrevi-
ated form or the full name.

%b or %B or %h
The month name according to the current locale, in abbreviated form or the
full name.

%c The date and time representation for the current locale.

%C The century number (0–99).

%d or %e
The day of month (1–31).

%D Equivalent to %m/%d/%y. (This is the American style date, very confusing
to non-Americans, especially since %d/%m/%y is widely used in Europe.
The ISO 8601 standard format is %Y-%m-%d.)

Linux man-pages 6.13 2024-07-23 2448

strptime(3) Library Functions Manual strptime(3)

%H The hour (0–23).

%I The hour on a 12-hour clock (1–12).

%j The day number in the year (1–366).

%m The month number (1–12).

%M The minute (0–59).

%n Arbitrary whitespace.

%p The locale’s equivalent of AM or PM. (Note: there may be none.)

%r The 12-hour clock time (using the locale’s AM or PM). In the POSIX locale
equivalent to %I:%M:%S %p. If t_fmt_ampm is empty in the LC_TIME
part of the current locale, then the behavior is undefined.

%R Equivalent to %H:%M.

%S The second (0–60; 60 may occur for leap seconds; earlier also 61 was al-
lowed).

%t Arbitrary whitespace.

%T Equivalent to %H:%M:%S.

%U The week number with Sunday the first day of the week (0–53). The first Sun-
day of January is the first day of week 1.

%w The ordinal number of the day of the week (0–6), with Sunday = 0.

%W The week number with Monday the first day of the week (0–53). The first
Monday of January is the first day of week 1.

%x The date, using the locale’s date format.

%X The time, using the locale’s time format.

%y The year within century (0–99). When a century is not otherwise specified,
values in the range 69–99 refer to years in the twentieth century (1969–1999);
values in the range 00–68 refer to years in the twenty-first century
(2000–2068).

%Y The year, including century (for example, 1991).

Some field descriptors can be modified by the E or O modifier characters to indicate
that an alternative format or specification should be used. If the alternative format or
specification does not exist in the current locale, the unmodified field descriptor is
used.

The E modifier specifies that the input string may contain alternative locale-dependent
versions of the date and time representation:

%Ec The locale’s alternative date and time representation.

%EC The name of the base year (period) in the locale’s alternative representation.

%Ex The locale’s alternative date representation.

%EX The locale’s alternative time representation.

Linux man-pages 6.13 2024-07-23 2449

strptime(3) Library Functions Manual strptime(3)

%Ey The offset from %EC (year only) in the locale’s alternative representation.

%EY The full alternative year representation.

The O modifier specifies that the numerical input may be in an alternative locale-de-
pendent format:

%Od or %Oe
The day of the month using the locale’s alternative numeric symbols; leading
zeros are permitted but not required.

%OH
The hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI The hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om
The month using the locale’s alternative numeric symbols.

%OM
The minutes using the locale’s alternative numeric symbols.

%OS The seconds using the locale’s alternative numeric symbols.

%OU The week number of the year (Sunday as the first day of the week) using the
locale’s alternative numeric symbols.

%Ow The ordinal number of the day of the week (Sunday=0), using the locale’s al-
ternative numeric symbols.

%OW
The week number of the year (Monday as the first day of the week) using the
locale’s alternative numeric symbols.

%Oy The year (offset from %C) using the locale’s alternative numeric symbols.

RETURN VALUE
The return value of the function is a pointer to the first character not processed in this
function call. In case the input string contains more characters than required by the
format string, the return value points right after the last consumed input character. In
case the whole input string is consumed, the return value points to the null byte at the
end of the string. If strptime() fails to match all of the format string and therefore an
error occurred, the function returns NULL.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localestrptime()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SUSv2.

NOTES
In principle, this function does not initialize tm but stores only the values specified.
This means that tm should be initialized before the call. Details differ a bit between
different UNIX systems. The glibc implementation does not touch those fields which

Linux man-pages 6.13 2024-07-23 2450

strptime(3) Library Functions Manual strptime(3)

are not explicitly specified, except that it recomputes the tm_wday and tm_yday field
if any of the year, month, or day elements changed.

The 'y' (year in century) specification is taken to specify a year in the range
1950–2049 by glibc 2.0. It is taken to be a year in 1969–2068 since glibc 2.1.

glibc notes
For reasons of symmetry, glibc tries to support for strptime() the same format charac-
ters as for strftime(3). (In most cases, the corresponding fields are parsed, but no field
in tm is changed.) This leads to

%F Equivalent to %Y-%m-%d, the ISO 8601 date format.

%g The year corresponding to the ISO week number, but without the century
(0–99).

%G The year corresponding to the ISO week number. (For example, 1991.)

%u The day of the week as a decimal number (1–7, where Monday = 1).

%V The ISO 8601:1988 week number as a decimal number (1–53). If the week
(starting on Monday) containing 1 January has four or more days in the new
year, then it is considered week 1. Otherwise, it is the last week of the previ-
ous year, and the next week is week 1.

%z An RFC-822/ISO 8601 standard timezone specification.

%Z The timezone name.

Similarly, because of GNU extensions to strftime(3), %k is accepted as a synonym for
%H, and %l should be accepted as a synonym for %I, and %P is accepted as a syn-
onym for %p. Finally

%s The number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).
Leap seconds are not counted unless leap second support is available.

The glibc implementation does not require whitespace between two field descriptors.

EXAMPLES
The following example demonstrates the use of strptime() and strftime(3).

#define _XOPEN_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

int
main(void)
{

struct tm tm;
char buf[255];

memset(&tm, 0, sizeof(tm));
strptime("2001-11-12 18:31:01", "%Y-%m-%d %H:%M:%S", &tm);
strftime(buf, sizeof(buf), "%d %b %Y %H:%M", &tm);
puts(buf);

Linux man-pages 6.13 2024-07-23 2451

strptime(3) Library Functions Manual strptime(3)

exit(EXIT_SUCCESS);
}

SEE ALSO
time(2), getdate(3), scanf(3), setlocale(3), strftime(3)

Linux man-pages 6.13 2024-07-23 2452

strsep(3) Library Functions Manual strsep(3)

NAME
strsep - extract token from string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strsep(char **restrict stringp, const char *restrict delim);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strsep():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
If *stringp is NULL, the strsep() function returns NULL and does nothing else. Oth-
erwise, this function finds the first token in the string *stringp that is delimited by one
of the bytes in the string delim. This token is terminated by overwriting the delimiter
with a null byte ('\0'), and *stringp is updated to point past the token. In case no de-
limiter was found, the token is taken to be the entire string *stringp, and *stringp is
made NULL.

RETURN VALUE
The strsep() function returns a pointer to the token, that is, it returns the original value
of *stringp.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrsep()

STANDARDS
BSD.

HISTORY
4.4BSD.

The strsep() function was introduced as a replacement for strtok(3), since the latter
cannot handle empty fields.

CAVEATS
Be cautious when using this function. If you do use it, note that:

• This function modifies its first argument.

• This function cannot be used on constant strings.

• The identity of the delimiting character is lost.

EXAMPLES
The program below is a port of the one found in strtok(3), which, however, doesn’t
discard multiple delimiters or empty tokens:

$./a.out 'a/bbb///cc;xxx:yyy:' ':;' '/'

Linux man-pages 6.13 2024-07-23 2453

strsep(3) Library Functions Manual strsep(3)

1: a/bbb///cc
--> a
--> bbb
-->
-->
--> cc

2: xxx
--> xxx

3: yyy
--> yyy

4:
-->

Program source

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

char *token, *subtoken;

if (argc != 4) {
fprintf(stderr, "Usage: %s string delim subdelim\n", argv[0]);
exit(EXIT_FAILURE);

}

for (unsigned int j = 1; (token = strsep(&argv[1], argv[2])); j++) {
printf("%u: %s\n", j, token);

while ((subtoken = strsep(&token, argv[3])))
printf("\t --> %s\n", subtoken);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
memchr(3), strchr(3), string(3), strpbrk(3), strspn(3), strstr(3), strtok(3)

Linux man-pages 6.13 2024-07-23 2454

strsignal(3) Library Functions Manual strsignal(3)

NAME
strsignal, sigabbrev_np, sigdescr_np, sys_siglist - return string describing signal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strsignal(int sig);
const char *sigdescr_np(int sig);
const char *sigabbrev_np(int sig);

[[deprecated]] extern const char *const sys_siglist[];

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigabbrev_np(), sigdescr_np():
_GNU_SOURCE

strsignal():
From glibc 2.10 to glibc 2.31:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

sys_siglist:
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The strsignal() function returns a string describing the signal number passed in the ar-
gument sig. The string can be used only until the next call to strsignal(). The string
returned by strsignal() is localized according to the LC_MESSAGES category in the
current locale.

The sigdescr_np() function returns a string describing the signal number passed in
the argument sig. Unlike strsignal() this string is not influenced by the current locale.

The sigabbrev_np() function returns the abbreviated name of the signal, sig. For ex-
ample, given the value SIGINT, it returns the string "INT".

The (deprecated) array sys_siglist holds the signal description strings indexed by sig-
nal number. The strsignal() or the sigdescr_np() function should be used instead of
this array; see also VERSIONS.

RETURN VALUE
The strsignal() function returns the appropriate description string, or an unknown sig-
nal message if the signal number is invalid. On some systems (but not on Linux),
NULL may instead be returned for an invalid signal number.

The sigdescr_np() and sigabbrev_np() functions return the appropriate description
string. The returned string is statically allocated and valid for the lifetime of the pro-
gram. These functions return NULL for an invalid signal number.

Linux man-pages 6.13 2024-07-23 2455

strsignal(3) Library Functions Manual strsignal(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetystrsignal() MT-Unsafe race:strsignal locale
Thread safety MT-Safesigdescr_np(),

sigabbrev_np()

STANDARDS
strsignal()

POSIX.1-2008.

sigdescr_np()
sigabbrev_np()

GNU.

sys_siglist
None.

HISTORY
strsignal()

POSIX.1-2008. Solaris, BSD.

sigdescr_np()
sigabbrev_np()

glibc 2.32.

sys_siglist
Removed in glibc 2.32.

NOTES
sigdescr_np() and sigabbrev_np() are thread-safe and async-signal-safe.

SEE ALSO
psignal(3), strerror(3)

Linux man-pages 6.13 2024-07-23 2456

strspn(3) Library Functions Manual strspn(3)

NAME
strspn, strcspn - get length of a prefix substring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

size_t strspn(const char *s, const char *accept);
size_t strcspn(const char *s, const char *reject);

DESCRIPTION
The strspn() function calculates the length (in bytes) of the initial segment of s which
consists entirely of bytes in accept.

The strcspn() function calculates the length of the initial segment of s which consists
entirely of bytes not in reject.

RETURN VALUE
The strspn() function returns the number of bytes in the initial segment of s which
consist only of bytes from accept.

The strcspn() function returns the number of bytes in the initial segment of s which
are not in the string reject.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrspn(), strcspn()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
memchr(3), strchr(3), string(3), strpbrk(3), strsep(3), strstr(3), strtok(3), wcscspn(3),
wcsspn(3)

Linux man-pages 6.13 2024-07-23 2457

strstr(3) Library Functions Manual strstr(3)

NAME
strstr, strcasestr - locate a substring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strstr(const char *haystack, const char *needle);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

char *strcasestr(const char *haystack, const char *needle);

DESCRIPTION
The strstr() function finds the first occurrence of the substring needle in the string
haystack. The terminating null bytes ('\0') are not compared.

The strcasestr() function is like strstr(), but ignores the case of both arguments.

RETURN VALUE
These functions return a pointer to the beginning of the located substring, or NULL if
the substring is not found.

If needle is the empty string, the return value is always haystack itself.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrstr()
Thread safety MT-Safe localestrcasestr()

STANDARDS
strstr()

C11, POSIX.1-2008.

strcasestr()
GNU.

HISTORY
strstr()

POSIX.1-2001, C89.

strcasestr()
GNU.

SEE ALSO
memchr(3), memmem(3), strcasecmp(3), strchr(3), string(3), strpbrk(3), strsep(3), str-
spn(3), strtok(3), wcsstr(3)

Linux man-pages 6.13 2024-07-23 2458

strtod(3) Library Functions Manual strtod(3)

NAME
strtod, strtof, strtold - convert ASCII string to floating-point number

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

double strtod(const char *restrict nptr,
char **_Nullable restrict endptr);

float strtof(const char *restrict nptr,
char **_Nullable restrict endptr);

long double strtold(const char *restrict nptr,
char **_Nullable restrict endptr);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strtof(), strtold():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The strtod(), strtof(), and strtold() functions convert the initial portion of the string
pointed to by nptr to double, float, and long double representation, respectively.

The expected form of the (initial portion of the) string is optional leading white space
as recognized by isspace(3), an optional plus ('+') or minus sign ('-') and then either
(i) a decimal number, or (ii) a hexadecimal number, or (iii) an infinity, or (iv) a NAN
(not-a-number).

A decimal number consists of a nonempty sequence of decimal digits possibly con-
taining a radix character (decimal point, locale-dependent, usually '.'), optionally fol-
lowed by a decimal exponent. A decimal exponent consists of an 'E' or 'e', followed
by an optional plus or minus sign, followed by a nonempty sequence of decimal dig-
its, and indicates multiplication by a power of 10.

A hexadecimal number consists of a "0x" or "0X" followed by a nonempty sequence
of hexadecimal digits possibly containing a radix character, optionally followed by a
binary exponent. A binary exponent consists of a 'P' or 'p', followed by an optional
plus or minus sign, followed by a nonempty sequence of decimal digits, and indicates
multiplication by a power of 2. At least one of radix character and binary exponent
must be present.

An infinity is either "INF" or "INFINITY", disregarding case.

A NAN is "NAN" (disregarding case) optionally followed by a string, (n-char-se-
quence), where n-char-sequence specifies in an implementation-dependent way the
type of NAN (see VERSIONS).

RETURN VALUE
These functions return the converted value, if any.

If endptr is not NULL, a pointer to the character after the last character used in the
conversion is stored in the location referenced by endptr.

If no conversion is performed, zero is returned and (unless endptr is null) the value of
nptr is stored in the location referenced by endptr.

Linux man-pages 6.13 2024-07-23 2459

strtod(3) Library Functions Manual strtod(3)

If the correct value would cause overflow, plus or minus HUGE_VAL,
HUGE_VALF, or HUGE_VALL is returned (according to the return type and sign of
the value), and ERANGE is stored in errno.

If the correct value would cause underflow, a value with magnitude no larger than
DBL_MIN, FLT_MIN, or LDBL_MIN is returned and ERANGE is stored in errno.

ERRORS
ERANGE

Overflow or underflow occurred.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrtod(), strtof(), strtold()

VERSIONS
In the glibc implementation, the n-char-sequence that optionally follows "NAN" is in-
terpreted as an integer number (with an optional ’0’ or ’0x’ prefix to select base 8 or
16) that is to be placed in the mantissa component of the returned value.

STANDARDS
C11, POSIX.1-2008.

HISTORY
strtod()

C89, POSIX.1-2001.

strtof()
strtold()

C99, POSIX.1-2001.

CAVEATS
Since 0 can legitimately be returned on both success and failure, the calling program
should set errno to 0 before the call, and then determine if an error occurred by
checking whether errno has a nonzero value after the call.

EXAMPLES
See the example on the strtol(3) manual page; the use of the functions described in
this manual page is similar.

SEE ALSO
atof(3), atoi(3), atol(3), nan(3), nanf(3), nanl(3), strfromd(3), strtol(3), strtoul(3)

Linux man-pages 6.13 2024-07-23 2460

strtoimax(3) Library Functions Manual strtoimax(3)

NAME
strtoimax, strtoumax - convert string to integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <inttypes.h>

intmax_t strtoimax(const char *restrict nptr, char **restrict endptr,
int base);

uintmax_t strtoumax(const char *restrict nptr, char **restrict endptr,
int base);

DESCRIPTION
These functions are just like strtol(3) and strtoul(3), except that they return a value of
type intmax_t and uintmax_t, respectively.

RETURN VALUE
On success, the converted value is returned. If nothing was found to convert, zero is
returned. On overflow or underflow INTMAX_MAX or INTMAX_MIN or UINT-
MAX_MAX is returned, and errno is set to ERANGE.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrtoimax(), strtoumax()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
imaxabs(3), imaxdiv(3), strtol(3), strtoul(3), wcstoimax(3)

Linux man-pages 6.13 2024-07-23 2461

strtok(3) Library Functions Manual strtok(3)

NAME
strtok, strtok_r - extract tokens from strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strtok(char *_Nullable restrict str, const char *restrict delim);
char *strtok_r(char *_Nullable restrict str, const char *restrict delim,

char **restrict saveptr);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strtok_r():
_POSIX_C_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The strtok() function breaks a string into a sequence of zero or more nonempty to-
kens. On the first call to strtok(), the string to be parsed should be specified in str. In
each subsequent call that should parse the same string, str must be NULL.

The delim argument specifies a set of bytes that delimit the tokens in the parsed string.
The caller may specify different strings in delim in successive calls that parse the
same string.

Each call to strtok() returns a pointer to a null-terminated string containing the next
token. This string does not include the delimiting byte. If no more tokens are found,
strtok() returns NULL.

A sequence of calls to strtok() that operate on the same string maintains a pointer that
determines the point from which to start searching for the next token. The first call to
strtok() sets this pointer to point to the first byte of the string. The start of the next to-
ken is determined by scanning forward for the next nondelimiter byte in str. If such a
byte is found, it is taken as the start of the next token. If no such byte is found, then
there are no more tokens, and strtok() returns NULL. (A string that is empty or that
contains only delimiters will thus cause strtok() to return NULL on the first call.)

The end of each token is found by scanning forward until either the next delimiter
byte is found or until the terminating null byte ('\0') is encountered. If a delimiter byte
is found, it is overwritten with a null byte to terminate the current token, and strtok()
saves a pointer to the following byte; that pointer will be used as the starting point
when searching for the next token. In this case, strtok() returns a pointer to the start
of the found token.

From the above description, it follows that a sequence of two or more contiguous de-
limiter bytes in the parsed string is considered to be a single delimiter, and that delim-
iter bytes at the start or end of the string are ignored. Put another way: the tokens re-
turned by strtok() are always nonempty strings. Thus, for example, given the string
"aaa;;bbb,", successive calls to strtok() that specify the delimiter string ";," would re-
turn the strings "aaa" and "bbb", and then a null pointer.

The strtok_r() function is a reentrant version of strtok(). The saveptr argument is a
pointer to a char * variable that is used internally by strtok_r() in order to maintain

Linux man-pages 6.13 2024-07-23 2462

strtok(3) Library Functions Manual strtok(3)

context between successive calls that parse the same string.

On the first call to strtok_r(), str should point to the string to be parsed, and the value
of *saveptr is ignored (but see VERSIONS). In subsequent calls, str should be
NULL, and saveptr (and the buffer that it points to) should be unchanged since the
previous call.

Different strings may be parsed concurrently using sequences of calls to strtok_r()
that specify different saveptr arguments.

RETURN VALUE
The strtok() and strtok_r() functions return a pointer to the next token, or NULL if
there are no more tokens.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:strtokstrtok()
Thread safety MT-Safestrtok_r()

VERSIONS
On some implementations, *saveptr is required to be NULL on the first call to str-
tok_r() that is being used to parse str.

STANDARDS
strtok()

C11, POSIX.1-2008.

strtok_r()
POSIX.1-2008.

HISTORY
strtok()

POSIX.1-2001, C89, SVr4, 4.3BSD.

strtok_r()
POSIX.1-2001.

BUGS
Be cautious when using these functions. If you do use them, note that:

• These functions modify their first argument.

• These functions cannot be used on constant strings.

• The identity of the delimiting byte is lost.

• The strtok() function uses a static buffer while parsing, so it’s not thread safe.
Use strtok_r() if this matters to you.

EXAMPLES
The program below uses nested loops that employ strtok_r() to break a string into a
two-level hierarchy of tokens. The first command-line argument specifies the string to
be parsed. The second argument specifies the delimiter byte(s) to be used to separate
that string into "major" tokens. The third argument specifies the delimiter byte(s) to
be used to separate the "major" tokens into subtokens.

An example of the output produced by this program is the following:

Linux man-pages 6.13 2024-07-23 2463

strtok(3) Library Functions Manual strtok(3)

$./a.out 'a/bbb///cc;xxx:yyy:' ':;' '/'
1: a/bbb///cc

--> a
--> bbb
--> cc

2: xxx
--> xxx

3: yyy
--> yyy

Program source

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

char *str1, *str2, *token, *subtoken;
char *saveptr1, *saveptr2;
int j;

if (argc != 4) {
fprintf(stderr, "Usage: %s string delim subdelim\n",

argv[0]);
exit(EXIT_FAILURE);

}

for (j = 1, str1 = argv[1]; ; j++, str1 = NULL) {
token = strtok_r(str1, argv[2], &saveptr1);
if (token == NULL)

break;
printf("%d: %s\n", j, token);

for (str2 = token; ; str2 = NULL) {
subtoken = strtok_r(str2, argv[3], &saveptr2);
if (subtoken == NULL)

break;
printf("\t --> %s\n", subtoken);

}
}

exit(EXIT_SUCCESS);
}

Another example program using strtok() can be found in getaddrinfo_a(3).

Linux man-pages 6.13 2024-07-23 2464

strtok(3) Library Functions Manual strtok(3)

SEE ALSO
memchr(3), strchr(3), string(3), strpbrk(3), strsep(3), strspn(3), strstr(3), wcstok(3)

Linux man-pages 6.13 2024-07-23 2465

strtol(3) Library Functions Manual strtol(3)

NAME
strtol, strtoll, strtoq - convert a string to a long integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

long strtol(const char *restrict nptr,
char **_Nullable restrict endptr, int base);

long long strtoll(const char *restrict nptr,
char **_Nullable restrict endptr, int base);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strtoll():
_ISOC99_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The strtol() function converts the initial part of the string in nptr to a long integer
value according to the given base, which must be between 2 and 36 inclusive, or be
the special value 0.

The string may begin with an arbitrary amount of white space (as determined by is-
space(3)) followed by a single optional '+' or '-' sign. If base is zero or 16, the string
may then include a "0x" or "0X" prefix, and the number will be read in base 16; other-
wise, a zero base is taken as 10 (decimal) unless the next character is '0', in which
case it is taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stop-
ping at the first character which is not a valid digit in the given base. (In bases above
10, the letter 'A' in either uppercase or lowercase represents 10, 'B' represents 11, and
so forth, with 'Z' representing 35.)

If endptr is not NULL, and the base is supported, strtol() stores the address of the
first invalid character in *endptr. If there were no digits at all, strtol() stores the origi-
nal value of nptr in *endptr (and returns 0). In particular, if *nptr is not '\0' but
**endptr is '\0' on return, the entire string is valid.

The strtoll() function works just like the strtol() function but returns a long long inte-
ger value.

RETURN VALUE
The strtol() function returns the result of the conversion, unless the value would un-
derflow or overflow. If an underflow occurs, strtol() returns LONG_MIN. If an
overflow occurs, strtol() returns LONG_MAX. In both cases, errno is set to
ERANGE. Precisely the same holds for strtoll() (with LLONG_MIN and
LLONG_MAX instead of LONG_MIN and LONG_MAX).

ERRORS
This function does not modify errno on success.

Linux man-pages 6.13 2024-07-23 2466

strtol(3) Library Functions Manual strtol(3)

EINVAL
(not in C99) The given base contains an unsupported value.

ERANGE
The resulting value was out of range.

The implementation may also set errno to EINVAL in case no conversion was per-
formed (no digits seen, and 0 returned).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrtol(), strtoll(), strtoq()

VERSIONS
According to POSIX.1, in locales other than "C" and "POSIX", these functions may
accept other, implementation-defined numeric strings.

BSD also has

quad_t strtoq(const char *nptr, char **endptr, int base);

with completely analogous definition. Depending on the wordsize of the current ar-
chitecture, this may be equivalent to strtoll() or to strtol().

STANDARDS
C11, POSIX.1-2008.

HISTORY
strtol()

POSIX.1-2001, C89, SVr4, 4.3BSD.

strtoll()
POSIX.1-2001, C99.

CAVEATS
Since strtol() can legitimately return 0, LONG_MAX, or LONG_MIN
(LLONG_MAX or LLONG_MIN for strtoll()) on both success and failure, the call-
ing program should set errno to 0 before the call, and then determine if an error oc-
curred by checking whether errno == ERANGE after the call.

If the base needs to be tested, it should be tested in a call where the string is known to
succeed. Otherwise, it’s impossible to portably differentiate the errors.

errno = 0;
strtol("0", NULL, base);
if (errno == EINVAL)

goto unsupported_base;

EXAMPLES
The program shown below demonstrates the use of strtol(). The first command-line
argument specifies a string from which strtol() should parse a number. The second
(optional) argument specifies the base to be used for the conversion. (This argument
is converted to numeric form using atoi(3), a function that performs no error checking
and has a simpler interface than strtol().) Some examples of the results produced by
this program are the following:

Linux man-pages 6.13 2024-07-23 2467

strtol(3) Library Functions Manual strtol(3)

$./a.out 123
strtol() returned 123
$./a.out ' 123'
strtol() returned 123
$./a.out 123abc
strtol() returned 123
Further characters after number: "abc"
$./a.out 123abc 55
strtol: Invalid argument
$./a.out ''
No digits were found
$./a.out 4000000000
strtol: Numerical result out of range

Program source

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

int base;
char *endptr, *str;
long val;

if (argc < 2) {
fprintf(stderr, "Usage: %s str [base]\n", argv[0]);
exit(EXIT_FAILURE);

}

str = argv[1];
base = (argc > 2) ? atoi(argv[2]) : 0;

errno = 0; /* To distinguish success/failure after call */
strtol("0", NULL, base);
if (errno == EINVAL) {

perror("strtol");
exit(EXIT_FAILURE);

}

errno = 0; /* To distinguish success/failure after call */
val = strtol(str, &endptr, base);

/* Check for various possible errors. */

if (errno == ERANGE) {
perror("strtol");

Linux man-pages 6.13 2024-07-23 2468

strtol(3) Library Functions Manual strtol(3)

exit(EXIT_FAILURE);
}

if (endptr == str) {
fprintf(stderr, "No digits were found\n");
exit(EXIT_FAILURE);

}

/* If we got here, strtol() successfully parsed a number. */

printf("strtol() returned %ld\n", val);

if (*endptr != '\0') /* Not necessarily an error... */
printf("Further characters after number: \"%s\"\n", endptr);

exit(EXIT_SUCCESS);
}

SEE ALSO
atof(3), atoi(3), atol(3), strtod(3), strtoimax(3), strtoul(3)

Linux man-pages 6.13 2024-07-23 2469

strtoul(3) Library Functions Manual strtoul(3)

NAME
strtoul, strtoull, strtouq - convert a string to an unsigned long integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

unsigned long strtoul(const char *restrict nptr,
char **_Nullable restrict endptr, int base);

unsigned long long strtoull(const char *restrict nptr,
char **_Nullable restrict endptr, int base);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strtoull():
_ISOC99_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The strtoul() function converts the initial part of the string in nptr to an unsigned
long value according to the given base, which must be between 2 and 36 inclusive, or
be the special value 0.

The string may begin with an arbitrary amount of white space (as determined by is-
space(3)) followed by a single optional '+' or '-' sign. If base is zero or 16, the string
may then include a "0x" prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next character is '0', in which case it is
taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious
manner, stopping at the first character which is not a valid digit in the given base. (In
bases above 10, the letter 'A' in either uppercase or lowercase represents 10, 'B' repre-
sents 11, and so forth, with 'Z' representing 35.)

If endptr is not NULL, and the base is supported, strtoul() stores the address of the
first invalid character in *endptr. If there were no digits at all, strtoul() stores the
original value of nptr in *endptr (and returns 0). In particular, if *nptr is not '\0' but
**endptr is '\0' on return, the entire string is valid.

The strtoull() function works just like the strtoul() function but returns an unsigned
long long value.

RETURN VALUE
The strtoul() function returns either the result of the conversion or, if there was a
leading minus sign, the negation of the result of the conversion represented as an un-
signed value, unless the original (nonnegated) value would overflow; in the latter case,
strtoul() returns ULONG_MAX and sets errno to ERANGE. Precisely the same
holds for strtoull() (with ULLONG_MAX instead of ULONG_MAX).

ERRORS
This function does not modify errno on success.

Linux man-pages 6.13 2024-07-23 2470

strtoul(3) Library Functions Manual strtoul(3)

EINVAL
(not in C99) The given base contains an unsupported value.

ERANGE
The resulting value was out of range.

The implementation may also set errno to EINVAL in case no conversion was per-
formed (no digits seen, and 0 returned).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrtoul(), strtoull(), strtouq()

VERSIONS
In locales other than the "C" locale, other strings may be accepted. (For example, the
thousands separator of the current locale may be supported.)

BSD also has

u_quad_t strtouq(const char *nptr, char **endptr, int base);

with completely analogous definition. Depending on the wordsize of the current ar-
chitecture, this may be equivalent to strtoull() or to strtoul().

STANDARDS
C11, POSIX.1-2008.

HISTORY
strtoul()

POSIX.1-2001, C89, SVr4.

strtoull()
POSIX.1-2001, C99.

CAVEATS
Since strtoul() can legitimately return 0 or ULONG_MAX (ULLONG_MAX for
strtoull()) on both success and failure, the calling program should set errno to 0 be-
fore the call, and then determine if an error occurred by checking whether errno has a
nonzero value after the call.

Negative values are considered valid input and are silently converted to the equivalent
unsigned long value.

EXAMPLES
See the example on the strtol(3) manual page; the use of the functions described in
this manual page is similar.

SEE ALSO
a64l(3), atof(3), atoi(3), atol(3), strtod(3), strtol(3), strtoumax(3)

Linux man-pages 6.13 2024-07-23 2471

strverscmp(3) Library Functions Manual strverscmp(3)

NAME
strverscmp - compare two version strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

int strverscmp(const char *s1, const char *s2);

DESCRIPTION
For a dataset like jan1, jan2, ..., jan9, jan10, ... sorting it lexicographically yields
jan1, jan10, ..., jan2, ..., jan9. The task of strverscmp() is to compare two strings
yielding the former order, while strcmp(3) finds only the lexicographic order. This
function does not use the locale category LC_COLLATE, so is meant mostly for sit-
uations where the strings are expected to be in ASCII. This is different from the or-
dering produced by sort(1) -V.

What this function does is the following. If both strings are equal, return 0. Other-
wise, find the position between two bytes with the property that before it both strings
are equal, while directly after it there is a difference. Find the largest consecutive
digit strings containing (or starting at, or ending at) this position. If one or both of
these is empty, then return what strcmp(3) would have returned (numerical ordering of
byte values). Otherwise, compare both digit strings numerically, where digit strings
with one or more leading zeros are interpreted as if they have a decimal point in front
(so that in particular digit strings with more leading zeros come before digit strings
with fewer leading zeros). Thus, the ordering is 000, 00, 01, 010, 09, 0, 1, 9, 10.

RETURN VALUE
The strverscmp() function returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be earlier than, equal to, or later than s2.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrverscmp()

STANDARDS
GNU.

EXAMPLES
The program below can be used to demonstrate the behavior of strverscmp(). It uses
strverscmp() to compare the two strings given as its command-line arguments. An
example of its use is the following:

$./a.out jan1 jan10
jan1 < jan10

Program source

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.13 2024-12-16 2472

strverscmp(3) Library Functions Manual strverscmp(3)

#include <string.h>

int
main(int argc, char *argv[])
{

int res;

if (argc != 3) {
fprintf(stderr, "Usage: %s <string1> <string2>\n", argv[0]);
exit(EXIT_FAILURE);

}

res = strverscmp(argv[1], argv[2]);

printf("%s %s %s\n", argv[1],
(res < 0) ? "<" : (res == 0) ? "==" : ">", argv[2]);

exit(EXIT_SUCCESS);
}

SEE ALSO
rename(1), strcasecmp(3), strcmp(3), strcoll(3)

Linux man-pages 6.13 2024-12-16 2473

strxfrm(3) Library Functions Manual strxfrm(3)

NAME
strxfrm - string transformation

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

size_t strxfrm(char dest[restrict .n], const char src[restrict .n],
size_t n);

DESCRIPTION
The strxfrm() function transforms the src string into a form such that the result of str-
cmp(3) on two strings that have been transformed with strxfrm() is the same as the
result of strcoll(3) on the two strings before their transformation. The first n bytes of
the transformed string are placed in dest. The transformation is based on the pro-
gram’s current locale for category LC_COLLATE. (See setlocale(3)).

RETURN VALUE
The strxfrm() function returns the number of bytes required to store the transformed
string in dest excluding the terminating null byte ('\0'). If the value returned is n or
more, the contents of dest are indeterminate.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrxfrm()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
memcmp(3), setlocale(3), strcasecmp(3), strcmp(3), strcoll(3), string(3)

Linux man-pages 6.13 2024-07-23 2474

strxfrm(3) Library Functions Manual strxfrm(3)

Linux man-pages 6.13 2024-07-23 2475

swab(3) Library Functions Manual swab(3)

NAME
swab - swap adjacent bytes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

void swab(const void from[restrict .n], void to[restrict .n],
ssize_t n);

DESCRIPTION
The swab() function copies n bytes from the array pointed to by from to the array
pointed to by to, exchanging adjacent even and odd bytes. This function is used to ex-
change data between machines that have different low/high byte ordering.

This function does nothing when n is negative. When n is positive and odd, it handles
n-1 bytes as above, and does something unspecified with the last byte. (In other
words, n should be even.)

RETURN VALUE
The swab() function returns no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeswab()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
bstring(3)

Linux man-pages 6.13 2024-07-23 2476

sysconf (3) Library Functions Manual sysconf (3)

NAME
sysconf - get configuration information at run time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION
POSIX allows an application to test at compile or run time whether certain options are
supported, or what the value is of certain configurable constants or limits.

At compile time this is done by including <unistd.h> and/or <limits.h> and testing
the value of certain macros.

At run time, one can ask for numerical values using the present function sysconf().
One can ask for numerical values that may depend on the filesystem in which a file re-
sides using fpathconf(3) and pathconf(3). One can ask for string values using conf-
str(3).

The values obtained from these functions are system configuration constants. They do
not change during the lifetime of a process.

For options, typically, there is a constant _POSIX_FOO that may be defined in
<unistd.h>. If it is undefined, one should ask at run time. If it is defined to -1, then
the option is not supported. If it is defined to 0, then relevant functions and headers
exist, but one has to ask at run time what degree of support is available. If it is defined
to a value other than -1 or 0, then the option is supported. Usually the value (such as
200112L) indicates the year and month of the POSIX revision describing the option.
glibc uses the value 1 to indicate support as long as the POSIX revision has not been
published yet. The sysconf() argument will be _SC_FOO. For a list of options, see
posixoptions(7).

For variables or limits, typically, there is a constant _FOO, maybe defined in <lim-
its.h>, or _POSIX_FOO, maybe defined in <unistd.h>. The constant will not be de-
fined if the limit is unspecified. If the constant is defined, it gives a guaranteed value,
and a greater value might actually be supported. If an application wants to take ad-
vantage of values which may change between systems, a call to sysconf() can be
made. The sysconf() argument will be _SC_FOO.

POSIX.1 variables
We give the name of the variable, the name of the sysconf() argument used to inquire
about its value, and a short description.

First, the POSIX.1 compatible values.

ARG_MAX - _SC_ARG_MAX
The maximum length of the arguments to the exec(3) family of functions.
Must not be less than _POSIX_ARG_MAX (4096).

CHILD_MAX - _SC_CHILD_MAX
The maximum number of simultaneous processes per user ID. Must not be
less than _POSIX_CHILD_MAX (25).

Linux man-pages 6.13 2024-07-23 2477

sysconf (3) Library Functions Manual sysconf (3)

HOST_NAME_MAX - _SC_HOST_NAME_MAX
Maximum length of a hostname, not including the terminating null byte, as re-
turned by gethostname(2). Must not be less than
_POSIX_HOST_NAME_MAX (255).

LOGIN_NAME_MAX - _SC_LOGIN_NAME_MAX
Maximum length of a login name, including the terminating null byte. Must
not be less than _POSIX_LOGIN_NAME_MAX (9).

NGROUPS_MAX - _SC_NGROUPS_MAX
Maximum number of supplementary group IDs.

clock ticks - _SC_CLK_TCK
The number of clock ticks per second. The corresponding variable is obsolete.
It was of course called CLK_TCK. (Note: the macro CLOCKS_PER_SEC
does not give information: it must equal 1000000.)

OPEN_MAX - _SC_OPEN_MAX
The maximum number of files that a process can have open at any time. Must
not be less than _POSIX_OPEN_MAX (20).

PAGESIZE - _SC_PAGESIZE
Size of a page in bytes. Must not be less than 1.

PAGE_SIZE - _SC_PAGE_SIZE
A synonym for PAGESIZE/_SC_PAGESIZE. (Both PAGESIZE and
PAGE_SIZE are specified in POSIX.)

RE_DUP_MAX - _SC_RE_DUP_MAX
The number of repeated occurrences of a BRE permitted by regexec(3) and
regcomp(3). Must not be less than _POSIX2_RE_DUP_MAX (255).

STREAM_MAX - _SC_STREAM_MAX
The maximum number of streams that a process can have open at any time. If
defined, it has the same value as the standard C macro FOPEN_MAX. Must
not be less than _POSIX_STREAM_MAX (8).

SYMLOOP_MAX - _SC_SYMLOOP_MAX
The maximum number of symbolic links seen in a pathname before resolution
returns ELOOP. Must not be less than _POSIX_SYMLOOP_MAX (8).

TTY_NAME_MAX - _SC_TTY_NAME_MAX
The maximum length of terminal device name, including the terminating null
byte. Must not be less than _POSIX_TTY_NAME_MAX (9).

TZNAME_MAX - _SC_TZNAME_MAX
The maximum number of bytes in a timezone name. Must not be less than
_POSIX_TZNAME_MAX (6).

_POSIX_VERSION - _SC_VERSION
indicates the year and month the POSIX.1 standard was approved in the for-
mat YYYYMML; the value 199009L indicates the Sept. 1990 revision.

POSIX.2 variables
Next, the POSIX.2 values, giving limits for utilities.

Linux man-pages 6.13 2024-07-23 2478

sysconf (3) Library Functions Manual sysconf (3)

BC_BASE_MAX - _SC_BC_BASE_MAX
indicates the maximum obase value accepted by the bc(1) utility.

BC_DIM_MAX - _SC_BC_DIM_MAX
indicates the maximum value of elements permitted in an array by bc(1)

BC_SCALE_MAX - _SC_BC_SCALE_MAX
indicates the maximum scale value allowed by bc(1)

BC_STRING_MAX - _SC_BC_STRING_MAX
indicates the maximum length of a string accepted by bc(1)

COLL_WEIGHTS_MAX - _SC_COLL_WEIGHTS_MAX
indicates the maximum numbers of weights that can be assigned to an entry of
the LC_COLLATE order keyword in the locale definition file.

EXPR_NEST_MAX - _SC_EXPR_NEST_MAX
is the maximum number of expressions which can be nested within parenthe-
ses by expr(1)

LINE_MAX - _SC_LINE_MAX
The maximum length of a utility’s input line, either from standard input or
from a file. This includes space for a trailing newline.

RE_DUP_MAX - _SC_RE_DUP_MAX
The maximum number of repeated occurrences of a regular expression when
the interval notation \{m,n\} is used.

POSIX2_VERSION - _SC_2_VERSION
indicates the version of the POSIX.2 standard in the format of YYYYMML.

POSIX2_C_DEV - _SC_2_C_DEV
indicates whether the POSIX.2 C language development facilities are sup-
ported.

POSIX2_FORT_DEV - _SC_2_FORT_DEV
indicates whether the POSIX.2 FORTRAN development utilities are sup-
ported.

POSIX2_FORT_RUN - _SC_2_FORT_RUN
indicates whether the POSIX.2 FORTRAN run-time utilities are supported.

_POSIX2_LOCALEDEF - _SC_2_LOCALEDEF
indicates whether the POSIX.2 creation of locales via localedef(1) is sup-
ported.

POSIX2_SW_DEV - _SC_2_SW_DEV
indicates whether the POSIX.2 software development utilities option is sup-
ported.

These values also exist, but may not be standard.

- _SC_PHYS_PAGES
The number of pages of physical memory. Note that it is possible for the
product of this value and the value of _SC_PAGESIZE to overflow.

Linux man-pages 6.13 2024-07-23 2479

sysconf (3) Library Functions Manual sysconf (3)

- _SC_AVPHYS_PAGES
The number of currently available pages of physical memory.

- _SC_NPROCESSORS_CONF
The number of processors configured. See also get_nprocs_conf(3).

- _SC_NPROCESSORS_ONLN
The number of processors currently online (available). See also
get_nprocs_conf(3).

RETURN VALUE
The return value of sysconf() is one of the following:

• On error, -1 is returned and errno is set to indicate the error (for example, EIN-
VAL, indicating that name is invalid).

• If name corresponds to a maximum or minimum limit, and that limit is indetermi-
nate, -1 is returned and errno is not changed. (To distinguish an indeterminate
limit from an error, set errno to zero before the call, and then check whether errno
is nonzero when -1 is returned.)

• If name corresponds to an option, a positive value is returned if the option is sup-
ported, and -1 is returned if the option is not supported.

• Otherwise, the current value of the option or limit is returned. This value will not
be more restrictive than the corresponding value that was described to the applica-
tion in <unistd.h> or <limits.h> when the application was compiled.

ERRORS
EINVAL

name is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe envsysconf()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

BUGS
It is difficult to use ARG_MAX because it is not specified how much of the argument
space for exec(3) is consumed by the user’s environment variables.

Some returned values may be huge; they are not suitable for allocating memory.

SEE ALSO
bc(1), expr(1), getconf (1), locale(1), confstr(3), fpathconf(3), pathconf(3), posixop-
tions(7)

Linux man-pages 6.13 2024-07-23 2480

syslog(3) Library Functions Manual syslog(3)

NAME
closelog, openlog, syslog, vsyslog - send messages to the system logger

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <syslog.h>

void openlog(const char *ident, int option, int facility);
void syslog(int priority, const char * format, ...);
void closelog(void);

void vsyslog(int priority, const char * format, va_list ap);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vsyslog():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
openlog()

openlog() opens a connection to the system logger for a program.

The string pointed to by ident is prepended to every message, and is typically set to
the program name. If ident is NULL, the program name is used. (POSIX.1-2008
does not specify the behavior when ident is NULL.)

The option argument specifies flags which control the operation of openlog() and sub-
sequent calls to syslog(). The facility argument establishes a default to be used if
none is specified in subsequent calls to syslog(). The values that may be specified for
option and facility are described below.

The use of openlog() is optional; it will automatically be called by syslog() if neces-
sary, in which case ident will default to NULL.

syslog() and vsyslog()
syslog() generates a log message, which will be distributed by syslogd(8)

The priority argument is formed by ORing together a facility value and a level value
(described below). If no facility value is ORed into priority, then the default value
set by openlog() is used, or, if there was no preceding openlog() call, a default of
LOG_USER is employed.

The remaining arguments are a format, as in printf(3), and any arguments required by
the format, except that the two-character sequence %m will be replaced by the error
message string strerror(errno)The format string need not include a terminating new-
line character.

The function vsyslog() performs the same task as syslog() with the difference that it
takes a set of arguments which have been obtained using the stdarg(3) variable argu-
ment list macros.

Linux man-pages 6.13 2024-07-23 2481

syslog(3) Library Functions Manual syslog(3)

closelog()
closelog() closes the file descriptor being used to write to the system logger. The use
of closelog() is optional.

Values for option
The option argument to openlog() is a bit mask constructed by ORing together any of
the following values:

LOG_CONS Write directly to the system console if there is an error while send-
ing to the system logger.

LOG_NDELAY Open the connection immediately (normally, the connection is
opened when the first message is logged). This may be useful, for
example, if a subsequent chroot(2) would make the pathname used
internally by the logging facility unreachable.

LOG_NOWAIT Don’t wait for child processes that may have been created while
logging the message. (The GNU C library does not create a child
process, so this option has no effect on Linux.)

LOG_ODELAY The converse of LOG_NDELAY; opening of the connection is de-
layed until syslog() is called. (This is the default, and need not be
specified.)

LOG_PERROR (Not in POSIX.1-2001 or POSIX.1-2008.) Also log the message to
stderr.

LOG_PID Include the caller’s PID with each message.

Values for facility
The facility argument is used to specify what type of program is logging the message.
This lets the configuration file specify that messages from different facilities will be
handled differently.

LOG_AUTH security/authorization messages

LOG_AUTHPRIV
security/authorization messages (private)

LOG_CRON clock daemon (cron and at)

LOG_DAEMON
system daemons without separate facility value

LOG_FTP ftp daemon

LOG_KERN kernel messages (these can’t be generated from user processes)

LOG_LOCAL0 through LOG_LOCAL7
reserved for local use

LOG_LPR line printer subsystem

LOG_MAIL mail subsystem

LOG_NEWS USENET news subsystem

LOG_SYSLOG messages generated internally by syslogd(8)

Linux man-pages 6.13 2024-07-23 2482

syslog(3) Library Functions Manual syslog(3)

LOG_USER (default)
generic user-level messages

LOG_UUCP UUCP subsystem

Values for level
This determines the importance of the message. The levels are, in order of decreasing
importance:

LOG_EMERG system is unusable

LOG_ALERT action must be taken immediately

LOG_CRIT critical conditions

LOG_ERR error conditions

LOG_WARNING
warning conditions

LOG_NOTICE normal, but significant, condition

LOG_INFO informational message

LOG_DEBUG debug-level message

The function setlogmask(3) can be used to restrict logging to specified levels only.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeopenlog(), closelog()
Thread safety MT-Safe env localesyslog(), vsyslog()

STANDARDS
syslog()
openlog()
closelog()

POSIX.1-2008.

vsyslog()
None.

HISTORY
syslog()

4.2BSD, SUSv2, POSIX.1-2001.

openlog()
closelog()

4.3BSD, SUSv2, POSIX.1-2001.

vsyslog()
4.3BSD-Reno.

POSIX.1-2001 specifies only the LOG_USER and LOG_LOCAL* values for facil-
ity. However, with the exception of LOG_AUTHPRIV and LOG_FTP, the other
facility values appear on most UNIX systems.

The LOG_PERROR value for option is not specified by POSIX.1-2001 or
POSIX.1-2008, but is available in most versions of UNIX.

Linux man-pages 6.13 2024-07-23 2483

syslog(3) Library Functions Manual syslog(3)

NOTES
The argument ident in the call of openlog() is probably stored as-is. Thus, if the
string it points to is changed, syslog() may start prepending the changed string, and if
the string it points to ceases to exist, the results are undefined. Most portable is to use
a string constant.

Never pass a string with user-supplied data as a format, use the following instead:

syslog(priority, "%s", string);

SEE ALSO
journalctl(1), logger(1), setlogmask(3), syslog.conf (5), syslogd(8)

Linux man-pages 6.13 2024-07-23 2484

system(3) Library Functions Manual system(3)

NAME
system - execute a shell command

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int system(const char *command);

DESCRIPTION
The system() library function behaves as if it used fork(2) to create a child process
that executed the shell command specified in command using execl(3) as follows:

execl("/bin/sh", "sh", "-c", command, (char *) NULL);

system() returns after the command has been completed.

During execution of the command, SIGCHLD will be blocked, and SIGINT and
SIGQUIT will be ignored, in the process that calls system(). (These signals will be
handled according to their defaults inside the child process that executes command .)

If command is NULL, then system() returns a status indicating whether a shell is
available on the system.

RETURN VALUE
The return value of system() is one of the following:

• If command is NULL, then a nonzero value if a shell is available, or 0 if no shell
is available.

• If a child process could not be created, or its status could not be retrieved, the re-
turn value is -1 and errno is set to indicate the error.

• If a shell could not be executed in the child process, then the return value is as
though the child shell terminated by calling _exit(2) with the status 127.

• If all system calls succeed, then the return value is the termination status of the
child shell used to execute command . (The termination status of a shell is the ter-
mination status of the last command it executes.)

In the last two cases, the return value is a "wait status" that can be examined using the
macros described in waitpid(2). (i.e., WIFEXITED(), WEXITSTATUS(), and so
on).

system() does not affect the wait status of any other children.

ERRORS
system() can fail with any of the same errors as fork(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesystem()

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 2485

system(3) Library Functions Manual system(3)

HISTORY
POSIX.1-2001, C89.

NOTES
system() provides simplicity and convenience: it handles all of the details of calling
fork(2), execl(3), and waitpid(2), as well as the necessary manipulations of signals; in
addition, the shell performs the usual substitutions and I/O redirections for command .
The main cost of system() is inefficiency: additional system calls are required to cre-
ate the process that runs the shell and to execute the shell.

If the _XOPEN_SOURCE feature test macro is defined (before including any header
files), then the macros described in waitpid(2) (WEXITSTATUS(), etc.) are made
available when including <stdlib.h>.

As mentioned, system() ignores SIGINT and SIGQUIT. This may make programs
that call it from a loop uninterruptible, unless they take care themselves to check the
exit status of the child. For example:

while (something) {
int ret = system("foo");

if (WIFSIGNALED(ret) &&
(WTERMSIG(ret) == SIGINT || WTERMSIG(ret) == SIGQUIT))

break;
}

According to POSIX.1, it is unspecified whether handlers registered using pthread_at-
fork(3) are called during the execution of system(). In the glibc implementation, such
handlers are not called.

Before glibc 2.1.3, the check for the availability of /bin/sh was not actually performed
if command was NULL; instead it was always assumed to be available, and system()
always returned 1 in this case. Since glibc 2.1.3, this check is performed because,
even though POSIX.1-2001 requires a conforming implementation to provide a shell,
that shell may not be available or executable if the calling program has previously
called chroot(2) (which is not specified by POSIX.1-2001).

It is possible for the shell command to terminate with a status of 127, which yields a
system() return value that is indistinguishable from the case where a shell could not
be executed in the child process.

Caveats
Do not use system() from a privileged program (a set-user-ID or set-group-ID pro-
gram, or a program with capabilities) because strange values for some environment
variables might be used to subvert system integrity. For example, PATH could be ma-
nipulated so that an arbitrary program is executed with privilege. Use the exec(3)
family of functions instead, but not execlp(3) or execvp(3) (which also use the PATH
environment variable to search for an executable).

system() will not, in fact, work properly from programs with set-user-ID or set-group-
ID privileges on systems on which /bin/sh is bash version 2: as a security measure,
bash 2 drops privileges on startup. (Debian uses a different shell, dash(1), which does
not do this when invoked as sh.)

Any user input that is employed as part of command should be carefully sanitized, to

Linux man-pages 6.13 2024-07-23 2486

system(3) Library Functions Manual system(3)

ensure that unexpected shell commands or command options are not executed. Such
risks are especially grave when using system() from a privileged program.

BUGS
If the command name starts with a hyphen, sh(1) interprets the command name as an
option, and the behavior is undefined. (See the -c option to sh(1)To work around this
problem, prepend the command with a space as in the following call:

system(" -unfortunate-command-name");

SEE ALSO
sh(1), execve(2), fork(2), sigaction(2), sigprocmask(2), wait(2), exec(3), signal(7)

Linux man-pages 6.13 2024-07-23 2487

sysv_signal(3) Library Functions Manual sysv_signal(3)

NAME
sysv_signal - signal handling with System V semantics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <signal.h>

typedef typeof(void (int)) *sighandler_t;

sighandler_t sysv_signal(int signum, sighandler_t handler);

DESCRIPTION
The sysv_signal() function takes the same arguments, and performs the same task, as
signal(2).

However sysv_signal() provides the System V unreliable signal semantics, that is: a)
the disposition of the signal is reset to the default when the handler is invoked; b) de-
livery of further instances of the signal is not blocked while the signal handler is exe-
cuting; and c) if the handler interrupts (certain) blocking system calls, then the system
call is not automatically restarted.

RETURN VALUE
The sysv_signal() function returns the previous value of the signal handler, or
SIG_ERR on error.

ERRORS
As for signal(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesysv_signal()

VERSIONS
Use of sysv_signal() should be avoided; use sigaction(2) instead.

On older Linux systems, sysv_signal() and signal(2) were equivalent. But on newer
systems, signal(2) provides reliable signal semantics; see signal(2) for details.

The use of sighandler_t is a GNU extension; this type is defined only if the
_GNU_SOURCE feature test macro is defined.

STANDARDS
None.

SEE ALSO
sigaction(2), signal(2), bsd_signal(3), signal(7)

Linux man-pages 6.13 2024-12-13 2488

TAILQ(3) Library Functions Manual TAILQ(3)

NAME
TAILQ_CONCAT, TAILQ_EMPTY, TAILQ_ENTRY, TAILQ_FIRST,
TAILQ_FOREACH, TAILQ_FOREACH_REVERSE, TAILQ_HEAD,
TAILQ_HEAD_INITIALIZER, TAILQ_INIT, TAILQ_INSERT_AFTER,
TAILQ_INSERT_BEFORE, TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL,
TAILQ_LAST, TAILQ_NEXT, TAILQ_PREV, TAILQ_REMOVE - implementation
of a doubly linked tail queue

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/queue.h>

TAILQ_ENTRY(TYPE);

TAILQ_HEAD(HEADNAME, TYPE);
TAILQ_HEAD TAILQ_HEAD_INITIALIZER(TAILQ_HEAD head);
void TAILQ_INIT(TAILQ_HEAD *head);

int TAILQ_EMPTY(TAILQ_HEAD *head);

void TAILQ_INSERT_HEAD(TAILQ_HEAD *head ,
struct TYPE *elm, TAILQ_ENTRY NAME);

void TAILQ_INSERT_TAIL(TAILQ_HEAD *head ,
struct TYPE *elm, TAILQ_ENTRY NAME);

void TAILQ_INSERT_BEFORE(struct TYPE *listelm,
struct TYPE *elm, TAILQ_ENTRY NAME);

void TAILQ_INSERT_AFTER(TAILQ_HEAD *head , struct TYPE *listelm,
struct TYPE *elm, TAILQ_ENTRY NAME);

struct TYPE *TAILQ_FIRST(TAILQ_HEAD *head);
struct TYPE *TAILQ_LAST(TAILQ_HEAD *head , HEADNAME);
struct TYPE *TAILQ_PREV(struct TYPE *elm, HEADNAME, TAILQ_ENTRY NAME);
struct TYPE *TAILQ_NEXT(struct TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_FOREACH(struct TYPE *var, TAILQ_HEAD *head ,
TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE(struct TYPE *var, TAILQ_HEAD *head , HEADNAME,
TAILQ_ENTRY NAME);

void TAILQ_REMOVE(TAILQ_HEAD *head , struct TYPE *elm,
TAILQ_ENTRY NAME);

void TAILQ_CONCAT(TAILQ_HEAD *head1, TAILQ_HEAD *head2,
TAILQ_ENTRY NAME);

DESCRIPTION
These macros define and operate on doubly linked tail queues.

In the macro definitions, TYPE is the name of a user defined structure, that must con-
tain a field of type TAILQ_ENTRY , named NAME. The argument HEADNAME is the
name of a user defined structure that must be declared using the macro
TAILQ_HEAD().

Linux man-pages 6.13 2024-07-23 2489

TAILQ(3) Library Functions Manual TAILQ(3)

Creation
A tail queue is headed by a structure defined by the TAILQ_HEAD() macro. This
structure contains a pair of pointers, one to the first element in the queue and the other
to the last element in the queue. The elements are doubly linked so that an arbitrary
element can be removed without traversing the queue. New elements can be added to
the queue after an existing element, before an existing element, at the head of the
queue, or at the end of the queue. A TAILQ_HEAD structure is declared as follows:

TAILQ_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type
of the elements to be linked into the queue. A pointer to the head of the queue can
later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

TAILQ_ENTRY() declares a structure that connects the elements in the queue.

TAILQ_HEAD_INITIALIZER() evaluates to an initializer for the queue head .

TAILQ_INIT() initializes the queue referenced by

TAILQ_EMPTY() evaluates to true if there are no items on the queue. head .

Insertion
TAILQ_INSERT_HEAD() inserts the new element elm at the head of the queue.

TAILQ_INSERT_TAIL() inserts the new element elm at the end of the queue.

TAILQ_INSERT_BEFORE() inserts the new element elm before the element lis-
telm.

TAILQ_INSERT_AFTER() inserts the new element elm after the element listelm.

Traversal
TAILQ_FIRST() returns the first item on the queue, or NULL if the queue is empty.

TAILQ_LAST() returns the last item on the queue. If the queue is empty the return
value is NULL.

TAILQ_PREV() returns the previous item on the queue, or NULL if this item is the
first.

TAILQ_NEXT() returns the next item on the queue, or NULL if this item is the last.

TAILQ_FOREACH() traverses the queue referenced by head in the forward direc-
tion, assigning each element in turn to var. var is set to NULL if the loop completes
normally, or if there were no elements.

TAILQ_FOREACH_REVERSE() traverses the queue referenced by head in the re-
verse direction, assigning each element in turn to var.

Removal
TAILQ_REMOVE() removes the element elm from the queue.

Other features
TAILQ_CONCAT() concatenates the queue headed by head2 onto the end of the one
headed by head1 removing all entries from the former.

Linux man-pages 6.13 2024-07-23 2490

TAILQ(3) Library Functions Manual TAILQ(3)

RETURN VALUE
TAILQ_EMPTY() returns nonzero if the queue is empty, and zero if the queue con-
tains at least one entry.

TAILQ_FIRST(), TAILQ_LAST(), TAILQ_PREV(), and TAILQ_NEXT() return
a pointer to the first, last, previous, or next TYPE structure, respectively.

TAILQ_HEAD_INITIALIZER() returns an initializer that can be assigned to the
queue head .

STANDARDS
BSD.

HISTORY
4.4BSD.

CAVEATS
TAILQ_FOREACH() and TAILQ_FOREACH_REVERSE() don’t allow var to be
removed or freed within the loop, as it would interfere with the traversal.
TAILQ_FOREACH_SAFE() and TAILQ_FOREACH_REVERSE_SAFE(),
which are present on the BSDs but are not present in glibc, fix this limitation by al-
lowing var to safely be removed from the list and freed from within the loop without
interfering with the traversal.

EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>

struct entry {
int data;
TAILQ_ENTRY(entry) entries; /* Tail queue */

};

TAILQ_HEAD(tailhead, entry);

int
main(void)
{

struct entry *n1, *n2, *n3, *np;
struct tailhead head; /* Tail queue head */
int i;

TAILQ_INIT(&head); /* Initialize the queue */

n1 = malloc(sizeof(struct entry)); /* Insert at the head */
TAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail */
TAILQ_INSERT_TAIL(&head, n1, entries);

Linux man-pages 6.13 2024-07-23 2491

TAILQ(3) Library Functions Manual TAILQ(3)

n2 = malloc(sizeof(struct entry)); /* Insert after */
TAILQ_INSERT_AFTER(&head, n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before */
TAILQ_INSERT_BEFORE(n2, n3, entries);

TAILQ_REMOVE(&head, n2, entries); /* Deletion */
free(n2);

/* Forward traversal */
i = 0;
TAILQ_FOREACH(np, &head, entries)

np->data = i++;
/* Reverse traversal */

TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)
printf("%i\n", np->data);

/* TailQ deletion */
n1 = TAILQ_FIRST(&head);
while (n1 != NULL) {

n2 = TAILQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
TAILQ_INIT(&head);

exit(EXIT_SUCCESS);
}

SEE ALSO
insque(3), queue(7)

Linux man-pages 6.13 2024-07-23 2492

tan(3) Library Functions Manual tan(3)

NAME
tan, tanf, tanl - tangent function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double tan(double x);
float tanf(float x);
long double tanl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tanf(), tanl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the tangent of x, where x is given in radians.

RETURN VALUE
On success, these functions return the tangent of x.

If x is a NaN, a NaN is returned.

If x is positive infinity or negative infinity, a domain error occurs, and a NaN is re-
turned.

If the correct result would overflow, a range error occurs, and the functions return
HUGE_VAL, HUGE_VALF, or HUGE_VALL, respectively, with the mathemati-
cally correct sign.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

Range error: result overflow
An overflow floating-point exception (FE_OVERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetan(), tanf(), tanl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

Linux man-pages 6.13 2024-07-23 2493

tan(3) Library Functions Manual tan(3)

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
Before glibc 2.10, the glibc implementation did not set errno to EDOM when a do-
main error occurred.

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), cos(3), ctan(3), sin(3)

Linux man-pages 6.13 2024-07-23 2494

tanh(3) Library Functions Manual tanh(3)

NAME
tanh, tanhf, tanhl - hyperbolic tangent function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tanhf(), tanhl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the hyperbolic tangent of x, which is defined mathematically
as:

tanh(x) = sinh(x) / cosh(x)

RETURN VALUE
On success, these functions return the hyperbolic tangent of x.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity (negative infinity), +1 (-1) is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetanh(), tanhf(), tanhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
acosh(3), asinh(3), atanh(3), cosh(3), ctanh(3), sinh(3)

Linux man-pages 6.13 2024-07-23 2495

tanh(3) Library Functions Manual tanh(3)

Linux man-pages 6.13 2024-07-23 2496

tcgetpgrp(3) Library Functions Manual tcgetpgrp(3)

NAME
tcgetpgrp, tcsetpgrp - get and set terminal foreground process group

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t tcgetpgrp(int fd);
int tcsetpgrp(int fd , pid_t pgrp);

DESCRIPTION
The function tcgetpgrp() returns the process group ID of the foreground process
group on the terminal associated to fd , which must be the controlling terminal of the
calling process.

The function tcsetpgrp() makes the process group with process group ID pgrp the
foreground process group on the terminal associated to fd , which must be the control-
ling terminal of the calling process, and still be associated with its session. Moreover,
pgrp must be a (nonempty) process group belonging to the same session as the calling
process.

If tcsetpgrp() is called by a member of a background process group in its session, and
the calling process is not blocking or ignoring SIGTTOU, a SIGTTOU signal is sent
to all members of this background process group.

RETURN VALUE
When fd refers to the controlling terminal of the calling process, the function tcgetp-
grp() will return the foreground process group ID of that terminal if there is one, and
some value larger than 1 that is not presently a process group ID otherwise. When fd
does not refer to the controlling terminal of the calling process, -1 is returned, and er-
rno is set to indicate the error.

When successful, tcsetpgrp() returns 0. Otherwise, it returns -1, and errno is set to
indicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

EINVAL
pgrp has an unsupported value.

ENOTTY
The calling process does not have a controlling terminal, or it has one but it is
not described by fd , or, for tcsetpgrp(), this controlling terminal is no longer
associated with the session of the calling process.

EPERM
pgrp has a supported value, but is not the process group ID of a process in the
same session as the calling process.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2024-07-23 2497

tcgetpgrp(3) Library Functions Manual tcgetpgrp(3)

Interface Attribute Value
Thread safety MT-Safetcgetpgrp(), tcsetpgrp()

VERSIONS
These functions are implemented via the TIOCGPGRP and TIOCSPGRP ioctls.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

The ioctls appeared in 4.2BSD. The functions are POSIX inventions.

SEE ALSO
setpgid(2), setsid(2), credentials(7)

Linux man-pages 6.13 2024-07-23 2498

tcgetsid(3) Library Functions Manual tcgetsid(3)

NAME
tcgetsid - get session ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE 500 /* See feature_test_macros(7) */
#include <termios.h>

pid_t tcgetsid(int fd);

DESCRIPTION
The function tcgetsid() returns the session ID of the current session that has the termi-
nal associated to fd as controlling terminal. This terminal must be the controlling ter-
minal of the calling process.

RETURN VALUE
When fd refers to the controlling terminal of our session, the function tcgetsid() will
return the session ID of this session. Otherwise, -1 is returned, and errno is set to in-
dicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

ENOTTY
The calling process does not have a controlling terminal, or it has one but it is
not described by fd .

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetcgetsid()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

This function is implemented via the TIOCGSID ioctl(2), present since Linux 2.1.71.

SEE ALSO
getsid(2)

Linux man-pages 6.13 2024-07-23 2499

telldir(3) Library Functions Manual telldir(3)

NAME
telldir - return current location in directory stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

long telldir(DIR *dirp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

telldir():
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The telldir() function returns the current location associated with the directory stream
dirp.

RETURN VALUE
On success, the telldir() function returns the current location in the directory stream.
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EBADF

Invalid directory stream descriptor dirp.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetelldir()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

Up to glibc 2.1.1, the return type of telldir() was off_t. POSIX.1-2001 specifies long,
and this is the type used since glibc 2.1.2.

In early filesystems, the value returned by telldir() was a simple file offset within a di-
rectory. Modern filesystems use tree or hash structures, rather than flat tables, to rep-
resent directories. On such filesystems, the value returned by telldir() (and used inter-
nally by readdir(3)) is a "cookie" that is used by the implementation to derive a posi-
tion within a directory. Application programs should treat this strictly as an opaque
value, making no assumptions about its contents.

SEE ALSO
closedir(3), opendir(3), readdir(3), rewinddir(3), scandir(3), seekdir(3)

Linux man-pages 6.13 2024-07-23 2500

tempnam(3) Library Functions Manual tempnam(3)

NAME
tempnam - create a name for a temporary file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

char *tempnam(const char *dir, const char *pfx);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tempnam():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Never use this function. Use mkstemp(3) or tmpfile(3) instead.

The tempnam() function returns a pointer to a string that is a valid filename, and such
that a file with this name did not exist when tempnam() checked. The filename suffix
of the pathname generated will start with pfx in case pfx is a non-NULL string of at
most five bytes. The directory prefix part of the pathname generated is required to be
"appropriate" (often that at least implies writable).

Attempts to find an appropriate directory go through the following steps:

a) In case the environment variable TMPDIR exists and contains the name of an ap-
propriate directory, that is used.

b) Otherwise, if the dir argument is non-NULL and appropriate, it is used.

c) Otherwise, P_tmpdir (as defined in <stdio.h>) is used when appropriate.

d) Finally an implementation-defined directory may be used.

The string returned by tempnam() is allocated using malloc(3) and hence should be
freed by free(3).

RETURN VALUE
On success, the tempnam() function returns a pointer to a unique temporary filename.
It returns NULL if a unique name cannot be generated, with errno set to indicate the
error.

ERRORS
ENOMEM

Allocation of storage failed.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe envtempnam()

STANDARDS
POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 2501

tempnam(3) Library Functions Manual tempnam(3)

HISTORY
SVr4, 4.3BSD, POSIX.1-2001. Obsoleted in POSIX.1-2008.

NOTES
Although tempnam() generates names that are difficult to guess, it is nevertheless
possible that between the time that tempnam() returns a pathname, and the time that
the program opens it, another program might create that pathname using open(2), or
create it as a symbolic link. This can lead to security holes. To avoid such possibili-
ties, use the open(2) O_EXCL flag to open the pathname. Or better yet, use mk-
stemp(3) or tmpfile(3).

SUSv2 does not mention the use of TMPDIR; glibc will use it only when the pro-
gram is not set-user-ID. On SVr4, the directory used under d) is /tmp (and this is
what glibc does).

Because it dynamically allocates memory used to return the pathname, tempnam() is
reentrant, and thus thread safe, unlike tmpnam(3).

The tempnam() function generates a different string each time it is called, up to
TMP_MAX (defined in <stdio.h>) times. If it is called more than TMP_MAX
times, the behavior is implementation defined.

tempnam() uses at most the first five bytes from pfx.

The glibc implementation of tempnam() fails with the error EEXIST upon failure to
find a unique name.

BUGS
The precise meaning of "appropriate" is undefined; it is unspecified how accessibility
of a directory is determined.

SEE ALSO
mkstemp(3), mktemp(3), tmpfile(3), tmpnam(3)

Linux man-pages 6.13 2024-07-23 2502

termios(3) Library Functions Manual termios(3)

NAME
termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfmakeraw, cfge-
tospeed, cfgetispeed, cfsetispeed, cfsetospeed, cfsetspeed - get and set terminal attrib-
utes, line control, get and set baud rate

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <termios.h>
#include <unistd.h>

int tcgetattr(int fd , struct termios *termios_p);
int tcsetattr(int fd , int optional_actions,

const struct termios *termios_p);

int tcsendbreak(int fd , int duration);
int tcdrain(int fd);
int tcflush(int fd , int queue_selector);
int tcflow(int fd , int action);

void cfmakeraw(struct termios *termios_p);

speed_t cfgetispeed(const struct termios *termios_p);
speed_t cfgetospeed(const struct termios *termios_p);

int cfsetispeed(struct termios *termios_p, speed_t speed);
int cfsetospeed(struct termios *termios_p, speed_t speed);
int cfsetspeed(struct termios *termios_p, speed_t speed);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

cfsetspeed(), cfmakeraw():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The termios functions describe a general terminal interface that is provided to control
asynchronous communications ports.

The termios structure
Many of the functions described here have a termios_p argument that is a pointer to a
termios structure. This structure contains at least the following members:

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* local modes */
cc_t c_cc[NCCS]; /* special characters */

The values that may be assigned to these fields are described below. In the case of the
first four bit-mask fields, the definitions of some of the associated flags that may be
set are exposed only if a specific feature test macro (see feature_test_macros(7)) is de-
fined, as noted in brackets ("[]").

Linux man-pages 6.13 2024-07-23 2503

termios(3) Library Functions Manual termios(3)

In the descriptions below, "not in POSIX" means that the value is not specified in
POSIX.1-2001, and "XSI" means that the value is specified in POSIX.1-2001 as part
of the XSI extension.

c_iflag flag constants:

IGNBRK
Ignore BREAK condition on input.

BRKINT
If IGNBRK is set, a BREAK is ignored. If it is not set but BRKINT is set,
then a BREAK causes the input and output queues to be flushed, and if the ter-
minal is the controlling terminal of a foreground process group, it will cause a
SIGINT to be sent to this foreground process group. When neither IGNBRK
nor BRKINT are set, a BREAK reads as a null byte ('\0'), except when
PARMRK is set, in which case it reads as the sequence \377 \0 \0.

IGNPAR
Ignore framing errors and parity errors.

PARMRK
If this bit is set, input bytes with parity or framing errors are marked when
passed to the program. This bit is meaningful only when INPCK is set and
IGNPAR is not set. The way erroneous bytes are marked is with two preced-
ing bytes, \377 and \0. Thus, the program actually reads three bytes for one er-
roneous byte received from the terminal. If a valid byte has the value \377,
and ISTRIP (see below) is not set, the program might confuse it with the pre-
fix that marks a parity error. Therefore, a valid byte \377 is passed to the pro-
gram as two bytes, \377 \377, in this case.

If neither IGNPAR nor PARMRK is set, read a character with a parity error
or framing error as \0.

INPCK
Enable input parity checking.

ISTRIP
Strip off eighth bit.

INLCR
Translate NL to CR on input.

IGNCR
Ignore carriage return on input.

ICRNL
Translate carriage return to newline on input (unless IGNCR is set).

IUCLC
(not in POSIX) Map uppercase characters to lowercase on input.

IXON
Enable XON/XOFF flow control on output.

IXANY
(XSI) Typing any character will restart stopped output. (The default is to al-
low just the START character to restart output.)

Linux man-pages 6.13 2024-07-23 2504

termios(3) Library Functions Manual termios(3)

IXOFF
Enable XON/XOFF flow control on input.

IMAXBEL
(not in POSIX) Ring bell when input queue is full. Linux does not implement
this bit, and acts as if it is always set.

IUTF8 (since Linux 2.6.4)
(not in POSIX) Input is UTF8; this allows character-erase to be correctly per-
formed in cooked mode.

c_oflag flag constants:

OPOST
Enable implementation-defined output processing.

OLCUC
(not in POSIX) Map lowercase characters to uppercase on output.

ONLCR
(XSI) Map NL to CR-NL on output.

OCRNL
Map CR to NL on output.

ONOCR
Don’t output CR at column 0.

ONLRET
The NL character is assumed to do the carriage-return function; the kernel’s
idea of the current column is set to 0 after both NL and CR.

OFILL
Send fill characters for a delay, rather than using a timed delay.

OFDEL
Fill character is ASCII DEL (0177). If unset, fill character is ASCII NUL
('\0'). (Not implemented on Linux.)

NLDLY
Newline delay mask. Values are NL0 and NL1. [requires _BSD_SOURCE
or _SVID_SOURCE or _XOPEN_SOURCE]

CRDLY
Carriage return delay mask. Values are CR0, CR1, CR2, or CR3. [requires
_BSD_SOURCE or _SVID_SOURCE or _XOPEN_SOURCE]

TABDLY
Horizontal tab delay mask. Values are TAB0, TAB1, TAB2, TAB3 (or
XTABS, but see the BUGS section). A value of TAB3, that is, XTABS, ex-
pands tabs to spaces (with tab stops every eight columns). [requires
_BSD_SOURCE or _SVID_SOURCE or _XOPEN_SOURCE]

BSDLY
Backspace delay mask. Values are BS0 or BS1. (Has never been imple-
mented.) [requires _BSD_SOURCE or _SVID_SOURCE or
_XOPEN_SOURCE]

Linux man-pages 6.13 2024-07-23 2505

termios(3) Library Functions Manual termios(3)

VTDLY
Vertical tab delay mask. Values are VT0 or VT1.

FFDLY
Form feed delay mask. Values are FF0 or FF1. [requires _BSD_SOURCE or
_SVID_SOURCE or _XOPEN_SOURCE]

c_cflag flag constants:

CBAUD
(not in POSIX) Baud speed mask (4+1 bits). [requires _BSD_SOURCE or
_SVID_SOURCE]

CBAUDEX
(not in POSIX) Extra baud speed mask (1 bit), included in CBAUD. [requires
_BSD_SOURCE or _SVID_SOURCE]

(POSIX says that the baud speed is stored in the termios structure without
specifying where precisely, and provides cfgetispeed() and cfsetispeed() for
getting at it. Some systems use bits selected by CBAUD in c_cflag, other sys-
tems use separate fields, for example, sg_ispeed and sg_ospeed .)

CSIZE
Character size mask. Values are CS5, CS6, CS7, or CS8.

CSTOPB
Set two stop bits, rather than one.

CREAD
Enable receiver.

PARENB
Enable parity generation on output and parity checking for input.

PARODD
If set, then parity for input and output is odd; otherwise even parity is used.

HUPCL
Lower modem control lines after last process closes the device (hang up).

CLOCAL
Ignore modem control lines.

LOBLK
(not in POSIX) Block output from a noncurrent shell layer. For use by shl
(shell layers). (Not implemented on Linux.)

CIBAUD
(not in POSIX) Mask for input speeds. The values for the CIBAUD bits are
the same as the values for the CBAUD bits, shifted left IBSHIFT bits. [re-
quires _BSD_SOURCE or _SVID_SOURCE] (Not implemented in glibc,
supported on Linux via TCGET* and TCSET* ioctls; see ioctl_tty(2))

CMSPAR
(not in POSIX) Use "stick" (mark/space) parity (supported on certain serial
devices): if PARODD is set, the parity bit is always 1; if PARODD is not set,
then the parity bit is always 0. [requires _BSD_SOURCE or
_SVID_SOURCE]

Linux man-pages 6.13 2024-07-23 2506

termios(3) Library Functions Manual termios(3)

CRTSCTS
(not in POSIX) Enable RTS/CTS (hardware) flow control. [requires
_BSD_SOURCE or _SVID_SOURCE]

c_lflag flag constants:

ISIG When any of the characters INTR, QUIT, SUSP, or DSUSP are received, gen-
erate the corresponding signal.

ICANON
Enable canonical mode (described below).

XCASE
(not in POSIX; not supported under Linux) If ICANON is also set, terminal is
uppercase only. Input is converted to lowercase, except for characters pre-
ceded by \. On output, uppercase characters are preceded by \ and lowercase
characters are converted to uppercase. [requires _BSD_SOURCE or
_SVID_SOURCE or _XOPEN_SOURCE]

ECHO
Echo input characters.

ECHOE
If ICANON is also set, the ERASE character erases the preceding input char-
acter, and WERASE erases the preceding word.

ECHOK
If ICANON is also set, the KILL character erases the current line.

ECHONL
If ICANON is also set, echo the NL character even if ECHO is not set.

ECHOCTL
(not in POSIX) If ECHO is also set, terminal special characters other than
TAB, NL, START, and STOP are echoed as ^X, where X is the character with
ASCII code 0x40 greater than the special character. For example, character
0x08 (BS) is echoed as ^H. [requires _BSD_SOURCE or
_SVID_SOURCE]

ECHOPRT
(not in POSIX) If ICANON and ECHO are also set, characters are printed as
they are being erased. [requires _BSD_SOURCE or _SVID_SOURCE]

ECHOKE
(not in POSIX) If ICANON is also set, KILL is echoed by erasing each char-
acter on the line, as specified by ECHOE and ECHOPRT. [requires
_BSD_SOURCE or _SVID_SOURCE]

DEFECHO
(not in POSIX) Echo only when a process is reading. (Not implemented on
Linux.)

FLUSHO
(not in POSIX; not supported under Linux) Output is being flushed. This flag
is toggled by typing the DISCARD character. [requires _BSD_SOURCE or
_SVID_SOURCE]

Linux man-pages 6.13 2024-07-23 2507

termios(3) Library Functions Manual termios(3)

NOFLSH
Disable flushing the input and output queues when generating signals for the
INT, QUIT, and SUSP characters.

TOSTOP
Send the SIGTTOU signal to the process group of a background process
which tries to write to its controlling terminal.

PENDIN
(not in POSIX; not supported under Linux) All characters in the input queue
are reprinted when the next character is read. (bash(1) handles typeahead this
way.) [requires _BSD_SOURCE or _SVID_SOURCE]

IEXTEN
Enable implementation-defined input processing. This flag, as well as
ICANON must be enabled for the special characters EOL2, LNEXT,
REPRINT, WERASE to be interpreted, and for the IUCLC flag to be effec-
tive.

The c_cc array defines the terminal special characters. The symbolic indices (initial
values) and meaning are:

VDISCARD
(not in POSIX; not supported under Linux; 017, SI, Ctrl-O) Toggle: start/stop
discarding pending output. Recognized when IEXTEN is set, and then not
passed as input.

VDSUSP
(not in POSIX; not supported under Linux; 031, EM, Ctrl-Y) Delayed suspend
character (DSUSP): send SIGTSTP signal when the character is read by the
user program. Recognized when IEXTEN and ISIG are set, and the system
supports job control, and then not passed as input.

VEOF
(004, EOT, Ctrl-D) End-of-file character (EOF). More precisely: this charac-
ter causes the pending tty buffer to be sent to the waiting user program without
waiting for end-of-line. If it is the first character of the line, the read(2) in the
user program returns 0, which signifies end-of-file. Recognized when
ICANON is set, and then not passed as input.

VEOL
(0, NUL) Additional end-of-line character (EOL). Recognized when
ICANON is set.

VEOL2
(not in POSIX; 0, NUL) Yet another end-of-line character (EOL2). Recog-
nized when ICANON is set.

VERASE
(0177, DEL, rubout, or 010, BS, Ctrl-H, or also #) Erase character (ERASE).
This erases the previous not-yet-erased character, but does not erase past EOF
or beginning-of-line. Recognized when ICANON is set, and then not passed
as input.

Linux man-pages 6.13 2024-07-23 2508

termios(3) Library Functions Manual termios(3)

VINTR
(003, ETX, Ctrl-C, or also 0177, DEL, rubout) Interrupt character (INTR).
Send a SIGINT signal. Recognized when ISIG is set, and then not passed as
input.

VKILL
(025, NAK, Ctrl-U, or Ctrl-X, or also @) Kill character (KILL). This erases
the input since the last EOF or beginning-of-line. Recognized when ICANON
is set, and then not passed as input.

VLNEXT
(not in POSIX; 026, SYN, Ctrl-V) Literal next (LNEXT). Quotes the next in-
put character, depriving it of a possible special meaning. Recognized when
IEXTEN is set, and then not passed as input.

VMIN
Minimum number of characters for noncanonical read (MIN).

VQUIT
(034, FS, Ctrl-\) Quit character (QUIT). Send SIGQUIT signal. Recognized
when ISIG is set, and then not passed as input.

VREPRINT
(not in POSIX; 022, DC2, Ctrl-R) Reprint unread characters (REPRINT).
Recognized when ICANON and IEXTEN are set, and then not passed as in-
put.

VSTART
(021, DC1, Ctrl-Q) Start character (START). Restarts output stopped by the
Stop character. Recognized when IXON is set, and then not passed as input.

VSTATUS
(not in POSIX; not supported under Linux; status request: 024, DC4, Ctrl-T).
Status character (STATUS). Display status information at terminal, including
state of foreground process and amount of CPU time it has consumed. Also
sends a SIGINFO signal (not supported on Linux) to the foreground process
group.

VSTOP
(023, DC3, Ctrl-S) Stop character (STOP). Stop output until Start character
typed. Recognized when IXON is set, and then not passed as input.

VSUSP
(032, SUB, Ctrl-Z) Suspend character (SUSP). Send SIGTSTP signal. Rec-
ognized when ISIG is set, and then not passed as input.

VSWTCH
(not in POSIX; not supported under Linux; 0, NUL) Switch character
(SWTCH). Used in System V to switch shells in shell layers, a predecessor to
shell job control.

VTIME
Timeout in deciseconds for noncanonical read (TIME).

Linux man-pages 6.13 2024-07-23 2509

termios(3) Library Functions Manual termios(3)

VWERASE
(not in POSIX; 027, ETB, Ctrl-W) Word erase (WERASE). Recognized when
ICANON and IEXTEN are set, and then not passed as input.

An individual terminal special character can be disabled by setting the value of the
corresponding c_cc element to _POSIX_VDISABLE.

The above symbolic subscript values are all different, except that VTIME, VMIN
may have the same value as VEOL, VEOF, respectively. In noncanonical mode the
special character meaning is replaced by the timeout meaning. For an explanation of
VMIN and VTIME, see the description of noncanonical mode below.

Retrieving and changing terminal settings
tcgetattr() gets the parameters associated with the object referred by fd and stores
them in the termios structure referenced by termios_p. This function may be invoked
from a background process; however, the terminal attributes may be subsequently
changed by a foreground process.

tcsetattr() sets the parameters associated with the terminal (unless support is required
from the underlying hardware that is not available) from the termios structure referred
to by termios_p. optional_actions specifies when the changes take effect:

TCSANOW
the change occurs immediately.

TCSADRAIN
the change occurs after all output written to fd has been transmitted. This op-
tion should be used when changing parameters that affect output.

TCSAFLUSH
the change occurs after all output written to the object referred by fd has been
transmitted, and all input that has been received but not read will be discarded
before the change is made.

Canonical and noncanonical mode
The setting of the ICANON canon flag in c_lflag determines whether the terminal is
operating in canonical mode (ICANON set) or noncanonical mode (ICANON unset).
By default, ICANON is set.

In canonical mode:

• Input is made available line by line. An input line is available when one of the
line delimiters is typed (NL, EOL, EOL2; or EOF at the start of line). Except in
the case of EOF, the line delimiter is included in the buffer returned by read(2).

• Line editing is enabled (ERASE, KILL; and if the IEXTEN flag is set: WERASE,
REPRINT, LNEXT). A read(2) returns at most one line of input; if the read(2) re-
quested fewer bytes than are available in the current line of input, then only as
many bytes as requested are read, and the remaining characters will be available
for a future read(2).

• The maximum line length is 4096 chars (including the terminating newline char-
acter); lines longer than 4096 chars are truncated. After 4095 characters, input
processing (e.g., ISIG and ECHO* processing) continues, but any input data after
4095 characters up to (but not including) any terminating newline is discarded.
This ensures that the terminal can always receive more input until at least one line

Linux man-pages 6.13 2024-07-23 2510

termios(3) Library Functions Manual termios(3)

can be read.

In noncanonical mode input is available immediately (without the user having to type
a line-delimiter character), no input processing is performed, and line editing is dis-
abled. The read buffer will only accept 4095 chars; this provides the necessary space
for a newline char if the input mode is switched to canonical. The settings of MIN
(c_cc[VMIN]) and TIME (c_cc[VTIME]) determine the circumstances in which a
read(2) completes; there are four distinct cases:

MIN == 0, TIME == 0 (polling read)
If data is available, read(2) returns immediately, with the lesser of the number
of bytes available, or the number of bytes requested. If no data is available,
read(2) returns 0.

MIN > 0, TIME == 0 (blocking read)
read(2) blocks until MIN bytes are available, and returns up to the number of
bytes requested.

MIN == 0, TIME > 0 (read with timeout)
TIME specifies the limit for a timer in tenths of a second. The timer is started
when read(2) is called. read(2) returns either when at least one byte of data is
available, or when the timer expires. If the timer expires without any input be-
coming available, read(2) returns 0. If data is already available at the time of
the call to read(2), the call behaves as though the data was received immedi-
ately after the call.

MIN > 0, TIME > 0 (read with interbyte timeout)
TIME specifies the limit for a timer in tenths of a second. Once an initial byte
of input becomes available, the timer is restarted after each further byte is re-
ceived. read(2) returns when any of the following conditions is met:

• MIN bytes have been received.

• The interbyte timer expires.

• The number of bytes requested by read(2) has been received. (POSIX
does not specify this termination condition, and on some other implemen-
tations read(2) does not return in this case.)

Because the timer is started only after the initial byte becomes available, at
least one byte will be read. If data is already available at the time of the call to
read(2), the call behaves as though the data was received immediately after the
call.

POSIX does not specify whether the setting of the O_NONBLOCK file status flag
takes precedence over the MIN and TIME settings. If O_NONBLOCK is set, a
read(2) in noncanonical mode may return immediately, regardless of the setting of
MIN or TIME. Furthermore, if no data is available, POSIX permits a read(2) in non-
canonical mode to return either 0, or -1 with errno set to EAGAIN.

Raw mode
cfmakeraw() sets the terminal to something like the "raw" mode of the old Version 7
terminal driver: input is available character by character, echoing is disabled, and all
special processing of terminal input and output characters is disabled. The terminal
attributes are set as follows:

Linux man-pages 6.13 2024-07-23 2511

termios(3) Library Functions Manual termios(3)

termios_p->c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP
| INLCR | IGNCR | ICRNL | IXON);

termios_p->c_oflag &= ~OPOST;
termios_p->c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
termios_p->c_cflag &= ~(CSIZE | PARENB);
termios_p->c_cflag |= CS8;

Line control
tcsendbreak() transmits a continuous stream of zero-valued bits for a specific dura-
tion, if the terminal is using asynchronous serial data transmission. If duration is
zero, it transmits zero-valued bits for at least 0.25 seconds, and not more than 0.5 sec-
onds. If duration is not zero, it sends zero-valued bits for some implementation-de-
fined length of time.

If the terminal is not using asynchronous serial data transmission, tcsendbreak() re-
turns without taking any action.

tcdrain() waits until all output written to the object referred to by fd has been trans-
mitted.

tcflush() discards data written to the object referred to by fd but not transmitted, or
data received but not read, depending on the value of queue_selector:

TCIFLUSH
flushes data received but not read.

TCOFLUSH
flushes data written but not transmitted.

TCIOFLUSH
flushes both data received but not read, and data written but not transmitted.

tcflow() suspends transmission or reception of data on the object referred to by fd ,
depending on the value of action:

TCOOFF
suspends output.

TCOON
restarts suspended output.

TCIOFF
transmits a STOP character, which stops the terminal device from transmitting
data to the system.

TCION
transmits a START character, which starts the terminal device transmitting
data to the system.

The default on open of a terminal file is that neither its input nor its output is sus-
pended.

Line speed
The baud rate functions are provided for getting and setting the values of the input and
output baud rates in the termios structure. The new values do not take effect until tc-
setattr() is successfully called.

Setting the speed to B0 instructs the modem to "hang up". The actual bit rate

Linux man-pages 6.13 2024-07-23 2512

termios(3) Library Functions Manual termios(3)

corresponding to B38400 may be altered with setserial(8)

The input and output baud rates are stored in the termios structure.

cfgetospeed() returns the output baud rate stored in the termios structure pointed to by
termios_p.

cfsetospeed() sets the output baud rate stored in the termios structure pointed to by
termios_p to speed, which must be one of these constants:

B0
B50
B75
B110
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400
B57600
B115200
B230400
B460800
B500000
B576000
B921600
B1000000
B1152000
B1500000
B2000000

These constants are additionally supported on the SPARC architecture:

B76800
B153600
B307200
B614400

These constants are additionally supported on non-SPARC architectures:

B2500000
B3000000
B3500000
B4000000

Due to differences between architectures, portable applications should check if a par-
ticular Bnnn constant is defined prior to using it.

Linux man-pages 6.13 2024-07-23 2513

termios(3) Library Functions Manual termios(3)

The zero baud rate, B0, is used to terminate the connection. If B0 is specified, the
modem control lines shall no longer be asserted. Normally, this will disconnect the
line. CBAUDEX is a mask for the speeds beyond those defined in POSIX.1 (57600
and above). Thus, B57600 & CBAUDEX is nonzero.

Setting the baud rate to a value other than those defined by Bnnn constants is possible
via the TCSETS2 ioctl; see ioctl_tty(2).

cfgetispeed() returns the input baud rate stored in the termios structure.

cfsetispeed() sets the input baud rate stored in the termios structure to speed , which
must be specified as one of the Bnnn constants listed above for cfsetospeed(). If the
input baud rate is set to the literal constant 0 (not the symbolic constant B0), the input
baud rate will be equal to the output baud rate.

cfsetspeed() is a 4.4BSD extension. It takes the same arguments as cfsetispeed(), and
sets both input and output speed.

RETURN VALUE
cfgetispeed() returns the input baud rate stored in the termios structure.

cfgetospeed() returns the output baud rate stored in the termios structure.

All other functions return:

0 on success.

-1 on failure and set errno to indicate the error.

Note that tcsetattr() returns success if any of the requested changes could be success-
fully carried out. Therefore, when making multiple changes it may be necessary to
follow this call with a further call to tcgetattr() to check that all changes have been
performed successfully.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetcgetattr(), tcsetattr(), tcdrain(), tcflush(), tcflow(),
tcsendbreak(), cfmakeraw(), cfgetispeed(),
cfgetospeed(), cfsetispeed(), cfsetospeed(),
cfsetspeed()

STANDARDS
tcgetattr()
tcsetattr()
tcsendbreak()
tcdrain()
tcflush()
tcflow()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()

POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 2514

termios(3) Library Functions Manual termios(3)

cfmakeraw()
cfsetspeed()

BSD.

HISTORY
tcgetattr()
tcsetattr()
tcsendbreak()
tcdrain()
tcflush()
tcflow()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()

POSIX.1-2001.

cfmakeraw()
cfsetspeed()

BSD.

NOTES
UNIX V7 and several later systems have a list of baud rates where after the values B0
through B9600 one finds the two constants EXTA, EXTB ("External A" and "Exter-
nal B"). Many systems extend the list with much higher baud rates.

The effect of a nonzero duration with tcsendbreak() varies. SunOS specifies a break
of duration * N seconds, where N is at least 0.25, and not more than 0.5. Linux, AIX,
DU, Tru64 send a break of duration milliseconds. FreeBSD and NetBSD and HP-UX
and MacOS ignore the value of duration. Under Solaris and UnixWare, tcsend-
break() with nonzero duration behaves like tcdrain().

BUGS
On the Alpha architecture before Linux 4.16 (and glibc before glibc 2.28), the
XTABS value was different from TAB3 and it was ignored by the N_TTY line disci-
pline code of the terminal driver as a result (because as it wasn’t part of the TABDLY
mask).

SEE ALSO
reset(1), setterm(1), stty(1), tput(1), tset(1), tty(1), ioctl_console(2), ioctl_tty(2),
cc_t(3type), speed_t(3type), tcflag_t(3type), setserial(8)

Linux man-pages 6.13 2024-07-23 2515

tgamma(3) Library Functions Manual tgamma(3)

NAME
tgamma, tgammaf, tgammal - true gamma function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tgamma(), tgammaf(), tgammal():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions calculate the Gamma function of x.

The Gamma function is defined by

Gamma(x) = integral from 0 to infinity of t^(x-1) e^-t dt

It is defined for every real number except for nonpositive integers. For nonnegative
integral m one has

Gamma(m+1) = m!

and, more generally, for all x:

Gamma(x+1) = x * Gamma(x)

Furthermore, the following is valid for all values of x outside the poles:

Gamma(x) * Gamma(1 - x) = PI / sin(PI * x)

RETURN VALUE
On success, these functions return Gamma(x).

If x is a NaN, a NaN is returned.

If x is positive infinity, positive infinity is returned.

If x is a negative integer, or is negative infinity, a domain error occurs, and a NaN is
returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the correct mathematical sign.

If the result underflows, a range error occurs, and the functions return 0, with the cor-
rect mathematical sign.

If x is -0 or +0, a pole error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the same sign as the 0.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Linux man-pages 6.13 2024-07-23 2516

tgamma(3) Library Functions Manual tgamma(3)

Domain error: x is a negative integer, or negative infinity
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised (but see BUGS).

Pole error: x is +0 or -0
errno is set to ERANGE. A divide-by-zero floating-point exception (FE_DI-
VBYZERO) is raised.

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

glibc also gives the following error which is not specified in C99 or POSIX.1-2001.

Range error: result underflow
An underflow floating-point exception (FE_UNDERFLOW) is raised, and er-
rno is set to ERANGE.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetgamma(), tgammaf(), tgammal()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

NOTES
This function had to be called "true gamma function" since there is already a function
gamma(3) that returns something else (see gamma(3) for details).

BUGS
Before glibc 2.18, the glibc implementation of these functions did not set errno to
EDOM when x is negative infinity.

Before glibc 2.19, the glibc implementation of these functions did not set errno to
ERANGE on an underflow range error.

In glibc versions 2.3.3 and earlier, an argument of +0 or -0 incorrectly produced a do-
main error (errno set to EDOM and an FE_INVALID exception raised), rather than a
pole error.

SEE ALSO
gamma(3), lgamma(3)

Linux man-pages 6.13 2024-07-23 2517

timegm(3) Library Functions Manual timegm(3)

NAME
timegm, timelocal - inverses of gmtime and localtime

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

[[deprecated]] time_t timelocal(struct tm *tm);
time_t timegm(struct tm *tm);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timelocal(), timegm():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The functions timelocal() and timegm() are the inverses of localtime(3) and gm-
time(3). Both functions take a broken-down time and convert it to calendar time (sec-
onds since the Epoch, 1970-01-01 00:00:00 +0000, UTC). The difference between
the two functions is that timelocal() takes the local timezone into account when doing
the conversion, while timegm() takes the input value to be Coordinated Universal
Time (UTC).

RETURN VALUE
On success, these functions return the calendar time (seconds since the Epoch), ex-
pressed as a value of type time_t. On error, they return the value (time_t) -1 and set
errno to indicate the error.

ERRORS
EOVERFLOW

The result cannot be represented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localetimelocal(), timegm()

STANDARDS
BSD.

HISTORY
GNU, BSD.

The timelocal() function is equivalent to the POSIX standard function mktime(3).
There is no reason to ever use it.

SEE ALSO
gmtime(3), localtime(3), mktime(3), tzset(3)

Linux man-pages 6.13 2024-07-23 2518

timeradd(3) Library Functions Manual timeradd(3)

NAME
timeradd, timersub, timercmp, timerclear, timerisset - timeval operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/time.h>

void timeradd(struct timeval *a, struct timeval *b,
struct timeval *res);

void timersub(struct timeval *a, struct timeval *b,
struct timeval *res);

void timerclear(struct timeval *tvp);
int timerisset(struct timeval *tvp);

int timercmp(struct timeval *a, struct timeval *b, CMP);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The macros are provided to operate on timeval structures, defined in <sys/time.h> as:

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

timeradd() adds the time values in a and b, and places the sum in the timeval pointed
to by res. The result is normalized such that res->tv_usec has a value in the range 0
to 999,999.

timersub() subtracts the time value in b from the time value in a, and places the result
in the timeval pointed to by res. The result is normalized such that res->tv_usec has
a value in the range 0 to 999,999.

timerclear() zeros out the timeval structure pointed to by tvp, so that it represents the
Epoch: 1970-01-01 00:00:00 +0000 (UTC).

timerisset() returns true (nonzero) if either field of the timeval structure pointed to by
tvp contains a nonzero value.

timercmp() compares the timer values in a and b using the comparison operator
CMP, and returns true (nonzero) or false (0) depending on the result of the compari-
son. Some systems (but not Linux/glibc), have a broken timercmp() implementation,
in which CMP of >=, <=, and == do not work; portable applications can instead use

!timercmp(..., <)
!timercmp(..., >)
!timercmp(..., !=)

Linux man-pages 6.13 2024-07-23 2519

timeradd(3) Library Functions Manual timeradd(3)

RETURN VALUE
timerisset() and timercmp() return true (nonzero) or false (0).

ERRORS
No errors are defined.

STANDARDS
None.

HISTORY
BSD.

SEE ALSO
gettimeofday(2), time(7)

Linux man-pages 6.13 2024-07-23 2520

timespec_get(3) Library Functions Manual timespec_get(3)

NAME
timespec_get, timespec_getres - ISO C interface to clock and time functions

LIBRARY
Standard C library (libc, -lc),

SYNOPSIS
#include <time.h>

int timespec_get(struct timespec *res, int base);
int timespec_getres(struct timespec *tp, int base);

DESCRIPTION
The timespec_get() function stores the current time, based on the specified time base,
in the timespec(3type) structure pointed to by res.

The timespec_getres() function stores the resolution of times retrieved by time-
spec_get() with the specified time base in the timespec(3type) structure pointed to by
tp, if tp is non-NULL. For a particular time base, the resolution is constant for the
lifetime of the calling process.

TIME_UTC is always a supported time base, and is the only time base supported on
Linux. The time and resolution in this time base are the same as those retrieved by
clock_gettime(CLOCK_REALTIME, res) and clock_getres(CLOCK_REALTIME, tp),
respectively. Other systems may support additional time bases.

RETURN VALUE
timespec_get() returns the nonzero base if it is a supported time base and the current
time was successfully retrieved, or 0 otherwise.

timespec_getres() returns the nonzero base if it is a supported time base, or 0 other-
wise.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetimespec_get(), timespec_getres()

STANDARDS
timespec_get()
TIME_UTC

C23 (though ISO C doesn’t specify the time epoch), POSIX.1-2024.

timespec_getres()
C23.

HISTORY
timespec_get()
TIME_UTC

C11, POSIX.1-2024, glibc 2.16, musl 1.1.10.

timespec_getres()
C23, glibc 2.34.

SEE ALSO
clock_gettime(2), clock_getres(2)

Linux man-pages 6.13 2025-02-10 2521

timespec_get(3) Library Functions Manual timespec_get(3)

Linux man-pages 6.13 2025-02-10 2522

TIMEVAL_TO_TIMESPEC(3) Library Functions Manual TIMEVAL_TO_TIMESPEC(3)

NAME
TIMEVAL_TO_TIMESPEC, TIMESPEC_TO_TIMEVAL - convert between time
structures

SYNOPSIS
#define _GNU_SOURCE
#include <sys/time.h>

void TIMEVAL_TO_TIMESPEC(const struct timeval *tv, struct timespec *ts);
void TIMESPEC_TO_TIMEVAL(struct timeval *tv, const struct timespec *ts);

DESCRIPTION
These macros convert from a timeval(3type) to a timespec(3type) structure, and vice
versa, respectively.

This is especially useful for writing interfaces that receive a type, but are implemented
with calls to functions that receive the other one.

STANDARDS
GNU, BSD.

Linux man-pages 6.13 2024-05-02 2523

tmpfile(3) Library Functions Manual tmpfile(3)

NAME
tmpfile - create a temporary file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

FILE *tmpfile(void);

DESCRIPTION
The tmpfile() function opens a unique temporary file in binary read/write (w+b)
mode. The file will be automatically deleted when it is closed or the program termi-
nates.

RETURN VALUE
The tmpfile() function returns a stream descriptor, or NULL if a unique filename can-
not be generated or the unique file cannot be opened. In the latter case, errno is set to
indicate the error.

ERRORS
EACCES

Search permission denied for directory in file’s path prefix.

EEXIST
Unable to generate a unique filename.

EINTR
The call was interrupted by a signal; see signal(7).

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOSPC
There was no room in the directory to add the new filename.

EROFS
Read-only filesystem.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetmpfile()

VERSIONS
The standard does not specify the directory that tmpfile() will use. glibc will try the
path prefix P_tmpdir defined in <stdio.h>, and if that fails, then the directory /tmp.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD, SUSv2.

Linux man-pages 6.13 2024-07-23 2524

tmpfile(3) Library Functions Manual tmpfile(3)

NOTES
POSIX.1-2001 specifies: an error message may be written to stdout if the stream can-
not be opened.

SEE ALSO
exit(3), mkstemp(3), mktemp(3), tempnam(3), tmpnam(3)

Linux man-pages 6.13 2024-07-23 2525

tmpnam(3) Library Functions Manual tmpnam(3)

NAME
tmpnam, tmpnam_r - create a name for a temporary file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

[[deprecated]] char *tmpnam(char *s);
[[deprecated]] char *tmpnam_r(char *s);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tmpnam_r()
Since glibc 2.19:

_DEFAULT_SOURCE
Up to and including glibc 2.19:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Note: avoid using these functions; use mkstemp(3) or tmpfile(3) instead.

The tmpnam() function returns a pointer to a string that is a valid filename, and such
that a file with this name did not exist at some point in time, so that naive program-
mers may think it a suitable name for a temporary file. If the argument s is NULL,
this name is generated in an internal static buffer and may be overwritten by the next
call to tmpnam(). If s is not NULL, the name is copied to the character array (of
length at least L_tmpnam) pointed to by s and the value s is returned in case of suc-
cess.

The created pathname has a directory prefix P_tmpdir. (Both L_tmpnam and P_tm-
pdir are defined in <stdio.h>, just like the TMP_MAX mentioned below.)

The tmpnam_r() function performs the same task as tmpnam(), but returns NULL
(to indicate an error) if s is NULL.

RETURN VALUE
These functions return a pointer to a unique temporary filename, or NULL if a unique
name cannot be generated.

ERRORS
No errors are defined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:tmpnam/!stmpnam()
Thread safety MT-Safetmpnam_r()

STANDARDS
tmpnam()

C11, POSIX.1-2008.

tmpnam_r()
None.

Linux man-pages 6.13 2024-07-23 2526

tmpnam(3) Library Functions Manual tmpnam(3)

HISTORY
tmpnam()

SVr4, 4.3BSD, C89, POSIX.1-2001. Obsolete in POSIX.1-2008.

tmpnam_r()
Solaris.

NOTES
The tmpnam() function generates a different string each time it is called, up to
TMP_MAX times. If it is called more than TMP_MAX times, the behavior is imple-
mentation defined.

Although these functions generate names that are difficult to guess, it is nevertheless
possible that between the time that the pathname is returned and the time that the pro-
gram opens it, another program might create that pathname using open(2), or create it
as a symbolic link. This can lead to security holes. To avoid such possibilities, use
the open(2) O_EXCL flag to open the pathname. Or better yet, use mkstemp(3) or
tmpfile(3).

Portable applications that use threads cannot call tmpnam() with a NULL argument if
either _POSIX_THREADS or _POSIX_THREAD_SAFE_FUNCTIONS is de-
fined.

BUGS
Never use these functions. Use mkstemp(3) or tmpfile(3) instead.

SEE ALSO
mkstemp(3), mktemp(3), tempnam(3), tmpfile(3)

Linux man-pages 6.13 2024-07-23 2527

toascii(3) Library Functions Manual toascii(3)

NAME
toascii - convert character to ASCII

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ctype.h>

[[deprecated]] int toascii(int c);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

toascii():
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
toascii() converts c to a 7-bit unsigned char value that fits into the ASCII character
set, by clearing the high-order bits.

RETURN VALUE
The value returned is that of the converted character.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetoascii()

STANDARDS
POSIX.1-2008.

HISTORY
SVr4, BSD, POSIX.1-2001. Obsolete in POSIX.1-2008, noting that it cannot be used
portably in a localized application.

BUGS
Many people will be unhappy if you use this function. This function will convert ac-
cented letters into random characters.

SEE ALSO
isascii(3), tolower(3), toupper(3)

Linux man-pages 6.13 2024-07-23 2528

toupper(3) Library Functions Manual toupper(3)

NAME
toupper, tolower, toupper_l, tolower_l - convert uppercase or lowercase

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ctype.h>

int toupper(int c);
int tolower(int c);

int toupper_l(int c, locale_t locale);
int tolower_l(int c, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

toupper_l(), tolower_l():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
These functions convert lowercase letters to uppercase, and vice versa.

If c is a lowercase letter, toupper() returns its uppercase equivalent, if an uppercase
representation exists in the current locale. Otherwise, it returns c. The toupper_l()
function performs the same task, but uses the locale referred to by the locale handle
locale.

If c is an uppercase letter, tolower() returns its lowercase equivalent, if a lowercase
representation exists in the current locale. Otherwise, it returns c. The tolower_l()
function performs the same task, but uses the locale referred to by the locale handle
locale.

If c is neither an unsigned char value nor EOF, the behavior of these functions is un-
defined.

The behavior of toupper_l() and tolower_l() is undefined if locale is the special lo-
cale object LC_GLOBAL_LOCALE (see duplocale(3)) or is not a valid locale ob-
ject handle.

RETURN VALUE
The value returned is that of the converted letter, or c if the conversion was not possi-
ble.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetoupper(), tolower(), toupper_l(), tolower_l()

STANDARDS
toupper()
tolower()

C11, POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 2529

toupper(3) Library Functions Manual toupper(3)

toupper_l()
tolower_l()

POSIX.1-2008.

HISTORY
toupper()
tolower()

C89, 4.3BSD, POSIX.1-2001.

toupper_l()
tolower_l()

POSIX.1-2008.

NOTES
The standards require that the argument c for these functions is either EOF or a value
that is representable in the type unsigned char. If the argument c is of type char, it
must be cast to unsigned char, as in the following example:

char c;
...
res = toupper((unsigned char) c);

This is necessary because char may be the equivalent signed char, in which case a
byte where the top bit is set would be sign extended when converting to int, yielding a
value that is outside the range of unsigned char.

The details of what constitutes an uppercase or lowercase letter depend on the locale.
For example, the default "C" locale does not know about umlauts, so no conversion is
done for them.

In some non-English locales, there are lowercase letters with no corresponding upper-
case equivalent; the German sharp s is one example.

SEE ALSO
isalpha(3), newlocale(3), setlocale(3), towlower(3), towupper(3), uselocale(3), lo-
cale(7)

Linux man-pages 6.13 2024-07-23 2530

towctrans(3) Library Functions Manual towctrans(3)

NAME
towctrans - wide-character transliteration

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);

DESCRIPTION
If wc is a wide character, then the towctrans() function translates it according to the
transliteration descriptor desc. If wc is WEOF, WEOF is returned.

desc must be a transliteration descriptor returned by the wctrans(3) function.

RETURN VALUE
The towctrans() function returns the translated wide character, or WEOF if wc is
WEOF.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetowctrans()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of towctrans() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
towlower(3), towupper(3), wctrans(3)

Linux man-pages 6.13 2024-07-23 2531

towlower(3) Library Functions Manual towlower(3)

NAME
towlower, towlower_l - convert a wide character to lowercase

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

wint_t towlower(wint_t wc);
wint_t towlower_l(wint_t wc, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

towlower_l():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The towlower() function is the wide-character equivalent of the tolower(3) function.
If wc is an uppercase wide character, and there exists a lowercase equivalent in the
current locale, it returns the lowercase equivalent of wc. In all other cases, wc is re-
turned unchanged.

The towlower_l() function performs the same task, but performs the conversion based
on the character type information in the locale specified by locale. The behavior of
towlower_l() is undefined if locale is the special locale object LC_GLOBAL_LO-
CALE (see duplocale(3)) or is not a valid locale object handle.

The argument wc must be representable as a wchar_t and be a valid character in the
locale or be the value WEOF.

RETURN VALUE
If wc was convertible to lowercase, towlower() returns its lowercase equivalent; oth-
erwise it returns wc.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localetowlower()
Thread safety MT-Safetowlower_l()

STANDARDS
towlower()

C11, POSIX.1-2008 (XSI).

towlower_l()
POSIX.1-2008.

STANDARDS
towlower()

C99, POSIX.1-2001 (XSI). Obsolete in POSIX.1-2008 (XSI).

Linux man-pages 6.13 2024-07-23 2532

towlower(3) Library Functions Manual towlower(3)

towlower_l()
glibc 2.3. POSIX.1-2008.

NOTES
The behavior of these functions depends on the LC_CTYPE category of the locale.

These functions are not very appropriate for dealing with Unicode characters, because
Unicode knows about three cases: upper, lower, and title case.

SEE ALSO
iswlower(3), towctrans(3), towupper(3), locale(7)

Linux man-pages 6.13 2024-07-23 2533

towupper(3) Library Functions Manual towupper(3)

NAME
towupper, towupper_l - convert a wide character to uppercase

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

wint_t towupper(wint_t wc);
wint_t towupper_l(wint_t wc, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

towupper_l():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The towupper() function is the wide-character equivalent of the toupper(3) function.
If wc is a lowercase wide character, and there exists an uppercase equivalent in the
current locale, it returns the uppercase equivalent of wc. In all other cases, wc is re-
turned unchanged.

The towupper_l() function performs the same task, but performs the conversion
based on the character type information in the locale specified by locale. The behav-
ior of towupper_l() is undefined if locale is the special locale object
LC_GLOBAL_LOCALE (see duplocale(3)) or is not a valid locale object handle.

The argument wc must be representable as a wchar_t and be a valid character in the
locale or be the value WEOF.

RETURN VALUE
If wc was convertible to uppercase, towupper() returns its uppercase equivalent; oth-
erwise it returns wc.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localetowupper()
Thread safety MT-Safetowupper_l()

STANDARDS
towupper()

C11, POSIX.1-2008 (XSI).

towupper_l()
POSIX.1-2008.

HISTORY
towupper()

C99, POSIX.1-2001 (XSI). Obsolete in POSIX.1-2008 (XSI).

Linux man-pages 6.13 2024-07-23 2534

towupper(3) Library Functions Manual towupper(3)

towupper_l()
POSIX.1-2008. glibc 2.3.

NOTES
The behavior of these functions depends on the LC_CTYPE category of the locale.

These functions are not very appropriate for dealing with Unicode characters, because
Unicode knows about three cases: upper, lower, and title case.

SEE ALSO
iswupper(3), towctrans(3), towlower(3), locale(7)

Linux man-pages 6.13 2024-07-23 2535

trunc(3) Library Functions Manual trunc(3)

NAME
trunc, truncf, truncl - round to integer, toward zero

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

trunc(), truncf(), truncl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions round x to the nearest integer value that is not larger in magnitude
than x.

RETURN VALUE
These functions return the rounded integer value, in floating format.

If x is integral, infinite, or NaN, x itself is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetrunc(), truncf(), truncl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

NOTES
The integral value returned by these functions may be too large to store in an integer
type (int, long, etc.). To avoid an overflow, which will produce undefined results, an
application should perform a range check on the returned value before assigning it to
an integer type.

SEE ALSO
ceil(3), floor(3), lrint(3), nearbyint(3), rint(3), round(3)

Linux man-pages 6.13 2024-07-23 2536

tsearch(3) Library Functions Manual tsearch(3)

NAME
tsearch, tfind, tdelete, twalk, twalk_r, tdestroy - manage a binary search tree

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <search.h>

typedef enum { preorder, postorder, endorder, leaf } VISIT;

void *tfind(const void *key, void *const *rootp,
typeof(int (const void *, const void *)) *compar);

void *tsearch(const void *key, void **rootp,
typeof(int (const void *, const void *)) *compar);

void *tdelete(const void *restrict key, void **restrict rootp,
typeof(int (const void *, const void *)) *compar);

void twalk(const void *root,
typeof(void (const void *nodep, VISIT which, int depth))

*action);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <search.h>

void twalk_r(const void *root,
typeof(void (const void *nodep, VISIT which, void *closure))

*action,
void *closure);

void tdestroy(void *root,
typeof(void (void *nodep)) * free_node);

DESCRIPTION
tsearch(), tfind(), twalk(), and tdelete() manage a binary search tree. They are gen-
eralized from Knuth (6.2.2) Algorithm T. The first field in each node of the tree is a
pointer to the corresponding data item. (The calling program must store the actual
data.) compar points to a comparison routine, which takes pointers to two items. It
should return an integer which is negative, zero, or positive, depending on whether the
first item is less than, equal to, or greater than the second.

tsearch() searches the tree for an item. key points to the item to be searched for.
rootp points to a variable which points to the root of the tree. If the tree is empty, then
the variable that rootp points to should be set to NULL. If the item is found in the
tree, then tsearch() returns a pointer to the corresponding tree node. (In other words,
tsearch() returns a pointer to a pointer to the data item.) If the item is not found, then
tsearch() adds it, and returns a pointer to the corresponding tree node.

tfind() is like tsearch(), except that if the item is not found, then tfind() returns
NULL.

tdelete() deletes an item from the tree. Its arguments are the same as for tsearch().

twalk() performs depth-first, left-to-right traversal of a binary tree. root points to the
starting node for the traversal. If that node is not the root, then only part of the tree
will be visited. twalk() calls the user function action each time a node is visited (that
is, three times for an internal node, and once for a leaf). action, in turn, takes three

Linux man-pages 6.13 2024-12-13 2537

tsearch(3) Library Functions Manual tsearch(3)

arguments. The first argument is a pointer to the node being visited. The structure of
the node is unspecified, but it is possible to cast the pointer to a pointer-to-pointer-to-
element in order to access the element stored within the node. The application must
not modify the structure pointed to by this argument. The second argument is an inte-
ger which takes one of the values preorder, postorder, or endorder depending on
whether this is the first, second, or third visit to the internal node, or the value leaf if
this is the single visit to a leaf node. (These symbols are defined in <search.h>.) The
third argument is the depth of the node; the root node has depth zero.

(More commonly, preorder, postorder, and endorder are known as preorder, in-
order, and postorder: before visiting the children, after the first and before the sec-
ond, and after visiting the children. Thus, the choice of name postorder is rather con-
fusing.)

twalk_r() is similar to twalk(), but instead of the depth argument, the closure argu-
ment pointer is passed to each invocation of the action callback, unchanged. This
pointer can be used to pass information to and from the callback function in a thread-
safe fashion, without resorting to global variables.

tdestroy() removes the whole tree pointed to by root, freeing all resources allocated
by the tsearch() function. For the data in each tree node the function free_node is
called. The pointer to the data is passed as the argument to the function. If no such
work is necessary, free_node must point to a function doing nothing.

RETURN VALUE
tsearch() returns a pointer to a matching node in the tree, or to the newly added node,
or NULL if there was insufficient memory to add the item. tfind() returns a pointer to
the node, or NULL if no match is found. If there are multiple items that match the
key, the item whose node is returned is unspecified.

tdelete() returns a pointer to the parent of the node deleted, or NULL if the item was
not found. If the deleted node was the root node, tdelete() returns a dangling pointer
that must not be accessed.

tsearch(), tfind(), and tdelete() also return NULL if rootp was NULL on entry.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:rootptsearch(), tfind(), tdelete()
Thread safety MT-Safe race:roottwalk()
Thread safety MT-Safe race:roottwalk_r()
Thread safety MT-Safetdestroy()

STANDARDS
tsearch()
tfind()
tdelete()
twalk()

POSIX.1-2008.

Linux man-pages 6.13 2024-12-13 2538

tsearch(3) Library Functions Manual tsearch(3)

tdestroy()
twalk_r()

GNU.

HISTORY
tsearch()
tfind()
tdelete()
twalk()

POSIX.1-2001, POSIX.1-2008, SVr4.

twalk_r()
glibc 2.30.

NOTES
twalk() takes a pointer to the root, while the other functions take a pointer to a vari-
able which points to the root.

tdelete() frees the memory required for the node in the tree. The user is responsible
for freeing the memory for the corresponding data.

The example program depends on the fact that twalk() makes no further reference to a
node after calling the user function with argument "endorder" or "leaf". This works
with the GNU library implementation, but is not in the System V documentation.

EXAMPLES
The following program inserts twelve random numbers into a binary tree, where du-
plicate numbers are collapsed, then prints the numbers in order.

#define _GNU_SOURCE /* Expose declaration of tdestroy() */
#include <search.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

static void *root = NULL;

static void *
xmalloc(size_t n)
{

void *p;

p = malloc(n);
if (p)

return p;
fprintf(stderr, "insufficient memory\n");
exit(EXIT_FAILURE);

}

static int
compare(const void *pa, const void *pb)
{

Linux man-pages 6.13 2024-12-13 2539

tsearch(3) Library Functions Manual tsearch(3)

if (*(int *) pa < *(int *) pb)
return -1;

if (*(int *) pa > *(int *) pb)
return 1;

return 0;
}

static void
action(const void *nodep, VISIT which, int depth)
{

int *datap;

switch (which) {
case preorder:

break;
case postorder:

datap = *(int **) nodep;
printf("%6d\n", *datap);
break;

case endorder:
break;

case leaf:
datap = *(int **) nodep;
printf("%6d\n", *datap);
break;

}
}

int
main(void)
{

int *ptr;
int **val;

srand(time(NULL));
for (unsigned int i = 0; i < 12; i++) {

ptr = xmalloc(sizeof(*ptr));
*ptr = rand() & 0xff;
val = tsearch(ptr, &root, compare);
if (val == NULL)

exit(EXIT_FAILURE);
if (*val != ptr)

free(ptr);
}
twalk(root, action);
tdestroy(root, free);
exit(EXIT_SUCCESS);

}

Linux man-pages 6.13 2024-12-13 2540

tsearch(3) Library Functions Manual tsearch(3)

SEE ALSO
bsearch(3), hsearch(3), lsearch(3), qsort(3)

Linux man-pages 6.13 2024-12-13 2541

ttyname(3) Library Functions Manual ttyname(3)

NAME
ttyname, ttyname_r - return name of a terminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

char *ttyname(int fd);
int ttyname_r(int fd , char buf [.size], size_t size);

DESCRIPTION
The function ttyname() returns a pointer to the null-terminated pathname of the ter-
minal device that is open on the file descriptor fd, or NULL on error (for example, if
fd is not connected to a terminal). The return value may point to static data, possibly
overwritten by the next call. The function ttyname_r() stores this pathname in the
buffer buf of size size.

RETURN VALUE
The function ttyname() returns a pointer to a pathname on success. On error, NULL
is returned, and errno is set to indicate the error. The function ttyname_r() returns 0
on success, and an error number upon error.

ERRORS
EBADF

Bad file descriptor.

ENODEV
fd refers to a slave pseudoterminal device but the corresponding pathname
could not be found (see NOTES).

ENOTTY
fd does not refer to a terminal device.

ERANGE
(ttyname_r()) size was too small to allow storing the pathname.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:ttynamettyname()
Thread safety MT-Safettyname_r()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.2BSD.

NOTES
A process that keeps a file descriptor that refers to a pts(4) device open when switch-
ing to another mount namespace that uses a different /dev/ptmx instance may still ac-
cidentally find that a device path of the same name for that file descriptor exists.
However, this device path refers to a different device and thus can’t be used to access
the device that the file descriptor refers to. Calling ttyname() or ttyname_r() on the

Linux man-pages 6.13 2024-12-24 2542

ttyname(3) Library Functions Manual ttyname(3)

file descriptor in the new mount namespace will cause these functions to return NULL
and set errno to ENODEV.

SEE ALSO
tty(1), fstat(2), ctermid(3), isatty(3), pts(4)

Linux man-pages 6.13 2024-12-24 2543

ttyslot(3) Library Functions Manual ttyslot(3)

NAME
ttyslot - find the slot of the current user’s terminal in some file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h> /* See NOTES */

int ttyslot(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ttyslot():
Since glibc 2.24:

_DEFAULT_SOURCE
From glibc 2.20 to glibc 2.23:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
glibc 2.19 and earlier:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The legacy function ttyslot() returns the index of the current user’s entry in some file.

Now "What file?" you ask. Well, let’s first look at some history.

Ancient history
There used to be a file /etc/ttys in UNIX V6, that was read by the init(1) program to
find out what to do with each terminal line. Each line consisted of three characters.
The first character was either '0' or '1', where '0' meant "ignore". The second character
denoted the terminal: '8' stood for "/dev/tty8". The third character was an argument to
getty(8) indicating the sequence of line speeds to try ('-' was: start trying 110 baud).
Thus a typical line was "18-". A hang on some line was solved by changing the '1' to
a '0', signaling init, changing back again, and signaling init again.

In UNIX V7 the format was changed: here the second character was the argument to
getty(8) indicating the sequence of line speeds to try ('0' was: cycle through
300-1200-150-110 baud; '4' was for the on-line console DECwriter) while the rest of
the line contained the name of the tty. Thus a typical line was "14console".

Later systems have more elaborate syntax. System V-like systems have /etc/inittab
instead.

Ancient history (2)
On the other hand, there is the file /etc/utmp listing the people currently logged in. It
is maintained by login(1)It has a fixed size, and the appropriate index in the file was
determined by login(1) using the ttyslot() call to find the number of the line in
/etc/ttys (counting from 1).

The semantics of ttyslot
Thus, the function ttyslot() returns the index of the controlling terminal of the calling
process in the file /etc/ttys, and that is (usually) the same as the index of the entry for
the current user in the file /etc/utmp. BSD still has the /etc/ttys file, but System V-like
systems do not, and hence cannot refer to it. Thus, on such systems the documenta-
tion says that ttyslot() returns the current user’s index in the user accounting data
base.

Linux man-pages 6.13 2024-07-23 2544

ttyslot(3) Library Functions Manual ttyslot(3)

RETURN VALUE
If successful, this function returns the slot number. On error (e.g., if none of the file
descriptors 0, 1, or 2 is associated with a terminal that occurs in this data base) it re-
turns 0 on UNIX V6 and V7 and BSD-like systems, but -1 on System V-like systems.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafettyslot()

VERSIONS
The utmp file is found in various places on various systems, such as /etc/utmp,
/var/adm/utmp, /var/run/utmp.

STANDARDS
None.

HISTORY
SUSv1; marked as LEGACY in SUSv2; removed in POSIX.1-2001. SUSv2 requires
-1 on error.

The glibc2 implementation of this function reads the file _PATH_TTYS, defined in
<ttyent.h> as "/etc/ttys". It returns 0 on error. Since Linux systems do not usually
have "/etc/ttys", it will always return 0.

On BSD-like systems and Linux, the declaration of ttyslot() is provided by
<unistd.h>. On System V-like systems, the declaration is provided by <stdlib.h>.
Since glibc 2.24, <stdlib.h> also provides the declaration with the following feature
test macro definitions:

(_XOPEN_SOURCE >= 500 ||
(_XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED))

&& ! (_POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600)

Minix also has fttyslot(fd)

SEE ALSO
getttyent(3), ttyname(3), utmp(5)

Linux man-pages 6.13 2024-07-23 2545

tzset(3) Library Functions Manual tzset(3)

NAME
tzset, tzname, timezone, daylight - initialize time conversion information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

void tzset(void);

extern char *tzname[2];
extern long timezone;
extern int daylight;

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tzset():
_POSIX_C_SOURCE

tzname:
_POSIX_C_SOURCE

timezone, daylight:
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

DESCRIPTION
The tzset() function initializes the tzname variable from the TZ environment variable.
This function is automatically called by the other time conversion functions that de-
pend on the timezone. In a System-V-like environment, it will also set the variables
timezone (seconds West of UTC) and daylight (to 0 if this timezone does not have any
daylight saving time rules, or to nonzero if there is a time, past, present, or future
when daylight saving time applies).

The tzset() function initializes these variables to unspecified values if this timezone is
a geographical timezone like "America/New_York" (see below).

If the TZ variable does not appear in the environment, the system timezone is used.
The system timezone is configured by copying, or linking, a file in the tzfile(5) format
to /etc/localtime. A timezone database of these files may be located in the system
timezone directory (see the FILES section below).

If the TZ variable does appear in the environment, but its value is empty, or its value
cannot be interpreted using any of the formats specified below, then Coordinated Uni-
versal Time (UTC) is used.

A nonempty value of TZ can be one of two formats, either of which can be preceded
by a colon which is ignored. The first format is a string of characters that directly rep-
resent the timezone to be used:

std offset[dst[offset][,start[/time],end[/time]]]

There are no spaces in the specification. The std string specifies an abbreviation for
the timezone and must be three or more alphabetic characters. When enclosed be-
tween the less-than (<) and greater-than (>) signs, the character set is expanded to in-
clude the plus (+) sign, the minus (-) sign, and digits. The offset string immediately

Linux man-pages 6.13 2024-08-30 2546

tzset(3) Library Functions Manual tzset(3)

follows std and specifies the time value to be added to the local time to get Coordi-
nated Universal Time (UTC). The offset is positive if the local timezone is west of the
Prime Meridian and negative if it is east. The hour must be between 0 and 24, and the
minutes and seconds 00 and 59:

[+|-]hh[:mm[:ss]]

The dst string and offset specify the name and offset for the corresponding daylight
saving timezone. If the offset is omitted, it defaults to one hour ahead of standard
time.

The start field specifies when daylight saving time goes into effect and the end field
specifies when the change is made back to standard time. These fields may have the
following formats:

Jn This specifies the Julian day with n between 1 and 365. Leap days are not
counted. In this format, February 29 can’t be represented; February 28 is day
59, and March 1 is always day 60.

n This specifies the zero-based Julian day with n between 0 and 365. February
29 is counted in leap years.

Mm.w.d
This specifies day d (0 <= d <= 6) of week w (1 <= w <= 5) of month m (1 <=
m <= 12). Week 1 is the first week in which day d occurs and week 5 is the
last week in which day d occurs. Day 0 is a Sunday.

The time fields specify when, in the local time currently in effect, the change to the
other time occurs. They use the same format as offset except that the hour can be in
the range [-167, 167] to represent times before and after the named day. If omitted,
the default is 02:00:00.

Here is an example for New Zealand, where the standard time (NZST) is 12 hours
ahead of UTC, and daylight saving time (NZDT), 13 hours ahead of UTC, runs from
September’s last Sunday, at the default time 02:00:00, to April’s first Sunday at
03:00:00.

TZ="NZST-12:00:00NZDT-13:00:00,M9.5.0,M4.1.0/3"

The second —or "geographical"— format specifies that the timezone information
should be read from a file:

filespec

The filespec specifies a tzfile(5)-format file to read the timezone information from. If
filespec does not begin with a '/', the file specification is relative to the system time-
zone directory. If the specified file cannot be read or interpreted, Coordinated Univer-
sal Time (UTC) is used; however, applications should not depend on random filespec
values standing for UTC, as TZ formats may be extended in the future.

Here’s an example, once more for New Zealand:

TZ="Pacific/Auckland"

ENVIRONMENT
TZ If this variable is set its value takes precedence over the system configured

timezone.

Linux man-pages 6.13 2024-08-30 2547

tzset(3) Library Functions Manual tzset(3)

TZDIR
If this variable is set its value takes precedence over the system configured
timezone database directory path.

FILES
/etc/localtime

The system timezone file.

/usr/share/zoneinfo/
The system timezone database directory.

/usr/share/zoneinfo/posixrules
When a TZ string includes a dst timezone without anything following it, then
this file is used for the start/end rules. It is in the tzfile(5) format. By default,
the zoneinfo Makefile hard links it to the America/New_York tzfile.

Above are the current standard file locations, but they are configurable when glibc is
compiled.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localetzset()

STANDARDS
POSIX.1-2024.

HISTORY
tzset()
tzname

POSIX.1-1988, SVr4, 4.3BSD.

timezone
daylight

POSIX.1-2001 (XSI), SVr4, 4.3BSD.

4.3BSD had a function char *timezone(zone, dst) that returned the name of the time-
zone corresponding to its first argument (minutes West of UTC). If the second argu-
ment was 0, the standard name was used, otherwise the daylight saving time version.

CAVEATS
Because the values of tzname, timezone, and daylight are often unspecified, and ac-
cessing them can lead to undefined behavior in multithreaded applications, code
should instead obtain time zone offset and abbreviations from the tm_gmtoff and
tm_zone members of the broken-down time structure tm(3type).

BUGS
Since this function does not report errors, there’s no way to know if the value of TZ
represents a valid time zone.

SEE ALSO
date(1), gettimeofday(2), time(2), ctime(3), getenv(3), tzfile(5)

Linux man-pages 6.13 2024-08-30 2548

ualarm(3) Library Functions Manual ualarm(3)

NAME
ualarm - schedule signal after given number of microseconds

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

useconds_t ualarm(useconds_t usecs, useconds_t interval);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ualarm():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The ualarm() function causes the signal SIGALRM to be sent to the invoking
process after (not less than) usecs microseconds. The delay may be lengthened
slightly by any system activity or by the time spent processing the call or by the gran-
ularity of system timers.

Unless caught or ignored, the SIGALRM signal will terminate the process.

If the interval argument is nonzero, further SIGALRM signals will be sent every in-
terval microseconds after the first.

RETURN VALUE
This function returns the number of microseconds remaining for any alarm that was
previously set, or 0 if no alarm was pending.

ERRORS
EINTR

Interrupted by a signal; see signal(7).

EINVAL
usecs or interval is not smaller than 1000000. (On systems where that is con-
sidered an error.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeualarm()

STANDARDS
None.

HISTORY
4.3BSD, POSIX.1-2001. POSIX.1-2001 marks it as obsolete. Removed in
POSIX.1-2008.

4.3BSD, SUSv2, and POSIX do not define any errors.

Linux man-pages 6.13 2024-07-23 2549

ualarm(3) Library Functions Manual ualarm(3)

POSIX.1-2001 does not specify what happens if the usecs argument is 0. On Linux
(and probably most other systems), the effect is to cancel any pending alarm.

The type useconds_t is an unsigned integer type capable of holding integers in the
range [0,1000000]. On the original BSD implementation, and in glibc before glibc
2.1, the arguments to ualarm() were instead typed as unsigned int. Programs will be
more portable if they never mention useconds_t explicitly.

The interaction of this function with other timer functions such as alarm(2), sleep(3),
nanosleep(2), setitimer(2), timer_create(2), timer_delete(2), timer_getoverrun(2),
timer_gettime(2), timer_settime(2), usleep(3) is unspecified.

This function is obsolete. Use setitimer(2) or POSIX interval timers (timer_cre-
ate(2), etc.) instead.

SEE ALSO
alarm(2), getitimer(2), nanosleep(2), select(2), setitimer(2), usleep(3), time(7)

Linux man-pages 6.13 2024-07-23 2550

ulimit(3) Library Functions Manual ulimit(3)

NAME
ulimit - get and set user limits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ulimit.h>

[[deprecated]] long ulimit(int cmd , long newlimit);

DESCRIPTION
Warning: this routine is obsolete. Use getrlimit(2), setrlimit(2), and sysconf(3) in-
stead. For the shell command ulimit, see bash(1)

The ulimit() call will get or set some limit for the calling process. The cmd argument
can have one of the following values.

UL_GETFSIZE
Return the limit on the size of a file, in units of 512 bytes.

UL_SETFSIZE
Set the limit on the size of a file.

3 (Not implemented for Linux.) Return the maximum possible address of the
data segment.

4 (Implemented but no symbolic constant provided.) Return the maximum num-
ber of files that the calling process can open.

RETURN VALUE
On success, ulimit() returns a nonnegative value. On error, -1 is returned, and errno
is set to indicate the error.

ERRORS
EPERM

An unprivileged process tried to increase a limit.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeulimit()

STANDARDS
POSIX.1-2008.

HISTORY
SVr4, POSIX.1-2001. POSIX.1-2008 marks it as obsolete.

SEE ALSO
bash(1), getrlimit(2), setrlimit(2), sysconf(3)

Linux man-pages 6.13 2024-07-23 2551

undocumented(3) Library Functions Manual undocumented(3)

NAME
undocumented - undocumented library functions

SYNOPSIS
Undocumented library functions

DESCRIPTION
This man page mentions those library functions which are implemented in the stan-
dard libraries but not yet documented in man pages.

Solicitation
If you have information about these functions, please look in the source code, write a
man page (using a style similar to that of the other Linux section 3 man pages), and
send it to mtk.manpages@gmail.com for inclusion in the next man page release.

The list
authdes_create(3), authdes_getucred(3), authdes_pk_create(3), clntunix_create(3),
creat64(3), dn_skipname(3), fcrypt(3), fp_nquery(3), fp_query(3), fp_resstat(3),
freading(3), freopen64(3), fseeko64(3), ftello64(3), ftw64(3), fwscanf (3), get_av-
phys_pages(3), getdirentries64(3), getmsg(3), getnetname(3), get_phys_pages(3), get-
publickey(3), getsecretkey(3), h_errlist(3), host2netname(3), hostalias(3),
inet_nsap_addr(3), inet_nsap_ntoa(3), init_des(3), libc_nls_init(3), mstats(3), net-
name2host(3), netname2user(3), nlist(3), obstack_free(3), parse_printf_format(3),
p_cdname(3), p_cdnname(3), p_class(3), p_fqname(3), p_option(3), p_query(3),
printf_size(3), printf_size_info(3), p_rr(3), p_time(3), p_type(3), putlong(3), put-
short(3), re_compile_fastmap(3), re_compile_pattern(3), register_printf_function(3),
re_match(3), re_match_2(3), re_rx_search(3), re_search(3), re_search_2(3),
re_set_registers(3), re_set_syntax(3), res_send_setqhook(3), res_send_setrhook(3),
ruserpass(3), setfileno(3), sethostfile(3), svc_exit(3), svcudp_enablecache(3), tell(3),
thrd_create(3), thrd_current(3), thrd_equal(3), thrd_sleep(3), thrd_yield(3),
tr_break(3), tzsetwall(3), ufc_dofinalperm(3), ufc_doit(3), user2netname(3), wc-
schrnul(3), wcsftime(3), wscanf (3), xdr_authdes_cred(3), xdr_authdes_verf (3),
xdr_cryptkeyarg(3), xdr_cryptkeyres(3), xdr_datum(3), xdr_des_block(3), xdr_do-
mainname(3), xdr_getcredres(3), xdr_keybuf (3), xdr_keystatus(3), xdr_mapname(3),
xdr_netnamestr(3), xdr_netobj(3), xdr_passwd(3), xdr_peername(3), xdr_rmt-
call_args(3), xdr_rmtcallres(3), xdr_unixcred(3), xdr_yp_buf (3), xdr_yp_inaddr(3),
xdr_ypbind_binding(3), xdr_ypbind_resp(3), xdr_ypbind_resptype(3), xdr_yp-
bind_setdom(3), xdr_ypdelete_args(3), xdr_ypmaplist(3), xdr_ypmaplist_str(3),
xdr_yppasswd(3), xdr_ypreq_key(3), xdr_ypreq_nokey(3), xdr_ypresp_all(3),
xdr_ypresp_all_seq(3), xdr_ypresp_key_val(3), xdr_ypresp_maplist(3),
xdr_ypresp_master(3), xdr_ypresp_order(3), xdr_ypresp_val(3), xdr_ypstat(3),
xdr_ypupdate_args(3), yp_all(3), yp_bind(3), yperr_string(3), yp_first(3),
yp_get_default_domain(3), yp_maplist(3), yp_master(3), yp_match(3), yp_next(3),
yp_order(3), ypprot_err(3), yp_unbind(3), yp_update(3)

Linux man-pages 6.13 2024-05-02 2552

ungetwc(3) Library Functions Manual ungetwc(3)

NAME
ungetwc - push back a wide character onto a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);

DESCRIPTION
The ungetwc() function is the wide-character equivalent of the ungetc(3) function. It
pushes back a wide character onto stream and returns it.

If wc is WEOF, it returns WEOF. If wc is an invalid wide character, it sets errno to
EILSEQ and returns WEOF.

If wc is a valid wide character, it is pushed back onto the stream and thus becomes
available for future wide-character read operations. The file-position indicator is
decremented by one or more. The end-of-file indicator is cleared. The backing stor-
age of the file is not affected.

Note: wc need not be the last wide-character read from the stream; it can be any other
valid wide character.

If the implementation supports multiple push-back operations in a row, the pushed-
back wide characters will be read in reverse order; however, only one level of push-
back is guaranteed.

RETURN VALUE
The ungetwc() function returns wc when successful, or WEOF upon failure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeungetwc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of ungetwc() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
fgetwc(3)

Linux man-pages 6.13 2024-07-23 2553

unlocked_stdio(3) Library Functions Manual unlocked_stdio(3)

NAME
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked - nonlocking
stdio functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int getc_unlocked(FILE *stream);
int getchar_unlocked(void);
int putc_unlocked(int c, FILE *stream);
int putchar_unlocked(int c);

void clearerr_unlocked(FILE *stream);
int feof_unlocked(FILE *stream);
int ferror_unlocked(FILE *stream);
int fileno_unlocked(FILE *stream);
int fflush_unlocked(FILE *_Nullable stream);

int fgetc_unlocked(FILE *stream);
int fputc_unlocked(int c, FILE *stream);

size_t fread_unlocked(void ptr[restrict .size * .n],
size_t size, size_t n,
FILE *restrict stream);

size_t fwrite_unlocked(const void ptr[restrict .size * .n],
size_t size, size_t n,
FILE *restrict stream);

char *fgets_unlocked(char s[restrict .n], int n, FILE *restrict stream);
int fputs_unlocked(const char *restrict s, FILE *restrict stream);

#include <wchar.h>

wint_t getwc_unlocked(FILE *stream);
wint_t getwchar_unlocked(void);
wint_t fgetwc_unlocked(FILE *stream);

wint_t fputwc_unlocked(wchar_t wc, FILE *stream);
wint_t putwc_unlocked(wchar_t wc, FILE *stream);
wint_t putwchar_unlocked(wchar_t wc);

wchar_t *fgetws_unlocked(wchar_t ws[restrict .n], int n,
FILE *restrict stream);

int fputws_unlocked(const wchar_t *restrict ws,
FILE *restrict stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getc_unlocked(), getchar_unlocked(), putc_unlocked(), putchar_unlocked():
/* glibc >= 2.24: */ _POSIX_C_SOURCE >= 199309L

|| /* glibc <= 2.23: */ _POSIX_C_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

clearerr_unlocked(), feof_unlocked(), ferror_unlocked(), fileno_unlocked(),

Linux man-pages 6.13 2024-07-23 2554

unlocked_stdio(3) Library Functions Manual unlocked_stdio(3)

fflush_unlocked(), fgetc_unlocked(), fputc_unlocked(), fread_unlocked(),
fwrite_unlocked():

/* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

fgets_unlocked(), fputs_unlocked(), getwc_unlocked(), getwchar_unlocked(),
fgetwc_unlocked(), fputwc_unlocked(), putwchar_unlocked(), fgetws_unlocked(),
fputws_unlocked():

_GNU_SOURCE

DESCRIPTION
Each of these functions has the same behavior as its counterpart without the "_un-
locked" suffix, except that they do not use locking (they do not set locks themselves,
and do not test for the presence of locks set by others) and hence are thread-unsafe.
See flockfile(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetc_unlocked(),
putc_unlocked(),
clearerr_unlocked(),
fflush_unlocked(),
fgetc_unlocked(),
fputc_unlocked(),
fread_unlocked(),
fwrite_unlocked(),
fgets_unlocked(),
fputs_unlocked(),
getwc_unlocked(),
fgetwc_unlocked(),
fputwc_unlocked(),
putwc_unlocked(),
fgetws_unlocked(),
fputws_unlocked()

MT-Safe race:stream

Thread safetygetchar_unlocked(),
getwchar_unlocked()

MT-Unsafe race:stdin

Thread safetyputchar_unlocked(),
putwchar_unlocked()

MT-Unsafe race:stdout

Thread safety MT-Safefeof_unlocked(),
ferror_unlocked(),
fileno_unlocked()

STANDARDS
getc_unlocked()
getchar_unlocked()
putc_unlocked()
putchar_unlocked()

POSIX.1-2008.

Linux man-pages 6.13 2024-07-23 2555

unlocked_stdio(3) Library Functions Manual unlocked_stdio(3)

Others:
None.

HISTORY
getc_unlocked()
getchar_unlocked()
putc_unlocked()
putchar_unlocked()

POSIX.1-2001.

SEE ALSO
flockfile(3), stdio(3)

Linux man-pages 6.13 2024-07-23 2556

unlockpt(3) Library Functions Manual unlockpt(3)

NAME
unlockpt - unlock a pseudoterminal master/slave pair

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE
#include <stdlib.h>

int unlockpt(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

unlockpt():
Since glibc 2.24:

_XOPEN_SOURCE >= 500
glibc 2.23 and earlier:

_XOPEN_SOURCE

DESCRIPTION
The unlockpt() function unlocks the slave pseudoterminal device corresponding to
the master pseudoterminal referred to by the file descriptor fd .

unlockpt() should be called before opening the slave side of a pseudoterminal.

RETURN VALUE
When successful, unlockpt() returns 0. Otherwise, it returns -1 and sets errno to in-
dicate the error.

ERRORS
EBADF

The fd argument is not a file descriptor open for writing.

EINVAL
The fd argument is not associated with a master pseudoterminal.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeunlockpt()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

SEE ALSO
grantpt(3), posix_openpt(3), ptsname(3), pts(4), pty(7)

Linux man-pages 6.13 2024-07-23 2557

updwtmp(3) Library Functions Manual updwtmp(3)

NAME
updwtmp, logwtmp - append an entry to the wtmp file

LIBRARY
System utilities library (libutil, -lutil)

SYNOPSIS
#include <utmp.h>

void updwtmp(const char *wtmp_file, const struct utmp *ut);
void logwtmp(const char *line, const char *name, const char *host);

DESCRIPTION
updwtmp() appends the utmp structure ut to the wtmp file.

logwtmp() constructs a utmp structure using line, name, host, current time, and cur-
rent process ID. Then it calls updwtmp() to append the structure to the wtmp file.

FILES
/var/log/wtmp

database of past user logins

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe sig:ALRM timerupdwtmp(), logwtmp()

VERSIONS
For consistency with the other "utmpx" functions (see getutxent(3)), glibc provides
(since glibc 2.1):

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <utmpx.h>
void updwtmpx (const char *wtmpx_file, const struct utmpx *utx);

This function performs the same task as updwtmp(), but differs in that it takes a
utmpx structure as its last argument.

STANDARDS
None.

HISTORY
Solaris, NetBSD.

SEE ALSO
getutxent(3), wtmp(5)

Linux man-pages 6.13 2024-07-23 2558

uselocale(3) Library Functions Manual uselocale(3)

NAME
uselocale - set/get the locale for the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <locale.h>

locale_t uselocale(locale_t newloc);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

uselocale():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The uselocale() function sets the current locale for the calling thread, and returns the
thread’s previously current locale. After a successful call to uselocale(), any calls by
this thread to functions that depend on the locale will operate as though the locale has
been set to newloc.

The newloc argument can have one of the following values:

A handle returned by a call to newlocale(3) or duplocale(3)
The calling thread’s current locale is set to the specified locale.

The special locale object handle LC_GLOBAL_LOCALE
The calling thread’s current locale is set to the global locale determined by set-
locale(3).

(locale_t) 0
The calling thread’s current locale is left unchanged (and the current locale is
returned as the function result).

RETURN VALUE
On success, uselocale() returns the locale handle that was set by the previous call to
uselocale() in this thread, or LC_GLOBAL_LOCALE if there was no such previous
call. On error, it returns (locale_t) 0, and sets errno to indicate the error.

ERRORS
EINVAL

newloc does not refer to a valid locale object.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.3. POSIX.1-2008.

NOTES
Unlike setlocale(3), uselocale() does not allow selective replacement of individual lo-
cale categories. To employ a locale that differs in only a few categories from the cur-
rent locale, use calls to duplocale(3) and newlocale(3) to obtain a locale object equiv-
alent to the current locale and modify the desired categories in that object.

Linux man-pages 6.13 2024-07-23 2559

uselocale(3) Library Functions Manual uselocale(3)

EXAMPLES
See newlocale(3) and duplocale(3).

SEE ALSO
locale(1), duplocale(3), freelocale(3), newlocale(3), setlocale(3), locale(5), locale(7)

Linux man-pages 6.13 2024-07-23 2560

usleep(3) Library Functions Manual usleep(3)

NAME
usleep - suspend execution for microsecond intervals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int usleep(useconds_t usec);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

usleep():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The usleep() function suspends execution of the calling thread for (at least) usec mi-
croseconds. The sleep may be lengthened slightly by any system activity or by the
time spent processing the call or by the granularity of system timers.

RETURN VALUE
The usleep() function returns 0 on success. On error, -1 is returned, with errno set to
indicate the error.

ERRORS
EINTR

Interrupted by a signal; see signal(7).

EINVAL
usec is greater than or equal to 1000000. (On systems where that is consid-
ered an error.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeusleep()

STANDARDS
None.

HISTORY
4.3BSD, POSIX.1-2001. POSIX.1-2001 declares it obsolete, suggesting nanosleep(2)
instead. Removed in POSIX.1-2008.

On the original BSD implementation, and before glibc 2.2.2, the return type of this
function is void . The POSIX version returns int, and this is also the prototype used
since glibc 2.2.2.

Only the EINVAL error return is documented by SUSv2 and POSIX.1-2001.

Linux man-pages 6.13 2024-07-23 2561

usleep(3) Library Functions Manual usleep(3)

CAVEATS
The interaction of this function with the SIGALRM signal, and with other timer
functions such as alarm(2), sleep(3), nanosleep(2), setitimer(2), timer_create(2),
timer_delete(2), timer_getoverrun(2), timer_gettime(2), timer_settime(2), ualarm(3) is
unspecified.

SEE ALSO
alarm(2), getitimer(2), nanosleep(2), select(2), setitimer(2), sleep(3), ualarm(3), usec-
onds_t(3type), time(7)

Linux man-pages 6.13 2024-07-23 2562

wcpcpy(3) Library Functions Manual wcpcpy(3)

NAME
wcpcpy - copy a wide-character string, returning a pointer to its end

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcpcpy(wchar_t *restrict dest, const wchar_t *restrict src);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcpcpy():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcpcpy() function is the wide-character equivalent of the stpcpy(3) function. It
copies the wide-character string pointed to by src, including the terminating null wide
character (L'\0'), to the array pointed to by dest.

The strings may not overlap.

The programmer must ensure that there is room for at least wcslen(src)+1 wide char-
acters at dest.

RETURN VALUE
wcpcpy() returns a pointer to the end of the wide-character string dest, that is, a
pointer to the terminating null wide character.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcpcpy()

STANDARDS
POSIX.1-2008.

SEE ALSO
strcpy(3), wcscpy(3)

Linux man-pages 6.13 2024-07-23 2563

wcpncpy(3) Library Functions Manual wcpncpy(3)

NAME
wcpncpy - copy a fixed-size string of wide characters, returning a pointer to its end

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcpncpy(wchar_t dest[restrict .n],
const wchar_t src[restrict .n],
size_t n);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcpncpy():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcpncpy() function is the wide-character equivalent of the stpncpy(3) function.
It copies at most n wide characters from the wide-character string pointed to by src,
including the terminating null wide (L'\0'), to the array pointed to by dest. Exactly n
wide characters are written at dest. If the length wcslen(src) is smaller than n, the re-
maining wide characters in the array pointed to by dest are filled with L'\0' characters.
If the length wcslen(src) is greater than or equal to n, the string pointed to by dest will
not be L'\0' terminated.

The strings may not overlap.

The programmer must ensure that there is room for at least n wide characters at dest.

RETURN VALUE
wcpncpy() returns a pointer to the last wide character written, that is, dest+n-1.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcpncpy()

STANDARDS
POSIX.1-2008.

SEE ALSO
stpncpy(3), wcsncpy(3)

Linux man-pages 6.13 2024-07-23 2564

wcrtomb(3) Library Functions Manual wcrtomb(3)

NAME
wcrtomb - convert a wide character to a multibyte sequence

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcrtomb(char *restrict s, wchar_t wc, mbstate_t *restrict ps);

DESCRIPTION
The main case for this function is when s is not NULL and wc is not a null wide char-
acter (L'\0'). In this case, the wcrtomb() function converts the wide character wc to
its multibyte representation and stores it at the beginning of the character array
pointed to by s. It updates the shift state *ps, and returns the length of said multibyte
representation, that is, the number of bytes written at s.

A different case is when s is not NULL, but wc is a null wide character (L'\0'). In this
case, the wcrtomb() function stores at the character array pointed to by s the shift se-
quence needed to bring *ps back to the initial state, followed by a '\0' byte. It updates
the shift state *ps (i.e., brings it into the initial state), and returns the length of the shift
sequence plus one, that is, the number of bytes written at s.

A third case is when s is NULL. In this case, wc is ignored, and the function effec-
tively returns

wcrtomb(buf, L'\0', ps)

where buf is an internal anonymous buffer.

In all of the above cases, if ps is NULL, a static anonymous state known only to the
wcrtomb() function is used instead.

RETURN VALUE
The wcrtomb() function returns the number of bytes that have been or would have
been written to the byte array at s. If wc can not be represented as a multibyte se-
quence (according to the current locale), (size_t) -1 is returned, and errno set to
EILSEQ.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:wcrtomb/!pswcrtomb()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wcrtomb() depends on the LC_CTYPE category of the current lo-
cale.

Passing NULL as ps is not multithread safe.

Linux man-pages 6.13 2024-07-23 2565

wcrtomb(3) Library Functions Manual wcrtomb(3)

SEE ALSO
mbsinit(3), wcsrtombs(3)

Linux man-pages 6.13 2024-07-23 2566

wcscasecmp(3) Library Functions Manual wcscasecmp(3)

NAME
wcscasecmp, wcsncasecmp - compare two wide-character strings, ignoring case

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int wcscasecmp(const wchar_t *s1, const wchar_t *s2);
int wcsncasecmp(const wchar_t s1[.n], const wchar_t s2[.n], size_t n);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcscasecmp(), wcsncasecmp():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcscasecmp() function is the wide-character equivalent of the strcasecmp(3)
function. It compares the wide-character string pointed to by s1 and the wide-charac-
ter string pointed to by s2, ignoring case differences (towupper(3), towlower(3)).

The wcsncasecmp() function is similar (the wide-character equivalent of strn-
casecmp(3)), except that it compares no more than n wide characters of s1 and s2.

RETURN VALUE
The wcscasecmp() and wcsncasecmp() functions return an integer less than, equal to,
or greater than zero if s1 is, after ignoring case, found to be less than, to match, or be
greater than s2, respectively.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewcscasecmp(), wcsncasecmp()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1.

NOTES
The behavior of wcscasecmp() depends on the LC_CTYPE category of the current
locale.

SEE ALSO
strcasecmp(3), wcscmp(3)

Linux man-pages 6.13 2024-07-23 2567

wcscat(3) Library Functions Manual wcscat(3)

NAME
wcscat - concatenate two wide-character strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcscat(wchar_t *restrict dest, const wchar_t *restrict src);

DESCRIPTION
The wcscat() function is the wide-character equivalent of the strcat(3) function. It
copies the wide-character string pointed to by src, including the terminating null wide
character (L'\0'), to the end of the wide-character string pointed to by dest.

The strings may not overlap.

The programmer must ensure that there is room for at least wcslen(dest)+wc-
slen(src)+1 wide characters at dest.

RETURN VALUE
wcscat() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcscat()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strcat(3), wcpcpy(3), wcscpy(3), wcsncat(3)

Linux man-pages 6.13 2024-07-23 2568

wcschr(3) Library Functions Manual wcschr(3)

NAME
wcschr - search a wide character in a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcschr(const wchar_t *wcs, wchar_t wc);

DESCRIPTION
The wcschr() function is the wide-character equivalent of the strchr(3) function. It
searches the first occurrence of wc in the wide-character string pointed to by wcs.

RETURN VALUE
The wcschr() function returns a pointer to the first occurrence of wc in the wide-char-
acter string pointed to by wcs, or NULL if wc does not occur in the string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcschr()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strchr(3), wcspbrk(3), wcsrchr(3), wcsstr(3), wmemchr(3)

Linux man-pages 6.13 2024-07-23 2569

wcscmp(3) Library Functions Manual wcscmp(3)

NAME
wcscmp - compare two wide-character strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int wcscmp(const wchar_t *s1, const wchar_t *s2);

DESCRIPTION
The wcscmp() function is the wide-character equivalent of the strcmp(3) function. It
compares the wide-character string pointed to by s1 and the wide-character string
pointed to by s2.

RETURN VALUE
The wcscmp() function returns zero if the wide-character strings at s1 and s2 are
equal. It returns an integer greater than zero if at the first differing position i, the cor-
responding wide-character s1[i] is greater than s2[i]. It returns an integer less than
zero if at the first differing position i, the corresponding wide-character s1[i] is less
than s2[i].

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcscmp()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strcmp(3), wcscasecmp(3), wmemcmp(3)

Linux man-pages 6.13 2024-07-23 2570

wcscpy(3) Library Functions Manual wcscpy(3)

NAME
wcscpy - copy a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcscpy(wchar_t *restrict dest, const wchar_t *restrict src);

DESCRIPTION
The wcscpy() function is the wide-character equivalent of the strcpy(3) function. It
copies the wide-character string pointed to by src, including the terminating null wide
character (L'\0'), to the array pointed to by dest.

The strings may not overlap.

The programmer must ensure that there is room for at least wcslen(src)+1 wide char-
acters at dest.

RETURN VALUE
wcscpy() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcscpy()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strcpy(3), wcpcpy(3), wcscat(3), wcsdup(3), wmemcpy(3)

Linux man-pages 6.13 2024-07-23 2571

wcscspn(3) Library Functions Manual wcscspn(3)

NAME
wcscspn - search a wide-character string for any of a set of wide characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcscspn(const wchar_t *wcs, const wchar_t *reject);

DESCRIPTION
The wcscspn() function is the wide-character equivalent of the strcspn(3) function. It
determines the length of the longest initial segment of wcs which consists entirely of
wide-characters not listed in reject. In other words, it searches for the first occurrence
in the wide-character string wcs of any of the characters in the wide-character string
reject.

RETURN VALUE
The wcscspn() function returns the number of wide characters in the longest initial
segment of wcs which consists entirely of wide-characters not listed in reject. In
other words, it returns the position of the first occurrence in the wide-character string
wcs of any of the characters in the wide-character string reject, or wcslen(wcs) if there
is none.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcscspn()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strcspn(3), wcspbrk(3), wcsspn(3)

Linux man-pages 6.13 2024-07-23 2572

wcsdup(3) Library Functions Manual wcsdup(3)

NAME
wcsdup - duplicate a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcsdup(const wchar_t *s);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcsdup():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcsdup() function is the wide-character equivalent of the strdup(3) function. It
allocates and returns a new wide-character string whose initial contents is a duplicate
of the wide-character string pointed to by s.

Memory for the new wide-character string is obtained with malloc(3), and should be
freed with free(3).

RETURN VALUE
On success, wcsdup() returns a pointer to the new wide-character string. On error, it
returns NULL, with errno set to indicate the error.

ERRORS
ENOMEM

Insufficient memory available to allocate duplicate string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsdup()

STANDARDS
POSIX.1-2008.

HISTORY
libc5, glibc 2.0.

SEE ALSO
strdup(3), wcscpy(3)

Linux man-pages 6.13 2024-07-23 2573

wcslen(3) Library Functions Manual wcslen(3)

NAME
wcslen - determine the length of a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcslen(const wchar_t *s);

DESCRIPTION
The wcslen() function is the wide-character equivalent of the strlen(3) function. It de-
termines the length of the wide-character string pointed to by s, excluding the termi-
nating null wide character (L'\0').

RETURN VALUE
The wcslen() function returns the number of wide characters in s.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcslen()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
In cases where the input buffer may not contain a terminating null wide character, wc-
snlen(3) should be used instead.

SEE ALSO
strlen(3)

Linux man-pages 6.13 2024-07-23 2574

wcsncat(3) Library Functions Manual wcsncat(3)

NAME
wcsncat - concatenate two wide-character strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcsncat(wchar_t dest[restrict .n],
const wchar_t src[restrict .n],
size_t n);

DESCRIPTION
The wcsncat() function is the wide-character equivalent of the strncat(3) function. It
copies at most n wide characters from the wide-character string pointed to by src to
the end of the wide-character string pointed to by dest, and adds a terminating null
wide character (L'\0').

The strings may not overlap.

The programmer must ensure that there is room for at least wcslen(dest)+n+1 wide
characters at dest.

RETURN VALUE
wcsncat() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsncat()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strncat(3), wcscat(3)

Linux man-pages 6.13 2024-07-23 2575

wcsncmp(3) Library Functions Manual wcsncmp(3)

NAME
wcsncmp - compare two fixed-size wide-character strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int wcsncmp(const wchar_t s1[.n], const wchar_t s2[.n], size_t n);

DESCRIPTION
The wcsncmp() function is the wide-character equivalent of the strncmp(3) function.
It compares the wide-character string pointed to by s1 and the wide-character string
pointed to by s2, but at most n wide characters from each string. In each string, the
comparison extends only up to the first occurrence of a null wide character (L'\0'), if
any.

RETURN VALUE
The wcsncmp() function returns zero if the wide-character strings at s1 and s2, trun-
cated to at most length n, are equal. It returns an integer greater than zero if at the
first differing position i (i < n), the corresponding wide-character s1[i] is greater than
s2[i]. It returns an integer less than zero if at the first differing position i (i < n), the
corresponding wide-character s1[i] is less than s2[i].

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsncmp()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strncmp(3), wcsncasecmp(3)

Linux man-pages 6.13 2024-07-23 2576

wcsncpy(3) Library Functions Manual wcsncpy(3)

NAME
wcsncpy - copy a fixed-size string of wide characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcsncpy(wchar_t dest[restrict .n],
const wchar_t src[restrict .n],
size_t n);

DESCRIPTION
The wcsncpy() function is the wide-character equivalent of the strncpy(3) function. It
copies at most n wide characters from the wide-character string pointed to by src, in-
cluding the terminating null wide character (L'\0'), to the array pointed to by dest.
Exactly n wide characters are written at dest. If the length wcslen(src) is smaller than
n, the remaining wide characters in the array pointed to by dest are filled with null
wide characters. If the length wcslen(src) is greater than or equal to n, the string
pointed to by dest will not be terminated by a null wide character.

The strings may not overlap.

The programmer must ensure that there is room for at least n wide characters at dest.

RETURN VALUE
wcsncpy() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsncpy()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strncpy(3)

Linux man-pages 6.13 2024-07-23 2577

wcsnlen(3) Library Functions Manual wcsnlen(3)

NAME
wcsnlen - determine the length of a fixed-size wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcsnlen(const wchar_t s[.maxlen], size_t maxlen);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcsnlen():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcsnlen() function is the wide-character equivalent of the strnlen(3) function. It
returns the number of wide-characters in the string pointed to by s, not including the
terminating null wide character (L'\0'), but at most maxlen wide characters (note: this
parameter is not a byte count). In doing this, wcsnlen() looks at only the first maxlen
wide characters at s and never beyond s[maxlen-1].

RETURN VALUE
The wcsnlen() function returns wcslen(s), if that is less than maxlen, or maxlen if
there is no null wide character among the first maxlen wide characters pointed to by s.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsnlen()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1.

SEE ALSO
strnlen(3), wcslen(3)

Linux man-pages 6.13 2024-07-23 2578

wcsnrtombs(3) Library Functions Manual wcsnrtombs(3)

NAME
wcsnrtombs - convert a wide-character string to a multibyte string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcsnrtombs(char dest[restrict .size], const wchar_t **restrict src,
size_t nwc, size_t size, mbstate_t *restrict ps);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcsnrtombs():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcsnrtombs() function is like the wcsrtombs(3) function, except that the number
of wide characters to be converted, starting at *src, is limited to nwc.

If dest is not NULL, the wcsnrtombs() function converts at most nwc wide characters
from the wide-character string *src to a multibyte string starting at dest. At most size
bytes are written to dest. The shift state *ps is updated. The conversion is effectively
performed by repeatedly calling wcrtomb(dest, *src, ps), as long as this call succeeds,
and then incrementing dest by the number of bytes written and *src by one. The con-
version can stop for three reasons:

• A wide character has been encountered that can not be represented as a multibyte
sequence (according to the current locale). In this case, *src is left pointing to the
invalid wide character, (size_t) -1 is returned, and errno is set to EILSEQ.

• nwc wide characters have been converted without encountering a null wide char-
acter (L'\0'), or the size limit forces a stop. In this case, *src is left pointing to the
next wide character to be converted, and the number of bytes written to dest is re-
turned.

• The wide-character string has been completely converted, including the terminat-
ing null wide character (which has the side effect of bringing back *ps to the ini-
tial state). In this case, *src is set to NULL, and the number of bytes written to
dest, excluding the terminating null byte ('\0'), is returned.

If dest is NULL, size is ignored, and the conversion proceeds as above, except that the
converted bytes are not written out to memory, and that no destination size limit ex-
ists.

In both of the above cases, if ps is NULL, a static anonymous state known only to the
wcsnrtombs() function is used instead.

The programmer must ensure that there is room for at least size bytes at dest.

RETURN VALUE
The wcsnrtombs() function returns the number of bytes that make up the converted
part of multibyte sequence, not including the terminating null byte. If a wide

Linux man-pages 6.13 2024-11-17 2579

wcsnrtombs(3) Library Functions Manual wcsnrtombs(3)

character was encountered which could not be converted, (size_t) -1 is returned, and
errno set to EILSEQ.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetywcsnrtombs() MT-Unsafe race:wcsnrtombs/!ps

STANDARDS
POSIX.1-2008.

NOTES
The behavior of wcsnrtombs() depends on the LC_CTYPE category of the current
locale.

Passing NULL as ps is not multithread safe.

SEE ALSO
iconv(3), mbsinit(3), wcsrtombs(3)

Linux man-pages 6.13 2024-11-17 2580

wcspbrk(3) Library Functions Manual wcspbrk(3)

NAME
wcspbrk - search a wide-character string for any of a set of wide characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcspbrk(const wchar_t *wcs, const wchar_t *accept);

DESCRIPTION
The wcspbrk() function is the wide-character equivalent of the strpbrk(3) function. It
searches for the first occurrence in the wide-character string pointed to by wcs of any
of the characters in the wide-character string pointed to by accept.

RETURN VALUE
The wcspbrk() function returns a pointer to the first occurrence in wcs of any of the
characters listed in accept. If wcs contains none of these characters, NULL is re-
turned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcspbrk()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strpbrk(3), wcschr(3), wcscspn(3)

Linux man-pages 6.13 2024-07-23 2581

wcsrchr(3) Library Functions Manual wcsrchr(3)

NAME
wcsrchr - search a wide character in a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcsrchr(const wchar_t *wcs, wchar_t wc);

DESCRIPTION
The wcsrchr() function is the wide-character equivalent of the strrchr(3) function. It
searches the last occurrence of wc in the wide-character string pointed to by wcs.

RETURN VALUE
The wcsrchr() function returns a pointer to the last occurrence of wc in the wide-
character string pointed to by wcs, or NULL if wc does not occur in the string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsrchr()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strrchr(3), wcschr(3)

Linux man-pages 6.13 2024-07-23 2582

wcsrtombs(3) Library Functions Manual wcsrtombs(3)

NAME
wcsrtombs - convert a wide-character string to a multibyte string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcsrtombs(char dest[restrict .size], const wchar_t **restrict src,
size_t size, mbstate_t *restrict ps);

DESCRIPTION
If dest is not NULL, the wcsrtombs() function converts the wide-character string *src
to a multibyte string starting at dest. At most size bytes are written to dest. The shift
state *ps is updated. The conversion is effectively performed by repeatedly calling
wcrtomb(dest, *src, ps), as long as this call succeeds, and then incrementing dest by
the number of bytes written and *src by one. The conversion can stop for three rea-
sons:

• A wide character has been encountered that can not be represented as a multibyte
sequence (according to the current locale). In this case, *src is left pointing to the
invalid wide character, (size_t) -1 is returned, and errno is set to EILSEQ.

• The size limit forces a stop. In this case, *src is left pointing to the next wide
character to be converted, and the number of bytes written to dest is returned.

• The wide-character string has been completely converted, including the terminat-
ing null wide character (L'\0'), which has the side effect of bringing back *ps to
the initial state. In this case, *src is set to NULL, and the number of bytes written
to dest, excluding the terminating null byte ('\0'), is returned.

If dest is NULL, size is ignored, and the conversion proceeds as above, except that the
converted bytes are not written out to memory, and that no size limit exists.

In both of the above cases, if ps is NULL, a static anonymous state known only to the
wcsrtombs() function is used instead.

The programmer must ensure that there is room for at least size bytes at dest.

RETURN VALUE
The wcsrtombs() function returns the number of bytes that make up the converted
part of multibyte sequence, not including the terminating null byte. If a wide charac-
ter was encountered which could not be converted, (size_t) -1 is returned, and errno
set to EILSEQ.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetywcsrtombs() MT-Unsafe race:wcsrtombs/!ps

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

Linux man-pages 6.13 2024-11-17 2583

wcsrtombs(3) Library Functions Manual wcsrtombs(3)

NOTES
The behavior of wcsrtombs() depends on the LC_CTYPE category of the current lo-
cale.

Passing NULL as ps is not multithread safe.

SEE ALSO
iconv(3), mbsinit(3), wcrtomb(3), wcsnrtombs(3), wcstombs(3)

Linux man-pages 6.13 2024-11-17 2584

wcsspn(3) Library Functions Manual wcsspn(3)

NAME
wcsspn - get length of a prefix wide-character substring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcsspn(const wchar_t *wcs, const wchar_t *accept);

DESCRIPTION
The wcsspn() function is the wide-character equivalent of the strspn(3) function. It
determines the length of the longest initial segment of wcs which consists entirely of
wide-characters listed in accept. In other words, it searches for the first occurrence in
the wide-character string wcs of a wide-character not contained in the wide-character
string accept.

RETURN VALUE
The wcsspn() function returns the number of wide characters in the longest initial
segment of wcs which consists entirely of wide-characters listed in accept. In other
words, it returns the position of the first occurrence in the wide-character string wcs of
a wide-character not contained in the wide-character string accept, or wcslen(wcs) if
there is none.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsspn()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strspn(3), wcscspn(3)

Linux man-pages 6.13 2024-07-23 2585

wcsstr(3) Library Functions Manual wcsstr(3)

NAME
wcsstr - locate a substring in a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcsstr(const wchar_t *haystack, const wchar_t *needle);

DESCRIPTION
The wcsstr() function is the wide-character equivalent of the strstr(3) function. It
searches for the first occurrence of the wide-character string needle (without its termi-
nating null wide character (L'\0')) as a substring in the wide-character string haystack.

RETURN VALUE
The wcsstr() function returns a pointer to the first occurrence of needle in haystack.
It returns NULL if needle does not occur as a substring in haystack.

Note the special case: If needle is the empty wide-character string, the return value is
always haystack itself.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsstr()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strstr(3), wcschr(3)

Linux man-pages 6.13 2024-07-23 2586

wcstoimax(3) Library Functions Manual wcstoimax(3)

NAME
wcstoimax, wcstoumax - convert wide-character string to integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stddef.h>
#include <inttypes.h>

intmax_t wcstoimax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
These functions are just like wcstol(3) and wcstoul(3), except that they return a value
of type intmax_t and uintmax_t, respectively.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewcstoimax(), wcstoumax()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
imaxabs(3), imaxdiv(3), strtoimax(3), strtoumax(3), wcstol(3), wcstoul(3)

Linux man-pages 6.13 2024-07-23 2587

wcstok(3) Library Functions Manual wcstok(3)

NAME
wcstok - split wide-character string into tokens

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcstok(wchar_t *restrict wcs, const wchar_t *restrict delim,
wchar_t **restrict ptr);

DESCRIPTION
The wcstok() function is the wide-character equivalent of the strtok(3) function, with
an added argument to make it multithread-safe. It can be used to split a wide-charac-
ter string wcs into tokens, where a token is defined as a substring not containing any
wide-characters from delim.

The search starts at wcs, if wcs is not NULL, or at *ptr, if wcs is NULL. First, any
delimiter wide-characters are skipped, that is, the pointer is advanced beyond any
wide-characters which occur in delim. If the end of the wide-character string is now
reached, wcstok() returns NULL, to indicate that no tokens were found, and stores an
appropriate value in *ptr, so that subsequent calls to wcstok() will continue to return
NULL. Otherwise, the wcstok() function recognizes the beginning of a token and re-
turns a pointer to it, but before doing that, it zero-terminates the token by replacing the
next wide-character which occurs in delim with a null wide character (L'\0'), and it
updates *ptr so that subsequent calls will continue searching after the end of recog-
nized token.

RETURN VALUE
The wcstok() function returns a pointer to the next token, or NULL if no further token
was found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcstok()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The original wcs wide-character string is destructively modified during the operation.

EXAMPLES
The following code loops over the tokens contained in a wide-character string.

wchar_t *wcs = ...;
wchar_t *token;
wchar_t *state;
for (token = wcstok(wcs, L" \t\n", &state);

token != NULL;
token = wcstok(NULL, L" \t\n", &state)) {

Linux man-pages 6.13 2024-07-23 2588

wcstok(3) Library Functions Manual wcstok(3)

...
}

SEE ALSO
strtok(3), wcschr(3)

Linux man-pages 6.13 2024-07-23 2589

wcstombs(3) Library Functions Manual wcstombs(3)

NAME
wcstombs - convert a wide-character string to a multibyte string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

size_t wcstombs(char dest[restrict .n], const wchar_t *restrict src,
size_t n);

DESCRIPTION
If dest is not NULL, the wcstombs() function converts the wide-character string src
to a multibyte string starting at dest. At most n bytes are written to dest. The se-
quence of characters placed in dest begins in the initial shift state. The conversion
can stop for three reasons:

• A wide character has been encountered that can not be represented as a multibyte
sequence (according to the current locale). In this case, (size_t) -1 is returned.

• The length limit forces a stop. In this case, the number of bytes written to dest is
returned, but the shift state at this point is lost.

• The wide-character string has been completely converted, including the terminat-
ing null wide character (L'\0'). In this case, the conversion ends in the initial shift
state. The number of bytes written to dest, excluding the terminating null byte
('\0'), is returned.

The programmer must ensure that there is room for at least n bytes at dest.

If dest is NULL, n is ignored, and the conversion proceeds as above, except that the
converted bytes are not written out to memory, and no length limit exists.

In order to avoid the case 2 above, the programmer should make sure n is greater than
or equal to wcstombs(NULL,src,0)+1.

RETURN VALUE
The wcstombs() function returns the number of bytes that make up the converted part
of a multibyte sequence, not including the terminating null byte. If a wide character
was encountered which could not be converted, (size_t) -1 is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcstombs()

VERSIONS
The function wcsrtombs(3) provides a better interface to the same functionality.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

Linux man-pages 6.13 2024-07-23 2590

wcstombs(3) Library Functions Manual wcstombs(3)

NOTES
The behavior of wcstombs() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
mblen(3), mbstowcs(3), mbtowc(3), wcsrtombs(3), wctomb(3)

Linux man-pages 6.13 2024-07-23 2591

wcswidth(3) Library Functions Manual wcswidth(3)

NAME
wcswidth - determine columns needed for a fixed-size wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <wchar.h>

int wcswidth(const wchar_t *s, size_t n);

DESCRIPTION
The wcswidth() function returns the number of columns needed to represent the wide-
character string pointed to by s, but at most n wide characters. If a nonprintable wide
character occurs among these characters, -1 is returned.

RETURN VALUE
The wcswidth() function returns the number of column positions for the wide-charac-
ter string s, truncated to at most length n.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewcswidth()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The behavior of wcswidth() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
iswprint(3), wcwidth(3)

Linux man-pages 6.13 2024-07-23 2592

wctob(3) Library Functions Manual wctob(3)

NAME
wctob - try to represent a wide character as a single byte

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int wctob(wint_t c);

DESCRIPTION
The wctob() function tests whether the multibyte representation of the wide character
c, starting in the initial state, consists of a single byte. If so, it is returned as an un-
signed char.

Never use this function. It cannot help you in writing internationalized programs. In-
ternationalized programs must never distinguish single-byte and multibyte characters.

RETURN VALUE
The wctob() function returns the single-byte representation of c, if it exists, or EOF
otherwise.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewctob()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wctob() depends on the LC_CTYPE category of the current locale.

This function should never be used. Internationalized programs must never distin-
guish single-byte and multibyte characters. Use either wctomb(3) or the thread-safe
wcrtomb(3) instead.

SEE ALSO
btowc(3), wcrtomb(3), wctomb(3)

Linux man-pages 6.13 2024-07-23 2593

wctomb(3) Library Functions Manual wctomb(3)

NAME
wctomb - convert a wide character to a multibyte sequence

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int wctomb(char *s, wchar_t wc);

DESCRIPTION
If s is not NULL, the wctomb() function converts the wide character wc to its multi-
byte representation and stores it at the beginning of the character array pointed to by
s. It updates the shift state, which is stored in a static anonymous variable known only
to the wctomb() function, and returns the length of said multibyte representation, that
is, the number of bytes written at s.

The programmer must ensure that there is room for at least MB_CUR_MAX bytes at
s.

If s is NULL, the wctomb() function resets the shift state, known only to this func-
tion, to the initial state, and returns nonzero if the encoding has nontrivial shift state,
or zero if the encoding is stateless.

RETURN VALUE
If s is not NULL, the wctomb() function returns the number of bytes that have been
written to the byte array at s. If wc can not be represented as a multibyte sequence
(according to the current locale), -1 is returned.

If s is NULL, the wctomb() function returns nonzero if the encoding has nontrivial
shift state, or zero if the encoding is stateless.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe racewctomb()

VERSIONS
The function wcrtomb(3) provides a better interface to the same functionality.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wctomb() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
MB_CUR_MAX(3), mblen(3), mbstowcs(3), mbtowc(3), wcrtomb(3), wcstombs(3)

Linux man-pages 6.13 2024-07-23 2594

wctrans(3) Library Functions Manual wctrans(3)

NAME
wctrans - wide-character translation mapping

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

wctrans_t wctrans(const char *name);

DESCRIPTION
The wctrans_t type represents a mapping which can map a wide character to another
wide character. Its nature is implementation-dependent, but the special value (wc-
trans_t) 0 denotes an invalid mapping. Nonzero wctrans_t values can be passed to
the towctrans(3) function to actually perform the wide-character mapping.

The wctrans() function returns a mapping, given by its name. The set of valid names
depends on the LC_CTYPE category of the current locale, but the following names
are valid in all locales.

"tolower" - realizes the tolower(3) mapping
"toupper" - realizes the toupper(3) mapping

RETURN VALUE
The wctrans() function returns a mapping descriptor if the name is valid. Otherwise,
it returns (wctrans_t) 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewctrans()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wctrans() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
towctrans(3)

Linux man-pages 6.13 2024-09-01 2595

wctype(3) Library Functions Manual wctype(3)

NAME
wctype - wide-character classification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

wctype_t wctype(const char *name);

DESCRIPTION
The wctype_t type represents a property which a wide character may or may not have.
In other words, it represents a class of wide characters. This type’s nature is imple-
mentation-dependent, but the special value (wctype_t) 0 denotes an invalid property.
Nonzero wctype_t values can be passed to the iswctype(3) function to actually test
whether a given wide character has the property.

The wctype() function returns a property, given by its name. The set of valid names
depends on the LC_CTYPE category of the current locale, but the following names
are valid in all locales.

"alnum" - realizes the isalnum(3) classification function
"alpha" - realizes the isalpha(3) classification function
"blank" - realizes the isblank(3) classification function
"cntrl" - realizes the iscntrl(3) classification function
"digit" - realizes the isdigit(3) classification function
"graph" - realizes the isgraph(3) classification function
"lower" - realizes the islower(3) classification function
"print" - realizes the isprint(3) classification function
"punct" - realizes the ispunct(3) classification function
"space" - realizes the isspace(3) classification function
"upper" - realizes the isupper(3) classification function
"xdigit" - realizes the isxdigit(3) classification function

RETURN VALUE
The wctype() function returns a property descriptor if the name is valid. Otherwise, it
returns (wctype_t) 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewctype()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wctype() depends on the LC_CTYPE category of the current locale.

SEE ALSO
iswctype(3)

Linux man-pages 6.13 2024-09-01 2596

wcwidth(3) Library Functions Manual wcwidth(3)

NAME
wcwidth - determine columns needed for a wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <wchar.h>

int wcwidth(wchar_t wc);

DESCRIPTION
The wcwidth() function returns the number of columns needed to represent the wide
character wc. If wc is a printable wide character, the value is at least 0. If wc is null
wide character (L'\0'), the value is 0. Otherwise, -1 is returned.

RETURN VALUE
The wcwidth() function returns the number of column positions for wc.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewcwidth()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Note that before glibc 2.2.5, glibc used the prototype

int wcwidth(wint_t wc);

NOTES
The behavior of wcwidth() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
iswprint(3), wcswidth(3)

Linux man-pages 6.13 2024-11-17 2597

wmemchr(3) Library Functions Manual wmemchr(3)

NAME
wmemchr - search a wide character in a wide-character array

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wmemchr(const wchar_t s[.n], wchar_t c, size_t n);

DESCRIPTION
The wmemchr() function is the wide-character equivalent of the memchr(3) function.
It searches the n wide characters starting at s for the first occurrence of the wide char-
acter c.

RETURN VALUE
The wmemchr() function returns a pointer to the first occurrence of c among the n
wide characters starting at s, or NULL if c does not occur among these.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewmemchr()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
memchr(3), wcschr(3)

Linux man-pages 6.13 2024-07-23 2598

wmemcmp(3) Library Functions Manual wmemcmp(3)

NAME
wmemcmp - compare two arrays of wide-characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int wmemcmp(const wchar_t s1[.n], const wchar_t s2[.n], size_t n);

DESCRIPTION
The wmemcmp() function is the wide-character equivalent of the memcmp(3) func-
tion. It compares the n wide-characters starting at s1 and the n wide-characters start-
ing at s2.

RETURN VALUE
The wmemcmp() function returns zero if the wide-character arrays of size n at s1 and
s2 are equal. It returns an integer greater than zero if at the first differing position i (i
< n), the corresponding wide-character s1[i] is greater than s2[i]. It returns an inte-
ger less than zero if at the first differing position i (i < n), the corresponding wide-
character s1[i] is less than s2[i].

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewmemcmp()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
memcmp(3), wcscmp(3)

Linux man-pages 6.13 2024-07-23 2599

wmemcpy(3) Library Functions Manual wmemcpy(3)

NAME
wmemcpy - copy an array of wide-characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wmemcpy(wchar_t dest[restrict .n],
const wchar_t src[restrict .n],
size_t n);

DESCRIPTION
The wmemcpy() function is the wide-character equivalent of the memcpy(3) function.
It copies n wide characters from the array starting at src to the array starting at dest.

The arrays may not overlap; use wmemmove(3) to copy between overlapping arrays.

The programmer must ensure that there is room for at least n wide characters at dest.

RETURN VALUE
wmemcpy() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewmemcpy()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
memcpy(3), wcscpy(3), wmemmove(3), wmempcpy(3)

Linux man-pages 6.13 2024-07-23 2600

wmemmove(3) Library Functions Manual wmemmove(3)

NAME
wmemmove - copy an array of wide-characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wmemmove(wchar_t dest[.n], const wchar_t src[.n], size_t n);

DESCRIPTION
The wmemmove() function is the wide-character equivalent of the memmove(3) func-
tion. It copies n wide characters from the array starting at src to the array starting at
dest. The arrays may overlap.

The programmer must ensure that there is room for at least n wide characters at dest.

RETURN VALUE
wmemmove() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewmemmove()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
memmove(3), wmemcpy(3)

Linux man-pages 6.13 2024-07-23 2601

wmemset(3) Library Functions Manual wmemset(3)

NAME
wmemset - fill an array of wide-characters with a constant wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wmemset(wchar_t wcs[.n], wchar_t wc, size_t n);

DESCRIPTION
The wmemset() function is the wide-character equivalent of the memset(3) function.
It fills the array of n wide-characters starting at wcs with n copies of the wide charac-
ter wc.

RETURN VALUE
wmemset() returns wcs.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewmemset()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
memset(3)

Linux man-pages 6.13 2024-07-23 2602

wordexp(3) Library Functions Manual wordexp(3)

NAME
wordexp, wordfree - perform word expansion like a posix-shell

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wordexp.h>

int wordexp(const char *restrict s, wordexp_t *restrict p, int flags);
void wordfree(wordexp_t *p);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wordexp(), wordfree():
_XOPEN_SOURCE

DESCRIPTION
The function wordexp() performs a shell-like expansion of the string s and returns the
result in the structure pointed to by p. The data type wordexp_t is a structure that at
least has the fields we_wordc, we_wordv, and we_offs. The field we_wordc is a size_t
that gives the number of words in the expansion of s. The field we_wordv is a
char ** that points to the array of words found. The field we_offs of type size_t is
sometimes (depending on flags, see below) used to indicate the number of initial ele-
ments in the we_wordv array that should be filled with NULLs.

The function wordfree() frees the allocated memory again. More precisely, it does
not free its argument, but it frees the array we_wordv and the strings that points to.

The string argument
Since the expansion is the same as the expansion by the shell (see sh(1)) of the para-
meters to a command, the string s must not contain characters that would be illegal in
shell command parameters. In particular, there must not be any unescaped newline or
|, &, ;, <, >, (,), {, } characters outside a command substitution or parameter substitu-
tion context.

If the argument s contains a word that starts with an unquoted comment character #,
then it is unspecified whether that word and all following words are ignored, or the #
is treated as a non-comment character.

The expansion
The expansion done consists of the following stages: tilde expansion (replacing ~user
by user’s home directory), variable substitution (replacing $FOO by the value of the
environment variable FOO), command substitution (replacing $(command) or `com-
mand` by the output of command), arithmetic expansion, field splitting, wildcard ex-
pansion, quote removal.

The result of expansion of special parameters ($@, $*, $#, $?, $-, $$, $!, $0) is un-
specified.

Field splitting is done using the environment variable $IFS. If it is not set, the field
separators are space, tab, and newline.

The output array
The array we_wordv contains the words found, followed by a NULL.

Linux man-pages 6.13 2024-07-23 2603

wordexp(3) Library Functions Manual wordexp(3)

The flags argument
The flag argument is a bitwise inclusive OR of the following values:

WRDE_APPEND
Append the words found to the array resulting from a previous call.

WRDE_DOOFFS
Insert we_offs initial NULLs in the array we_wordv. (These are not counted
in the returned we_wordc.)

WRDE_NOCMD
Don’t do command substitution.

WRDE_REUSE
The argument p resulted from a previous call to wordexp(), and wordfree()
was not called. Reuse the allocated storage.

WRDE_SHOWERR
Normally during command substitution stderr is redirected to /dev/null. This
flag specifies that stderr is not to be redirected.

WRDE_UNDEF
Consider it an error if an undefined shell variable is expanded.

RETURN VALUE
On success, wordexp() returns 0. On failure, wordexp() returns one of the following
nonzero values:

WRDE_BADCHAR
Illegal occurrence of newline or one of |, &, ;, <, >, (,), {, }.

WRDE_BADVAL
An undefined shell variable was referenced, and the WRDE_UNDEF flag told
us to consider this an error.

WRDE_CMDSUB
Command substitution requested, but the WRDE_NOCMD flag told us to
consider this an error.

WRDE_NOSPACE
Out of memory.

WRDE_SYNTAX
Shell syntax error, such as unbalanced parentheses or unmatched quotes.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetywordexp() MT-Unsafe race:utent const:env env sig:ALRM
timer locale

Thread safety MT-Safewordfree()

In the above table, utent in race:utent signifies that if any of the functions setutent(3),
getutent(3), or endutent(3) are used in parallel in different threads of a program, then
data races could occur. wordexp() calls those functions, so we use race:utent to re-
mind users.

Linux man-pages 6.13 2024-07-23 2604

wordexp(3) Library Functions Manual wordexp(3)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. glibc 2.1.

EXAMPLES
The output of the following example program is approximately that of "ls [a-c]*.c".

#include <stdio.h>
#include <stdlib.h>
#include <wordexp.h>

int
main(void)
{

wordexp_t p;
char **w;

wordexp("[a-c]*.c", &p, 0);
w = p.we_wordv;
for (size_t i = 0; i < p.we_wordc; i++)

printf("%s\n", w[i]);
wordfree(&p);
exit(EXIT_SUCCESS);

}

SEE ALSO
fnmatch(3), glob(3)

Linux man-pages 6.13 2024-07-23 2605

wprintf (3) Library Functions Manual wprintf (3)

NAME
wprintf, fwprintf, swprintf, vwprintf, vfwprintf, vswprintf - formatted wide-character
output conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wprintf(const wchar_t *restrict format, ...);
int fwprintf(FILE *restrict stream,

const wchar_t *restrict format, ...);
int swprintf(wchar_t wcs[restrict .maxlen], size_t maxlen,

const wchar_t *restrict format, ...);

int vwprintf(const wchar_t *restrict format, va_list args);
int vfwprintf(FILE *restrict stream,

const wchar_t *restrict format, va_list args);
int vswprintf(wchar_t wcs[restrict .maxlen], size_t maxlen,

const wchar_t *restrict format, va_list args);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
_XOPEN_SOURCE >= 500 || _ISOC99_SOURCE

|| _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The wprintf() family of functions is the wide-character equivalent of the printf(3)
family of functions. It performs formatted output of wide characters.

The wprintf() and vwprintf() functions perform wide-character output to stdout. std-
out must not be byte oriented; see fwide(3) for more information.

The fwprintf() and vfwprintf() functions perform wide-character output to stream.
stream must not be byte oriented; see fwide(3) for more information.

The swprintf() and vswprintf() functions perform wide-character output to an array
of wide characters. The programmer must ensure that there is room for at least
maxlen wide characters at wcs.

These functions are like the printf(3), vprintf(3), fprintf(3), vfprintf(3), sprintf(3),
vsprintf(3) functions except for the following differences:

• The format string is a wide-character string.

• The output consists of wide characters, not bytes.

• swprintf() and vswprintf() take a maxlen argument, sprintf(3) and vsprintf(3)
do not. (snprintf(3) and vsnprintf(3) take a maxlen argument, but these func-
tions do not return -1 upon buffer overflow on Linux.)

The treatment of the conversion characters c and s is different:

Linux man-pages 6.13 2024-07-23 2606

wprintf (3) Library Functions Manual wprintf (3)

c If no l modifier is present, the int argument is converted to a wide character by
a call to the btowc(3) function, and the resulting wide character is written. If
an l modifier is present, the wint_t (wide character) argument is written.

s If no l modifier is present: the const char * argument is expected to be a
pointer to an array of character type (pointer to a string) containing a multibyte
character sequence beginning in the initial shift state. Characters from the ar-
ray are converted to wide characters (each by a call to the mbrtowc(3) function
with a conversion state starting in the initial state before the first byte). The
resulting wide characters are written up to (but not including) the terminating
null wide character (L'\0'). If a precision is specified, no more wide characters
than the number specified are written. Note that the precision determines the
number of wide characters written, not the number of bytes or screen posi-
tions. The array must contain a terminating null byte ('\0'), unless a precision
is given and it is so small that the number of converted wide characters reaches
it before the end of the array is reached. If an l modifier is present: the
const wchar_t * argument is expected to be a pointer to an array of wide char-
acters. Wide characters from the array are written up to (but not including) a
terminating null wide character. If a precision is specified, no more than the
number specified are written. The array must contain a terminating null wide
character, unless a precision is given and it is smaller than or equal to the num-
ber of wide characters in the array.

RETURN VALUE
The functions return the number of wide characters written, excluding the terminating
null wide character in case of the functions swprintf() and vswprintf(). They return
-1 when an error occurs.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewprintf(), fwprintf(), swprintf(), vwprintf(),
vfwprintf(), vswprintf()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wprintf() et al. depends on the LC_CTYPE category of the current
locale.

If the format string contains non-ASCII wide characters, the program will work cor-
rectly only if the LC_CTYPE category of the current locale at run time is the same as
the LC_CTYPE category of the current locale at compile time. This is because the
wchar_t representation is platform- and locale-dependent. (The glibc represents wide
characters using their Unicode (ISO/IEC 10646) code point, but other platforms don’t
do this. Also, the use of C99 universal character names of the form \unnnn does not
solve this problem.) Therefore, in internationalized programs, the format string
should consist of ASCII wide characters only, or should be constructed at run time in
an internationalized way (e.g., using gettext(3) or iconv(3), followed by mbstowcs(3)).

Linux man-pages 6.13 2024-07-23 2607

wprintf (3) Library Functions Manual wprintf (3)

SEE ALSO
fprintf(3), fputwc(3), fwide(3), printf(3), snprintf(3)

Linux man-pages 6.13 2024-07-23 2608

XCRYPT (3) Library Functions Manual XCRYPT (3)

NAME
xencrypt, xdecrypt, passwd2des - RFS password encryption

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <rpc/des_crypt.h>

void passwd2des(char *passwd , char *key);

int xencrypt(char *secret, char *passwd);
int xdecrypt(char *secret, char *passwd);

DESCRIPTION
WARNING: Do not use these functions in new code. They do not achieve any type
of acceptable cryptographic security guarantees.

The function passwd2des() takes a character string passwd of arbitrary length and
fills a character array key of length 8. The array key is suitable for use as DES key. It
has odd parity set in bit 0 of each byte. Both other functions described here use this
function to turn their argument passwd into a DES key.

The xencrypt() function takes the ASCII character string secret given in hex, which
must have a length that is a multiple of 16, encrypts it using the DES key derived from
passwd by passwd2des(), and outputs the result again in secret as a hex string of the
same length.

The xdecrypt() function performs the converse operation.

RETURN VALUE
The functions xencrypt() and xdecrypt() return 1 on success and 0 on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepasswd2des(), xencrypt(), xdecrypt()

VERSIONS
These functions are available since glibc 2.1.

BUGS
The prototypes are missing from the abovementioned include file.

SEE ALSO
cbc_crypt(3)

Linux man-pages 6.13 2024-07-23 2609

xdr(3) Library Functions Manual xdr(3)

NAME
xdr - library routines for external data representation

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS AND DESCRIPTION
These routines allow C programmers to describe arbitrary data structures in a ma-
chine-independent fashion. Data for remote procedure calls are transmitted using
these routines.

The prototypes below are declared in <rpc/xdr.h> and make use of the following
types:

typedef int bool_t;

typedef typeof(bool_t (XDR *, void *, ...)) *xdrproc_t;

For the declaration of the XDR type, see <rpc/xdr.h>.

bool_t xdr_array(XDR *xdrs, char **arrp, unsigned int *sizep,
unsigned int maxsize, unsigned int elsize,
xdrproc_t elproc);

A filter primitive that translates between variable-length arrays and their corre-
sponding external representations. The argument arrp is the address of the
pointer to the array, while sizep is the address of the element count of the ar-
ray; this element count cannot exceed maxsize. The argument elsize is the
sizeof each of the array’s elements, and elproc is an XDR filter that translates
between the array elements’ C form, and their external representation. This
routine returns one if it succeeds, zero otherwise.

bool_t xdr_bool(XDR *xdrs, bool_t *bp);

A filter primitive that translates between booleans (C integers) and their exter-
nal representations. When encoding data, this filter produces values of either
one or zero. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_bytes(XDR *xdrs, char **sp, unsigned int *sizep,
unsigned int maxsize);

A filter primitive that translates between counted byte strings and their exter-
nal representations. The argument sp is the address of the string pointer. The
length of the string is located at address sizep; strings cannot be longer than
maxsize. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_char(XDR *xdrs, char *cp);

A filter primitive that translates between C characters and their external repre-
sentations. This routine returns one if it succeeds, zero otherwise. Note: en-
coded characters are not packed, and occupy 4 bytes each. For arrays of char-
acters, it is worthwhile to consider xdr_bytes(), xdr_opaque(), or
xdr_string().

void xdr_destroy(XDR *xdrs);

A macro that invokes the destroy routine associated with the XDR stream,
xdrs. Destruction usually involves freeing private data structures associated

Linux man-pages 6.13 2025-01-05 2610

xdr(3) Library Functions Manual xdr(3)

with the stream. Using xdrs after invoking xdr_destroy() is undefined.

bool_t xdr_double(XDR *xdrs, double *dp);

A filter primitive that translates between C double precision numbers and their
external representations. This routine returns one if it succeeds, zero other-
wise.

bool_t xdr_enum(XDR *xdrs, enum_t *ep);

A filter primitive that translates between C enums (actually integers) and their
external representations. This routine returns one if it succeeds, zero other-
wise.

bool_t xdr_float(XDR *xdrs, float * fp);

A filter primitive that translates between C floats and their external represen-
tations. This routine returns one if it succeeds, zero otherwise.

void xdr_free(xdrproc_t proc, char *objp);

Generic freeing routine. The first argument is the XDR routine for the object
being freed. The second argument is a pointer to the object itself. Note: the
pointer passed to this routine is not freed, but what it points to is freed (recur-
sively).

unsigned int xdr_getpos(XDR *xdrs);

A macro that invokes the get-position routine associated with the XDR stream,
xdrs. The routine returns an unsigned integer, which indicates the position of
the XDR byte stream. A desirable feature of XDR streams is that simple arith-
metic works with this number, although the XDR stream instances need not
guarantee this.

long *xdr_inline(XDR *xdrs, int len);

A macro that invokes the inline routine associated with the XDR stream, xdrs.
The routine returns a pointer to a contiguous piece of the stream’s buffer; len
is the byte length of the desired buffer. Note: pointer is cast to long *.

Warning: xdr_inline() may return NULL (0) if it cannot allocate a contiguous
piece of a buffer. Therefore the behavior may vary among stream instances; it
exists for the sake of efficiency.

bool_t xdr_int(XDR *xdrs, int *ip);

A filter primitive that translates between C integers and their external repre-
sentations. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_long(XDR *xdrs, long *lp);

A filter primitive that translates between C long integers and their external rep-
resentations. This routine returns one if it succeeds, zero otherwise.

void xdrmem_create(XDR *xdrs, char *addr, unsigned int size,
enum xdr_op op);

This routine initializes the XDR stream object pointed to by xdrs. The
stream’s data is written to, or read from, a chunk of memory at location addr
whose length is no more than size bytes long. The op determines the direction

Linux man-pages 6.13 2025-01-05 2611

xdr(3) Library Functions Manual xdr(3)

of the XDR stream (either XDR_ENCODE, XDR_DECODE, or
XDR_FREE).

bool_t xdr_opaque(XDR *xdrs, char *cp, unsigned int cnt);

A filter primitive that translates between fixed size opaque data and its external
representation. The argument cp is the address of the opaque object, and cnt
is its size in bytes. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_pointer(XDR *xdrs, char **objpp,
unsigned int objsize, xdrproc_t xdrobj);

Like xdr_reference() except that it serializes null pointers, whereas xdr_ref-
erence() does not. Thus, xdr_pointer() can represent recursive data struc-
tures, such as binary trees or linked lists.

void xdrrec_create(XDR *xdrs, unsigned int sendsize,
unsigned int recvsize, char *handle,
typeof(int (char *, char *, int)) *readit,
typeof(int (char *, char *, int)) *writeit);

This routine initializes the XDR stream object pointed to by xdrs. The
stream’s data is written to a buffer of size sendsize; a value of zero indicates
the system should use a suitable default. The stream’s data is read from a
buffer of size recvsize; it too can be set to a suitable default by passing a zero
value. When a stream’s output buffer is full, writeit is called. Similarly, when
a stream’s input buffer is empty, readit is called. The behavior of these two
routines is similar to the system calls read(2) and write(2), except that handle
is passed to the former routines as the first argument. Note: the XDR stream’s
op field must be set by the caller.

Warning: to read from an XDR stream created by this API, you’ll need to call
xdrrec_skiprecord() first before calling any other XDR APIs. This inserts
additional bytes in the stream to provide record boundary information. Also,
XDR streams created with different xdr*_create APIs are not compatible for
the same reason.

bool_t xdrrec_endofrecord(XDR *xdrs, int sendnow);

This routine can be invoked only on streams created by xdrrec_create(). The
data in the output buffer is marked as a completed record, and the output
buffer is optionally written out if sendnow is nonzero. This routine returns
one if it succeeds, zero otherwise.

bool_t xdrrec_eof(XDR *xdrs);

This routine can be invoked only on streams created by xdrrec_create(). Af-
ter consuming the rest of the current record in the stream, this routine returns
one if the stream has no more input, zero otherwise.

bool_t xdrrec_skiprecord(XDR *xdrs);

This routine can be invoked only on streams created by xdrrec_create(). It
tells the XDR implementation that the rest of the current record in the stream’s
input buffer should be discarded. This routine returns one if it succeeds, zero
otherwise.

Linux man-pages 6.13 2025-01-05 2612

xdr(3) Library Functions Manual xdr(3)

bool_t xdr_reference(XDR *xdrs, char **pp, unsigned int size,
xdrproc_t proc);

A primitive that provides pointer chasing within structures. The argument pp
is the address of the pointer; size is the sizeof the structure that *pp points to;
and proc is an XDR procedure that filters the structure between its C form and
its external representation. This routine returns one if it succeeds, zero other-
wise.

Warning: this routine does not understand null pointers. Use xdr_pointer()
instead.

xdr_setpos(XDR *xdrs, unsigned int pos);

A macro that invokes the set position routine associated with the XDR stream
xdrs. The argument pos is a position value obtained from xdr_getpos(). This
routine returns one if the XDR stream could be repositioned, and zero other-
wise.

Warning: it is difficult to reposition some types of XDR streams, so this rou-
tine may fail with one type of stream and succeed with another.

bool_t xdr_short(XDR *xdrs, short *sp);

A filter primitive that translates between C short integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

void xdrstdio_create(XDR *xdrs, FILE * file, enum xdr_op op);

This routine initializes the XDR stream object pointed to by xdrs. The XDR
stream data is written to, or read from, the stdio stream file. The argument op
determines the direction of the XDR stream (either XDR_ENCODE,
XDR_DECODE, or XDR_FREE).

Warning: the destroy routine associated with such XDR streams calls fflush(3)
on the file stream, but never fclose(3).

bool_t xdr_string(XDR *xdrs, char **sp, unsigned int maxsize);

A filter primitive that translates between C strings and their corresponding ex-
ternal representations. Strings cannot be longer than maxsize. Note: sp is the
address of the string’s pointer. This routine returns one if it succeeds, zero
otherwise.

bool_t xdr_u_char(XDR *xdrs, unsigned char *ucp);

A filter primitive that translates between unsigned C characters and their exter-
nal representations. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_u_int(XDR *xdrs, unsigned int *up);

A filter primitive that translates between C unsigned integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_u_long(XDR *xdrs, unsigned long *ulp);

A filter primitive that translates between C unsigned long integers and their
external representations. This routine returns one if it succeeds, zero other-
wise.

Linux man-pages 6.13 2025-01-05 2613

xdr(3) Library Functions Manual xdr(3)

bool_t xdr_u_short(XDR *xdrs, unsigned short *usp);

A filter primitive that translates between C unsigned short integers and their
external representations. This routine returns one if it succeeds, zero other-
wise.

bool_t xdr_union(XDR *xdrs, enum_t *dscmp, char *unp,
const struct xdr_discrim *choices,
xdrproc_t defaultarm); /* may equal NULL */

A filter primitive that translates between a discriminated C union and its corre-
sponding external representation. It first translates the discriminant of the
union located at dscmp. This discriminant is always an enum_t. Next the
union located at unp is translated. The argument choices is a pointer to an ar-
ray of xdr_discrim() structures. Each structure contains an ordered pair of
[value,proc]. If the union’s discriminant is equal to the associated value, then
the proc is called to translate the union. The end of the xdr_discrim() struc-
ture array is denoted by a routine of value NULL. If the discriminant is not
found in the choices array, then the defaultarm procedure is called (if it is not
NULL). Returns one if it succeeds, zero otherwise.

bool_t xdr_vector(XDR *xdrs, char *arrp, unsigned int size,
unsigned int elsize, xdrproc_t elproc);

A filter primitive that translates between fixed-length arrays and their corre-
sponding external representations. The argument arrp is the address of the
pointer to the array, while size is the element count of the array. The argument
elsize is the sizeof each of the array’s elements, and elproc is an XDR filter
that translates between the array elements’ C form, and their external represen-
tation. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_void(void);

This routine always returns one. It may be passed to RPC routines that require
a function argument, where nothing is to be done.

bool_t xdr_wrapstring(XDR *xdrs, char **sp);

A primitive that calls xdr_string(xdrs, sp,MAXUN.UNSIGNED); where
MAXUN.UNSIGNED is the maximum value of an unsigned integer.
xdr_wrapstring() is handy because the RPC package passes a maximum of
two XDR routines as arguments, and xdr_string(), one of the most frequently
used primitives, requires three. Returns one if it succeeds, zero otherwise.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.13 2025-01-05 2614

xdr(3) Library Functions Manual xdr(3)

Interface Attribute Value
Thread safety MT-Safexdr_array(), xdr_bool(), xdr_bytes(), xdr_char(),

xdr_destroy(), xdr_double(), xdr_enum(),
xdr_float(), xdr_free(), xdr_getpos(), xdr_inline(),
xdr_int(), xdr_long(), xdrmem_create(),
xdr_opaque(), xdr_pointer(), xdrrec_create(),
xdrrec_eof(), xdrrec_endofrecord(),
xdrrec_skiprecord(), xdr_reference(),
xdr_setpos(), xdr_short(), xdrstdio_create(),
xdr_string(), xdr_u_char(), xdr_u_int(),
xdr_u_long(), xdr_u_short(), xdr_union(),
xdr_vector(), xdr_void(), xdr_wrapstring()

SEE ALSO
rpc(3)

The following manuals:
eXternal Data Representation Standard: Protocol Specification
eXternal Data Representation: Sun Technical Notes
XDR: External Data Representation Standard , RFC 1014, Sun Microsystems,
Inc., USC-ISI.

Linux man-pages 6.13 2025-01-05 2615

xdr(3) Library Functions Manual xdr(3)

Linux man-pages 6.13 2025-01-05 2616

y0(3) Library Functions Manual y0(3)

NAME
y0, y0f, y0l, y1, y1f, y1l, yn, ynf, ynl - Bessel functions of the second kind

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double y0(double x);
double y1(double x);
double yn(int n, double x);

float y0f(float x);
float y1f(float x);
float ynf(int n, float x);

long double y0l(long double x);
long double y1l(long double x);
long double ynl(int n, long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

y0(), y1(), yn():
_XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

y0f(), y0l(), y1f(), y1l(), ynf(), ynl():
_XOPEN_SOURCE >= 600

|| (_ISOC99_SOURCE && _XOPEN_SOURCE)
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The y0() and y1() functions return Bessel functions of x of the second kind of orders
0 and 1, respectively. The yn() function returns the Bessel function of x of the second
kind of order n.

The value of x must be positive.

The y0f(), y1f(), and ynf() functions are versions that take and return float values.
The y0l(), y1l(), and ynl() functions are versions that take and return long double val-
ues.

RETURN VALUE
On success, these functions return the appropriate Bessel value of the second kind for
x.

If x is a NaN, a NaN is returned.

If x is negative, a domain error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively. (POSIX.1-2001 also allows a
NaN return for this case.)

If x is 0.0, a pole error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively.

Linux man-pages 6.13 2024-07-23 2617

y0(3) Library Functions Manual y0(3)

If the result underflows, a range error occurs, and the functions return 0.0

If the result overflows, a range error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively. (POSIX.1-2001 also allows a 0.0
return for this case.)

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is negative
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Pole error: x is 0.0
errno is set to ERANGE and an FE_DIVBYZERO exception is raised (but
see BUGS).

Range error: result underflow
errno is set to ERANGE. No FE_UNDERFLOW exception is returned by
fetestexcept(3) for this case.

Range error: result overflow
errno is set to ERANGE (but see BUGS). An overflow floating-point excep-
tion (FE_OVERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safey0(), y0f(), y0l()
Thread safety MT-Safey1(), y1f(), y1l()
Thread safety MT-Safeyn(), ynf(), ynl()

STANDARDS
y0()
y1()
yn() POSIX.1-2008.

Others:
BSD.

HISTORY
y0()
y1()
yn() SVr4, 4.3BSD, POSIX.1-2001.

Others:
BSD.

BUGS
Before glibc 2.19, these functions misdiagnosed pole errors: errno was set to EDOM,
instead of ERANGE and no FE_DIVBYZERO exception was raised.

Before glibc 2.17, did not set errno for "range error: result underflow".

Linux man-pages 6.13 2024-07-23 2618

y0(3) Library Functions Manual y0(3)

In glibc 2.3.2 and earlier, these functions do not raise an invalid floating-point excep-
tion (FE_INVALID) when a domain error occurs.

SEE ALSO
j0(3)

Linux man-pages 6.13 2024-07-23 2619

EOF(3const) EOF(3const)

NAME
EOF - end of file or error indicator

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdio.h>

#define EOF /* ... */

DESCRIPTION
EOF represents the end of an input file, or an error indication. It is a negative value,
of type int.

EOF is not a character (it can’t be represented by unsigned char). It is instead a sen-
tinel value outside of the valid range for valid characters.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

CAVEATS
Programs can’t pass this value to an output function to "write" the end of a file. That
would likely result in undefined behavior. Instead, closing the writing stream or file
descriptor that refers to such file is the way to signal the end of that file.

SEE ALSO
feof(3), fgetc(3)

Linux man-pages 6.13 2024-05-26 2620

EXIT_SUCCESS(3const) EXIT_SUCCESS(3const)

NAME
EXIT_SUCCESS, EXIT_FAILURE - termination status constants

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdlib.h>

#define EXIT_SUCCESS 0
#define EXIT_FAILURE /* nonzero */

DESCRIPTION
EXIT_SUCCESS and EXIT_FAILURE represent a successful and unsuccessful exit
status respectively, and can be used as arguments to the exit(3) function.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

EXAMPLES
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

FILE *fp;

if (argc != 2) {
fprintf(stderr, "Usage: %s <file>\n", argv[0]);
exit(EXIT_FAILURE);

}

fp = fopen(argv[1], "r");
if (fp == NULL) {

perror(argv[1]);
exit(EXIT_FAILURE);

}

/* Other code omitted */

fclose(fp);
exit(EXIT_SUCCESS);

}

SEE ALSO
exit(3), sysexits.h(3head)

Linux man-pages 6.13 2024-06-15 2621

NULL(3const) NULL(3const)

NAME
NULL - null pointer constant

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stddef.h>

#define NULL ((void *) 0)

DESCRIPTION
NULL represents a null pointer constant, that is, a pointer that does not point to any-
thing.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

NOTES
The following headers also provide NULL: <locale.h>, <stdio.h>, <stdlib.h>,
<string.h>, <time.h>, <unistd.h>, and <wchar.h>.

CAVEATS
It is undefined behavior to dereference a null pointer, and that usually causes a seg-
mentation fault in practice.

It is also undefined behavior to perform pointer arithmetic on it.

NULL - NULL is undefined behavior, according to ISO C, but is defined to be 0 in
C++.

To avoid confusing human readers of the code, do not compare pointer variables to 0,
and do not assign 0 to them. Instead, always use NULL.

NULL shouldn’t be confused with NUL, which is an ascii(7) character, represented in
C as '\0'.

BUGS
When it is necessary to set a pointer variable to a null pointer, it is not enough to use
memset(3) to zero the pointer (this is usually done when zeroing a struct that contains
pointers), since ISO C and POSIX don’t guarantee that a bit pattern of all 0s represent
a null pointer. See the EXAMPLES section in getaddrinfo(3) for an example program
that does this correctly.

SEE ALSO
void(3type)

Linux man-pages 6.13 2024-06-15 2622

NULL(3const) NULL(3const)

Linux man-pages 6.13 2024-06-15 2623

printf.h(3head) printf.h(3head)

NAME
printf.h, register_printf_specifier, register_printf_modifier, register_printf_type,
printf_function, printf_arginfo_size_function, printf_va_arg_function, printf_info,
PA_INT, PA_CHAR, PA_WCHAR, PA_STRING, PA_WSTRING, PA_POINTER,
PA_FLOAT, PA_DOUBLE, PA_LAST, PA_FLAG_LONG_LONG,
PA_FLAG_LONG_DOUBLE, PA_FLAG_LONG, PA_FLAG_SHORT,
PA_FLAG_PTR - define custom behavior for printf-like functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <printf.h>

int register_printf_specifier(int spec, printf_function func,
printf_arginfo_size_function arginfo);

int register_printf_modifier(const wchar_t *str);
int register_printf_type(printf_va_arg_function fct);

Callbacks
typedef int printf_function(FILE *stream, const struct printf_info *info,

const void *const args[]);
typedef int printf_arginfo_size_function(const struct printf_info *info,

size_t n, int argtypes[n], int size[n]);
typedef void printf_va_arg_function(void *mem, va_list *ap);

Types
struct printf_info {

int prec; // Precision
int width; // Width
wchar_t spec; // Format letter
unsigned int is_long_double:1;// L or ll flag
unsigned int is_short:1; // h flag
unsigned int is_long:1; // l flag
unsigned int alt:1; // # flag
unsigned int space:1; // Space flag
unsigned int left:1; // - flag
unsigned int showsign:1; // + flag
unsigned int group:1; // ' flag
unsigned int extra:1; // For special use
unsigned int is_char:1; // hh flag
unsigned int wide:1; // True for wide character streams
unsigned int i18n:1; // I flag
unsigned int is_binary128:1; /* Floating-point argument is

ABI-compatible with
IEC 60559 binary128 */

unsigned short user; // Bits for user-installed modifiers
wchar_t pad; // Padding character

};

Linux man-pages 6.13 2024-07-23 2624

printf.h(3head) printf.h(3head)

Constants
#define PA_FLAG_LONG_LONG /* ... */
#define PA_FLAG_LONG_DOUBLE /* ... */
#define PA_FLAG_LONG /* ... */
#define PA_FLAG_SHORT /* ... */
#define PA_FLAG_PTR /* ... */

DESCRIPTION
These functions serve to extend and/or modify the behavior of the printf(3) family of
functions.

register_printf_specifier()
This function registers a custom conversion specifier for the printf(3) family of func-
tions.

spec The character which will be used as a conversion specifier in the format string.

func Callback function that will be executed by the printf(3) family of functions to
format the input arguments into the output stream.

stream
Output stream where the formatted output should be printed. This
stream transparently represents the output, even in the case of functions
that write to a string.

info Structure that holds context information, including the modifiers speci-
fied in the format string. This holds the same contents as in arginfo.

args Array of pointers to the arguments to the printf(3)-like function.

arginfo
Callback function that will be executed by the printf(3) family of functions to
know how many arguments should be parsed for the custom specifier and also
their types.

info Structure that holds context information, including the modifiers speci-
fied in the format string. This holds the same contents as in func.

n Number of arguments remaining to be parsed.

argtypes
This array should be set to define the type of each of the arguments that
will be parsed. Each element in the array represents one of the argu-
ments to be parsed, in the same order that they are passed to the
printf(3)-like function. Each element should be set to a base type
(PA_*) from the enum above, or a custom one, and optionally ORed
with an appropriate length modifier (PA_FLAG_*).

The type is determined by using one of the following constants:

PA_INT
int.

PA_CHAR
int, cast to char.

Linux man-pages 6.13 2024-07-23 2625

printf.h(3head) printf.h(3head)

PA_WCHAR
wchar_t.

PA_STRING
const char *, a '\0'-terminated string.

PA_WSTRING
const wchar_t *, a wide character L'\0'-terminated string.

PA_POINTER
void *.

PA_FLOAT
float.

PA_DOUBLE
double.

PA_LAST
TODO.

size For user-defined types, the size of the type (in bytes) should also be
specified through this array. Otherwise, leave it unused.

arginfo is called before func, and prepares some information needed to call func.

register_printf_modifier()
TODO

register_printf_type()
TODO

RETURN VALUE
register_printf_specifier(), register_printf_modifier(), and register_printf_type()
return zero on success, or -1 on error.

Callbacks
The callback of type printf_function should return the number of characters written,
or -1 on error.

The callback of type printf_arginfo_size_function should return the number of argu-
ments to be parsed by this specifier. It also passes information about the type of those
arguments to the caller through argtypes. On error, it should return -1.

ERRORS
EINVAL

The specifier was not a valid character.

STANDARDS
GNU.

HISTORY
register_printf_function(3) is an older function similar to
register_printf_specifier(), and is now deprecated. That function can’t handle user-
defined types.

register_printf_specifier() supersedes register_printf_function(3).

Linux man-pages 6.13 2024-07-23 2626

printf.h(3head) printf.h(3head)

EXAMPLES
The following example program registers the ’b’ and ’B’ specifiers to print integers in
binary format, mirroring rules for other unsigned conversion specifiers like ’x’ and
’u’. This can be used to print in binary prior to C23.

/* This code is in the public domain */

#include <err.h>
#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>

#include <printf.h>

#define GROUP_SEP '\''

struct Printf_Pad {
char ch;
size_t len;

};

static int b_printf(FILE *stream, const struct printf_info *info,
const void *const args[]);

static int b_arginf_sz(const struct printf_info *info,
size_t n, int argtypes[n], int size[n]);

static uintmax_t b_value(const struct printf_info *info,
const void *arg);

static size_t b_bin_repr(char bin[UINTMAX_WIDTH],
const struct printf_info *info, const void *arg);

static size_t b_bin_len(const struct printf_info *info,
ptrdiff_t min_len);

static size_t b_pad_len(const struct printf_info *info,
ptrdiff_t bin_len);

static ssize_t b_print_prefix(FILE *stream,
const struct printf_info *info);

static ssize_t b_pad_zeros(FILE *stream, const struct printf_info *info,
ptrdiff_t min_len);

static ssize_t b_print_number(FILE *stream,
const struct printf_info *info,
const char bin[UINTMAX_WIDTH],
size_t min_len, size_t bin_len);

static char pad_ch(const struct printf_info *info);
static ssize_t pad_spaces(FILE *stream, size_t pad_len);

Linux man-pages 6.13 2024-07-23 2627

printf.h(3head) printf.h(3head)

int
main(void)
{

if (register_printf_specifier('b', b_printf, b_arginf_sz) == -1)
err(EXIT_FAILURE, "register_printf_specifier('b', ...)");

if (register_printf_specifier('B', b_printf, b_arginf_sz) == -1)
err(EXIT_FAILURE, "register_printf_specifier('B', ...)");

printf("....----....----....----....----\n");
printf("%llb;\n", 0x5Ellu);
printf("%lB;\n", 0x5Elu);
printf("%b;\n", 0x5Eu);
printf("%hB;\n", 0x5Eu);
printf("%hhb;\n", 0x5Eu);
printf("%jb;\n", (uintmax_t)0x5E);
printf("%zb;\n", (size_t)0x5E);
printf("....----....----....----....----\n");
printf("%#b;\n", 0x5Eu);
printf("%#B;\n", 0x5Eu);
printf("....----....----....----....----\n");
printf("%10b;\n", 0x5Eu);
printf("%010b;\n", 0x5Eu);
printf("%.10b;\n", 0x5Eu);
printf("....----....----....----....----\n");
printf("%-10B;\n", 0x5Eu);
printf("....----....----....----....----\n");
printf("%'B;\n", 0x5Eu);
printf("....----....----....----....----\n");
printf("....----....----....----....----\n");
printf("%#16.12b;\n", 0xAB);
printf("%-#'20.12b;\n", 0xAB);
printf("%#'020B;\n", 0xAB);
printf("....----....----....----....----\n");
printf("%#020B;\n", 0xAB);
printf("%'020B;\n", 0xAB);
printf("%020B;\n", 0xAB);
printf("....----....----....----....----\n");
printf("%#021B;\n", 0xAB);
printf("%'021B;\n", 0xAB);
printf("%021B;\n", 0xAB);
printf("....----....----....----....----\n");
printf("%#022B;\n", 0xAB);
printf("%'022B;\n", 0xAB);
printf("%022B;\n", 0xAB);
printf("....----....----....----....----\n");
printf("%#023B;\n", 0xAB);
printf("%'023B;\n", 0xAB);
printf("%023B;\n", 0xAB);
printf("....----....----....----....----\n");

Linux man-pages 6.13 2024-07-23 2628

printf.h(3head) printf.h(3head)

printf("%-#'19.11b;\n", 0xAB);
printf("%#'019B;\n", 0xAB);
printf("%#019B;\n", 0xAB);
printf("....----....----....----....----\n");
printf("%'019B;\n", 0xAB);
printf("%019B;\n", 0xAB);
printf("%#016b;\n", 0xAB);
printf("....----....----....----....----\n");

return 0;
}

static int
b_printf(FILE *stream, const struct printf_info *info,

const void *const args[])
{

char bin[UINTMAX_WIDTH];
size_t min_len, bin_len;
ssize_t len, tmp;
struct Printf_Pad pad = {0};

len = 0;

min_len = b_bin_repr(bin, info, args[0]);
bin_len = b_bin_len(info, min_len);

pad.ch = pad_ch(info);
if (pad.ch == ' ')

pad.len = b_pad_len(info, bin_len);

/* Padding with ' ' (right aligned) */
if ((pad.ch == ' ') && !info->left) {

tmp = pad_spaces(stream, pad.len);
if (tmp == EOF)

return EOF;
len += tmp;

}

/* "0b"/"0B" prefix */
if (info->alt) {

tmp = b_print_prefix(stream, info);
if (tmp == EOF)

return EOF;
len += tmp;

}

/* Padding with '0' */
if (pad.ch == '0') {

tmp = b_pad_zeros(stream, info, min_len);

Linux man-pages 6.13 2024-07-23 2629

printf.h(3head) printf.h(3head)

if (tmp == EOF)
return EOF;

len += tmp;
}

/* Print number (including leading 0s to fill precision) */
tmp = b_print_number(stream, info, bin, min_len, bin_len);
if (tmp == EOF)

return EOF;
len += tmp;

/* Padding with ' ' (left aligned) */
if (info->left) {

tmp = pad_spaces(stream, pad.len);
if (tmp == EOF)

return EOF;
len += tmp;

}

return len;
}

static int
b_arginf_sz(const struct printf_info *info, size_t n, int argtypes[n],

[[maybe_unused]] int size[n])
{

if (n < 1)
return -1;

if (info->is_long_double)
argtypes[0] = PA_INT | PA_FLAG_LONG_LONG;

else if (info->is_long)
argtypes[0] = PA_INT | PA_FLAG_LONG;

else
argtypes[0] = PA_INT;

return 1;
}

static uintmax_t
b_value(const struct printf_info *info, const void *arg)
{

if (info->is_long_double)
return *(const unsigned long long *)arg;

if (info->is_long)
return *(const unsigned long *)arg;

/* short and char are both promoted to int */
return *(const unsigned int *)arg;

Linux man-pages 6.13 2024-07-23 2630

printf.h(3head) printf.h(3head)

}

static size_t
b_bin_repr(char bin[UINTMAX_WIDTH],

const struct printf_info *info, const void *arg)
{

size_t min_len;
uintmax_t val;

val = b_value(info, arg);

bin[0] = '0';
for (min_len = 0; val; min_len++) {

bin[min_len] = '0' + (val % 2);
val >>= 1;

}

return MAX(min_len, 1);
}

static size_t
b_bin_len(const struct printf_info *info, ptrdiff_t min_len)
{

return MAX(info->prec, min_len);
}

static size_t
b_pad_len(const struct printf_info *info, ptrdiff_t bin_len)
{

ptrdiff_t pad_len;

pad_len = info->width - bin_len;
if (info->alt)

pad_len -= 2;
if (info->group)

pad_len -= (bin_len - 1) / 4;

return MAX(pad_len, 0);
}

static ssize_t
b_print_prefix(FILE *stream, const struct printf_info *info)
{

ssize_t len;

len = 0;
if (fputc('0', stream) == EOF)

return EOF;
len++;

Linux man-pages 6.13 2024-07-23 2631

printf.h(3head) printf.h(3head)

if (fputc(info->spec, stream) == EOF)
return EOF;

len++;

return len;
}

static ssize_t
b_pad_zeros(FILE *stream, const struct printf_info *info,

ptrdiff_t min_len)
{

ssize_t len;
ptrdiff_t tmp;

len = 0;
tmp = info->width - (info->alt * 2);
if (info->group)

tmp -= tmp / 5 - !(tmp % 5);
for (ptrdiff_t i = tmp - 1; i > min_len - 1; i--) {

if (fputc('0', stream) == EOF)
return EOF;

len++;

if (!info->group || (i % 4))
continue;

if (fputc(GROUP_SEP, stream) == EOF)
return EOF;

len++;
}

return len;
}

static ssize_t
b_print_number(FILE *stream, const struct printf_info *info,

const char bin[UINTMAX_WIDTH],
size_t min_len, size_t bin_len)

{
ssize_t len;

len = 0;

/* Print leading zeros to fill precision */
for (size_t i = bin_len - 1; i > min_len - 1; i--) {

if (fputc('0', stream) == EOF)
return EOF;

len++;

if (!info->group || (i % 4))

Linux man-pages 6.13 2024-07-23 2632

printf.h(3head) printf.h(3head)

continue;
if (fputc(GROUP_SEP, stream) == EOF)

return EOF;
len++;

}

/* Print number */
for (size_t i = min_len - 1; i < min_len; i--) {

if (fputc(bin[i], stream) == EOF)
return EOF;

len++;

if (!info->group || (i % 4) || !i)
continue;

if (fputc(GROUP_SEP, stream) == EOF)
return EOF;

len++;
}

return len;
}

static char
pad_ch(const struct printf_info *info)
{

if ((info->prec != -1) || (info->pad == ' ') || info->left)
return ' ';

return '0';
}

static ssize_t
pad_spaces(FILE *stream, size_t pad_len)
{

ssize_t len;

len = 0;
for (size_t i = pad_len - 1; i < pad_len; i--) {

if (fputc(' ', stream) == EOF)
return EOF;

len++;
}

return len;
}

SEE ALSO
asprintf(3), printf(3), wprintf(3)

Linux man-pages 6.13 2024-07-23 2633

sysexits.h(3head) sysexits.h(3head)

NAME
sysexits.h - exit codes for programs

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sysexits.h>
#define EX_OK 0 /* successful termination */

#define EX__BASE 64 /* base value for error messages */

#define EX_USAGE 64 /* command line usage error */
#define EX_DATAERR 65 /* data format error */
#define EX_NOINPUT 66 /* cannot open input */
#define EX_NOUSER 67 /* addressee unknown */
#define EX_NOHOST 68 /* host name unknown */
#define EX_UNAVAILABLE 69 /* service unavailable */
#define EX_SOFTWARE 70 /* internal software error */
#define EX_OSERR 71 /* system error (e.g., can’t fork) */
#define EX_OSFILE 72 /* critical OS file missing */
#define EX_CANTCREAT 73 /* can’t create (user) output file */
#define EX_IOERR 74 /* input/output error */
#define EX_TEMPFAIL 75 /* temp failure; user is invited to retry */
#define EX_PROTOCOL 76 /* remote error in protocol */
#define EX_NOPERM 77 /* permission denied */
#define EX_CONFIG 78 /* configuration error */

#define EX__MAX ... /* maximum listed value */

DESCRIPTION
A few programs exit with the following error codes.

The successful exit is always indicated by a status of 0, or EX_OK (equivalent to
EXIT_SUCCESS from <stdlib.h>). Error numbers begin at EX__BASE to reduce
the possibility of clashing with other exit statuses that random programs may already
return. The meaning of the code is approximately as follows:

EX_USAGE
The command was used incorrectly, e.g., with the wrong number of argu-
ments, a bad flag, bad syntax in a parameter, or whatever.

EX_DATAERR
The input data was incorrect in some way. This should only be used for user’s
data and not system files.

EX_NOINPUT
An input file (not a system file) did not exist or was not readable. This could
also include errors like "No message" to a mailer (if it cared to catch it).

EX_NOUSER
The user specified did not exist. This might be used for mail addresses or re-
mote logins.

Linux man-pages 6.13 2024-05-02 2634

sysexits.h(3head) sysexits.h(3head)

EX_NOHOST
The host specified did not exist. This is used in mail addresses or network re-
quests.

EX_UNAVAILABLE
A service is unavailable. This can occur if a support program or file does not
exist. This can also be used as a catch-all message when something you
wanted to do doesn’t work, but you don’t know why.

EX_SOFTWARE
An internal software error has been detected. This should be limited to non-
operating system related errors if possible.

EX_OSERR
An operating system error has been detected. This is intended to be used for
such things as "cannot fork", "cannot create pipe", or the like. It includes
things like getuid(2) returning a user that does not exist in the passwd(5) file.

EX_OSFILE
Some system file (e.g., /etc/passwd , /etc/utmp, etc.) does not exist, cannot be
opened, or has some sort of error (e.g., syntax error).

EX_CANTCREAT
A (user specified) output file cannot be created.

EX_IOERR
An error occurred while doing I/O on some file.

EX_TEMPFAIL
Temporary failure, indicating something that is not really an error. For exam-
ple that a mailer could not create a connection, and the request should be reat-
tempted later.

EX_PROTOCOL
The remote system returned something that was "not possible" during a proto-
col exchange.

EX_OSFILE
You did not have sufficient permission to perform the operation. This is not
intended for file system problems, which should use EX_NOINPUT or
EX_CANTCREAT, but rather for higher level permissions.

EX_CONFIG
Something was found in an unconfigured or misconfigured state.

The numerical values corresponding to the symbolical ones are given in parenthesis
for easy reference.

STANDARDS
BSD.

HISTORY
The <sysexits.h> file appeared in 4.0BSD for use by the deliverymail utility, later re-
named to sendmail(8)

Linux man-pages 6.13 2024-05-02 2635

sysexits.h(3head) sysexits.h(3head)

CAVEATS
The choice of an appropriate exit value is often ambiguous.

SEE ALSO
err(3), error(3), exit(3)

Linux man-pages 6.13 2024-05-02 2636

aiocb(3type) aiocb(3type)

NAME
aiocb - asynchronous I/O control block

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <aio.h>

struct aiocb {
int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Location of buffer */
size_t aio_nbytes; /* Length of transfer */
int aio_reqprio; /* Request priority offset */
struct sigevent aio_sigevent; /* Signal number and value */
int aio_lio_opcode; /* Operation to be performed */

};

DESCRIPTION
For further information about this structure, see aio(7).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_read(3), aio_return(3),
aio_suspend(3), aio_write(3), lio_listio(3)

Linux man-pages 6.13 2024-05-02 2637

blkcnt_t(3type) blkcnt_t(3type)

NAME
blkcnt_t - file block counts

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ blkcnt_t;

DESCRIPTION
Used for file block counts. It is a signed integer type.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides this type: <sys/stat.h>.

SEE ALSO
stat(3type)

Linux man-pages 6.13 2024-05-02 2638

blksize_t(3type) blksize_t(3type)

NAME
blksize_t - file block sizes

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ blksize_t;

DESCRIPTION
Used for file block sizes. It is a signed integer type.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides this type: <sys/stat.h>.

SEE ALSO
stat(3type)

Linux man-pages 6.13 2024-05-02 2639

cc_t(3type) cc_t(3type)

NAME
cc_t, speed_t, tcflag_t - terminal special characters, baud rates, modes

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <termios.h>

typedef /* ... */ cc_t;
typedef /* ... */ speed_t;
typedef /* ... */ tcflag_t;

DESCRIPTION
cc_t is used for terminal special characters, speed_t for baud rates, and tcflag_t for
modes.

All are unsigned integer types.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
termios(3)

Linux man-pages 6.13 2024-05-02 2640

clock_t(3type) clock_t(3type)

NAME
clock_t - system time

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <time.h>

typedef /* ... */ clock_t;

DESCRIPTION
Used for system time in clock ticks or CLOCKS_PER_SEC (defined in <time.h>).
According to POSIX, it is an integer type or a real-floating type.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

NOTES
The following headers also provide this type: <sys/types.h> and <sys/times.h>.

SEE ALSO
times(2), clock(3)

Linux man-pages 6.13 2024-05-02 2641

clockid_t(3type) clockid_t(3type)

NAME
clockid_t - clock ID for the clock and timer functions

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ clockid_t;

DESCRIPTION
Used for clock ID type in the clock and timer functions. It is defined as an arithmetic
type.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides this type: <time.h>.

SEE ALSO
clock_adjtime(2), clock_getres(2), clock_nanosleep(2), timer_create(2), clock_getcpu-
clockid(3)

Linux man-pages 6.13 2024-05-02 2642

dev_t(3type) dev_t(3type)

NAME
dev_t - device ID

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ dev_t;

DESCRIPTION
Used for device IDs. It is an integer type. For further details of this type, see
makedev(3).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides this type: <sys/stat.h>.

SEE ALSO
mknod(2), stat(3type)

Linux man-pages 6.13 2024-05-02 2643

div_t(3type) div_t(3type)

NAME
div_t, ldiv_t, lldiv_t, imaxdiv_t - quotient and remainder of an integer division

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdlib.h>

typedef struct {
int quot; /* Quotient */
int rem; /* Remainder */

} div_t;

typedef struct {
long quot; /* Quotient */
long rem; /* Remainder */

} ldiv_t;

typedef struct {
long long quot; /* Quotient */
long long rem; /* Remainder */

} lldiv_t;

#include <inttypes.h>

typedef struct {
intmax_t quot; /* Quotient */
intmax_t rem; /* Remainder */

} imaxdiv_t;

DESCRIPTION
[[l]l]div_t is the type of the value returned by the [[l]l]div(3) function.

imaxdiv_t is the type of the value returned by the imaxdiv(3) function.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
div(3), imaxdiv(3), ldiv(3), lldiv(3)

Linux man-pages 6.13 2024-05-02 2644

double_t(3type) double_t(3type)

NAME
float_t, double_t - most efficient floating types

LIBRARY
Math library (libm)

SYNOPSIS
#include <math.h>

typedef /* ... */ float_t;
typedef /* ... */ double_t;

DESCRIPTION
The implementation’s most efficient floating types at least as wide as float and double
respectively. Their type depends on the value of the macro FLT_EVAL_METHOD
(defined in <float.h>):

FLT_EVAL_METHOD float_t double_t
0 float double
1 double double
2 long double long double

For other values of FLT_EVAL_METHOD, the types of float_t and double_t are
implementation-defined.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
float.h(0p), math.h(0p)

Linux man-pages 6.13 2024-05-02 2645

epoll_event(3type) epoll_event(3type)

NAME
epoll_event, epoll_data, epoll_data_t - epoll event

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/epoll.h>

struct epoll_event {
uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */

};

union epoll_data {
void *ptr;
int fd;
uint32_t u32;
uint64_t u64;

};

typedef union epoll_data epoll_data_t;

DESCRIPTION
The epoll_event structure specifies data that the kernel should save and return when
the corresponding file descriptor becomes ready.

VERSIONS
C library/kernel differences

The Linux kernel headers also provide this type, with a slightly different definition:

#include <linux/eventpoll.h>

struct epoll_event {
__poll_t events;
__u64 data;

};

STANDARDS
Linux.

SEE ALSO
epoll_wait(2), epoll_ctl(2)

Linux man-pages 6.13 2024-05-02 2646

fenv_t(3type) fenv_t(3type)

NAME
fenv_t, fexcept_t - floating-point environment

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <fenv.h>

typedef /* ... */ fenv_t;
typedef /* ... */ fexcept_t;

DESCRIPTION
fenv_t represents the entire floating-point environment, including control modes and
status flags.

fexcept_t represents the floating-point status flags collectively.

For further details see fenv(3).

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
fenv(3)

Linux man-pages 6.13 2024-05-02 2647

FILE(3type) FILE(3type)

NAME
FILE - input/output stream

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdio.h>

typedef /* ... */ FILE;

DESCRIPTION
An object type used for streams.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

NOTES
The following header also provides this type: <wchar.h>.

SEE ALSO
fclose(3), flockfile(3), fopen(3), fprintf(3), fread(3), fscanf(3), stdin(3), stdio(3)

Linux man-pages 6.13 2024-05-02 2648

id_t(3type) id_t(3type)

NAME
pid_t, uid_t, gid_t, id_t - process/user/group identifier

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ pid_t;
typedef /* ... */ uid_t;
typedef /* ... */ gid_t;
typedef /* ... */ id_t;

DESCRIPTION
pid_t is a type used for storing process IDs, process group IDs, and session IDs. It is
a signed integer type.

uid_t is a type used to hold user IDs. It is an integer type.

gid_t is a type used to hold group IDs. It is an integer type.

id_t is a type used to hold a general identifier. It is an integer type that can be used to
contain a pid_t, uid_t, or gid_t.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The following headers also provide pid_t: <fcntl.h>, <sched.h>, <signal.h>,
<spawn.h>, <sys/msg.h>, <sys/sem.h>, <sys/shm.h>, <sys/wait.h>, <termios.h>,
<time.h>, <unistd.h>, and <utmpx.h>.

The following headers also provide uid_t: <pwd.h>, <signal.h>, <stropts.h>,
<sys/ipc.h>, <sys/stat.h>, and <unistd.h>.

The following headers also provide gid_t: <grp.h>, <pwd.h>, <signal.h>,
<stropts.h>, <sys/ipc.h>, <sys/stat.h>, and <unistd.h>.

The following header also provides id_t: <sys/resource.h>.

SEE ALSO
chown(2), fork(2), getegid(2), geteuid(2), getgid(2), getgroups(2), getpgid(2), get-
pid(2), getppid(2), getpriority(2), getpwnam(3), getresgid(2), getresuid(2), getsid(2),
gettid(2), getuid(2), kill(2), pidfd_open(2), sched_setscheduler(2), waitid(2), getgr-
nam(3), sigqueue(3), credentials(7)

Linux man-pages 6.13 2024-05-02 2649

id_t(3type) id_t(3type)

Linux man-pages 6.13 2024-05-02 2650

intmax_t(3type) intmax_t(3type)

NAME
intmax_t, uintmax_t - greatest-width basic integer types

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdint.h>

typedef /* ... */ intmax_t;
typedef /* ... */ uintmax_t;

#define INTMAX_WIDTH /* ... */
#define UINTMAX_WIDTH INTMAX_WIDTH

#define INTMAX_MAX /* 2**(INTMAX_WIDTH - 1) - 1 */
#define INTMAX_MIN /* - 2**(INTMAX_WIDTH - 1) */
#define UINTMAX_MAX /* 2**UINTMAX_WIDTH - 1 */

#define INTMAX_C(c) c ## /* ... */
#define UINTMAX_C(c) c ## /* ... */

DESCRIPTION
intmax_t is a signed integer type capable of representing any value of any basic signed
integer type supported by the implementation. It is capable of storing values in the
range [INTMAX_MIN, INTMAX_MAX].

uintmax_t is an unsigned integer type capable of representing any value of any basic
unsigned integer type supported by the implementation. It is capable of storing values
in the range [0, UINTMAX_MAX].

The macros [U]INTMAX_WIDTH expand to the width in bits of these types.

The macros [U]INTMAX_MAX expand to the maximum value that these types can
hold.

The macro INTMAX_MIN expands to the minimum value that intmax_t can hold.

The macros [U]INTMAX_C() expand their argument to an integer constant of type
[u]intmax_t.

The length modifier for [u]intmax_t for the printf(3) and the scanf(3) families of func-
tions is j; resulting commonly in %jd, %ji, %ju, or %jx for printing [u]intmax_t
values.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

NOTES
The following header also provides these types: <inttypes.h>.

BUGS
These types may not be as large as extended integer types, such as __int128

Linux man-pages 6.13 2024-05-02 2651

intmax_t(3type) intmax_t(3type)

SEE ALSO
int64_t(3type), intptr_t(3type), printf(3), strtoimax(3)

Linux man-pages 6.13 2024-05-02 2652

intN_t(3type) intN_t(3type)

NAME
intN_t, int8_t, int16_t, int32_t, int64_t, uintN_t, uint8_t, uint16_t, uint32_t, uint64_t -
fixed-width basic integer types

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdint.h>

typedef /* ... */ int8_t;
typedef /* ... */ int16_t;
typedef /* ... */ int32_t;
typedef /* ... */ int64_t;

typedef /* ... */ uint8_t;
typedef /* ... */ uint16_t;
typedef /* ... */ uint32_t;
typedef /* ... */ uint64_t;

#define INT8_WIDTH 8
#define INT16_WIDTH 16
#define INT32_WIDTH 32
#define INT64_WIDTH 64

#define UINT8_WIDTH 8
#define UINT16_WIDTH 16
#define UINT32_WIDTH 32
#define UINT64_WIDTH 64

#define INT8_MAX /* 2**(INT8_WIDTH - 1) - 1 */
#define INT16_MAX /* 2**(INT16_WIDTH - 1) - 1 */
#define INT32_MAX /* 2**(INT32_WIDTH - 1) - 1 */
#define INT64_MAX /* 2**(INT64_WIDTH - 1) - 1 */

#define INT8_MIN /* - 2**(INT8_WIDTH - 1) */
#define INT16_MIN /* - 2**(INT16_WIDTH - 1) */
#define INT32_MIN /* - 2**(INT32_WIDTH - 1) */
#define INT64_MIN /* - 2**(INT64_WIDTH - 1) */

#define UINT8_MAX /* 2**INT8_WIDTH - 1 */
#define UINT16_MAX /* 2**INT16_WIDTH - 1 */
#define UINT32_MAX /* 2**INT32_WIDTH - 1 */
#define UINT64_MAX /* 2**INT64_WIDTH - 1 */

#define INT8_C(c) c ## /* ... */
#define INT16_C(c) c ## /* ... */
#define INT32_C(c) c ## /* ... */
#define INT64_C(c) c ## /* ... */

#define UINT8_C(c) c ## /* ... */
#define UINT16_C(c) c ## /* ... */
#define UINT32_C(c) c ## /* ... */
#define UINT64_C(c) c ## /* ... */

Linux man-pages 6.13 2024-05-02 2653

intN_t(3type) intN_t(3type)

DESCRIPTION
intN_t are signed integer types of a fixed width of exactly N bits, N being the value
specified in its type name. They are be capable of storing values in the range
[INTN_MIN, INTN_MAX], substituting N by the appropriate number.

uintN_t are unsigned integer types of a fixed width of exactly N bits, N being the
value specified in its type name. They are capable of storing values in the range [0,
UINTN_MAX], substituting N by the appropriate number.

According to POSIX, [u]int8_t, [u]int16_t, and [u]int32_t are required; [u]int64_t are
only required in implementations that provide integer types with width 64; and all
other types of this form are optional.

The macros [U]INTN_WIDTH expand to the width in bits of these types (N).

The macros [U]INTN_MAX expand to the maximum value that these types can hold.

The macros INTN_MIN expand to the minimum value that these types can hold.

The macros [U]INTN_C() expand their argument to an integer constant of type
[u]intN_t.

The length modifiers for the [u]intN_t types for the printf(3) family of functions are
expanded by macros of the forms PRIdN, PRIiN, PRIuN, and PRIxN (defined in
<inttypes.h>); resulting for example in %"PRId64" or %"PRIi64" for printing
int64_t values. The length modifiers for the [u]intN_t types for the scanf(3) family of
functions are expanded by macros of the forms SCNdN, SCNiN, SCNuN, and SC-
NxN, (defined in <inttypes.h>); resulting for example in %"SCNu8" or %"SCNx8"
for scanning uint8_t values.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The [U]INTN_WIDTH macros were added in C23.

NOTES
The following header also provides these types: <inttypes.h>. <arpa/inet.h> also
provides uint16_t and uint32_t.

SEE ALSO
intmax_t(3type), intptr_t(3type), printf(3)

Linux man-pages 6.13 2024-05-02 2654

intptr_t(3type) intptr_t(3type)

NAME
intptr_t, uintptr_t - integer types wide enough to hold pointers

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdint.h>

typedef /* ... */ intptr_t;
typedef /* ... */ uintptr_t;

#define INTPTR_WIDTH /* ... */
#define UINTPTR_WIDTH INTPTR_WIDTH

#define INTPTR_MAX /* 2**(INTPTR_WIDTH - 1) - 1 */
#define INTPTR_MIN /* - 2**(INTPTR_WIDTH - 1) */
#define UINTPTR_MAX /* 2**UINTPTR_WIDTH - 1 */

DESCRIPTION
intptr_t is a signed integer type such that any valid (void *) value can be converted to
this type and then converted back. It is capable of storing values in the range
[INTPTR_MIN, INTPTR_MAX].

uintptr_t is an unsigned integer type such that any valid (void *) value can be con-
verted to this type and then converted back. It is capable of storing values in the range
[0, INTPTR_MAX].

The macros [U]INTPTR_WIDTH expand to the width in bits of these types.

The macros [U]INTPTR_MAX expand to the maximum value that these types can
hold.

The macro INTPTR_MIN expands to the minimum value that intptr_t can hold.

The length modifiers for the [u]intptr_t types for the printf(3) family of functions are
expanded by the macros PRIdPTR, PRIiPTR, and PRIuPTR (defined in <int-
types.h>); resulting commonly in %"PRIdPTR" or %"PRIiPTR" for printing
intptr_t values. The length modifiers for the [u]intptr_t types for the scanf(3) family
of functions are expanded by the macros SCNdPTR, SCNiPTR, and SCNuPTR (de-
fined in <inttypes.h>); resulting commonly in %"SCNuPTR" for scanning uintptr_t
values.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

NOTES
The following header also provides these types: <inttypes.h>.

SEE ALSO
intmax_t(3type), void(3)

Linux man-pages 6.13 2024-05-02 2655

iovec(3type) iovec(3type)

NAME
iovec - Vector I/O data structure

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/uio.h>

struct iovec {
void *iov_base; /* Starting address */
size_t iov_len; /* Size of the memory pointed to by iov_base. */

};

DESCRIPTION
Describes a region of memory, beginning at iov_base address and with the size of
iov_len bytes. System calls use arrays of this structure, where each element of the ar-
ray represents a memory region, and the whole array represents a vector of memory
regions. The maximum number of iovec structures in that array is limited by
IOV_MAX (defined in <limits.h>, or accessible via the call
sysconf(_SC_IOV_MAX)).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides this type: <sys/socket.h>.

SEE ALSO
process_madvise(2), readv(2)

Linux man-pages 6.13 2024-05-02 2656

itimerspec(3type) itimerspec(3type)

NAME
itimerspec - interval for a timer with nanosecond precision

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <time.h>

struct itimerspec {
struct timespec it_interval; /* Interval for periodic timer */
struct timespec it_value; /* Initial expiration */

};

DESCRIPTION
Describes the initial expiration of a timer, and its interval, in seconds and nanosec-
onds.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
timerfd_create(2), timer_settime(2), timespec(3type)

Linux man-pages 6.13 2024-05-02 2657

lconv(3type) lconv(3type)

NAME
lconv - numeric formatting information

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <locale.h>

struct lconv { /* Values in the "C" locale: */
char *decimal_point; /* "." */
char *thousands_sep; /* "" */
char *grouping; /* "" */
char *mon_decimal_point; /* "" */
char *mon_thousands_sep; /* "" */
char *mon_grouping; /* "" */
char *positive_sign; /* "" */
char *negative_sign; /* "" */
char *currency_symbol; /* "" */
char frac_digits; /* CHAR_MAX */
char p_cs_precedes; /* CHAR_MAX */
char n_cs_precedes; /* CHAR_MAX */
char p_sep_by_space; /* CHAR_MAX */
char n_sep_by_space; /* CHAR_MAX */
char p_sign_posn; /* CHAR_MAX */
char n_sign_posn; /* CHAR_MAX */
char *int_curr_symbol; /* "" */
char int_frac_digits; /* CHAR_MAX */
char int_p_cs_precedes; /* CHAR_MAX */
char int_n_cs_precedes; /* CHAR_MAX */
char int_p_sep_by_space; /* CHAR_MAX */
char int_n_sep_by_space; /* CHAR_MAX */
char int_p_sign_posn; /* CHAR_MAX */
char int_n_sign_posn; /* CHAR_MAX */

};

DESCRIPTION
Contains members related to the formatting of numeric values. In the "C" locale, its
members have the values shown in the comments above.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
setlocale(3), localeconv(3), charsets(7), locale(7)

Linux man-pages 6.13 2024-05-02 2658

locale_t(3type) locale_t(3type)

NAME
locale_t - locale object

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <locale.h>

typedef /* ... */ locale_t;

DESCRIPTION
locale_t is a type used for storing a locale object.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2008.

NOTES
The following headers also provide this type: <ctype.h>, <langinfo.h>, <mone-
tary.h>, <string.h>, <strings.h>, <time.h>, <wchar.h>, <wctype.h>.

SEE ALSO
duplocale(3), freelocale(3), newlocale(3), setlocale(3), uselocale(3), locale(5), lo-
cale(7)

Linux man-pages 6.13 2024-05-03 2659

mbstate_t(3type) mbstate_t(3type)

NAME
mbstate_t - multi-byte-character conversion state

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <wchar.h>

typedef /* ... */ mbstate_t;

DESCRIPTION
Character conversion between the multibyte representation and the wide character
representation uses conversion state, of type mbstate_t. Conversion of a string uses a
finite-state machine; when it is interrupted after the complete conversion of a number
of characters, it may need to save a state for processing the remaining characters.
Such a conversion state is needed for the sake of encodings such as ISO/IEC 2022 and
UTF-7.

The initial state is the state at the beginning of conversion of a string. There are two
kinds of state: the one used by multibyte to wide character conversion functions, such
as mbsrtowcs(3), and the one used by wide character to multibyte conversion func-
tions, such as wcsrtombs(3), but they both fit in a mbstate_t, and they both have the
same representation for an initial state.

For 8-bit encodings, all states are equivalent to the initial state. For multibyte encod-
ings like UTF-8, EUC-*, BIG5, or SJIS, the wide character to multibyte conversion
functions never produce non-initial states, but the multibyte to wide-character conver-
sion functions like mbrtowc(3) do produce non-initial states when interrupted in the
middle of a character.

One possible way to create an mbstate_t in initial state is to set it to zero:

mbstate_t state;
memset(&state, 0, sizeof(state));

On Linux, the following works as well, but might generate compiler warnings:

mbstate_t state = { 0 };

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
mbrlen(3), mbrtowc(3), mbsinit(3), mbsrtowcs(3), wcrtomb(3), wcsrtombs(3)

Linux man-pages 6.13 2024-05-03 2660

mode_t(3type) mode_t(3type)

NAME
mode_t - file attributes

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ mode_t;

DESCRIPTION
Used for some file attributes (e.g., file mode). It is an integer type.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The following headers also provide this type: <fcntl.h>, <ndbm.h>, <spawn.h>,
<sys/ipc.h>, <sys/mman.h>, and <sys/stat.h>.

SEE ALSO
chmod(2), mkdir(2), open(2), umask(2), stat(3type)

Linux man-pages 6.13 2024-05-02 2661

off_t(3type) off_t(3type)

NAME
off_t, off64_t, loff_t - file sizes

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ off_t;

#define _LARGEFILE64_SOURCE
#include <sys/types.h>

typedef /* ... */ off64_t;

#define _GNU_SOURCE
#include <sys/types.h>

typedef /* ... */ loff_t;

DESCRIPTION
off_t is used for describing file sizes. It is a signed integer type.

off64_t is a 64-bit version of the type, used in glibc.

loff_t is a 64-bit version of the type, introduced by the Linux kernel.

STANDARDS
off_t POSIX.1-2008.

off64_t
GNU and some BSDs.

loff_t Linux.

VERSIONS
off_t POSIX.1-2001.

<aio.h> and <stdio.h> define off_t since POSIX.1-2008.

NOTES
On some architectures, the width of off_t can be controlled with the feature test macro
_FILE_OFFSET_BITS.

The following headers also provide off_t: <aio.h>, <fcntl.h>, <stdio.h>,
<sys/mman.h>, <sys/stat.h>, and <unistd.h>.

SEE ALSO
copy_file_range(2), llseek(2), lseek(2), mmap(2), posix_fadvise(2), pread(2), reada-
head(2), sync_file_range(2), truncate(2), fseeko(3), lockf(3), lseek64(3), posix_fallo-
cate(3), feature_test_macros(7)

Linux man-pages 6.13 2024-05-02 2662

ptrdiff_t(3type) ptrdiff_t(3type)

NAME
ptrdiff_t - count of elements or array index

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stddef.h>

typedef /* ... */ ptrdiff_t;

DESCRIPTION
Used for a count of elements, or an array index. It is the result of subtracting two
pointers. It is a signed integer type capable of storing values in the range
[PTRDIFF_MIN, PTRDIFF_MAX].

The length modifier for ptrdiff_t for the printf(3) and the scanf(3) families of func-
tions is t, resulting commonly in %td or %ti for printing ptrdiff_t values.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

SEE ALSO
size_t(3type)

Linux man-pages 6.13 2024-05-02 2663

sigevent(3type) sigevent(3type)

NAME
sigevent, sigval - structure for notification from asynchronous routines

SYNOPSIS
#include <signal.h>

struct sigevent {
int sigev_notify; /* Notification type */
int sigev_signo; /* Signal number */
union sigval sigev_value; /* Data passed with notification */

typeof(void (union sigval)) *sigev_notify_function;
/* Notification function

(SIGEV_THREAD) */
pthread_attr_t *sigev_notify_attributes;

/* Notification attributes */

/* Linux only: */
pid_t sigev_notify_thread_id;

/* ID of thread to signal
(SIGEV_THREAD_ID) */

};

union sigval { /* Data passed with notification */
int sival_int; /* Integer value */
void *sival_ptr; /* Pointer value */

};

DESCRIPTION
sigevent

The sigevent structure is used by various APIs to describe the way a process is to be
notified about an event (e.g., completion of an asynchronous request, expiration of a
timer, or the arrival of a message).

The definition shown in the SYNOPSIS is approximate: some of the fields in the
sigevent structure may be defined as part of a union. Programs should employ only
those fields relevant to the value specified in sigev_notify.

The sigev_notify field specifies how notification is to be performed. This field can
have one of the following values:

SIGEV_NONE
A "null" notification: don’t do anything when the event occurs.

SIGEV_SIGNAL
Notify the process by sending the signal specified in sigev_signo.

If the signal is caught with a signal handler that was registered using the sigac-
tion(2) SA_SIGINFO flag, then the following fields are set in the siginfo_t
structure that is passed as the second argument of the handler:

Linux man-pages 6.13 2024-12-13 2664

sigevent(3type) sigevent(3type)

si_code This field is set to a value that depends on the API delivering the
notification.

si_signo This field is set to the signal number (i.e., the same value as in
sigev_signo).

si_value This field is set to the value specified in sigev_value.

Depending on the API, other fields may also be set in the siginfo_t structure.

The same information is also available if the signal is accepted using sigwait-
info(2).

SIGEV_THREAD
Notify the process by invoking sigev_notify_function "as if" it were the start
function of a new thread. (Among the implementation possibilities here are
that each timer notification could result in the creation of a new thread, or that
a single thread is created to receive all notifications.) The function is invoked
with sigev_value as its sole argument. If sigev_notify_attributes is not NULL,
it should point to a pthread_attr_t structure that defines attributes for the new
thread (see pthread_attr_init(3)).

SIGEV_THREAD_ID (Linux-specific)
Currently used only by POSIX timers; see timer_create(2).

sigval
Data passed with a signal.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

<aio.h> and <time.h> define sigevent since POSIX.1-2008.

NOTES
The following headers also provide sigevent: <aio.h>, <mqueue.h>, and <time.h>.

SEE ALSO
timer_create(2), getaddrinfo_a(3), lio_listio(3), mq_notify(3), pthread_sigqueue(3),
sigqueue(3), aiocb(3type), siginfo_t(3type)

Linux man-pages 6.13 2024-12-13 2665

size_t(3type) size_t(3type)

NAME
size_t, ssize_t - count of bytes

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stddef.h>

typedef /* ... */ size_t;

#include <sys/types.h>

typedef /* ... */ ssize_t;

DESCRIPTION
size_t Used for a count of bytes. It is the result of the sizeof () operator. It is an un-

signed integer type capable of storing values in the range [0, SIZE_MAX].

ssize_t
Used for a count of bytes or an error indication. It is a signed integer type ca-
pable of storing values at least in the range [-1, SSIZE_MAX].

Use with printf(3) and scanf(3)
size_t The length modifier for size_t for the printf(3) and the scanf(3) families of

functions is z, resulting commonly in %zu or %zx for printing size_t values.

ssize_t
glibc and most other implementations provide a length modifier for ssize_t for
the printf(3) and the scanf(3) families of functions, which is z; resulting com-
monly in %zd or %zi for printing ssize_t values. Although z works for
ssize_t on most implementations, portable POSIX programs should avoid us-
ing it—for example, by converting the value to intmax_t and using its length
modifier (j).

STANDARDS
size_t C11, POSIX.1-2008.

ssize_t
POSIX.1-2008.

HISTORY
size_t C89, POSIX.1-2001.

ssize_t
POSIX.1-2001.

<aio.h>, <glob.h>, <grp.h>, <iconv.h>, <mqueue.h>, <pwd.h>, <signal.h>, and
<sys/socket.h> define size_t since POSIX.1-2008.

<aio.h>, <mqueue.h>, and <sys/socket.h> define ssize_t since POSIX.1-2008.

NOTES
size_t The following headers also provide size_t: <aio.h>, <glob.h>, <grp.h>,

<iconv.h>, <monetary.h>, <mqueue.h>, <ndbm.h>, <pwd.h>, <regex.h>,
<search.h>, <signal.h>, <stdio.h>, <stdlib.h>, <string.h>, <strings.h>,
<sys/mman.h>, <sys/msg.h>, <sys/sem.h>, <sys/shm.h>, <sys/socket.h>,
<sys/types.h>, <sys/uio.h>, <time.h>, <unistd.h>, <wchar.h>, and

Linux man-pages 6.13 2024-05-02 2666

size_t(3type) size_t(3type)

<wordexp.h>.

ssize_t
The following headers also provide ssize_t: <aio.h>, <monetary.h>,
<mqueue.h>, <stdio.h>, <sys/msg.h>, <sys/socket.h>, <sys/uio.h>, and
<unistd.h>.

SEE ALSO
read(2), readlink(2), readv(2), recv(2), send(2), write(2), fread(3), fwrite(3), mem-
cmp(3), memcpy(3), memset(3), offsetof(3), ptrdiff_t(3type)

Linux man-pages 6.13 2024-05-02 2667

sockaddr(3type) sockaddr(3type)

NAME
sockaddr, sockaddr_storage, sockaddr_in, sockaddr_in6, sockaddr_un, socklen_t,
in_addr, in6_addr, in_addr_t, in_port_t, - socket address

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/socket.h>

struct sockaddr {
sa_family_t sa_family; /* Address family */
char sa_data[]; /* Socket address */

};

struct sockaddr_storage {
sa_family_t ss_family; /* Address family */

};

typedef /* ... */ socklen_t;
typedef /* ... */ sa_family_t;

Internet domain sockets
#include <netinet/in.h>

struct sockaddr_in {
sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* Port number */
struct in_addr sin_addr; /* IPv4 address */

};

struct sockaddr_in6 {
sa_family_t sin6_family; /* AF_INET6 */
in_port_t sin6_port; /* Port number */
uint32_t sin6_flowinfo; /* IPv6 flow info */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id; /* Set of interfaces for a scope */

};

struct in_addr {
in_addr_t s_addr;

};

struct in6_addr {
uint8_t s6_addr[16];

};

typedef uint32_t in_addr_t;
typedef uint16_t in_port_t;

Linux man-pages 6.13 2024-11-17 2668

sockaddr(3type) sockaddr(3type)

UNIX domain sockets
#include <sys/un.h>

struct sockaddr_un {
sa_family_t sun_family; /* Address family */
char sun_path[]; /* Socket pathname */

};

DESCRIPTION
sockaddr

Describes a socket address.

sockaddr_storage
A structure at least as large as any other sockaddr_* address structures. It’s
aligned so that a pointer to it can be cast as a pointer to other sockaddr_*
structures and used to access its fields.

socklen_t
Describes the length of a socket address. This is an integer type of at least 32
bits.

sa_family_t
Describes a socket’s protocol family. This is an unsigned integer type.

Internet domain sockets
sockaddr_in

Describes an IPv4 Internet domain socket address. The sin_port and sin_addr
members are stored in network byte order.

sockaddr_in6
Describes an IPv6 Internet domain socket address. The sin6_addr.s6_addr ar-
ray is used to contain a 128-bit IPv6 address, stored in network byte order.

UNIX domain sockets
sockaddr_un

Describes a UNIX domain socket address.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

socklen_t was invented by POSIX. See also accept(2).

These structures were invented before modern ISO C strict-aliasing rules. If aliasing
rules are applied strictly, these structures would be extremely difficult to use without
invoking undefined behavior. POSIX Issue 8 will fix this by requiring that implemen-
tations make sure that these structures can be safely used as they were designed.

NOTES
socklen_t is also defined in <netdb.h>.

sa_family_t is also defined in <netinet/in.h> and <sys/un.h>.

Linux man-pages 6.13 2024-11-17 2669

sockaddr(3type) sockaddr(3type)

SEE ALSO
accept(2), bind(2), connect(2), getpeername(2), getsockname(2), getsockopt(2),
sendto(2), setsockopt(2), socket(2), socketpair(2), getaddrinfo(3), gethostbyaddr(3),
getnameinfo(3), htonl(3), ipv6(7), socket(7)

Linux man-pages 6.13 2024-11-17 2670

stat(3type) stat(3type)

NAME
stat - file status

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/stat.h>

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* Inode number */
mode_t st_mode; /* File type and mode */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device ID (if special file) */
off_t st_size; /* Total size, in bytes */
blksize_t st_blksize; /* Block size for filesystem I/O */
blkcnt_t st_blocks; /* Number of 512 B blocks allocated */

/* Since POSIX.1-2008, this structure supports nanosecond
precision for the following timestamp fields.
For the details before POSIX.1-2008, see VERSIONS. */

struct timespec st_atim; /* Time of last access */
struct timespec st_mtim; /* Time of last modification */
struct timespec st_ctim; /* Time of last status change */

#define st_atime st_atim.tv_sec /* Backward compatibility */
#define st_mtime st_mtim.tv_sec
#define st_ctime st_ctim.tv_sec
};

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

st_atim, st_mtim, st_ctim:
Since glibc 2.12:

_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Describes information about a file.

The fields are as follows:

st_dev
This field describes the device on which this file resides. (The major(3) and
minor(3) macros may be useful to decompose the device ID in this field.)

Linux man-pages 6.13 2024-05-02 2671

stat(3type) stat(3type)

st_ino This field contains the file’s inode number.

st_mode
This field contains the file type and mode. See inode(7) for further informa-
tion.

st_nlink
This field contains the number of hard links to the file.

st_uid
This field contains the user ID of the owner of the file.

st_gid
This field contains the ID of the group owner of the file.

st_rdev
This field describes the device that this file (inode) represents.

st_size
This field gives the size of the file (if it is a regular file or a symbolic link) in
bytes. The size of a symbolic link is the length of the pathname it contains,
without a terminating null byte.

st_blksize
This field gives the "preferred" block size for efficient filesystem I/O.

st_blocks
This field indicates the number of blocks allocated to the file, in 512-byte
units. (This may be smaller than st_size/512 when the file has holes.)

st_atime
This is the time of the last access of file data.

st_mtime
This is the time of last modification of file data.

st_ctime
This is the file’s last status change timestamp (time of last change to the in-
ode).

For further information on the above fields, see inode(7).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Old kernels and old standards did not support nanosecond timestamp fields. Instead,
there were three timestamp fields—st_atime, st_mtime, and st_ctime—typed as time_t
that recorded timestamps with one-second precision.

Since Linux 2.5.48, the stat structure supports nanosecond resolution for the three file
timestamp fields. The nanosecond components of each timestamp are available via
names of the form st_atim.tv_nsec, if suitable test macros are defined. Nanosecond
timestamps were standardized in POSIX.1-2008, and, starting with glibc 2.12, glibc
exposes the nanosecond component names if _POSIX_C_SOURCE is defined with
the value 200809L or greater, or _XOPEN_SOURCE is defined with the value 700

Linux man-pages 6.13 2024-05-02 2672

stat(3type) stat(3type)

or greater. Up to and including glibc 2.19, the definitions of the nanoseconds compo-
nents are also defined if _BSD_SOURCE or _SVID_SOURCE is defined. If none of
the aforementioned macros are defined, then the nanosecond values are exposed with
names of the form st_atimensec.

NOTES
The following header also provides this type: <ftw.h>.

SEE ALSO
stat(2), inode(7)

Linux man-pages 6.13 2024-05-02 2673

time_t(3type) time_t(3type)

NAME
time_t, suseconds_t, useconds_t - integer time

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <time.h>

typedef /* ... */ time_t;

#include <sys/types.h>

typedef /* ... */ suseconds_t;
typedef /* ... */ useconds_t;

DESCRIPTION
time_t

Used for time in seconds. According to POSIX, it is an integer type.

suseconds_t
Used for time in microseconds. It is a signed integer type capable of storing
values at least in the range [-1, 1000000].

useconds_t
Used for time in microseconds. It is an unsigned integer type capable of stor-
ing values at least in the range [0, 1000000].

STANDARDS
time_t

C11, POSIX.1-2008.

suseconds_t
useconds_t

POSIX.1-2008.

HISTORY
time_t

C89, POSIX.1-2001.

suseconds_t
useconds_t

POSIX.1-2001.

<sched.h> defines time_t since POSIX.1-2008.

POSIX.1-2001 defined useconds_t in <unistd.h> too.

NOTES
On some architectures, the width of time_t can be controlled with the feature test
macro _TIME_BITS. See feature_test_macros(7).

The following headers also provide time_t: <sched.h>, <sys/msg.h>, <sys/select.h>,
<sys/sem.h>, <sys/shm.h>, <sys/stat.h>, <sys/time.h>, <sys/types.h>, and
<utime.h>.

The following headers also provide suseconds_t: <sys/select.h> and <sys/time.h>.

Linux man-pages 6.13 2024-05-02 2674

time_t(3type) time_t(3type)

SEE ALSO
stime(2), time(2), ctime(3), difftime(3), usleep(3), timeval(3type)

Linux man-pages 6.13 2024-05-02 2675

timer_t(3type) timer_t(3type)

NAME
timer_t - timer ID

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ timer_t;

DESCRIPTION
Used for timer ID returned by timer_create(2).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides timer_t: <time.h>.

SEE ALSO
timer_create(2), timer_delete(2), timer_getoverrun(2), timer_settime(2)

Linux man-pages 6.13 2024-05-02 2676

timespec(3type) timespec(3type)

NAME
timespec - time in seconds and nanoseconds

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <time.h>

struct timespec {
time_t tv_sec; /* Seconds */
/* ... */ tv_nsec; /* Nanoseconds [0, 999'999'999] */

};

DESCRIPTION
Describes times in seconds and nanoseconds.

tv_nsec is of an implementation-defined signed type capable of holding the specified
range. Under glibc, this is usually long, and long long on X32. It can be safely
down-cast to any concrete 32-bit integer type for processing.

VERSIONS
Prior to C23, tv_nsec was long.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The following headers also provide this type: <aio.h>, <mqueue.h>, <sched.h>,
<signal.h>, <sys/select.h>, and <sys/stat.h>.

SEE ALSO
clock_gettime(2), clock_nanosleep(2), nanosleep(2), timerfd_gettime(2), timer_get-
time(2), time_t(3type), timeval(3type)

Linux man-pages 6.13 2024-05-02 2677

timeval(3type) timeval(3type)

NAME
timeval - time in seconds and microseconds

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/time.h>

struct timeval {
time_t tv_sec; /* Seconds */
suseconds_t tv_usec; /* Microseconds */

};

DESCRIPTION
Describes times in seconds and microseconds.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The following headers also provide this type: <sys/resource.h>, <sys/select.h>, and
<utmpx.h>.

SEE ALSO
gettimeofday(2), select(2), utimes(2), adjtime(3), futimes(3), timeradd(3), susec-
onds_t(3type), time_t(3type), timespec(3type)

Linux man-pages 6.13 2024-05-02 2678

tm(3type) tm(3type)

NAME
tm - broken-down time

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <time.h>

struct tm {
int tm_sec; /* Seconds [0, 60] */
int tm_min; /* Minutes [0, 59] */
int tm_hour; /* Hour [0, 23] */
int tm_mday; /* Day of the month [1, 31] */
int tm_mon; /* Month [0, 11] (January = 0) */
int tm_year; /* Year minus 1900 */
int tm_wday; /* Day of the week [0, 6] (Sunday = 0) */
int tm_yday; /* Day of the year [0, 365] (Jan/01 = 0) */
int tm_isdst; /* Daylight savings flag */

long tm_gmtoff; /* Seconds East of UTC */
const char *tm_zone; /* Timezone abbreviation */

};

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tm_gmtoff , tm_zone:
Since glibc 2.20:

_DEFAULT_SOURCE
glibc 2.20 and earlier:

_BSD_SOURCE

DESCRIPTION
Describes time, broken down into distinct components.

tm_isdst describes whether daylight saving time is in effect at the time described. The
value is positive if daylight saving time is in effect, zero if it is not, and negative if the
information is not available.

tm_gmtoff is the difference, in seconds, of the timezone represented by this broken-
down time and UTC (this is the additive inverse of timezone(3)).

tm_zone is the equivalent of tzname(3) for the timezone represented by this broken-
down time.

VERSIONS
In C90, tm_sec could represent values in the range [0, 61], which could represent a
double leap second. UTC doesn’t permit double leap seconds, so it was limited to 60
in C99.

timezone(3), as a variable, is an XSI extension: some systems provide the V7-compat-
ible timezone(3) function. The tm_gmtoff field provides an alternative (with the oppo-
site sign) for those systems.

tm_zone points to static storage and may be overridden on subsequent calls to

Linux man-pages 6.13 2024-06-12 2679

tm(3type) tm(3type)

localtime(3) and similar functions (however, this never happens under glibc).

STANDARDS
C23, POSIX.1-2024.

HISTORY
C89, POSIX.1-1988.

tm_gmtoff and tm_zone originate from 4.3BSD-Tahoe (where tm_zone is a char *),
and were first standardized in POSIX.1-2024.

NOTES
tm_sec can represent a leap second with the value 60.

SEE ALSO
ctime(3), strftime(3), strptime(3), time(7)

Linux man-pages 6.13 2024-06-12 2680

va_list(3type) va_list(3type)

NAME
va_list - variable argument list

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdarg.h>

typedef /* ... */ va_list;

DESCRIPTION
Used by functions with a varying number of arguments of varying types. The func-
tion must declare an object of type va_list which is used by the macros va_start(3),
va_arg(3), va_copy(3), and va_end(3) to traverse the list of arguments.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

NOTES
The following headers also provide va_list: <stdio.h> and <wchar.h>.

SEE ALSO
va_start(3), va_arg(3), va_copy(3), va_end(3)

Linux man-pages 6.13 2024-05-02 2681

void(3type) void(3type)

NAME
void - abstract type

SYNOPSIS
void *

DESCRIPTION
A pointer to any object type may be converted to a pointer to void and back. POSIX
further requires that any pointer, including pointers to functions, may be converted to
a pointer to void and back.

Conversions from and to any other pointer type are done implicitly, not requiring casts
at all. Note that this feature prevents any kind of type checking: the programmer
should be careful not to convert a void * value to a type incompatible to that of the un-
derlying data, because that would result in undefined behavior.

This type is useful in function parameters and return value to allow passing values of
any type. The function will typically use some mechanism to know the real type of
the data being passed via a pointer to void .

A value of this type can’t be dereferenced, as it would give a value of type void ,
which is not possible. Likewise, pointer arithmetic is not possible with this type.
However, in GNU C, pointer arithmetic is allowed as an extension to the standard; this
is done by treating the size of a void or of a function as 1. A consequence of this is
that sizeof is also allowed on void and on function types, and returns 1.

Use with printf(3) and scanf(3)
The conversion specifier for void * for the printf(3) and the scanf(3) families of func-
tions is p.

VERSIONS
The POSIX requirement about compatibility between void * and function pointers
was added in POSIX.1-2008 Technical Corrigendum 1 (2013).

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

SEE ALSO
malloc(3), memcmp(3), memcpy(3), memset(3), intptr_t(3type)

Linux man-pages 6.13 2024-05-02 2682

wchar_t(3type) wchar_t(3type)

NAME
wchar_t - wide-character type

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stddef.h>

typedef /* ... */ wchar_t;

#include <stdint.h>

#define WCHAR_WIDTH /* ... */
#define WCHAR_MAX /* ... */
#define WCHAR_MIN /* ... */

DESCRIPTION
wchar_t is a type used for storing a wide character. It is an integer type.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The WCHAR_WIDTH macro was added in C23.

NOTES
The following headers also provide this type: <inttypes.h>, <stdlib.h>, <wchar.h>,
<wctype.h>.

The following header also provides these macros: <wchar.h>.

SEE ALSO
wint_t(3type), fputwc(3)

Linux man-pages 6.13 2024-05-03 2683

wint_t(3type) wint_t(3type)

NAME
wint_t, WEOF - integer type capable of storing any wchar_t of WEOF

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <wchar.h>

typedef /* ... */ wint_t;

#define WEOF /* ... */

#include <stdint.h>

#define WINT_WIDTH /* ... */
#define WINT_MAX /* ... */
#define WINT_MIN /* ... */

DESCRIPTION
wint_t is a type used in functions that work with wide characters. It is capable of stor-
ing any valid wchar_t or WEOF. It is an integer type.

WEOF is used by wide-character functions to indicate the end of an input file or an
error. It is of type wint_t.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The WINT_WIDTH macro was added in C23.

NOTES
The following header also provides wint_t and WEOF: <wctype.h>.

SEE ALSO
wchar_t(3type), fputwc(3)

Linux man-pages 6.13 2024-05-03 2684

intro(4) Kernel Interfaces Manual intro(4)

NAME
intro - introduction to special files

DESCRIPTION
Section 4 of the manual describes special files (devices).

FILES
/dev/* — device files

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright condi-
tions. Note that these can be different from page to page!

SEE ALSO
mknod(1), mknod(2), standards(7)

Linux man-pages 6.13 2024-05-02 2685

cciss(4) Kernel Interfaces Manual cciss(4)

NAME
cciss - HP Smart Array block driver

SYNOPSIS
modprobe cciss [cciss_allow_hpsa=1]

DESCRIPTION
Note: This obsolete driver was removed in Linux 4.14, as it is superseded by the
hpsa(4) driver in newer kernels.

cciss is a block driver for older HP Smart Array RAID controllers.

Options
cciss_allow_hpsa=1: This option prevents the cciss driver from attempting to drive
any controllers that the hpsa(4) driver is capable of controlling, which is to say, the
cciss driver is restricted by this option to the following controllers:

Smart Array 5300
Smart Array 5i
Smart Array 532
Smart Array 5312
Smart Array 641
Smart Array 642
Smart Array 6400
Smart Array 6400 EM
Smart Array 6i
Smart Array P600
Smart Array P400i
Smart Array E200i
Smart Array E200
Smart Array E200i
Smart Array E200i
Smart Array E200i
Smart Array E500

Supported hardware
The cciss driver supports the following Smart Array boards:

Smart Array 5300
Smart Array 5i
Smart Array 532
Smart Array 5312
Smart Array 641
Smart Array 642
Smart Array 6400
Smart Array 6400 U320 Expansion Module
Smart Array 6i
Smart Array P600
Smart Array P800
Smart Array E400
Smart Array P400i
Smart Array E200
Smart Array E200i

Linux man-pages 6.13 2024-05-02 2686

cciss(4) Kernel Interfaces Manual cciss(4)

Smart Array E500
Smart Array P700m
Smart Array P212
Smart Array P410
Smart Array P410i
Smart Array P411
Smart Array P812
Smart Array P712m
Smart Array P711m

Configuration details
To configure HP Smart Array controllers, use the HP Array Configuration Utility (ei-
ther hpacuxe(8) or hpacucli(8)) or the Offline ROM-based Configuration Utility
(ORCA) run from the Smart Array’s option ROM at boot time.

FILES
Device nodes

The device naming scheme is as follows:

Major numbers:

104 cciss0
105 cciss1
106 cciss2
105 cciss3
108 cciss4
109 cciss5
110 cciss6
111 cciss7

Minor numbers:

b7 b6 b5 b4 b3 b2 b1 b0
|----+----| |----+----|

| |
| +-------- Partition ID (0=wholedev, 1-15 partition)
|
+-------------------- Logical Volume number

The device naming scheme is:
/dev/cciss/c0d0 Controller 0, disk 0, whole device
/dev/cciss/c0d0p1 Controller 0, disk 0, partition 1
/dev/cciss/c0d0p2 Controller 0, disk 0, partition 2
/dev/cciss/c0d0p3 Controller 0, disk 0, partition 3

/dev/cciss/c1d1 Controller 1, disk 1, whole device
/dev/cciss/c1d1p1 Controller 1, disk 1, partition 1
/dev/cciss/c1d1p2 Controller 1, disk 1, partition 2
/dev/cciss/c1d1p3 Controller 1, disk 1, partition 3

Files in /proc
The files /proc/driver/cciss/cciss[0-9]+ contain information about the configuration
of each controller. For example:

Linux man-pages 6.13 2024-05-02 2687

cciss(4) Kernel Interfaces Manual cciss(4)

$ cd /proc/driver/cciss
$ ls -l
total 0
-rw-r--r-- 1 root root 0 2010-09-10 10:38 cciss0
-rw-r--r-- 1 root root 0 2010-09-10 10:38 cciss1
-rw-r--r-- 1 root root 0 2010-09-10 10:38 cciss2
$ cat cciss2
cciss2: HP Smart Array P800 Controller
Board ID: 0x3223103c
Firmware Version: 7.14
IRQ: 16
Logical drives: 1
Current Q depth: 0
Current # commands on controller: 0
Max Q depth since init: 1
Max # commands on controller since init: 2
Max SG entries since init: 32
Sequential access devices: 0

cciss/c2d0: 36.38GB RAID 0

Files in /sys
/sys/bus/pci/devices/ dev /ccissX /cXdY /model

Displays the SCSI INQUIRY page 0 model for logical drive Y of controller X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /rev
Displays the SCSI INQUIRY page 0 revision for logical drive Y of controller
X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /unique_id
Displays the SCSI INQUIRY page 83 serial number for logical drive Y of con-
troller X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /vendor
Displays the SCSI INQUIRY page 0 vendor for logical drive Y of controller
X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /block:cciss!cXdY
A symbolic link to /sys/block/cciss!cXdY.

/sys/bus/pci/devices/ dev /ccissX /rescan
When this file is written to, the driver rescans the controller to discover any
new, removed, or modified logical drives.

/sys/bus/pci/devices/ dev /ccissX /resettable
A value of 1 displayed in this file indicates that the "reset_devices=1" kernel
parameter (used by kdump) is honored by this controller. A value of 0 indi-
cates that the "reset_devices=1" kernel parameter will not be honored. Some
models of Smart Array are not able to honor this parameter.

/sys/bus/pci/devices/ dev /ccissX /cXdY /lunid
Displays the 8-byte LUN ID used to address logical drive Y of controller X .

Linux man-pages 6.13 2024-05-02 2688

cciss(4) Kernel Interfaces Manual cciss(4)

/sys/bus/pci/devices/ dev /ccissX /cXdY /raid_level
Displays the RAID level of logical drive Y of controller X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /usage_count
Displays the usage count (number of opens) of logical drive Y of controller X .

SCSI tape drive and medium changer support
SCSI sequential access devices and medium changer devices are supported and appro-
priate device nodes are automatically created (e.g., /dev/st0, /dev/st1, etc.; see st(4)
for more details.) You must enable "SCSI tape drive support for Smart Array 5xxx"
and "SCSI support" in your kernel configuration to be able to use SCSI tape drives
with your Smart Array 5xxx controller.

Additionally, note that the driver will not engage the SCSI core at init time. The dri-
ver must be directed to dynamically engage the SCSI core via the /proc filesystem en-
try, which the "block" side of the driver creates as /proc/driver/cciss/cciss* at run
time. This is because at driver init time, the SCSI core may not yet be initialized (be-
cause the driver is a block driver) and attempting to register it with the SCSI core in
such a case would cause a hang. This is best done via an initialization script (typi-
cally in /etc/init.d , but could vary depending on distribution). For example:

for x in /proc/driver/cciss/cciss[0-9]*
do

echo "engage scsi" > $x
done

Once the SCSI core is engaged by the driver, it cannot be disengaged (except by un-
loading the driver, if it happens to be linked as a module.)

Note also that if no sequential access devices or medium changers are detected, the
SCSI core will not be engaged by the action of the above script.

Hot plug support for SCSI tape drives
Hot plugging of SCSI tape drives is supported, with some caveats. The cciss driver
must be informed that changes to the SCSI bus have been made. This may be done
via the /proc filesystem. For example:

echo "rescan" > /proc/scsi/cciss0/1

This causes the driver to:

(1) query the adapter about changes to the physical SCSI buses and/or fiber
channel arbitrated loop, and

(2) make note of any new or removed sequential access devices or medium
changers.

The driver will output messages indicating which devices have been added or re-
moved and the controller, bus, target, and lun used to address each device. The driver
then notifies the SCSI midlayer of these changes.

Note that the naming convention of the /proc filesystem entries contains a number in
addition to the driver name (e.g., "cciss0" instead of just "cciss", which you might ex-
pect).

Note: Only sequential access devices and medium changers are presented as SCSI de-
vices to the SCSI midlayer by the cciss driver. Specifically, physical SCSI disk drives

Linux man-pages 6.13 2024-05-02 2689

cciss(4) Kernel Interfaces Manual cciss(4)

are not presented to the SCSI midlayer. The only disk devices that are presented to
the kernel are logical drives that the array controller constructs from regions on the
physical drives. The logical drives are presented to the block layer (not to the SCSI
midlayer). It is important for the driver to prevent the kernel from accessing the phys-
ical drives directly, since these drives are used by the array controller to construct the
logical drives.

SCSI error handling for tape drives and medium changers
The Linux SCSI midlayer provides an error-handling protocol that is initiated when-
ever a SCSI command fails to complete within a certain amount of time (which can
vary depending on the command). The cciss driver participates in this protocol to
some extent. The normal protocol is a four-step process:

(1) First, the device is told to abort the command.

(2) If that doesn’t work, the device is reset.

(3) If that doesn’t work, the SCSI bus is reset.

(4) If that doesn’t work, the host bus adapter is reset.

The cciss driver is a block driver as well as a SCSI driver and only the tape drives and
medium changers are presented to the SCSI midlayer. Furthermore, unlike more
straightforward SCSI drivers, disk I/O continues through the block side during the
SCSI error-recovery process. Therefore, the cciss driver implements only the first two
of these actions, aborting the command, and resetting the device. Note also that most
tape drives will not oblige in aborting commands, and sometimes it appears they will
not even obey a reset command, though in most circumstances they will. If the com-
mand cannot be aborted and the device cannot be reset, the device will be set offline.

In the event that the error-handling code is triggered and a tape drive is successfully
reset or the tardy command is successfully aborted, the tape drive may still not allow
I/O to continue until some command is issued that positions the tape to a known posi-
tion. Typically you must rewind the tape (by issuing mt -f /dev/st0 rewind for exam-
ple) before I/O can proceed again to a tape drive that was reset.

SEE ALSO
hpsa(4), cciss_vol_status(8), hpacucli(8), hpacuxe(8)

〈http://cciss.sf.net〉, and Documentation/blockdev/cciss.txt and Documenta-
tion/ABI/testing/sysfs-bus-pci-devices-cciss in the Linux kernel source tree

Linux man-pages 6.13 2024-05-02 2690

console_codes(4) Kernel Interfaces Manual console_codes(4)

NAME
console_codes - Linux console escape and control sequences

DESCRIPTION
The Linux console implements a large subset of the VT102 and ECMA-48 /
ISO/IEC 6429 / ANSI X3.64 terminal controls, plus certain private-mode sequences
for changing the color palette, character-set mapping, and so on. In the tabular de-
scriptions below, the second column gives ECMA-48 or DEC mnemonics (the latter if
prefixed with DEC) for the given function. Sequences without a mnemonic are nei-
ther ECMA-48 nor VT102.

After all the normal output processing has been done, and a stream of characters ar-
rives at the console driver for actual printing, the first thing that happens is a transla-
tion from the code used for processing to the code used for printing.

If the console is in UTF-8 mode, then the incoming bytes are first assembled into
16-bit Unicode codes. Otherwise, each byte is transformed according to the current
mapping table (which translates it to a Unicode value). See the Character Sets sec-
tion below for discussion.

In the normal case, the Unicode value is converted to a font index, and this is stored in
video memory, so that the corresponding glyph (as found in video ROM) appears on
the screen. Note that the use of Unicode (and the design of the PC hardware) allows
us to use 512 different glyphs simultaneously.

If the current Unicode value is a control character, or we are currently processing an
escape sequence, the value will treated specially. Instead of being turned into a font
index and rendered as a glyph, it may trigger cursor movement or other control func-
tions. See the Linux Console Controls section below for discussion.

It is generally not good practice to hard-wire terminal controls into programs. Linux
supports a terminfo(5) database of terminal capabilities. Rather than emitting console
escape sequences by hand, you will almost always want to use a terminfo-aware
screen library or utility such as ncurses(3), tput(1), or reset(1)

Linux console controls
This section describes all the control characters and escape sequences that invoke spe-
cial functions (i.e., anything other than writing a glyph at the current cursor location)
on the Linux console.

Control characters

A character is a control character if (before transformation according to the mapping
table) it has one of the 14 codes 00 (NUL), 07 (BEL), 08 (BS), 09 (HT), 0a (LF), 0b
(VT), 0c (FF), 0d (CR), 0e (SO), 0f (SI), 18 (CAN), 1a (SUB), 1b (ESC), 7f (DEL).
One can set a "display control characters" mode (see below), and allow 07, 09, 0b, 18,
1a, 7f to be displayed as glyphs. On the other hand, in UTF-8 mode all codes 00–1f
are regarded as control characters, regardless of any "display control characters"
mode.

If we have a control character, it is acted upon immediately and then discarded (even
in the middle of an escape sequence) and the escape sequence continues with the next
character. (However, ESC starts a new escape sequence, possibly aborting a previous
unfinished one, and CAN and SUB abort any escape sequence.) The recognized con-
trol characters are BEL, BS, HT, LF, VT, FF, CR, SO, SI, CAN, SUB, ESC, DEL,

Linux man-pages 6.13 2024-09-01 2691

console_codes(4) Kernel Interfaces Manual console_codes(4)

CSI. They do what one would expect:

BEL (0x07, ^G)
beeps;

BS (0x08, ^H)
backspaces one column (but not past the beginning of the line);

HT (0x09, ^I)
goes to the next tab stop or to the end of the line if there is no earlier tab stop;

LF (0x0A, ^J)
VT (0x0B, ^K)
FF (0x0C, ^L)

all give a linefeed, and if LF/NL (new-line mode) is set also a carriage return;

CR (0x0D, ^M)
gives a carriage return;

SO (0x0E, ^N)
activates the G1 character set;

SI (0x0F, ^O)
activates the G0 character set;

CAN (0x18, ^X)
SUB (0x1A, ^Z)

abort escape sequences;

ESC (0x1B, ^[)
starts an escape sequence;

DEL (0x7F)
is ignored;

CSI (0x9B)
is equivalent to ESC [.

ESC- but not CSI-sequences
ESC c RIS Reset.
ESC D IND Linefeed.
ESC E NEL Newline.
ESC H HTS Set tab stop at current column.
ESC M RI Reverse linefeed.
ESC Z DECID DEC private identification. The kernel returns the string

ESC [? 6 c, claiming that it is a VT102.
ESC 7 DECSC Save current state (cursor coordinates, attributes, charac-

ter sets pointed at by G0, G1).
ESC 8 DECRC Restore state most recently saved by ESC 7.
ESC % Start sequence selecting character set
ESC % @ Select default (ISO/IEC 646 / ISO/IEC 8859-1)
ESC % G Select UTF-8
ESC % 8 Select UTF-8 (obsolete)
ESC # 8 DECALN DEC screen alignment test - fill screen with E’s.

Linux man-pages 6.13 2024-09-01 2692

console_codes(4) Kernel Interfaces Manual console_codes(4)

ESC (Start sequence defining G0 character set (followed by one
of B, 0, U, K, as below)

ESC (B Select default (ISO/IEC 8859-1 mapping).
ESC (0 Select VT100 graphics mapping.
ESC (U Select null mapping - straight to character ROM.
ESC (K Select user mapping - the map that is loaded by the utility

mapscrn(8)
ESC) Start sequence defining G1 (followed by one of B, 0, U,

K, as above).
ESC > DECPNM Set numeric keypad mode
ESC = DECPAM Set application keypad mode
ESC] OSC Operating System Command prefix.
ESC] R Reset palette.
ESC] P Set palette, with parameter given in 7 hexadecimal digits

nrrggbb after the final P. Here n is the color (0–15), and
rrggbb indicates the red/green/blue values (0–255).

ECMA-48 CSI sequences

CSI (or ESC [) is followed by a sequence of parameters, at most NPAR (16), that are
decimal numbers separated by semicolons. An empty or absent parameter is taken to
be 0. The sequence of parameters may be preceded by a single question mark.

However, after CSI [(or ESC [[) a single character is read and this entire sequence is
ignored. (The idea is to ignore an echoed function key.)

The action of a CSI sequence is determined by its final character.
@ ICH Insert the indicated # of blank characters.
A CUU Move cursor up the indicated # of rows.
B CUD Move cursor down the indicated # of rows.
C CUF Move cursor right the indicated # of columns.
D CUB Move cursor left the indicated # of columns.
E CNL Move cursor down the indicated # of rows, to column 1.
F CPL Move cursor up the indicated # of rows, to column 1.
G CHA Move cursor to indicated column in current row.
H CUP Move cursor to the indicated row, column (origin at 1,1).
J ED Erase display (default: from cursor to end of display).

ESC [1 J: erase from start to cursor.
ESC [2 J: erase whole display.
ESC [3 J: erase whole display including scroll-back buffer
(since Linux 3.0).

K EL Erase line (default: from cursor to end of line).
ESC [1 K: erase from start of line to cursor.
ESC [2 K: erase whole line.

L IL Insert the indicated # of blank lines.
M DL Delete the indicated # of lines.
P DCH Delete the indicated # of characters on current line.
X ECH Erase the indicated # of characters on current line.
a HPR Move cursor right the indicated # of columns.
c DA Answer ESC [? 6 c: "I am a VT102".

Linux man-pages 6.13 2024-09-01 2693

console_codes(4) Kernel Interfaces Manual console_codes(4)

d VPA Move cursor to the indicated row, current column.
e VPR Move cursor down the indicated # of rows.
f HVP Move cursor to the indicated row, column.
g TBC Without parameter: clear tab stop at current position.

ESC [3 g: delete all tab stops.
h SM Set Mode (see below).
l RM Reset Mode (see below).
m SGR Set attributes (see below).
n DSR Status report (see below).
q DECLL Set keyboard LEDs.

ESC [0 q: clear all LEDs
ESC [1 q: set Scroll Lock LED
ESC [2 q: set Num Lock LED
ESC [3 q: set Caps Lock LED

r DECSTBM Set scrolling region; parameters are top and bottom row.
s ? Save cursor location.
u ? Restore cursor location.
` HPA Move cursor to indicated column in current row.

ECMA-48 Select Graphic Rendition

The ECMA-48 SGR sequence ESC [parameters m sets display attributes. Several at-
tributes can be set in the same sequence, separated by semicolons. An empty parame-
ter (between semicolons or string initiator or terminator) is interpreted as a zero.
param result
0 reset all attributes to their defaults
1 set bold
2 set half-bright (simulated with color on a color display)
3 set italic (since Linux 2.6.22; simulated with color on a color display)
4 set underscore (simulated with color on a color display) (the colors used

to simulate dim or underline are set using ESC] ...)
5 set blink
7 set reverse video
10 reset selected mapping, display control flag, and toggle meta flag

(ECMA-48 says "primary font").
11 select null mapping, set display control flag, reset toggle meta flag

(ECMA-48 says "first alternate font").
12 select null mapping, set display control flag, set toggle meta flag

(ECMA-48 says "second alternate font"). The toggle meta flag causes the
high bit of a byte to be toggled before the mapping table translation is
done.

21 set underline; before Linux 4.17, this value set normal intensity (as is
done in many other terminals)

22 set normal intensity
23 italic off (since Linux 2.6.22)
24 underline off
25 blink off
27 reverse video off
30 set black foreground

Linux man-pages 6.13 2024-09-01 2694

console_codes(4) Kernel Interfaces Manual console_codes(4)

31 set red foreground
32 set green foreground
33 set brown foreground
34 set blue foreground
35 set magenta foreground
36 set cyan foreground
37 set white foreground
38 256/24-bit foreground color follows, shoehorned into 16 basic colors (be-

fore Linux 3.16: set underscore on, set default foreground color)
39 set default foreground color (before Linux 3.16: set underscore off, set

default foreground color)
40 set black background
41 set red background
42 set green background
43 set brown background
44 set blue background
45 set magenta background
46 set cyan background
47 set white background
48 256/24-bit background color follows, shoehorned into 8 basic colors
49 set default background color
90..97 set foreground to bright versions of 30..37
100..107 set background, same as 40..47 (bright not supported)

Commands 38 and 48 require further arguments:
;5;x 256 color: values 0..15 are IBGR (black, red, green, ... white), 16..231 a

6x6x6 color cube, 232..255 a grayscale ramp
;2;r;g;b 24-bit color, r/g/b components are in the range 0..255

ECMA-48 Mode Switches

ESC [3 h
DECCRM (default off): Display control chars.

ESC [4 h
DECIM (default off): Set insert mode.

ESC [20 h
LF/NL (default off): Automatically follow echo of LF, VT, or FF with CR.

ECMA-48 Status Report Commands

ESC [5 n
Device status report (DSR): Answer is ESC [0 n (Terminal OK).

ESC [6 n
Cursor position report (CPR): Answer is ESC [y ; x R, where x,y is the cursor
location.

DEC Private Mode (DECSET/DECRST) sequences

These are not described in ECMA-48. We list the Set Mode sequences; the Reset
Mode sequences are obtained by replacing the final 'h' by 'l'.

Linux man-pages 6.13 2024-09-01 2695

console_codes(4) Kernel Interfaces Manual console_codes(4)

ESC [? 1 h
DECCKM (default off): When set, the cursor keys send an ESC O prefix,
rather than ESC [.

ESC [? 3 h
DECCOLM (default off = 80 columns): 80/132 col mode switch. The driver
sources note that this alone does not suffice; some user-mode utility such as
resizecons(8) has to change the hardware registers on the console video card.

ESC [? 5 h
DECSCNM (default off): Set reverse-video mode.

ESC [? 6 h
DECOM (default off): When set, cursor addressing is relative to the upper left
corner of the scrolling region.

ESC [? 7 h
DECAWM (default on): Set autowrap on. In this mode, a graphic character
emitted after column 80 (or column 132 of DECCOLM is on) forces a wrap to
the beginning of the following line first.

ESC [? 8 h
DECARM (default on): Set keyboard autorepeat on.

ESC [? 9 h
X10 Mouse Reporting (default off): Set reporting mode to 1 (or reset to
0)—see below.

ESC [? 25 h
DECTECM (default on): Make cursor visible.

ESC [? 1000 h
X11 Mouse Reporting (default off): Set reporting mode to 2 (or reset to
0)—see below.

Linux Console Private CSI Sequences

The following sequences are neither ECMA-48 nor native VT102. They are native to
the Linux console driver. Colors are in SGR parameters: 0 = black, 1 = red, 2 = green,
3 = brown, 4 = blue, 5 = magenta, 6 = cyan, 7 = white; 8–15 = bright versions of 0–7.
ESC [1 ; n] Set color n as the underline color.
ESC [2 ; n] Set color n as the dim color.
ESC [8] Make the current color pair the default attributes.
ESC [9 ; n] Set screen blank timeout to n minutes.
ESC [10 ; n] Set bell frequency in Hz.
ESC [11 ; n] Set bell duration in msec.
ESC [12 ; n] Bring specified console to the front.
ESC [13] Unblank the screen.
ESC [14 ; n] Set the VESA powerdown interval in minutes.
ESC [15] Bring the previous console to the front (since Linux 2.6.0).
ESC [16 ; n] Set the cursor blink interval in milliseconds (since Linux 4.2).

Character sets
The kernel knows about 4 translations of bytes into console-screen symbols. The four
tables are: a) Latin1 -> PC, b) VT100 graphics -> PC, c) PC -> PC, d) user-defined.

Linux man-pages 6.13 2024-09-01 2696

console_codes(4) Kernel Interfaces Manual console_codes(4)

There are two character sets, called G0 and G1, and one of them is the current charac-
ter set. (Initially G0.) Typing ^N causes G1 to become current, ^O causes G0 to be-
come current.

These variables G0 and G1 point at a translation table, and can be changed by the
user. Initially they point at tables a) and b), respectively. The sequences ESC (B and
ESC (0 and ESC (U and ESC (K cause G0 to point at translation table a), b), c), and
d), respectively. The sequences ESC) B and ESC) 0 and ESC) U and ESC) K cause
G1 to point at translation table a), b), c), and d), respectively.

The sequence ESC c causes a terminal reset, which is what you want if the screen is
all garbled. The oft-advised "echo ^V^O" will make only G0 current, but there is no
guarantee that G0 points at table a). In some distributions there is a program reset(1)
that just does "echo ^[c". If your terminfo entry for the console is correct (and has an
entry rs1=\Ec), then "tput reset" will also work.

The user-defined mapping table can be set using mapscrn(8)The result of the mapping
is that if a symbol c is printed, the symbol s = map[c] is sent to the video memory.
The bitmap that corresponds to s is found in the character ROM, and can be changed
using setfont(8)

Mouse tracking
The mouse tracking facility is intended to return xterm(1)-compatible mouse status
reports. Because the console driver has no way to know the device or type of the
mouse, these reports are returned in the console input stream only when the virtual
terminal driver receives a mouse update ioctl. These ioctls must be generated by a
mouse-aware user-mode application such as the gpm(8) daemon.

The mouse tracking escape sequences generated by xterm(1) encode numeric para-
meters in a single character as value+040. For example, '!' is 1. The screen coordi-
nate system is 1-based.

The X10 compatibility mode sends an escape sequence on button press encoding the
location and the mouse button pressed. It is enabled by sending ESC [? 9 h and dis-
abled with ESC [? 9 l. On button press, xterm(1) sends ESC [M bxy (6 characters).
Here b is button-1, and x and y are the x and y coordinates of the mouse when the
button was pressed. This is the same code the kernel also produces.

Normal tracking mode (not implemented in Linux 2.0.24) sends an escape sequence
on both button press and release. Modifier information is also sent. It is enabled by
sending ESC [? 1000 h and disabled with ESC [? 1000 l. On button press or release,
xterm(1) sends ESC [M bxy. The low two bits of b encode button information:
0=MB1 pressed, 1=MB2 pressed, 2=MB3 pressed, 3=release. The upper bits encode
what modifiers were down when the button was pressed and are added together:
4=Shift, 8=Meta, 16=Control. Again x and y are the x and y coordinates of the mouse
event. The upper left corner is (1,1).

Comparisons with other terminals
Many different terminal types are described, like the Linux console, as being
"VT100-compatible". Here we discuss differences between the Linux console and the
two most important others, the DEC VT102 and xterm(1)

Control-character handling

The VT102 also recognized the following control characters:

Linux man-pages 6.13 2024-09-01 2697

console_codes(4) Kernel Interfaces Manual console_codes(4)

NUL (0x00)
was ignored;

ENQ (0x05)
triggered an answerback message;

DC1 (0x11, ^Q, XON)
resumed transmission;

DC3 (0x13, ^S, XOFF)
caused VT100 to ignore (and stop transmitting) all codes except XOFF and
XON.

VT100-like DC1/DC3 processing may be enabled by the terminal driver.

The xterm(1) program (in VT100 mode) recognizes the control characters BEL, BS,
HT, LF, VT, FF, CR, SO, SI, ESC.

Escape sequences

VT100 console sequences not implemented on the Linux console:
ESC N SS2 Single shift 2. (Select G2 charac-

ter set for the next character only.)
ESC O SS3 Single shift 3. (Select G3 charac-

ter set for the next character only.)
ESC P DCS Device control string (ended by

ESC \)
ESC X SOS Start of string.
ESC ^ PM Privacy message (ended by ESC \)
ESC \ ST String terminator
ESC * ... Designate G2 character set
ESC + ... Designate G3 character set

The program xterm(1) (in VT100 mode) recognizes ESC c, ESC # 8, ESC >, ESC =,
ESC D, ESC E, ESC H, ESC M, ESC N, ESC O, ESC P ... ESC \, ESC Z (it answers
ESC [? 1 ; 2 c, "I am a VT100 with advanced video option") and ESC ^ ... ESC \ with
the same meanings as indicated above. It accepts ESC (, ESC), ESC *, ESC + fol-
lowed by 0, A, B for the DEC special character and line drawing set, UK, and US-
ASCII, respectively.

The user can configure xterm(1) to respond to VT220-specific control sequences, and
it will identify itself as a VT52, VT100, and up depending on the way it is configured
and initialized.

It accepts ESC] (OSC) for the setting of certain resources. In addition to the
ECMA-48 string terminator (ST), xterm(1) accepts a BEL to terminate an OSC
string. These are a few of the OSC control sequences recognized by xterm(1):
ESC] 0 ; txt ST Set icon name and window ti-

tle to txt.
ESC] 1 ; txt ST Set icon name to txt.
ESC] 2 ; txt ST Set window title to txt.
ESC] 4 ; num; txt ST Set ANSI color num to txt.
ESC] 10 ; txt ST Set dynamic text color to txt.

Linux man-pages 6.13 2024-09-01 2698

console_codes(4) Kernel Interfaces Manual console_codes(4)

ESC] 4 6 ; name ST Change log file to name (nor-
mally disabled by a compile-
time option).

ESC] 5 0 ; fn ST Set font to fn.

It recognizes the following with slightly modified meaning (saving more state, behav-
ing closer to VT100/VT220):
ESC 7 DECSC Save cursor
ESC 8 DECRC Restore cursor

It also recognizes
ESC F Cursor to lower left corner of screen (if enabled by

xterm(1)hpLowerleftBugCompat resource).
ESC l Memory lock (per HP terminals).

Locks memory above the cursor.
ESC m Memory unlock (per HP terminals).
ESC n LS2 Invoke the G2 character set.
ESC o LS3 Invoke the G3 character set.
ESC | LS3R Invoke the G3 character set as GR.
ESC } LS2R Invoke the G2 character set as GR.
ESC ~ LS1R Invoke the G1 character set as GR.

It also recognizes ESC % and provides a more complete UTF-8 implementation than
Linux console.

CSI Sequences

Old versions of xterm(1), for example, from X11R5, interpret the blink SGR as a
bold SGR. Later versions which implemented ANSI colors, for example, XFree86
3.1.2A in 1995, improved this by allowing the blink attribute to be displayed as a
color. Modern versions of xterm implement blink SGR as blinking text and still allow
colored text as an alternate rendering of SGRs. Stock X11R6 versions did not recog-
nize the color-setting SGRs until the X11R6.8 release, which incorporated XFree86
xterm. All ECMA-48 CSI sequences recognized by Linux are also recognized by
xterm, however xterm(1) implements several ECMA-48 and DEC control sequences
not recognized by Linux.

The xterm(1) program recognizes all of the DEC Private Mode sequences listed
above, but none of the Linux private-mode sequences. For discussion of xterm(1)’s
own private-mode sequences, refer to the Xterm Control Sequences document by Ed-
ward Moy, Stephen Gildea, and Thomas E. Dickey available with the X distribution.
That document, though terse, is much longer than this manual page. For a chronolog-
ical overview,

〈http://invisible-island.net/xterm/xterm.log.html〉

details changes to xterm.

The vttest program

〈http://invisible-island.net/vttest/〉

demonstrates many of these control sequences. The xterm(1) source distribution also
contains sample scripts which exercise other features.

Linux man-pages 6.13 2024-09-01 2699

console_codes(4) Kernel Interfaces Manual console_codes(4)

NOTES
ESC 8 (DECRC) is not able to restore the character set changed with ESC %.

BUGS
In Linux 2.0.23, CSI is broken, and NUL is not ignored inside escape sequences.

Some older kernel versions (after Linux 2.0) interpret 8-bit control sequences. These
"C1 controls" use codes between 128 and 159 to replace ESC [, ESC] and similar
two-byte control sequence initiators. There are fragments of that in modern kernels
(either overlooked or broken by changes to support UTF-8), but the implementation is
incomplete and should be regarded as unreliable.

Linux "private mode" sequences do not follow the rules in ECMA-48 for private mode
control sequences. In particular, those ending with] do not use a standard terminating
character. The OSC (set palette) sequence is a greater problem, since xterm(1) may
interpret this as a control sequence which requires a string terminator (ST). Unlike
the setterm(1) sequences which will be ignored (since they are invalid control se-
quences), the palette sequence will make xterm(1) appear to hang (though pressing
the return-key will fix that). To accommodate applications which have been hard-
coded to use Linux control sequences, set the xterm(1) resource brokenLinuxOSC
to true.

An older version of this document implied that Linux recognizes the ECMA-48 con-
trol sequence for invisible text. It is ignored.

SEE ALSO
ioctl_console(2), charsets(7)

Linux man-pages 6.13 2024-09-01 2700

cpuid(4) Kernel Interfaces Manual cpuid(4)

NAME
cpuid - x86 CPUID access device

DESCRIPTION
CPUID provides an interface for querying information about the x86 CPU.

This device is accessed by lseek(2) or pread(2) to the appropriate CPUID level and
reading in chunks of 16 bytes. A larger read size means multiple reads of consecutive
levels.

The lower 32 bits of the file position is used as the incoming %eax, and the upper 32
bits of the file position as the incoming %ecx, the latter is intended for "counting" eax
levels like eax=4.

This driver uses /dev/cpu/CPUNUM/cpuid , where CPUNUM is the minor number,
and on an SMP box will direct the access to CPU CPUNUM as listed in
/proc/cpuinfo.

This file is protected so that it can be read only by the user root, or members of the
group root.

NOTES
The CPUID instruction can be directly executed by a program using inline assembler.
However this device allows convenient access to all CPUs without changing process
affinity.

Most of the information in cpuid is reported by the kernel in cooked form either in
/proc/cpuinfo or through subdirectories in /sys/devices/system/cpu. Direct CPUID ac-
cess through this device should only be used in exceptional cases.

The cpuid driver is not auto-loaded. On modular kernels you might need to use the
following command to load it explicitly before use:

$ modprobe cpuid

There is no support for CPUID functions that require additional input registers.

Early i486 CPUs do not support the CPUID instruction; opening this device for those
CPUs fails with EIO.

SEE ALSO
cpuid(1)

Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2A: Instruction Set Reference, A-M, 3-180 CPUID reference.

Intel Corporation, Intel Processor Identification and the CPUID Instruction, Applica-
tion note 485.

Linux man-pages 6.13 2024-05-02 2701

dsp56k(4) Kernel Interfaces Manual dsp56k(4)

NAME
dsp56k - DSP56001 interface device

SYNOPSIS
#include <asm/dsp56k.h>

ssize_t read(int fd , void *data, size_t length);
ssize_t write(int fd , void *data, size_t length);

int ioctl(int fd , DSP56K_UPLOAD, struct dsp56k_upload *program);
int ioctl(int fd , DSP56K_SET_TX_WSIZE, int wsize);
int ioctl(int fd , DSP56K_SET_RX_WSIZE, int wsize);
int ioctl(int fd , DSP56K_HOST_FLAGS, struct dsp56k_host_flags * flags);
int ioctl(int fd , DSP56K_HOST_CMD, int cmd);

CONFIGURATION
The dsp56k device is a character device with major number 55 and minor number 0.

DESCRIPTION
The Motorola DSP56001 is a fully programmable 24-bit digital signal processor
found in Atari Falcon030-compatible computers. The dsp56k special file is used to
control the DSP56001, and to send and receive data using the bidirectional hand-
shaked host port.

To send a data stream to the signal processor, use write(2) to the device, and read(2)
to receive processed data. The data can be sent or received in 8, 16, 24, or 32-bit
quantities on the host side, but will always be seen as 24-bit quantities in the
DSP56001.

The following ioctl(2) calls are used to control the dsp56k device:

DSP56K_UPLOAD
resets the DSP56001 and uploads a program. The third ioctl(2) argument must
be a pointer to a struct dsp56k_upload with members bin pointing to a
DSP56001 binary program, and len set to the length of the program, counted
in 24-bit words.

DSP56K_SET_TX_WSIZE
sets the transmit word size. Allowed values are in the range 1 to 4, and is the
number of bytes that will be sent at a time to the DSP56001. These data quan-
tities will either be padded with bytes containing zero, or truncated to fit the
native 24-bit data format of the DSP56001.

DSP56K_SET_RX_WSIZE
sets the receive word size. Allowed values are in the range 1 to 4, and is the
number of bytes that will be received at a time from the DSP56001. These
data quantities will either truncated, or padded with a null byte ('\0'), to fit the
native 24-bit data format of the DSP56001.

DSP56K_HOST_FLAGS
read and write the host flags. The host flags are four general-purpose bits that
can be read by both the hosting computer and the DSP56001. Bits 0 and 1 can
be written by the host, and bits 2 and 3 can be written by the DSP56001.

To access the host flags, the third ioctl(2) argument must be a pointer to a
struct dsp56k_host_flags. If bit 0 or 1 is set in the dir member, the

Linux man-pages 6.13 2024-06-15 2702

dsp56k(4) Kernel Interfaces Manual dsp56k(4)

corresponding bit in out will be written to the host flags. The state of all host
flags will be returned in the lower four bits of the status member.

DSP56K_HOST_CMD
sends a host command. Allowed values are in the range 0 to 31, and is a user-
defined command handled by the program running in the DSP56001.

FILES
/dev/dsp56k

SEE ALSO
linux/include/asm-m68k/dsp56k.h, linux/drivers/char/dsp56k.c,
〈http://dsp56k.nocrew.org/〉, DSP56000/DSP56001 Digital Signal Processor User’s
Manual

Linux man-pages 6.13 2024-06-15 2703

fd(4) Kernel Interfaces Manual fd(4)

NAME
fd - floppy disk device

CONFIGURATION
Floppy drives are block devices with major number 2. Typically they are owned by
root:floppy (i.e., user root, group floppy) and have either mode 0660 (access checking
via group membership) or mode 0666 (everybody has access). The minor numbers
encode the device type, drive number, and controller number. For each device type
(that is, combination of density and track count) there is a base minor number. To this
base number, add the drive’s number on its controller and 128 if the drive is on the
secondary controller. In the following device tables, n represents the drive number.

Warning: if you use formats with more tracks than supported by your drive, you
may cause it mechanical damage. Trying once if more tracks than the usual 40/80
are supported should not damage it, but no warranty is given for that. If you are not
sure, don’t create device entries for those formats, so as to prevent their usage.

Drive-independent device files which automatically detect the media format and ca-
pacity:
Name Base

minor #
fdn 0

5.25 inch double-density device files:
Name Capacity Cyl. Sect. Heads Base

KiB minor #
fdnd360 360 40 9 2 4

5.25 inch high-density device files:
Name Capacity Cyl. Sect. Heads Base

KiB minor #
fdnh360 360 40 9 2 20
fdnh410 410 41 10 2 48
fdnh420 420 42 10 2 64
fdnh720 720 80 9 2 24
fdnh880 880 80 11 2 80
fdnh1200 1200 80 15 2 8
fdnh1440 1440 80 18 2 40
fdnh1476 1476 82 18 2 56
fdnh1494 1494 83 18 2 72
fdnh1600 1600 80 20 2 92

3.5 inch double-density device files:
Name Capacity Cyl. Sect. Heads Base

KiB minor #
fdnu360 360 80 9 1 12
fdnu720 720 80 9 2 16
fdnu800 800 80 10 2 120
fdnu1040 1040 80 13 2 84
fdnu1120 1120 80 14 2 88

3.5 inch high-density device files:

Linux man-pages 6.13 2024-05-02 2704

fd(4) Kernel Interfaces Manual fd(4)

Name Capacity Cyl. Sect. Heads Base
KiB minor #

fdnu360 360 40 9 2 12
fdnu720 720 80 9 2 16
fdnu820 820 82 10 2 52
fdnu830 830 83 10 2 68
fdnu1440 1440 80 18 2 28
fdnu1600 1600 80 20 2 124
fdnu1680 1680 80 21 2 44
fdnu1722 1722 82 21 2 60
fdnu1743 1743 83 21 2 76
fdnu1760 1760 80 22 2 96
fdnu1840 1840 80 23 2 116
fdnu1920 1920 80 24 2 100

3.5 inch extra-density device files:
Name Capacity Cyl. Sect. Heads Base

KiB minor #
fdnu2880 2880 80 36 2 32
fdnCompaQ 2880 80 36 2 36
fdnu3200 3200 80 40 2 104
fdnu3520 3520 80 44 2 108
fdnu3840 3840 80 48 2 112

DESCRIPTION
fd special files access the floppy disk drives in raw mode. The following ioctl(2) calls
are supported by fd devices:

FDCLRPRM
clears the media information of a drive (geometry of disk in drive).

FDSETPRM
sets the media information of a drive. The media information will be lost
when the media is changed.

FDDEFPRM
sets the media information of a drive (geometry of disk in drive). The media
information will not be lost when the media is changed. This will disable au-
todetection. In order to reenable autodetection, you have to issue an FDCLR-
PRM.

FDGETDRVTYP
returns the type of a drive (name parameter). For formats which work in sev-
eral drive types, FDGETDRVTYP returns a name which is appropriate for
the oldest drive type which supports this format.

FDFLUSH
invalidates the buffer cache for the given drive.

FDSETMAXERRS
sets the error thresholds for reporting errors, aborting the operation, recalibrat-
ing, resetting, and reading sector by sector.

Linux man-pages 6.13 2024-05-02 2705

fd(4) Kernel Interfaces Manual fd(4)

FDSETMAXERRS
gets the current error thresholds.

FDGETDRVTYP
gets the internal name of the drive.

FDWERRORCLR
clears the write error statistics.

FDWERRORGET
reads the write error statistics. These include the total number of write errors,
the location and disk of the first write error, and the location and disk of the
last write error. Disks are identified by a generation number which is incre-
mented at (almost) each disk change.

FDTWADDLE
Switch the drive motor off for a few microseconds. This might be needed in
order to access a disk whose sectors are too close together.

FDSETDRVPRM
sets various drive parameters.

FDGETDRVPRM
reads these parameters back.

FDGETDRVSTAT
gets the cached drive state (disk changed, write protected et al.)

FDPOLLDRVSTAT
polls the drive and return its state.

FDGETFDCSTAT
gets the floppy controller state.

FDRESET
resets the floppy controller under certain conditions.

FDRAWCMD
sends a raw command to the floppy controller.

For more precise information, consult also the <linux/fd.h> and <linux/fdreg.h> in-
clude files, as well as the floppycontrol(1) manual page.

FILES
/dev/fd*

NOTES
The various formats permit reading and writing many types of disks. However, if a
floppy is formatted with an inter-sector gap that is too small, performance may drop,
to the point of needing a few seconds to access an entire track. To prevent this, use in-
terleaved formats.

It is not possible to read floppies which are formatted using GCR (group code record-
ing), which is used by Apple II and Macintosh computers (800k disks).

Reading floppies which are hard sectored (one hole per sector, with the index hole be-
ing a little skewed) is not supported. This used to be common with older 8-inch flop-
pies.

Linux man-pages 6.13 2024-05-02 2706

fd(4) Kernel Interfaces Manual fd(4)

SEE ALSO
chown(1), floppycontrol(1), getfdprm(1), mknod(1), superformat(1), mount(8), setfd-
prm(8)

Linux man-pages 6.13 2024-05-02 2707

full(4) Kernel Interfaces Manual full(4)

NAME
full - always full device

CONFIGURATION
If your system does not have /dev/full created already, it can be created with the fol-
lowing commands:

mknod -m 666 /dev/full c 1 7
chown root:root /dev/full

DESCRIPTION
The file /dev/full has major device number 1 and minor device number 7.

Writes to the /dev/full device fail with an ENOSPC error. This can be used to test
how a program handles disk-full errors.

Reads from the /dev/full device will return \0 characters.

Seeks on /dev/full will always succeed.

FILES
/dev/full

SEE ALSO
mknod(1), null(4), zero(4)

Linux man-pages 6.13 2024-06-15 2708

fuse(4) Kernel Interfaces Manual fuse(4)

NAME
fuse - Filesystem in Userspace (FUSE) device

SYNOPSIS
#include <linux/fuse.h>

DESCRIPTION
This device is the primary interface between the FUSE filesystem driver and a user-
space process wishing to provide the filesystem (referred to in the rest of this manual
page as the filesystem daemon). This manual page is intended for those interested in
understanding the kernel interface itself. Those implementing a FUSE filesystem may
wish to make use of a user-space library such as libfuse that abstracts away the low-
level interface.

At its core, FUSE is a simple client-server protocol, in which the Linux kernel is the
client and the daemon is the server. After obtaining a file descriptor for this device,
the daemon may read(2) requests from that file descriptor and is expected to write(2)
back its replies. It is important to note that a file descriptor is associated with a
unique FUSE filesystem. In particular, opening a second copy of this device, will not
allow access to resources created through the first file descriptor (and vice versa).

The basic protocol
Every message that is read by the daemon begins with a header described by the fol-
lowing structure:

struct fuse_in_header {
uint32_t len; /* Total size of the data,

including this header */
uint32_t opcode; /* The kind of operation (see below) */
uint64_t unique; /* A unique identifier for this request */
uint64_t nodeid; /* ID of the filesystem object

being operated on */
uint32_t uid; /* UID of the requesting process */
uint32_t gid; /* GID of the requesting process */
uint32_t pid; /* PID of the requesting process */
uint32_t padding;

};

The header is followed by a variable-size data portion (which may be empty) specific
to the requested operation (the requested operation is indicated by opcode).

The daemon should then process the request and if applicable send a reply (almost all
operations require a reply; if they do not, this is documented below), by performing a
write(2) to the file descriptor. All replies must start with the following header:

struct fuse_out_header {
uint32_t len; /* Total size of data written to

the file descriptor */
int32_t error; /* Any error that occurred (0 if none) */
uint64_t unique; /* The value from the

corresponding request */
};

This header is also followed by (potentially empty) variable-sized data depending on

Linux man-pages 6.13 2024-11-17 2709

fuse(4) Kernel Interfaces Manual fuse(4)

the executed request. However, if the reply is an error reply (i.e., error is set), then no
further payload data should be sent, independent of the request.

Exchanged messages
This section should contain documentation for each of the messages in the protocol.
This manual page is currently incomplete, so not all messages are documented. For
each message, first the struct sent by the kernel is given, followed by a description of
the semantics of the message.

FUSE_INIT

struct fuse_init_in {
uint32_t major;
uint32_t minor;
uint32_t max_readahead; /* Since protocol v7.6 */
uint32_t flags; /* Since protocol v7.6 */

};

This is the first request sent by the kernel to the daemon. It is used to negoti-
ate the protocol version and other filesystem parameters. Note that the proto-
col version may affect the layout of any structure in the protocol (including
this structure). The daemon must thus remember the negotiated version and
flags for each session. As of the writing of this man page, the highest sup-
ported kernel protocol version is 7.26.

Users should be aware that the descriptions in this manual page may be in-
complete or incorrect for older or more recent protocol versions.

The reply for this request has the following format:

struct fuse_init_out {
uint32_t major;
uint32_t minor;
uint32_t max_readahead; /* Since v7.6 */
uint32_t flags; /* Since v7.6; some flags bits

were introduced later */
uint16_t max_background; /* Since v7.13 */
uint16_t congestion_threshold; /* Since v7.13 */
uint32_t max_write; /* Since v7.5 */
uint32_t time_gran; /* Since v7.6 */
uint32_t unused[9];

};

If the major version supported by the kernel is larger than that supported by
the daemon, the reply shall consist of only uint32_t major (following the usual
header), indicating the largest major version supported by the daemon. The
kernel will then issue a new FUSE_INIT request conforming to the older ver-
sion. In the reverse case, the daemon should quietly fall back to the kernel’s
major version.

The negotiated minor version is considered to be the minimum of the minor
versions provided by the daemon and the kernel and both parties should use
the protocol corresponding to said minor version.

Linux man-pages 6.13 2024-11-17 2710

fuse(4) Kernel Interfaces Manual fuse(4)

FUSE_GETATTR

struct fuse_getattr_in {
uint32_t getattr_flags;
uint32_t dummy;
uint64_t fh; /* Set only if

(getattr_flags & FUSE_GETATTR_FH)
};

The requested operation is to compute the attributes to be returned by stat(2)
and similar operations for the given filesystem object. The object for which
the attributes should be computed is indicated either by header->nodeid or, if
the FUSE_GETATTR_FH flag is set, by the file handle fh. The latter case of
operation is analogous to fstat(2).

For performance reasons, these attributes may be cached in the kernel for a
specified duration of time. While the cache timeout has not been exceeded,
the attributes will be served from the cache and will not cause additional
FUSE_GETATTR requests.

The computed attributes and the requested cache timeout should then be re-
turned in the following structure:

struct fuse_attr_out {
/* Attribute cache duration (seconds + nanoseconds) */
uint64_t attr_valid;
uint32_t attr_valid_nsec;
uint32_t dummy;
struct fuse_attr {

uint64_t ino;
uint64_t size;
uint64_t blocks;
uint64_t atime;
uint64_t mtime;
uint64_t ctime;
uint32_t atimensec;
uint32_t mtimensec;
uint32_t ctimensec;
uint32_t mode;
uint32_t nlink;
uint32_t uid;
uint32_t gid;
uint32_t rdev;
uint32_t blksize;
uint32_t padding;

} attr;
};

FUSE_ACCESS

struct fuse_access_in {
uint32_t mask;
uint32_t padding;

Linux man-pages 6.13 2024-11-17 2711

fuse(4) Kernel Interfaces Manual fuse(4)

};

If the default_permissions mount options is not used, this request may be used
for permissions checking. No reply data is expected, but errors may be indi-
cated as usual by setting the error field in the reply header (in particular, ac-
cess denied errors may be indicated by returning -EACCES).

FUSE_OPEN
FUSE_OPENDIR

struct fuse_open_in {
uint32_t flags; /* The flags that were passed

to the open(2) */
uint32_t unused;

};

The requested operation is to open the node indicated by header->nodeid .
The exact semantics of what this means will depend on the filesystem being
implemented. However, at the very least the filesystem should validate that
the requested flags are valid for the indicated resource and then send a reply
with the following format:

struct fuse_open_out {
uint64_t fh;
uint32_t open_flags;
uint32_t padding;

};

The fh field is an opaque identifier that the kernel will use to refer to this re-
source The open_flags field is a bit mask of any number of the flags that indi-
cate properties of this file handle to the kernel:

FOPEN_DIRECT_IO
Bypass page cache for this open file.

FOPEN_KEEP_CACHE
Don’t invalidate the data cache on open.

FOPEN_NONSEEKABLE
The file is not seekable.

FUSE_READ
FUSE_READDIR

struct fuse_read_in {
uint64_t fh;
uint64_t offset;
uint32_t size;
uint32_t read_flags;
uint64_t lock_owner;
uint32_t flags;
uint32_t padding;

};

The requested action is to read up to size bytes of the file or directory, starting
at offset. The bytes should be returned directly following the usual reply

Linux man-pages 6.13 2024-11-17 2712

fuse(4) Kernel Interfaces Manual fuse(4)

header.

FUSE_INTERRUPT
struct fuse_interrupt_in {

uint64_t unique;
};

The requested action is to cancel the pending operation indicated by unique.
This request requires no response. However, receipt of this message does not
by itself cancel the indicated operation. The kernel will still expect a reply to
said operation (e.g., an EINTR error or a short read). At most one FUSE_IN-
TERRUPT request will be issued for a given operation. After issuing said op-
eration, the kernel will wait uninterruptibly for completion of the indicated re-
quest.

FUSE_LOOKUP
Directly following the header is a filename to be looked up in the directory in-
dicated by header->nodeid . The expected reply is of the form:

struct fuse_entry_out {
uint64_t nodeid; /* Inode ID */
uint64_t generation; /* Inode generation */
uint64_t entry_valid;
uint64_t attr_valid;
uint32_t entry_valid_nsec;
uint32_t attr_valid_nsec;
struct fuse_attr attr;

};

The combination of nodeid and generation must be unique for the filesystem’s
lifetime.

The interpretation of timeouts and attr is as for FUSE_GETATTR.

FUSE_FLUSH
struct fuse_flush_in {

uint64_t fh;
uint32_t unused;
uint32_t padding;
uint64_t lock_owner;

};

The requested action is to flush any pending changes to the indicated file han-
dle. No reply data is expected. However, an empty reply message still needs
to be issued once the flush operation is complete.

FUSE_RELEASE
FUSE_RELEASEDIR

struct fuse_release_in {
uint64_t fh;
uint32_t flags;
uint32_t release_flags;
uint64_t lock_owner;

};

Linux man-pages 6.13 2024-11-17 2713

fuse(4) Kernel Interfaces Manual fuse(4)

These are the converse of FUSE_OPEN and FUSE_OPENDIR respectively.
The daemon may now free any resources associated with the file handle fh as
the kernel will no longer refer to it. There is no reply data associated with this
request, but a reply still needs to be issued once the request has been com-
pletely processed.

FUSE_STATFS
This operation implements statfs(2) for this filesystem. There is no input data
associated with this request. The expected reply data has the following struc-
ture:

struct fuse_kstatfs {
uint64_t blocks;
uint64_t bfree;
uint64_t bavail;
uint64_t files;
uint64_t ffree;
uint32_t bsize;
uint32_t namelen;
uint32_t frsize;
uint32_t padding;
uint32_t spare[6];

};

struct fuse_statfs_out {
struct fuse_kstatfs st;

};

For the interpretation of these fields, see statfs(2).

ERRORS
E2BIG

Returned from read(2) operations when the kernel’s request is too large for the
provided buffer and the request was FUSE_SETXATTR.

EINVAL
Returned from write(2) if validation of the reply failed. Not all mistakes in
replies will be caught by this validation. However, basic mistakes, such as
short replies or an incorrect unique value, are detected.

EIO Returned from read(2) operations when the kernel’s request is too large for the
provided buffer.

Note: There are various ways in which incorrect use of these interfaces can
cause operations on the provided filesystem’s files and directories to fail with
EIO. Among the possible incorrect uses are:

• changing mode & S_IFMT for an inode that has previously been reported
to the kernel; or

• giving replies to the kernel that are shorter than what the kernel expected.

ENODEV
Returned from read(2) and write(2) if the FUSE filesystem was unmounted.

Linux man-pages 6.13 2024-11-17 2714

fuse(4) Kernel Interfaces Manual fuse(4)

EPERM
Returned from operations on a /dev/fuse file descriptor that has not been
mounted.

STANDARDS
Linux.

NOTES
The following messages are not yet documented in this manual page:

FUSE_BATCH_FORGET
FUSE_BMAP
FUSE_CREATE
FUSE_DESTROY
FUSE_FALLOCATE
FUSE_FORGET
FUSE_FSYNC
FUSE_FSYNCDIR
FUSE_GETLK
FUSE_GETXATTR
FUSE_IOCTL
FUSE_LINK
FUSE_LISTXATTR
FUSE_LSEEK
FUSE_MKDIR
FUSE_MKNOD
FUSE_NOTIFY_REPLY
FUSE_POLL
FUSE_READDIRPLUS
FUSE_READLINK
FUSE_REMOVEXATTR
FUSE_RENAME
FUSE_RENAME2
FUSE_RMDIR
FUSE_SETATTR
FUSE_SETLK
FUSE_SETLKW
FUSE_SYMLINK
FUSE_UNLINK
FUSE_WRITE

SEE ALSO
fusermount(1), mount.fuse(8)

Linux man-pages 6.13 2024-11-17 2715

hd(4) Kernel Interfaces Manual hd(4)

NAME
hd - MFM/IDE hard disk devices

DESCRIPTION
The hd* devices are block devices to access MFM/IDE hard disk drives in raw mode.
The master drive on the primary IDE controller (major device number 3) is hda; the
slave drive is hdb. The master drive of the second controller (major device number
22) is hdc and the slave is hdd.

General IDE block device names have the form hdX, or hdXP, where X is a letter de-
noting the physical drive, and P is a number denoting the partition on that physical
drive. The first form, hdX, is used to address the whole drive. Partition numbers are
assigned in the order the partitions are discovered, and only nonempty, nonextended
partitions get a number. However, partition numbers 1–4 are given to the four parti-
tions described in the MBR (the "primary" partitions), regardless of whether they are
unused or extended. Thus, the first logical partition will be hdX5. Both DOS-type
partitioning and BSD-disklabel partitioning are supported. You can have at most 63
partitions on an IDE disk.

For example, /dev/hda refers to all of the first IDE drive in the system; and /dev/hdb3
refers to the third DOS "primary" partition on the second one.

They are typically created by:

mknod -m 660 /dev/hda b 3 0
mknod -m 660 /dev/hda1 b 3 1
mknod -m 660 /dev/hda2 b 3 2
...
mknod -m 660 /dev/hda8 b 3 8
mknod -m 660 /dev/hdb b 3 64
mknod -m 660 /dev/hdb1 b 3 65
mknod -m 660 /dev/hdb2 b 3 66
...
mknod -m 660 /dev/hdb8 b 3 72
chown root:disk /dev/hd*

FILES
/dev/hd*

SEE ALSO
chown(1), mknod(1), sd(4), mount(8)

Linux man-pages 6.13 2024-05-02 2716

hpsa(4) Kernel Interfaces Manual hpsa(4)

NAME
hpsa - HP Smart Array SCSI driver

SYNOPSIS
modprobe hpsa [hpsa_allow_any=1]

DESCRIPTION
hpsa is a SCSI driver for HP Smart Array RAID controllers.

Options
hpsa_allow_any=1: This option allows the driver to attempt to operate on any HP
Smart Array hardware RAID controller, even if it is not explicitly known to the driver.
This allows newer hardware to work with older drivers. Typically this is used to allow
installation of operating systems from media that predates the RAID controller,
though it may also be used to enable hpsa to drive older controllers that would nor-
mally be handled by the cciss(4) driver. These older boards have not been tested and
are not supported with hpsa, and cciss(4) should still be used for these.

Supported hardware
The hpsa driver supports the following Smart Array boards:

Smart Array P700M
Smart Array P212
Smart Array P410
Smart Array P410i
Smart Array P411
Smart Array P812
Smart Array P712m
Smart Array P711m
StorageWorks P1210m

Since Linux 4.14, the following Smart Array boards are also supported:

Smart Array 5300
Smart Array 5312
Smart Array 532
Smart Array 5i
Smart Array 6400
Smart Array 6400 EM
Smart Array 641
Smart Array 642
Smart Array 6i
Smart Array E200
Smart Array E200i
Smart Array E200i
Smart Array E200i
Smart Array E200i
Smart Array E500
Smart Array P400
Smart Array P400i
Smart Array P600
Smart Array P700m
Smart Array P800

Linux man-pages 6.13 2024-05-02 2717

hpsa(4) Kernel Interfaces Manual hpsa(4)

Configuration details
To configure HP Smart Array controllers, use the HP Array Configuration Utility (ei-
ther hpacuxe(8) or hpacucli(8)) or the Offline ROM-based Configuration Utility
(ORCA) run from the Smart Array’s option ROM at boot time.

FILES
Device nodes

Logical drives are accessed via the SCSI disk driver (sd(4)), tape drives via the SCSI
tape driver (st(4)), and the RAID controller via the SCSI generic driver (sg(4)), with
device nodes named /dev/sd*, /dev/st*, and /dev/sg*, respectively.

HPSA-specific host attribute files in /sys
/sys/class/scsi_host/host*/rescan

This is a write-only attribute. Writing to this attribute will cause the driver to
scan for new, changed, or removed devices (e.g., hot-plugged tape drives, or
newly configured or deleted logical drives, etc.) and notify the SCSI midlayer
of any changes detected. Normally a rescan is triggered automatically by HP’s
Array Configuration Utility (either the GUI or the command-line variety);
thus, for logical drive changes, the user should not normally have to use this
attribute. This attribute may be useful when hot plugging devices like tape dri-
ves, or entire storage boxes containing preconfigured logical drives.

/sys/class/scsi_host/host*/firmware_revision
This attribute contains the firmware version of the Smart Array.

For example:

cd /sys/class/scsi_host/host4
cat firmware_revision
7.14

HPSA-specific disk attribute files in /sys
/sys/class/scsi_disk/c:b:t:l/device/unique_id

This attribute contains a 32 hex-digit unique ID for each logical drive.

For example:

cd /sys/class/scsi_disk/4:0:0:0/device
cat unique_id
600508B1001044395355323037570F77

/sys/class/scsi_disk/c:b:t:l/device/raid_level
This attribute contains the RAID level of each logical drive.

For example:

cd /sys/class/scsi_disk/4:0:0:0/device
cat raid_level
RAID 0

/sys/class/scsi_disk/c:b:t:l/device/lunid
This attribute contains the 16 hex-digit (8 byte) LUN ID by which a logical
drive or physical device can be addressed. c:b:t:l are the controller, bus, tar-
get, and lun of the device.

For example:

Linux man-pages 6.13 2024-05-02 2718

hpsa(4) Kernel Interfaces Manual hpsa(4)

cd /sys/class/scsi_disk/4:0:0:0/device
cat lunid
0x0000004000000000

Supported ioctl() operations
For compatibility with applications written for the cciss(4) driver, many, but not all of
the ioctls supported by the cciss(4) driver are also supported by the hpsa driver. The
data structures used by these ioctls are described in the Linux kernel source file in-
clude/linux/cciss_ioctl.h.

CCISS_DEREGDISK
CCISS_REGNEWDISK
CCISS_REGNEWD

These three ioctls all do exactly the same thing, which is to cause the driver to
rescan for new devices. This does exactly the same thing as writing to the
hpsa-specific host "rescan" attribute.

CCISS_GETPCIINFO
Returns PCI domain, bus, device, and function and "board ID" (PCI subsystem
ID).

CCISS_GETDRIVVER
Returns driver version in three bytes encoded as:

(major_version << 16) | (minor_version << 8) |
(subminor_version)

CCISS_PASSTHRU
CCISS_BIG_PASSTHRU

Allows "BMIC" and "CISS" commands to be passed through to the Smart Ar-
ray. These are used extensively by the HP Array Configuration Utility, SNMP
storage agents, and so on. See cciss_vol_status at 〈http://cciss.sf.net〉 for some
examples.

SEE ALSO
cciss(4), sd(4), st(4), cciss_vol_status(8), hpacucli(8), hpacuxe(8)

〈http://cciss.sf.net〉, and Documentation/scsi/hpsa.txt and Documentation/ABI/test-
ing/sysfs-bus-pci-devices-cciss in the Linux kernel source tree

Linux man-pages 6.13 2024-05-02 2719

initrd(4) Kernel Interfaces Manual initrd(4)

NAME
initrd - boot loader initialized RAM disk

CONFIGURATION
/dev/initrd is a read-only block device assigned major number 1 and minor number
250. Typically /dev/initrd is owned by root:disk with mode 0400 (read access by root
only). If the Linux system does not have /dev/initrd already created, it can be created
with the following commands:

mknod -m 400 /dev/initrd b 1 250
chown root:disk /dev/initrd

Also, support for both "RAM disk" and "Initial RAM disk" (e.g., CON-
FIG_BLK_DEV_RAM=y and CONFIG_BLK_DEV_INITRD=y) must be com-
piled directly into the Linux kernel to use /dev/initrd . When using /dev/initrd , the
RAM disk driver cannot be loaded as a module.

DESCRIPTION
The special file /dev/initrd is a read-only block device. This device is a RAM disk
that is initialized (e.g., loaded) by the boot loader before the kernel is started. The
kernel then can use /dev/initrd’s contents for a two-phase system boot-up.

In the first boot-up phase, the kernel starts up and mounts an initial root filesystem
from the contents of /dev/initrd (e.g., RAM disk initialized by the boot loader). In the
second phase, additional drivers or other modules are loaded from the initial root de-
vice’s contents. After loading the additional modules, a new root filesystem (i.e., the
normal root filesystem) is mounted from a different device.

Boot-up operation
When booting up with initrd, the system boots as follows:

(1) The boot loader loads the kernel program and /dev/initrd’s contents into mem-
ory.

(2) On kernel startup, the kernel uncompresses and copies the contents of the de-
vice /dev/initrd onto device /dev/ram0 and then frees the memory used by
/dev/initrd .

(3) The kernel then read-write mounts the device /dev/ram0 as the initial root
filesystem.

(4) If the indicated normal root filesystem is also the initial root filesystem (e.g.,
/dev/ram0) then the kernel skips to the last step for the usual boot sequence.

(5) If the executable file /linuxrc is present in the initial root filesystem, /linuxrc is
executed with UID 0. (The file /linuxrc must have executable permission. The
file /linuxrc can be any valid executable, including a shell script.)

(6) If /linuxrc is not executed or when /linuxrc terminates, the normal root filesys-
tem is mounted. (If /linuxrc exits with any filesystems mounted on the initial
root filesystem, then the behavior of the kernel is UNSPECIFIED. See the
NOTES section for the current kernel behavior.)

(7) If the normal root filesystem has a directory /initrd , the device /dev/ram0 is
moved from / to /initrd . Otherwise, if the directory /initrd does not exist, the
device /dev/ram0 is unmounted. (When moved from / to /initrd , /dev/ram0 is

Linux man-pages 6.13 2024-06-15 2720

initrd(4) Kernel Interfaces Manual initrd(4)

not unmounted and therefore processes can remain running from /dev/ram0. If
directory /initrd does not exist on the normal root filesystem and any processes
remain running from /dev/ram0 when /linuxrc exits, the behavior of the kernel
is UNSPECIFIED. See the NOTES section for the current kernel behavior.)

(8) The usual boot sequence (e.g., invocation of /sbin/init) is performed on the nor-
mal root filesystem.

Options
The following boot loader options, when used with initrd, affect the kernel’s boot-up
operation:

initrd= filename
Specifies the file to load as the contents of /dev/initrd . For LOADLIN this is
a command-line option. For LILO you have to use this command in the
LILO configuration file /etc/lilo.config. The filename specified with this op-
tion will typically be a gzipped filesystem image.

noinitrd
This boot option disables the two-phase boot-up operation. The kernel per-
forms the usual boot sequence as if /dev/initrd was not initialized. With this
option, any contents of /dev/initrd loaded into memory by the boot loader con-
tents are preserved. This option permits the contents of /dev/initrd to be any
data and need not be limited to a filesystem image. However, device /dev/ini-
trd is read-only and can be read only one time after system startup.

root=device-name
Specifies the device to be used as the normal root filesystem. For LOADLIN
this is a command-line option. For LILO this is a boot time option or can be
used as an option line in the LILO configuration file /etc/lilo.config. The de-
vice specified by this option must be a mountable device having a suitable root
filesystem.

Changing the normal root filesystem
By default, the kernel’s settings (e.g., set in the kernel file with rdev(8) or compiled
into the kernel file), or the boot loader option setting is used for the normal root
filesystems. For an NFS-mounted normal root filesystem, one has to use the
nfs_root_name and nfs_root_addrs boot options to give the NFS settings. For more
information on NFS-mounted root see the kernel documentation file Documenta-
tion/filesystems/nfs/nfsroot.txt (or Documentation/filesystems/nfsroot.txt before Linux
2.6.33). For more information on setting the root filesystem see also the LILO and
LOADLIN documentation.

It is also possible for the /linuxrc executable to change the normal root device. For
/linuxrc to change the normal root device, /proc must be mounted. After mounting
/proc, /linuxrc changes the normal root device by writing into the proc files
/proc/sys/kernel/real-root-dev, /proc/sys/kernel/nfs-root-name, and /proc/sys/ker-
nel/nfs-root-addrs. For a physical root device, the root device is changed by having
/linuxrc write the new root filesystem device number into /proc/sys/kernel/real-root-
dev. For an NFS root filesystem, the root device is changed by having /linuxrc write
the NFS setting into files /proc/sys/kernel/nfs-root-name and /proc/sys/ker-
nel/nfs-root-addrs and then writing 0xff (e.g., the pseudo-NFS-device number) into
file /proc/sys/kernel/real-root-dev. For example, the following shell command line

Linux man-pages 6.13 2024-06-15 2721

initrd(4) Kernel Interfaces Manual initrd(4)

would change the normal root device to /dev/hdb1:

echo 0x365 >/proc/sys/kernel/real-root-dev

For an NFS example, the following shell command lines would change the normal
root device to the NFS directory /var/nfsroot on a local networked NFS server with IP
number 193.8.232.7 for a system with IP number 193.8.232.2 and named "idefix":

echo /var/nfsroot >/proc/sys/kernel/nfs-root-name
echo 193.8.232.2:193.8.232.7::255.255.255.0:idefix \

>/proc/sys/kernel/nfs-root-addrs
echo 255 >/proc/sys/kernel/real-root-dev

Note: The use of /proc/sys/kernel/real-root-dev to change the root filesystem is ob-
solete. See the Linux kernel source file Documentation/admin-guide/initrd.rst (or
Documentation/initrd.txt before Linux 4.10) as well as pivot_root(2) and
pivot_root(8) for information on the modern method of changing the root filesystem.

Usage
The main motivation for implementing initrd was to allow for modular kernel config-
uration at system installation.

A possible system installation scenario is as follows:

(1) The loader program boots from floppy or other media with a minimal kernel
(e.g., support for /dev/ram, /dev/initrd , and the ext2 filesystem) and loads
/dev/initrd with a gzipped version of the initial filesystem.

(2) The executable /linuxrc determines what is needed to (1) mount the normal root
filesystem (i.e., device type, device drivers, filesystem) and (2) the distribution
media (e.g., CD-ROM, network, tape, ...). This can be done by asking the user,
by auto-probing, or by using a hybrid approach.

(3) The executable /linuxrc loads the necessary modules from the initial root
filesystem.

(4) The executable /linuxrc creates and populates the root filesystem. (At this stage
the normal root filesystem does not have to be a completed system yet.)

(5) The executable /linuxrc sets /proc/sys/kernel/real-root-dev, unmounts /proc,
the normal root filesystem and any other filesystems it has mounted, and then
terminates.

(6) The kernel then mounts the normal root filesystem.

(7) Now that the filesystem is accessible and intact, the boot loader can be installed.

(8) The boot loader is configured to load into /dev/initrd a filesystem with the set of
modules that was used to bring up the system. (e.g., device /dev/ram0 can be
modified, then unmounted, and finally, the image is written from /dev/ram0 to a
file.)

(9) The system is now bootable and additional installation tasks can be performed.

The key role of /dev/initrd in the above is to reuse the configuration data during nor-
mal system operation without requiring initial kernel selection, a large generic kernel
or, recompiling the kernel.

A second scenario is for installations where Linux runs on systems with different

Linux man-pages 6.13 2024-06-15 2722

initrd(4) Kernel Interfaces Manual initrd(4)

hardware configurations in a single administrative network. In such cases, it may be
desirable to use only a small set of kernels (ideally only one) and to keep the system-
specific part of configuration information as small as possible. In this case, create a
common file with all needed modules. Then, only the /linuxrc file or a file executed
by /linuxrc would be different.

A third scenario is more convenient recovery disks. Because information like the lo-
cation of the root filesystem partition is not needed at boot time, the system loaded
from /dev/initrd can use a dialog and/or auto-detection followed by a possible sanity
check.

Last but not least, Linux distributions on CD-ROM may use initrd for easy installa-
tion from the CD-ROM. The distribution can use LOADLIN to directly load
/dev/initrd from CD-ROM without the need of any floppies. The distribution could
also use a LILO boot floppy and then bootstrap a bigger RAM disk via /dev/initrd
from the CD-ROM.

FILES
/dev/initrd
/dev/ram0
/linuxrc
/initrd

NOTES
• With the current kernel, any filesystems that remain mounted when /dev/ram0 is

moved from / to /initrd continue to be accessible. However, the /proc/mounts en-
tries are not updated.

• With the current kernel, if directory /initrd does not exist, then /dev/ram0 will not
be fully unmounted if /dev/ram0 is used by any process or has any filesystem
mounted on it. If /dev/ram0 is not fully unmounted, then /dev/ram0 will remain
in memory.

• Users of /dev/initrd should not depend on the behavior given in the above notes.
The behavior may change in future versions of the Linux kernel.

SEE ALSO
chown(1), mknod(1), ram(4), freeramdisk(8), rdev(8)

Documentation/admin-guide/initrd.rst (or Documentation/initrd.txt before Linux
4.10) in the Linux kernel source tree, the LILO documentation, the LOADLIN docu-
mentation, the SYSLINUX documentation

Linux man-pages 6.13 2024-06-15 2723

lirc(4) Kernel Interfaces Manual lirc(4)

NAME
lirc - lirc devices

DESCRIPTION
The /dev/lirc* character devices provide a low-level bidirectional interface to infra-
red (IR) remotes. Most of these devices can receive, and some can send. When re-
ceiving or sending data, the driver works in two different modes depending on the un-
derlying hardware.

Some hardware (typically TV-cards) decodes the IR signal internally and provides de-
coded button presses as scancode values. Drivers for this kind of hardware work in
LIRC_MODE_SCANCODE mode. Such hardware usually does not support send-
ing IR signals. Furthermore, such hardware can only decode a limited set of IR proto-
cols, usually only the protocol of the specific remote which is bundled with, for exam-
ple, a TV-card.

Other hardware provides a stream of pulse/space durations. Such drivers work in
LIRC_MODE_MODE2 mode. Such hardware can be used with (almost) any kind
of remote. This type of hardware can also be used in LIRC_MODE_SCANCODE
mode, in which case the kernel IR decoders will decode the IR. These decoders can
be written in extended BPF (see bpf(2)) and attached to the lirc device. Sometimes,
this kind of hardware also supports sending IR data.

The LIRC_GET_FEATURES ioctl (see below) allows probing for whether receiving
and sending is supported, and in which modes, amongst other features.

Reading input with the LIRC_MODE_MODE2 mode
In the LIRC_MODE_MODE2 mode, the data returned by read(2) provides 32-bit
values representing a space or a pulse duration. The time of the duration (microsec-
onds) is encoded in the lower 24 bits. Pulse (also known as flash) indicates a duration
of infrared light being detected, and space (also known as gap) indicates a duration
with no infrared. If the duration of space exceeds the inactivity timeout, a special
timeout package is delivered, which marks the end of a message. The upper 8 bits in-
dicate the type of package:

LIRC_MODE2_SPACE
Value reflects a space duration (microseconds).

LIRC_MODE2_PULSE
Value reflects a pulse duration (microseconds).

LIRC_MODE2_FREQUENCY
Value reflects a frequency (Hz); see the LIRC_SET_MEASURE_CAR-
RIER_MODE ioctl.

LIRC_MODE2_TIMEOUT
Value reflects a space duration (microseconds). The package reflects a timeout;
see the LIRC_SET_REC_TIMEOUT_REPORTS ioctl.

LIRC_MODE2_OVERFLOW
The IR receiver encountered an overflow, and as a result data is missing (since
Linux 5.18).

Linux man-pages 6.13 2024-09-01 2724

lirc(4) Kernel Interfaces Manual lirc(4)

Reading input with the LIRC_MODE_SCANCODE mode
In the LIRC_MODE_SCANCODE mode, the data returned by read(2) reflects de-
coded button presses, in the struct lirc_scancode. The scancode is stored in the scan-
code field, and the IR protocol is stored in rc_proto. This field has one the values of
the enum rc_proto.

Writing output with the LIRC_MODE_PULSE mode
The data written to the character device using write(2) is a pulse/space sequence of in-
teger values. Pulses and spaces are only marked implicitly by their position. The data
must start and end with a pulse, thus it must always include an odd number of sam-
ples. The write(2) function blocks until the data has been transmitted by the hard-
ware. If more data is provided than the hardware can send, the write(2) call fails with
the error EINVAL.

Writing output with the LIRC_MODE_SCANCODE mode
The data written to the character devices must be a single struct lirc_scancode. The
scancode and rc_proto fields must filled in, all other fields must be 0. The kernel IR
encoders will convert the scancode to pulses and spaces. The protocol or scancode is
invalid, or the lirc device cannot transmit.

IOCTL COMMANDS
#include <linux/lirc.h> /* But see BUGS */

int ioctl(int fd, int cmd, int *val);

The following ioctl(2) operations are provided by the lirc character device to probe or
change specific lirc hardware settings.

Always Supported Commands
/dev/lirc* devices always support the following commands:

LIRC_GET_FEATURES (void)
Returns a bit mask of combined features bits; see FEATURES.

If a device returns an error code for LIRC_GET_FEATURES, it is safe to assume it
is not a lirc device.

Optional Commands
Some lirc devices support the commands listed below. Unless otherwise stated, these
fail with the error ENOTTY if the operation isn’t supported, or with the error EIN-
VAL if the operation failed, or invalid arguments were provided. If a driver does not
announce support of certain features, invoking the corresponding ioctls will fail with
the error ENOTTY.

LIRC_GET_REC_MODE (void)
If the lirc device has no receiver, this operation fails with the error ENOTTY.
Otherwise, it returns the receive mode, which will be one of:

LIRC_MODE_MODE2
The driver returns a sequence of pulse/space durations.

LIRC_MODE_SCANCODE
The driver returns struct lirc_scancode values, each of which repre-
sents a decoded button press.

Linux man-pages 6.13 2024-09-01 2725

lirc(4) Kernel Interfaces Manual lirc(4)

LIRC_SET_REC_MODE (int)
Set the receive mode. val is either LIRC_MODE_SCANCODE or
LIRC_MODE_MODE2. If the lirc device has no receiver, this operation
fails with the error ENOTTY.

LIRC_GET_SEND_MODE (void)
Return the send mode. LIRC_MODE_PULSE or LIRC_MODE_SCAN-
CODE is supported. If the lirc device cannot send, this operation fails with
the error ENOTTY.

LIRC_SET_SEND_MODE (int)
Set the send mode. val is either LIRC_MODE_SCANCODE or
LIRC_MODE_PULSE. If the lirc device cannot send, this operation fails
with the error ENOTTY.

LIRC_SET_SEND_CARRIER (int)
Set the modulation frequency. The argument is the frequency (Hz).

LIRC_SET_SEND_DUTY_CYCLE (int)
Set the carrier duty cycle. val is a number in the range [0,100] which de-
scribes the pulse width as a percentage of the total cycle. Currently, no special
meaning is defined for 0 or 100, but the values are reserved for future use.

LIRC_GET_MIN_TIMEOUT(void)
LIRC_GET_MAX_TIMEOUT(void)

Some devices have internal timers that can be used to detect when there has
been no IR activity for a long time. This can help lircd(8) in detecting that an
IR signal is finished and can speed up the decoding process. These operations
return integer values with the minimum/maximum timeout that can be set (mi-
croseconds). Some devices have a fixed timeout. For such drivers,
LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT will
fail with the error ENOTTY.

LIRC_SET_REC_TIMEOUT (int)
Set the integer value for IR inactivity timeout (microseconds). To be accepted,
the value must be within the limits defined by LIRC_GET_MIN_TIMEOUT
and LIRC_GET_MAX_TIMEOUT. A value of 0 (if supported by the hard-
ware) disables all hardware timeouts and data should be reported as soon as
possible. If the exact value cannot be set, then the next possible value greater
than the given value should be set.

LIRC_GET_REC_TIMEOUT (void)
Return the current inactivity timeout (microseconds). Available since Linux
4.18.

LIRC_SET_REC_TIMEOUT_REPORTS (int)
Enable (val is 1) or disable (val is 0) timeout packages in
LIRC_MODE_MODE2. The behavior of this operation has varied across
kernel versions:

• Since Linux 5.17: timeout packages are always enabled and this ioctl is a
no-op.

Linux man-pages 6.13 2024-09-01 2726

lirc(4) Kernel Interfaces Manual lirc(4)

• Since Linux 4.16: timeout packages are enabled by default. Each time the
lirc device is opened, the LIRC_SET_REC_TIMEOUT operation can be
used to disable (and, if desired, to later re-enable) the timeout on the file
descriptor.

• In Linux 4.15 and earlier: timeout packages are disabled by default, and
enabling them (via LIRC_SET_REC_TIMEOUT) on any file descriptor
associated with the lirc device has the effect of enabling timeouts for all
file descriptors referring to that device (until timeouts are disabled again).

LIRC_SET_REC_CARRIER (int)
Set the upper bound of the receive carrier frequency (Hz). See
LIRC_SET_REC_CARRIER_RANGE.

LIRC_SET_REC_CARRIER_RANGE (int)
Sets the lower bound of the receive carrier frequency (Hz). For this to take af-
fect, first set the lower bound using the LIRC_SET_REC_CAR-
RIER_RANGE ioctl, and then the upper bound using the
LIRC_SET_REC_CARRIER ioctl.

LIRC_SET_MEASURE_CARRIER_MODE (int)
Enable (val is 1) or disable (val is 0) the measure mode. If enabled, from the
next key press on, the driver will send LIRC_MODE2_FREQUENCY pack-
ets. By default, this should be turned off.

LIRC_GET_REC_RESOLUTION (void)
Return the driver resolution (microseconds).

LIRC_SET_TRANSMITTER_MASK (int)
Enable the set of transmitters specified in val, which contains a bit mask
where each enabled transmitter is a 1. The first transmitter is encoded by the
least significant bit, and so on. When an invalid bit mask is given, for example
a bit is set even though the device does not have so many transmitters, this op-
eration returns the number of available transmitters and does nothing other-
wise.

LIRC_SET_WIDEBAND_RECEIVER (int)
Some devices are equipped with a special wide band receiver which is in-
tended to be used to learn the output of an existing remote. This ioctl can be
used to enable (val equals 1) or disable (val equals 0) this functionality. This
might be useful for devices that otherwise have narrow band receivers that pre-
vent them to be used with certain remotes. Wide band receivers may also be
more precise. On the other hand, their disadvantage usually is reduced range
of reception.

Note: wide band receiver may be implicitly enabled if you enable carrier re-
ports. In that case, it will be disabled as soon as you disable carrier reports.
Trying to disable a wide band receiver while carrier reports are active will do
nothing.

FEATURES
the LIRC_GET_FEATURES ioctl returns a bit mask describing features of the dri-
ver. The following bits may be returned in the mask:

Linux man-pages 6.13 2024-09-01 2727

lirc(4) Kernel Interfaces Manual lirc(4)

LIRC_CAN_REC_MODE2
The driver is capable of receiving using LIRC_MODE_MODE2.

LIRC_CAN_REC_SCANCODE
The driver is capable of receiving using LIRC_MODE_SCANCODE.

LIRC_CAN_SET_SEND_CARRIER
The driver supports changing the modulation frequency using
LIRC_SET_SEND_CARRIER.

LIRC_CAN_SET_SEND_DUTY_CYCLE
The driver supports changing the duty cycle using
LIRC_SET_SEND_DUTY_CYCLE.

LIRC_CAN_SET_TRANSMITTER_MASK
The driver supports changing the active transmitter(s) using
LIRC_SET_TRANSMITTER_MASK.

LIRC_CAN_SET_REC_CARRIER
The driver supports setting the receive carrier frequency using
LIRC_SET_REC_CARRIER. Any lirc device since the drivers were
merged in Linux 2.6.36 must have LIRC_CAN_SET_REC_CAR-
RIER_RANGE set if LIRC_CAN_SET_REC_CARRIER feature is set.

LIRC_CAN_SET_REC_CARRIER_RANGE
The driver supports LIRC_SET_REC_CARRIER_RANGE. The lower
bound of the carrier must first be set using the LIRC_SET_REC_CAR-
RIER_RANGE ioctl, before using the LIRC_SET_REC_CARRIER ioctl to
set the upper bound.

LIRC_CAN_GET_REC_RESOLUTION
The driver supports LIRC_GET_REC_RESOLUTION.

LIRC_CAN_SET_REC_TIMEOUT
The driver supports LIRC_SET_REC_TIMEOUT.

LIRC_CAN_MEASURE_CARRIER
The driver supports measuring of the modulation frequency using
LIRC_SET_MEASURE_CARRIER_MODE.

LIRC_CAN_USE_WIDEBAND_RECEIVER
The driver supports learning mode using LIRC_SET_WIDEBAND_RE-
CEIVER.

LIRC_CAN_SEND_PULSE
The driver supports sending using LIRC_MODE_PULSE or
LIRC_MODE_SCANCODE

BUGS
Using these devices requires the kernel source header file lirc.h. This file is not avail-
able before Linux 4.6. Users of older kernels could use the file bundled in
〈http://www.lirc.org〉.

SEE ALSO
ir-ctl(1), lircd(8), bpf(2)

〈https://www.kernel.org/doc/html/latest/userspace-api/media/rc/lirc-dev.html〉

Linux man-pages 6.13 2024-09-01 2728

loop(4) Kernel Interfaces Manual loop(4)

NAME
loop, loop-control - loop devices

SYNOPSIS
#include <linux/loop.h>

DESCRIPTION
The loop device is a block device that maps its data blocks not to a physical device
such as a hard disk or optical disk drive, but to the blocks of a regular file in a filesys-
tem or to another block device. This can be useful for example to provide a block de-
vice for a filesystem image stored in a file, so that it can be mounted with the
mount(8) command. You could do

$ dd if=/dev/zero of=file.img bs=1MiB count=10
$ sudo losetup /dev/loop4 file.img
$ sudo mkfs -t ext4 /dev/loop4
$ sudo mkdir /myloopdev
$ sudo mount /dev/loop4 /myloopdev

See losetup(8) for another example.

A transfer function can be specified for each loop device for encryption and decryp-
tion purposes.

The following ioctl(2) operations are provided by the loop block device:

LOOP_SET_FD
Associate the loop device with the open file whose file descriptor is passed as
the (third) ioctl(2) argument.

LOOP_CLR_FD
Disassociate the loop device from any file descriptor.

LOOP_SET_STATUS
Set the status of the loop device using the (third) ioctl(2) argument. This argu-
ment is a pointer to a loop_info structure, defined in <linux/loop.h> as:

struct loop_info {
int lo_number; /* ioctl r/o */
dev_t lo_device; /* ioctl r/o */
unsigned long lo_inode; /* ioctl r/o */
dev_t lo_rdevice; /* ioctl r/o */
int lo_offset;
int lo_encrypt_type;
int lo_encrypt_key_size; /* ioctl w/o */
int lo_flags; /* ioctl r/w (r/o before

Linux 2.6.25) */
char lo_name[LO_NAME_SIZE];
unsigned char lo_encrypt_key[LO_KEY_SIZE];

/* ioctl w/o */
unsigned long lo_init[2];
char reserved[4];

};

Linux man-pages 6.13 2024-06-15 2729

loop(4) Kernel Interfaces Manual loop(4)

The encryption type (lo_encrypt_type) should be one of LO_CRYPT_NONE,
LO_CRYPT_XOR, LO_CRYPT_DES, LO_CRYPT_FISH2,
LO_CRYPT_BLOW, LO_CRYPT_CAST128, LO_CRYPT_IDEA,
LO_CRYPT_DUMMY, LO_CRYPT_SKIPJACK, or (since Linux 2.6.0)
LO_CRYPT_CRYPTOAPI.

The lo_flags field is a bit mask that can include zero or more of the following:

LO_FLAGS_READ_ONLY
The loopback device is read-only.

LO_FLAGS_AUTOCLEAR (since Linux 2.6.25)
The loopback device will autodestruct on last close.

LO_FLAGS_PARTSCAN (since Linux 3.2)
Allow automatic partition scanning.

LO_FLAGS_DIRECT_IO (since Linux 4.10)
Use direct I/O mode to access the backing file.

The only lo_flags that can be modified by LOOP_SET_STATUS are
LO_FLAGS_AUTOCLEAR and LO_FLAGS_PARTSCAN.

LOOP_GET_STATUS
Get the status of the loop device. The (third) ioctl(2) argument must be a
pointer to a struct loop_info.

LOOP_CHANGE_FD (since Linux 2.6.5)
Switch the backing store of the loop device to the new file identified file de-
scriptor specified in the (third) ioctl(2) argument, which is an integer. This op-
eration is possible only if the loop device is read-only and the new backing
store is the same size and type as the old backing store.

LOOP_SET_CAPACITY (since Linux 2.6.30)
Resize a live loop device. One can change the size of the underlying backing
store and then use this operation so that the loop driver learns about the new
size. This operation takes no argument.

LOOP_SET_DIRECT_IO (since Linux 4.10)
Set DIRECT I/O mode on the loop device, so that it can be used to open back-
ing file. The (third) ioctl(2) argument is an unsigned long value. A nonzero
represents direct I/O mode.

LOOP_SET_BLOCK_SIZE (since Linux 4.14)
Set the block size of the loop device. The (third) ioctl(2) argument is an un-
signed long value. This value must be a power of two in the range [512,page-
size]; otherwise, an EINVAL error results.

LOOP_CONFIGURE (since Linux 5.8)
Setup and configure all loop device parameters in a single step using the
(third) ioctl(2) argument. This argument is a pointer to a loop_config struc-
ture, defined in <linux/loop.h> as:

struct loop_config {
__u32 fd;
__u32 block_size;

Linux man-pages 6.13 2024-06-15 2730

loop(4) Kernel Interfaces Manual loop(4)

struct loop_info64 info;
__u64 __reserved[8];

};

In addition to doing what LOOP_SET_STATUS can do, LOOP_CONFIG-
URE can also be used to do the following:

• set the correct block size immediately by setting loop_config.block_size;

• explicitly request direct I/O mode by setting LO_FLAGS_DIRECT_IO
in loop_config.info.lo_flags; and

• explicitly request read-only mode by setting LO_FLAGS_READ_ONLY
in loop_config.info.lo_flags.

Since Linux 2.6, there are two new ioctl(2) operations:

LOOP_SET_STATUS64
LOOP_GET_STATUS64

These are similar to LOOP_SET_STATUS and LOOP_GET_STATUS de-
scribed above but use the loop_info64 structure, which has some additional
fields and a larger range for some other fields:

struct loop_info64 {
uint64_t lo_device; /* ioctl r/o */
uint64_t lo_inode; /* ioctl r/o */
uint64_t lo_rdevice; /* ioctl r/o */
uint64_t lo_offset;
uint64_t lo_sizelimit; /* bytes, 0 == max available */
uint32_t lo_number; /* ioctl r/o */
uint32_t lo_encrypt_type;
uint32_t lo_encrypt_key_size; /* ioctl w/o */
uint32_t lo_flags; i /* ioctl r/w (r/o before

Linux 2.6.25) */
uint8_t lo_file_name[LO_NAME_SIZE];
uint8_t lo_crypt_name[LO_NAME_SIZE];
uint8_t lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
uint64_t lo_init[2];

};

/dev/loop-control
Since Linux 3.1, the kernel provides the /dev/loop-control device, which permits an
application to dynamically find a free device, and to add and remove loop devices
from the system. To perform these operations, one first opens /dev/loop-control and
then employs one of the following ioctl(2) operations:

LOOP_CTL_GET_FREE
Allocate or find a free loop device for use. On success, the device number is
returned as the result of the call. This operation takes no argument.

LOOP_CTL_ADD
Add the new loop device whose device number is specified as a long integer in
the third ioctl(2) argument. On success, the device index is returned as the re-
sult of the call. If the device is already allocated, the call fails with the error
EEXIST.

Linux man-pages 6.13 2024-06-15 2731

loop(4) Kernel Interfaces Manual loop(4)

LOOP_CTL_REMOVE
Remove the loop device whose device number is specified as a long integer in
the third ioctl(2) argument. On success, the device number is returned as the
result of the call. If the device is in use, the call fails with the error EBUSY.

FILES
/dev/loop*

The loop block special device files.

EXAMPLES
The program below uses the /dev/loop-control device to find a free loop device,
opens the loop device, opens a file to be used as the underlying storage for the device,
and then associates the loop device with the backing store. The following shell ses-
sion demonstrates the use of the program:

$ dd if=/dev/zero of=file.img bs=1MiB count=10
10+0 records in
10+0 records out
10485760 bytes (10 MB) copied, 0.00609385 s, 1.7 GB/s
$ sudo ./mnt_loop file.img
loopname = /dev/loop5

Program source

#include <fcntl.h>
#include <linux/loop.h>
#include <sys/ioctl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

int
main(int argc, char *argv[])
{

int loopctlfd, loopfd, backingfile;
long devnr;
char loopname[4096];

if (argc != 2) {
fprintf(stderr, "Usage: %s backing-file\n", argv[0]);
exit(EXIT_FAILURE);

}

loopctlfd = open("/dev/loop-control", O_RDWR);
if (loopctlfd == -1)

errExit("open: /dev/loop-control");

devnr = ioctl(loopctlfd, LOOP_CTL_GET_FREE);

Linux man-pages 6.13 2024-06-15 2732

loop(4) Kernel Interfaces Manual loop(4)

if (devnr == -1)
errExit("ioctl-LOOP_CTL_GET_FREE");

sprintf(loopname, "/dev/loop%ld", devnr);
printf("loopname = %s\n", loopname);

loopfd = open(loopname, O_RDWR);
if (loopfd == -1)

errExit("open: loopname");

backingfile = open(argv[1], O_RDWR);
if (backingfile == -1)

errExit("open: backing-file");

if (ioctl(loopfd, LOOP_SET_FD, backingfile) == -1)
errExit("ioctl-LOOP_SET_FD");

exit(EXIT_SUCCESS);
}

SEE ALSO
losetup(8), mount(8)

Linux man-pages 6.13 2024-06-15 2733

lp(4) Kernel Interfaces Manual lp(4)

NAME
lp - line printer devices

SYNOPSIS
#include <linux/lp.h>

CONFIGURATION
lp[0–2] are character devices for the parallel line printers; they have major number 6
and minor number 0–2. The minor numbers correspond to the printer port base ad-
dresses 0x03bc, 0x0378, and 0x0278. Usually they have mode 220 and are owned by
user root and group lp. You can use printer ports either with polling or with inter-
rupts. Interrupts are recommended when high traffic is expected, for example, for
laser printers. For typical dot matrix printers, polling will usually be enough. The de-
fault is polling.

DESCRIPTION
The following ioctl(2) calls are supported:

int ioctl(int fd, LPTIME, int arg)
Sets the amount of time that the driver sleeps before rechecking the printer
when the printer’s buffer appears to be filled to arg. If you have a fast printer,
decrease this number; if you have a slow printer, then increase it. This is in
hundredths of a second, the default 2 being 0.02 seconds. It influences only
the polling driver.

int ioctl(int fd, LPCHAR, int arg)
Sets the maximum number of busy-wait iterations which the polling driver
does while waiting for the printer to get ready for receiving a character to arg.
If printing is too slow, increase this number; if the system gets too slow, de-
crease this number. The default is 1000. It influences only the polling driver.

int ioctl(int fd, LPABORT, int arg)
If arg is 0, the printer driver will retry on errors, otherwise it will abort. The
default is 0.

int ioctl(int fd, LPABORTOPEN, int arg)
If arg is 0, open(2) will be aborted on error, otherwise error will be ignored.
The default is to ignore it.

int ioctl(int fd, LPCAREFUL, int arg)
If arg is 0, then the out-of-paper, offline, and error signals are required to be
false on all writes, otherwise they are ignored. The default is to ignore them.

int ioctl(int fd, LPWAIT, int arg)
Sets the number of busy waiting iterations to wait before strobing the printer to
accept a just-written character, and the number of iterations to wait before
turning the strobe off again, to arg. The specification says this time should be
0.5 microseconds, but experience has shown the delay caused by the code is
already enough. For that reason, the default value is 0. This is used for both
the polling and the interrupt driver.

int ioctl(int fd, LPSETIRQ, int arg)
This ioctl(2) requires superuser privileges. It takes an int containing the new
IRQ as argument. As a side effect, the printer will be reset. When arg is 0,
the polling driver will be used, which is also default.

Linux man-pages 6.13 2024-05-02 2734

lp(4) Kernel Interfaces Manual lp(4)

int ioctl(int fd, LPGETIRQ, int *arg)
Stores the currently used IRQ in arg.

int ioctl(int fd, LPGETSTATUS, int *arg)
Stores the value of the status port in arg. The bits have the following mean-
ing:
LP_PBUSY inverted busy input, active high
LP_PACK unchanged acknowledge input, active low
LP_POUTPA unchanged out-of-paper input, active high
LP_PSELECD unchanged selected input, active high
LP_PERRORP unchanged error input, active low

Refer to your printer manual for the meaning of the signals. Note that undocu-
mented bits may also be set, depending on your printer.

int ioctl(int fd, LPRESET)
Resets the printer. No argument is used.

FILES
/dev/lp*

SEE ALSO
chmod(1), chown(1), mknod(1), lpcntl(8), tunelp(8)

Linux man-pages 6.13 2024-05-02 2735

mem(4) Kernel Interfaces Manual mem(4)

NAME
mem, kmem, port - system memory, kernel memory and system ports

DESCRIPTION
/dev/mem is a character device file that is an image of the main memory of the com-
puter. It may be used, for example, to examine (and even patch) the system.

Byte addresses in /dev/mem are interpreted as physical memory addresses. Refer-
ences to nonexistent locations cause errors to be returned.

Examining and patching is likely to lead to unexpected results when read-only or
write-only bits are present.

Since Linux 2.6.26, and depending on the architecture, the CONFIG_STRICT_DE-
VMEM kernel configuration option limits the areas which can be accessed through
this file. For example: on x86, RAM access is not allowed but accessing memory-
mapped PCI regions is.

It is typically created by:

mknod -m 660 /dev/mem c 1 1
chown root:kmem /dev/mem

The file /dev/kmem is the same as /dev/mem, except that the kernel virtual memory
rather than physical memory is accessed. Since Linux 2.6.26, this file is available
only if the CONFIG_DEVKMEM kernel configuration option is enabled.

It is typically created by:

mknod -m 640 /dev/kmem c 1 2
chown root:kmem /dev/kmem

/dev/port is similar to /dev/mem, but the I/O ports are accessed.

It is typically created by:

mknod -m 660 /dev/port c 1 4
chown root:kmem /dev/port

FILES
/dev/mem
/dev/kmem
/dev/port

SEE ALSO
chown(1), mknod(1), ioperm(2)

Linux man-pages 6.13 2024-05-02 2736

mouse(4) Kernel Interfaces Manual mouse(4)

NAME
mouse - serial mouse interface

CONFIGURATION
Serial mice are connected to a serial RS232/V24 dialout line, see ttyS(4) for a descrip-
tion.

DESCRIPTION
Introduction

The pinout of the usual 9 pin plug as used for serial mice is:

pin name used for
2 RX Data
3 TX -12 V, Imax = 10 mA
4 DTR +12 V, Imax = 10 mA
7 RTS +12 V, Imax = 10 mA
5 GND Ground

This is the specification, in fact 9 V suffices with most mice.

The mouse driver can recognize a mouse by dropping RTS to low and raising it again.
About 14 ms later the mouse will send 0x4D ('M') on the data line. After a further 63
ms, a Microsoft-compatible 3-button mouse will send 0x33 ('3').

The relative mouse movement is sent as dx (positive means right) and dy (positive
means down). Various mice can operate at different speeds. To select speeds, cycle
through the speeds 9600, 4800, 2400, and 1200 bit/s, each time writing the two char-
acters from the table below and waiting 0.1 seconds. The following table shows avail-
able speeds and the strings that select them:

bit/s string
9600 *q
4800 *p
2400 *o
1200 *n

The first byte of a data packet can be used for synchronization purposes.

Microsoft protocol
The Microsoft protocol uses 1 start bit, 7 data bits, no parity and one stop bit at the
speed of 1200 bits/sec. Data is sent to RxD in 3-byte packets. The dx and dy move-
ments are sent as two’s-complement, lb (rb) are set when the left (right) button is
pressed:

byte d6 d5 d4 d3 d2 d1 d0
1 1 lb rb dy7 dy6 dx7 dx6
2 0 dx5 dx4 dx3 dx2 dx1 dx0
3 0 dy5 dy4 dy3 dy2 dy1 dy0

3-button Microsoft protocol
Original Microsoft mice only have two buttons. However, there are some three button
mice which also use the Microsoft protocol. Pressing or releasing the middle button
is reported by sending a packet with zero movement and no buttons pressed. (Thus,
unlike for the other two buttons, the status of the middle button is not reported in each
packet.)

Linux man-pages 6.13 2024-05-02 2737

mouse(4) Kernel Interfaces Manual mouse(4)

Logitech protocol
Logitech serial 3-button mice use a different extension of the Microsoft protocol:
when the middle button is up, the above 3-byte packet is sent. When the middle but-
ton is down a 4-byte packet is sent, where the 4th byte has value 0x20 (or at least has
the 0x20 bit set). In particular, a press of the middle button is reported as 0,0,0,0x20
when no other buttons are down.

Mousesystems protocol
The Mousesystems protocol uses 1 start bit, 8 data bits, no parity, and two stop bits at
the speed of 1200 bits/sec. Data is sent to RxD in 5-byte packets. dx is sent as the
sum of the two two’s-complement values, dy is send as negated sum of the two two’s-
complement values. lb (mb, rb) are cleared when the left (middle, right) button is
pressed:

byte d7 d6 d5 d4 d3 d2 d1 d0
1 1 0 0 0 0 lb mb rb
2 0 dxa6 dxa5 dxa4 dxa3 dxa2 dxa1 dxa0
3 0 dya6 dya5 dya4 dya3 dya2 dya1 dya0
4 0 dxb6 dxb5 dxb4 dxb3 dxb2 dxb1 dxb0
5 0 dyb6 dyb5 dyb4 dyb3 dyb2 dyb1 dyb0

Bytes 4 and 5 describe the change that occurred since bytes 2 and 3 were transmitted.

Sun protocol
The Sun protocol is the 3-byte version of the above 5-byte Mousesystems protocol:
the last two bytes are not sent.

MM protocol
The MM protocol uses 1 start bit, 8 data bits, odd parity, and one stop bit at the speed
of 1200 bits/sec. Data is sent to RxD in 3-byte packets. dx and dy are sent as single
signed values, the sign bit indicating a negative value. lb (mb, rb) are set when the
left (middle, right) button is pressed:

byte d7 d6 d5 d4 d3 d2 d1 d0
1 1 0 0 dxs dys lb mb rb
2 0 dx6 dx5 dx4 dx3 dx2 dx1 dx0
3 0 dy6 dy5 dy4 dy3 dy2 dy1 dy0

FILES
/dev/mouse

A commonly used symbolic link pointing to a mouse device.

SEE ALSO
ttyS(4), gpm(8)

Linux man-pages 6.13 2024-05-02 2738

msr(4) Kernel Interfaces Manual msr(4)

NAME
msr - x86 CPU MSR access device

DESCRIPTION
/dev/cpu/CPUNUM/msr provides an interface to read and write the model-specific
registers (MSRs) of an x86 CPU. CPUNUM is the number of the CPU to access as
listed in /proc/cpuinfo.

The register access is done by opening the file and seeking to the MSR number as off-
set in the file, and then reading or writing in chunks of 8 bytes. An I/O transfer of
more than 8 bytes means multiple reads or writes of the same register.

This file is protected so that it can be read and written only by the user root, or mem-
bers of the group root.

NOTES
The msr driver is not auto-loaded. On modular kernels you might need to use the fol-
lowing command to load it explicitly before use:

$ modprobe msr

SEE ALSO
Intel Corporation Intel 64 and IA-32 Architectures Software Developer’s Manual Vol-
ume 3B Appendix B, for an overview of the Intel CPU MSRs.

Linux man-pages 6.13 2024-05-02 2739

null(4) Kernel Interfaces Manual null(4)

NAME
null, zero - data sink

DESCRIPTION
Data written to the /dev/null and /dev/zero special files is discarded.

Reads from /dev/null always return end of file (i.e., read(2) returns 0), whereas reads
from /dev/zero always return bytes containing zero ('\0' characters).

These devices are typically created by:

mknod -m 666 /dev/null c 1 3
mknod -m 666 /dev/zero c 1 5
chown root:root /dev/null /dev/zero

FILES
/dev/null
/dev/zero

NOTES
If these devices are not writable and readable for all users, many programs will act
strangely.

Since Linux 2.6.31, reads from /dev/zero are interruptible by signals. (This change
was made to help with bad latencies for large reads from /dev/zero.)

SEE ALSO
chown(1), mknod(1), full(4)

Linux man-pages 6.13 2024-06-15 2740

pts(4) Kernel Interfaces Manual pts(4)

NAME
ptmx, pts - pseudoterminal master and slave

DESCRIPTION
The file /dev/ptmx (the pseudoterminal multiplexor device) is a character file with ma-
jor number 5 and minor number 2, usually with mode 0666 and ownership root:root.
It is used to create a pseudoterminal master and slave pair.

When a process opens /dev/ptmx, it gets a file descriptor for a pseudoterminal master
and a pseudoterminal slave device is created in the /dev/pts directory. Each file de-
scriptor obtained by opening /dev/ptmx is an independent pseudoterminal master with
its own associated slave, whose path can be found by passing the file descriptor to pt-
sname(3).

Before opening the pseudoterminal slave, you must pass the master’s file descriptor to
grantpt(3) and unlockpt(3).

Once both the pseudoterminal master and slave are open, the slave provides processes
with an interface that is identical to that of a real terminal.

Data written to the slave is presented on the master file descriptor as input. Data writ-
ten to the master is presented to the slave as input.

In practice, pseudoterminals are used for implementing terminal emulators such as
xterm(1), in which data read from the pseudoterminal master is interpreted by the ap-
plication in the same way a real terminal would interpret the data, and for implement-
ing remote-login programs such as sshd(8), in which data read from the pseudotermi-
nal master is sent across the network to a client program that is connected to a termi-
nal or terminal emulator.

Pseudoterminals can also be used to send input to programs that normally refuse to
read input from pipes (such as su(1), and passwd(1)).

FILES
/dev/ptmx, /dev/pts/*

NOTES
The Linux support for the above (known as UNIX 98 pseudoterminal naming) is done
using the devpts filesystem, which should be mounted on /dev/pts.

SEE ALSO
getpt(3), grantpt(3), ptsname(3), unlockpt(3), pty(7)

Linux man-pages 6.13 2024-05-02 2741

ram(4) Kernel Interfaces Manual ram(4)

NAME
ram - ram disk device

DESCRIPTION
The ram device is a block device to access the ram disk in raw mode.

It is typically created by:

mknod -m 660 /dev/ram b 1 1
chown root:disk /dev/ram

FILES
/dev/ram

SEE ALSO
chown(1), mknod(1), mount(8)

Linux man-pages 6.13 2024-05-02 2742

random(4) Kernel Interfaces Manual random(4)

NAME
random, urandom - kernel random number source devices

SYNOPSIS
#include <linux/random.h>

int ioctl(fd , RNDrequest, param);

DESCRIPTION
The character special files /dev/random and /dev/urandom (present since Linux
1.3.30) provide an interface to the kernel’s random number generator. The file
/dev/random has major device number 1 and minor device number 8. The file
/dev/urandom has major device number 1 and minor device number 9.

The random number generator gathers environmental noise from device drivers and
other sources into an entropy pool. The generator also keeps an estimate of the num-
ber of bits of noise in the entropy pool. From this entropy pool, random numbers are
created.

Linux 3.17 and later provides the simpler and safer getrandom(2) interface which re-
quires no special files; see the getrandom(2) manual page for details.

When read, the /dev/urandom device returns random bytes using a pseudorandom
number generator seeded from the entropy pool. Reads from this device do not block
(i.e., the CPU is not yielded), but can incur an appreciable delay when requesting
large amounts of data.

When read during early boot time, /dev/urandom may return data prior to the entropy
pool being initialized. If this is of concern in your application, use getrandom(2) or
/dev/random instead.

The /dev/random device is a legacy interface which dates back to a time where the
cryptographic primitives used in the implementation of /dev/urandom were not widely
trusted. It will return random bytes only within the estimated number of bits of fresh
noise in the entropy pool, blocking if necessary. /dev/random is suitable for applica-
tions that need high quality randomness, and can afford indeterminate delays.

When the entropy pool is empty, reads from /dev/random will block until additional
environmental noise is gathered. Since Linux 5.6, the O_NONBLOCK flag is ig-
nored as /dev/random will no longer block except during early boot process. In ear-
lier versions, if open(2) is called for /dev/random with the O_NONBLOCK flag, a
subsequent read(2) will not block if the requested number of bytes is not available.
Instead, the available bytes are returned. If no byte is available, read(2) will return -1
and errno will be set to EAGAIN.

The O_NONBLOCK flag has no effect when opening /dev/urandom. When calling
read(2) for the device /dev/urandom, reads of up to 256 bytes will return as many
bytes as are requested and will not be interrupted by a signal handler. Reads with a
buffer over this limit may return less than the requested number of bytes or fail with
the error EINTR, if interrupted by a signal handler.

Since Linux 3.16, a read(2) from /dev/urandom will return at most 32 MB. A read(2)
from /dev/random will return at most 512 bytes (340 bytes before Linux 2.6.12).

Writing to /dev/random or /dev/urandom will update the entropy pool with the data
written, but this will not result in a higher entropy count. This means that it will

Linux man-pages 6.13 2024-06-28 2743

random(4) Kernel Interfaces Manual random(4)

impact the contents read from both files, but it will not make reads from /dev/random
faster.

Usage
The /dev/random interface is considered a legacy interface, and /dev/urandom is pre-
ferred and sufficient in all use cases, with the exception of applications which require
randomness during early boot time; for these applications, getrandom(2) must be used
instead, because it will block until the entropy pool is initialized.

If a seed file is saved across reboots as recommended below, the output is crypto-
graphically secure against attackers without local root access as soon as it is reloaded
in the boot sequence, and perfectly adequate for network encryption session keys.
(All major Linux distributions have saved the seed file across reboots since 2000 at
least.) Since reads from /dev/random may block, users will usually want to open it in
nonblocking mode (or perform a read with timeout), and provide some sort of user
notification if the desired entropy is not immediately available.

Configuration
If your system does not have /dev/random and /dev/urandom created already, they can
be created with the following commands:

mknod -m 666 /dev/random c 1 8
mknod -m 666 /dev/urandom c 1 9
chown root:root /dev/random /dev/urandom

When a Linux system starts up without much operator interaction, the entropy pool
may be in a fairly predictable state. This reduces the actual amount of noise in the en-
tropy pool below the estimate. In order to counteract this effect, it helps to carry en-
tropy pool information across shut-downs and start-ups. To do this, add the lines to an
appropriate script which is run during the Linux system start-up sequence:

echo "Initializing random number generator..."
random_seed=/var/run/random-seed
Carry a random seed from start-up to start-up
Load and then save the whole entropy pool
if [-f $random_seed]; then

cat $random_seed >/dev/urandom
else

touch $random_seed
fi
chmod 600 $random_seed
poolfile=/proc/sys/kernel/random/poolsize
[-r $poolfile] && bits=$(cat $poolfile) || bits=4096
bytes=$(expr $bits / 8)
dd if=/dev/urandom of=$random_seed count=1 bs=$bytes

Also, add the following lines in an appropriate script which is run during the Linux
system shutdown:

Carry a random seed from shut-down to start-up
Save the whole entropy pool
echo "Saving random seed..."
random_seed=/var/run/random-seed

Linux man-pages 6.13 2024-06-28 2744

random(4) Kernel Interfaces Manual random(4)

touch $random_seed
chmod 600 $random_seed
poolfile=/proc/sys/kernel/random/poolsize
[-r $poolfile] && bits=$(cat $poolfile) || bits=4096
bytes=$(expr $bits / 8)
dd if=/dev/urandom of=$random_seed count=1 bs=$bytes

In the above examples, we assume Linux 2.6.0 or later, where /proc/sys/kernel/ran-
dom/poolsize returns the size of the entropy pool in bits (see below).

/proc interfaces
The files in the directory /proc/sys/kernel/random (present since Linux 2.3.16) pro-
vide additional information about the /dev/random device:

entropy_avail
This read-only file gives the available entropy, in bits. This will be a number
in the range 0 to 4096.

poolsize
This file gives the size of the entropy pool. The semantics of this file vary
across kernel versions:

Linux 2.4:
This file gives the size of the entropy pool in bytes. Normally, this file
will have the value 512, but it is writable, and can be changed to any
value for which an algorithm is available. The choices are 32, 64, 128,
256, 512, 1024, or 2048.

Linux 2.6 and later:
This file is read-only, and gives the size of the entropy pool in bits. It
contains the value 4096.

read_wakeup_threshold
This file contains the number of bits of entropy required for waking up
processes that sleep waiting for entropy from /dev/random. The default is 64.

write_wakeup_threshold
This file contains the number of bits of entropy below which we wake up
processes that do a select(2) or poll(2) for write access to /dev/random. These
values can be changed by writing to the files.

uuid
boot_id

These read-only files contain random strings like
6fd5a44b-35f4-4ad4-a9b9-6b9be13e1fe9. The former is generated afresh
for each read, the latter was generated once.

ioctl(2) interface
The following ioctl(2) requests are defined on file descriptors connected to either
/dev/random or /dev/urandom. All requests performed will interact with the input en-
tropy pool impacting both /dev/random and /dev/urandom. The CAP_SYS_ADMIN
capability is required for all requests except RNDGETENTCNT.

Linux man-pages 6.13 2024-06-28 2745

random(4) Kernel Interfaces Manual random(4)

RNDGETENTCNT
Retrieve the entropy count of the input pool, the contents will be the same as
the entropy_avail file under proc. The result will be stored in the int pointed
to by the argument.

RNDADDTOENTCNT
Increment or decrement the entropy count of the input pool by the value
pointed to by the argument.

RNDGETPOOL
Removed in Linux 2.6.9.

RNDADDENTROPY
Add some additional entropy to the input pool, incrementing the entropy
count. This differs from writing to /dev/random or /dev/urandom, which only
adds some data but does not increment the entropy count. The following
structure is used:

struct rand_pool_info {
int entropy_count;
int buf_size;
__u32 buf[0];

};

Here entropy_count is the value added to (or subtracted from) the entropy
count, and buf is the buffer of size buf_size which gets added to the entropy
pool.

RNDZAPENTCNT
RNDCLEARPOOL

Zero the entropy count of all pools and add some system data (such as wall
clock) to the pools.

FILES
/dev/random
/dev/urandom

NOTES
For an overview and comparison of the various interfaces that can be used to obtain
randomness, see random(7).

BUGS
During early boot time, reads from /dev/urandom may return data prior to the entropy
pool being initialized.

SEE ALSO
mknod(1), getrandom(2), random(7)

RFC 1750, "Randomness Recommendations for Security"

Linux man-pages 6.13 2024-06-28 2746

rtc(4) Kernel Interfaces Manual rtc(4)

NAME
rtc - real-time clock

SYNOPSIS
#include <linux/rtc.h>

int ioctl(fd , RTC_request, param);

DESCRIPTION
This is the interface to drivers for real-time clocks (RTCs).

Most computers have one or more hardware clocks which record the current "wall
clock" time. These are called "Real Time Clocks" (RTCs). One of these usually has
battery backup power so that it tracks the time even while the computer is turned off.
RTCs often provide alarms and other interrupts.

All i386 PCs, and ACPI-based systems, have an RTC that is compatible with the Mo-
torola MC146818 chip on the original PC/AT. Today such an RTC is usually inte-
grated into the mainboard’s chipset (south bridge), and uses a replaceable coin-sized
backup battery.

Non-PC systems, such as embedded systems built around system-on-chip processors,
use other implementations. They usually won’t offer the same functionality as the
RTC from a PC/AT.

RTC vs system clock
RTCs should not be confused with the system clock, which is a software clock main-
tained by the kernel and used to implement gettimeofday(2) and time(2), as well as
setting timestamps on files, and so on. The system clock reports seconds and mi-
croseconds since a start point, defined to be the POSIX Epoch: 1970-01-01 00:00:00
+0000 (UTC). (One common implementation counts timer interrupts, once per
"jiffy", at a frequency of 100, 250, or 1000 Hz.) That is, it is supposed to report wall
clock time, which RTCs also do.

A key difference between an RTC and the system clock is that RTCs run even when
the system is in a low power state (including "off"), and the system clock can’t. Until
it is initialized, the system clock can only report time since system boot ... not since
the POSIX Epoch. So at boot time, and after resuming from a system low power
state, the system clock will often be set to the current wall clock time using an RTC.
Systems without an RTC need to set the system clock using another clock, maybe
across the network or by entering that data manually.

RTC functionality
RTCs can be read and written with hwclock(8), or directly with the ioctl(2) requests
listed below.

Besides tracking the date and time, many RTCs can also generate interrupts

• on every clock update (i.e., once per second);

• at periodic intervals with a frequency that can be set to any power-of-2 multiple in
the range 2 Hz to 8192 Hz;

• on reaching a previously specified alarm time.

Each of those interrupt sources can be enabled or disabled separately. On many sys-
tems, the alarm interrupt can be configured as a system wakeup event, which can

Linux man-pages 6.13 2024-05-02 2747

rtc(4) Kernel Interfaces Manual rtc(4)

resume the system from a low power state such as Suspend-to-RAM (STR, called S3
in ACPI systems), Hibernation (called S4 in ACPI systems), or even "off" (called S5
in ACPI systems). On some systems, the battery backed RTC can’t issue interrupts,
but another one can.

The /dev/rtc (or /dev/rtc0, /dev/rtc1, etc.) device can be opened only once (until it is
closed) and it is read-only. On read(2) and select(2) the calling process is blocked un-
til the next interrupt from that RTC is received. Following the interrupt, the process
can read a long integer, of which the least significant byte contains a bit mask encod-
ing the types of interrupt that occurred, while the remaining 3 bytes contain the num-
ber of interrupts since the last read(2).

ioctl(2) interface
The following ioctl(2) requests are defined on file descriptors connected to RTC de-
vices:

RTC_RD_TIME
Returns this RTC’s time in the following structure:

struct rtc_time {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday; /* unused */
int tm_yday; /* unused */
int tm_isdst; /* unused */

};

The fields in this structure have the same meaning and ranges as for the tm
structure described in gmtime(3). A pointer to this structure should be passed
as the third ioctl(2) argument.

RTC_SET_TIME
Sets this RTC’s time to the time specified by the rtc_time structure pointed to
by the third ioctl(2) argument. To set the RTC’s time the process must be priv-
ileged (i.e., have the CAP_SYS_TIME capability).

RTC_ALM_READ
RTC_ALM_SET

Read and set the alarm time, for RTCs that support alarms. The alarm inter-
rupt must be separately enabled or disabled using the RTC_AIE_ON,
RTC_AIE_OFF requests. The third ioctl(2) argument is a pointer to an
rtc_time structure. Only the tm_sec, tm_min, and tm_hour fields of this struc-
ture are used.

RTC_IRQP_READ
RTC_IRQP_SET

Read and set the frequency for periodic interrupts, for RTCs that support peri-
odic interrupts. The periodic interrupt must be separately enabled or disabled
using the RTC_PIE_ON, RTC_PIE_OFF requests. The third ioctl(2)

Linux man-pages 6.13 2024-05-02 2748

rtc(4) Kernel Interfaces Manual rtc(4)

argument is an unsigned long * or an unsigned long, respectively. The value is
the frequency in interrupts per second. The set of allowable frequencies is the
multiples of two in the range 2 to 8192. Only a privileged process (i.e., one
having the CAP_SYS_RESOURCE capability) can set frequencies above the
value specified in /proc/sys/dev/rtc/max-user-freq. (This file contains the
value 64 by default.)

RTC_AIE_ON
RTC_AIE_OFF

Enable or disable the alarm interrupt, for RTCs that support alarms. The third
ioctl(2) argument is ignored.

RTC_UIE_ON
RTC_UIE_OFF

Enable or disable the interrupt on every clock update, for RTCs that support
this once-per-second interrupt. The third ioctl(2) argument is ignored.

RTC_PIE_ON
RTC_PIE_OFF

Enable or disable the periodic interrupt, for RTCs that support these periodic
interrupts. The third ioctl(2) argument is ignored. Only a privileged process
(i.e., one having the CAP_SYS_RESOURCE capability) can enable the peri-
odic interrupt if the frequency is currently set above the value specified in
/proc/sys/dev/rtc/max-user-freq.

RTC_EPOCH_READ
RTC_EPOCH_SET

Many RTCs encode the year in an 8-bit register which is either interpreted as
an 8-bit binary number or as a BCD number. In both cases, the number is in-
terpreted relative to this RTC’s Epoch. The RTC’s Epoch is initialized to 1900
on most systems but on Alpha and MIPS it might also be initialized to 1952,
1980, or 2000, depending on the value of an RTC register for the year. With
some RTCs, these operations can be used to read or to set the RTC’s Epoch,
respectively. The third ioctl(2) argument is an unsigned long * or an unsigned
long, respectively, and the value returned (or assigned) is the Epoch. To set
the RTC’s Epoch the process must be privileged (i.e., have the
CAP_SYS_TIME capability).

RTC_WKALM_RD
RTC_WKALM_SET

Some RTCs support a more powerful alarm interface, using these ioctls to read
or write the RTC’s alarm time (respectively) with this structure:

struct rtc_wkalrm {
unsigned char enabled;
unsigned char pending;
struct rtc_time time;

};

The enabled flag is used to enable or disable the alarm interrupt, or to read its
current status; when using these calls, RTC_AIE_ON and RTC_AIE_OFF
are not used. The pending flag is used by RTC_WKALM_RD to report a
pending interrupt (so it’s mostly useless on Linux, except when talking to the

Linux man-pages 6.13 2024-05-02 2749

rtc(4) Kernel Interfaces Manual rtc(4)

RTC managed by EFI firmware). The time field is as used with
RTC_ALM_READ and RTC_ALM_SET except that the tm_mday, tm_mon,
and tm_year fields are also valid. A pointer to this structure should be passed
as the third ioctl(2) argument.

FILES
/dev/rtc
/dev/rtc0
/dev/rtc1
. . . RTC special character device files.

/proc/driver/rtc
status of the (first) RTC.

NOTES
When the kernel’s system time is synchronized with an external reference using adj-
timex(2) it will update a designated RTC periodically every 11 minutes. To do so, the
kernel has to briefly turn off periodic interrupts; this might affect programs using that
RTC.

An RTC’s Epoch has nothing to do with the POSIX Epoch which is used only for the
system clock.

If the year according to the RTC’s Epoch and the year register is less than 1970 it is
assumed to be 100 years later, that is, between 2000 and 2069.

Some RTCs support "wildcard" values in alarm fields, to support scenarios like peri-
odic alarms at fifteen minutes after every hour, or on the first day of each month.
Such usage is nonportable; portable user-space code expects only a single alarm inter-
rupt, and will either disable or reinitialize the alarm after receiving it.

Some RTCs support periodic interrupts with periods that are multiples of a second
rather than fractions of a second; multiple alarms; programmable output clock signals;
nonvolatile memory; and other hardware capabilities that are not currently exposed by
this API.

SEE ALSO
date(1), adjtimex(2), gettimeofday(2), settimeofday(2), stime(2), time(2), gmtime(3),
time(7), hwclock(8)

Documentation/rtc.txt in the Linux kernel source tree

Linux man-pages 6.13 2024-05-02 2750

sd(4) Kernel Interfaces Manual sd(4)

NAME
sd - driver for SCSI disk drives

SYNOPSIS
#include <linux/hdreg.h> /* for HDIO_GETGEO */
#include <linux/fs.h> /* for BLKGETSIZE and BLKRRPART */

CONFIGURATION
The block device name has the following form: sdlp, where l is a letter denoting the
physical drive, and p is a number denoting the partition on that physical drive. Often,
the partition number, p, will be left off when the device corresponds to the whole
drive.

SCSI disks have a major device number of 8, and a minor device number of the form
(16 * drive_number) + partition_number, where drive_number is the number of the
physical drive in order of detection, and partition_number is as follows:

• partition 0 is the whole drive

• partitions 1–4 are the DOS "primary" partitions

• partitions 5–8 are the DOS "extended" (or "logical") partitions

For example, /dev/sda will have major 8, minor 0, and will refer to all of the first
SCSI drive in the system; and /dev/sdb3 will have major 8, minor 19, and will refer to
the third DOS "primary" partition on the second SCSI drive in the system.

At this time, only block devices are provided. Raw devices have not yet been imple-
mented.

DESCRIPTION
The following ioctls are provided:

HDIO_GETGEO
Returns the BIOS disk parameters in the following structure:

struct hd_geometry {
unsigned char heads;
unsigned char sectors;
unsigned short cylinders;
unsigned long start;

};

A pointer to this structure is passed as the ioctl(2) parameter.

The information returned in the parameter is the disk geometry of the drive as
understood by DOS! This geometry is not the physical geometry of the drive.
It is used when constructing the drive’s partition table, however, and is needed
for convenient operation of fdisk(1), efdisk(1), and lilo(1)If the geometry in-
formation is not available, zero will be returned for all of the parameters.

BLKGETSIZE
Returns the device size in sectors. The ioctl(2) parameter should be a pointer
to a long.

BLKRRPART
Forces a reread of the SCSI disk partition tables. No parameter is needed.

Linux man-pages 6.13 2024-05-02 2751

sd(4) Kernel Interfaces Manual sd(4)

The SCSI ioctl(2) operations are also supported. If the ioctl(2) parameter is
required, and it is NULL, then ioctl(2) fails with the error EINVAL.

FILES
/dev/sd[a-h]

the whole device

/dev/sd[a-h][0-8]
individual block partitions

Linux man-pages 6.13 2024-05-02 2752

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

NAME
sk98lin - Marvell/SysKonnect Gigabit Ethernet driver v6.21

SYNOPSIS
insmod sk98lin.o [Speed_A=i,j,...] [Speed_B=i,j,...] [AutoNeg_A=i,j,...] [Au-
toNeg_B=i,j,...] [DupCap_A=i,j,...] [DupCap_B=i,j,...] [FlowCtrl_A=i,j,...]
[FlowCtrl_B=i,j,...] [Role_A=i,j,...] [Role_B=i,j,...] [ConType=i,j,...] [Modera-
tion=i,j,...] [IntsPerSec=i,j,...] [PrefPort=i,j,...] [RlmtMode=i,j,...]

DESCRIPTION
Note: This obsolete driver was removed in Linux 2.6.26.

sk98lin is the Gigabit Ethernet driver for Marvell and SysKonnect network adapter
cards. It supports SysKonnect SK-98xx/SK-95xx compliant Gigabit Ethernet Adapter
and any Yukon compliant chipset.

When loading the driver using insmod, parameters for the network adapter cards
might be stated as a sequence of comma separated commands. If for instance two
network adapters are installed and AutoNegotiation on Port A of the first adapter
should be ON, but on the Port A of the second adapter switched OFF, one must enter:

insmod sk98lin.o AutoNeg_A=On,Off

After sk98lin is bound to one or more adapter cards and the /proc filesystem is
mounted on your system, a dedicated statistics file will be created in the folder
/proc/net/sk98lin for all ports of the installed network adapter cards. Those files are
named eth[x], where x is the number of the interface that has been assigned to a
dedicated port by the system.

If loading is finished, any desired IP address can be assigned to the respective eth[x]
interface using the ifconfig(8) command. This causes the adapter to connect to the
Ethernet and to display a status message on the console saying "ethx: network
connection up using port y" followed by the configured or detected connection
parameters.

The sk98lin also supports large frames (also called jumbo frames). Using jumbo
frames can improve throughput tremendously when transferring large amounts of
data. To enable large frames, the MTU (maximum transfer unit) size for an interface
is to be set to a high value. The default MTU size is 1500 and can be changed up to
9000 (bytes). Setting the MTU size can be done when assigning the IP address to the
interface or later by using the ifconfig(8) command with the mtu parameter. If for
instance eth0 needs an IP address and a large frame MTU size, the following two
commands might be used:

ifconfig eth0 10.1.1.1
ifconfig eth0 mtu 9000

Those two commands might even be combined into one:

ifconfig eth0 10.1.1.1 mtu 9000

Note that large frames can be used only if permitted by your network infrastructure.
This means, that any switch being used in your Ethernet must also support large
frames. Quite some switches support large frames, but need to be configured to do so.
Most of the times, their default setting is to support only standard frames with an
MTU size of 1500 (bytes). In addition to the switches inside the network, all network

Linux man-pages 6.13 2024-05-02 2753

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

adapters that are to be used must also be enabled regarding jumbo frames. If an
adapter is not set to receive large frames, it will simply drop them.

Switching back to the standard Ethernet frame size can be done by using the
ifconfig(8) command again:

ifconfig eth0 mtu 1500

The Marvell/SysKonnect Gigabit Ethernet driver for Linux is able to support VLAN
and Link Aggregation according to IEEE standards 802.1, 802.1q, and 802.3ad.
Those features are available only after installation of open source modules which can
be found on the Internet:

VLAN : 〈http://www.candelatech.com/~greear/vlan.html〉
Link Aggregation: 〈http://www.st.rim.or.jp/~yumo〉

Note that Marvell/SysKonnect does not offer any support for these open source mod-
ules and does not take the responsibility for any kind of failures or problems arising
when using these modules.

Parameters
Speed_A=i,j,...

This parameter is used to set the speed capabilities of port A of an adapter
card. It is valid only for Yukon copper adapters. Possible values are: 10, 100,
1000, or Auto; Auto is the default. Usually, the speed is negotiated between
the two ports during link establishment. If this fails, a port can be forced to a
specific setting with this parameter.

Speed_B=i,j,...
This parameter is used to set the speed capabilities of port B of an adapter
card. It is valid only for Yukon copper adapters. Possible values are: 10, 100,
1000, or Auto; Auto is the default. Usually, the speed is negotiated between
the two ports during link establishment. If this fails, a port can be forced to a
specific setting with this parameter.

AutoNeg_A=i,j,...
Enables or disables the use of autonegotiation of port A of an adapter card.
Possible values are: On, Off , or Sense; On is the default. The Sense mode au-
tomatically detects whether the link partner supports auto-negotiation or not.

AutoNeg_B=i,j,...
Enables or disables the use of autonegotiation of port B of an adapter card.
Possible values are: On, Off , or Sense; On is the default. The Sense mode au-
tomatically detects whether the link partner supports auto-negotiation or not.

DupCap_A=i,j,...
This parameter indicates the duplex mode to be used for port A of an adapter
card. Possible values are: Half , Full, or Both; Both is the default. This para-
meter is relevant only if AutoNeg_A of port A is not set to Sense. If Au-
toNeg_A is set to On, all three values of DupCap_A (Half , Full, or Both)
might be stated. If AutoNeg_A is set to Off , only DupCap_A values Full and
Half are allowed. This DupCap_A parameter is useful if your link partner
does not support all possible duplex combinations.

Linux man-pages 6.13 2024-05-02 2754

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

DupCap_B=i,j,...
This parameter indicates the duplex mode to be used for port B of an adapter
card. Possible values are: Half , Full, or Both; Both is the default. This para-
meter is relevant only if AutoNeg_B of port B is not set to Sense. If Au-
toNeg_B is set to On, all three values of DupCap_B (Half , Full, or Both)
might be stated. If AutoNeg_B is set to Off , only DupCap_B values Full and
Half are allowed. This DupCap_B parameter is useful if your link partner
does not support all possible duplex combinations.

FlowCtrl_A=i,j,...
This parameter can be used to set the flow control capabilities the port reports
during auto-negotiation. Possible values are: Sym, SymOrRem, LocSend , or
None; SymOrRem is the default. The different modes have the following
meaning:

Sym = Symmetric
Both link partners are allowed to send PAUSE frames.

SymOrRem = SymmetricOrRemote
Both or only remote partner are allowed to send PAUSE frames.

LocSend = LocalSend
Only local link partner is allowed to send PAUSE frames.

None = None
No link partner is allowed to send PAUSE frames.

Note that this parameter is ignored if AutoNeg_A is set to Off .

FlowCtrl_B=i,j,...
This parameter can be used to set the flow control capabilities the port reports
during auto-negotiation. Possible values are: Sym, SymOrRem, LocSend , or
None; SymOrRem is the default. The different modes have the following
meaning:

Sym = Symmetric
Both link partners are allowed to send PAUSE frames.

SymOrRem = SymmetricOrRemote
Both or only remote partner are allowed to send PAUSE frames.

LocSend = LocalSend
Only local link partner is allowed to send PAUSE frames.

None = None
No link partner is allowed to send PAUSE frames.

Note that this parameter is ignored if AutoNeg_B is set to Off .

Role_A=i,j,...
This parameter is valid only for 1000Base-T adapter cards. For two
1000Base-T ports to communicate, one must take the role of the master (pro-
viding timing information), while the other must be the slave. Possible values
are: Auto, Master, or Slave; Auto is the default. Usually, the role of a port is
negotiated between two ports during link establishment, but if that fails the
port A of an adapter card can be forced to a specific setting with this

Linux man-pages 6.13 2024-05-02 2755

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

parameter.

Role_B=i,j,...
This parameter is valid only for 1000Base-T adapter cards. For two
1000Base-T ports to communicate, one must take the role of the master (pro-
viding timing information), while the other must be the slave. Possible values
are: Auto, Master, or Slave; Auto is the default. Usually, the role of a port is
negotiated between two ports during link establishment, but if that fails the
port B of an adapter card can be forced to a specific setting with this parame-
ter.

ConType=i,j,...
This parameter is a combination of all five per-port parameters within one sin-
gle parameter. This simplifies the configuration of both ports of an adapter
card. The different values of this variable reflect the most meaningful combi-
nations of port parameters. Possible values and their corresponding combina-
tion of per-port parameters:

ConType DupCap AutoNeg FlowCtrl Role Speed
Auto Both On SymOrRem Auto Auto
100FD Full Off None Auto 100
100HD Half Off None Auto 100
10FD Full Off None Auto 10
10HD Half Off None Auto 10

Stating any other port parameter together with this ConType parameter will re-
sult in a merged configuration of those settings. This is due to the fact, that the
per-port parameters (e.g., Speed_A) have a higher priority than the combined
variable ConType.

Moderation=i,j,...
Interrupt moderation is employed to limit the maximum number of interrupts
the driver has to serve. That is, one or more interrupts (which indicate any
transmit or receive packet to be processed) are queued until the driver
processes them. When queued interrupts are to be served, is determined by
the IntsPerSec parameter, which is explained later below. Possible moderation
modes are: None, Static, or Dynamic; None is the default. The different
modes have the following meaning:

None No interrupt moderation is applied on the adapter card. Therefore, each
transmit or receive interrupt is served immediately as soon as it appears on the
interrupt line of the adapter card.

Static Interrupt moderation is applied on the adapter card. All transmit and re-
ceive interrupts are queued until a complete moderation interval ends. If such
a moderation interval ends, all queued interrupts are processed in one big
bunch without any delay. The term Static reflects the fact, that interrupt mod-
eration is always enabled, regardless how much network load is currently pass-
ing via a particular interface. In addition, the duration of the moderation inter-
val has a fixed length that never changes while the driver is operational.

Dynamic Interrupt moderation might be applied on the adapter card, depend-
ing on the load of the system. If the driver detects that the system load is too

Linux man-pages 6.13 2024-05-02 2756

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

high, the driver tries to shield the system against too much network load by en-
abling interrupt moderation. If—at a later time—the CPU utilization de-
creases again (or if the network load is negligible), the interrupt moderation
will automatically be disabled.

Interrupt moderation should be used when the driver has to handle one or more
interfaces with a high network load, which—as a consequence—leads also to a
high CPU utilization. When moderation is applied in such high network load
situations, CPU load might be reduced by 20–30% on slow computers.

Note that the drawback of using interrupt moderation is an increase of the
round-trip-time (RTT), due to the queuing and serving of interrupts at dedi-
cated moderation times.

IntsPerSec=i,j,...
This parameter determines the length of any interrupt moderation interval.
Assuming that static interrupt moderation is to be used, an IntsPerSec parame-
ter value of 2000 will lead to an interrupt moderation interval of 500 microsec-
onds. Possible values for this parameter are in the range of 30...40000 (inter-
rupts per second). The default value is 2000.

This parameter is used only if either static or dynamic interrupt moderation is
enabled on a network adapter card. This parameter is ignored if no modera-
tion is applied.

Note that the duration of the moderation interval is to be chosen with care. At
first glance, selecting a very long duration (e.g., only 100 interrupts per sec-
ond) seems to be meaningful, but the increase of packet-processing delay is
tremendous. On the other hand, selecting a very short moderation time might
compensate the use of any moderation being applied.

PrefPort=i,j,...
This parameter is used to force the preferred port to A or B (on dual-port net-
work adapters). The preferred port is the one that is used if both ports A and B
are detected as fully functional. Possible values are: A or B; A is the default.

RlmtMode=i,j,...
RLMT monitors the status of the port. If the link of the active port fails,
RLMT switches immediately to the standby link. The virtual link is main-
tained as long as at least one "physical" link is up. This parameters states how
RLMT should monitor both ports. Possible values are: CheckLinkState,
CheckLocalPort, CheckSeg, or DualNet; CheckLinkState is the default. The
different modes have the following meaning:

CheckLinkState Check link state only: RLMT uses the link state reported by
the adapter hardware for each individual port to determine whether a port can
be used for all network traffic or not.

CheckLocalPort In this mode, RLMT monitors the network path between the
two ports of an adapter by regularly exchanging packets between them. This
mode requires a network configuration in which the two ports are able to "see"
each other (i.e., there must not be any router between the ports).

CheckSeg Check local port and segmentation: This mode supports the same
functions as the CheckLocalPort mode and additionally checks network

Linux man-pages 6.13 2024-05-02 2757

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

segmentation between the ports. Therefore, this mode is to be used only if Gi-
gabit Ethernet switches are installed on the network that have been configured
to use the Spanning Tree protocol.

DualNet In this mode, ports A and B are used as separate devices. If you have
a dual port adapter, port A will be configured as eth[x] and port B as
eth[x+1]. Both ports can be used independently with distinct IP addresses.
The preferred port setting is not used. RLMT is turned off.

Note that RLMT modes CheckLocalPort and CheckLinkState are designed to
operate in configurations where a network path between the ports on one
adapter exists. Moreover, they are not designed to work where adapters are
connected back-to-back.

FILES
/proc/net/sk98lin/eth[x]

The statistics file of a particular interface of an adapter card. It contains
generic information about the adapter card plus a detailed summary of all
transmit and receive counters.

/usr/src/linux/Documentation/networking/sk98lin.txt
This is the README file of the sk98lin driver. It contains a detailed installa-
tion HOWTO and describes all parameters of the driver. It denotes also com-
mon problems and provides the solution to them.

BUGS
Report any bugs to linux@syskonnect.de

SEE ALSO
ifconfig(8), insmod(8), modprobe(8)

Linux man-pages 6.13 2024-05-02 2758

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

NAME
smartpqi - Microchip Smart Storage SCSI driver

SYNOPSIS
modprobe smartpqi [disable_device_id_wildcards={0|1}]

[disable_heartbeat={0|1}] [disable_ctrl_shutdown={0|1}]
[lockup_action={none|reboot|panic}] [expose_ld_first={0|1}]
[hide_vsep={0|1}] [disable_managed_interrupts={0|1}]
[ctrl_ready_timeout={0|[30,1800]}]

DESCRIPTION
smartpqi is a SCSI driver for Microchip Smart Storage controllers.

Supported ioctl() operations
For compatibility with applications written for the cciss(4) and hpsa(4) drivers, many,
but not all of the ioctl(2) operations supported by the hpsa driver are also supported
by the smartpqi driver. The data structures used by these operations are described in
the Linux kernel source file include/linux/cciss_ioctl.h.

CCISS_DEREGDISK
CCISS_REGNEWDISK
CCISS_REGNEWD

These operations all do exactly the same thing, which is to cause the driver to
re-scan for new devices. This does exactly the same thing as writing to the
smartpqi-specific host rescan attribute.

CCISS_GETPCIINFO
This operation returns the PCI domain, bus, device, and function and "board
ID" (PCI subsystem ID).

CCISS_GETDRIVVER
This operation returns the driver version in four bytes, encoded as:

(major_version << 28) | (minor_version << 24) |
(release << 16) | revision

CCISS_PASSTHRU
Allows BMIC and CISS commands to be passed through to the controller.

Boot options
disable_device_id_wildcards={0|1}

Disables support for device ID wildcards. The default value is 0 (wildcards
are enabled).

disable_heartbeat={0|1}
Disables support for the controller’s heartbeat check. This parameter is used
for debugging purposes. The default value is 0 (the controller’s heartbeat
check is enabled).

disable_ctrl_shutdown={0|1}
Disables support for shutting down the controller in the event of a controller
lockup. The default value is 0 (controller will be shut down).

lockup_action={none|reboot|panic}
Specifies the action the driver takes when a controller lockup is detected. The
default action is none.

Linux man-pages 6.13 2024-05-02 2759

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

parameter action
none take controller offline only
reboot reboot the system
panic panic the system

expose_ld_first={0|1}
This option exposes logical devices to the OS before physical devices. The
default value is 0 (physical devices exposed first).

hide_vsep={0|1}
This option disables exposure of the virtual SEP to the OS. The default value
is 0 (virtual SEP is exposed).

disable_managed_interrupts={0|1}
Disables driver utilization of Linux kernel managed interrupts for controllers.
The managed interrupts feature automatically distributes interrupts to all avail-
able CPUs and assigns SMP affinity. The default value is 0 (managed inter-
rupts enabled).

ctrl_ready_timeout={0|[30,1800]}
This option specifies the timeout in seconds for the driver to wait for the con-
troller to be ready. The valid range is 0 or [30, 1800]. The default value is 0,
which causes the driver to use a timeout of 180 seconds.

FILES
Device nodes

Disk drives are accessed via the SCSI disk driver (sd), tape drives via the SCSI tape
driver (st), and the RAID controller via the SCSI generic driver (sg), with device
nodes named /dev/sd*, /dev/st*, and /dev/sg*, respectively.

SmartPQI-specific host attribute files in /sys
/sys/class/scsi_host/host* /rescan

The host rescan attribute is a write-only attribute. Writing to this attribute will
cause the driver to scan for new, changed, or removed devices (e.g., hot-
plugged tape drives, or newly configured or deleted logical volumes) and no-
tify the SCSI mid-layer of any changes detected. Usually this action is trig-
gered automatically by configuration changes, so the user should not normally
have to write to this file. Doing so may be useful when hot-plugging devices
such as tape drives or entire storage boxes containing pre-configured logical
volumes.

/sys/class/scsi_host/host* /lockup_action
The host lockup_action attribute is a read/write attribute. This attribute will
cause the driver to perform a specific action in the unlikely event that a con-
troller lockup has been detected. See OPTIONS above for an explanation of
the lockup_action values.

/sys/class/scsi_host/host* /driver_version
The driver_version attribute is read-only. This attribute contains the smartpqi
driver version.

For example:

Linux man-pages 6.13 2024-05-02 2760

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

$ cat /sys/class/scsi_host/host1/driver_version
1.1.2-126

/sys/class/scsi_host/host* /firmware_version
The firmware_version attribute is read-only. This attribute contains the con-
troller firmware version.

For example:

$ cat /sys/class/scsi_host/host1/firmware_version
1.29-112

/sys/class/scsi_host/host* /model
The model attribute is read-only. This attribute contains the product identifica-
tion string of the controller.

For example:

$ cat /sys/class/scsi_host/host1/model
1100-16i

/sys/class/scsi_host/host* /serial_number
The serial_number attribute is read-only. This attribute contains the unique
identification number of the controller.

For example:

$ cat /sys/class/scsi_host/host1/serial_number
6A316373777

/sys/class/scsi_host/host* /vendor
The vendor attribute is read-only. This attribute contains the vendor identifi-
cation string of the controller.

For example:

$ cat /sys/class/scsi_host/host1/vendor
Adaptec

/sys/class/scsi_host/host* /enable_stream_detection
The enable_stream_detection attribute is read-write. This attribute en-
ables/disables stream detection in the driver. Enabling stream detection can
improve sequential write performance for ioaccel-enabled volumes. See the
ssd_smart_path_enabled disk attribute section for details on ioaccel-enabled
volumes. The default value is 1 (stream detection enabled).

Enable example:

$ echo 1 > /sys/class/scsi_host/host1/enable_stream_detection

/sys/class/scsi_host/host* /enable_r5_writes
The enable_r5_writes attribute is read-write. This attribute enables/disables
RAID 5 write operations for ioaccel-enabled volumes. Enabling can improve
sequential write performance. See the ssd_smart_path_enabled disk at-
tribute section for details on ioaccel-enabled volumes. The default value is 1
(RAID 5 writes enabled).

Enable example:

Linux man-pages 6.13 2024-05-02 2761

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

$ echo 1 > /sys/class/scsi_host/host1/enable_r5_writes

/sys/class/scsi_host/host* /enable_r6_writes
The enable_r6_writes attribute is read-write. This attribute enables/disables
RAID 6 write operations for ioaccel-enabled volumes. Enabling can improve
sequential write performance. See the ssd_smart_path_enabled disk at-
tribute section for details on ioaccel-enabled volumes. The default value is 1
(RAID 6 writes enabled).

Enable example:

$ echo 1 > /sys/class/scsi_host/host1/enable_r6_writes

SmartPQI-specific disk attribute files in /sys
In the file specifications below, c stands for the number of the appropriate SCSI con-
troller, b is the bus number, t the target number, and l is the logical unit number
(LUN).

/sys/class/scsi_disk/ c:b:t:l /device/raid_level
The raid_level attribute is read-only. This attribute contains the RAID level of
the logical volume.

For example:

$ cat /sys/class/scsi_disk/4:0:0:0/device/raid_level
RAID 0

/sys/class/scsi_disk/ c:b:t:l /device/sas_address
The sas_address attribute is read-only. This attribute contains the SAS ad-
dress of the device.

For example:

$ cat /sys/class/scsi_disk/1:0:3:0/device/sas_address
0x5001173d028543a2

/sys/class/scsi_disk/ c:b:t:l /device/ssd_smart_path_enabled
The ssd_smart_path_enabled attribute is read-only. This attribute is for ioac-
cel-enabled volumes. (Ioaccel is an alternative driver submission path that al-
lows the driver to send I/O requests directly to backend SCSI devices, bypass-
ing the controller firmware. This results in an increase in performance. This
method is used for HBA disks and for logical volumes comprised of SSDs.)
Contains 1 if ioaccel is enabled for the volume and 0 otherwise.

For example:

$ cat /sys/class/scsi_disk/1:0:3:0/device/ssd_smart_path_enabled

/sys/class/scsi_disk/ c:b:t:l /device/lunid
The lunid attribute is read-only. This attribute contains the SCSI LUN ID for
the device.

For example:

$ cat /sys/class/scsi_disk/13:1:0:3/device/lunid
0x0300004000000000

Linux man-pages 6.13 2024-05-02 2762

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

/sys/class/scsi_disk/ c:b:t:l /device/unique_id
The unique_id attribute is read-only. This attribute contains a 16-byte ID that
uniquely identifies the device within the controller.

For example:

$ cat /sys/class/scsi_disk/13:1:0:3/device/unique_id
600508B1001C6D4723A8E98D704FDB94

/sys/class/scsi_disk/ c:b:t:l /device/path_info
The path_info attribute is read-only. This attribute contains the c:b:t:l of the
device along with the device type and whether the device is Active or Inactive.
If the device is an HBA device, path_info will also display the PORT, BOX,
and BAY the device is plugged into.

For example:

$ cat /sys/class/scsi_disk/13:1:0:3/device/path_info
[13:1:0:3] Direct-Access Active

$ cat /sys/class/scsi_disk/12:0:9:0/device/path_info
[12:0:9:0] Direct-Access PORT: C1 BOX: 1 BAY: 14 Inactive
[12:0:9:0] Direct-Access PORT: C0 BOX: 1 BAY: 14 Active

/sys/class/scsi_disk/ c:b:t:l /device/raid_bypass_cnt
The raid_bypass_cnt attribute is read-only. This attribute contains the number
of I/O requests that have gone through the ioaccel path for ioaccel-enabled
volumes. See the ssd_smart_path_enabled disk attribute section for details
on ioaccel-enabled volumes.

For example:

$ cat /sys/class/scsi_disk/13:1:0:3/device/raid_bypass_cnt
0x300

/sys/class/scsi_disk/ c:b:t:l /device/sas_ncq_prio_enable
The sas_ncq_prio_enable attribute is read/write. This attribute enables SATA
NCQ priority support. This attribute works only when device has NCQ sup-
port and controller firmware can handle IO with NCQ priority attribute.

For example:

$ echo 1 > /sys/class/scsi_disk/13:1:0:3/device/sas_ncq_prio_enable

VERSIONS
The smartpqi driver was added in Linux 4.9.

NOTES
Configuration

To configure a Microchip Smart Storage controller, refer to the User Guide for the
controller, which can be found by searching for the specific controller at
〈https://www.microchip.com/design-centers/storage〉.

HISTORY
/sys/class/scsi_host/host*/version was replaced by two sysfs entries:

/sys/class/scsi_host/host*/driver_version

Linux man-pages 6.13 2024-05-02 2763

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

/sys/class/scsi_host/host*/firmware_version

SEE ALSO
cciss(4), hpsa(4), sd(4), st(4), sg(4)

Documentation/ABI/testing/sysfs-bus-pci-devices-cciss in the Linux kernel source
tree.

Linux man-pages 6.13 2024-05-02 2764

st(4) Kernel Interfaces Manual st(4)

NAME
st - SCSI tape device

SYNOPSIS
#include <sys/mtio.h>

int ioctl(int fd , int request [, (void *)arg3]);
int ioctl(int fd , MTIOCTOP, (struct mtop *)mt_cmd);
int ioctl(int fd , MTIOCGET, (struct mtget *)mt_status);
int ioctl(int fd , MTIOCPOS, (struct mtpos *)mt_pos);

DESCRIPTION
The st driver provides the interface to a variety of SCSI tape devices. Currently, the
driver takes control of all detected devices of type “sequential-access”. The st driver
uses major device number 9.

Each device uses eight minor device numbers. The lowermost five bits in the minor
numbers are assigned sequentially in the order of detection. In the 2.6 kernel, the bits
above the eight lowermost bits are concatenated to the five lowermost bits to form the
tape number. The minor numbers can be grouped into two sets of four numbers: the
principal (auto-rewind) minor device numbers, n, and the “no-rewind” device num-
bers, (n + 128). Devices opened using the principal device number will be sent a
REWIND command when they are closed. Devices opened using the “no-rewind”
device number will not. (Note that using an auto-rewind device for positioning the
tape with, for instance, mt does not lead to the desired result: the tape is rewound after
the mt command and the next command starts from the beginning of the tape).

Within each group, four minor numbers are available to define devices with different
characteristics (block size, compression, density, etc.) When the system starts up,
only the first device is available. The other three are activated when the default char-
acteristics are defined (see below). (By changing compile-time constants, it is possi-
ble to change the balance between the maximum number of tape drives and the num-
ber of minor numbers for each drive. The default allocation allows control of 32 tape
drives. For instance, it is possible to control up to 64 tape drives with two minor num-
bers for different options.)

Devices are typically created by:

mknod -m 666 /dev/st0 c 9 0
mknod -m 666 /dev/st0l c 9 32
mknod -m 666 /dev/st0m c 9 64
mknod -m 666 /dev/st0a c 9 96
mknod -m 666 /dev/nst0 c 9 128
mknod -m 666 /dev/nst0l c 9 160
mknod -m 666 /dev/nst0m c 9 192
mknod -m 666 /dev/nst0a c 9 224

There is no corresponding block device.

The driver uses an internal buffer that has to be large enough to hold at least one tape
block. Before Linux 2.1.121, the buffer is allocated as one contiguous block. This
limits the block size to the largest contiguous block of memory the kernel allocator
can provide. The limit is currently 128 kB for 32-bit architectures and 256 kB for
64-bit architectures. In newer kernels the driver allocates the buffer in several parts if

Linux man-pages 6.13 2024-05-02 2765

st(4) Kernel Interfaces Manual st(4)

necessary. By default, the maximum number of parts is 16. This means that the max-
imum block size is very large (2 MB if allocation of 16 blocks of 128 kB succeeds).

The driver’s internal buffer size is determined by a compile-time constant which can
be overridden with a kernel startup option. In addition to this, the driver tries to allo-
cate a larger temporary buffer at run time if necessary. However, run-time allocation
of large contiguous blocks of memory may fail and it is advisable not to rely too much
on dynamic buffer allocation before Linux 2.1.121 (this applies also to demand-load-
ing the driver with kerneld or kmod).

The driver does not specifically support any tape drive brand or model. After system
start-up the tape device options are defined by the drive firmware. For example, if the
drive firmware selects fixed-block mode, the tape device uses fixed-block mode. The
options can be changed with explicit ioctl(2) calls and remain in effect when the de-
vice is closed and reopened. Setting the options affects both the auto-rewind and the
nonrewind device.

Different options can be specified for the different devices within the subgroup of
four. The options take effect when the device is opened. For example, the system ad-
ministrator can define one device that writes in fixed-block mode with a certain block
size, and one which writes in variable-block mode (if the drive supports both modes).

The driver supports tape partitions if they are supported by the drive. (Note that the
tape partitions have nothing to do with disk partitions. A partitioned tape can be seen
as several logical tapes within one medium.) Partition support has to be enabled with
an ioctl(2). The tape location is preserved within each partition across partition
changes. The partition used for subsequent tape operations is selected with an
ioctl(2). The partition switch is executed together with the next tape operation in or-
der to avoid unnecessary tape movement. The maximum number of partitions on a
tape is defined by a compile-time constant (originally four). The driver contains an
ioctl(2) that can format a tape with either one or two partitions.

Device /dev/tape is usually created as a hard or soft link to the default tape device on
the system.

Starting from Linux 2.6.2, the driver exports in the sysfs directory /sys/class/scsi_tape
the attached devices and some parameters assigned to the devices.

Data transfer
The driver supports operation in both fixed-block mode and variable-block mode (if
supported by the drive). In fixed-block mode the drive writes blocks of the specified
size and the block size is not dependent on the byte counts of the write system calls.
In variable-block mode one tape block is written for each write call and the byte count
determines the size of the corresponding tape block. Note that the blocks on the tape
don’t contain any information about the writing mode: when reading, the only impor-
tant thing is to use commands that accept the block sizes on the tape.

In variable-block mode the read byte count does not have to match the tape block size
exactly. If the byte count is larger than the next block on tape, the driver returns the
data and the function returns the actual block size. If the block size is larger than the
byte count, an error is returned.

In fixed-block mode the read byte counts can be arbitrary if buffering is enabled, or a
multiple of the tape block size if buffering is disabled. Before Linux 2.1.121 allow

Linux man-pages 6.13 2024-05-02 2766

st(4) Kernel Interfaces Manual st(4)

writes with arbitrary byte count if buffering is enabled. In all other cases (before
Linux 2.1.121 with buffering disabled or newer kernel) the write byte count must be a
multiple of the tape block size.

In Linux 2.6, the driver tries to use direct transfers between the user buffer and the de-
vice. If this is not possible, the driver’s internal buffer is used. The reasons for not
using direct transfers include improper alignment of the user buffer (default is 512
bytes but this can be changed by the HBA driver), one or more pages of the user
buffer not reachable by the SCSI adapter, and so on.

A filemark is automatically written to tape if the last tape operation before close was a
write.

When a filemark is encountered while reading, the following happens. If there are
data remaining in the buffer when the filemark is found, the buffered data is returned.
The next read returns zero bytes. The following read returns data from the next file.
The end of recorded data is signaled by returning zero bytes for two consecutive read
calls. The third read returns an error.

Ioctls
The driver supports three ioctl(2) requests. Requests not recognized by the st driver
are passed to the SCSI driver. The definitions below are from /usr/in-
clude/linux/mtio.h:

MTIOCTOP — perform a tape operation
This request takes an argument of type (struct mtop *). Not all drives support all op-
erations. The driver returns an EIO error if the drive rejects an operation.

/* Structure for MTIOCTOP - mag tape op command: */
struct mtop {

short mt_op; /* operations defined below */
int mt_count; /* how many of them */

};

Magnetic tape operations for normal tape use:

MTBSF
Backward space over mt_count filemarks.

MTBSFM
Backward space over mt_count filemarks. Reposition the tape to the EOT side
of the last filemark.

MTBSR
Backward space over mt_count records (tape blocks).

MTBSS
Backward space over mt_count setmarks.

MTCOMPRESSION
Enable compression of tape data within the drive if mt_count is nonzero and
disable compression if mt_count is zero. This command uses the MODE page
15 supported by most DATs.

Linux man-pages 6.13 2024-05-02 2767

st(4) Kernel Interfaces Manual st(4)

MTEOM
Go to the end of the recorded media (for appending files).

MTERASE
Erase tape. With Linux 2.6, short erase (mark tape empty) is performed if the
argument is zero. Otherwise, long erase (erase all) is done.

MTFSF
Forward space over mt_count filemarks.

MTFSFM
Forward space over mt_count filemarks. Reposition the tape to the BOT side
of the last filemark.

MTFSR
Forward space over mt_count records (tape blocks).

MTFSS
Forward space over mt_count setmarks.

MTLOAD
Execute the SCSI load command. A special case is available for some HP au-
toloaders. If mt_count is the constant MT_ST_HPLOADER_OFFSET plus
a number, the number is sent to the drive to control the autoloader.

MTLOCK
Lock the tape drive door.

MTMKPART
Format the tape into one or two partitions. If mt_count is positive, it gives the
size of partition 1 and partition 0 contains the rest of the tape. If mt_count is
zero, the tape is formatted into one partition. From Linux 4.6, a negative
mt_count specifies the size of partition 0 and the rest of the tape contains parti-
tion 1. The physical ordering of partitions depends on the drive. This com-
mand is not allowed for a drive unless the partition support is enabled for the
drive (see MT_ST_CAN_PARTITIONS below).

MTNOP
No op—flushes the driver’s buffer as a side effect. Should be used before
reading status with MTIOCGET.

MTOFFL
Rewind and put the drive off line.

MTRESET
Reset drive.

MTRETEN
Re-tension tape.

MTREW
Rewind.

MTSEEK
Seek to the tape block number specified in mt_count. This operation requires
either a SCSI-2 drive that supports the LOCATE command (device-specific
address) or a Tandberg-compatible SCSI-1 drive (Tandberg, Archive Viper,

Linux man-pages 6.13 2024-05-02 2768

st(4) Kernel Interfaces Manual st(4)

Wangtek, ...). The block number should be one that was previously returned
by MTIOCPOS if device-specific addresses are used.

MTSETBLK
Set the drive’s block length to the value specified in mt_count. A block length
of zero sets the drive to variable block size mode.

MTSETDENSITY
Set the tape density to the code in mt_count. The density codes supported by
a drive can be found from the drive documentation.

MTSETPART
The active partition is switched to mt_count. The partitions are numbered
from zero. This command is not allowed for a drive unless the partition sup-
port is enabled for the drive (see MT_ST_CAN_PARTITIONS below).

MTUNLOAD
Execute the SCSI unload command (does not eject the tape).

MTUNLOCK
Unlock the tape drive door.

MTWEOF
Write mt_count filemarks.

MTWSM
Write mt_count setmarks.

Magnetic tape operations for setting of device options (by the superuser):

MTSETDRVBUFFER
Set various drive and driver options according to bits encoded in mt_count.
These consist of the drive’s buffering mode, a set of Boolean driver options,
the buffer write threshold, defaults for the block size and density, and timeouts
(only since Linux 2.1). A single operation can affect only one item in the list
below (the Booleans counted as one item.)

A value having zeros in the high-order 4 bits will be used to set the drive’s
buffering mode. The buffering modes are:

0 The drive will not report GOOD status on write commands until the
data blocks are actually written to the medium.

1 The drive may report GOOD status on write commands as soon as all
the data has been transferred to the drive’s internal buffer.

2 The drive may report GOOD status on write commands as soon as (a)
all the data has been transferred to the drive’s internal buffer, and (b)
all buffered data from different initiators has been successfully written
to the medium.

To control the write threshold the value in mt_count must include the constant
MT_ST_WRITE_THRESHOLD bitwise ORed with a block count in the
low 28 bits. The block count refers to 1024-byte blocks, not the physical
block size on the tape. The threshold cannot exceed the driver’s internal buffer
size (see DESCRIPTION, above).

Linux man-pages 6.13 2024-05-02 2769

st(4) Kernel Interfaces Manual st(4)

To set and clear the Boolean options the value in mt_count must include one
of the constants MT_ST_BOOLEANS, MT_ST_SETBOOLEANS,
MT_ST_CLEARBOOLEANS, or MT_ST_DEFBOOLEANS bitwise ORed
with whatever combination of the following options is desired. Using
MT_ST_BOOLEANS the options can be set to the values defined in the cor-
responding bits. With MT_ST_SETBOOLEANS the options can be selec-
tively set and with MT_ST_DEFBOOLEANS selectively cleared.

The default options for a tape device are set with MT_ST_DEFBOOLEANS.
A nonactive tape device (e.g., device with minor 32 or 160) is activated when
the default options for it are defined the first time. An activated device inherits
from the device activated at start-up the options not set explicitly.

The Boolean options are:

MT_ST_BUFFER_WRITES (Default: true)
Buffer all write operations in fixed-block mode. If this option is false
and the drive uses a fixed block size, then all write operations must be
for a multiple of the block size. This option must be set false to write
reliable multivolume archives.

MT_ST_ASYNC_WRITES (Default: true)
When this option is true, write operations return immediately without
waiting for the data to be transferred to the drive if the data fits into the
driver’s buffer. The write threshold determines how full the buffer
must be before a new SCSI write command is issued. Any errors re-
ported by the drive will be held until the next operation. This option
must be set false to write reliable multivolume archives.

MT_ST_READ_AHEAD (Default: true)
This option causes the driver to provide read buffering and read-ahead
in fixed-block mode. If this option is false and the drive uses a fixed
block size, then all read operations must be for a multiple of the block
size.

MT_ST_TWO_FM (Default: false)
This option modifies the driver behavior when a file is closed. The
normal action is to write a single filemark. If the option is true, the dri-
ver will write two filemarks and backspace over the second one.

Note: This option should not be set true for QIC tape drives since they
are unable to overwrite a filemark. These drives detect the end of
recorded data by testing for blank tape rather than two consecutive file-
marks. Most other current drives also detect the end of recorded data
and using two filemarks is usually necessary only when interchanging
tapes with some other systems.

MT_ST_DEBUGGING (Default: false)
This option turns on various debugging messages from the driver (ef-
fective only if the driver was compiled with DEBUG defined nonzero).

MT_ST_FAST_EOM (Default: false)
This option causes the MTEOM operation to be sent directly to the
drive, potentially speeding up the operation but causing the driver to

Linux man-pages 6.13 2024-05-02 2770

st(4) Kernel Interfaces Manual st(4)

lose track of the current file number normally returned by the MTI-
OCGET request. If MT_ST_FAST_EOM is false, the driver will re-
spond to an MTEOM request by forward spacing over files.

MT_ST_AUTO_LOCK (Default: false)
When this option is true, the drive door is locked when the device file
is opened and unlocked when it is closed.

MT_ST_DEF_WRITES (Default: false)
The tape options (block size, mode, compression, etc.) may change
when changing from one device linked to a drive to another device
linked to the same drive depending on how the devices are defined.
This option defines when the changes are enforced by the driver using
SCSI-commands and when the drives auto-detection capabilities are
relied upon. If this option is false, the driver sends the SCSI-com-
mands immediately when the device is changed. If the option is true,
the SCSI-commands are not sent until a write is requested. In this
case, the drive firmware is allowed to detect the tape structure when
reading and the SCSI-commands are used only to make sure that a tape
is written according to the correct specification.

MT_ST_CAN_BSR (Default: false)
When read-ahead is used, the tape must sometimes be spaced back-
ward to the correct position when the device is closed and the SCSI
command to space backward over records is used for this purpose.
Some older drives can’t process this command reliably and this option
can be used to instruct the driver not to use the command. The end re-
sult is that, with read-ahead and fixed-block mode, the tape may not be
correctly positioned within a file when the device is closed. With
Linux 2.6, the default is true for drives supporting SCSI-3.

MT_ST_NO_BLKLIMS (Default: false)
Some drives don’t accept the READ BLOCK LIMITS SCSI com-
mand. If this is used, the driver does not use the command. The draw-
back is that the driver can’t check before sending commands if the se-
lected block size is acceptable to the drive.

MT_ST_CAN_PARTITIONS (Default: false)
This option enables support for several partitions within a tape. The
option applies to all devices linked to a drive.

MT_ST_SCSI2LOGICAL (Default: false)
This option instructs the driver to use the logical block addresses de-
fined in the SCSI-2 standard when performing the seek and tell opera-
tions (both with MTSEEK and MTIOCPOS commands and when
changing tape partition). Otherwise, the device-specific addresses are
used. It is highly advisable to set this option if the drive supports the
logical addresses because they count also filemarks. There are some
drives that support only the logical block addresses.

MT_ST_SYSV (Default: false)
When this option is enabled, the tape devices use the System V seman-
tics. Otherwise, the BSD semantics are used. The most important

Linux man-pages 6.13 2024-05-02 2771

st(4) Kernel Interfaces Manual st(4)

difference between the semantics is what happens when a device used
for reading is closed: in System V semantics the tape is spaced forward
past the next filemark if this has not happened while using the device.
In BSD semantics the tape position is not changed.

MT_NO_WAIT (Default: false)
Enables immediate mode (i.e., don’t wait for the command to finish)
for some commands (e.g., rewind).

An example:

struct mtop mt_cmd;
mt_cmd.mt_op = MTSETDRVBUFFER;
mt_cmd.mt_count = MT_ST_BOOLEANS |

MT_ST_BUFFER_WRITES | MT_ST_ASYNC_WRITES;
ioctl(fd, MTIOCTOP, mt_cmd);

The default block size for a device can be set with MT_ST_DEF_BLKSIZE
and the default density code can be set with MT_ST_DEFDENSITY. The
values for the parameters are or’ed with the operation code.

With Linux 2.1.x and later, the timeout values can be set with the subcom-
mand MT_ST_SET_TIMEOUT ORed with the timeout in seconds. The
long timeout (used for rewinds and other commands that may take a long time)
can be set with MT_ST_SET_LONG_TIMEOUT. The kernel defaults are
very long to make sure that a successful command is not timed out with any
drive. Because of this, the driver may seem stuck even if it is only waiting for
the timeout. These commands can be used to set more practical values for a
specific drive. The timeouts set for one device apply for all devices linked to
the same drive.

Starting from Linux 2.4.19 and Linux 2.5.43, the driver supports a status bit
which indicates whether the drive requests cleaning. The method used by the
drive to return cleaning information is set using the MT_ST_SEL_CLN sub-
command. If the value is zero, the cleaning bit is always zero. If the value is
one, the TapeAlert data defined in the SCSI-3 standard is used (not yet imple-
mented). Values 2–17 are reserved. If the lowest eight bits are >= 18, bits
from the extended sense data are used. The bits 9–16 specify a mask to select
the bits to look at and the bits 17–23 specify the bit pattern to look for. If the
bit pattern is zero, one or more bits under the mask indicate the cleaning re-
quest. If the pattern is nonzero, the pattern must match the masked sense data
byte.

MTIOCGET — get status
This request takes an argument of type (struct mtget *).

/* structure for MTIOCGET - mag tape get status command */
struct mtget {

long mt_type;
long mt_resid;
/* the following registers are device dependent */
long mt_dsreg;
long mt_gstat;

Linux man-pages 6.13 2024-05-02 2772

st(4) Kernel Interfaces Manual st(4)

long mt_erreg;
/* The next two fields are not always used */
daddr_t mt_fileno;
daddr_t mt_blkno;

};

mt_type
The header file defines many values for mt_type, but the current driver reports
only the generic types MT_ISSCSI1 (Generic SCSI-1 tape) and MT_ISS-
CSI2 (Generic SCSI-2 tape).

mt_resid
contains the current tape partition number.

mt_dsreg
reports the drive’s current settings for block size (in the low 24 bits) and den-
sity (in the high 8 bits). These fields are defined by MT_ST_BLK-
SIZE_SHIFT, MT_ST_BLKSIZE_MASK, MT_ST_DENSITY_SHIFT,
and MT_ST_DENSITY_MASK.

mt_gstat
reports generic (device independent) status information. The header file de-
fines macros for testing these status bits:

GMT_EOF(x)
The tape is positioned just after a filemark (always false after an MT-
SEEK operation).

GMT_BOT(x)
The tape is positioned at the beginning of the first file (always false af-
ter an MTSEEK operation).

GMT_EOT(x)
A tape operation has reached the physical End Of Tape.

GMT_SM(x)
The tape is currently positioned at a setmark (always false after an MT-
SEEK operation).

GMT_EOD(x)
The tape is positioned at the end of recorded data.

GMT_WR_PROT(x)
The drive is write-protected. For some drives this can also mean that
the drive does not support writing on the current medium type.

GMT_ONLINE(x)
The last open(2) found the drive with a tape in place and ready for op-
eration.

GMT_D_6250(x)
GMT_D_1600(x)
GMT_D_800(x)

This “generic” status information reports the current density setting for
9-track ½" tape drives only.

Linux man-pages 6.13 2024-05-02 2773

st(4) Kernel Interfaces Manual st(4)

GMT_DR_OPEN(x)
The drive does not have a tape in place.

GMT_IM_REP_EN(x)
Immediate report mode. This bit is set if there are no guarantees that
the data has been physically written to the tape when the write call re-
turns. It is set zero only when the driver does not buffer data and the
drive is set not to buffer data.

GMT_CLN(x)
The drive has requested cleaning. Implemented since Linux 2.4.19 and
Linux 2.5.43.

mt_erreg
The only field defined in mt_erreg is the recovered error count in the low 16
bits (as defined by MT_ST_SOFTERR_SHIFT and MT_ST_SOFT-
ERR_MASK). Due to inconsistencies in the way drives report recovered er-
rors, this count is often not maintained (most drives do not by default report
soft errors but this can be changed with a SCSI MODE SELECT command).

mt_fileno
reports the current file number (zero-based). This value is set to -1 when the
file number is unknown (e.g., after MTBSS or MTSEEK).

mt_blkno
reports the block number (zero-based) within the current file. This value is set
to -1 when the block number is unknown (e.g., after MTBSF, MTBSS, or
MTSEEK).

MTIOCPOS — get tape position
This request takes an argument of type (struct mtpos *) and reports the drive’s notion
of the current tape block number, which is not the same as mt_blkno returned by
MTIOCGET. This drive must be a SCSI-2 drive that supports the READ POSI-
TION command (device-specific address) or a Tandberg-compatible SCSI-1 drive
(Tandberg, Archive Viper, Wangtek, ...).

/* structure for MTIOCPOS - mag tape get position command */
struct mtpos {

long mt_blkno; /* current block number */
};

RETURN VALUE
EACCES

An attempt was made to write or erase a write-protected tape. (This error is
not detected during open(2).)

EBUSY
The device is already in use or the driver was unable to allocate a buffer.

EFAULT
The command parameters point to memory not belonging to the calling
process.

Linux man-pages 6.13 2024-05-02 2774

st(4) Kernel Interfaces Manual st(4)

EINVAL
An ioctl(2) had an invalid argument, or a requested block size was invalid.

EIO The requested operation could not be completed.

ENOMEM
The byte count in read(2) is smaller than the next physical block on the tape.
(Before Linux 2.2.18 and Linux 2.4.0 the extra bytes have been silently ig-
nored.)

ENOSPC
A write operation could not be completed because the tape reached end-of-
medium.

ENOSYS
Unknown ioctl(2).

ENXIO
During opening, the tape device does not exist.

EOVERFLOW
An attempt was made to read or write a variable-length block that is larger
than the driver’s internal buffer.

EROFS
Open is attempted with O_WRONLY or O_RDWR when the tape in the
drive is write-protected.

FILES
/dev/st*

the auto-rewind SCSI tape devices

/dev/nst*
the nonrewind SCSI tape devices

NOTES
• When exchanging data between systems, both systems have to agree on the physi-

cal tape block size. The parameters of a drive after startup are often not the ones
most operating systems use with these devices. Most systems use drives in vari-
able-block mode if the drive supports that mode. This applies to most modern dri-
ves, including DATs, 8mm helical scan drives, DLTs, etc. It may be advisable to
use these drives in variable-block mode also in Linux (i.e., use MTSETBLK or
MTSETDEFBLK at system startup to set the mode), at least when exchanging
data with a foreign system. The drawback of this is that a fairly large tape block
size has to be used to get acceptable data transfer rates on the SCSI bus.

• Many programs (e.g., tar(1)) allow the user to specify the blocking factor on the
command line. Note that this determines the physical block size on tape only in
variable-block mode.

• In order to use SCSI tape drives, the basic SCSI driver, a SCSI-adapter driver and
the SCSI tape driver must be either configured into the kernel or loaded as mod-
ules. If the SCSI-tape driver is not present, the drive is recognized but the tape
support described in this page is not available.

Linux man-pages 6.13 2024-05-02 2775

st(4) Kernel Interfaces Manual st(4)

• The driver writes error messages to the console/log. The SENSE codes written
into some messages are automatically translated to text if verbose SCSI messages
are enabled in kernel configuration.

• The driver’s internal buffering allows good throughput in fixed-block mode also
with small read(2) and write(2) byte counts. With direct transfers this is not pos-
sible and may cause a surprise when moving to the 2.6 kernel. The solution is to
tell the software to use larger transfers (often telling it to use larger blocks). If this
is not possible, direct transfers can be disabled.

SEE ALSO
mt(1)

The file drivers/scsi/README.st or Documentation/scsi/st.txt (kernel >= 2.6) in the
Linux kernel source tree contains the most recent information about the driver and its
configuration possibilities

Linux man-pages 6.13 2024-05-02 2776

tty(4) Kernel Interfaces Manual tty(4)

NAME
tty - controlling terminal

DESCRIPTION
The file /dev/tty is a character file with major number 5 and minor number 0, usually
with mode 0666 and ownership root:tty. It is a synonym for the controlling terminal
of a process, if any.

In addition to the ioctl(2) requests supported by the device that tty refers to, the
ioctl(2) request TIOCNOTTY is supported.

TIOCNOTTY
Detach the calling process from its controlling terminal.

If the process is the session leader, then SIGHUP and SIGCONT signals are sent to
the foreground process group and all processes in the current session lose their con-
trolling tty.

This ioctl(2) call works only on file descriptors connected to /dev/tty. It is used by
daemon processes when they are invoked by a user at a terminal. The process at-
tempts to open /dev/tty. If the open succeeds, it detaches itself from the terminal by
using TIOCNOTTY, while if the open fails, it is obviously not attached to a terminal
and does not need to detach itself.

FILES
/dev/tty

SEE ALSO
chown(1), mknod(1), ioctl(2), ioctl_console(2), ioctl_tty(2), termios(3), ttyS(4),
vcs(4), pty(7), agetty(8), mingetty(8)

Linux man-pages 6.13 2024-05-02 2777

ttyS(4) Kernel Interfaces Manual ttyS(4)

NAME
ttyS - serial terminal lines

DESCRIPTION
ttyS[0-3] are character devices for the serial terminal lines.

They are typically created by:

mknod -m 660 /dev/ttyS0 c 4 64 # base address 0x3f8
mknod -m 660 /dev/ttyS1 c 4 65 # base address 0x2f8
mknod -m 660 /dev/ttyS2 c 4 66 # base address 0x3e8
mknod -m 660 /dev/ttyS3 c 4 67 # base address 0x2e8
chown root:tty /dev/ttyS[0-3]

FILES
/dev/ttyS[0-3]

SEE ALSO
chown(1), mknod(1), tty(4), agetty(8), mingetty(8), setserial(8)

Linux man-pages 6.13 2024-05-02 2778

vcs(4) Kernel Interfaces Manual vcs(4)

NAME
vcs, vcsa - virtual console memory

DESCRIPTION
/dev/vcs0 is a character device with major number 7 and minor number 0, usually
with mode 0644 and ownership root:tty. It refers to the memory of the currently dis-
played virtual console terminal.

/dev/vcs[1-63] are character devices for virtual console terminals, they have major
number 7 and minor number 1 to 63, usually mode 0644 and ownership root:tty.
/dev/vcsa[0-63] are the same, but using unsigned shorts (in host byte order) that in-
clude attributes, and prefixed with four bytes giving the screen dimensions and cursor
position: lines, columns, x, y. (x = y = 0 at the top left corner of the screen.)

When a 512-character font is loaded, the 9th bit position can be fetched by applying
the ioctl(2) VT_GETHIFONTMASK operation (available since Linux 2.6.18) on
/dev/tty[1-63]; the value is returned in the unsigned short pointed to by the third
ioctl(2) argument.

These devices replace the screendump ioctl(2) operations of ioctl_console(2), so the
system administrator can control access using filesystem permissions.

The devices for the first eight virtual consoles may be created by:

for x in 0 1 2 3 4 5 6 7 8; do
mknod -m 644 /dev/vcs$x c 7 $x;
mknod -m 644 /dev/vcsa$x c 7 $[$x+128];

done
chown root:tty /dev/vcs*

No ioctl(2) requests are supported.

FILES
/dev/vcs[0-63]
/dev/vcsa[0-63]

VERSIONS
Introduced with Linux 1.1.92.

EXAMPLES
You may do a screendump on vt3 by switching to vt1 and typing

cat /dev/vcs3 >foo

Note that the output does not contain newline characters, so some processing may be
required, like in

fold -w 81 /dev/vcs3 | lpr

or (horrors)

setterm -dump 3 -file /proc/self/fd/1

The /dev/vcsa0 device is used for Braille support.

This program displays the character and screen attributes under the cursor of the sec-
ond virtual console, then changes the background color there:

#include <unistd.h>

Linux man-pages 6.13 2024-06-15 2779

vcs(4) Kernel Interfaces Manual vcs(4)

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/vt.h>

int
main(void)
{

int fd;
char *device = "/dev/vcsa2";
char *console = "/dev/tty2";
struct {unsigned char lines, cols, x, y;} scrn;
unsigned short s;
unsigned short mask;
unsigned char attrib;
int ch;

fd = open(console, O_RDWR);
if (fd < 0) {

perror(console);
exit(EXIT_FAILURE);

}
if (ioctl(fd, VT_GETHIFONTMASK, &mask) < 0) {

perror("VT_GETHIFONTMASK");
exit(EXIT_FAILURE);

}
(void) close(fd);
fd = open(device, O_RDWR);
if (fd < 0) {

perror(device);
exit(EXIT_FAILURE);

}
(void) read(fd, &scrn, 4);
(void) lseek(fd, 4 + 2*(scrn.y*scrn.cols + scrn.x), SEEK_SET);
(void) read(fd, &s, 2);
ch = s & 0xff;
if (s & mask)

ch |= 0x100;
attrib = ((s & ~mask) >> 8);
printf("ch=%#03x attrib=%#02x\n", ch, attrib);
s ^= 0x1000;
(void) lseek(fd, -2, SEEK_CUR);
(void) write(fd, &s, 2);
exit(EXIT_SUCCESS);

}

Linux man-pages 6.13 2024-06-15 2780

vcs(4) Kernel Interfaces Manual vcs(4)

SEE ALSO
ioctl_console(2), tty(4), ttyS(4), gpm(8)

Linux man-pages 6.13 2024-06-15 2781

veth(4) Kernel Interfaces Manual veth(4)

NAME
veth - Virtual Ethernet Device

DESCRIPTION
The veth devices are virtual Ethernet devices. They can act as tunnels between net-
work namespaces to create a bridge to a physical network device in another name-
space, but can also be used as standalone network devices.

veth devices are always created in interconnected pairs. A pair can be created using
the command:

ip link add <p1-name> type veth peer name <p2-name>

In the above, p1-name and p2-name are the names assigned to the two connected end
points.

Packets transmitted on one device in the pair are immediately received on the other
device. When either device is down, the link state of the pair is down.

veth device pairs are useful for combining the network facilities of the kernel together
in interesting ways. A particularly interesting use case is to place one end of a veth
pair in one network namespace and the other end in another network namespace, thus
allowing communication between network namespaces. To do this, one can provide
the netns parameter when creating the interfaces:

ip link add <p1-name> netns <p1-ns> type veth peer <p2-name> netns <p2-ns>

or, for an existing veth pair, move one side to the other namespace:

ip link set <p2-name> netns <p2-ns>

ethtool(8) can be used to find the peer of a veth network interface, using commands
something like:

ip link add ve_A type veth peer name ve_B # Create veth pair
ethtool -S ve_A # Discover interface index of peer
NIC statistics:

peer_ifindex: 16
ip link | grep '^16:' # Look up interface
16: ve_B@ve_A: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc ...

SEE ALSO
clone(2), network_namespaces(7), ip(8), ip-link(8), ip-netns(8)

Linux man-pages 6.13 2024-05-02 2782

wavelan(4) Kernel Interfaces Manual wavelan(4)

NAME
wavelan - AT&T GIS WaveLAN ISA device driver

SYNOPSIS
insmod wavelan_cs.o [io=B,B..] [irq=I,I..] [name=N,N..]

DESCRIPTION
This driver is obsolete: it was removed in Linux 2.6.35.

wavelan is the low-level device driver for the NCR / AT&T / Lucent WaveLAN ISA
and Digital (DEC) RoamAbout DS wireless ethernet adapter. This driver is available
as a module or might be compiled in the kernel. This driver supports multiple cards in
both forms (up to 4) and allocates the next available ethernet device (eth0..eth#) for
each card found, unless a device name is explicitly specified (see below). This device
name will be reported in the kernel log file with the MAC address, NWID, and fre-
quency used by the card.

Parameters
This section applies to the module form (parameters passed on the insmod(8) com-
mand line). If the driver is included in the kernel, use the ether=IRQ,IO,NAME syn-
tax on the kernel command line.

io Specify the list of base addresses where to search for wavelan cards (setting by
dip switch on the card). If you don’t specify any io address, the driver will
scan 0x390 and 0x3E0 addresses, which might conflict with other hardware...

irq Set the list of IRQs that each wavelan card should use (the value is saved in
permanent storage for future use).

name Set the list of names to be used for each wavelan card device (name used by if-
config(8)).

Wireless extensions
Use iwconfig(8) to manipulate wireless extensions.

NWID (or domain)
Set the network ID [0 to FFFF] or disable it [off]. As the NWID is stored in the card
Permanent Storage Area, it will be reused at any further invocation of the driver.

Frequency & channels
For the 2.4 GHz 2.00 Hardware, you are able to set the frequency by specifying one of
the 10 defined channels (2.412, 2.422, 2.425, 2.4305, 2.432, 2.442, 2.452, 2.460,
2.462 or 2.484) or directly as a numeric value. The frequency is changed immediately
and permanently. Frequency availability depends on the regulations...

Statistics spy
Set a list of MAC addresses in the driver (up to 8) and get the last quality of link for
each of those (see iwspy(8)).

/proc/net/wireless
status is the status reported by the modem. Link quality reports the quality of the
modulation on the air (direct sequence spread spectrum) [max = 16]. Level and Noise
refer to the signal level and noise level [max = 64]. The crypt discarded packet and
misc discarded packet counters are not implemented.

Linux man-pages 6.13 2024-05-02 2783

wavelan(4) Kernel Interfaces Manual wavelan(4)

Private ioctl
You may use iwpriv(8) to manipulate private ioctls.

Quality and level threshold
Enables you to define the quality and level threshold used by the modem (packet be-
low that level are discarded).

Histogram
This functionality makes it possible to set a number of signal level intervals and to
count the number of packets received in each of those defined intervals. This distribu-
tion might be used to calculate the mean value and standard deviation of the signal
level.

Specific notes
This driver fails to detect some non-NCR/AT&T/Lucent Wavelan cards. If this hap-
pens for you, you must look in the source code on how to add your card to the detec-
tion routine.

Some of the mentioned features are optional. You may enable or disable them by
changing flags in the driver header and recompile.

SEE ALSO
wavelan_cs(4), ifconfig(8), insmod(8), iwconfig(8), iwpriv(8), iwspy(8)

Linux man-pages 6.13 2024-05-02 2784

intro(5) File Formats Manual intro(5)

NAME
intro - introduction to file formats and filesystems

DESCRIPTION
Section 5 of the manual describes various file formats, as well as the corresponding C
structures, if any.

In addition, this section contains a number of pages that document various filesys-
tems.

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright condi-
tions. Note that these can be different from page to page!

SEE ALSO
standards(7)

Linux man-pages 6.13 2024-05-02 2785

acct(5) File Formats Manual acct(5)

NAME
acct - process accounting file

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
If the kernel is built with the process accounting option enabled (CON-
FIG_BSD_PROCESS_ACCT), then calling acct(2) starts process accounting, for
example:

acct("/var/log/pacct");

When process accounting is enabled, the kernel writes a record to the accounting file
as each process on the system terminates. This record contains information about the
terminated process, and is defined in <sys/acct.h> as follows:

#define ACCT_COMM 16

typedef u_int16_t comp_t;

struct acct {
char ac_flag; /* Accounting flags */
u_int16_t ac_uid; /* Accounting user ID */
u_int16_t ac_gid; /* Accounting group ID */
u_int16_t ac_tty; /* Controlling terminal */
u_int32_t ac_btime; /* Process creation time

(seconds since the Epoch) */
comp_t ac_utime; /* User CPU time */
comp_t ac_stime; /* System CPU time */
comp_t ac_etime; /* Elapsed time */
comp_t ac_mem; /* Average memory usage (kB) */
comp_t ac_io; /* Characters transferred (unused) */
comp_t ac_rw; /* Blocks read or written (unused) */
comp_t ac_minflt; /* Minor page faults */
comp_t ac_majflt; /* Major page faults */
comp_t ac_swaps; /* Number of swaps (unused) */
u_int32_t ac_exitcode; /* Process termination status

(see wait(2)) */
char ac_comm[ACCT_COMM+1];

/* Command name (basename of last
executed command; null-terminated) */

char ac_pad[X]; /* padding bytes */
};

enum { /* Bits that may be set in ac_flag field */
AFORK = 0x01, /* Has executed fork, but no exec */
ASU = 0x02, /* Used superuser privileges */
ACORE = 0x08, /* Dumped core */
AXSIG = 0x10 /* Killed by a signal */

};

Linux man-pages 6.13 2024-05-02 2786

acct(5) File Formats Manual acct(5)

The comp_t data type is a floating-point value consisting of a 3-bit, base-8 exponent,
and a 13-bit mantissa. A value, c, of this type can be converted to a (long) integer as
follows:

v = (c & 0x1fff) << (((c >> 13) & 0x7) * 3);

The ac_utime, ac_stime, and ac_etime fields measure time in "clock ticks"; divide
these values by sysconf(_SC_CLK_TCK) to convert them to seconds.

Version 3 accounting file format
Since Linux 2.6.8, an optional alternative version of the accounting file can be pro-
duced if the CONFIG_BSD_PROCESS_ACCT_V3 option is set when building the
kernel. With this option is set, the records written to the accounting file contain addi-
tional fields, and the width of c_uid and ac_gid fields is widened from 16 to 32 bits
(in line with the increased size of UID and GIDs in Linux 2.4 and later). The records
are defined as follows:

struct acct_v3 {
char ac_flag; /* Flags */
char ac_version; /* Always set to ACCT_VERSION (3) */
u_int16_t ac_tty; /* Controlling terminal */
u_int32_t ac_exitcode; /* Process termination status */
u_int32_t ac_uid; /* Real user ID */
u_int32_t ac_gid; /* Real group ID */
u_int32_t ac_pid; /* Process ID */
u_int32_t ac_ppid; /* Parent process ID */
u_int32_t ac_btime; /* Process creation time */
float ac_etime; /* Elapsed time */
comp_t ac_utime; /* User CPU time */
comp_t ac_stime; /* System time */
comp_t ac_mem; /* Average memory usage (kB) */
comp_t ac_io; /* Characters transferred (unused) */
comp_t ac_rw; /* Blocks read or written

(unused) */
comp_t ac_minflt; /* Minor page faults */
comp_t ac_majflt; /* Major page faults */
comp_t ac_swaps; /* Number of swaps (unused) */
char ac_comm[ACCT_COMM]; /* Command name */

};

VERSIONS
Although it is present on most systems, it is not standardized, and the details vary
somewhat between systems.

STANDARDS
None.

HISTORY
glibc 2.6.

Process accounting originated on BSD.

Linux man-pages 6.13 2024-05-02 2787

acct(5) File Formats Manual acct(5)

NOTES
Records in the accounting file are ordered by termination time of the process.

Up to and including Linux 2.6.9, a separate accounting record is written for each
thread created using the NPTL threading library; since Linux 2.6.10, a single account-
ing record is written for the entire process on termination of the last thread in the
process.

The /proc/sys/kernel/acct file, described in proc(5), defines settings that control the
behavior of process accounting when disk space runs low.

SEE ALSO
lastcomm(1), acct(2), accton(8), sa(8)

Linux man-pages 6.13 2024-05-02 2788

charmap(5) File Formats Manual charmap(5)

NAME
charmap - character set description file

DESCRIPTION
A character set description (charmap) defines all available characters and their encod-
ings in a character set. localedef(1) can use charmaps to create locale variants for dif-
ferent character sets.

Syntax
The charmap file starts with a header that may consist of the following keywords:

<code_set_name>
is followed by the name of the character map.

<comment_char>
is followed by a character that will be used as the comment character for the
rest of the file. It defaults to the number sign (#).

<escape_char>
is followed by a character that should be used as the escape character for the
rest of the file to mark characters that should be interpreted in a special way. It
defaults to the backslash (\).

<mb_cur_max>
is followed by the maximum number of bytes for a character. The default
value is 1.

<mb_cur_min>
is followed by the minimum number of bytes for a character. This value must
be less than or equal than <mb_cur_max>. If not specified, it defaults to
<mb_cur_max>.

The character set definition section starts with the keyword CHARMAP in the first
column.

The following lines may have one of the two following forms to define the character
set:

<character> byte-sequence comment
This form defines exactly one character and its byte sequence, comment being
optional.

<character>..<character> byte-sequence comment
This form defines a character range and its byte sequence, comment being op-
tional.

The character set definition section ends with the string END CHARMAP.

The character set definition section may optionally be followed by a section to define
widths of characters.

The WIDTH_DEFAULT keyword can be used to define the default width for all char-
acters not explicitly listed. The default character width is 1.

The width section for individual characters starts with the keyword WIDTH in the first
column.

The following lines may have one of the two following forms to define the widths of

Linux man-pages 6.13 2024-06-15 2789

charmap(5) File Formats Manual charmap(5)

the characters:

<character> width
This form defines the width of exactly one character.

<character>...<character> width
This form defines the width for all the characters in the range.

The width definition section ends with the string END WIDTH .

FILES
/usr/share/i18n/charmaps

Usual default character map path.

STANDARDS
POSIX.2.

EXAMPLES
The Euro sign is defined as follows in the UTF-8 charmap:

<U20AC> /xe2/x82/xac EURO SIGN

SEE ALSO
iconv(1), locale(1), localedef(1), locale(5), charsets(7)

Linux man-pages 6.13 2024-06-15 2790

core(5) File Formats Manual core(5)

NAME
core - core dump file

DESCRIPTION
The default action of certain signals is to cause a process to terminate and produce a
core dump file, a file containing an image of the process’s memory at the time of ter-
mination. This image can be used in a debugger (e.g., gdb(1)) to inspect the state of
the program at the time that it terminated. A list of the signals which cause a process
to dump core can be found in signal(7).

A process can set its soft RLIMIT_CORE resource limit to place an upper limit on
the size of the core dump file that will be produced if it receives a "core dump" signal;
see getrlimit(2) for details.

There are various circumstances in which a core dump file is not produced:

• The process does not have permission to write the core file. (By default, the core
file is called core or core.pid , where pid is the ID of the process that dumped
core, and is created in the current working directory. See below for details on
naming.) Writing the core file fails if the directory in which it is to be created is
not writable, or if a file with the same name exists and is not writable or is not a
regular file (e.g., it is a directory or a symbolic link).

• A (writable, regular) file with the same name as would be used for the core dump
already exists, but there is more than one hard link to that file.

• The filesystem where the core dump file would be created is full; or has run out of
inodes; or is mounted read-only; or the user has reached their quota for the filesys-
tem.

• The directory in which the core dump file is to be created does not exist.

• The RLIMIT_CORE (core file size) or RLIMIT_FSIZE (file size) resource lim-
its for the process are set to zero; see getrlimit(2) and the documentation of the
shell’s ulimit command (limit in csh(1)). However, RLIMIT_CORE will be ig-
nored if the system is configured to pipe core dumps to a program.

• The binary being executed by the process does not have read permission enabled.
(This is a security measure to ensure that an executable whose contents are not
readable does not produce a—possibly readable—core dump containing an image
of the executable.)

• The process is executing a set-user-ID (set-group-ID) program that is owned by a
user (group) other than the real user (group) ID of the process, or the process is
executing a program that has file capabilities (see capabilities(7)). (However, see
the description of the prctl(2) PR_SET_DUMPABLE operation, and the descrip-
tion of the /proc/sys/fs/suid_dumpable file in proc(5).)

• /proc/sys/kernel/core_pattern is empty and /proc/sys/kernel/core_uses_pid con-
tains the value 0. (These files are described below.) Note that if /proc/sys/ker-
nel/core_pattern is empty and /proc/sys/kernel/core_uses_pid contains the value
1, core dump files will have names of the form .pid , and such files are hidden un-
less one uses the ls(1) -a option.

Linux man-pages 6.13 2024-06-15 2791

core(5) File Formats Manual core(5)

• (Since Linux 3.7) The kernel was configured without the CONFIG_CORE-
DUMP option.

In addition, a core dump may exclude part of the address space of the process if the
madvise(2) MADV_DONTDUMP flag was employed.

On systems that employ systemd(1) as the init framework, core dumps may instead be
placed in a location determined by systemd(1)See below for further details.

Naming of core dump files
By default, a core dump file is named core, but the /proc/sys/kernel/core_pattern file
(since Linux 2.6 and 2.4.21) can be set to define a template that is used to name core
dump files. The template can contain % specifiers which are substituted by the fol-
lowing values when a core file is created:

%%
A single % character.

%c Core file size soft resource limit of crashing process (since Linux 2.6.24).
%d Dump mode—same as value returned by prctl(2) PR_GET_DUMPABLE

(since Linux 3.7).
%e The process or thread’s comm value, which typically is the same as the exe-

cutable filename (without path prefix, and truncated to a maximum of 15
characters), but may have been modified to be something different; see the
discussion of /proc/ pid /comm and /proc/ pid /task/ tid /comm in proc(5).

%E Pathname of executable, with slashes ('/') replaced by exclamation marks
('!') (since Linux 3.0).

%g Numeric real GID of dumped process.
%h Hostname (same as nodename returned by uname(2)).
%i TID of thread that triggered core dump, as seen in the PID namespace in

which the thread resides (since Linux 3.18).
%I TID of thread that triggered core dump, as seen in the initial PID namespace

(since Linux 3.18).
%p PID of dumped process, as seen in the PID namespace in which the process

resides.
%P PID of dumped process, as seen in the initial PID namespace (since Linux

3.12).
%s Number of signal causing dump.
%t Time of dump, expressed as seconds since the Epoch, 1970-01-01 00:00:00

+0000 (UTC).
%u Numeric real UID of dumped process.

A single % at the end of the template is dropped from the core filename, as is the
combination of a % followed by any character other than those listed above. All other
characters in the template become a literal part of the core filename. The template
may include '/' characters, which are interpreted as delimiters for directory names.
The maximum size of the resulting core filename is 128 bytes (64 bytes before Linux
2.6.19). The default value in this file is "core". For backward compatibility, if
/proc/sys/kernel/core_pattern does not include %p and /proc/sys/ker-
nel/core_uses_pid (see below) is nonzero, then .PID will be appended to the core file-
name.

Paths are interpreted according to the settings that are active for the crashing process.

Linux man-pages 6.13 2024-06-15 2792

core(5) File Formats Manual core(5)

That means the crashing process’s mount namespace (see mount_namespaces(7)), its
current working directory (found via getcwd(2)), and its root directory (see chroot(2)).

Since Linux 2.4, Linux has also provided a more primitive method of controlling the
name of the core dump file. If the /proc/sys/kernel/core_uses_pid file contains the
value 0, then a core dump file is simply named core. If this file contains a nonzero
value, then the core dump file includes the process ID in a name of the form core.PID.

Since Linux 3.6, if /proc/sys/fs/suid_dumpable is set to 2 ("suidsafe"), the pattern
must be either an absolute pathname (starting with a leading '/' character) or a pipe, as
defined below.

Piping core dumps to a program
Since Linux 2.6.19, Linux supports an alternate syntax for the /proc/sys/ker-
nel/core_pattern file. If the first character of this file is a pipe symbol (|), then the re-
mainder of the line is interpreted as the command-line for a user-space program (or
script) that is to be executed.

Since Linux 5.3.0, the pipe template is split on spaces into an argument list before the
template parameters are expanded. In earlier kernels, the template parameters are ex-
panded first and the resulting string is split on spaces into an argument list. This
means that in earlier kernels executable names added by the %e and %E template pa-
rameters could get split into multiple arguments. So the core dump handler needs to
put the executable names as the last argument and ensure it joins all parts of the exe-
cutable name using spaces. Executable names with multiple spaces in them are not
correctly represented in earlier kernels, meaning that the core dump handler needs to
use mechanisms to find the executable name.

Instead of being written to a file, the core dump is given as standard input to the pro-
gram. Note the following points:

• The program must be specified using an absolute pathname (or a pathname rela-
tive to the root directory, /), and must immediately follow the ’|’ character.

• The command-line arguments can include any of the % specifiers listed above.
For example, to pass the PID of the process that is being dumped, specify %p in
an argument.

• The process created to run the program runs as user and group root.

• Running as root does not confer any exceptional security bypasses. Namely,
LSMs (e.g., SELinux) are still active and may prevent the handler from accessing
details about the crashed process via /proc/ pid.

• The program pathname is interpreted with respect to the initial mount namespace
as it is always executed there. It is not affected by the settings (e.g., root directory,
mount namespace, current working directory) of the crashing process.

• The process runs in the initial namespaces (PID, mount, user, and so on) and not
in the namespaces of the crashing process. One can utilize specifiers such as %P
to find the right /proc/ pid directory and probe/enter the crashing process’s name-
spaces if needed.

• The process starts with its current working directory as the root directory. If de-
sired, it is possible change to the working directory of the dumping process by
employing the value provided by the %P specifier to change to the location of the

Linux man-pages 6.13 2024-06-15 2793

core(5) File Formats Manual core(5)

dumping process via /proc/ pid /cwd .

• Command-line arguments can be supplied to the program (since Linux 2.6.24),
delimited by white space (up to a total line length of 128 bytes).

• The RLIMIT_CORE limit is not enforced for core dumps that are piped to a pro-
gram via this mechanism.

/proc/sys/kernel/core_pipe_limit
When collecting core dumps via a pipe to a user-space program, it can be useful for
the collecting program to gather data about the crashing process from that process’s
/proc/ pid directory. In order to do this safely, the kernel must wait for the program
collecting the core dump to exit, so as not to remove the crashing process’s /proc/ pid
files prematurely. This in turn creates the possibility that a misbehaving collecting
program can block the reaping of a crashed process by simply never exiting.

Since Linux 2.6.32, the /proc/sys/kernel/core_pipe_limit can be used to defend
against this possibility. The value in this file defines how many concurrent crashing
processes may be piped to user-space programs in parallel. If this value is exceeded,
then those crashing processes above this value are noted in the kernel log and their
core dumps are skipped.

A value of 0 in this file is special. It indicates that unlimited processes may be cap-
tured in parallel, but that no waiting will take place (i.e., the collecting program is not
guaranteed access to /proc/<crashing-PID>). The default value for this file is 0.

Controlling which mappings are written to the core dump
Since Linux 2.6.23, the Linux-specific /proc/ pid /coredump_filter file can be used to
control which memory segments are written to the core dump file in the event that a
core dump is performed for the process with the corresponding process ID.

The value in the file is a bit mask of memory mapping types (see mmap(2)). If a bit is
set in the mask, then memory mappings of the corresponding type are dumped; other-
wise they are not dumped. The bits in this file have the following meanings:

bit 0 Dump anonymous private mappings.
bit 1 Dump anonymous shared mappings.
bit 2 Dump file-backed private mappings.
bit 3 Dump file-backed shared mappings.
bit 4 (since Linux 2.6.24)

Dump ELF headers.
bit 5 (since Linux 2.6.28)

Dump private huge pages.
bit 6 (since Linux 2.6.28)

Dump shared huge pages.
bit 7 (since Linux 4.4)

Dump private DAX pages.
bit 8 (since Linux 4.4)

Dump shared DAX pages.

By default, the following bits are set: 0, 1, 4 (if the CONFIG_CORE_DUMP_DE-
FAULT_ELF_HEADERS kernel configuration option is enabled), and 5. This de-
fault can be modified at boot time using the coredump_filter boot option.

The value of this file is displayed in hexadecimal. (The default value is thus displayed

Linux man-pages 6.13 2024-06-15 2794

core(5) File Formats Manual core(5)

as 33.)

Memory-mapped I/O pages such as frame buffer are never dumped, and virtual DSO
(vdso(7)) pages are always dumped, regardless of the coredump_filter value.

A child process created via fork(2) inherits its parent’s coredump_filter value; the
coredump_filter value is preserved across an execve(2).

It can be useful to set coredump_filter in the parent shell before running a program,
for example:

$ echo 0x7 > /proc/self/coredump_filter
$./some_program

This file is provided only if the kernel was built with the CONFIG_ELF_CORE con-
figuration option.

Core dumps and systemd
On systems using the systemd(1) init framework, core dumps may be placed in a lo-
cation determined by systemd(1)To do this, systemd(1) employs the core_pattern fea-
ture that allows piping core dumps to a program. One can verify this by checking
whether core dumps are being piped to the systemd-coredump(8) program:

$ cat /proc/sys/kernel/core_pattern
|/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %e

In this case, core dumps will be placed in the location configured for systemd-core-
dump(8), typically as lz4(1) compressed files in the directory /var/lib/systemd/core-
dump/ . One can list the core dumps that have been recorded by systemd-coredump(8)
using coredumpctl(1):

$ coredumpctl list | tail -5
Wed 2017-10-11 22:25:30 CEST 2748 1000 1000 3 present /usr/bin/sleep
Thu 2017-10-12 06:29:10 CEST 2716 1000 1000 3 present /usr/bin/sleep
Thu 2017-10-12 06:30:50 CEST 2767 1000 1000 3 present /usr/bin/sleep
Thu 2017-10-12 06:37:40 CEST 2918 1000 1000 3 present /usr/bin/cat
Thu 2017-10-12 08:13:07 CEST 2955 1000 1000 3 present /usr/bin/cat

The information shown for each core dump includes the date and time of the dump,
the PID, UID, and GID of the dumping process, the signal number that caused the
core dump, and the pathname of the executable that was being run by the dumped
process. Various options to coredumpctl(1) allow a specified coredump file to be
pulled from the systemd(1) location into a specified file. For example, to extract the
core dump for PID 2955 shown above to a file named core in the current directory,
one could use:

$ coredumpctl dump 2955 -o core

For more extensive details, see the coredumpctl(1) manual page.

To (persistently) disable the systemd(1) mechanism that archives core dumps, restor-
ing to something more like traditional Linux behavior, one can set an override for the
systemd(1) mechanism, using something like:

echo "kernel.core_pattern=core.%p" > \
/etc/sysctl.d/50-coredump.conf

/lib/systemd/systemd-sysctl

Linux man-pages 6.13 2024-06-15 2795

core(5) File Formats Manual core(5)

It is also possible to temporarily (i.e., until the next reboot) change the core_pattern
setting using a command such as the following (which causes the names of core dump
files to include the executable name as well as the number of the signal which trig-
gered the core dump):

sysctl -w kernel.core_pattern="%e-%s.core"

NOTES
The gdb(1) gcore command can be used to obtain a core dump of a running process.

In Linux versions up to and including 2.6.27, if a multithreaded process (or, more pre-
cisely, a process that shares its memory with another process by being created with
the CLONE_VM flag of clone(2)) dumps core, then the process ID is always ap-
pended to the core filename, unless the process ID was already included elsewhere in
the filename via a %p specification in /proc/sys/kernel/core_pattern. (This is primar-
ily useful when employing the obsolete LinuxThreads implementation, where each
thread of a process has a different PID.)

EXAMPLES
The program below can be used to demonstrate the use of the pipe syntax in the
/proc/sys/kernel/core_pattern file. The following shell session demonstrates the use
of this program (compiled to create an executable named core_pattern_pipe_test):

$ cc -o core_pattern_pipe_test core_pattern_pipe_test.c
$ su
Password:
echo "|$PWD/core_pattern_pipe_test %p UID=%u GID=%g sig=%s" > \

/proc/sys/kernel/core_pattern
exit
$ sleep 100
^\ # type control-backslash
Quit (core dumped)
$ cat core.info
argc=5
argc[0]=</home/mtk/core_pattern_pipe_test>
argc[1]=<20575>
argc[2]=<UID=1000>
argc[3]=<GID=100>
argc[4]=<sig=3>
Total bytes in core dump: 282624

Program source

/* core_pattern_pipe_test.c */

#define _GNU_SOURCE
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

Linux man-pages 6.13 2024-06-15 2796

core(5) File Formats Manual core(5)

#define BUF_SIZE 1024

int
main(int argc, char *argv[])
{

ssize_t nread, tot;
char buf[BUF_SIZE];
FILE *fp;
char cwd[PATH_MAX];

/* Change our current working directory to that of the
crashing process. */

snprintf(cwd, PATH_MAX, "/proc/%s/cwd", argv[1]);
chdir(cwd);

/* Write output to file "core.info" in that directory. */

fp = fopen("core.info", "w+");
if (fp == NULL)

exit(EXIT_FAILURE);

/* Display command-line arguments given to core_pattern
pipe program. */

fprintf(fp, "argc=%d\n", argc);
for (size_t j = 0; j < argc; j++)

fprintf(fp, "argc[%zu]=<%s>\n", j, argv[j]);

/* Count bytes in standard input (the core dump). */

tot = 0;
while ((nread = read(STDIN_FILENO, buf, BUF_SIZE)) > 0)

tot += nread;
fprintf(fp, "Total bytes in core dump: %zd\n", tot);

fclose(fp);
exit(EXIT_SUCCESS);

}

SEE ALSO
bash(1), coredumpctl(1), gdb(1), getrlimit(2), mmap(2), prctl(2), sigaction(2), elf(5),
proc(5), pthreads(7), signal(7), systemd-coredump(8)

Linux man-pages 6.13 2024-06-15 2797

dir_colors(5) File Formats Manual dir_colors(5)

NAME
dir_colors - configuration file for dircolors(1)

DESCRIPTION
The program ls(1) uses the environment variable LS_COLORS to determine the col-
ors in which the filenames are to be displayed. This environment variable is usually
set by a command like

eval `dircolors some_path/dir_colors`

found in a system default shell initialization file, like /etc/profile or /etc/csh.cshrc.
(See also dircolors(1)Usually, the file used here is /etc/DIR_COLORS and can be
overridden by a .dir_colors file in one’s home directory.

This configuration file consists of several statements, one per line. Anything right of a
hash mark (#) is treated as a comment, if the hash mark is at the beginning of a line or
is preceded by at least one whitespace. Blank lines are ignored.

The global section of the file consists of any statement before the first TERM state-
ment. Any statement in the global section of the file is considered valid for all termi-
nal types. Following the global section is one or more terminal-specific sections, pre-
ceded by one or more TERM statements which specify the terminal types (as given
by the TERM environment variable) the following declarations apply to. It is always
possible to override a global declaration by a subsequent terminal-specific one.

The following statements are recognized; case is insignificant:

TERM terminal-type
Starts a terminal-specific section and specifies which terminal it applies to.
Multiple TERM statements can be used to create a section which applies for
several terminal types.

COLOR yes|all|no|none|tty
(Slackware only; ignored by GNU dircolors(1)Specifies that colorization
should always be enabled (yes or all), never enabled (no or none), or enabled
only if the output is a terminal (tty). The default is no.

EIGHTBIT yes|no
(Slackware only; ignored by GNU dircolors(1)Specifies that eight-bit
ISO/IEC 8859 characters should be enabled by default. For compatibility rea-
sons, this can also be specified as 1 for yes or 0 for no. The default is no.

OPTIONS options
(Slackware only; ignored by GNU dircolors(1)Adds command-line options to
the default ls command line. The options can be any valid ls command-line
options, and should include the leading minus sign. Note that dircolors does
not verify the validity of these options.

NORMAL color-sequence
Specifies the color used for normal (nonfilename) text.

Synonym: NORM.

FILE color-sequence
Specifies the color used for a regular file.

Linux man-pages 6.13 2024-06-16 2798

dir_colors(5) File Formats Manual dir_colors(5)

DIR color-sequence
Specifies the color used for directories.

LINK color-sequence
Specifies the color used for a symbolic link.

Synonyms: LNK, SYMLINK.

ORPHAN color-sequence
Specifies the color used for an orphaned symbolic link (one which points to a
nonexistent file). If this is unspecified, ls will use the LINK color instead.

MISSING color-sequence
Specifies the color used for a missing file (a nonexistent file which neverthe-
less has a symbolic link pointing to it). If this is unspecified, ls will use the
FILE color instead.

FIFO color-sequence
Specifies the color used for a FIFO (named pipe).

Synonym: PIPE.

SOCK color-sequence
Specifies the color used for a socket.

DOOR color-sequence
(Supported since fileutils 4.1) Specifies the color used for a door (Solaris 2.5
and later).

BLK color-sequence
Specifies the color used for a block device special file.

Synonym: BLOCK.

CHR color-sequence
Specifies the color used for a character device special file.

Synonym: CHAR.

EXEC color-sequence
Specifies the color used for a file with the executable attribute set.

SUID color-sequence
Specifies the color used for a file with the set-user-ID attribute set.

Synonym: SETUID.

SGID color-sequence
Specifies the color used for a file with the set-group-ID attribute set.

Synonym: SETGID.

STICKY color-sequence
Specifies the color used for a directory with the sticky attribute set.

STICKY_OTHER_WRITABLE color-sequence
Specifies the color used for an other-writable directory with the executable at-
tribute set.

Synonym: OWT.

Linux man-pages 6.13 2024-06-16 2799

dir_colors(5) File Formats Manual dir_colors(5)

OTHER_WRITABLE color-sequence
Specifies the color used for an other-writable directory without the executable
attribute set.

Synonym: OWR.

LEFTCODE color-sequence
Specifies the left code for non-ISO/IEC 6429 terminals (see below).

Synonym: LEFT.

RIGHTCODE color-sequence
Specifies the right code for non-ISO/IEC 6429 terminals (see below).

Synonym: RIGHT.

ENDCODE color-sequence
Specifies the end code for non-ISO/IEC 6429 terminals (see below).

Synonym: END.

*extension color-sequence
Specifies the color used for any file that ends in extension.

.extension color-sequence
Same as *.extension. Specifies the color used for any file that ends in .exten-
sion. Note that the period is included in the extension, which makes it impos-
sible to specify an extension not starting with a period, such as ~ for emacs
backup files. This form should be considered obsolete.

ISO/IEC 6429 (ANSI) color sequences
Most color-capable ASCII terminals today use ISO/IEC 6429 (ANSI) color se-
quences, and many common terminals without color capability, including xterm and
the widely used and cloned DEC VT100, will recognize ISO/IEC 6429 color codes
and harmlessly eliminate them from the output or emulate them. ls uses
ISO/IEC 6429 codes by default, assuming colorization is enabled.

ISO/IEC 6429 color sequences are composed of sequences of numbers separated by
semicolons. The most common codes are:

0 to restore default color
1 for brighter colors
4 for underlined text
5 for flashing text
30 for black foreground
31 for red foreground
32 for green foreground
33 for yellow (or brown) foreground
34 for blue foreground
35 for purple foreground
36 for cyan foreground
37 for white (or gray) foreground
40 for black background
41 for red background
42 for green background

Linux man-pages 6.13 2024-06-16 2800

dir_colors(5) File Formats Manual dir_colors(5)

43 for yellow (or brown) background
44 for blue background
45 for purple background
46 for cyan background
47 for white (or gray) background

Not all commands will work on all systems or display devices.

ls uses the following defaults:
NORMAL 0 Normal (nonfilename) text
FILE 0 Regular file
DIR 32 Directory
LINK 36 Symbolic link
ORPHAN undefined Orphaned symbolic link
MISSING undefined Missing file
FIFO 31 Named pipe (FIFO)
SOCK 33 Socket
BLK 44;37 Block device
CHR 44;37 Character device
EXEC 35 Executable file

A few terminal programs do not recognize the default properly. If all text gets col-
orized after you do a directory listing, change the NORMAL and FILE codes to the
numerical codes for your normal foreground and background colors.

Other terminal types (advanced configuration)
If you have a color-capable (or otherwise highlighting) terminal (or printer!) which
uses a different set of codes, you can still generate a suitable setup. To do so, you will
have to use the LEFTCODE, RIGHTCODE, and ENDCODE definitions.

When writing out a filename, ls generates the following output sequence: LEFT-
CODE typecode RIGHTCODE filename ENDCODE, where the typecode is the
color sequence that depends on the type or name of file. If the ENDCODE is unde-
fined, the sequence LEFTCODE NORMAL RIGHTCODE will be used instead.
The purpose of the left- and rightcodes is merely to reduce the amount of typing nec-
essary (and to hide ugly escape codes away from the user). If they are not appropriate
for your terminal, you can eliminate them by specifying the respective keyword on a
line by itself.

NOTE: If the ENDCODE is defined in the global section of the setup file, it cannot
be undefined in a terminal-specific section of the file. This means any NORMAL de-
finition will have no effect. A different ENDCODE can, however, be specified,
which would have the same effect.

Escape sequences
To specify control- or blank characters in the color sequences or filename extensions,
either C-style \-escaped notation or stty-style ^-notation can be used. The C-style no-
tation includes the following characters:

\a Bell (ASCII 7)
\b Backspace (ASCII 8)
\e Escape (ASCII 27)
\f Form feed (ASCII 12)

Linux man-pages 6.13 2024-06-16 2801

dir_colors(5) File Formats Manual dir_colors(5)

\n Newline (ASCII 10)
\r Carriage Return (ASCII 13)
\t Tab (ASCII 9)
\v Vertical Tab (ASCII 11)
\? Delete (ASCII 127)
\nnn Any character (octal notation)
\xnnn Any character (hexadecimal notation)
_ Space
\\ Backslash (\)
\^ Caret (^)
\# Hash mark (#)

Note that escapes are necessary to enter a space, backslash, caret, or any control char-
acter anywhere in the string, as well as a hash mark as the first character.

FILES
/etc/DIR_COLORS

System-wide configuration file.

~/.dir_colors
Per-user configuration file.

This page describes the dir_colors file format as used in the fileutils-4.1 package;
other versions may differ slightly.

NOTES
The default LEFTCODE and RIGHTCODE definitions, which are used by
ISO/IEC 6429 terminals are:

LEFTCODE \e[
RIGHTCODE m

The default ENDCODE is undefined.

SEE ALSO
dircolors(1), ls(1), stty(1), xterm(1)

Linux man-pages 6.13 2024-06-16 2802

ELF(5) File Formats Manual ELF(5)

NAME
elf - format of Executable and Linking Format (ELF) files

SYNOPSIS
#include <elf.h>

DESCRIPTION
The header file <elf.h> defines the format of ELF executable binary files. Amongst
these files are normal executable files, relocatable object files, core files, and shared
objects.

An executable file using the ELF file format consists of an ELF header, followed by a
program header table or a section header table, or both. The ELF header is always at
offset zero of the file. The program header table and the section header table’s offset
in the file are defined in the ELF header. The two tables describe the rest of the par-
ticularities of the file.

This header file describes the above mentioned headers as C structures and also in-
cludes structures for dynamic sections, relocation sections and symbol tables.

Basic types
The following types are used for N-bit architectures (N=32,64, ElfN stands for Elf32
or Elf64, uintN_t stands for uint32_t or uint64_t):

ElfN_Addr Unsigned program address, uintN_t
ElfN_Off Unsigned file offset, uintN_t
ElfN_Section Unsigned section index, uint16_t
ElfN_Versym Unsigned version symbol information, uint16_t
Elf_Byte unsigned char
ElfN_Half uint16_t
ElfN_Sword int32_t
ElfN_Word uint32_t
ElfN_Sxword int64_t
ElfN_Xword uint64_t

(Note: the *BSD terminology is a bit different. There, Elf64_Half is twice as large as
Elf32_Half , and Elf64Quarter is used for uint16_t. In order to avoid confusion these
types are replaced by explicit ones in the below.)

All data structures that the file format defines follow the "natural" size and alignment
guidelines for the relevant class. If necessary, data structures contain explicit padding
to ensure 4-byte alignment for 4-byte objects, to force structure sizes to a multiple of
4, and so on.

ELF header (Ehdr)
The ELF header is described by the type Elf32_Ehdr or Elf64_Ehdr:

#define EI_NIDENT 16

typedef struct {
unsigned char e_ident[EI_NIDENT];
uint16_t e_type;
uint16_t e_machine;
uint32_t e_version;
ElfN_Addr e_entry;

Linux man-pages 6.13 2024-06-15 2803

ELF(5) File Formats Manual ELF(5)

ElfN_Off e_phoff;
ElfN_Off e_shoff;
uint32_t e_flags;
uint16_t e_ehsize;
uint16_t e_phentsize;
uint16_t e_phnum;
uint16_t e_shentsize;
uint16_t e_shnum;
uint16_t e_shstrndx;

} ElfN_Ehdr;

The fields have the following meanings:

e_ident
This array of bytes specifies how to interpret the file, independent of the
processor or the file’s remaining contents. Within this array everything is
named by macros, which start with the prefix EI_ and may contain values
which start with the prefix ELF. The following macros are defined:

EI_MAG0
The first byte of the magic number. It must be filled with ELFMAG0.
(0: 0x7f)

EI_MAG1
The second byte of the magic number. It must be filled with ELF-
MAG1. (1: 'E')

EI_MAG2
The third byte of the magic number. It must be filled with ELFMAG2.
(2: 'L')

EI_MAG3
The fourth byte of the magic number. It must be filled with ELF-
MAG3. (3: 'F')

EI_CLASS
The fifth byte identifies the architecture for this binary:

ELFCLASSNONE
This class is invalid.

ELFCLASS32 This defines the 32-bit architecture. It supports ma-
chines with files and virtual address spaces up to 4
Gigabytes.

ELFCLASS64 This defines the 64-bit architecture.

EI_DATA
The sixth byte specifies the data encoding of the processor-specific
data in the file. Currently, these encodings are supported:

ELFDATANONE
Unknown data format.

ELFDATA2LSB
Two’s complement, little-endian.

Linux man-pages 6.13 2024-06-15 2804

ELF(5) File Formats Manual ELF(5)

ELFDATA2MSB
Two’s complement, big-endian.

EI_VERSION
The seventh byte is the version number of the ELF specification:

EV_NONE Invalid version.
EV_CURRENT

Current version.

EI_OSABI
The eighth byte identifies the operating system and ABI to which the
object is targeted. Some fields in other ELF structures have flags and
values that have platform-specific meanings; the interpretation of those
fields is determined by the value of this byte. For example:

ELFOSABI_NONE Same as ELFOSABI_SYSV
ELFOSABI_SYSV UNIX System V ABI
ELFOSABI_HPUX HP-UX ABI
ELFOSABI_NETBSD NetBSD ABI
ELFOSABI_LINUX Linux ABI
ELFOSABI_SOLARIS Solaris ABI
ELFOSABI_IRIX IRIX ABI
ELFOSABI_FREEBSD

FreeBSD ABI
ELFOSABI_TRU64 TRU64 UNIX ABI
ELFOSABI_ARM ARM architecture ABI
ELFOSABI_STANDALONE

Stand-alone (embedded) ABI

EI_ABIVERSION
The ninth byte identifies the version of the ABI to which the object is
targeted. This field is used to distinguish among incompatible versions
of an ABI. The interpretation of this version number is dependent on
the ABI identified by the EI_OSABI field. Applications conforming
to this specification use the value 0.

EI_PAD
Start of padding. These bytes are reserved and set to zero. Programs
which read them should ignore them. The value for EI_PAD will
change in the future if currently unused bytes are given meanings.

EI_NIDENT
The size of the e_ident array.

e_type
This member of the structure identifies the object file type:

ET_NONE An unknown type.
ET_REL A relocatable file.
ET_EXEC An executable file.
ET_DYN A shared object.

Linux man-pages 6.13 2024-06-15 2805

ELF(5) File Formats Manual ELF(5)

ET_CORE A core file.

e_machine
This member specifies the required architecture for an individual file. For ex-
ample:

EM_NONE An unknown machine
EM_M32 AT&T WE 32100
EM_SPARC Sun Microsystems SPARC
EM_386 Intel 80386
EM_68K Motorola 68000
EM_88K Motorola 88000
EM_860 Intel 80860
EM_MIPS MIPS RS3000 (big-endian only)
EM_PARISC HP/PA
EM_SPARC32PLUS

SPARC with enhanced instruction set
EM_PPC PowerPC
EM_PPC64 PowerPC 64-bit
EM_S390 IBM S/390
EM_ARM Advanced RISC Machines
EM_SH Renesas SuperH
EM_SPARCV9 SPARC v9 64-bit
EM_IA_64 Intel Itanium
EM_X86_64 AMD x86-64
EM_VAX DEC Vax

e_version
This member identifies the file version:

EV_NONE Invalid version
EV_CURRENT Current version

e_entry
This member gives the virtual address to which the system first transfers con-
trol, thus starting the process. If the file has no associated entry point, this
member holds zero.

e_phoff
This member holds the program header table’s file offset in bytes. If the file
has no program header table, this member holds zero.

e_shoff
This member holds the section header table’s file offset in bytes. If the file has
no section header table, this member holds zero.

e_flags
This member holds processor-specific flags associated with the file. Flag
names take the form EF_‘machine_flag’. Currently, no flags have been de-
fined.

e_ehsize
This member holds the ELF header’s size in bytes.

Linux man-pages 6.13 2024-06-15 2806

ELF(5) File Formats Manual ELF(5)

e_phentsize
This member holds the size in bytes of one entry in the file’s program header
table; all entries are the same size.

e_phnum
This member holds the number of entries in the program header table. Thus
the product of e_phentsize and e_phnum gives the table’s size in bytes. If a
file has no program header, e_phnum holds the value zero.

If the number of entries in the program header table is larger than or equal to
PN_XNUM (0xffff), this member holds PN_XNUM (0xffff) and the real
number of entries in the program header table is held in the sh_info member of
the initial entry in section header table. Otherwise, the sh_info member of the
initial entry contains the value zero.

PN_XNUM
This is defined as 0xffff, the largest number e_phnum can have, speci-
fying where the actual number of program headers is assigned.

e_shentsize
This member holds a sections header’s size in bytes. A section header is one
entry in the section header table; all entries are the same size.

e_shnum
This member holds the number of entries in the section header table. Thus the
product of e_shentsize and e_shnum gives the section header table’s size in
bytes. If a file has no section header table, e_shnum holds the value of zero.

If the number of entries in the section header table is larger than or equal to
SHN_LORESERVE (0xff00), e_shnum holds the value zero and the real
number of entries in the section header table is held in the sh_size member of
the initial entry in section header table. Otherwise, the sh_size member of the
initial entry in the section header table holds the value zero.

e_shstrndx
This member holds the section header table index of the entry associated with
the section name string table. If the file has no section name string table, this
member holds the value SHN_UNDEF.

If the index of section name string table section is larger than or equal to
SHN_LORESERVE (0xff00), this member holds SHN_XINDEX (0xffff)
and the real index of the section name string table section is held in the
sh_link member of the initial entry in section header table. Otherwise, the
sh_link member of the initial entry in section header table contains the value
zero.

Program header (Phdr)
An executable or shared object file’s program header table is an array of structures,
each describing a segment or other information the system needs to prepare the pro-
gram for execution. An object file segment contains one or more sections. Program
headers are meaningful only for executable and shared object files. A file specifies its
own program header size with the ELF header’s e_phentsize and e_phnum members.
The ELF program header is described by the type Elf32_Phdr or Elf64_Phdr depend-
ing on the architecture:

Linux man-pages 6.13 2024-06-15 2807

ELF(5) File Formats Manual ELF(5)

typedef struct {
uint32_t p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
uint32_t p_filesz;
uint32_t p_memsz;
uint32_t p_flags;
uint32_t p_align;

} Elf32_Phdr;

typedef struct {
uint32_t p_type;
uint32_t p_flags;
Elf64_Off p_offset;
Elf64_Addr p_vaddr;
Elf64_Addr p_paddr;
uint64_t p_filesz;
uint64_t p_memsz;
uint64_t p_align;

} Elf64_Phdr;

The main difference between the 32-bit and the 64-bit program header lies in the loca-
tion of the p_flags member in the total struct.

p_type
This member of the structure indicates what kind of segment this array ele-
ment describes or how to interpret the array element’s information.

PT_NULL
The array element is unused and the other members’ values are
undefined. This lets the program header have ignored entries.

PT_LOAD
The array element specifies a loadable segment, described by
p_filesz and p_memsz. The bytes from the file are mapped to the
beginning of the memory segment. If the segment’s memory size
p_memsz is larger than the file size p_filesz, the "extra" bytes are
defined to hold the value 0 and to follow the segment’s initialized
area. The file size may not be larger than the memory size. Load-
able segment entries in the program header table appear in as-
cending order, sorted on the p_vaddr member.

PT_DYNAMIC
The array element specifies dynamic linking information.

PT_INTERP
The array element specifies the location and size of a null-termi-
nated pathname to invoke as an interpreter. This segment type is
meaningful only for executable files (though it may occur for
shared objects). However it may not occur more than once in a
file. If it is present, it must precede any loadable segment entry.

Linux man-pages 6.13 2024-06-15 2808

ELF(5) File Formats Manual ELF(5)

PT_NOTE
The array element specifies the location of notes (ElfN_Nhdr).

PT_SHLIB
This segment type is reserved but has unspecified semantics. Pro-
grams that contain an array element of this type do not conform to
the ABI.

PT_PHDR
The array element, if present, specifies the location and size of the
program header table itself, both in the file and in the memory im-
age of the program. This segment type may not occur more than
once in a file. Moreover, it may occur only if the program header
table is part of the memory image of the program. If it is present,
it must precede any loadable segment entry.

PT_LOPROC
PT_HIPROC

Values in the inclusive range [PT_LOPROC, PT_HIPROC] are
reserved for processor-specific semantics.

PT_GNU_STACK
GNU extension which is used by the Linux kernel to control the
state of the stack via the flags set in the p_flags member.

p_offset
This member holds the offset from the beginning of the file at which the first
byte of the segment resides.

p_vaddr
This member holds the virtual address at which the first byte of the segment
resides in memory.

p_paddr
On systems for which physical addressing is relevant, this member is reserved
for the segment’s physical address. Under BSD this member is not used and
must be zero.

p_filesz
This member holds the number of bytes in the file image of the segment. It
may be zero.

p_memsz
This member holds the number of bytes in the memory image of the segment.
It may be zero.

p_flags
This member holds a bit mask of flags relevant to the segment:

PF_X An executable segment.
PF_W

A writable segment.
PF_R A readable segment.

A text segment commonly has the flags PF_X and PF_R. A data segment
commonly has PF_W and PF_R.

Linux man-pages 6.13 2024-06-15 2809

ELF(5) File Formats Manual ELF(5)

p_align
This member holds the value to which the segments are aligned in memory
and in the file. Loadable process segments must have congruent values for
p_vaddr and p_offset, modulo the page size. Values of zero and one mean no
alignment is required. Otherwise, p_align should be a positive, integral power
of two, and p_vaddr should equal p_offset, modulo p_align.

Section header (Shdr)
A file’s section header table lets one locate all the file’s sections. The section header
table is an array of Elf32_Shdr or Elf64_Shdr structures. The ELF header’s e_shoff
member gives the byte offset from the beginning of the file to the section header table.
e_shnum holds the number of entries the section header table contains. e_shentsize
holds the size in bytes of each entry.

A section header table index is a subscript into this array. Some section header table
indices are reserved: the initial entry and the indices between SHN_LORESERVE
and SHN_HIRESERVE. The initial entry is used in ELF extensions for e_phnum,
e_shnum, and e_shstrndx; in other cases, each field in the initial entry is set to zero.
An object file does not have sections for these special indices:

SHN_UNDEF
This value marks an undefined, missing, irrelevant, or otherwise meaningless
section reference.

SHN_LORESERVE
This value specifies the lower bound of the range of reserved indices.

SHN_LOPROC
SHN_HIPROC

Values greater in the inclusive range [SHN_LOPROC, SHN_HIPROC] are
reserved for processor-specific semantics.

SHN_ABS
This value specifies the absolute value for the corresponding reference. For
example, a symbol defined relative to section number SHN_ABS has an ab-
solute value and is not affected by relocation.

SHN_COMMON
Symbols defined relative to this section are common symbols, such as FOR-
TRAN COMMON or unallocated C external variables.

SHN_HIRESERVE
This value specifies the upper bound of the range of reserved indices. The sys-
tem reserves indices between SHN_LORESERVE and SHN_HIRESERVE,
inclusive. The section header table does not contain entries for the reserved
indices.

The section header has the following structure:

typedef struct {
uint32_t sh_name;
uint32_t sh_type;
uint32_t sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;

Linux man-pages 6.13 2024-06-15 2810

ELF(5) File Formats Manual ELF(5)

uint32_t sh_size;
uint32_t sh_link;
uint32_t sh_info;
uint32_t sh_addralign;
uint32_t sh_entsize;

} Elf32_Shdr;

typedef struct {
uint32_t sh_name;
uint32_t sh_type;
uint64_t sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
uint64_t sh_size;
uint32_t sh_link;
uint32_t sh_info;
uint64_t sh_addralign;
uint64_t sh_entsize;

} Elf64_Shdr;

No real differences exist between the 32-bit and 64-bit section headers.

sh_name
This member specifies the name of the section. Its value is an index into the
section header string table section, giving the location of a null-terminated
string.

sh_type
This member categorizes the section’s contents and semantics.

SHT_NULL
This value marks the section header as inactive. It does not have an as-
sociated section. Other members of the section header have undefined
values.

SHT_PROGBITS
This section holds information defined by the program, whose format
and meaning are determined solely by the program.

SHT_SYMTAB
This section holds a symbol table. Typically, SHT_SYMTAB pro-
vides symbols for link editing, though it may also be used for dynamic
linking. As a complete symbol table, it may contain many symbols un-
necessary for dynamic linking. An object file can also contain a
SHT_DYNSYM section.

SHT_STRTAB
This section holds a string table. An object file may have multiple
string table sections.

SHT_RELA
This section holds relocation entries with explicit addends, such as
type Elf32_Rela for the 32-bit class of object files. An object may
have multiple relocation sections.

Linux man-pages 6.13 2024-06-15 2811

ELF(5) File Formats Manual ELF(5)

SHT_HASH
This section holds a symbol hash table. An object participating in dy-
namic linking must contain a symbol hash table. An object file may
have only one hash table.

SHT_DYNAMIC
This section holds information for dynamic linking. An object file
may have only one dynamic section.

SHT_NOTE
This section holds notes (ElfN_Nhdr).

SHT_NOBITS
A section of this type occupies no space in the file but otherwise re-
sembles SHT_PROGBITS. Although this section contains no bytes,
the sh_offset member contains the conceptual file offset.

SHT_REL
This section holds relocation offsets without explicit addends, such as
type Elf32_Rel for the 32-bit class of object files. An object file may
have multiple relocation sections.

SHT_SHLIB
This section is reserved but has unspecified semantics.

SHT_DYNSYM
This section holds a minimal set of dynamic linking symbols. An ob-
ject file can also contain a SHT_SYMTAB section.

SHT_LOPROC
SHT_HIPROC

Values in the inclusive range [SHT_LOPROC, SHT_HIPROC] are
reserved for processor-specific semantics.

SHT_LOUSER
This value specifies the lower bound of the range of indices reserved
for application programs.

SHT_HIUSER
This value specifies the upper bound of the range of indices reserved
for application programs. Section types between SHT_LOUSER and
SHT_HIUSER may be used by the application, without conflicting
with current or future system-defined section types.

sh_flags
Sections support one-bit flags that describe miscellaneous attributes. If a flag
bit is set in sh_flags, the attribute is "on" for the section. Otherwise, the at-
tribute is "off" or does not apply. Undefined attributes are set to zero.

SHF_WRITE
This section contains data that should be writable during process exe-
cution.

SHF_ALLOC
This section occupies memory during process execution. Some control
sections do not reside in the memory image of an object file. This

Linux man-pages 6.13 2024-06-15 2812

ELF(5) File Formats Manual ELF(5)

attribute is off for those sections.

SHF_EXECINSTR
This section contains executable machine instructions.

SHF_MASKPROC
All bits included in this mask are reserved for processor-specific se-
mantics.

sh_addr
If this section appears in the memory image of a process, this member holds
the address at which the section’s first byte should reside. Otherwise, the
member contains zero.

sh_offset
This member’s value holds the byte offset from the beginning of the file to the
first byte in the section. One section type, SHT_NOBITS, occupies no space
in the file, and its sh_offset member locates the conceptual placement in the
file.

sh_size
This member holds the section’s size in bytes. Unless the section type is
SHT_NOBITS, the section occupies sh_size bytes in the file. A section of
type SHT_NOBITS may have a nonzero size, but it occupies no space in the
file.

sh_link
This member holds a section header table index link, whose interpretation de-
pends on the section type.

sh_info
This member holds extra information, whose interpretation depends on the
section type.

sh_addralign
Some sections have address alignment constraints. If a section holds a double-
word, the system must ensure doubleword alignment for the entire section.
That is, the value of sh_addr must be congruent to zero, modulo the value of
sh_addralign. Only zero and positive integral powers of two are allowed. The
value 0 or 1 means that the section has no alignment constraints.

sh_entsize
Some sections hold a table of fixed-sized entries, such as a symbol table. For
such a section, this member gives the size in bytes for each entry. This mem-
ber contains zero if the section does not hold a table of fixed-size entries.

Various sections hold program and control information:

.bss This section holds uninitialized data that contributes to the program’s memory
image. By definition, the system initializes the data with zeros when the pro-
gram begins to run. This section is of type SHT_NOBITS. The attribute
types are SHF_ALLOC and SHF_WRITE.

.comment
This section holds version control information. This section is of type
SHT_PROGBITS. No attribute types are used.

Linux man-pages 6.13 2024-06-15 2813

ELF(5) File Formats Manual ELF(5)

.ctors This section holds initialized pointers to the C++ constructor functions. This
section is of type SHT_PROGBITS. The attribute types are SHF_ALLOC
and SHF_WRITE.

.data This section holds initialized data that contribute to the program’s memory im-
age. This section is of type SHT_PROGBITS. The attribute types are
SHF_ALLOC and SHF_WRITE.

.data1
This section holds initialized data that contribute to the program’s memory im-
age. This section is of type SHT_PROGBITS. The attribute types are
SHF_ALLOC and SHF_WRITE.

.debug
This section holds information for symbolic debugging. The contents are un-
specified. This section is of type SHT_PROGBITS. No attribute types are
used.

.dtors This section holds initialized pointers to the C++ destructor functions. This
section is of type SHT_PROGBITS. The attribute types are SHF_ALLOC
and SHF_WRITE.

.dynamic
This section holds dynamic linking information. The section’s attributes will
include the SHF_ALLOC bit. Whether the SHF_WRITE bit is set is
processor-specific. This section is of type SHT_DYNAMIC. See the attrib-
utes above.

.dynstr
This section holds strings needed for dynamic linking, most commonly the
strings that represent the names associated with symbol table entries. This
section is of type SHT_STRTAB. The attribute type used is SHF_ALLOC.

.dynsym
This section holds the dynamic linking symbol table. This section is of type
SHT_DYNSYM. The attribute used is SHF_ALLOC.

.fini This section holds executable instructions that contribute to the process termi-
nation code. When a program exits normally the system arranges to execute
the code in this section. This section is of type SHT_PROGBITS. The at-
tributes used are SHF_ALLOC and SHF_EXECINSTR.

.gnu.version
This section holds the version symbol table, an array of ElfN_Half elements.
This section is of type SHT_GNU_versym. The attribute type used is
SHF_ALLOC.

.gnu.version_d
This section holds the version symbol definitions, a table of ElfN_Verdef
structures. This section is of type SHT_GNU_verdef. The attribute type used
is SHF_ALLOC.

.gnu.version_r
This section holds the version symbol needed elements, a table of
ElfN_Verneed structures. This section is of type SHT_GNU_versym. The

Linux man-pages 6.13 2024-06-15 2814

ELF(5) File Formats Manual ELF(5)

attribute type used is SHF_ALLOC.

.got This section holds the global offset table. This section is of type
SHT_PROGBITS. The attributes are processor-specific.

.hash This section holds a symbol hash table. This section is of type SHT_HASH.
The attribute used is SHF_ALLOC.

.init This section holds executable instructions that contribute to the process initial-
ization code. When a program starts to run the system arranges to execute the
code in this section before calling the main program entry point. This section
is of type SHT_PROGBITS. The attributes used are SHF_ALLOC and
SHF_EXECINSTR.

.interp
This section holds the pathname of a program interpreter. If the file has a
loadable segment that includes the section, the section’s attributes will include
the SHF_ALLOC bit. Otherwise, that bit will be off. This section is of type
SHT_PROGBITS.

.line This section holds line number information for symbolic debugging, which de-
scribes the correspondence between the program source and the machine code.
The contents are unspecified. This section is of type SHT_PROGBITS. No
attribute types are used.

.note This section holds various notes. This section is of type SHT_NOTE. No at-
tribute types are used.

.note.ABI-tag
This section is used to declare the expected run-time ABI of the ELF image. It
may include the operating system name and its run-time versions. This sec-
tion is of type SHT_NOTE. The only attribute used is SHF_ALLOC.

.note.gnu.build-id
This section is used to hold an ID that uniquely identifies the contents of the
ELF image. Different files with the same build ID should contain the same ex-
ecutable content. See the --build-id option to the GNU linker (ld (1)) for
more details. This section is of type SHT_NOTE. The only attribute used is
SHF_ALLOC.

.note.GNU-stack
This section is used in Linux object files for declaring stack attributes. This
section is of type SHT_PROGBITS. The only attribute used is SHF_EX-
ECINSTR. This indicates to the GNU linker that the object file requires an
executable stack.

.note.openbsd.ident
OpenBSD native executables usually contain this section to identify them-
selves so the kernel can bypass any compatibility ELF binary emulation tests
when loading the file.

.plt This section holds the procedure linkage table. This section is of type
SHT_PROGBITS. The attributes are processor-specific.

Linux man-pages 6.13 2024-06-15 2815

ELF(5) File Formats Manual ELF(5)

.relNAME
This section holds relocation information as described below. If the file has a
loadable segment that includes relocation, the section’s attributes will include
the SHF_ALLOC bit. Otherwise, the bit will be off. By convention,
"NAME" is supplied by the section to which the relocations apply. Thus a re-
location section for .text normally would have the name .rel.text. This section
is of type SHT_REL.

.relaNAME
This section holds relocation information as described below. If the file has a
loadable segment that includes relocation, the section’s attributes will include
the SHF_ALLOC bit. Otherwise, the bit will be off. By convention,
"NAME" is supplied by the section to which the relocations apply. Thus a re-
location section for .text normally would have the name .rela.text. This sec-
tion is of type SHT_RELA.

.rodata
This section holds read-only data that typically contributes to a nonwritable
segment in the process image. This section is of type SHT_PROGBITS. The
attribute used is SHF_ALLOC.

.rodata1
This section holds read-only data that typically contributes to a nonwritable
segment in the process image. This section is of type SHT_PROGBITS. The
attribute used is SHF_ALLOC.

.shstrtab
This section holds section names. This section is of type SHT_STRTAB. No
attribute types are used.

.strtab
This section holds strings, most commonly the strings that represent the names
associated with symbol table entries. If the file has a loadable segment that in-
cludes the symbol string table, the section’s attributes will include the
SHF_ALLOC bit. Otherwise, the bit will be off. This section is of type
SHT_STRTAB.

.symtab
This section holds a symbol table. If the file has a loadable segment that in-
cludes the symbol table, the section’s attributes will include the SHF_ALLOC
bit. Otherwise, the bit will be off. This section is of type SHT_SYMTAB.

.text This section holds the "text", or executable instructions, of a program. This
section is of type SHT_PROGBITS. The attributes used are SHF_ALLOC
and SHF_EXECINSTR.

String and symbol tables
String table sections hold null-terminated character sequences, commonly called
strings. The object file uses these strings to represent symbol and section names. One
references a string as an index into the string table section. The first byte, which is in-
dex zero, is defined to hold a null byte ('\0'). Similarly, a string table’s last byte is de-
fined to hold a null byte, ensuring null termination for all strings.

An object file’s symbol table holds information needed to locate and relocate a

Linux man-pages 6.13 2024-06-15 2816

ELF(5) File Formats Manual ELF(5)

program’s symbolic definitions and references. A symbol table index is a subscript
into this array.

typedef struct {
uint32_t st_name;
Elf32_Addr st_value;
uint32_t st_size;
unsigned char st_info;
unsigned char st_other;
uint16_t st_shndx;

} Elf32_Sym;

typedef struct {
uint32_t st_name;
unsigned char st_info;
unsigned char st_other;
uint16_t st_shndx;
Elf64_Addr st_value;
uint64_t st_size;

} Elf64_Sym;

The 32-bit and 64-bit versions have the same members, just in a different order.

st_name
This member holds an index into the object file’s symbol string table, which
holds character representations of the symbol names. If the value is nonzero,
it represents a string table index that gives the symbol name. Otherwise, the
symbol has no name.

st_value
This member gives the value of the associated symbol.

st_size
Many symbols have associated sizes. This member holds zero if the symbol
has no size or an unknown size.

st_info
This member specifies the symbol’s type and binding attributes:

STT_NOTYPE
The symbol’s type is not defined.

STT_OBJECT
The symbol is associated with a data object.

STT_FUNC
The symbol is associated with a function or other executable code.

STT_SECTION
The symbol is associated with a section. Symbol table entries of this
type exist primarily for relocation and normally have STB_LOCAL
bindings.

STT_FILE
By convention, the symbol’s name gives the name of the source file as-
sociated with the object file. A file symbol has STB_LOCAL

Linux man-pages 6.13 2024-06-15 2817

ELF(5) File Formats Manual ELF(5)

bindings, its section index is SHN_ABS, and it precedes the other
STB_LOCAL symbols of the file, if it is present.

STT_LOPROC
STT_HIPROC

Values in the inclusive range [STT_LOPROC, STT_HIPROC] are
reserved for processor-specific semantics.

STB_LOCAL
Local symbols are not visible outside the object file containing their
definition. Local symbols of the same name may exist in multiple files
without interfering with each other.

STB_GLOBAL
Global symbols are visible to all object files being combined. One
file’s definition of a global symbol will satisfy another file’s undefined
reference to the same symbol.

STB_WEAK
Weak symbols resemble global symbols, but their definitions have
lower precedence.

STB_LOPROC
STB_HIPROC

Values in the inclusive range [STB_LOPROC, STB_HIPROC] are
reserved for processor-specific semantics.

There are macros for packing and unpacking the binding and type fields:

ELF32_ST_BIND(info)
ELF64_ST_BIND(info)

Extract a binding from an st_info value.

ELF32_ST_TYPE(info)
ELF64_ST_TYPE(info)

Extract a type from an st_info value.

ELF32_ST_INFO(bind , type)
ELF64_ST_INFO(bind , type)

Convert a binding and a type into an st_info value.

st_other
This member defines the symbol visibility.

STV_DEFAULT
Default symbol visibility rules. Global and weak symbols are available
to other modules; references in the local module can be interposed by
definitions in other modules.

STV_INTERNAL
Processor-specific hidden class.

STV_HIDDEN
Symbol is unavailable to other modules; references in the local module
always resolve to the local symbol (i.e., the symbol can’t be interposed
by definitions in other modules).

Linux man-pages 6.13 2024-06-15 2818

ELF(5) File Formats Manual ELF(5)

STV_PROTECTED
Symbol is available to other modules, but references in the local mod-
ule always resolve to the local symbol.

There are macros for extracting the visibility type:

ELF32_ST_VISIBILITY (other) or ELF64_ST_VISIBILITY (other)

st_shndx
Every symbol table entry is "defined" in relation to some section. This mem-
ber holds the relevant section header table index.

Relocation entries (Rel & Rela)
Relocation is the process of connecting symbolic references with symbolic defini-
tions. Relocatable files must have information that describes how to modify their sec-
tion contents, thus allowing executable and shared object files to hold the right infor-
mation for a process’s program image. Relocation entries are these data.

Relocation structures that do not need an addend:

typedef struct {
Elf32_Addr r_offset;
uint32_t r_info;

} Elf32_Rel;

typedef struct {
Elf64_Addr r_offset;
uint64_t r_info;

} Elf64_Rel;

Relocation structures that need an addend:

typedef struct {
Elf32_Addr r_offset;
uint32_t r_info;
int32_t r_addend;

} Elf32_Rela;

typedef struct {
Elf64_Addr r_offset;
uint64_t r_info;
int64_t r_addend;

} Elf64_Rela;

r_offset
This member gives the location at which to apply the relocation action. For a
relocatable file, the value is the byte offset from the beginning of the section to
the storage unit affected by the relocation. For an executable file or shared ob-
ject, the value is the virtual address of the storage unit affected by the reloca-
tion.

r_info This member gives both the symbol table index with respect to which the relo-
cation must be made and the type of relocation to apply. Relocation types are
processor-specific. When the text refers to a relocation entry’s relocation type
or symbol table index, it means the result of applying ELF[32|64]_R_TYPE
or ELF[32|64]_R_SYM, respectively, to the entry’s r_info member.

Linux man-pages 6.13 2024-06-15 2819

ELF(5) File Formats Manual ELF(5)

r_addend
This member specifies a constant addend used to compute the value to be
stored into the relocatable field.

Dynamic tags (Dyn)
The .dynamic section contains a series of structures that hold relevant dynamic linking
information. The d_tag member controls the interpretation of d_un.

typedef struct {
Elf32_Sword d_tag;
union {

Elf32_Word d_val;
Elf32_Addr d_ptr;

} d_un;
} Elf32_Dyn;
extern Elf32_Dyn _DYNAMIC[];

typedef struct {
Elf64_Sxword d_tag;
union {

Elf64_Xword d_val;
Elf64_Addr d_ptr;

} d_un;
} Elf64_Dyn;
extern Elf64_Dyn _DYNAMIC[];

d_tag This member may have any of the following values:

DT_NULL Marks end of dynamic section

DT_NEEDED
String table offset to name of a needed library

DT_PLTRELSZ
Size in bytes of PLT relocation entries

DT_PLTGOT
Address of PLT and/or GOT

DT_HASH Address of symbol hash table

DT_STRTAB
Address of string table

DT_SYMTAB
Address of symbol table

DT_RELA Address of Rela relocation table

DT_RELASZ
Size in bytes of the Rela relocation table

DT_RELAENT
Size in bytes of a Rela relocation table entry

DT_STRSZ Size in bytes of string table

Linux man-pages 6.13 2024-06-15 2820

ELF(5) File Formats Manual ELF(5)

DT_SYMENT
Size in bytes of a symbol table entry

DT_INIT Address of the initialization function

DT_FINI Address of the termination function

DT_SONAME
String table offset to name of shared object

DT_RPATH String table offset to search path for direct and indirect library
dependencies

DT_SYMBOLIC
Alert linker to search this shared object before the executable
for symbols

DT_REL Address of Rel relocation table

DT_RELSZ Size in bytes of Rel relocation table

DT_RELENT
Size in bytes of a Rel table entry

DT_PLTREL
Type of relocation entry to which the PLT refers (Rela or Rel)

DT_DEBUG Undefined use for debugging

DT_TEXTREL
Absence of this entry indicates that no relocation entries should
apply to a nonwritable segment

DT_JMPREL
Address of relocation entries associated solely with the PLT

DT_BIND_NOW
Instruct dynamic linker to process all relocations before trans-
ferring control to the executable

DT_RUNPATH
String table offset to search path for direct library dependencies

DT_LOPROC
DT_HIPROC

Values in the inclusive range [DT_LOPROC, DT_HIPROC]
are reserved for processor-specific semantics

d_val This member represents integer values with various interpretations.

d_ptr This member represents program virtual addresses. When interpreting these
addresses, the actual address should be computed based on the original file
value and memory base address. Files do not contain relocation entries to
fixup these addresses.

_DYNAMIC
Array containing all the dynamic structures in the .dynamic section. This is
automatically populated by the linker.

Linux man-pages 6.13 2024-06-15 2821

ELF(5) File Formats Manual ELF(5)

Notes (Nhdr)
ELF notes allow for appending arbitrary information for the system to use. They are
largely used by core files (e_type of ET_CORE), but many projects define their own
set of extensions. For example, the GNU tool chain uses ELF notes to pass informa-
tion from the linker to the C library.

Note sections contain a series of notes (see the struct definitions below). Each note is
followed by the name field (whose length is defined in n_namesz) and then by the de-
scriptor field (whose length is defined in n_descsz) and whose starting address has a 4
byte alignment. Neither field is defined in the note struct due to their arbitrary
lengths.

An example for parsing out two consecutive notes should clarify their layout in mem-
ory:

void *memory, *name, *desc;
Elf64_Nhdr *note, *next_note;

/* The buffer is pointing to the start of the section/segment. */
note = memory;

/* If the name is defined, it follows the note. */
name = note->n_namesz == 0 ? NULL : memory + sizeof(*note);

/* If the descriptor is defined, it follows the name
(with alignment). */

desc = note->n_descsz == 0 ? NULL :
memory + sizeof(*note) + ALIGN_UP(note->n_namesz, 4);

/* The next note follows both (with alignment). */
next_note = memory + sizeof(*note) +

ALIGN_UP(note->n_namesz, 4) +
ALIGN_UP(note->n_descsz, 4);

Keep in mind that the interpretation of n_type depends on the namespace defined by
the n_namesz field. If the n_namesz field is not set (e.g., is 0), then there are two sets
of notes: one for core files and one for all other ELF types. If the namespace is un-
known, then tools will usually fallback to these sets of notes as well.

typedef struct {
Elf32_Word n_namesz;
Elf32_Word n_descsz;
Elf32_Word n_type;

} Elf32_Nhdr;

typedef struct {
Elf64_Word n_namesz;
Elf64_Word n_descsz;
Elf64_Word n_type;

} Elf64_Nhdr;

Linux man-pages 6.13 2024-06-15 2822

ELF(5) File Formats Manual ELF(5)

n_namesz
The length of the name field in bytes. The contents will immediately follow
this note in memory. The name is null terminated. For example, if the name is
"GNU", then n_namesz will be set to 4.

n_descsz
The length of the descriptor field in bytes. The contents will immediately fol-
low the name field in memory.

n_type
Depending on the value of the name field, this member may have any of the
following values:

Core files (e_type = ET_CORE)
Notes used by all core files. These are highly operating system or archi-
tecture specific and often require close coordination with kernels, C li-
braries, and debuggers. These are used when the namespace is the de-
fault (i.e., n_namesz will be set to 0), or a fallback when the namespace
is unknown.

NT_PRSTATUS prstatus struct
NT_FPREGSET fpregset struct
NT_PRPSINFO prpsinfo struct
NT_PRXREG prxregset struct
NT_TASKSTRUCT task structure
NT_PLATFORM String from sysinfo(SI_PLATFORM)
NT_AUXV auxv array
NT_GWINDOWS gwindows struct
NT_ASRS asrset struct
NT_PSTATUS pstatus struct
NT_PSINFO psinfo struct
NT_PRCRED prcred struct
NT_UTSNAME utsname struct
NT_LWPSTATUS lwpstatus struct
NT_LWPSINFO lwpinfo struct
NT_PRFPXREG fprxregset struct
NT_SIGINFO siginfo_t (size might increase over time)
NT_FILE Contains information about mapped files
NT_PRXFPREG user_fxsr_struct
NT_PPC_VMX PowerPC Altivec/VMX registers
NT_PPC_SPE PowerPC SPE/EVR registers
NT_PPC_VSX PowerPC VSX registers
NT_386_TLS i386 TLS slots (struct user_desc)
NT_386_IOPERM x86 io permission bitmap (1=deny)
NT_X86_XSTATE x86 extended state using xsave
NT_S390_HIGH_GPRS

s390 upper register halves
NT_S390_TIMER s390 timer register
NT_S390_TODCMP s390 time-of-day (TOD) clock comparator

register

Linux man-pages 6.13 2024-06-15 2823

ELF(5) File Formats Manual ELF(5)

NT_S390_TODPREG s390 time-of-day (TOD) programmable regis-
ter

NT_S390_CTRS s390 control registers
NT_S390_PREFIX s390 prefix register
NT_S390_LAST_BREAK

s390 breaking event address
NT_S390_SYSTEM_CALL

s390 system call restart data
NT_S390_TDB s390 transaction diagnostic block
NT_ARM_VFP ARM VFP/NEON registers
NT_ARM_TLS ARM TLS register
NT_ARM_HW_BREAK

ARM hardware breakpoint registers
NT_ARM_HW_WATCH

ARM hardware watchpoint registers
NT_ARM_SYSTEM_CALL

ARM system call number

n_name = GNU
Extensions used by the GNU tool chain.

NT_GNU_ABI_TAG
Operating system (OS) ABI information. The desc field will be
4 words:

[0] OS descriptor (ELF_NOTE_OS_LINUX,
ELF_NOTE_OS_GNU, and so on)‘

[1] major version of the ABI
[2] minor version of the ABI
[3] subminor version of the ABI

NT_GNU_HWCAP
Synthetic hwcap information. The desc field begins with two
words:

[0] number of entries
[1] bit mask of enabled entries

Then follow variable-length entries, one byte followed by a null-
terminated hwcap name string. The byte gives the bit number to
test if enabled, (1U << bit) & bit mask.

NT_GNU_BUILD_ID
Unique build ID as generated by the GNU ld(1) --build-id op-
tion. The desc consists of any nonzero number of bytes.

NT_GNU_GOLD_VERSION
The desc contains the GNU Gold linker version used.

Default/unknown namespace (e_type != ET_CORE)
These are used when the namespace is the default (i.e., n_namesz will
be set to 0), or a fallback when the namespace is unknown.

Linux man-pages 6.13 2024-06-15 2824

ELF(5) File Formats Manual ELF(5)

NT_VERSION
A version string of some sort.

NT_ARCH Architecture information.

NOTES
ELF first appeared in System V. The ELF format is an adopted standard.

The extensions for e_phnum, e_shnum, and e_shstrndx respectively are Linux exten-
sions. Sun, BSD, and AMD64 also support them; for further information, look under
SEE ALSO.

SEE ALSO
as(1), elfedit(1), gdb(1), ld(1), nm(1), objcopy(1), objdump(1), patchelf (1), read-
elf (1), size(1), strings(1), strip(1), execve(2), dl_iterate_phdr(3), core(5), ld.so(8)

Hewlett-Packard, Elf-64 Object File Format.

Santa Cruz Operation, System V Application Binary Interface.

UNIX System Laboratories, "Object Files", Executable and Linking Format (ELF).

Sun Microsystems, Linker and Libraries Guide.

AMD64 ABI Draft, System V Application Binary Interface AMD64 Architecture
Processor Supplement.

Linux man-pages 6.13 2024-06-15 2825

erofs(5) File Formats Manual erofs(5)

NAME
erofs - the Enhanced Read-Only File System

DESCRIPTION
erofs is a create-once read-only filesystem, with support for compression and a multi-
device backing store.

There are two inode formats:

• 32-byte compact with 16-bit UID/GID, 32-bit file size, and no file times
• 64-byte extended with 32-bit UID/GID, 64-bit file size, and a modification time

(st_mtim).

Mount options
user_xattr
nouser_xattr

Controls whether user extended attributes are exposed. Defaults to yes.

acl
noacl Controls whether POSIX acl(5)s are exposed. Defaults to yes.

cache_strategy=disabled|readahead|readaround
Cache allocation for compressed files: never, if reading from start of file, re-
gardless of position. Defaults to readaround.

dax
dax=always|never

Direct Access control. If always and the source device supports DAX, un-
compressed non-inlined files will be read directly, without going through the
page cache. dax is a synonym for always. Defaults to unset, which is equiva-
lent to never.

device=blobdev
Add extra device holding some of the data. Must be given as many times and
in the same order as --blobdev was to mkfs.erofs(1)

domain_id=did
fsid=id

Control CacheFiles on-demand read support. To be documented.

VERSIONS
erofs images are versioned through the use of feature flags; these are listed in the -E
section of mkfs.erofs(1),

CONFIGURATION
Linux must be configured with the CONFIG_EROFS_FS option to mount EROFS
filesystems. There are sub-configuration items that restrict the availability of some of
the parameters above.

SEE ALSO
mkfs.erofs(1), fsck.erofs(1), dump.erofs(1)

Documentation/filesystems/erofs.txt in the Linux source.

Linux man-pages 6.13 2024-05-02 2826

filesystems(5) File Formats Manual filesystems(5)

NAME
filesystems - Linux filesystem types: ext, ext2, ext3, ext4, hpfs, iso9660, JFS, minix,
msdos, ncpfs nfs, ntfs, proc, Reiserfs, smb, sysv, umsdos, vfat, XFS, xiafs

DESCRIPTION
When, as is customary, the proc filesystem is mounted on /proc, you can find in the
file /proc/filesystems which filesystems your kernel currently supports; see proc(5) for
more details. There is also a legacy sysfs(2) system call (whose availability is
controlled by the CONFIG_SYSFS_SYSCALL kernel build configuration option
since Linux 3.15) that enables enumeration of the currently available filesystem types
regardless of /proc availability and/or sanity.

If you need a currently unsupported filesystem, insert the corresponding kernel
module or recompile the kernel.

In order to use a filesystem, you have to mount it; see mount(2) and mount(8)

The following list provides a short description of the available or historically available
filesystems in the Linux kernel. See the kernel documentation for a comprehensive
description of all options and limitations.

erofs is the Enhanced Read-Only File System, stable since Linux 5.4. See erofs(5).

ext is an elaborate extension of the minix filesystem. It has been completely
superseded by the second version of the extended filesystem (ext2) and has
been removed from the kernel (in Linux 2.1.21).

ext2 is a disk filesystem that was used by Linux for fixed disks as well as
removable media. The second extended filesystem was designed as an
extension of the extended filesystem (ext). See ext2(5)

ext3 is a journaling version of the ext2 filesystem. It is easy to switch back and
forth between ext2 and ext3. See ext3(5)

ext4 is a set of upgrades to ext3 including substantial performance and reliability
enhancements, plus large increases in volume, file, and directory size limits.
See ext4(5)

hpfs is the High Performance Filesystem, used in OS/2. This filesystem is read-
only under Linux due to the lack of available documentation.

iso9660
is a CD-ROM filesystem type conforming to the ISO/IEC 9660 standard.

High Sierra
Linux supports High Sierra, the precursor to the ISO/IEC 9660
standard for CD-ROM filesystems. It is automatically recognized
within the iso9660 filesystem support under Linux.

Rock Ridge
Linux also supports the System Use Sharing Protocol records specified
by the Rock Ridge Interchange Protocol. They are used to further
describe the files in the iso9660 filesystem to a UNIX host, and provide
information such as long filenames, UID/GID, POSIX permissions,
and devices. It is automatically recognized within the iso9660
filesystem support under Linux.

Linux man-pages 6.13 2024-05-02 2827

filesystems(5) File Formats Manual filesystems(5)

JFS is a journaling filesystem, developed by IBM, that was integrated into Linux
2.4.24.

minix is the filesystem used in the Minix operating system, the first to run under
Linux. It has a number of shortcomings, including a 64 MB partition size
limit, short filenames, and a single timestamp. It remains useful for floppies
and RAM disks.

msdos
is the filesystem used by DOS, Windows, and some OS/2 computers. msdos
filenames can be no longer than 8 characters, followed by an optional period
and 3 character extension.

ncpfs is a network filesystem that supports the NCP protocol, used by Novell
NetWare. It was removed from the kernel in Linux 4.17.

To use ncpfs, you need special programs, which can be found at
〈ftp://ftp.gwdg.de/pub/linux/misc/ncpfs〉.

nfs is the network filesystem used to access disks located on remote computers.

ntfs is the filesystem native to Microsoft Windows NT, supporting features like
ACLs, journaling, encryption, and so on.

proc is a pseudo filesystem which is used as an interface to kernel data structures
rather than reading and interpreting /dev/kmem. In particular, its files do not
take disk space. See proc(5).

Reiserfs
is a journaling filesystem, designed by Hans Reiser, that was integrated into
Linux 2.4.1.

smb is a network filesystem that supports the SMB protocol, used by Windows.
See 〈https://www.samba.org/samba/smbfs/〉.

sysv is an implementation of the System V/Coherent filesystem for Linux. It im-
plements all of Xenix FS, System V/386 FS, and Coherent FS.

umsdos
is an extended DOS filesystem used by Linux. It adds capability for long file-
names, UID/GID, POSIX permissions, and special files (devices, named pipes,
etc.) under the DOS filesystem, without sacrificing compatibility with DOS.

tmpfs is a filesystem whose contents reside in virtual memory. Since the files on
such filesystems typically reside in RAM, file access is extremely fast. See
tmpfs(5).

vfat is an extended FAT filesystem used by Microsoft Windows95 and Windows
NT. vfat adds the capability to use long filenames under the MSDOS filesys-
tem.

XFS is a journaling filesystem, developed by SGI, that was integrated into Linux
2.4.20.

xiafs was designed and implemented to be a stable, safe filesystem by extending the
Minix filesystem code. It provides the basic most requested features without
undue complexity. The xiafs filesystem is no longer actively developed or
maintained. It was removed from the kernel in Linux 2.1.21.

Linux man-pages 6.13 2024-05-02 2828

filesystems(5) File Formats Manual filesystems(5)

SEE ALSO
fuse(4), btrfs(5), ext2(5), ext3(5), ext4(5), nfs(5), proc(5), sysfs(5), tmpfs(5), xfs(5),
fsck(8), mkfs(8), mount(8)

Linux man-pages 6.13 2024-05-02 2829

ftpusers(5) File Formats Manual ftpusers(5)

NAME
ftpusers - list of users that may not log in via the FTP daemon

DESCRIPTION
The text file ftpusers contains a list of users that may not log in using the File Trans-
fer Protocol (FTP) server daemon. This file is used not merely for system administra-
tion purposes but also for improving security within a TCP/IP networked environ-
ment.

The ftpusers file will typically contain a list of the users that either have no business
using ftp or have too many privileges to be allowed to log in through the FTP server
daemon. Such users usually include root, daemon, bin, uucp, and news.

If your FTP server daemon doesn’t use ftpusers, then it is suggested that you read its
documentation to find out how to block access for certain users. Washington Univer-
sity FTP server Daemon (wuftpd) and Professional FTP Daemon (proftpd) are known
to make use of ftpusers.

Format
The format of ftpusers is very simple. There is one account name (or username) per
line. Lines starting with a # are ignored.

FILES
/etc/ftpusers

SEE ALSO
passwd(5), proftpd(8), wuftpd(8)

Linux man-pages 6.13 2024-05-02 2830

gai.conf (5) File Formats Manual gai.conf (5)

NAME
gai.conf - getaddrinfo(3) configuration file

DESCRIPTION
A call to getaddrinfo(3) might return multiple answers. According to RFC 3484 these
answers must be sorted so that the answer with the highest success rate is first in the
list. The RFC provides an algorithm for the sorting. The static rules are not always
adequate, though. For this reason, the RFC also requires that system administrators
should have the possibility to dynamically change the sorting. For the glibc imple-
mentation, this can be achieved with the /etc/gai.conf file.

Each line in the configuration file consists of a keyword and its parameters. White
spaces in any place are ignored. Lines starting with '#' are comments and are ignored.

The keywords currently recognized are:

label netmask precedence
The value is added to the label table used in the RFC 3484 sorting. If any la-
bel definition is present in the configuration file, the default table is not used.
All the label definitions of the default table which are to be maintained have to
be duplicated. Following the keyword, the line has to contain a network mask
and a precedence value.

precedence netmask precedence
This keyword is similar to label, but instead the value is added to the prece-
dence table as specified in RFC 3484. Once again, the presence of a single
precedence line in the configuration file causes the default table to not be
used.

reload <yes|no>
This keyword controls whether a process checks whether the configuration file
has been changed since the last time it was read. If the value is "yes", the file
is reread. This might cause problems in multithreaded applications and is gen-
erally a bad idea. The default is "no".

scopev4 mask value
Add another rule to the RFC 3484 scope table for IPv4 address. By default,
the scope IDs described in section 3.2 in RFC 3438 are used. Changing these
defaults should hardly ever be necessary.

FILES
/etc/gai.conf

VERSIONS
The gai.conf file is supported since glibc 2.5.

EXAMPLES
The default table according to RFC 3484 would be specified with the following con-
figuration file:

label ::1/128 0
label ::/0 1
label 2002::/16 2
label ::/96 3
label ::ffff:0:0/96 4

Linux man-pages 6.13 2024-05-02 2831

gai.conf (5) File Formats Manual gai.conf (5)

precedence ::1/128 50
precedence ::/0 40
precedence 2002::/16 30
precedence ::/96 20
precedence ::ffff:0:0/96 10

SEE ALSO
getaddrinfo(3), RFC 3484

Linux man-pages 6.13 2024-05-02 2832

group(5) File Formats Manual group(5)

NAME
group - user group file

DESCRIPTION
The /etc/group file is a text file that defines the groups on the system. There is one
entry per line, with the following format:

group_name:password:GID:user_list

The fields are as follows:

group_name
the name of the group.

password
the (encrypted) group password. If this field is empty, no password is needed.

GID the numeric group ID.

user_list
a list of the usernames that are members of this group, separated by commas.

FILES
/etc/group

BUGS
As the 4.2BSD initgroups(3) man page says: no one seems to keep /etc/group up-to-
date.

SEE ALSO
chgrp(1), gpasswd(1), groups(1), login(1), newgrp(1), sg(1), getgrent(3), getgr-
nam(3), gshadow(5), passwd(5), vigr(8)

Linux man-pages 6.13 2024-05-02 2833

host.conf (5) File Formats Manual host.conf (5)

NAME
host.conf - resolver configuration file

DESCRIPTION
The file /etc/host.conf contains configuration information specific to the resolver li-
brary. It should contain one configuration keyword per line, followed by appropriate
configuration information. The following keywords are recognized:

trim This keyword may be listed more than once. Each time it should be followed
by a list of domains, separated by colons (':'), semicolons (';') or commas (','),
with the leading dot. When set, the resolver library will automatically trim the
given domain name from the end of any hostname resolved via DNS. This is
intended for use with local hosts and domains. (Related note: trim will not af-
fect hostnames gathered via NIS or the hosts(5) file. Care should be taken to
ensure that the first hostname for each entry in the hosts file is fully qualified
or unqualified, as appropriate for the local installation.)

multi Valid values are on and off . If set to on, the resolver library will return all
valid addresses for a host that appears in the /etc/hosts file, instead of only the
first. This is off by default, as it may cause a substantial performance loss at
sites with large hosts files.

reorder
Valid values are on and off . If set to on, the resolver library will attempt to re-
order host addresses so that local addresses (i.e., on the same subnet) are listed
first when a gethostbyname(3) is performed. Reordering is done for all lookup
methods. The default value is off .

ENVIRONMENT
The following environment variables can be used to allow users to override the behav-
ior which is configured in /etc/host.conf :

RESOLV_HOST_CONF
If set, this variable points to a file that should be read instead of /etc/host.conf .

RESOLV_MULTI
Overrides the multi command.

RESOLV_REORDER
Overrides the reorder command.

RESOLV_ADD_TRIM_DOMAINS
A list of domains, separated by colons (':'), semicolons (';'), or commas (','),
with the leading dot, which will be added to the list of domains that should be
trimmed.

RESOLV_OVERRIDE_TRIM_DOMAINS
A list of domains, separated by colons (':'), semicolons (';'), or commas (','),
with the leading dot, which will replace the list of domains that should be
trimmed. Overrides the trim command.

FILES
/etc/host.conf

Resolver configuration file

Linux man-pages 6.13 2024-05-02 2834

host.conf (5) File Formats Manual host.conf (5)

/etc/resolv.conf
Resolver configuration file

/etc/hosts
Local hosts database

NOTES
The following differences exist compared to the original implementation. A new
command spoof and a new environment variable RESOLV_SPOOF_CHECK can
take arguments like off , nowarn, and warn. Line comments can appear anywhere and
not only at the beginning of a line.

Historical
The nsswitch.conf(5) file is the modern way of controlling the order of host lookups.

In glibc 2.4 and earlier, the following keyword is recognized:

order This keyword specifies how host lookups are to be performed. It should be
followed by one or more lookup methods, separated by commas. Valid meth-
ods are bind , hosts, and nis.

RESOLV_SERV_ORDER
Overrides the order command.

Since glibc 2.0.7, and up through glibc 2.24, the following keywords and environment
variable have been recognized but never implemented:

nospoof
Valid values are on and off . If set to on, the resolver library will attempt to
prevent hostname spoofing to enhance the security of rlogin and rsh. It works
as follows: after performing a host address lookup, the resolver library will
perform a hostname lookup for that address. If the two hostnames do not
match, the query fails. The default value is off .

spoofalert
Valid values are on and off . If this option is set to on and the nospoof option
is also set, the resolver library will log a warning of the error via the syslog fa-
cility. The default value is off .

spoof Valid values are off , nowarn, and warn. If this option is set to off , spoofed
addresses are permitted and no warnings will be emitted via the syslog facility.
If this option is set to warn, the resolver library will attempt to prevent host-
name spoofing to enhance the security and log a warning of the error via the
syslog facility. If this option is set to nowarn, the resolver library will attempt
to prevent hostname spoofing to enhance the security but not emit warnings
via the syslog facility. Setting this option to anything else is equal to setting it
to nowarn.

RESOLV_SPOOF_CHECK
Overrides the nospoof , spoofalert, and spoof commands in the same way as
the spoof command is parsed. Valid values are off , nowarn, and warn.

SEE ALSO
gethostbyname(3), hosts(5), nsswitch.conf(5), resolv.conf(5), hostname(7), named(8)

Linux man-pages 6.13 2024-05-02 2835

hosts(5) File Formats Manual hosts(5)

NAME
hosts - static table lookup for hostnames

SYNOPSIS
/etc/hosts

DESCRIPTION
This manual page describes the format of the /etc/hosts file. This file is a simple text
file that associates IP addresses with hostnames, one line per IP address. For each
host a single line should be present with the following information:

IP_address canonical_hostname [aliases...]

The IP address can conform to either IPv4 or IPv6. Fields of the entry are separated
by any number of blanks and/or tab characters. Text from a "#" character until the
end of the line is a comment, and is ignored. Host names may contain only alphanu-
meric characters, minus signs ("-"), and periods ("."). They must begin with an al-
phabetic character and end with an alphanumeric character. Optional aliases provide
for name changes, alternate spellings, shorter hostnames, or generic hostnames (for
example, localhost). If required, a host may have two separate entries in this file; one
for each version of the Internet Protocol (IPv4 and IPv6).

The Berkeley Internet Name Domain (BIND) Server implements the Internet name
server for UNIX systems. It augments or replaces the /etc/hosts file or hostname
lookup, and frees a host from relying on /etc/hosts being up to date and complete.

In modern systems, even though the host table has been superseded by DNS, it is still
widely used for:

bootstrapping
Most systems have a small host table containing the name and address infor-
mation for important hosts on the local network. This is useful when DNS is
not running, for example during system bootup.

NIS Sites that use NIS use the host table as input to the NIS host database. Even
though NIS can be used with DNS, most NIS sites still use the host table with
an entry for all local hosts as a backup.

isolated nodes
Very small sites that are isolated from the network use the host table instead of
DNS. If the local information rarely changes, and the network is not con-
nected to the Internet, DNS offers little advantage.

FILES
/etc/hosts

NOTES
Modifications to this file normally take effect immediately, except in cases where the
file is cached by applications.

Historical notes
RFC 952 gave the original format for the host table, though it has since changed.

Before the advent of DNS, the host table was the only way of resolving hostnames on
the fledgling Internet. Indeed, this file could be created from the official host data
base maintained at the Network Information Control Center (NIC), though local

Linux man-pages 6.13 2024-05-02 2836

hosts(5) File Formats Manual hosts(5)

changes were often required to bring it up to date regarding unofficial aliases and/or
unknown hosts. The NIC no longer maintains the hosts.txt files, though looking
around at the time of writing (circa 2000), there are historical hosts.txt files on the
WWW. I just found three, from 92, 94, and 95.

EXAMPLES
The following lines are desirable for IPv4 capable hosts
127.0.0.1 localhost

127.0.1.1 is often used for the FQDN of the machine
127.0.1.1 thishost.example.org thishost
192.168.1.10 foo.example.org foo
192.168.1.13 bar.example.org bar
146.82.138.7 master.debian.org master
209.237.226.90 www.opensource.org

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

SEE ALSO
hostname(1), resolver(3), host.conf(5), resolv.conf(5), resolver(5), hostname(7),
named(8)

Internet RFC 952

Linux man-pages 6.13 2024-05-02 2837

hosts.equiv(5) File Formats Manual hosts.equiv(5)

NAME
hosts.equiv - list of hosts and users that are granted "trusted" r command access to
your system

DESCRIPTION
The file /etc/hosts.equiv allows or denies hosts and users to use the r-commands (e.g.,
rlogin, rsh, or rcp) without supplying a password.

The file uses the following format:

+|[-]hostname|+@netgroup|-@netgroup [+|[-]username|+@netgroup|-@net-
group]

The hostname is the name of a host which is logically equivalent to the local host.
Users logged into that host are allowed to access like-named user accounts on the lo-
cal host without supplying a password. The hostname may be (optionally) preceded
by a plus (+) sign. If the plus sign is used alone, it allows any host to access your sys-
tem. You can explicitly deny access to a host by preceding the hostname by a minus
(-) sign. Users from that host must always supply additional credentials, including
possibly a password. For security reasons you should always use the FQDN of the
hostname and not the short hostname.

The username entry grants a specific user access to all user accounts (except root)
without supplying a password. That means the user is NOT restricted to like-named
accounts. The username may be (optionally) preceded by a plus (+) sign. You can
also explicitly deny access to a specific user by preceding the username with a minus
(-) sign. This says that the user is not trusted no matter what other entries for that
host exist.

Netgroups can be specified by preceding the netgroup by an @ sign.

Be extremely careful when using the plus (+) sign. A simple typographical error
could result in a standalone plus sign. A standalone plus sign is a wildcard character
that means "any host"!

FILES
/etc/hosts.equiv

NOTES
Some systems will honor the contents of this file only when it has owner root and no
write permission for anybody else. Some exceptionally paranoid systems even require
that there be no other hard links to the file.

Modern systems use the Pluggable Authentication Modules library (PAM). With
PAM a standalone plus sign is considered a wildcard character which means "any
host" only when the word promiscuous is added to the auth component line in your
PAM file for the particular service (e.g., rlogin).

EXAMPLES
Below are some example /etc/host.equiv or ~/.rhosts files.

Allow any user to log in from any host:

+

Allow any user from host with a matching local account to log in:

host

Linux man-pages 6.13 2024-05-02 2838

hosts.equiv(5) File Formats Manual hosts.equiv(5)

Note: the use of +host is never a valid syntax, including attempting to specify that any
user from the host is allowed.

Allow any user from host to log in:

host +

Note: this is distinct from the previous example since it does not require a matching
local account.

Allow user from host to log in as any non-root user:

host user

Allow all users with matching local accounts from host to log in except for baduser:

host -baduser
host

Deny all users from host:

-host

Note: the use of -host -user is never a valid syntax, including attempting to specify
that a particular user from the host is not trusted.

Allow all users with matching local accounts on all hosts in a netgroup:

+@netgroup

Disallow all users on all hosts in a netgroup:

-@netgroup

Allow all users in a netgroup to log in from host as any non-root user:

host +@netgroup

Allow all users with matching local accounts on all hosts in a netgroup except
baduser:

+@netgroup -baduser
+@netgroup

Note: the deny statements must always precede the allow statements because the file
is processed sequentially until the first matching rule is found.

SEE ALSO
rhosts(5), rlogind(8), rshd(8)

Linux man-pages 6.13 2024-05-02 2839

issue(5) File Formats Manual issue(5)

NAME
issue - prelogin message and identification file

DESCRIPTION
/etc/issue is a text file which contains a message or system identification to be printed
before the login prompt. It may contain various @char and \char sequences, if sup-
ported by the getty-type program employed on the system.

FILES
/etc/issue

SEE ALSO
motd(5), agetty(8), mingetty(8)

Linux man-pages 6.13 2024-06-15 2840

locale(5) File Formats Manual locale(5)

NAME
locale - describes a locale definition file

DESCRIPTION
The locale definition file contains all the information that the localedef(1) command
needs to convert it into the binary locale database.

The definition files consist of sections which each describe a locale category in detail.
See locale(7) for additional details for these categories.

Syntax
The locale definition file starts with a header that may consist of the following key-
words:

escape_char
is followed by a character that should be used as the escape-character for the
rest of the file to mark characters that should be interpreted in a special way. It
defaults to the backslash (\).

comment_char
is followed by a character that will be used as the comment-character for the
rest of the file. It defaults to the number sign (#).

The locale definition has one part for each locale category. Each part can be copied
from another existing locale or can be defined from scratch. If the category should be
copied, the only valid keyword in the definition is copy followed by the name of the
locale in double quotes which should be copied. The exceptions for this rule are
LC_COLLATE and LC_CTYPE where a copy statement can be followed by locale-
specific rules and selected overrides.

When defining a locale or a category from scratch, an existing system- provided lo-
cale definition file should be used as a reference to follow common glibc conventions.

Locale category sections
The following category sections are defined by POSIX:

• LC_CTYPE

• LC_COLLATE

• LC_MESSAGES

• LC_MONETARY

• LC_NUMERIC

• LC_TIME

In addition, since glibc 2.2, the GNU C library supports the following nonstandard
categories:

• LC_ADDRESS

• LC_IDENTIFICATION

• LC_MEASUREMENT

• LC_NAME

Linux man-pages 6.13 2024-06-15 2841

locale(5) File Formats Manual locale(5)

• LC_PAPER

• LC_TELEPHONE

See locale(7) for a more detailed description of each category.

LC_ADDRESS
The definition starts with the string LC_ADDRESS in the first column.

The following keywords are allowed:

postal_fmt
followed by a string containing field descriptors that define the format used for
postal addresses in the locale. The following field descriptors are recognized:

%n Person’s name, possibly constructed with the LC_NAME name_fmt
keyword (since glibc 2.24).

%a Care of person, or organization.

%f Firm name.

%d Department name.

%b Building name.

%s Street or block (e.g., Japanese) name.

%h House number or designation.

%N
Insert an end-of-line if the previous descriptor’s value was not an empty
string; otherwise ignore.

%t Insert a space if the previous descriptor’s value was not an empty string;
otherwise ignore.

%r Room number, door designation.

%e Floor number.

%C Country designation, from the country_post keyword.

%l Local township within town or city (since glibc 2.24).

%z Zip number, postal code.

%T Town, city.

%S State, province, or prefecture.

%c Country, as taken from data record.

Each field descriptor may have an 'R' after the '%' to specify that the informa-
tion is taken from a Romanized version string of the entity.

country_name
followed by the country name in the language of the current document (e.g.,
"Deutschland" for the de_DE locale).

country_post
followed by the abbreviation of the country (see CERT_MAILCODES).

Linux man-pages 6.13 2024-06-15 2842

locale(5) File Formats Manual locale(5)

country_ab2
followed by the two-letter abbreviation of the country (ISO 3166).

country_ab3
followed by the three-letter abbreviation of the country (ISO 3166).

country_num
followed by the numeric country code (ISO 3166).

country_car
followed by the international license plate country code.

country_isbn
followed by the ISBN code (for books).

lang_name
followed by the language name in the language of the current document.

lang_ab
followed by the two-letter abbreviation of the language (ISO 639).

lang_term
followed by the three-letter abbreviation of the language (ISO 639-2/T).

lang_lib
followed by the three-letter abbreviation of the language for library use
(ISO 639-2/B). Applications should in general prefer lang_term over
lang_lib.

The LC_ADDRESS definition ends with the string END LC_ADDRESS.

LC_CTYPE
The definition starts with the string LC_CTYPE in the first column.

The following keywords are allowed:

upper followed by a list of uppercase letters. The letters A through Z are included
automatically. Characters also specified as cntrl, digit, punct, or space are
not allowed.

lower followed by a list of lowercase letters. The letters a through z are included au-
tomatically. Characters also specified as cntrl, digit, punct, or space are not
allowed.

alpha followed by a list of letters. All character specified as either upper or lower
are automatically included. Characters also specified as cntrl, digit, punct, or
space are not allowed.

digit followed by the characters classified as numeric digits. Only the digits 0
through 9 are allowed. They are included by default in this class.

space followed by a list of characters defined as white-space characters. Characters
also specified as upper, lower, alpha, digit, graph, or xdigit are not allowed.
The characters <space>, <form-feed>, <newline>, <carriage-return>,
<tab>, and <vertical-tab> are automatically included.

cntrl followed by a list of control characters. Characters also specified as upper,
lower, alpha, digit, punct, graph, print, or xdigit are not allowed.

Linux man-pages 6.13 2024-06-15 2843

locale(5) File Formats Manual locale(5)

punct followed by a list of punctuation characters. Characters also specified as up-
per, lower, alpha, digit, cntrl, xdigit, or the <space> character are not al-
lowed.

graph followed by a list of printable characters, not including the <space> character.
The characters defined as upper, lower, alpha, digit, xdigit, and punct are
automatically included. Characters also specified as cntrl are not allowed.

print followed by a list of printable characters, including the <space> character.
The characters defined as upper, lower, alpha, digit, xdigit, punct, and the
<space> character are automatically included. Characters also specified as cn-
trl are not allowed.

xdigit followed by a list of characters classified as hexadecimal digits. The decimal
digits must be included followed by one or more set of six characters in as-
cending order. The following characters are included by default: 0 through 9,
a through f, A through F.

blank followed by a list of characters classified as blank. The characters <space>
and <tab> are automatically included.

charclass
followed by a list of locale-specific character class names which are then to be
defined in the locale.

toupper
followed by a list of mappings from lowercase to uppercase letters. Each
mapping is a pair of a lowercase and an uppercase letter separated with a , and
enclosed in parentheses.

tolower
followed by a list of mappings from uppercase to lowercase letters. If the key-
word tolower is not present, the reverse of the toupper list is used.

map totitle
followed by a list of mapping pairs of characters and letters to be used in titles
(headings).

class followed by a locale-specific character class definition, starting with the class
name followed by the characters belonging to the class.

charconv
followed by a list of locale-specific character mapping names which are then
to be defined in the locale.

outdigit
followed by a list of alternate output digits for the locale.

map to_inpunct
followed by a list of mapping pairs of alternate digits and separators for input
digits for the locale.

map to_outpunct
followed by a list of mapping pairs of alternate separators for output for the lo-
cale.

Linux man-pages 6.13 2024-06-15 2844

locale(5) File Formats Manual locale(5)

translit_start
marks the start of the transliteration rules section. The section can contain the
include keyword in the beginning followed by locale-specific rules and over-
rides. Any rule specified in the locale file will override any rule copied or in-
cluded from other files. In case of duplicate rule definitions in the locale file,
only the first rule is used.

A transliteration rule consist of a character to be transliterated followed by a
list of transliteration targets separated by semicolons. The first target which
can be presented in the target character set is used, if none of them can be used
the default_missing character will be used instead.

include
in the transliteration rules section includes a transliteration rule file (and op-
tionally a repertoire map file).

default_missing
in the transliteration rules section defines the default character to be used for
transliteration where none of the targets cannot be presented in the target char-
acter set.

translit_end
marks the end of the transliteration rules.

The LC_CTYPE definition ends with the string END LC_CTYPE.

LC_COLLATE
Note that glibc does not support all POSIX-defined options, only the options de-
scribed below are supported (as of glibc 2.23).

The definition starts with the string LC_COLLATE in the first column.

The following keywords are allowed:

coll_weight_max
followed by the number representing used collation levels. This keyword is
recognized but ignored by glibc.

collating-element
followed by the definition of a collating-element symbol representing a multi-
character collating element.

collating-symbol
followed by the definition of a collating symbol that can be used in collation
order statements.

define followed by string to be evaluated in an ifdef string / else / endif construct.

reorder-after
followed by a redefinition of a collation rule.

reorder-end
marks the end of the redefinition of a collation rule.

reorder-sections-after
followed by a script name to reorder listed scripts after.

Linux man-pages 6.13 2024-06-15 2845

locale(5) File Formats Manual locale(5)

reorder-sections-end
marks the end of the reordering of sections.

script followed by a declaration of a script.

symbol-equivalence
followed by a collating-symbol to be equivalent to another defined collating-
symbol.

The collation rule definition starts with a line:

order_start
followed by a list of keywords chosen from forward, backward, or position.
The order definition consists of lines that describe the collation order and is
terminated with the keyword order_end .

The LC_COLLATE definition ends with the string END LC_COLLATE.

LC_IDENTIFICATION
The definition starts with the string LC_IDENTIFICATION in the first column.

The following keywords are allowed:

title followed by the title of the locale document (e.g., "Maori language locale for
New Zealand").

source
followed by the name of the organization that maintains this document.

address
followed by the address of the organization that maintains this document.

contact
followed by the name of the contact person at the organization that maintains
this document.

email followed by the email address of the person or organization that maintains this
document.

tel followed by the telephone number (in international format) of the organization
that maintains this document. As of glibc 2.24, this keyword is deprecated in
favor of other contact methods.

fax followed by the fax number (in international format) of the organization that
maintains this document. As of glibc 2.24, this keyword is deprecated in favor
of other contact methods.

language
followed by the name of the language to which this document applies.

territory
followed by the name of the country/geographic extent to which this document
applies.

audience
followed by a description of the audience for which this document is intended.

Linux man-pages 6.13 2024-06-15 2846

locale(5) File Formats Manual locale(5)

application
followed by a description of any special application for which this document is
intended.

abbreviation
followed by the short name for provider of the source of this document.

revision
followed by the revision number of this document.

date followed by the revision date of this document.

In addition, for each of the categories defined by the document, there should be a line
starting with the keyword category, followed by:

(1) a string that identifies this locale category definition,

(2) a semicolon, and

(3) one of the LC_* identifiers.

The LC_IDENTIFICATION definition ends with the string END LC_IDENTIFICA-
TION .

LC_MESSAGES
The definition starts with the string LC_MESSAGES in the first column.

The following keywords are allowed:

yesexpr
followed by a regular expression that describes possible yes-responses.

noexpr
followed by a regular expression that describes possible no-responses.

yesstr followed by the output string corresponding to "yes".

nostr followed by the output string corresponding to "no".

The LC_MESSAGES definition ends with the string END LC_MESSAGES.

LC_MEASUREMENT
The definition starts with the string LC_MEASUREMENT in the first column.

The following keywords are allowed:

measurement
followed by number identifying the standard used for measurement. The fol-
lowing values are recognized:

1 Metric.

2 US customary measurements.

The LC_MEASUREMENT definition ends with the string END LC_MEASURE-
MENT .

LC_MONETARY
The definition starts with the string LC_MONETARY in the first column.

The following keywords are allowed:

Linux man-pages 6.13 2024-06-15 2847

locale(5) File Formats Manual locale(5)

int_curr_symbol
followed by the international currency symbol. This must be a 4-character
string containing the international currency symbol as defined by the ISO 4217
standard (three characters) followed by a separator.

currency_symbol
followed by the local currency symbol.

mon_decimal_point
followed by the single-character string that will be used as the decimal delim-
iter when formatting monetary quantities.

mon_thousands_sep
followed by the single-character string that will be used as a group separator
when formatting monetary quantities.

mon_grouping
followed by a sequence of integers separated by semicolons that describe the
formatting of monetary quantities. See grouping below for details.

positive_sign
followed by a string that is used to indicate a positive sign for monetary quan-
tities.

negative_sign
followed by a string that is used to indicate a negative sign for monetary quan-
tities.

int_frac_digits
followed by the number of fractional digits that should be used when format-
ting with the int_curr_symbol.

frac_digits
followed by the number of fractional digits that should be used when format-
ting with the currency_symbol.

p_cs_precedes
followed by an integer that indicates the placement of currency_symbol for a
nonnegative formatted monetary quantity:

0 the symbol succeeds the value.

1 the symbol precedes the value.

p_sep_by_space
followed by an integer that indicates the separation of currency_symbol, the
sign string, and the value for a nonnegative formatted monetary quantity. The
following values are recognized:

0 No space separates the currency symbol and the value.

1 If the currency symbol and the sign string are adjacent, a space separates
them from the value; otherwise a space separates the currency symbol
and the value.

2 If the currency symbol and the sign string are adjacent, a space separates
them from the value; otherwise a space separates the sign string and the
value.

Linux man-pages 6.13 2024-06-15 2848

locale(5) File Formats Manual locale(5)

n_cs_precedes
followed by an integer that indicates the placement of currency_symbol for a
negative formatted monetary quantity. The same values are recognized as for
p_cs_precedes.

n_sep_by_space
followed by an integer that indicates the separation of currency_symbol, the
sign string, and the value for a negative formatted monetary quantity. The
same values are recognized as for p_sep_by_space.

p_sign_posn
followed by an integer that indicates where the positive_sign should be placed
for a nonnegative monetary quantity:

0 Parentheses enclose the quantity and the currency_symbol or
int_curr_symbol.

1 The sign string precedes the quantity and the currency_symbol or the
int_curr_symbol.

2 The sign string succeeds the quantity and the currency_symbol or the
int_curr_symbol.

3 The sign string precedes the currency_symbol or the int_curr_symbol.

4 The sign string succeeds the currency_symbol or the int_curr_symbol.

n_sign_posn
followed by an integer that indicates where the negative_sign should be placed
for a negative monetary quantity. The same values are recognized as for
p_sign_posn.

int_p_cs_precedes
followed by an integer that indicates the placement of int_curr_symbol for a
nonnegative internationally formatted monetary quantity. The same values are
recognized as for p_cs_precedes.

int_n_cs_precedes
followed by an integer that indicates the placement of int_curr_symbol for a
negative internationally formatted monetary quantity. The same values are
recognized as for p_cs_precedes.

int_p_sep_by_space
followed by an integer that indicates the separation of int_curr_symbol, the
sign string, and the value for a nonnegative internationally formatted monetary
quantity. The same values are recognized as for p_sep_by_space.

int_n_sep_by_space
followed by an integer that indicates the separation of int_curr_symbol, the
sign string, and the value for a negative internationally formatted monetary
quantity. The same values are recognized as for p_sep_by_space.

int_p_sign_posn
followed by an integer that indicates where the positive_sign should be placed
for a nonnegative internationally formatted monetary quantity. The same val-
ues are recognized as for p_sign_posn.

Linux man-pages 6.13 2024-06-15 2849

locale(5) File Formats Manual locale(5)

int_n_sign_posn
followed by an integer that indicates where the negative_sign should be placed
for a negative internationally formatted monetary quantity. The same values
are recognized as for p_sign_posn.

The LC_MONETARY definition ends with the string END LC_MONETARY .

LC_NAME
The definition starts with the string LC_NAME in the first column.

Various keywords are allowed, but only name_fmt is mandatory. Other keywords are
needed only if there is common convention to use the corresponding salutation in this
locale. The allowed keywords are as follows:

name_fmt
followed by a string containing field descriptors that define the format used for
names in the locale. The following field descriptors are recognized:

%f Family name(s).

%F Family names in uppercase.

%g First given name.

%G
First given initial.

%l First given name with Latin letters.

%o Other shorter name.

%m
Additional given name(s).

%M
Initials for additional given name(s).

%p Profession.

%s Salutation, such as "Doctor".

%S Abbreviated salutation, such as "Mr." or "Dr.".

%d Salutation, using the FDCC-sets conventions.

%t If the preceding field descriptor resulted in an empty string, then the
empty string, otherwise a space character.

name_gen
followed by the general salutation for any gender.

name_mr
followed by the salutation for men.

name_mrs
followed by the salutation for married women.

name_miss
followed by the salutation for unmarried women.

Linux man-pages 6.13 2024-06-15 2850

locale(5) File Formats Manual locale(5)

name_ms
followed by the salutation valid for all women.

The LC_NAME definition ends with the string END LC_NAME.

LC_NUMERIC
The definition starts with the string LC_NUMERIC in the first column.

The following keywords are allowed:

decimal_point
followed by the single-character string that will be used as the decimal delim-
iter when formatting numeric quantities.

thousands_sep
followed by the single-character string that will be used as a group separator
when formatting numeric quantities.

grouping
followed by a sequence of integers separated by semicolons that describe the
formatting of numeric quantities.

Each integer specifies the number of digits in a group. The first integer defines
the size of the group immediately to the left of the decimal delimiter. Subse-
quent integers define succeeding groups to the left of the previous group. If
the last integer is not -1, then the size of the previous group (if any) is repeat-
edly used for the remainder of the digits. If the last integer is -1, then no fur-
ther grouping is performed.

The LC_NUMERIC definition ends with the string END LC_NUMERIC.

LC_PAPER
The definition starts with the string LC_PAPER in the first column.

The following keywords are allowed:

height
followed by the height, in millimeters, of the standard paper format.

width followed by the width, in millimeters, of the standard paper format.

The LC_PAPER definition ends with the string END LC_PAPER.

LC_TELEPHONE
The definition starts with the string LC_TELEPHONE in the first column.

The following keywords are allowed:

tel_int_fmt
followed by a string that contains field descriptors that identify the format used
to dial international numbers. The following field descriptors are recognized:

%a Area code without nationwide prefix (the prefix is often "00").

%A
Area code including nationwide prefix.

%l Local number (within area code).

Linux man-pages 6.13 2024-06-15 2851

locale(5) File Formats Manual locale(5)

%e Extension (to local number).

%c Country code.

%C Alternate carrier service code used for dialing abroad.

%t If the preceding field descriptor resulted in an empty string, then the
empty string, otherwise a space character.

tel_dom_fmt
followed by a string that contains field descriptors that identify the format used
to dial domestic numbers. The recognized field descriptors are the same as for
tel_int_fmt.

int_select
followed by the prefix used to call international phone numbers.

int_prefix
followed by the prefix used from other countries to dial this country.

The LC_TELEPHONE definition ends with the string END LC_TELEPHONE.

LC_TIME
The definition starts with the string LC_TIME in the first column.

The following keywords are allowed:

abday
followed by a list of abbreviated names of the days of the week. The list starts
with the first day of the week as specified by week (Sunday by default). See
NOTES.

day followed by a list of names of the days of the week. The list starts with the
first day of the week as specified by week (Sunday by default). See NOTES.

abmon
followed by a list of abbreviated month names.

mon followed by a list of month names.

d_t_fmt
followed by the appropriate date and time format (for syntax, see strftime(3)).

d_fmt followed by the appropriate date format (for syntax, see strftime(3)).

t_fmt followed by the appropriate time format (for syntax, see strftime(3)).

am_pm
followed by the appropriate representation of the am and pm strings. This
should be left empty for locales not using AM/PM convention.

t_fmt_ampm
followed by the appropriate time format (for syntax, see strftime(3)) when us-
ing 12h clock format. This should be left empty for locales not using AM/PM
convention.

era followed by semicolon-separated strings that define how years are counted and
displayed for each era in the locale. Each string has the following format:

direction:offset:start_date:end_date:era_name:era_format

Linux man-pages 6.13 2024-06-15 2852

locale(5) File Formats Manual locale(5)

The fields are to be defined as follows:

direction
Either + or -. + means the years closer to start_date have lower numbers
than years closer to end_date. - means the opposite.

offset
The number of the year closest to start_date in the era, corresponding to
the %Ey descriptor (see strptime(3)).

start_date
The start of the era in the form of yyyy/mm/dd . Years prior AD 1 are rep-
resented as negative numbers.

end_date
The end of the era in the form of yyyy/mm/dd , or one of the two special
values of -* or +*. -* means the ending date is the beginning of time.
+* means the ending date is the end of time.

era_name
The name of the era corresponding to the %EC descriptor (see strp-
time(3)).

era_format
The format of the year in the era corresponding to the %EY descriptor
(see strptime(3)).

era_d_fmt
followed by the format of the date in alternative era notation, corresponding to
the %Ex descriptor (see strptime(3)).

era_t_fmt
followed by the format of the time in alternative era notation, corresponding to
the %EX descriptor (see strptime(3)).

era_d_t_fmt
followed by the format of the date and time in alternative era notation, corre-
sponding to the %Ec descriptor (see strptime(3)).

alt_digits
followed by the alternative digits used for date and time in the locale.

week followed by a list of three values separated by semicolons: The number of
days in a week (by default 7), a date of beginning of the week (by default cor-
responds to Sunday), and the minimal length of the first week in year (by de-
fault 4). Regarding the start of the week, 19971130 shall be used for Sunday
and 19971201 shall be used for Monday. See NOTES.

first_weekday (since glibc 2.2)
followed by the number of the day from the day list to be shown as the first
day of the week in calendar applications. The default value of 1 corresponds
to either Sunday or Monday depending on the value of the second week list
item. See NOTES.

Linux man-pages 6.13 2024-06-15 2853

locale(5) File Formats Manual locale(5)

first_workday (since glibc 2.2)
followed by the number of the first working day from the day list. The default
value is 2. See NOTES.

cal_direction
followed by a number value that indicates the direction for the display of cal-
endar dates, as follows:

1 Left-right from top.

2 Top-down from left.

3 Right-left from top.

date_fmt
followed by the appropriate date representation for date(1) (for syntax, see
strftime(3)).

The LC_TIME definition ends with the string END LC_TIME.

FILES
/usr/lib/locale/locale-archive

Usual default locale archive location.

/usr/share/i18n/locales
Usual default path for locale definition files.

STANDARDS
POSIX.2.

NOTES
The collective GNU C library community wisdom regarding abday, day, week,
first_weekday, and first_workday states at https://sourceware.org/glibc/wiki/Locales
the following:

• The value of the second week list item specifies the base of the abday and day
lists.

• first_weekday specifies the offset of the first day-of-week in the abday and day
lists.

• For compatibility reasons, all glibc locales should set the value of the second week
list item to 19971130 (Sunday) and base the abday and day lists appropriately,
and set first_weekday and first_workday to 1 or 2, depending on whether the
week and work week actually starts on Sunday or Monday for the locale.

SEE ALSO
iconv(1), locale(1), localedef(1), localeconv(3), newlocale(3), setlocale(3), strftime(3),
strptime(3), uselocale(3), charmap(5), charsets(7), locale(7), unicode(7), utf-8(7)

Linux man-pages 6.13 2024-06-15 2854

motd(5) File Formats Manual motd(5)

NAME
motd - message of the day

DESCRIPTION
The contents of /etc/motd are displayed by login(1) after a successful login but just
before it executes the login shell.

The abbreviation "motd" stands for "message of the day", and this file has been tradi-
tionally used for exactly that (it requires much less disk space than mail to all users).

FILES
/etc/motd

SEE ALSO
login(1), issue(5)

Linux man-pages 6.13 2024-05-02 2855

networks(5) File Formats Manual networks(5)

NAME
networks - network name information

DESCRIPTION
The file /etc/networks is a plain ASCII file that describes known DARPA networks
and symbolic names for these networks. Each line represents a network and has the
following structure:

name number aliases . . .

where the fields are delimited by spaces or tabs. Empty lines are ignored. The hash
character (#) indicates the start of a comment: this character, and the remaining char-
acters up to the end of the current line, are ignored by library functions that process
the file.

The field descriptions are:

name The symbolic name for the network. Network names can contain any print-
able characters except white-space characters or the comment character.

number
The official number for this network in numbers-and-dots notation (see
inet(3)). The trailing ".0" (for the host component of the network address)
may be omitted.

aliases
Optional aliases for the network.

This file is read by the route(8) and netstat(8) utilities. Only Class A, B, or C net-
works are supported, partitioned networks (i.e., network/26 or network/28) are not
supported by this file.

FILES
/etc/networks

The networks definition file.

SEE ALSO
getnetbyaddr(3), getnetbyname(3), getnetent(3), netstat(8), route(8)

Linux man-pages 6.13 2024-05-02 2856

nologin(5) File Formats Manual nologin(5)

NAME
nologin - prevent unprivileged users from logging into the system

DESCRIPTION
If the file /etc/nologin exists and is readable, login(1) will allow access only to root.
Other users will be shown the contents of this file and their logins will be refused.
This provides a simple way of temporarily disabling all unprivileged logins.

FILES
/etc/nologin

SEE ALSO
login(1), shutdown(8)

Linux man-pages 6.13 2024-05-02 2857

nscd.conf (5) File Formats Manual nscd.conf (5)

NAME
nscd.conf - name service cache daemon configuration file

DESCRIPTION
The file /etc/nscd.conf is read from nscd(8) at startup. Each line specifies either an
attribute and a value, or an attribute, service, and a value. Fields are separated either
by SPACE or TAB characters. A '#' (number sign) indicates the beginning of a com-
ment; following characters, up to the end of the line, are not interpreted by nscd.

Valid services are passwd, group, hosts, services, or netgroup.

logfile debug-file-name
Specifies name of the file to which debug info should be written.

debug-level value
Sets the desired debug level. 0 hides debug info. 1 shows general debug info.
2 additionally shows data in cache dumps. 3 (and above) shows all debug
info. The default is 0.

threads number
This is the initial number of threads that are started to wait for requests. At
least five threads will always be created. The number of threads may increase
dynamically up to max-threads in response to demand from clients, but never
decreases.

max-threads number
Specifies the maximum number of threads. The default is 32.

server-user user
If this option is set, nscd will run as this user and not as root. If a separate
cache for every user is used (-S parameter), this option is ignored.

stat-user user
Specifies the user who is allowed to request statistics.

reload-count unlimited | number
Sets a limit on the number of times a cached entry gets reloaded without being
used before it gets removed. The limit can take values ranging from 0 to 254;
values 255 or higher behave the same as unlimited. Limit values can be spec-
ified in either decimal or hexadecimal with a "0x" prefix. The special value
unlimited is case-insensitive. The default limit is 5. A limit of 0 turns off the
reloading feature. See NOTES below for further discussion of reloading.

paranoia <yes|no>
Enabling paranoia mode causes nscd to restart itself periodically. The default
is no.

restart-interval time
Sets the restart interval to time seconds if periodic restart is enabled by en-
abling paranoia mode. The default is 3600.

enable-cache service <yes|no>
Enables or disables the specified service cache. The default is no.

positive-time-to-live service value
Sets the TTL (time-to-live) for positive entries (successful queries) in the

Linux man-pages 6.13 2024-05-02 2858

nscd.conf (5) File Formats Manual nscd.conf (5)

specified cache for service. Value is in seconds. Larger values increase cache
hit rates and reduce mean response times, but increase problems with cache
coherence. Note that for some name services (including specifically DNS) the
TTL returned from the name service is used and this attribute is ignored.

negative-time-to-live service value
Sets the TTL (time-to-live) for negative entries (unsuccessful queries) in the
specified cache for service. Value is in seconds. Can result in significant per-
formance improvements if there are several files owned by UIDs (user IDs)
not in system databases (for example untarring the Linux kernel sources as
root); should be kept small to reduce cache coherency problems.

suggested-size service value
This is the internal hash table size, value should remain a prime number for
optimum efficiency. The default is 211.

check-files service <yes|no>
Enables or disables checking the file belonging to the specified service for
changes. The files are /etc/passwd , /etc/group, /etc/hosts, /etc/resolv.conf ,
/etc/services, and /etc/netgroup. The default is yes.

persistent service <yes|no>
Keep the content of the cache for service over server restarts; useful when
paranoia mode is set. The default is no.

shared service <yes|no>
The memory mapping of the nscd databases for service is shared with the
clients so that they can directly search in them instead of having to ask the
daemon over the socket each time a lookup is performed. The default is no.
Note that a cache miss will still result in asking the daemon over the socket.

max-db-size service bytes
The maximum allowable size, in bytes, of the database files for the service.
The default is 33554432.

auto-propagate service <yes|no>
When set to no for passwd or group service, then the .byname requests are not
added to passwd.byuid or group.bygid cache. This can help with tables con-
taining multiple records for the same ID. The default is yes. This option is
valid only for services passwd and group.

NOTES
The default values stated in this manual page originate from the source code of
nscd(8) and are used if not overridden in the configuration file. The default values
used in the configuration file of your distribution might differ.

Reloading
nscd(8) has a feature called reloading, whose behavior can be surprising.

Reloading is enabled when the reload-count attribute has a non-zero value. The de-
fault value in the source code enables reloading, although your distribution may differ.

When reloading is enabled, positive cached entries (the results of successful queries)
do not simply expire when their TTL is up. Instead, at the expiry time, nscd will "re-
load", i.e., re-issue to the name service the same query that created the cached entry,

Linux man-pages 6.13 2024-05-02 2859

nscd.conf (5) File Formats Manual nscd.conf (5)

to get a new value to cache. Depending on /etc/nsswitch.conf this may mean that a
DNS, LDAP, or NIS request is made. If the new query is successful, reloading will
repeat when the new value would expire, until reload-count reloads have happened
for the entry, and only then will it actually be removed from the cache. A request
from a client which hits the entry will reset the reload counter on the entry. Purging
the cache using nscd -i overrides the reload logic and removes the entry.

Reloading has the effect of extending cache entry TTLs without compromising on
cache coherency, at the cost of additional load on the backing name service. Whether
this is a good idea on your system depends on details of your applications’ behavior,
your name service, and the effective TTL values of your cache entries. Note that for
some name services (for example, DNS), the effective TTL is the value returned from
the name service and not the value of the positive-time-to-live attribute.

Please consider the following advice carefully:

• If your application will make a second request for the same name, after more than
1 TTL but before reload-count TTLs, and is sensitive to the latency of a cache
miss, then reloading may be a good idea for you.

• If your name service is configured to return very short TTLs, and your applica-
tions only make requests rarely under normal circumstances, then reloading may
result in additional load on your backing name service without any benefit to ap-
plications, which is probably a bad idea for you.

• If your name service capacity is limited, reloading may have the surprising effect
of increasing load on your name service instead of reducing it, and may be a bad
idea for you.

• Setting reload-count to unlimited is almost never a good idea, as it will result in
a cache that never expires entries and puts never-ending additional load on the
backing name service.

Some distributions have an init script for nscd(8) with a reload command which uses
nscd -i to purge the cache. That use of the word "reload" is entirely different from the
"reloading" described here.

SEE ALSO
nscd(8)

Linux man-pages 6.13 2024-05-02 2860

nss(5) File Formats Manual nss(5)

NAME
nss - Name Service Switch configuration file

DESCRIPTION
Each call to a function which retrieves data from a system database like the password
or group database is handled by the Name Service Switch implementation in the GNU
C library. The various services provided are implemented by independent modules,
each of which naturally varies widely from the other.

The default implementations coming with the GNU C library are by default conserva-
tive and do not use unsafe data. This might be very costly in some situations, espe-
cially when the databases are large. Some modules allow the system administrator to
request taking shortcuts if these are known to be safe. It is then the system adminis-
trator’s responsibility to ensure the assumption is correct.

There are other modules where the implementation changed over time. If an imple-
mentation used to sacrifice speed for memory consumption, it might create problems
if the preference is switched.

The /etc/default/nss file contains a number of variable assignments. Each variable
controls the behavior of one or more NSS modules. White spaces are ignored. Lines
beginning with '#' are treated as comments.

The variables currently recognized are:

NETID_AUTHORITATIVE = TRUE|FALSE
If set to TRUE, the NIS backend for the initgroups(3) function will accept the
information from the netid.byname NIS map as authoritative. This can speed
up the function significantly if the group.byname map is large. The content of
the netid.byname map is used as is. The system administrator has to make
sure it is correctly generated.

SERVICES_AUTHORITATIVE = TRUE|FALSE
If set to TRUE, the NIS backend for the getservbyname(3) and getservby-
name_r(3) functions will assume that the services.byservicename NIS map ex-
ists and is authoritative, particularly that it contains both keys with /proto and
without /proto for both primary service names and service aliases. The system
administrator has to make sure it is correctly generated.

SETENT_BATCH_READ = TRUE|FALSE
If set to TRUE, the NIS backend for the setpwent(3) and setgrent(3) functions
will read the entire database at once and then hand out the requests one by one
from memory with every corresponding getpwent(3) or getgrent(3) call respec-
tively. Otherwise, each getpwent(3) or getgrent(3) call might result in a net-
work communication with the server to get the next entry.

FILES
/etc/default/nss

EXAMPLES
The default configuration corresponds to the following configuration file:

NETID_AUTHORITATIVE=FALSE
SERVICES_AUTHORITATIVE=FALSE
SETENT_BATCH_READ=FALSE

Linux man-pages 6.13 2024-05-02 2861

nss(5) File Formats Manual nss(5)

SEE ALSO
nsswitch.conf

Linux man-pages 6.13 2024-05-02 2862

nsswitch.conf (5) File Formats Manual nsswitch.conf (5)

NAME
nsswitch.conf - Name Service Switch configuration file

DESCRIPTION
The Name Service Switch (NSS) configuration file, /etc/nsswitch.conf , is used by the
GNU C Library and certain other applications to determine the sources from which to
obtain name-service information in a range of categories, and in what order. Each cat-
egory of information is identified by a database name.

The file is plain ASCII text, with columns separated by spaces or tab characters. The
first column specifies the database name. The remaining columns describe the order
of sources to query and a limited set of actions that can be performed by lookup re-
sult.

The following databases are understood by the GNU C Library:

aliases Mail aliases, used by getaliasent(3) and related functions.

ethers Ethernet numbers.

group Groups of users, used by getgrent(3) and related functions.

hosts Host names and numbers, used by gethostbyname(3) and related func-
tions.

initgroups Supplementary group access list, used by getgrouplist(3) function.

netgroup Network-wide list of hosts and users, used for access rules. C libraries
before glibc 2.1 supported netgroups only over NIS.

networks Network names and numbers, used by getnetent(3) and related func-
tions.

passwd User passwords, used by getpwent(3) and related functions.

protocols Network protocols, used by getprotoent(3) and related functions.

publickey Public and secret keys for Secure_RPC used by NFS and NIS+.

rpc Remote procedure call names and numbers, used by getrpcbyname(3)
and related functions.

services Network services, used by getservent(3) and related functions.

shadow Shadow user passwords, used by getspnam(3) and related functions.

The GNU C Library ignores databases with unknown names. Some applications use
this to implement special handling for their own databases. For example, sudo(8)
consults the sudoers database. Delegation of subordinate user/group IDs can be con-
figured using the subid database. Refer to subuid(5) and subgid(5) for more details.

Here is an example /etc/nsswitch.conf file:

passwd: compat
group: compat
shadow: compat

hosts: dns [!UNAVAIL=return] files
networks: nis [NOTFOUND=return] files
ethers: nis [NOTFOUND=return] files

Linux man-pages 6.13 2024-05-02 2863

nsswitch.conf (5) File Formats Manual nsswitch.conf (5)

protocols: nis [NOTFOUND=return] files
rpc: nis [NOTFOUND=return] files
services: nis [NOTFOUND=return] files

The first column is the database name. The remaining columns specify:

• One or more service specifications, for example, "files", "db", or "nis". The order
of the services on the line determines the order in which those services will be
queried, in turn, until a result is found.

• Optional actions to perform if a particular result is obtained from the preceding
service, for example, "[NOTFOUND=return]".

The service specifications supported on your system depend on the presence of shared
libraries, and are therefore extensible. Libraries called /lib/libnss_SERVICE.so.X will
provide the named SERVICE. On a standard installation, you can use "files", "db",
"nis", and "nisplus". For the hosts database, you can additionally specify "dns". For
the passwd, group, and shadow databases, you can additionally specify "compat"
(see Compatibility mode below). The version number X may be 1 for glibc 2.0, or 2
for glibc 2.1 and later. On systems with additional libraries installed, you may have
access to further services such as "hesiod", "ldap", "winbind", and "wins".

An action may also be specified following a service specification. The action modi-
fies the behavior following a result obtained from the preceding data source. Action
items take the general form:

[STATUS=ACTION]
[!STATUS=ACTION]

where

STATUS => success | notfound | unavail | tryagain
ACTION => return | continue | merge

The ! negates the test, matching all possible results except the one specified. The case
of the keywords is not significant.

The STATUS value is matched against the result of the lookup function called by the
preceding service specification, and can be one of:

success No error occurred and the requested entry is returned. The default
action for this condition is "return".

notfound The lookup succeeded, but the requested entry was not found.
The default action for this condition is "continue".

unavail The service is permanently unavailable. This can mean either that
the required file cannot be read, or, for network services, that the
server is not available or does not allow queries. The default ac-
tion for this condition is "continue".

tryagain The service is temporarily unavailable. This could mean a file is
locked or a server currently cannot accept more connections. The
default action for this condition is "continue".

The ACTION value can be one of:

Linux man-pages 6.13 2024-05-02 2864

nsswitch.conf (5) File Formats Manual nsswitch.conf (5)

return Return a result now. Do not call any further lookup functions.
However, for compatibility reasons, if this is the selected action
for the group database and the notfound status, and the configu-
ration file does not contain the initgroups line, the next lookup
function is always called, without affecting the search result.

continue Call the next lookup function.

merge [SUCCESS=merge] is used between two database entries. When
a group is located in the first of the two group entries, processing
will continue on to the next one. If the group is also found in the
next entry (and the group name and GID are an exact match), the
member list of the second entry will be added to the group object
to be returned. Available since glibc 2.24. Note that merging will
not be done for getgrent(3) nor will duplicate members be pruned
when they occur in both entries being merged.

Compatibility mode (compat)
The NSS "compat" service is similar to "files" except that it additionally permits spe-
cial entries in corresponding files for granting users or members of netgroups access
to the system. The following entries are valid in this mode:

For passwd and shadow databases:

+user Include the specified user from the NIS passwd/shadow map.

+@netgroup Include all users in the given netgroup.

-user Exclude the specified user from the NIS passwd/shadow
map.

-@netgroup Exclude all users in the given netgroup.

+ Include every user, except previously excluded ones, from
the NIS passwd/shadow map.

For group database:

+group Include the specified group from the NIS group map.

-group Exclude the specified group from the NIS group map.

+ Include every group, except previously excluded ones, from
the NIS group map.

By default, the source is "nis", but this may be overridden by specifying any NSS ser-
vice except "compat" itself as the source for the pseudo-databases passwd_compat,
group_compat, and shadow_compat.

FILES
A service named SERVICE is implemented by a shared object library named lib-
nss_SERVICE.so.X that resides in /lib.

/etc/nsswitch.conf NSS configuration file.
/lib/libnss_compat.so.X implements "compat" source.
/lib/libnss_db.so.X implements "db" source.

Linux man-pages 6.13 2024-05-02 2865

nsswitch.conf (5) File Formats Manual nsswitch.conf (5)

/lib/libnss_dns.so.X implements "dns" source.
/lib/libnss_files.so.X implements "files" source.
/lib/libnss_hesiod.so.X implements "hesiod" source.
/lib/libnss_nis.so.X implements "nis" source.
/lib/libnss_nisplus.so.X implements "nisplus" source.

The following files are read when "files" source is specified for respective databases:

aliases /etc/aliases
ethers /etc/ethers
group /etc/group
hosts /etc/hosts
initgroups /etc/group
netgroup /etc/netgroup
networks /etc/networks
passwd /etc/passwd
protocols /etc/protocols
publickey /etc/publickey
rpc /etc/rpc
services /etc/services
shadow /etc/shadow

NOTES
Starting with glibc 2.33, nsswitch.conf is automatically reloaded if the file is
changed. In earlier versions, the entire file was read only once within each process. If
the file was later changed, the process would continue using the old configuration.

Traditionally, there was only a single source for service information, often in the form
of a single configuration file (e.g., /etc/passwd). However, as other name services,
such as the Network Information Service (NIS) and the Domain Name Service
(DNS), became popular, a method was needed that would be more flexible than fixed
search orders coded into the C library. The Name Service Switch mechanism, which
was based on the mechanism used by Sun Microsystems in the Solaris 2 C library, in-
troduced a cleaner solution to the problem.

SEE ALSO
getent(1), nss(5)

Linux man-pages 6.13 2024-05-02 2866

passwd(5) File Formats Manual passwd(5)

NAME
passwd - password file

DESCRIPTION
The /etc/passwd file is a text file that describes user login accounts for the system. It
should have read permission allowed for all users (many utilities, like ls(1) use it to
map user IDs to usernames), but write access only for the superuser.

In the good old days there was no great problem with this general read permission.
Everybody could read the encrypted passwords, but the hardware was too slow to
crack a well-chosen password, and moreover the basic assumption used to be that of a
friendly user-community. These days many people run some version of the shadow
password suite, where /etc/passwd has an 'x' character in the password field, and the
encrypted passwords are in /etc/shadow, which is readable by the superuser only.

If the encrypted password, whether in /etc/passwd or in /etc/shadow, is an empty
string, login is allowed without even asking for a password. Note that this functional-
ity may be intentionally disabled in applications, or configurable (for example using
the "nullok" or "nonull" arguments to pam_unix(8)).

If the encrypted password in /etc/passwd is "*NP*" (without the quotes), the shadow
record should be obtained from an NIS+ server.

Regardless of whether shadow passwords are used, many system administrators use
an asterisk (*) in the encrypted password field to make sure that this user can not au-
thenticate themself using a password. (But see NOTES below.)

If you create a new login, first put an asterisk (*) in the password field, then use
passwd(1) to set it.

Each line of the file describes a single user, and contains seven colon-separated fields:

name:password:UID:GID:GECOS:directory:shell

The field are as follows:

name This is the user’s login name. It should not contain capital letters.

password This is either the encrypted user password, an asterisk (*), or the letter
'x'. (See pwconv(8) for an explanation of 'x'.)

UID The privileged root login account (superuser) has the user ID 0.

GID This is the numeric primary group ID for this user. (Additional groups
for the user are defined in the system group file; see group(5)).

GECOS This field (sometimes called the "comment field") is optional and used
only for informational purposes. Usually, it contains the full username.
Some programs (for example, finger(1)) display information from this
field.

GECOS stands for "General Electric Comprehensive Operating Sys-
tem", which was renamed to GCOS when GE’s large systems division
was sold to Honeywell. Dennis Ritchie has reported: "Sometimes we
sent printer output or batch jobs to the GCOS machine. The gcos field
in the password file was a place to stash the information for the
$IDENTcard. Not elegant."

Linux man-pages 6.13 2024-05-02 2867

passwd(5) File Formats Manual passwd(5)

directory This is the user’s home directory: the initial directory where the user is
placed after logging in. The value in this field is used to set the
HOME environment variable.

shell This is the program to run at login (if empty, use /bin/sh). If set to a
nonexistent executable, the user will be unable to login through lo-
gin(1)The value in this field is used to set the SHELL environment
variable.

FILES
/etc/passwd

NOTES
If you want to create user groups, there must be an entry in /etc/group, or no group
will exist.

If the encrypted password is set to an asterisk (*), the user will be unable to login us-
ing login(1), but may still login using rlogin(1), run existing processes and initiate
new ones through rsh(1), cron(8), at(1), or mail filters, etc. Trying to lock an account
by simply changing the shell field yields the same result and additionally allows the
use of su(1)

SEE ALSO
chfn(1), chsh(1), login(1), passwd(1), su(1), crypt(3), getpwent(3), getpwnam(3),
group(5), shadow(5), vipw(8)

Linux man-pages 6.13 2024-05-02 2868

proc(5) File Formats Manual proc(5)

NAME
proc - process information, system information, and sysctl pseudo-filesystem

DESCRIPTION
The proc filesystem is a pseudo-filesystem which provides an interface to kernel data
structures. It is commonly mounted at /proc. Typically, it is mounted automatically
by the system, but it can also be mounted manually using a command such as:

mount -t proc proc /proc

Most of the files in the proc filesystem are read-only, but some files are writable, al-
lowing kernel variables to be changed.

Mount options
The proc filesystem supports the following mount options:

hidepid=n (since Linux 3.3)
This option controls who can access the information in /proc/ pid directories.
The argument, n, is one of the following values:

Everybody may access all
/proc/ pid directories. This is the traditional behavior, and the default if
this mount option is not specified.

1 Users may not access files and subdirectories inside any /proc/ pid direc-
tories but their own (the /proc/ pid directories themselves remain visible).
Sensitive files such as /proc/ pid /cmdline and /proc/ pid /status are now
protected against other users. This makes it impossible to learn whether
any user is running a specific program (so long as the program doesn’t
otherwise reveal itself by its behavior).

2 As for mode 1, but in addition the /proc/ pid directories belonging to
other users become invisible. This means that /proc/ pid entries can no
longer be used to discover the PIDs on the system. This doesn’t hide the
fact that a process with a specific PID value exists (it can be learned by
other means, for example, by "kill -0 $PID"), but it hides a process’s
UID and GID, which could otherwise be learned by employing stat(2) on
a /proc/ pid directory. This greatly complicates an attacker’s task of gath-
ering information about running processes (e.g., discovering whether
some daemon is running with elevated privileges, whether another user is
running some sensitive program, whether other users are running any pro-
gram at all, and so on).

gid=gid (since Linux 3.3)
Specifies the ID of a group whose members are authorized to learn
process information otherwise prohibited by hidepid (i.e., users in this
group behave as though /proc was mounted with hidepid=0). This group
should be used instead of approaches such as putting nonroot users into
the sudoers(5) file.

subset=pid (since Linux 5.8)
Show only the specified subset of procfs, hiding all top level files and directo-
ries in the procfs that are not related to tasks.

Linux man-pages 6.13 2024-06-15 2869

proc(5) File Formats Manual proc(5)

Overview
Underneath /proc, there are the following general groups of files and subdirectories:

/proc/ pid subdirectories
Each one of these subdirectories contains files and subdirectories exposing in-
formation about the process with the corresponding process ID.

Underneath each of the /proc/ pid directories, a task subdirectory contains
subdirectories of the form task/ tid, which contain corresponding information
about each of the threads in the process, where tid is the kernel thread ID of
the thread.

The /proc/ pid subdirectories are visible when iterating through /proc with get-
dents(2) (and thus are visible when one uses ls(1) to view the contents of
/proc).

/proc/ tid subdirectories
Each one of these subdirectories contains files and subdirectories exposing in-
formation about the thread with the corresponding thread ID. The contents of
these directories are the same as the corresponding /proc/ pid /task/ tid directo-
ries.

The /proc/ tid subdirectories are not visible when iterating through /proc with
getdents(2) (and thus are not visible when one uses ls(1) to view the contents
of /proc).

/proc/self
When a process accesses this magic symbolic link, it resolves to the process’s
own /proc/ pid directory.

/proc/thread-self
When a thread accesses this magic symbolic link, it resolves to the process’s
own /proc/self/task/ tid directory.

/proc/[a-z]*
Various other files and subdirectories under /proc expose system-wide infor-
mation.

All of the above are described in more detail in separate manpages whose names start
with proc_.

NOTES
Many files contain strings (e.g., the environment and command line) that are in the in-
ternal format, with subfields terminated by null bytes ('\0'). When inspecting such
files, you may find that the results are more readable if you use a command of the fol-
lowing form to display them:

$ cat file | tr '\000' '\n'

SEE ALSO
cat(1), dmesg(1), find(1), free(1), htop(1), init(1), ps(1), pstree(1), tr(1), uptime(1),
chroot(2), mmap(2), readlink(2), syslog(2), slabinfo(5), sysfs(5), hier(7), name-
spaces(7), time(7), arp(8), hdparm(8), ifconfig(8), lsmod(8), lspci(8), mount(8), net-
stat(8), procinfo(8), route(8), sysctl(8)

The Linux kernel source files: Documentation/filesystems/proc.rst,

Linux man-pages 6.13 2024-06-15 2870

proc(5) File Formats Manual proc(5)

Documentation/admin-guide/sysctl/fs.rst, Documentation/admin-guide/sysctl/ker-
nel.rst, Documentation/admin-guide/sysctl/net.rst, and Documentation/admin-
guide/sysctl/vm.rst.

Linux man-pages 6.13 2024-06-15 2871

proc_apm(5) File Formats Manual proc_apm(5)

NAME
/proc/apm - advanced power management

DESCRIPTION
/proc/apm

Advanced power management version and battery information when CON-
FIG_APM is defined at kernel compilation time.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2872

proc_buddyinfo(5) File Formats Manual proc_buddyinfo(5)

NAME
/proc/buddyinfo - memory fragmentation

DESCRIPTION
/proc/buddyinfo

This file contains information which is used for diagnosing memory fragmen-
tation issues. Each line starts with the identification of the node and the name
of the zone which together identify a memory region. This is then followed by
the count of available chunks of a certain order in which these zones are split.
The size in bytes of a certain order is given by the formula:

(2^order) * PAGE_SIZE

The binary buddy allocator algorithm inside the kernel will split one chunk
into two chunks of a smaller order (thus with half the size) or combine two
contiguous chunks into one larger chunk of a higher order (thus with double
the size) to satisfy allocation requests and to counter memory fragmentation.
The order matches the column number, when starting to count at zero.

For example on an x86-64 system:
Node 0, zone DMA 1 1 1 0 2 1 1 0 1 1 3
Node 0, zone DMA32 65 47 4 81 52 28 13 10 5 1 404
Node 0, zone Normal 216 55 189 101 84 38 37 27 5 3 587

In this example, there is one node containing three zones and there are 11 dif-
ferent chunk sizes. If the page size is 4 kilobytes, then the first zone called
DMA (on x86 the first 16 megabyte of memory) has 1 chunk of 4 kilobytes
(order 0) available and has 3 chunks of 4 megabytes (order 10) available.

If the memory is heavily fragmented, the counters for higher order chunks will
be zero and allocation of large contiguous areas will fail.

Further information about the zones can be found in /proc/zoneinfo.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2873

proc_bus(5) File Formats Manual proc_bus(5)

NAME
/proc/bus/ - installed buses

DESCRIPTION
/proc/bus/

Contains subdirectories for installed buses.

/proc/bus/pccard/
Subdirectory for PCMCIA devices when CONFIG_PCMCIA is set at kernel
compilation time.

/proc/bus/pccard/drivers

/proc/bus/pci/
Contains various bus subdirectories and pseudo-files containing information
about PCI buses, installed devices, and device drivers. Some of these files are
not ASCII.

/proc/bus/pci/devices
Information about PCI devices. They may be accessed through lspci(8) and
setpci(8)

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2874

proc_cgroups(5) File Formats Manual proc_cgroups(5)

NAME
/proc/cgroups - control groups

DESCRIPTION
/proc/cgroups (since Linux 2.6.24)

See cgroups(7).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2875

proc_cmdline(5) File Formats Manual proc_cmdline(5)

NAME
/proc/cmdline - kernel boot arguments

DESCRIPTION
/proc/cmdline

Arguments passed to the Linux kernel at boot time. Often done via a boot
manager such as lilo(8) or grub(8)Any arguments embedded in the kernel im-
age or initramfs via CONFIG_BOOT_CONFIG will also be displayed.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2876

proc_config.gz(5) File Formats Manual proc_config.gz(5)

NAME
/proc/config.gz - kernel build configuration

DESCRIPTION
/proc/config.gz (since Linux 2.6)

This file exposes the configuration options that were used to build the cur-
rently running kernel, in the same format as they would be shown in the .con-
fig file that resulted when configuring the kernel (using make xconfig, make
config, or similar). The file contents are compressed; view or search them us-
ing zcat(1) and zgrep(1)As long as no changes have been made to the follow-
ing file, the contents of /proc/config.gz are the same as those provided by:

cat /lib/modules/$(uname -r)/build/.config

/proc/config.gz is provided only if the kernel is configured with CONFIG_IK-
CONFIG_PROC.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2877

proc_cpuinfo(5) File Formats Manual proc_cpuinfo(5)

NAME
/proc/cpuinfo - CPU and system architecture information

DESCRIPTION
/proc/cpuinfo

This is a collection of CPU and system architecture dependent items, for each
supported architecture a different list. Two common entries are processor
which gives CPU number and bogomips; a system constant that is calculated
during kernel initialization. SMP machines have information for each CPU.
The lscpu(1) command gathers its information from this file.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2878

proc_crypto(5) File Formats Manual proc_crypto(5)

NAME
/proc/crypto - ciphers provided by kernel crypto API

DESCRIPTION
/proc/crypto

A list of the ciphers provided by the kernel crypto API. For details, see the
kernel Linux Kernel Crypto API documentation available under the kernel
source directory Documentation/crypto/ (or Documentation/DocBook before
Linux 4.10; the documentation can be built using a command such as make
htmldocs in the root directory of the kernel source tree).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2879

proc_devices(5) File Formats Manual proc_devices(5)

NAME
/proc/devices - major numbers and device groups

DESCRIPTION
/proc/devices

Text listing of major numbers and device groups. This can be used by
MAKEDEV scripts for consistency with the kernel.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2880

proc_diskstats(5) File Formats Manual proc_diskstats(5)

NAME
/proc/diskstats - disk I/O statistics

DESCRIPTION
/proc/diskstats (since Linux 2.5.69)

This file contains disk I/O statistics for each disk device. See the Linux kernel
source file Documentation/admin-guide/iostats.rst (or Documenta-
tion/iostats.txt before Linux 5.3) for further information.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2881

proc_dma(5) File Formats Manual proc_dma(5)

NAME
/proc/dma - ISA DMA channels

DESCRIPTION
/proc/dma

This is a list of the registered ISA DMA (direct memory access) channels in
use.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2882

proc_driver(5) File Formats Manual proc_driver(5)

NAME
/proc/driver/ - empty dir

DESCRIPTION
/proc/driver/

Empty subdirectory.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2883

proc_execdomains(5) File Formats Manual proc_execdomains(5)

NAME
/proc/execdomains - ABI personalities (obsolete)

DESCRIPTION
/proc/execdomains

Used to list ABI personalities before Linux 4.1; now contains a constant string
for userspace compatibility.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2884

proc_fb(5) File Formats Manual proc_fb(5)

NAME
/proc/fb - frame buffer

DESCRIPTION
/proc/fb

Frame buffer information when CONFIG_FB is defined during kernel compi-
lation.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2885

proc_filesystems(5) File Formats Manual proc_filesystems(5)

NAME
/proc/filesystems - supported filesystems

DESCRIPTION
/proc/filesystems

A text listing of the filesystems which are supported by the kernel, namely
filesystems which were compiled into the kernel or whose kernel modules are
currently loaded. (See also filesystems(5).) If a filesystem is marked with
"nodev", this means that it does not require a block device to be mounted (e.g.,
virtual filesystem, network filesystem).

Incidentally, this file may be used by mount(8) when no filesystem is specified
and it didn’t manage to determine the filesystem type. Then filesystems con-
tained in this file are tried (excepted those that are marked with "nodev").

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2886

proc_fs(5) File Formats Manual proc_fs(5)

NAME
/proc/fs/ - mounted filesystems

DESCRIPTION
/proc/fs/

Contains subdirectories that in turn contain files with information about (cer-
tain) mounted filesystems.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2887

proc_ide(5) File Formats Manual proc_ide(5)

NAME
/proc/ide/ - IDE channels and attached devices

DESCRIPTION
/proc/ide

This directory exists on systems with the IDE bus. There are directories for
each IDE channel and attached device. Files include:

cache buffer size in KB
capacity number of sectors
driver driver version
geometry physical and logical geometry
identify in hexadecimal
media media type
model manufacturer's model number
settings drive settings
smart_thresholds IDE disk management thresholds (in hex)
smart_values IDE disk management values (in hex)

The hdparm(8) utility provides access to this information in a friendly format.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2888

proc_interrupts(5) File Formats Manual proc_interrupts(5)

NAME
/proc/interrupts - number of interrupts

DESCRIPTION
/proc/interrupts

This is used to record the number of interrupts per CPU per IO device. Since
Linux 2.6.24, for the i386 and x86-64 architectures, at least, this also includes
interrupts internal to the system (that is, not associated with a device as such),
such as NMI (nonmaskable interrupt), LOC (local timer interrupt), and for
SMP systems, TLB (TLB flush interrupt), RES (rescheduling interrupt), CAL
(remote function call interrupt), and possibly others. Very easy to read format-
ting, done in ASCII.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2889

proc_iomem(5) File Formats Manual proc_iomem(5)

NAME
/proc/iomem - I/O memory map

DESCRIPTION
/proc/iomem

I/O memory map in Linux 2.4.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2890

proc_ioports(5) File Formats Manual proc_ioports(5)

NAME
/proc/ioports - I/O port regions

DESCRIPTION
/proc/ioports

This is a list of currently registered Input-Output port regions that are in use.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2891

proc_kallsyms(5) File Formats Manual proc_kallsyms(5)

NAME
/proc/kallsyms - kernel exported symbols

DESCRIPTION
/proc/kallsyms (since Linux 2.5.71)

This holds the kernel exported symbol definitions used by the modules(X)
tools to dynamically link and bind loadable modules. In Linux 2.5.47 and ear-
lier, a similar file with slightly different syntax was named ksyms.

HISTORY
/proc/ksyms (Linux 1.1.23–2.5.47)

See /proc/kallsyms.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2892

proc_kcore(5) File Formats Manual proc_kcore(5)

NAME
/proc/kcore - physical memory

DESCRIPTION
/proc/kcore

This file represents the physical memory of the system and is stored in the
ELF core file format. With this pseudo-file, and an unstripped kernel
(/usr/src/linux/vmlinux) binary, GDB can be used to examine the current state
of any kernel data structures.

The total length of the file is the size of physical memory (RAM) plus 4 KiB.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2893

proc_keys(5) File Formats Manual proc_keys(5)

NAME
/proc/keys, /proc/key-users - in-kernel key management

DESCRIPTION
/proc/keys (since Linux 2.6.10)

See keyrings(7).

/proc/key-users (since Linux 2.6.10)
See keyrings(7).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2894

proc_kmsg(5) File Formats Manual proc_kmsg(5)

NAME
/proc/kmsg - kernel messages

DESCRIPTION
/proc/kmsg

This file can be used instead of the syslog(2) system call to read kernel mes-
sages. A process must have superuser privileges to read this file, and only one
process should read this file. This file should not be read if a syslog process is
running which uses the syslog(2) system call facility to log kernel messages.

Information in this file is retrieved with the dmesg(1) program.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2895

proc_kpagecgroup(5) File Formats Manual proc_kpagecgroup(5)

NAME
/proc/kpagecgroup - memory cgroups

DESCRIPTION
/proc/kpagecgroup (since Linux 4.3)

This file contains a 64-bit inode number of the memory cgroup each page is
charged to, indexed by page frame number (see the discussion of
/proc/ pid /pagemap).

The /proc/kpagecgroup file is present only if the CONFIG_MEMCG kernel
configuration option is enabled.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2896

proc_kpagecount(5) File Formats Manual proc_kpagecount(5)

NAME
/proc/kpagecount - count of mappings of physical pages

DESCRIPTION
/proc/kpagecount (since Linux 2.6.25)

This file contains a 64-bit count of the number of times each physical page
frame is mapped, indexed by page frame number (see the discussion of
/proc/ pid /pagemap).

The /proc/kpagecount file is present only if the CON-
FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2897

proc_kpageflags(5) File Formats Manual proc_kpageflags(5)

NAME
/proc/kpageflags - physical pages frame masks

DESCRIPTION
/proc/kpageflags (since Linux 2.6.25)

This file contains 64-bit masks corresponding to each physical page frame; it
is indexed by page frame number (see the discussion of /proc/ pid /pagemap).
The bits are as follows:

0 - KPF_LOCKED
1 - KPF_ERROR
2 - KPF_REFERENCED
3 - KPF_UPTODATE
4 - KPF_DIRTY
5 - KPF_LRU
6 - KPF_ACTIVE
7 - KPF_SLAB
8 - KPF_WRITEBACK
9 - KPF_RECLAIM

10 - KPF_BUDDY
11 - KPF_MMAP (since Linux 2.6.31)
12 - KPF_ANON (since Linux 2.6.31)
13 - KPF_SWAPCACHE (since Linux 2.6.31)
14 - KPF_SWAPBACKED (since Linux 2.6.31)
15 - KPF_COMPOUND_HEAD (since Linux 2.6.31)
16 - KPF_COMPOUND_TAIL (since Linux 2.6.31)
17 - KPF_HUGE (since Linux 2.6.31)
18 - KPF_UNEVICTABLE (since Linux 2.6.31)
19 - KPF_HWPOISON (since Linux 2.6.31)
20 - KPF_NOPAGE (since Linux 2.6.31)
21 - KPF_KSM (since Linux 2.6.32)
22 - KPF_THP (since Linux 3.4)
23 - KPF_BALLOON (since Linux 3.18)
24 - KPF_ZERO_PAGE (since Linux 4.0)
25 - KPF_IDLE (since Linux 4.3)
26 - KPF_PGTABLE (since Linux 4.18)

For further details on the meanings of these bits, see the kernel source file
Documentation/admin-guide/mm/pagemap.rst. Before Linux 2.6.29,
KPF_WRITEBACK, KPF_RECLAIM, KPF_BUDDY, and
KPF_LOCKED did not report correctly.

The /proc/kpageflags file is present only if the CON-
FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2898

proc_loadavg(5) File Formats Manual proc_loadavg(5)

NAME
/proc/loadavg - load average

DESCRIPTION
/proc/loadavg

The first three fields in this file are load average figures giving the number of
jobs in the run queue (state R) or waiting for disk I/O (state D) averaged over
1, 5, and 15 minutes. They are the same as the load average numbers given by
uptime(1) and other programs. The fourth field consists of two numbers sepa-
rated by a slash (/). The first of these is the number of currently runnable ker-
nel scheduling entities (processes, threads). The value after the slash is the
number of kernel scheduling entities that currently exist on the system. The
fifth field is the PID of the process that was most recently created on the sys-
tem.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2899

proc_locks(5) File Formats Manual proc_locks(5)

NAME
/proc/locks - current file locks and leases

DESCRIPTION
/proc/locks

This file shows current file locks (flock(2) and fcntl(2)) and leases (fcntl(2)).

An example of the content shown in this file is the following:

1: POSIX ADVISORY READ 5433 08:01:7864448 128 128
2: FLOCK ADVISORY WRITE 2001 08:01:7864554 0 EOF
3: FLOCK ADVISORY WRITE 1568 00:2f:32388 0 EOF
4: POSIX ADVISORY WRITE 699 00:16:28457 0 EOF
5: POSIX ADVISORY WRITE 764 00:16:21448 0 0
6: POSIX ADVISORY READ 3548 08:01:7867240 1 1
7: POSIX ADVISORY READ 3548 08:01:7865567 1826 2335
8: OFDLCK ADVISORY WRITE -1 08:01:8713209 128 191

The fields shown in each line are as follows:

[1] The ordinal position of the lock in the list.

[2] The lock type. Values that may appear here include:

FLOCK
This is a BSD file lock created using flock(2).

OFDLCK
This is an open file description (OFD) lock created using
fcntl(2).

POSIX
This is a POSIX byte-range lock created using fcntl(2).

[3] Among the strings that can appear here are the following:

ADVISORY
This is an advisory lock.

MANDATORY
This is a mandatory lock.

[4] The type of lock. Values that can appear here are:

READ
This is a POSIX or OFD read lock, or a BSD shared lock.

WRITE
This is a POSIX or OFD write lock, or a BSD exclusive lock.

[5] The PID of the process that owns the lock.

Because OFD locks are not owned by a single process (since multiple
processes may have file descriptors that refer to the same open file de-
scription), the value -1 is displayed in this field for OFD locks. (Before
Linux 4.14, a bug meant that the PID of the process that initially ac-
quired the lock was displayed instead of the value -1.)

Linux man-pages 6.13 2024-05-02 2900

proc_locks(5) File Formats Manual proc_locks(5)

[6] Three colon-separated subfields that identify the major and minor device
ID of the device containing the filesystem where the locked file resides,
followed by the inode number of the locked file.

[7] The byte offset of the first byte of the lock. For BSD locks, this value is
always 0.

[8] The byte offset of the last byte of the lock. EOF in this field means that
the lock extends to the end of the file. For BSD locks, the value shown
is always EOF .

Since Linux 4.9, the list of locks shown in /proc/locks is filtered to show just
the locks for the processes in the PID namespace (see pid_namespaces(7)) for
which the /proc filesystem was mounted. (In the initial PID namespace, there
is no filtering of the records shown in this file.)

The lslocks(8) command provides a bit more information about each lock.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2901

proc_malloc(5) File Formats Manual proc_malloc(5)

NAME
/proc/malloc - debug malloc (obsolete)

DESCRIPTION
/proc/malloc (only up to and including Linux 2.2)

This file is present only if CONFIG_DEBUG_MALLOC was defined during
compilation.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2902

proc_meminfo(5) File Formats Manual proc_meminfo(5)

NAME
/proc/meminfo - memory usage

DESCRIPTION
/proc/meminfo

This file reports statistics about memory usage on the system. It is used by
free(1) to report the amount of free and used memory (both physical and
swap) on the system as well as the shared memory and buffers used by the ker-
nel. Each line of the file consists of a parameter name, followed by a colon,
the value of the parameter, and an option unit of measurement (e.g., "kB").
The list below describes the parameter names and the format specifier required
to read the field value. Except as noted below, all of the fields have been
present since at least Linux 2.6.0. Some fields are displayed only if the kernel
was configured with various options; those dependencies are noted in the list.

MemTotal %lu
Total usable RAM (i.e., physical RAM minus a few reserved bits and
the kernel binary code).

MemFree %lu
The sum of LowFree+HighFree.

MemAvailable %lu (since Linux 3.14)
An estimate of how much memory is available for starting new appli-
cations, without swapping.

Buffers %lu
Relatively temporary storage for raw disk blocks that shouldn’t get
tremendously large (20 MB or so).

Cached %lu
In-memory cache for files read from the disk (the page cache).
Doesn’t include SwapCached .

SwapCached %lu
Memory that once was swapped out, is swapped back in but still also is
in the swap file. (If memory pressure is high, these pages don’t need to
be swapped out again because they are already in the swap file. This
saves I/O.)

Active %lu
Memory that has been used more recently and usually not reclaimed
unless absolutely necessary.

Inactive %lu
Memory which has been less recently used. It is more eligible to be re-
claimed for other purposes.

Active(anon) %lu (since Linux 2.6.28)
[To be documented.]

Inactive(anon) %lu (since Linux 2.6.28)
[To be documented.]

Linux man-pages 6.13 2024-05-02 2903

proc_meminfo(5) File Formats Manual proc_meminfo(5)

Active(file) %lu (since Linux 2.6.28)
[To be documented.]

Inactive(file) %lu (since Linux 2.6.28)
[To be documented.]

Unevictable %lu (since Linux 2.6.28)
(From Linux 2.6.28 to Linux 2.6.30, CONFIG_UN-
EVICTABLE_LRU was required.) [To be documented.]

Mlocked %lu (since Linux 2.6.28)
(From Linux 2.6.28 to Linux 2.6.30, CONFIG_UN-
EVICTABLE_LRU was required.) [To be documented.]

HighTotal %lu
(Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.) To-
tal amount of highmem. Highmem is all memory above ~860 MB of
physical memory. Highmem areas are for use by user-space programs,
or for the page cache. The kernel must use tricks to access this mem-
ory, making it slower to access than lowmem.

HighFree %lu
(Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.)
Amount of free highmem.

LowTotal %lu
(Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.) To-
tal amount of lowmem. Lowmem is memory which can be used for
everything that highmem can be used for, but it is also available for the
kernel’s use for its own data structures. Among many other things, it is
where everything from Slab is allocated. Bad things happen when
you’re out of lowmem.

LowFree %lu
(Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.)
Amount of free lowmem.

MmapCopy %lu (since Linux 2.6.29)
(CONFIG_MMU is required.) [To be documented.]

SwapTotal %lu
Total amount of swap space available.

SwapFree %lu
Amount of swap space that is currently unused.

Dirty %lu
Memory which is waiting to get written back to the disk.

Writeback %lu
Memory which is actively being written back to the disk.

AnonPages %lu (since Linux 2.6.18)
Non-file backed pages mapped into user-space page tables.

Linux man-pages 6.13 2024-05-02 2904

proc_meminfo(5) File Formats Manual proc_meminfo(5)

Mapped %lu
Files which have been mapped into memory (with mmap(2)), such as
libraries.

Shmem %lu (since Linux 2.6.32)
Amount of memory consumed in tmpfs(5) filesystems.

KReclaimable %lu (since Linux 4.20)
Kernel allocations that the kernel will attempt to reclaim under mem-
ory pressure. Includes SReclaimable (below), and other direct alloca-
tions with a shrinker.

Slab %lu
In-kernel data structures cache. (See slabinfo(5).)

SReclaimable %lu (since Linux 2.6.19)
Part of Slab, that might be reclaimed, such as caches.

SUnreclaim %lu (since Linux 2.6.19)
Part of Slab, that cannot be reclaimed on memory pressure.

KernelStack %lu (since Linux 2.6.32)
Amount of memory allocated to kernel stacks.

PageTables %lu (since Linux 2.6.18)
Amount of memory dedicated to the lowest level of page tables.

Quicklists %lu (since Linux 2.6.27)
(CONFIG_QUICKLIST is required.) [To be documented.]

NFS_Unstable %lu (since Linux 2.6.18)
NFS pages sent to the server, but not yet committed to stable storage.

Bounce %lu (since Linux 2.6.18)
Memory used for block device "bounce buffers".

WritebackTmp %lu (since Linux 2.6.26)
Memory used by FUSE for temporary writeback buffers.

CommitLimit %lu (since Linux 2.6.10)
This is the total amount of memory currently available to be allocated
on the system, expressed in kilobytes. This limit is adhered to only if
strict overcommit accounting is enabled (mode 2 in /proc/sys/vm/over-
commit_memory). The limit is calculated according to the formula de-
scribed under /proc/sys/vm/overcommit_memory. For further details,
see the kernel source file Documentation/vm/overcommit-account-
ing.rst.

Committed_AS %lu
The amount of memory presently allocated on the system. The com-
mitted memory is a sum of all of the memory which has been allocated
by processes, even if it has not been "used" by them as of yet. A
process which allocates 1 GB of memory (using malloc(3) or similar),
but touches only 300 MB of that memory will show up as using only
300 MB of memory even if it has the address space allocated for the
entire 1 GB.

Linux man-pages 6.13 2024-05-02 2905

proc_meminfo(5) File Formats Manual proc_meminfo(5)

This 1 GB is memory which has been "committed" to by the VM and
can be used at any time by the allocating application. With strict over-
commit enabled on the system (mode 2 in /proc/sys/vm/overcom-
mit_memory), allocations which would exceed the CommitLimit will
not be permitted. This is useful if one needs to guarantee that
processes will not fail due to lack of memory once that memory has
been successfully allocated.

VmallocTotal %lu
Total size of vmalloc memory area.

VmallocUsed %lu
Amount of vmalloc area which is used. Since Linux 4.4, this field is
no longer calculated, and is hard coded as 0. See /proc/vmallocinfo.

VmallocChunk %lu
Largest contiguous block of vmalloc area which is free. Since Linux
4.4, this field is no longer calculated and is hard coded as 0. See
/proc/vmallocinfo.

HardwareCorrupted %lu (since Linux 2.6.32)
(CONFIG_MEMORY_FAILURE is required.) [To be documented.]

LazyFree %lu (since Linux 4.12)
Shows the amount of memory marked by madvise(2) MADV_FREE.

AnonHugePages %lu (since Linux 2.6.38)
(CONFIG_TRANSPARENT_HUGEPAGE is required.) Non-file
backed huge pages mapped into user-space page tables.

ShmemHugePages %lu (since Linux 4.8)
(CONFIG_TRANSPARENT_HUGEPAGE is required.) Memory
used by shared memory (shmem) and tmpfs(5) allocated with huge
pages.

ShmemPmdMapped %lu (since Linux 4.8)
(CONFIG_TRANSPARENT_HUGEPAGE is required.) Shared
memory mapped into user space with huge pages.

CmaTotal %lu (since Linux 3.1)
Total CMA (Contiguous Memory Allocator) pages. (CONFIG_CMA
is required.)

CmaFree %lu (since Linux 3.1)
Free CMA (Contiguous Memory Allocator) pages. (CONFIG_CMA
is required.)

HugePages_Total %lu
(CONFIG_HUGETLB_PAGE is required.) The size of the pool of
huge pages.

HugePages_Free %lu
(CONFIG_HUGETLB_PAGE is required.) The number of huge
pages in the pool that are not yet allocated.

Linux man-pages 6.13 2024-05-02 2906

proc_meminfo(5) File Formats Manual proc_meminfo(5)

HugePages_Rsvd %lu (since Linux 2.6.17)
(CONFIG_HUGETLB_PAGE is required.) This is the number of
huge pages for which a commitment to allocate from the pool has been
made, but no allocation has yet been made. These reserved huge pages
guarantee that an application will be able to allocate a huge page from
the pool of huge pages at fault time.

HugePages_Surp %lu (since Linux 2.6.24)
(CONFIG_HUGETLB_PAGE is required.) This is the number of
huge pages in the pool above the value in /proc/sys/vm/nr_hugepages.
The maximum number of surplus huge pages is controlled by
/proc/sys/vm/nr_overcommit_hugepages.

Hugepagesize %lu
(CONFIG_HUGETLB_PAGE is required.) The size of huge pages.

DirectMap4k %lu (since Linux 2.6.27)
Number of bytes of RAM linearly mapped by kernel in 4 kB pages.
(x86.)

DirectMap4M %lu (since Linux 2.6.27)
Number of bytes of RAM linearly mapped by kernel in 4 MB pages.
(x86 with CONFIG_X86_64 or CONFIG_X86_PAE enabled.)

DirectMap2M %lu (since Linux 2.6.27)
Number of bytes of RAM linearly mapped by kernel in 2 MB pages.
(x86 with neither CONFIG_X86_64 nor CONFIG_X86_PAE en-
abled.)

DirectMap1G %lu (since Linux 2.6.27)
(x86 with CONFIG_X86_64 and CONFIG_X86_DIRECT_GB-
PAGES enabled.)

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2907

proc_modules(5) File Formats Manual proc_modules(5)

NAME
/proc/modules - loaded modules

DESCRIPTION
/proc/modules

A text list of the modules that have been loaded by the system. See also
lsmod(8)

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2908

proc_mtrr(5) File Formats Manual proc_mtrr(5)

NAME
/proc/mtrr - memory type range registers

DESCRIPTION
/proc/mtrr

Memory Type Range Registers. See the Linux kernel source file Documenta-
tion/x86/mtrr.rst (or Documentation/x86/mtrr.txt before Linux 5.2, or Docu-
mentation/mtrr.txt before Linux 2.6.28) for details.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2909

proc_partitions(5) File Formats Manual proc_partitions(5)

NAME
/proc/partitions - major and minor numbers of partitions

DESCRIPTION
/proc/partitions

Contains the major and minor numbers of each partition as well as the number
of 1024-byte blocks and the partition name.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2910

proc_pci(5) File Formats Manual proc_pci(5)

NAME
/proc/pci - PCI devices

DESCRIPTION
/proc/pci

This is a listing of all PCI devices found during kernel initialization and their
configuration.

This file has been deprecated in favor of a new /proc interface for PCI
(/proc/bus/pci). It became optional in Linux 2.2 (available with CON-
FIG_PCI_OLD_PROC set at kernel compilation). It became once more
nonoptionally enabled in Linux 2.4. Next, it was deprecated in Linux 2.6 (still
available with CONFIG_PCI_LEGACY_PROC set), and finally removed al-
together since Linux 2.6.17.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2911

proc_pid(5) File Formats Manual proc_pid(5)

NAME
/proc/pid/, /proc/self/ - process information

DESCRIPTION
/proc/ pid /

There is a numerical subdirectory for each running process; the subdirectory is
named by the process ID. Each /proc/ pid subdirectory contains the pseudo-
files and directories described below.

The files inside each /proc/ pid directory are normally owned by the effective
user and effective group ID of the process. However, as a security measure,
the ownership is made root:root if the process’s "dumpable" attribute is set to
a value other than 1.

Before Linux 4.11, root:root meant the "global" root user ID and group ID
(i.e., UID 0 and GID 0 in the initial user namespace). Since Linux 4.11, if the
process is in a noninitial user namespace that has a valid mapping for user
(group) ID 0 inside the namespace, then the user (group) ownership of the files
under /proc/ pid is instead made the same as the root user (group) ID of the
namespace. This means that inside a container, things work as expected for
the container "root" user.

The process’s "dumpable" attribute may change for the following reasons:

• The attribute was explicitly set via the prctl(2) PR_SET_DUMPABLE
operation.

• The attribute was reset to the value in the file /proc/sys/fs/suid_dumpable
(described below), for the reasons described in prctl(2).

Resetting the "dumpable" attribute to 1 reverts the ownership of the
/proc/ pid /* files to the process’s effective UID and GID. Note, however, that
if the effective UID or GID is subsequently modified, then the "dumpable" at-
tribute may be reset, as described in prctl(2). Therefore, it may be desirable to
reset the "dumpable" attribute after making any desired changes to the
process’s effective UID or GID.

/proc/self/
This directory refers to the process accessing the /proc filesystem, and is iden-
tical to the /proc directory named by the process ID of the same process.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2912

proc_pid_attr(5) File Formats Manual proc_pid_attr(5)

NAME
/proc/pid/attr/ - security-related attributes

DESCRIPTION
/proc/ pid /attr/

The files in this directory provide an API for security modules. The contents
of this directory are files that can be read and written in order to set security-
related attributes. This directory was added to support SELinux, but the inten-
tion was that the API be general enough to support other security modules.
For the purpose of explanation, examples of how SELinux uses these files are
provided below.

This directory is present only if the kernel was configured with CONFIG_SE-
CURITY.

/proc/ pid /attr/current (since Linux 2.6.0)
The contents of this file represent the current security attributes of the process.

In SELinux, this file is used to get the security context of a process. Prior to
Linux 2.6.11, this file could not be used to set the security context (a write was
always denied), since SELinux limited process security transitions to ex-
ecve(2) (see the description of /proc/ pid /attr/exec, below). Since Linux
2.6.11, SELinux lifted this restriction and began supporting "set" operations
via writes to this node if authorized by policy, although use of this operation is
only suitable for applications that are trusted to maintain any desired separa-
tion between the old and new security contexts.

Prior to Linux 2.6.28, SELinux did not allow threads within a multithreaded
process to set their security context via this node as it would yield an inconsis-
tency among the security contexts of the threads sharing the same memory
space. Since Linux 2.6.28, SELinux lifted this restriction and began support-
ing "set" operations for threads within a multithreaded process if the new secu-
rity context is bounded by the old security context, where the bounded relation
is defined in policy and guarantees that the new security context has a subset
of the permissions of the old security context.

Other security modules may choose to support "set" operations via writes to
this node.

/proc/ pid /attr/exec (since Linux 2.6.0)
This file represents the attributes to assign to the process upon a subsequent
execve(2).

In SELinux, this is needed to support role/domain transitions, and execve(2) is
the preferred point to make such transitions because it offers better control
over the initialization of the process in the new security label and the inheri-
tance of state. In SELinux, this attribute is reset on execve(2) so that the new
program reverts to the default behavior for any execve(2) calls that it may
make. In SELinux, a process can set only its own /proc/ pid /attr/exec at-
tribute.

/proc/ pid /attr/fscreate (since Linux 2.6.0)
This file represents the attributes to assign to files created by subsequent calls
to open(2), mkdir(2), symlink(2), and mknod(2)

Linux man-pages 6.13 2024-05-02 2913

proc_pid_attr(5) File Formats Manual proc_pid_attr(5)

SELinux employs this file to support creation of a file (using the aforemen-
tioned system calls) in a secure state, so that there is no risk of inappropriate
access being obtained between the time of creation and the time that attributes
are set. In SELinux, this attribute is reset on execve(2), so that the new pro-
gram reverts to the default behavior for any file creation calls it may make, but
the attribute will persist across multiple file creation calls within a program un-
less it is explicitly reset. In SELinux, a process can set only its own
/proc/ pid /attr/fscreate attribute.

/proc/ pid /attr/keycreate (since Linux 2.6.18)
If a process writes a security context into this file, all subsequently created
keys (add_key(2)) will be labeled with this context. For further information,
see the kernel source file Documentation/security/keys/core.rst (or file Docu-
mentation/security/keys.txt between Linux 3.0 and Linux 4.13, or Documenta-
tion/keys.txt before Linux 3.0).

/proc/ pid /attr/prev (since Linux 2.6.0)
This file contains the security context of the process before the last execve(2);
that is, the previous value of /proc/ pid /attr/current.

/proc/ pid /attr/socketcreate (since Linux 2.6.18)
If a process writes a security context into this file, all subsequently created
sockets will be labeled with this context.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2914

proc_pid_autogroup(5) File Formats Manual proc_pid_autogroup(5)

NAME
proc_pid_autogroup - group tasks for the scheduler

DESCRIPTION
/proc/ pid /autogroup (since Linux 2.6.38)

See sched(7).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2915

proc_pid_auxv(5) File Formats Manual proc_pid_auxv(5)

NAME
/proc/pid/auxv - exec(3) information

DESCRIPTION
/proc/ pid /auxv (since Linux 2.6.0)

This contains the contents of the ELF interpreter information passed to the
process at exec time. The format is one unsigned long ID plus one unsigned
long value for each entry. The last entry contains two zeros. See also getaux-
val(3).

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2916

proc_pid_cgroup(5) File Formats Manual proc_pid_cgroup(5)

NAME
/proc/pid/cgroup - control group

DESCRIPTION
/proc/ pid /cgroup (since Linux 2.6.24)

See cgroups(7).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2917

proc_pid_clear_refs(5) File Formats Manual proc_pid_clear_refs(5)

NAME
/proc/pid/clear_refs - reset the PG_Referenced and ACCESSED/YOUNG bits

DESCRIPTION
/proc/ pid /clear_refs (since Linux 2.6.22)

This is a write-only file, writable only by owner of the process.

The following values may be written to the file:

1 (since Linux 2.6.22)
Reset the PG_Referenced and ACCESSED/YOUNG bits for all the
pages associated with the process. (Before Linux 2.6.32, writing any
nonzero value to this file had this effect.)

2 (since Linux 2.6.32)
Reset the PG_Referenced and ACCESSED/YOUNG bits for all anony-
mous pages associated with the process.

3 (since Linux 2.6.32)
Reset the PG_Referenced and ACCESSED/YOUNG bits for all file-
mapped pages associated with the process.

Clearing the PG_Referenced and ACCESSED/YOUNG bits provides a
method to measure approximately how much memory a process is using. One
first inspects the values in the "Referenced" fields for the VMAs shown in
/proc/ pid /smaps to get an idea of the memory footprint of the process. One
then clears the PG_Referenced and ACCESSED/YOUNG bits and, after some
measured time interval, once again inspects the values in the "Referenced"
fields to get an idea of the change in memory footprint of the process during
the measured interval. If one is interested only in inspecting the selected map-
ping types, then the value 2 or 3 can be used instead of 1.

Further values can be written to affect different properties:

4 (since Linux 3.11)
Clear the soft-dirty bit for all the pages associated with the process.
This is used (in conjunction with /proc/ pid /pagemap) by the check-
point restore system to discover which pages of a process have been
dirtied since the file /proc/ pid /clear_refs was written to.

5 (since Linux 4.0)
Reset the peak resident set size ("high water mark") to the process’s
current resident set size value.

Writing any value to /proc/ pid /clear_refs other than those listed above has no
effect.

The /proc/ pid /clear_refs file is present only if the CON-
FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2918

proc_pid_cmdline(5) File Formats Manual proc_pid_cmdline(5)

NAME
/proc/pid/cmdline - command line

DESCRIPTION
/proc/ pid /cmdline

This read-only file holds the complete command line for the process, unless
the process is a zombie. In the latter case, there is nothing in this file: that is, a
read on this file will return 0 characters.

For processes which are still running, the command-line arguments appear in
this file in the same layout as they do in process memory: If the process is
well-behaved, it is a set of strings separated by null bytes ('\0'), with a further
null byte after the last string.

This is the common case, but processes have the freedom to override the mem-
ory region and break assumptions about the contents or format of the
/proc/ pid /cmdline file.

If, after an execve(2), the process modifies its argv strings, those changes will
show up here. This is not the same thing as modifying the argv array.

Furthermore, a process may change the memory location that this file refers
via prctl(2) operations such as PR_SET_MM_ARG_START.

Think of this file as the command line that the process wants you to see.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-06-15 2919

proc_pid_comm(5) File Formats Manual proc_pid_comm(5)

NAME
/proc/pid/comm - command name

DESCRIPTION
/proc/ pid /comm (since Linux 2.6.33)

This file exposes the process’s comm value—that is, the command name asso-
ciated with the process. Different threads in the same process may have differ-
ent comm values, accessible via /proc/ pid /task/ tid /comm. A thread may
modify its comm value, or that of any of other thread in the same thread group
(see the discussion of CLONE_THREAD in clone(2)), by writing to the file
/proc/self/task/ tid /comm. Strings longer than TASK_COMM_LEN (16)
characters (including the terminating null byte) are silently truncated.

This file provides a superset of the prctl(2) PR_SET_NAME and
PR_GET_NAME operations, and is employed by pthread_setname_np(3)
when used to rename threads other than the caller. The value in this file is
used for the %e specifier in /proc/sys/kernel/core_pattern; see core(5).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2920

proc_pid_coredump_filter(5) File Formats Manual proc_pid_coredump_filter(5)

NAME
/proc/pid/coredump_filter - core dump filter

DESCRIPTION
/proc/ pid /coredump_filter (since Linux 2.6.23)

See core(5).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2921

proc_pid_cpuset(5) File Formats Manual proc_pid_cpuset(5)

NAME
/proc/pid/cpuset - CPU affinity sets

DESCRIPTION
/proc/ pid /cpuset (since Linux 2.6.12)

See cpuset(7).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2922

proc_pid_cwd(5) File Formats Manual proc_pid_cwd(5)

NAME
/proc/pid/cwd - symbolic link to current working directory

DESCRIPTION
/proc/ pid /cwd

This is a symbolic link to the current working directory of the process. To find
out the current working directory of process 20, for instance, you can do this:

$ cd /proc/20/cwd; pwd -P

In a multithreaded process, the contents of this symbolic link are not available
if the main thread has already terminated (typically by calling
pthread_exit(3)).

Permission to dereference or read (readlink(2)) this symbolic link is governed
by a ptrace access mode PTRACE_MODE_READ_FSCREDS check; see
ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2923

proc_pid_environ(5) File Formats Manual proc_pid_environ(5)

NAME
/proc/pid/environ - initial environment

DESCRIPTION
/proc/ pid /environ

This file contains the initial environment that was set when the currently exe-
cuting program was started via execve(2). The entries are separated by null
bytes ('\0'), and there may be a null byte at the end. Thus, to print out the envi-
ronment of process 1, you would do:

$ cat /proc/1/environ | tr '\000' '\n'

If, after an execve(2), the process modifies its environment (e.g., by calling
functions such as putenv(3) or modifying the environ(7) variable directly), this
file will not reflect those changes.

Furthermore, a process may change the memory location that this file refers
via prctl(2) operations such as PR_SET_MM_ENV_START.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-06-15 2924

proc_pid_exe(5) File Formats Manual proc_pid_exe(5)

NAME
/proc/pid/exe - symbolic link to program pathname

DESCRIPTION
/proc/ pid /exe

Under Linux 2.2 and later, this file is a symbolic link containing the actual
pathname of the executed command. This symbolic link can be dereferenced
normally; attempting to open it will open the executable. You can even type
/proc/ pid /exe to run another copy of the same executable that is being run by
process pid . If the pathname has been unlinked, the symbolic link will con-
tain the string ' (deleted)' appended to the original pathname. In a multi-
threaded process, the contents of this symbolic link are not available if the
main thread has already terminated (typically by calling pthread_exit(3)).

Permission to dereference or read (readlink(2)) this symbolic link is governed
by a ptrace access mode PTRACE_MODE_READ_FSCREDS check; see
ptrace(2).

Under Linux 2.0 and earlier, /proc/ pid /exe is a pointer to the binary which
was executed, and appears as a symbolic link. A readlink(2) call on this file
under Linux 2.0 returns a string in the format:

[device]:inode

For example, [0301]:1502 would be inode 1502 on device major 03 (IDE,
MFM, etc. drives) minor 01 (first partition on the first drive).

find(1) with the -inum option can be used to locate the file.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2925

proc_pid_fd(5) File Formats Manual proc_pid_fd(5)

NAME
/proc/pid/fd/ - file descriptors

DESCRIPTION
/proc/ pid /fd/

This is a subdirectory containing one entry for each file which the process has
open, named by its file descriptor, and which is a symbolic link to the actual
file. Thus, 0 is standard input, 1 standard output, 2 standard error, and so on.

For file descriptors for pipes and sockets, the entries will be symbolic links
whose content is the file type with the inode. A readlink(2) call on this file re-
turns a string in the format:

type:[inode]

For example, socket:[2248868] will be a socket and its inode is 2248868. For
sockets, that inode can be used to find more information in one of the files un-
der /proc/net/ .

For file descriptors that have no corresponding inode (e.g., file descriptors pro-
duced by bpf(2), epoll_create(2), eventfd(2), inotify_init(2),
perf_event_open(2), signalfd(2), timerfd_create(2), and userfaultfd(2)), the en-
try will be a symbolic link with contents of the form

anon_inode:file-type

In many cases (but not all), the file-type is surrounded by square brackets.

For example, an epoll file descriptor will have a symbolic link whose content
is the string anon_inode:[eventpoll].

In a multithreaded process, the contents of this directory are not available if
the main thread has already terminated (typically by calling pthread_exit(3)).

Programs that take a filename as a command-line argument, but don’t take in-
put from standard input if no argument is supplied, and programs that write to
a file named as a command-line argument, but don’t send their output to stan-
dard output if no argument is supplied, can nevertheless be made to use stan-
dard input or standard output by using /proc/ pid /fd files as command-line ar-
guments. For example, assuming that -i is the flag designating an input file
and -o is the flag designating an output file:

$ foobar -i /proc/self/fd/0 -o /proc/self/fd/1 ...

and you have a working filter.

/proc/self/fd/N is approximately the same as /dev/fd/N in some UNIX and
UNIX-like systems. Most Linux MAKEDEV scripts symbolically link
/dev/fd to /proc/self/fd , in fact.

Most systems provide symbolic links /dev/stdin, /dev/stdout, and /dev/stderr,
which respectively link to the files 0, 1, and 2 in /proc/self/fd . Thus the exam-
ple command above could be written as:

$ foobar -i /dev/stdin -o /dev/stdout ...

Permission to dereference or read (readlink(2)) the symbolic links in this di-
rectory is governed by a ptrace access mode

Linux man-pages 6.13 2024-11-17 2926

proc_pid_fd(5) File Formats Manual proc_pid_fd(5)

PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

Note that for file descriptors referring to inodes (pipes and sockets, see above),
those inodes still have permission bits and ownership information distinct from
those of the /proc/ pid /fd entry, and that the owner may differ from the user
and group IDs of the process. An unprivileged process may lack permissions
to open them, as in this example:

$ echo test | sudo -u nobody cat
test
$ echo test | sudo -u nobody cat /proc/self/fd/0
cat: /proc/self/fd/0: Permission denied

File descriptor 0 refers to the pipe created by the shell and owned by that
shell’s user, which is not nobody, so cat does not have permission to create a
new file descriptor to read from that inode, even though it can still read from
its existing file descriptor 0.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-11-17 2927

proc_pid_fdinfo(5) File Formats Manual proc_pid_fdinfo(5)

NAME
/proc/pid/fdinfo/ - information about file descriptors

DESCRIPTION
This is a subdirectory containing one entry for each file which the process has open,
named by its file descriptor. The files in this directory are readable only by the owner
of the process. The contents of each file can be read to obtain information about the
corresponding file descriptor. The content depends on the type of file referred to by
the corresponding file descriptor.

For regular files and directories, we see something like:

$ cat /proc/12015/fdinfo/4
pos: 1000
flags: 01002002
mnt_id: 21

The fields are as follows:

pos This is a decimal number showing the file offset.

flags This is an octal number that displays the file access mode and file status flags
(see open(2)). If the close-on-exec file descriptor flag is set, then flags will
also include the value O_CLOEXEC.

Before Linux 3.1, this field incorrectly displayed the setting of O_CLOEXEC
at the time the file was opened, rather than the current setting of the close-on-
exec flag.

mnt_id
This field, present since Linux 3.15, is the ID of the mount containing this file.
See the description of /proc/ pid /mountinfo.

For eventfd file descriptors (see eventfd(2)), we see (since Linux 3.8) the following
fields:

pos: 0
flags: 02
mnt_id: 10
eventfd-count: 40

eventfd-count is the current value of the eventfd counter, in hexadecimal.

For epoll file descriptors (see epoll(7)), we see (since Linux 3.8) the following fields:

pos: 0
flags: 02
mnt_id: 10
tfd: 9 events: 19 data: 74253d2500000009
tfd: 7 events: 19 data: 74253d2500000007

Each of the lines beginning tfd describes one of the file descriptors being monitored
via the epoll file descriptor (see epoll_ctl(2) for some details). The tfd field is the
number of the file descriptor. The events field is a hexadecimal mask of the events be-
ing monitored for this file descriptor. The data field is the data value associated with
this file descriptor.

For signalfd file descriptors (see signalfd(2)), we see (since Linux 3.8) the following

Linux man-pages 6.13 2024-12-06 2928

proc_pid_fdinfo(5) File Formats Manual proc_pid_fdinfo(5)

fields:

pos: 0
flags: 02
mnt_id: 10
sigmask: 0000000000000006

sigmask is the hexadecimal mask of signals that are accepted via this signalfd file de-
scriptor. (In this example, bits 2 and 3 are set, corresponding to the signals SIGINT
and SIGQUIT; see signal(7).)

For inotify file descriptors (see inotify(7)), we see (since Linux 3.8) the following
fields:

pos: 0
flags: 00
mnt_id: 11
inotify wd:2 ino:7ef82a sdev:800001 mask:800afff ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:2af87e00220ffd73
inotify wd:1 ino:192627 sdev:800001 mask:800afff ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:27261900802dfd73

Each of the lines beginning with "inotify" displays information about one file or direc-
tory that is being monitored. The fields in this line are as follows:

wd A watch descriptor number (in decimal).

ino The inode number of the target file (in hexadecimal).

sdev The ID of the device where the target file resides (in hexadecimal).

mask The mask of events being monitored for the target file (in hexadecimal).

If the kernel was built with exportfs support, the path to the target file is exposed as a
file handle, via three hexadecimal fields: fhandle-bytes, fhandle-type, and f_handle.

For fanotify file descriptors (see fanotify(7)), we see (since Linux 3.8) the following
fields:

pos: 0
flags: 02
mnt_id: 11
fanotify flags:0 event-flags:88002
fanotify ino:19264f sdev:800001 mflags:0 mask:1 ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:4f261900a82dfd73

The fourth line displays information defined when the fanotify group was created via
fanotify_init(2):

flags The flags argument given to fanotify_init(2) (expressed in hexadecimal).

event-flags
The event_f_flags argument given to fanotify_init(2) (expressed in hexadeci-
mal).

Each additional line shown in the file contains information about one of the marks in
the fanotify group. Most of these fields are as for inotify, except:

mflags
The flags associated with the mark (expressed in hexadecimal).

Linux man-pages 6.13 2024-12-06 2929

proc_pid_fdinfo(5) File Formats Manual proc_pid_fdinfo(5)

mask The events mask for this mark (expressed in hexadecimal).

ignored_mask
The mask of events that are ignored for this mark (expressed in hexadecimal).

For details on these fields, see fanotify_mark(2).

For timerfd file descriptors (see timerfd(2)), we see (since Linux 3.17) the following
fields:

pos: 0
flags: 02004002
mnt_id: 13
clockid: 0
ticks: 0
settime flags: 03
it_value: (7695568592, 640020877)
it_interval: (0, 0)

clockid
This is the numeric value of the clock ID (corresponding to one of the
CLOCK_* constants defined via <time.h>) that is used to mark the progress
of the timer (in this example, 0 is CLOCK_REALTIME).

ticks This is the number of timer expirations that have occurred, (i.e., the value that
read(2) on it would return).

settime flags
This field lists the flags with which the timerfd was last armed (see
timerfd_settime(2)), in octal (in this example, both TFD_TIMER_ABSTIME
and TFD_TIMER_CANCEL_ON_SET are set).

it_value
This field contains the amount of time until the timer will next expire, ex-
pressed in seconds and nanoseconds. This is always expressed as a relative
value, regardless of whether the timer was created using the
TFD_TIMER_ABSTIME flag.

it_interval
This field contains the interval of the timer, in seconds and nanoseconds. (The
it_value and it_interval fields contain the values that timerfd_gettime(2) on
this file descriptor would return.)

HISTORY
Linux 2.6.22.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-12-06 2930

proc_pid_io(5) File Formats Manual proc_pid_io(5)

NAME
/proc/pid/io - I/O statistics

DESCRIPTION
/proc/ pid /io (since Linux 2.6.20)

This file contains I/O statistics for the process and its waited-for children, for
example:

cat /proc/3828/io
rchar: 323934931
wchar: 323929600
syscr: 632687
syscw: 632675
read_bytes: 0
write_bytes: 323932160
cancelled_write_bytes: 0

The fields are as follows:

rchar: characters read
The number of bytes returned by successful read(2) and similar system
calls.

wchar: characters written
The number of bytes returned by successful write(2) and similar sys-
tem calls.

syscr: read syscalls
The number of "file read" system calls—those from the read(2) family,
sendfile(2), copy_file_range(2), and ioctl(2) BTRFS_IOC_EN-
CODED_READ[_32] (including when invoked by the kernel as part
of other syscalls).

syscw: write syscalls
The number of "file write" system calls—those from the write(2) fam-
ily, sendfile(2), copy_file_range(2), and ioctl(2) BTRFS_IOC_EN-
CODED_WRITE[_32] (including when invoked by the kernel as part
of other syscalls).

read_bytes: bytes read
The number of bytes really fetched from the storage layer. This is ac-
curate for block-backed filesystems.

write_bytes: bytes written
The number of bytes really sent to the storage layer.

cancelled_write_bytes:
The above statistics fail to account for truncation: if a process writes 1
MB to a regular file and then removes it, said 1 MB will not be written,
but will have nevertheless been accounted as a 1 MB write. This field
represents the number of bytes "saved" from I/O writeback. This can
yield to having done negative I/O if caches dirtied by another process
are truncated. cancelled_write_bytes applies to I/O already accounted-
for in write_bytes.

Linux man-pages 6.13 2024-05-02 2931

proc_pid_io(5) File Formats Manual proc_pid_io(5)

Permission to access this file is governed by ptrace(2) access mode
PTRACE_MODE_READ_FSCREDS.

CAVEATS
These counters are not atomic: on systems where 64-bit integer operations may tear, a
counter could be updated simultaneously with a read, yielding an incorrect intermedi-
ate value.

SEE ALSO
getrusage(2), proc(5)

Linux man-pages 6.13 2024-05-02 2932

proc_pid_limits(5) File Formats Manual proc_pid_limits(5)

NAME
/proc/pid/limits - resource limits

DESCRIPTION
/proc/ pid /limits (since Linux 2.6.24)

This file displays the soft limit, hard limit, and units of measurement for each
of the process’s resource limits (see getrlimit(2)). Up to and including Linux
2.6.35, this file is protected to allow reading only by the real UID of the
process. Since Linux 2.6.36, this file is readable by all users on the system.

SEE ALSO
proc(5)

Linux man-pages 6.13 2025-02-02 2933

proc_pid_map_files(5) File Formats Manual proc_pid_map_files(5)

NAME
/proc/pid/map_files/ - memory-mapped files

DESCRIPTION
/proc/ pid /map_files/ (since Linux 3.3)

This subdirectory contains entries corresponding to memory-mapped files (see
mmap(2)). Entries are named by memory region start and end address pair
(expressed as hexadecimal numbers), and are symbolic links to the mapped
files themselves. Here is an example, with the output wrapped and reformat-
ted to fit on an 80-column display:

ls -l /proc/self/map_files/
lr--------. 1 root root 64 Apr 16 21:31

3252e00000-3252e20000 -> /usr/lib64/ld-2.15.so
...

Although these entries are present for memory regions that were mapped with
the MAP_FILE flag, the way anonymous shared memory (regions created
with the MAP_ANON | MAP_SHARED flags) is implemented in Linux
means that such regions also appear on this directory. Here is an example
where the target file is the deleted /dev/zero one:

lrw-------. 1 root root 64 Apr 16 21:33
7fc075d2f000-7fc075e6f000 -> /dev/zero (deleted)

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

Until Linux 4.3, this directory appeared only if the CONFIG_CHECK-
POINT_RESTORE kernel configuration option was enabled.

Capabilities are required to read the contents of the symbolic links in this di-
rectory: before Linux 5.9, the reading process requires CAP_SYS_ADMIN in
the initial user namespace; since Linux 5.9, the reading process must have ei-
ther CAP_SYS_ADMIN or CAP_CHECKPOINT_RESTORE in the initial
(i.e. root) user namespace.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2934

proc_pid_maps(5) File Formats Manual proc_pid_maps(5)

NAME
/proc/pid/maps - mapped memory regions

DESCRIPTION
/proc/ pid /maps

A file containing the currently mapped memory regions and their access per-
missions. See mmap(2) for some further information about memory map-
pings.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

The format of the file is:

address perms offset dev inode pathname
00400000-00452000 r-xp 00000000 08:02 173521 /usr/bin/dbus-daemon
00651000-00652000 r--p 00051000 08:02 173521 /usr/bin/dbus-daemon
00652000-00655000 rw-p 00052000 08:02 173521 /usr/bin/dbus-daemon
00e03000-00e24000 rw-p 00000000 00:00 0 [heap]
00e24000-011f7000 rw-p 00000000 00:00 0 [heap]
...
35b1800000-35b1820000 r-xp 00000000 08:02 135522 /usr/lib64/ld-2.15.so
35b1a1f000-35b1a20000 r--p 0001f000 08:02 135522 /usr/lib64/ld-2.15.so
35b1a20000-35b1a21000 rw-p 00020000 08:02 135522 /usr/lib64/ld-2.15.so
35b1a21000-35b1a22000 rw-p 00000000 00:00 0
35b1c00000-35b1dac000 r-xp 00000000 08:02 135870 /usr/lib64/libc-2.15.so
35b1dac000-35b1fac000 ---p 001ac000 08:02 135870 /usr/lib64/libc-2.15.so
35b1fac000-35b1fb0000 r--p 001ac000 08:02 135870 /usr/lib64/libc-2.15.so
35b1fb0000-35b1fb2000 rw-p 001b0000 08:02 135870 /usr/lib64/libc-2.15.so
...
f2c6ff8c000-7f2c7078c000 rw-p 00000000 00:00 0 [stack:986]
...
7fffb2c0d000-7fffb2c2e000 rw-p 00000000 00:00 0 [stack]
7fffb2d48000-7fffb2d49000 r-xp 00000000 00:00 0 [vdso]

The address field is the address space in the process that the mapping occu-
pies. The perms field is a set of permissions:

r = read
w = write
x = execute
s = shared
p = private (copy on write)

The offset field is the offset into the file/whatever; dev is the device (major:mi-
nor); inode is the inode on that device. 0 indicates that no inode is associated
with the memory region, as would be the case with BSS (uninitialized data).

The pathname field will usually be the file that is backing the mapping. For
ELF files, you can easily coordinate with the offset field by looking at the Off-
set field in the ELF program headers (readelf -l).

There are additional helpful pseudo-paths:

Linux man-pages 6.13 2024-06-15 2935

proc_pid_maps(5) File Formats Manual proc_pid_maps(5)

[stack]
The initial process’s (also known as the main thread’s) stack.

[stack:tid] (from Linux 3.4 to Linux 4.4)
A thread’s stack (where the tid is a thread ID). It corresponds to the
/proc/ pid /task/ tid / path. This field was removed in Linux 4.5, since
providing this information for a process with large numbers of threads
is expensive.

[vdso]
The virtual dynamically linked shared object. See vdso(7).

[heap]
The process’s heap.

[anon:name] (since Linux 5.17)
A named private anonymous mapping. Set with prctl(2)
PR_SET_VMA_ANON_NAME.

[anon_shmem:name] (since Linux 6.2)
A named shared anonymous mapping. Set with prctl(2)
PR_SET_VMA_ANON_NAME.

If the pathname field is blank, this is an anonymous mapping as obtained via
mmap(2). There is no easy way to coordinate this back to a process’s source,
short of running it through gdb(1), strace(1), or similar.

pathname is shown unescaped except for newline characters, which are re-
placed with an octal escape sequence. As a result, it is not possible to deter-
mine whether the original pathname contained a newline character or the lit-
eral \012 character sequence.

If the mapping is file-backed and the file has been deleted, the string "
(deleted)" is appended to the pathname. Note that this is ambiguous too.

Under Linux 2.0, there is no field giving pathname.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-06-15 2936

proc_pid_mem(5) File Formats Manual proc_pid_mem(5)

NAME
/proc/pid/mem - memory

DESCRIPTION
/proc/ pid /mem

This file can be used to access the pages of a process’s memory through
open(2), read(2), and lseek(2).

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2937

proc_pid_mountinfo(5) File Formats Manual proc_pid_mountinfo(5)

NAME
/proc/pid/mountinfo - mount information

DESCRIPTION
/proc/ pid /mountinfo (since Linux 2.6.26)

This file contains information about mounts in the process’s mount namespace
(see mount_namespaces(7)). It supplies various information (e.g., propagation
state, root of mount for bind mounts, identifier for each mount and its parent)
that is missing from the (older) /proc/ pid /mounts file, and fixes various other
problems with that file (e.g., nonextensibility, failure to distinguish per-mount
versus per-superblock options).

The file contains lines of the form:

36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
(1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)

The numbers in parentheses are labels for the descriptions below:

(1) mount ID: a unique ID for the mount (may be reused after umount(2)).

(2) parent ID: the ID of the parent mount (or of self for the root of this
mount namespace’s mount tree).

If a new mount is stacked on top of a previous existing mount (so that
it hides the existing mount) at pathname P, then the parent of the new
mount is the previous mount at that location. Thus, when looking at all
the mounts stacked at a particular location, the top-most mount is the
one that is not the parent of any other mount at the same location.
(Note, however, that this top-most mount will be accessible only if the
longest path subprefix of P that is a mount point is not itself hidden by
a stacked mount.)

If the parent mount lies outside the process’s root directory (see ch-
root(2)), the ID shown here won’t have a corresponding record in
mountinfo whose mount ID (field 1) matches this parent mount ID (be-
cause mounts that lie outside the process’s root directory are not shown
in mountinfo). As a special case of this point, the process’s root mount
may have a parent mount (for the initramfs filesystem) that lies outside
the process’s root directory, and an entry for that mount will not appear
in mountinfo.

(3) major:minor: the value of st_dev for files on this filesystem (see
stat(2)).

(4) root: the pathname of the directory in the filesystem which forms the
root of this mount.

(5) mount point: the pathname of the mount point relative to the process’s
root directory.

(6) mount options: per-mount options (see mount(2)).

(7) optional fields: zero or more fields of the form "tag[:value]"; see below.

Linux man-pages 6.13 2024-05-02 2938

proc_pid_mountinfo(5) File Formats Manual proc_pid_mountinfo(5)

(8) separator: the end of the optional fields is marked by a single hyphen.

(9) filesystem type: the filesystem type in the form "type[.subtype]".

(10) mount source: filesystem-specific information or "none".

(11) super options: per-superblock options (see mount(2)).

Currently, the possible optional fields are shared , master, propagate_from,
and unbindable. See mount_namespaces(7) for a description of these fields.
Parsers should ignore all unrecognized optional fields.

For more information on mount propagation see Documentation/filesys-
tems/sharedsubtree.rst (or Documentation/filesystems/sharedsubtree.txt before
Linux 5.8) in the Linux kernel source tree.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2939

proc_pid_mounts(5) File Formats Manual proc_pid_mounts(5)

NAME
/proc/pid/mounts - mounted filesystems

DESCRIPTION
/proc/ pid /mounts (since Linux 2.4.19)

This file lists all the filesystems currently mounted in the process’s mount
namespace (see mount_namespaces(7)). The format of this file is documented
in fstab(5)

Since Linux 2.6.15, this file is pollable: after opening the file for reading, a
change in this file (i.e., a filesystem mount or unmount) causes select(2) to
mark the file descriptor as having an exceptional condition, and poll(2) and
epoll_wait(2) mark the file as having a priority event (POLLPRI). (Before
Linux 2.6.30, a change in this file was indicated by the file descriptor being
marked as readable for select(2), and being marked as having an error condi-
tion for poll(2) and epoll_wait(2).)

/proc/mounts
Before Linux 2.4.19, this file was a list of all the filesystems currently
mounted on the system. With the introduction of per-process mount name-
spaces in Linux 2.4.19 (see mount_namespaces(7)), this file became a link to
/proc/self/mounts, which lists the mounts of the process’s own mount name-
space. The format of this file is documented in fstab(5)

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2940

proc_pid_mountstats(5) File Formats Manual proc_pid_mountstats(5)

NAME
/proc/pid/mountstats - mount statistics

DESCRIPTION
/proc/ pid /mountstats (since Linux 2.6.17)

This file exports information (statistics, configuration information) about the
mounts in the process’s mount namespace (see mount_namespaces(7)). Lines
in this file have the form:

device /dev/sda7 mounted on /home with fstype ext3 [stats]
(1) (2) (3) (4)

The fields in each line are:

(1) The name of the mounted device (or "nodevice" if there is no corre-
sponding device).

(2) The mount point within the filesystem tree.

(3) The filesystem type.

(4) Optional statistics and configuration information. Currently (as at
Linux 2.6.26), only NFS filesystems export information via this field.

This file is readable only by the owner of the process.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2941

proc_pid_net(5) File Formats Manual proc_pid_net(5)

NAME
/proc/pid/net/, /proc/net/ - network layer information

DESCRIPTION
/proc/ pid /net/ (since Linux 2.6.25)

See the description of /proc/net.

/proc/net/
This directory contains various files and subdirectories containing information
about the networking layer. The files contain ASCII structures and are, there-
fore, readable with cat(1)However, the standard netstat(8) suite provides
much cleaner access to these files.

With the advent of network namespaces, various information relating to the
network stack is virtualized (see network_namespaces(7)). Thus, since Linux
2.6.25, /proc/net is a symbolic link to the directory /proc/self/net, which con-
tains the same files and directories as listed below. However, these files and
directories now expose information for the network namespace of which the
process is a member.

/proc/net/arp
This holds an ASCII readable dump of the kernel ARP table used for address
resolutions. It will show both dynamically learned and preprogrammed ARP
entries. The format is:

IP address HW type Flags HW address Mask Device
192.168.0.50 0x1 0x2 00:50:BF:25:68:F3 * eth0
192.168.0.250 0x1 0xc 00:00:00:00:00:00 * eth0

Here "IP address" is the IPv4 address of the machine and the "HW type" is the
hardware type of the address from RFC 826. The flags are the internal flags of
the ARP structure (as defined in /usr/include/linux/if_arp.h) and the "HW ad-
dress" is the data link layer mapping for that IP address if it is known.

/proc/net/dev
The dev pseudo-file contains network device status information. This gives
the number of received and sent packets, the number of errors and collisions
and other basic statistics. These are used by the ifconfig(8) program to report
device status. The format is:

Inter-| Receive | Transmit
face |bytes packets errs drop fifo frame compressed multicast|bytes packets errs drop fifo colls carrier compressed

lo: 2776770 11307 0 0 0 0 0 0 2776770 11307 0 0 0 0 0 0
eth0: 1215645 2751 0 0 0 0 0 0 1782404 4324 0 0 0 427 0 0
ppp0: 1622270 5552 1 0 0 0 0 0 354130 5669 0 0 0 0 0 0
tap0: 7714 81 0 0 0 0 0 0 7714 81 0 0 0 0 0 0

/proc/net/dev_mcast
Defined in /usr/src/linux/net/core/dev_mcast.c:

indx interface_name dmi_u dmi_g dmi_address
2 eth0 1 0 01005e000001
3 eth1 1 0 01005e000001
4 eth2 1 0 01005e000001

Linux man-pages 6.13 2024-05-02 2942

proc_pid_net(5) File Formats Manual proc_pid_net(5)

/proc/net/igmp
Internet Group Management Protocol. Defined in
/usr/src/linux/net/core/igmp.c.

/proc/net/rarp
This file uses the same format as the arp file and contains the current reverse
mapping database used to provide rarp(8) reverse address lookup services. If
RARP is not configured into the kernel, this file will not be present.

/proc/net/raw
Holds a dump of the RAW socket table. Much of the information is not of use
apart from debugging. The "sl" value is the kernel hash slot for the socket, the
"local_address" is the local address and protocol number pair. "St" is the in-
ternal status of the socket. The "tx_queue" and "rx_queue" are the outgoing
and incoming data queue in terms of kernel memory usage. The "tr",
"tm->when", and "rexmits" fields are not used by RAW. The "uid" field holds
the effective UID of the creator of the socket.

/proc/net/snmp
This file holds the ASCII data needed for the IP, ICMP, TCP, and UDP man-
agement information bases for an SNMP agent.

/proc/net/tcp
Holds a dump of the TCP socket table. Much of the information is not of use
apart from debugging. The "sl" value is the kernel hash slot for the socket, the
"local_address" is the local address and port number pair. The "rem_address"
is the remote address and port number pair (if connected). "St" is the internal
status of the socket. The "tx_queue" and "rx_queue" are the outgoing and in-
coming data queue in terms of kernel memory usage. The "tr", "tm->when",
and "rexmits" fields hold internal information of the kernel socket state and are
useful only for debugging. The "uid" field holds the effective UID of the cre-
ator of the socket.

/proc/net/udp
Holds a dump of the UDP socket table. Much of the information is not of use
apart from debugging. The "sl" value is the kernel hash slot for the socket, the
"local_address" is the local address and port number pair. The "rem_address"
is the remote address and port number pair (if connected). "St" is the internal
status of the socket. The "tx_queue" and "rx_queue" are the outgoing and in-
coming data queue in terms of kernel memory usage. The "tr", "tm->when",
and "rexmits" fields are not used by UDP. The "uid" field holds the effective
UID of the creator of the socket. The format is:

sl local_address rem_address st tx_queue rx_queue tr rexmits tm->when uid
1: 01642C89:0201 0C642C89:03FF 01 00000000:00000001 01:000071BA 00000000 0
1: 00000000:0801 00000000:0000 0A 00000000:00000000 00:00000000 6F000100 0
1: 00000000:0201 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0

/proc/net/unix
Lists the UNIX domain sockets present within the system and their status.
The format is:

Linux man-pages 6.13 2024-05-02 2943

proc_pid_net(5) File Formats Manual proc_pid_net(5)

Num RefCount Protocol Flags Type St Inode Path
0: 00000002 00000000 00000000 0001 03 42
1: 00000001 00000000 00010000 0001 01 1948 /dev/printer

The fields are as follows:

Num: the kernel table slot number.

RefCount: the number of users of the socket.

Protocol: currently always 0.

Flags: the internal kernel flags holding the status of the socket.

Type: the socket type. For SOCK_STREAM sockets, this is 0001; for
SOCK_DGRAM sockets, it is 0002; and for SOCK_SEQ-
PACKET sockets, it is 0005.

St: the internal state of the socket.

Inode: the inode number of the socket.

Path: the bound pathname (if any) of the socket. Sockets in the abstract
namespace are included in the list, and are shown with a Path that
commences with the character ’@’.

/proc/net/netfilter/nfnetlink_queue
This file contains information about netfilter user-space queueing, if used.
Each line represents a queue. Queues that have not been subscribed to by user
space are not shown.

1 4207 0 2 65535 0 0 0 1
(1) (2) (3)(4) (5) (6) (7) (8)

The fields in each line are:

(1) The ID of the queue. This matches what is specified in the
--queue-num or --queue-balance options to the iptables(8)
NFQUEUE target. See iptables-extensions(8) for more information.

(2) The netlink port ID subscribed to the queue.

(3) The number of packets currently queued and waiting to be processed
by the application.

(4) The copy mode of the queue. It is either 1 (metadata only) or 2 (also
copy payload data to user space).

(5) Copy range; that is, how many bytes of packet payload should be
copied to user space at most.

(6) queue dropped. Number of packets that had to be dropped by the ker-
nel because too many packets are already waiting for user space to
send back the mandatory accept/drop verdicts.

(7) queue user dropped. Number of packets that were dropped within the
netlink subsystem. Such drops usually happen when the corresponding
socket buffer is full; that is, user space is not able to read messages fast
enough.

Linux man-pages 6.13 2024-05-02 2944

proc_pid_net(5) File Formats Manual proc_pid_net(5)

(8) sequence number. Every queued packet is associated with a (32-bit)
monotonically increasing sequence number. This shows the ID of the
most recent packet queued.

The last number exists only for compatibility reasons and is always 1.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2945

proc_pid_ns(5) File Formats Manual proc_pid_ns(5)

NAME
/proc/pid/ns/ - namespaces

DESCRIPTION
/proc/ pid /ns/ (since Linux 3.0)

This is a subdirectory containing one entry for each namespace that supports
being manipulated by setns(2). For more information, see namespaces(7).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2946

proc_pid_numa_maps(5) File Formats Manual proc_pid_numa_maps(5)

NAME
/proc/pid/numa_maps - NUMA memory policy and allocation

DESCRIPTION
/proc/ pid /numa_maps (since Linux 2.6.14)

See numa(7).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2947

proc_pid_oom_score(5) File Formats Manual proc_pid_oom_score(5)

NAME
/proc/pid/oom_score - OOM-killer score

DESCRIPTION
/proc/ pid /oom_score (since Linux 2.6.11)

This file displays the current score that the kernel gives to this process for the
purpose of selecting a process for the OOM-killer. A higher score means that
the process is more likely to be selected by the OOM-killer. The basis for this
score is the amount of memory used by the process, with increases (+) or de-
creases (-) for factors including:

• whether the process is privileged (-).

Before Linux 2.6.36 the following factors were also used in the calculation of
oom_score:

• whether the process creates a lot of children using fork(2) (+);

• whether the process has been running a long time, or has used a lot of CPU
time (-);

• whether the process has a low nice value (i.e., > 0) (+); and

• whether the process is making direct hardware access (-).

The oom_score also reflects the adjustment specified by the oom_score_adj or
oom_adj setting for the process.

SEE ALSO
proc(5), proc_pid_oom_score_adj(5)

Linux man-pages 6.13 2024-05-02 2948

proc_pid_oom_score_adj(5) File Formats Manual proc_pid_oom_score_adj(5)

NAME
/proc/pid/oom_score_adj - OOM-killer score adjustment

DESCRIPTION
/proc/ pid /oom_score_adj (since Linux 2.6.36)

This file can be used to adjust the badness heuristic used to select which
process gets killed in out-of-memory conditions.

The badness heuristic assigns a value to each candidate task ranging from 0
(never kill) to 1000 (always kill) to determine which process is targeted. The
units are roughly a proportion along that range of allowed memory the process
may allocate from, based on an estimation of its current memory and swap
use. For example, if a task is using all allowed memory, its badness score will
be 1000. If it is using half of its allowed memory, its score will be 500.

There is an additional factor included in the badness score: root processes are
given 3% extra memory over other tasks.

The amount of "allowed" memory depends on the context in which the OOM-
killer was called. If it is due to the memory assigned to the allocating task’s
cpuset being exhausted, the allowed memory represents the set of mems as-
signed to that cpuset (see cpuset(7)). If it is due to a mempolicy’s node(s) be-
ing exhausted, the allowed memory represents the set of mempolicy nodes. If
it is due to a memory limit (or swap limit) being reached, the allowed memory
is that configured limit. Finally, if it is due to the entire system being out of
memory, the allowed memory represents all allocatable resources.

The value of oom_score_adj is added to the badness score before it is used to
determine which task to kill. Acceptable values range from -1000
(OOM_SCORE_ADJ_MIN) to +1000 (OOM_SCORE_ADJ_MAX). This al-
lows user space to control the preference for OOM-killing, ranging from al-
ways preferring a certain task or completely disabling it from OOM-killing.
The lowest possible value, -1000, is equivalent to disabling OOM-killing en-
tirely for that task, since it will always report a badness score of 0.

Consequently, it is very simple for user space to define the amount of memory
to consider for each task. Setting an oom_score_adj value of +500, for exam-
ple, is roughly equivalent to allowing the remainder of tasks sharing the same
system, cpuset, mempolicy, or memory controller resources to use at least 50%
more memory. A value of -500, on the other hand, would be roughly equiva-
lent to discounting 50% of the task’s allowed memory from being considered
as scoring against the task.

For backward compatibility with previous kernels, /proc/ pid /oom_adj can
still be used to tune the badness score. Its value is scaled linearly with
oom_score_adj.

Writing to /proc/ pid /oom_score_adj or /proc/ pid /oom_adj will change the
other with its scaled value.

The choom(1) program provides a command-line interface for adjusting the
oom_score_adj value of a running process or a newly executed command.

Linux man-pages 6.13 2024-05-02 2949

proc_pid_oom_score_adj(5) File Formats Manual proc_pid_oom_score_adj(5)

HISTORY
/proc/ pid /oom_adj (since Linux 2.6.11)

This file can be used to adjust the score used to select which process should be
killed in an out-of-memory (OOM) situation. The kernel uses this value for a
bit-shift operation of the process’s oom_score value: valid values are in the
range -16 to +15, plus the special value -17, which disables OOM-killing al-
together for this process. A positive score increases the likelihood of this
process being killed by the OOM-killer; a negative score decreases the likeli-
hood.

The default value for this file is 0; a new process inherits its parent’s oom_adj
setting. A process must be privileged (CAP_SYS_RESOURCE) to update
this file, although a process can always increase its own oom_adj setting (since
Linux 2.6.20).

Since Linux 2.6.36, use of this file is deprecated in favor of
/proc/ pid /oom_score_adj, and finally removed in Linux 3.7.

SEE ALSO
proc(5), proc_pid_oom_score(5)

Linux man-pages 6.13 2024-05-02 2950

proc_pid_pagemap(5) File Formats Manual proc_pid_pagemap(5)

NAME
/proc/pid/pagemap - mapping of virtual pages

DESCRIPTION
/proc/ pid /pagemap (since Linux 2.6.25)

This file shows the mapping of each of the process’s virtual pages into physi-
cal page frames or swap area. It contains one 64-bit value for each virtual
page, with the bits set as follows:

63 If set, the page is present in RAM.

62 If set, the page is in swap space

61 (since Linux 3.5)
The page is a file-mapped page or a shared anonymous page.

60–58 (since Linux 3.11)
Zero

57 (since Linux 5.14)
If set, the page is write-protected through userfaultfd(2).

56 (since Linux 4.2)
The page is exclusively mapped.

55 (since Linux 3.11)
PTE is soft-dirty (see the kernel source file Documentation/admin-
guide/mm/soft-dirty.rst).

54–0 If the page is present in RAM (bit 63), then these bits provide the page
frame number, which can be used to index /proc/kpageflags and
/proc/kpagecount. If the page is present in swap (bit 62), then bits 4–0
give the swap type, and bits 54–5 encode the swap offset.

Before Linux 3.11, bits 60–55 were used to encode the base-2 log of the page
size.

To employ /proc/ pid /pagemap efficiently, use /proc/ pid /maps to determine
which areas of memory are actually mapped and seek to skip over unmapped
regions.

The /proc/ pid /pagemap file is present only if the CON-
FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2951

proc_pid_personality(5) File Formats Manual proc_pid_personality(5)

NAME
/proc/pid/personality - execution domain

DESCRIPTION
/proc/ pid /personality (since Linux 2.6.28)

This read-only file exposes the process’s execution domain, as set by personal-
ity(2). The value is displayed in hexadecimal notation.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2952

proc_pid_projid_map(5) File Formats Manual proc_pid_projid_map(5)

NAME
/proc/pid/projid_map - project ID mappings

DESCRIPTION
/proc/ pid /projid_map (since Linux 3.7)

See user_namespaces(7).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2953

proc_pid_root(5) File Formats Manual proc_pid_root(5)

NAME
/proc/pid/root/ - symbolic link to root directory

DESCRIPTION
/proc/ pid /root/

UNIX and Linux support the idea of a per-process root of the filesystem, set
by the chroot(2) system call. This file is a symbolic link that points to the
process’s root directory, and behaves in the same way as exe, and fd/*.

Note however that this file is not merely a symbolic link. It provides the same
view of the filesystem (including namespaces and the set of per-process
mounts) as the process itself. An example illustrates this point. In one termi-
nal, we start a shell in new user and mount namespaces, and in that shell we
create some new mounts:

$ PS1='sh1# ' unshare -Urnm
sh1# mount -t tmpfs tmpfs /etc # Mount empty tmpfs at /etc
sh1# mount --bind /usr /dev # Mount /usr at /dev
sh1# echo $$
27123

In a second terminal window, in the initial mount namespace, we look at the
contents of the corresponding mounts in the initial and new namespaces:

$ PS1='sh2# ' sudo sh
sh2# ls /etc | wc -l # In initial NS
309
sh2# ls /proc/27123/root/etc | wc -l # /etc in other NS
0 # The empty tmpfs dir
sh2# ls /dev | wc -l # In initial NS
205
sh2# ls /proc/27123/root/dev | wc -l # /dev in other NS
11 # Actually bind

mounted to /usr
sh2# ls /usr | wc -l # /usr in initial NS
11

In a multithreaded process, the contents of the /proc/ pid /root symbolic link
are not available if the main thread has already terminated (typically by calling
pthread_exit(3)).

Permission to dereference or read (readlink(2)) this symbolic link is governed
by a ptrace access mode PTRACE_MODE_READ_FSCREDS check; see
ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2954

proc_pid_seccomp(5) File Formats Manual proc_pid_seccomp(5)

NAME
/proc/pid/seccomp - secure computing mode

DESCRIPTION
/proc/ pid /seccomp (Linux 2.6.12 to Linux 2.6.22)

This file can be used to read and change the process’s secure computing (sec-
comp) mode setting. It contains the value 0 if the process is not in seccomp
mode, and 1 if the process is in strict seccomp mode (see seccomp(2)). Writ-
ing 1 to this file places the process irreversibly in strict seccomp mode. (Fur-
ther attempts to write to the file fail with the EPERM error.)

In Linux 2.6.23, this file went away, to be replaced by the prctl(2)
PR_GET_SECCOMP and PR_SET_SECCOMP operations (and later by
seccomp(2) and the Seccomp field in /proc/ pid /status).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2955

proc_pid_setgroups(5) File Formats Manual proc_pid_setgroups(5)

NAME
/proc/pid/setgroups - allow or deny setting groups

DESCRIPTION
/proc/ pid /setgroups (since Linux 3.19)

See user_namespaces(7).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2956

proc_pid_smaps(5) File Formats Manual proc_pid_smaps(5)

NAME
/proc/pid/smaps - XXX: What does ’s’ in "smaps" stand for?

DESCRIPTION
/proc/ pid /smaps (since Linux 2.6.14)

This file shows memory consumption for each of the process’s mappings.
(The pmap(1) command displays similar information, in a form that may be
easier for parsing.) For each mapping there is a series of lines such as the fol-
lowing:

00400000-0048a000 r-xp 00000000 fd:03 960637 /bin/bash
Size: 552 kB
Rss: 460 kB
Pss: 100 kB
Shared_Clean: 452 kB
Shared_Dirty: 0 kB
Private_Clean: 8 kB
Private_Dirty: 0 kB
Referenced: 460 kB
Anonymous: 0 kB
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
Swap: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
ProtectionKey: 0
VmFlags: rd ex mr mw me dw

The first of these lines shows the same information as is displayed for the
mapping in /proc/ pid /maps. The following lines show the size of the map-
ping, the amount of the mapping that is currently resident in RAM ("Rss"), the
process’s proportional share of this mapping ("Pss"), the number of clean and
dirty shared pages in the mapping, and the number of clean and dirty private
pages in the mapping. "Referenced" indicates the amount of memory cur-
rently marked as referenced or accessed. "Anonymous" shows the amount of
memory that does not belong to any file. "Swap" shows how much would-be-
anonymous memory is also used, but out on swap.

The "KernelPageSize" line (available since Linux 2.6.29) is the page size used
by the kernel to back the virtual memory area. This matches the size used by
the MMU in the majority of cases. However, one counter-example occurs on
PPC64 kernels whereby a kernel using 64 kB as a base page size may still use
4 kB pages for the MMU on older processors. To distinguish the two attrib-
utes, the "MMUPageSize" line (also available since Linux 2.6.29) reports the
page size used by the MMU.

The "Locked" indicates whether the mapping is locked in memory or not.

The "ProtectionKey" line (available since Linux 4.9, on x86 only) contains the
memory protection key (see pkeys(7)) associated with the virtual memory area.

Linux man-pages 6.13 2024-05-02 2957

proc_pid_smaps(5) File Formats Manual proc_pid_smaps(5)

This entry is present only if the kernel was built with the CONFIG_X86_IN-
TEL_MEMORY_PROTECTION_KEYS configuration option (since Linux
4.6).

The "VmFlags" line (available since Linux 3.8) represents the kernel flags as-
sociated with the virtual memory area, encoded using the following two-letter
codes:

rd - readable
wr - writable
ex - executable
sh - shared
mr - may read
mw - may write
me - may execute
ms - may share
gd - stack segment grows down
pf - pure PFN range
dw - disabled write to the mapped file
lo - pages are locked in memory
io - memory mapped I/O area
sr - sequential read advise provided
rr - random read advise provided
dc - do not copy area on fork
de - do not expand area on remapping
ac - area is accountable
nr - swap space is not reserved for the area
ht - area uses huge tlb pages
sf - perform synchronous page faults (since Linux 4.15)
nl - non-linear mapping (removed in Linux 4.0)
ar - architecture specific flag
wf - wipe on fork (since Linux 4.14)
dd - do not include area into core dump
sd - soft-dirty flag (since Linux 3.13)
mm - mixed map area
hg - huge page advise flag
nh - no-huge page advise flag
mg - mergeable advise flag
um - userfaultfd missing pages tracking (since Linux 4.3)
uw - userfaultfd wprotect pages tracking (since Linux 4.3)

The /proc/ pid /smaps file is present only if the CON-
FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2958

proc_pid_stack(5) File Formats Manual proc_pid_stack(5)

NAME
/proc/pid/stack - kernel stack

DESCRIPTION
/proc/ pid /stack (since Linux 2.6.29)

This file provides a symbolic trace of the function calls in this process’s kernel
stack. This file is provided only if the kernel was built with the CON-
FIG_STACKTRACE configuration option.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2959

proc_pid_stat(5) File Formats Manual proc_pid_stat(5)

NAME
/proc/pid/stat - status information

DESCRIPTION
/proc/ pid /stat

Status information about the process. This is used by ps(1)It is defined in the
kernel source file fs/proc/array.c.

The fields, in order, with their proper scanf(3) format specifiers, are listed be-
low. Whether or not certain of these fields display valid information is gov-
erned by a ptrace access mode PTRACE_MODE_READ_FSCREDS |
PTRACE_MODE_NOAUDIT check (refer to ptrace(2)). If the check denies
access, then the field value is displayed as 0. The affected fields are indicated
with the marking [PT].

(1) pid %d
The process ID.

(2) comm %s
The filename of the executable, in parentheses. Strings longer than
TASK_COMM_LEN (16) characters (including the terminating null
byte) are silently truncated. This is visible whether or not the exe-
cutable is swapped out.

(3) state %c
One of the following characters, indicating process state:

R Running

S Sleeping in an interruptible wait

D Waiting in uninterruptible disk sleep

Z Zombie

T Stopped (on a signal) or (before Linux 2.6.33) trace stopped

t Tracing stop (Linux 2.6.33 onward)

W Paging (only before Linux 2.6.0)

X Dead (from Linux 2.6.0 onward)

x Dead (Linux 2.6.33 to 3.13 only)

K Wakekill (Linux 2.6.33 to 3.13 only)

W Waking (Linux 2.6.33 to 3.13 only)

P Parked (Linux 3.9 to 3.13 only)

I Idle (Linux 4.14 onward)

(4) ppid %d
The PID of the parent of this process.

(5) pgrp %d
The process group ID of the process.

Linux man-pages 6.13 2024-05-02 2960

proc_pid_stat(5) File Formats Manual proc_pid_stat(5)

(6) session %d
The session ID of the process.

(7) tty_nr %d
The controlling terminal of the process. (The minor device number is
contained in the combination of bits 31 to 20 and 7 to 0; the major de-
vice number is in bits 15 to 8.)

(8) tpgid %d
The ID of the foreground process group of the controlling terminal of
the process.

(9) flags %u
The kernel flags word of the process. For bit meanings, see the PF_*
defines in the Linux kernel source file include/linux/sched.h. Details
depend on the kernel version.

The format for this field was %lu before Linux 2.6.

(10) minflt %lu
The number of minor faults the process has made which have not re-
quired loading a memory page from disk.

(11) cminflt %lu
The number of minor faults that the process’s waited-for children have
made.

(12) majflt %lu
The number of major faults the process has made which have required
loading a memory page from disk.

(13) cmajflt %lu
The number of major faults that the process’s waited-for children have
made.

(14) utime %lu
Amount of time that this process has been scheduled in user mode,
measured in clock ticks (divide by sysconf(_SC_CLK_TCK)). This in-
cludes guest time, guest_time (time spent running a virtual CPU, see
below), so that applications that are not aware of the guest time field do
not lose that time from their calculations.

(15) stime %lu
Amount of time that this process has been scheduled in kernel mode,
measured in clock ticks (divide by sysconf(_SC_CLK_TCK)).

(16) cutime %ld
Amount of time that this process’s waited-for children have been
scheduled in user mode, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)). (See also times(2).) This includes guest
time, cguest_time (time spent running a virtual CPU, see below).

(17) cstime %ld
Amount of time that this process’s waited-for children have been
scheduled in kernel mode, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)).

Linux man-pages 6.13 2024-05-02 2961

proc_pid_stat(5) File Formats Manual proc_pid_stat(5)

(18) priority %ld
(Explanation for Linux 2.6) For processes running a real-time schedul-
ing policy (policy below; see sched_setscheduler(2)), this is the
negated scheduling priority, minus one; that is, a number in the range
-2 to -100, corresponding to real-time priorities 1 to 99. For
processes running under a non-real-time scheduling policy, this is the
raw nice value (setpriority(2)) as represented in the kernel. The kernel
stores nice values as numbers in the range 0 (high) to 39 (low), corre-
sponding to the user-visible nice range of -20 to 19.

Before Linux 2.6, this was a scaled value based on the scheduler
weighting given to this process.

(19) nice %ld
The nice value (see setpriority(2)), a value in the range 19 (low prior-
ity) to -20 (high priority).

(20) num_threads %ld
Number of threads in this process (since Linux 2.6). Before Linux 2.6,
this field was hard coded to 0 as a placeholder for an earlier removed
field.

(21) itrealvalue %ld
The time in jiffies before the next SIGALRM is sent to the process due
to an interval timer. Since Linux 2.6.17, this field is no longer main-
tained, and is hard coded as 0.

(22) starttime %llu
The time the process started after system boot. Before Linux 2.6, this
value was expressed in jiffies. Since Linux 2.6, the value is expressed
in clock ticks (divide by sysconf(_SC_CLK_TCK)).

The format for this field was %lu before Linux 2.6.

(23) vsize %lu
Virtual memory size in bytes.

(24) rss %ld
Resident Set Size: number of pages the process has in real memory.
This is just the pages which count toward text, data, or stack space.
This does not include pages which have not been demand-loaded in, or
which are swapped out. This value is inaccurate; see /proc/ pid /statm
below.

(25) rsslim %lu
Current soft limit in bytes on the rss of the process; see the description
of RLIMIT_RSS in getrlimit(2).

(26) startcode %lu [PT]
The address above which program text can run.

(27) endcode %lu [PT]
The address below which program text can run.

Linux man-pages 6.13 2024-05-02 2962

proc_pid_stat(5) File Formats Manual proc_pid_stat(5)

(28) startstack %lu [PT]
The address of the start (i.e., bottom) of the stack.

(29) kstkesp %lu [PT]
The current value of ESP (stack pointer), as found in the kernel stack
page for the process.

(30) kstkeip %lu [PT]
The current EIP (instruction pointer).

(31) signal %lu
The bitmap of pending signals, displayed as a decimal number. Obso-
lete, because it does not provide information on real-time signals; use
/proc/ pid /status instead.

(32) blocked %lu
The bitmap of blocked signals, displayed as a decimal number. Obso-
lete, because it does not provide information on real-time signals; use
/proc/ pid /status instead.

(33) sigignore %lu
The bitmap of ignored signals, displayed as a decimal number. Obso-
lete, because it does not provide information on real-time signals; use
/proc/ pid /status instead.

(34) sigcatch %lu
The bitmap of caught signals, displayed as a decimal number. Obso-
lete, because it does not provide information on real-time signals; use
/proc/ pid /status instead.

(35) wchan %lu [PT]
This is the "channel" in which the process is waiting. It is the address
of a location in the kernel where the process is sleeping. The corre-
sponding symbolic name can be found in /proc/ pid /wchan.

(36) nswap %lu
Number of pages swapped (not maintained).

(37) cnswap %lu
Cumulative nswap for child processes (not maintained).

(38) exit_signal %d (since Linux 2.1.22)
Signal to be sent to parent when we die.

(39) processor %d (since Linux 2.2.8)
CPU number last executed on.

(40) rt_priority %u (since Linux 2.5.19)
Real-time scheduling priority, a number in the range 1 to 99 for
processes scheduled under a real-time policy, or 0, for non-real-time
processes (see sched_setscheduler(2)).

(41) policy %u (since Linux 2.5.19)
Scheduling policy (see sched_setscheduler(2)). Decode using the
SCHED_* constants in linux/sched.h.

Linux man-pages 6.13 2024-05-02 2963

proc_pid_stat(5) File Formats Manual proc_pid_stat(5)

The format for this field was %lu before Linux 2.6.22.

(42) delayacct_blkio_ticks %llu (since Linux 2.6.18)
Aggregated block I/O delays, measured in clock ticks (centiseconds).

(43) guest_time %lu (since Linux 2.6.24)
Guest time of the process (time spent running a virtual CPU for a guest
operating system), measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)).

(44) cguest_time %ld (since Linux 2.6.24)
Guest time of the process’s children, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)).

(45) start_data %lu (since Linux 3.3) [PT]
Address above which program initialized and uninitialized (BSS) data
are placed.

(46) end_data %lu (since Linux 3.3) [PT]
Address below which program initialized and uninitialized (BSS) data
are placed.

(47) start_brk %lu (since Linux 3.3) [PT]
Address above which program heap can be expanded with brk(2).

(48) arg_start %lu (since Linux 3.5) [PT]
Address above which program command-line arguments (argv) are
placed.

(49) arg_end %lu (since Linux 3.5) [PT]
Address below program command-line arguments (argv) are placed.

(50) env_start %lu (since Linux 3.5) [PT]
Address above which program environment is placed.

(51) env_end %lu (since Linux 3.5) [PT]
Address below which program environment is placed.

(52) exit_code %d (since Linux 3.5) [PT]
The thread’s exit status in the form reported by waitpid(2).

SEE ALSO
proc(5), proc_pid_status(5)

Linux man-pages 6.13 2024-05-02 2964

proc_pid_statm(5) File Formats Manual proc_pid_statm(5)

NAME
/proc/pid/statm - memory usage information

DESCRIPTION
/proc/ pid /statm

Provides information about memory usage, measured in pages. The columns
are:

size (1) total program size
(same as VmSize in /proc/pid/status)

resident (2) resident set size
(inaccurate; same as VmRSS in /proc/pid/status)

shared (3) number of resident shared pages
(i.e., backed by a file)
(inaccurate; same as RssFile+RssShmem in
/proc/pid/status)

text (4) text (code)
lib (5) library (unused since Linux 2.6; always 0)
data (6) data + stack
dt (7) dirty pages (unused since Linux 2.6; always 0)

Some of these values are inaccurate because of a kernel-internal scalability op-
timization. If accurate values are required, use /proc/ pid /smaps or
/proc/ pid /smaps_rollup instead, which are much slower but provide accurate,
detailed information.

SEE ALSO
proc(5), proc_pid_status(5)

Linux man-pages 6.13 2024-05-02 2965

proc_pid_status(5) File Formats Manual proc_pid_status(5)

NAME
/proc/pid/status - memory usage and status information

DESCRIPTION
/proc/ pid /status

Provides much of the information in /proc/ pid /stat and /proc/ pid /statm in a
format that’s easier for humans to parse. Here’s an example:

$ cat /proc/$$/status
Name: bash
Umask: 0022
State: S (sleeping)
Tgid: 17248
Ngid: 0
Pid: 17248
PPid: 17200
TracerPid: 0
Uid: 1000 1000 1000 1000
Gid: 100 100 100 100
FDSize: 256
Groups: 16 33 100
NStgid: 17248
NSpid: 17248
NSpgid: 17248
NSsid: 17200
VmPeak: 131168 kB
VmSize: 131168 kB
VmLck: 0 kB
VmPin: 0 kB
VmHWM: 13484 kB
VmRSS: 13484 kB
RssAnon: 10264 kB
RssFile: 3220 kB
RssShmem: 0 kB
VmData: 10332 kB
VmStk: 136 kB
VmExe: 992 kB
VmLib: 2104 kB
VmPTE: 76 kB
VmPMD: 12 kB
VmSwap: 0 kB
HugetlbPages: 0 kB # 4.4
CoreDumping: 0 # 4.15
Threads: 1
SigQ: 0/3067
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000000010000
SigIgn: 0000000000384004
SigCgt: 000000004b813efb

Linux man-pages 6.13 2024-05-02 2966

proc_pid_status(5) File Formats Manual proc_pid_status(5)

CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: ffffffffffffffff
CapAmb: 0000000000000000
NoNewPrivs: 0
Seccomp: 0
Seccomp_filters: 0
Speculation_Store_Bypass: vulnerable
Cpus_allowed: 00000001
Cpus_allowed_list: 0
Mems_allowed: 1
Mems_allowed_list: 0
voluntary_ctxt_switches: 150
nonvoluntary_ctxt_switches: 545

The fields are as follows:

Name Command run by this process. Strings longer than
TASK_COMM_LEN (16) characters (including the terminating null
byte) are silently truncated.

Umask
Process umask, expressed in octal with a leading zero; see umask(2).
(Since Linux 4.7.)

State Current state of the process. One of "R (running)", "S (sleeping)", "D
(disk sleep)", "T (stopped)", "t (tracing stop)", "Z (zombie)", or "X
(dead)".

Tgid Thread group ID (i.e., Process ID).

Ngid NUMA group ID (0 if none; since Linux 3.13).

Pid Thread ID (see gettid(2)).

PPid PID of parent process.

TracerPid
PID of process tracing this process (0 if not being traced).

Uid
Gid Real, effective, saved set, and filesystem UIDs (GIDs).

FDSize
Number of file descriptor slots currently allocated.

Groups
Supplementary group list.

NStgid
Thread group ID (i.e., PID) in each of the PID namespaces of which
pid is a member. The leftmost entry shows the value with respect to
the PID namespace of the process that mounted this procfs (or the root
namespace if mounted by the kernel), followed by the value in succes-
sively nested inner namespaces. (Since Linux 4.1.)

Linux man-pages 6.13 2024-05-02 2967

proc_pid_status(5) File Formats Manual proc_pid_status(5)

NSpid
Thread ID in each of the PID namespaces of which pid is a member.
The fields are ordered as for NStgid . (Since Linux 4.1.)

NSpgid
Process group ID in each of the PID namespaces of which pid is a
member. The fields are ordered as for NStgid . (Since Linux 4.1.)

NSsid descendant namespace session ID hierarchy Session ID in each of the
PID namespaces of which pid is a member. The fields are ordered as
for NStgid . (Since Linux 4.1.)

VmPeak
Peak virtual memory size.

VmSize
Virtual memory size.

VmLck
Locked memory size (see mlock(2)).

VmPin
Pinned memory size (since Linux 3.2). These are pages that can’t be
moved because something needs to directly access physical memory.

VmHWM
Peak resident set size ("high water mark"). This value is inaccurate;
see /proc/ pid /statm above.

VmRSS
Resident set size. Note that the value here is the sum of RssAnon, Rss-
File, and RssShmem. This value is inaccurate; see /proc/ pid /statm
above.

RssAnon
Size of resident anonymous memory. (since Linux 4.5). This value is
inaccurate; see /proc/ pid /statm above.

RssFile
Size of resident file mappings. (since Linux 4.5). This value is inaccu-
rate; see /proc/ pid /statm above.

RssShmem
Size of resident shared memory (includes System V shared memory,
mappings from tmpfs(5), and shared anonymous mappings). (since
Linux 4.5).

VmData
VmStk
VmExe

Size of data, stack, and text segments. This value is inaccurate; see
/proc/ pid /statm above.

VmLib
Shared library code size.

Linux man-pages 6.13 2024-05-02 2968

proc_pid_status(5) File Formats Manual proc_pid_status(5)

VmPTE
Page table entries size (since Linux 2.6.10).

VmPMD
Size of second-level page tables (added in Linux 4.0; removed in Linux
4.15).

VmSwap
Swapped-out virtual memory size by anonymous private pages; shmem
swap usage is not included (since Linux 2.6.34). This value is inaccu-
rate; see /proc/ pid /statm above.

HugetlbPages
Size of hugetlb memory portions (since Linux 4.4).

CoreDumping
Contains the value 1 if the process is currently dumping core, and 0 if
it is not (since Linux 4.15). This information can be used by a moni-
toring process to avoid killing a process that is currently dumping core,
which could result in a corrupted core dump file.

Threads
Number of threads in process containing this thread.

SigQ This field contains two slash-separated numbers that relate to queued
signals for the real user ID of this process. The first of these is the
number of currently queued signals for this real user ID, and the sec-
ond is the resource limit on the number of queued signals for this
process (see the description of RLIMIT_SIGPENDING in getr-
limit(2)).

SigPnd
ShdPnd

Mask (expressed in hexadecimal) of signals pending for thread and for
process as a whole (see pthreads(7) and signal(7)).

SigBlk
SigIgn
SigCgt

Masks (expressed in hexadecimal) indicating signals being blocked, ig-
nored, and caught (see signal(7)).

CapInh
CapPrm
CapEff

Masks (expressed in hexadecimal) of capabilities enabled in inherita-
ble, permitted, and effective sets (see capabilities(7)).

CapBnd
Capability bounding set, expressed in hexadecimal (since Linux 2.6.26,
see capabilities(7)).

CapAmb
Ambient capability set, expressed in hexadecimal (since Linux 4.3, see
capabilities(7)).

Linux man-pages 6.13 2024-05-02 2969

proc_pid_status(5) File Formats Manual proc_pid_status(5)

NoNewPrivs
Value of the no_new_privs bit (since Linux 4.10, see prctl(2)).

Seccomp
Seccomp mode of the process (since Linux 3.8, see seccomp(2)). 0
means SECCOMP_MODE_DISABLED; 1 means SEC-
COMP_MODE_STRICT; 2 means SECCOMP_MODE_FILTER.
This field is provided only if the kernel was built with the CON-
FIG_SECCOMP kernel configuration option enabled.

Seccomp_filters
Number of seccomp filters attached to the process (since Linux 5.9, see
seccomp(2)).

Speculation_Store_Bypass
Speculation flaw mitigation state (since Linux 4.17, see prctl(2)).

Cpus_allowed
Hexadecimal mask of CPUs on which this process may run (since
Linux 2.6.24, see cpuset(7)).

Cpus_allowed_list
Same as previous, but in "list format" (since Linux 2.6.26, see
cpuset(7)).

Mems_allowed
Mask of memory nodes allowed to this process (since Linux 2.6.24,
see cpuset(7)).

Mems_allowed_list
Same as previous, but in "list format" (since Linux 2.6.26, see
cpuset(7)).

voluntary_ctxt_switches
nonvoluntary_ctxt_switches

Number of voluntary and involuntary context switches (since Linux
2.6.23).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2970

proc_pid_syscall(5) File Formats Manual proc_pid_syscall(5)

NAME
/proc/pid/syscall - currently executed system call

DESCRIPTION
/proc/ pid /syscall (since Linux 2.6.27)

This file exposes the system call number and argument registers for the system
call currently being executed by the process, followed by the values of the
stack pointer and program counter registers. The values of all six argument
registers are exposed, although most system calls use fewer registers.

If the process is blocked, but not in a system call, then the file displays -1 in
place of the system call number, followed by just the values of the stack
pointer and program counter. If process is not blocked, then the file contains
just the string "running".

This file is present only if the kernel was configured with CON-
FIG_HAVE_ARCH_TRACEHOOK.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2971

proc_pid_task(5) File Formats Manual proc_pid_task(5)

NAME
/proc/pid/task/, /proc/tid/, /proc/thread-self/ - thread information

DESCRIPTION
/proc/ pid /task/ (since Linux 2.6.0)

This is a directory that contains one subdirectory for each thread in the
process. The name of each subdirectory is the numerical thread ID (tid) of the
thread (see gettid(2)).

Within each of these subdirectories, there is a set of files with the same names
and contents as under the /proc/ pid directories. For attributes that are shared
by all threads, the contents for each of the files under the task/ tid subdirecto-
ries will be the same as in the corresponding file in the parent /proc/ pid direc-
tory (e.g., in a multithreaded process, all of the task/ tid /cwd files will have the
same value as the /proc/ pid /cwd file in the parent directory, since all of the
threads in a process share a working directory). For attributes that are distinct
for each thread, the corresponding files under task/ tid may have different val-
ues (e.g., various fields in each of the task/ tid /status files may be different for
each thread), or they might not exist in /proc/ pid at all.

In a multithreaded process, the contents of the /proc/ pid /task directory are not
available if the main thread has already terminated (typically by calling
pthread_exit(3)).

/proc/ tid /
There is a numerical subdirectory for each running thread that is not a thread
group leader (i.e., a thread whose thread ID is not the same as its process ID);
the subdirectory is named by the thread ID. Each one of these subdirectories
contains files and subdirectories exposing information about the thread with
the thread ID tid . The contents of these directories are the same as the corre-
sponding /proc/ pid /task/ tid directories.

The /proc/ tid subdirectories are not visible when iterating through /proc with
getdents(2) (and thus are not visible when one uses ls(1) to view the contents
of /proc). However, the pathnames of these directories are visible to (i.e., us-
able as arguments in) system calls that operate on pathnames.

/proc/thread-self/ (since Linux 3.17)
This directory refers to the thread accessing the /proc filesystem, and is identi-
cal to the /proc/self/task/ tid directory named by the process thread ID (tid) of
the same thread.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2972

proc_pid_timers(5) File Formats Manual proc_pid_timers(5)

NAME
/proc/pid/timers - POSIX timers

DESCRIPTION
/proc/ pid /timers (since Linux 3.10)

A list of the POSIX timers for this process. Each timer is listed with a line
that starts with the string "ID:". For example:

ID: 1
signal: 60/00007fff86e452a8
notify: signal/pid.2634
ClockID: 0
ID: 0
signal: 60/00007fff86e452a8
notify: signal/pid.2634
ClockID: 1

The lines shown for each timer have the following meanings:

ID The ID for this timer. This is not the same as the timer ID returned by
timer_create(2); rather, it is the same kernel-internal ID that is avail-
able via the si_timerid field of the siginfo_t structure (see
sigaction(2)).

signal
This is the signal number that this timer uses to deliver notifications
followed by a slash, and then the sigev_value value supplied to the sig-
nal handler. Valid only for timers that notify via a signal.

notify The part before the slash specifies the mechanism that this timer uses
to deliver notifications, and is one of "thread", "signal", or "none". Im-
mediately following the slash is either the string "tid" for timers with
SIGEV_THREAD_ID notification, or "pid" for timers that notify by
other mechanisms. Following the "." is the PID of the process (or the
kernel thread ID of the thread) that will be delivered a signal if the
timer delivers notifications via a signal.

ClockID
This field identifies the clock that the timer uses for measuring time.
For most clocks, this is a number that matches one of the user-space
CLOCK_* constants exposed via <time.h>.
CLOCK_PROCESS_CPUTIME_ID timers display with a value of
-6 in this field. CLOCK_THREAD_CPUTIME_ID timers display
with a value of -2 in this field.

This file is available only when the kernel was configured with CON-
FIG_CHECKPOINT_RESTORE.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2973

proc_pid_timerslack_ns(5) File Formats Manual proc_pid_timerslack_ns(5)

NAME
/proc/pid/timerslack_ns - timer slack in nanoseconds

DESCRIPTION
/proc/ pid /timerslack_ns (since Linux 4.6)

This file exposes the process’s "current" timer slack value, expressed in
nanoseconds. The file is writable, allowing the process’s timer slack value to
be changed. Writing 0 to this file resets the "current" timer slack to the "de-
fault" timer slack value. For further details, see the discussion of
PR_SET_TIMERSLACK in prctl(2).

Initially, permission to access this file was governed by a ptrace access mode
PTRACE_MODE_ATTACH_FSCREDS check (see ptrace(2)). However,
this was subsequently deemed too strict a requirement (and had the side effect
that requiring a process to have the CAP_SYS_PTRACE capability would
also allow it to view and change any process’s memory). Therefore, since
Linux 4.9, only the (weaker) CAP_SYS_NICE capability is required to access
this file.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2974

proc_pid_uid_map(5) File Formats Manual proc_pid_uid_map(5)

NAME
/proc/pid/gid_map, /proc/pid/uid_map - user and group ID mappings

DESCRIPTION
/proc/ pid /gid_map (since Linux 3.5)

See user_namespaces(7).

/proc/ pid /uid_map (since Linux 3.5)
See user_namespaces(7).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2975

proc_pid_wchan(5) File Formats Manual proc_pid_wchan(5)

NAME
/proc/pid/wchan - wait channel

DESCRIPTION
/proc/ pid /wchan (since Linux 2.6.0)

The symbolic name corresponding to the location in the kernel where the
process is sleeping.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2976

proc_profile(5) File Formats Manual proc_profile(5)

NAME
/proc/profile - kernel profiling

DESCRIPTION
/proc/profile (since Linux 2.4)

This file is present only if the kernel was booted with the profile=1 command-
line option. It exposes kernel profiling information in a binary format for use
by readprofile(1)Writing (e.g., an empty string) to this file resets the profiling
counters; on some architectures, writing a binary integer "profiling multiplier"
of size sizeof(int) sets the profiling interrupt frequency.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2977

proc_scsi(5) File Formats Manual proc_scsi(5)

NAME
/proc/scsi/ - SCSI

DESCRIPTION
/proc/scsi/

A directory with the scsi mid-level pseudo-file and various SCSI low-level dri-
ver directories, which contain a file for each SCSI host in this system, all of
which give the status of some part of the SCSI IO subsystem. These files con-
tain ASCII structures and are, therefore, readable with cat(1)

You can also write to some of the files to reconfigure the subsystem or switch
certain features on or off.

/proc/scsi/scsi
This is a listing of all SCSI devices known to the kernel. The listing is similar
to the one seen during bootup. scsi currently supports only the add-sin-
gle-device command which allows root to add a hotplugged device to the list
of known devices.

The command

echo 'scsi add-single-device 1 0 5 0' > /proc/scsi/scsi

will cause host scsi1 to scan on SCSI channel 0 for a device on ID 5 LUN 0.
If there is already a device known on this address or the address is invalid, an
error will be returned.

/proc/scsi/ drivername /
drivername can currently be NCR53c7xx, aha152x, aha1542, aha1740,
aic7xxx, buslogic, eata_dma, eata_pio, fdomain, in2000, pas16, qlogic,
scsi_debug, seagate, t128, u15-24f, ultrastore, or wd7000. These directories
show up for all drivers that registered at least one SCSI HBA. Every directory
contains one file per registered host. Every host-file is named after the number
the host was assigned during initialization.

Reading these files will usually show driver and host configuration, statistics,
and so on.

Writing to these files allows different things on different hosts. For example,
with the latency and nolatency commands, root can switch on and off com-
mand latency measurement code in the eata_dma driver. With the lockup and
unlock commands, root can control bus lockups simulated by the scsi_debug
driver.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2978

proc_slabinfo(5) File Formats Manual proc_slabinfo(5)

NAME
/proc/slabinfo - kernel caches

DESCRIPTION
/proc/slabinfo

Information about kernel caches. See slabinfo(5) for details.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2979

proc_stat(5) File Formats Manual proc_stat(5)

NAME
/proc/stat - kernel system statistics

DESCRIPTION
/proc/stat

kernel/system statistics. Varies with architecture. Common entries include:

cpu 10132153 290696 3084719 46828483 16683 0 25195 0 175628 0
cpu0 1393280 32966 572056 13343292 6130 0 17875 0 23933 0

The amount of time, measured in units of USER_HZ (1/100ths of a
second on most architectures, use sysconf(_SC_CLK_TCK) to obtain
the right value), that the system ("cpu" line) or the specific CPU
("cpuN" line) spent in various states:

user (1) Time spent in user mode.

nice (2) Time spent in user mode with low priority (nice).

system
(3) Time spent in system mode.

idle (4) Time spent in the idle task. This value should be
USER_HZ times the second entry in the /proc/uptime pseudo-
file.

iowait (since Linux 2.5.41)
(5) Time waiting for I/O to complete. This value is not reliable,
for the following reasons:

• The CPU will not wait for I/O to complete; iowait is the
time that a task is waiting for I/O to complete. When a
CPU goes into idle state for outstanding task I/O, another
task will be scheduled on this CPU.

• On a multi-core CPU, the task waiting for I/O to complete
is not running on any CPU, so the iowait of each CPU is
difficult to calculate.

• The value in this field may decrease in certain conditions.

irq (since Linux 2.6.0)
(6) Time servicing interrupts.

softirq (since Linux 2.6.0)
(7) Time servicing softirqs.

steal (since Linux 2.6.11)
(8) Stolen time, which is the time spent in other operating sys-
tems when running in a virtualized environment

guest (since Linux 2.6.24)
(9) Time spent running a virtual CPU for guest operating sys-
tems under the control of the Linux kernel.

guest_nice (since Linux 2.6.33)
(10) Time spent running a niced guest (virtual CPU for guest
operating systems under the control of the Linux kernel).

Linux man-pages 6.13 2024-05-02 2980

proc_stat(5) File Formats Manual proc_stat(5)

page 5741 1808
The number of pages the system paged in and the number that were
paged out (from disk).

swap 1 0
The number of swap pages that have been brought in and out.

intr 1462898
This line shows counts of interrupts serviced since boot time, for each
of the possible system interrupts. The first column is the total of all in-
terrupts serviced including unnumbered architecture specific interrupts;
each subsequent column is the total for that particular numbered inter-
rupt. Unnumbered interrupts are not shown, only summed into the to-
tal.

disk_io: (2,0):(31,30,5764,1,2) (3,0):...
(major,disk_idx):(noinfo, read_io_ops, blks_read, write_io_ops,
blks_written)
(Linux 2.4 only)

ctxt 115315
The number of context switches that the system underwent.

btime 769041601
boot time, in seconds since the Epoch, 1970-01-01 00:00:00 +0000
(UTC).

processes 86031
Number of forks since boot.

procs_running 6
Number of processes in runnable state. (Linux 2.5.45 onward.)

procs_blocked 2
Number of processes blocked waiting for I/O to complete. (Linux
2.5.45 onward.)

softirq 229245889 94 60001584 13619 5175704 2471304 28 51212741
59130143 0 51240672

This line shows the number of softirq for all CPUs. The first column is
the total of all softirqs and each subsequent column is the total for par-
ticular softirq. (Linux 2.6.31 onward.)

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2981

proc_swaps(5) File Formats Manual proc_swaps(5)

NAME
/proc/swaps - swap areas

DESCRIPTION
/proc/swaps

Swap areas in use. See also swapon(8)

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 2982

proc_sys(5) File Formats Manual proc_sys(5)

NAME
/proc/sys/ - system information, and sysctl pseudo-filesystem

DESCRIPTION
/proc/sys/

This directory (present since Linux 1.3.57) contains a number of files and sub-
directories corresponding to kernel variables. These variables can be read and
in some cases modified using the /proc filesystem, and the (deprecated)
sysctl(2) system call.

String values may be terminated by either '\0' or '\n'.

Integer and long values may be written either in decimal or in hexadecimal no-
tation (e.g., 0x3FFF). When writing multiple integer or long values, these may
be separated by any of the following whitespace characters: ' ', '\t', or '\n'. Us-
ing other separators leads to the error EINVAL.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-06-15 2983

proc_sys_abi(5) File Formats Manual proc_sys_abi(5)

NAME
/proc/sys/abi/ - application binary information

DESCRIPTION
/proc/sys/abi/ (since Linux 2.4.10)

This directory may contain files with application binary information. See the
Linux kernel source file Documentation/sysctl/abi.rst (or Documenta-
tion/sysctl/abi.txt before Linux 5.3) for more information.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.13 2024-05-02 2984

proc_sys_debug(5) File Formats Manual proc_sys_debug(5)

NAME
/proc/sys/debug/ - debug

DESCRIPTION
/proc/sys/debug/

This directory may be empty.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.13 2024-05-02 2985

proc_sys_dev(5) File Formats Manual proc_sys_dev(5)

NAME
/proc/sys/dev/ - device-specific information

DESCRIPTION
/proc/sys/dev/

This directory contains device-specific information (e.g., dev/cdrom/info). On
some systems, it may be empty.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.13 2024-05-02 2986

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

NAME
/proc/sys/fs/ - kernel variables related to filesystems

DESCRIPTION
/proc/sys/fs/

This directory contains the files and subdirectories for kernel variables related
to filesystems.

/proc/sys/fs/aio-max-nr
/proc/sys/fs/aio-nr (both since Linux 2.6.4)

aio-nr is the running total of the number of events specified by io_setup(2)
calls for all currently active AIO contexts. If aio-nr reaches aio-max-nr, then
io_setup(2) will fail with the error EAGAIN. Raising aio-max-nr does not
result in the preallocation or resizing of any kernel data structures.

/proc/sys/fs/binfmt_misc
Documentation for files in this directory can be found in the Linux kernel
source in the file Documentation/admin-guide/binfmt-misc.rst (or in Docu-
mentation/binfmt_misc.txt on older kernels).

/proc/sys/fs/dentry-state (since Linux 2.2)
This file contains information about the status of the directory cache (dcache).
The file contains six numbers, nr_dentry, nr_unused , age_limit (age in sec-
onds), want_pages (pages requested by system) and two dummy values.

• nr_dentry is the number of allocated dentries (dcache entries). This field
is unused in Linux 2.2.

• nr_unused is the number of unused dentries.

• age_limit is the age in seconds after which dcache entries can be reclaimed
when memory is short.

• want_pages is nonzero when the kernel has called shrink_dcache_pages()
and the dcache isn’t pruned yet.

/proc/sys/fs/dir-notify-enable
This file can be used to disable or enable the dnotify interface described in fc-
ntl(2) on a system-wide basis. A value of 0 in this file disables the interface,
and a value of 1 enables it.

/proc/sys/fs/dquot-max
This file shows the maximum number of cached disk quota entries. On some
(2.4) systems, it is not present. If the number of free cached disk quota entries
is very low and you have some awesome number of simultaneous system
users, you might want to raise the limit.

/proc/sys/fs/dquot-nr
This file shows the number of allocated disk quota entries and the number of
free disk quota entries.

/proc/sys/fs/epoll/ (since Linux 2.6.28)
This directory contains the file max_user_watches, which can be used to limit
the amount of kernel memory consumed by the epoll interface. For further de-
tails, see epoll(7).

Linux man-pages 6.13 2024-06-28 2987

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

/proc/sys/fs/file-max
This file defines a system-wide limit on the number of open files for all
processes. System calls that fail when encountering this limit fail with the er-
ror ENFILE. (See also setrlimit(2), which can be used by a process to set the
per-process limit, RLIMIT_NOFILE, on the number of files it may open.) If
you get lots of error messages in the kernel log about running out of file han-
dles (open file descriptions) (look for "VFS: file-max limit <number>
reached"), try increasing this value:

echo 100000 > /proc/sys/fs/file-max

Privileged processes (CAP_SYS_ADMIN) can override the file-max limit.

/proc/sys/fs/file-nr
This (read-only) file contains three numbers: the number of allocated file han-
dles (i.e., the number of open file descriptions; see open(2)); the number of
free file handles; and the maximum number of file handles (i.e., the same value
as /proc/sys/fs/file-max). If the number of allocated file handles is close to the
maximum, you should consider increasing the maximum. Before Linux 2.6,
the kernel allocated file handles dynamically, but it didn’t free them again. In-
stead the free file handles were kept in a list for reallocation; the "free file han-
dles" value indicates the size of that list. A large number of free file handles
indicates that there was a past peak in the usage of open file handles. Since
Linux 2.6, the kernel does deallocate freed file handles, and the "free file han-
dles" value is always zero.

/proc/sys/fs/inode-max (only present until Linux 2.2)
This file contains the maximum number of in-memory inodes. This value
should be 3–4 times larger than the value in file-max, since stdin, stdout and
network sockets also need an inode to handle them. When you regularly run
out of inodes, you need to increase this value.

Starting with Linux 2.4, there is no longer a static limit on the number of in-
odes, and this file is removed.

/proc/sys/fs/inode-nr
This file contains the first two values from inode-state.

/proc/sys/fs/inode-state
This file contains seven numbers: nr_inodes, nr_free_inodes, preshrink, and
four dummy values (always zero).

nr_inodes is the number of inodes the system has allocated. nr_free_inodes
represents the number of free inodes.

preshrink is nonzero when the nr_inodes > inode-max and the system needs
to prune the inode list instead of allocating more; since Linux 2.4, this field is
a dummy value (always zero).

/proc/sys/fs/inotify/ (since Linux 2.6.13)
This directory contains files max_queued_events, max_user_instances, and
max_user_watches, that can be used to limit the amount of kernel memory
consumed by the inotify interface. For further details, see inotify(7).

Linux man-pages 6.13 2024-06-28 2988

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

/proc/sys/fs/lease-break-time
This file specifies the grace period that the kernel grants to a process holding a
file lease (fcntl(2)) after it has sent a signal to that process notifying it that an-
other process is waiting to open the file. If the lease holder does not remove or
downgrade the lease within this grace period, the kernel forcibly breaks the
lease.

/proc/sys/fs/leases-enable
This file can be used to enable or disable file leases (fcntl(2)) on a system-
wide basis. If this file contains the value 0, leases are disabled. A nonzero
value enables leases.

/proc/sys/fs/mount-max (since Linux 4.9)
The value in this file specifies the maximum number of mounts that may exist
in a mount namespace. The default value in this file is 100,000.

/proc/sys/fs/mqueue/ (since Linux 2.6.6)
This directory contains files msg_max, msgsize_max, and queues_max, con-
trolling the resources used by POSIX message queues. See mq_overview(7)
for details.

/proc/sys/fs/nr_open (since Linux 2.6.25)
This file imposes a ceiling on the value to which the RLIMIT_NOFILE re-
source limit can be raised (see getrlimit(2)). This ceiling is enforced for both
unprivileged and privileged process. The default value in this file is 1048576.
(Before Linux 2.6.25, the ceiling for RLIMIT_NOFILE was hard-coded to
the same value.)

/proc/sys/fs/overflowgid
/proc/sys/fs/overflowuid

These files allow you to change the value of the fixed UID and GID. The de-
fault is 65534. Some filesystems support only 16-bit UIDs and GIDs, al-
though in Linux UIDs and GIDs are 32 bits. When one of these filesystems is
mounted with writes enabled, any UID or GID that would exceed 65535 is
translated to the overflow value before being written to disk.

/proc/sys/fs/pipe-max-size (since Linux 2.6.35)
See pipe(7).

/proc/sys/fs/pipe-user-pages-hard (since Linux 4.5)
See pipe(7).

/proc/sys/fs/pipe-user-pages-soft (since Linux 4.5)
See pipe(7).

/proc/sys/fs/protected_fifos (since Linux 4.19)
The value in this file is/can be set to one of the following:

Writing to FIFOs is unrestricted.

1 Don’t allow O_CREAT open(2) on FIFOs that the caller doesn’t own in
world-writable sticky directories, unless the FIFO is owned by the owner
of the directory.

Linux man-pages 6.13 2024-06-28 2989

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

2 As for the value 1, but the restriction also applies to group-writable sticky
directories.

The intent of the above protections is to avoid unintentional writes to an at-
tacker-controlled FIFO when a program expected to create a regular file.

/proc/sys/fs/protected_hardlinks (since Linux 3.6)
When the value in this file is 0, no restrictions are placed on the creation of
hard links (i.e., this is the historical behavior before Linux 3.6). When the
value in this file is 1, a hard link can be created to a target file only if one of
the following conditions is true:

• The calling process has the CAP_FOWNER capability in its user name-
space and the file UID has a mapping in the namespace.

• The filesystem UID of the process creating the link matches the owner
(UID) of the target file (as described in credentials(7), a process’s filesys-
tem UID is normally the same as its effective UID).

• All of the following conditions are true:

• the target is a regular file;

• the target file does not have its set-user-ID mode bit enabled;

• the target file does not have both its set-group-ID and group-exe-
cutable mode bits enabled; and

• the caller has permission to read and write the target file (either via
the file’s permissions mask or because it has suitable capabilities).

The default value in this file is 0. Setting the value to 1 prevents a longstand-
ing class of security issues caused by hard-link-based time-of-check, time-of-
use races, most commonly seen in world-writable directories such as /tmp.
The common method of exploiting this flaw is to cross privilege boundaries
when following a given hard link (i.e., a root process follows a hard link cre-
ated by another user). Additionally, on systems without separated partitions,
this stops unauthorized users from "pinning" vulnerable set-user-ID and set-
group-ID files against being upgraded by the administrator, or linking to spe-
cial files.

/proc/sys/fs/protected_regular (since Linux 4.19)
The value in this file is/can be set to one of the following:

Writing to regular files is unrestricted.

1 Don’t allow O_CREAT open(2) on regular files that the caller doesn’t
own in world-writable sticky directories, unless the regular file is owned
by the owner of the directory.

2 As for the value 1, but the restriction also applies to group-writable sticky
directories.

The intent of the above protections is similar to protected_fifos, but allows an
application to avoid writes to an attacker-controlled regular file, where the ap-
plication expected to create one.

Linux man-pages 6.13 2024-06-28 2990

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

/proc/sys/fs/protected_symlinks (since Linux 3.6)
When the value in this file is 0, no restrictions are placed on following sym-
bolic links (i.e., this is the historical behavior before Linux 3.6). When the
value in this file is 1, symbolic links are followed only in the following cir-
cumstances:

• the filesystem UID of the process following the link matches the owner
(UID) of the symbolic link (as described in credentials(7), a process’s
filesystem UID is normally the same as its effective UID);

• the link is not in a sticky world-writable directory; or

• the symbolic link and its parent directory have the same owner (UID)

A system call that fails to follow a symbolic link because of the above restric-
tions returns the error EACCES in errno.

The default value in this file is 0. Setting the value to 1 avoids a longstanding
class of security issues based on time-of-check, time-of-use races when ac-
cessing symbolic links.

/proc/sys/fs/suid_dumpable (since Linux 2.6.13)
The value in this file is assigned to a process’s "dumpable" flag in the circum-
stances described in prctl(2). In effect, the value in this file determines
whether core dump files are produced for set-user-ID or otherwise pro-
tected/tainted binaries. The "dumpable" setting also affects the ownership of
files in a process’s /proc/ pid directory, as described above.

Three different integer values can be specified:

0 (default)
This provides the traditional (pre-Linux 2.6.13) behavior. A core dump
will not be produced for a process which has changed credentials (by
calling seteuid(2), setgid(2), or similar, or by executing a set-user-ID or
set-group-ID program) or whose binary does not have read permission
enabled.

1 ("debug")
All processes dump core when possible. (Reasons why a process
might nevertheless not dump core are described in core(5).) The core
dump is owned by the filesystem user ID of the dumping process and
no security is applied. This is intended for system debugging situa-
tions only: this mode is insecure because it allows unprivileged users to
examine the memory contents of privileged processes.

2 ("suidsafe")
Any binary which normally would not be dumped (see "0" above) is
dumped readable by root only. This allows the user to remove the core
dump file but not to read it. For security reasons core dumps in this
mode will not overwrite one another or other files. This mode is ap-
propriate when administrators are attempting to debug problems in a
normal environment.

Additionally, since Linux 3.6, /proc/sys/kernel/core_pattern must ei-
ther be an absolute pathname or a pipe command, as detailed in

Linux man-pages 6.13 2024-06-28 2991

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

core(5). Warnings will be written to the kernel log if core_pattern
does not follow these rules, and no core dump will be produced.

For details of the effect of a process’s "dumpable" setting on ptrace access
mode checking, see ptrace(2).

/proc/sys/fs/super-max
This file controls the maximum number of superblocks, and thus the maxi-
mum number of mounted filesystems the kernel can have. You need increase
only super-max if you need to mount more filesystems than the current value
in super-max allows you to.

/proc/sys/fs/super-nr
This file contains the number of filesystems currently mounted.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.13 2024-06-28 2992

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

NAME
/proc/sys/kernel/ - control a range of kernel parameters

DESCRIPTION
/proc/sys/kernel/

This directory contains files controlling a range of kernel parameters, as de-
scribed below.

/proc/sys/kernel/acct
This file contains three numbers: highwater, lowwater, and frequency. If
BSD-style process accounting is enabled, these values control its behavior. If
free space on filesystem where the log lives goes below lowwater percent, ac-
counting suspends. If free space gets above highwater percent, accounting re-
sumes. frequency determines how often the kernel checks the amount of free
space (value is in seconds). Default values are 4, 2, and 30. That is, suspend
accounting if 2% or less space is free; resume it if 4% or more space is free;
consider information about amount of free space valid for 30 seconds.

/proc/sys/kernel/auto_msgmni (Linux 2.6.27 to Linux 3.18)
From Linux 2.6.27 to Linux 3.18, this file was used to control recomputing of
the value in /proc/sys/kernel/msgmni upon the addition or removal of memory
or upon IPC namespace creation/removal. Echoing "1" into this file enabled
msgmni automatic recomputing (and triggered a recomputation of msgmni
based on the current amount of available memory and number of IPC name-
spaces). Echoing "0" disabled automatic recomputing. (Automatic recomput-
ing was also disabled if a value was explicitly assigned to /proc/sys/kernel/ms-
gmni.) The default value in auto_msgmni was 1.

Since Linux 3.19, the content of this file has no effect (because msgmni de-
faults to near the maximum value possible), and reads from this file always re-
turn the value "0".

/proc/sys/kernel/cap_last_cap (since Linux 3.2)
See capabilities(7).

/proc/sys/kernel/cap-bound (from Linux 2.2 to Linux 2.6.24)
This file holds the value of the kernel capability bounding set (expressed as a
signed decimal number). This set is ANDed against the capabilities permitted
to a process during execve(2). Starting with Linux 2.6.25, the system-wide ca-
pability bounding set disappeared, and was replaced by a per-thread bounding
set; see capabilities(7).

/proc/sys/kernel/core_pattern
See core(5).

/proc/sys/kernel/core_pipe_limit
See core(5).

/proc/sys/kernel/core_uses_pid
See core(5).

/proc/sys/kernel/ctrl-alt-del
This file controls the handling of Ctrl-Alt-Del from the keyboard. When the
value in this file is 0, Ctrl-Alt-Del is trapped and sent to the init(1) program to
handle a graceful restart. When the value is greater than zero, Linux’s reaction

Linux man-pages 6.13 2024-06-28 2993

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

to a Vulcan Nerve Pinch (tm) will be an immediate reboot, without even sync-
ing its dirty buffers. Note: when a program (like dosemu) has the keyboard in
"raw" mode, the Ctrl-Alt-Del is intercepted by the program before it ever
reaches the kernel tty layer, and it’s up to the program to decide what to do
with it.

/proc/sys/kernel/dmesg_restrict (since Linux 2.6.37)
The value in this file determines who can see kernel syslog contents. A value
of 0 in this file imposes no restrictions. If the value is 1, only privileged users
can read the kernel syslog. (See syslog(2) for more details.) Since Linux 3.4,
only users with the CAP_SYS_ADMIN capability may change the value in
this file.

/proc/sys/kernel/domainname
/proc/sys/kernel/hostname

can be used to set the NIS/YP domainname and the hostname of your box in
exactly the same way as the commands domainname(1) and hostname(1), that
is:

echo 'darkstar' > /proc/sys/kernel/hostname
echo 'mydomain' > /proc/sys/kernel/domainname

has the same effect as

hostname 'darkstar'
domainname 'mydomain'

Note, however, that the classic darkstar.frop.org has the hostname "darkstar"
and DNS (Internet Domain Name Server) domainname "frop.org", not to be
confused with the NIS (Network Information Service) or YP (Yellow Pages)
domainname. These two domain names are in general different. For a de-
tailed discussion see the hostname(1) man page.

/proc/sys/kernel/hotplug
This file contains the pathname for the hotplug policy agent. The default value
in this file is /sbin/hotplug.

/proc/sys/kernel/htab-reclaim (before Linux 2.4.9.2)
(PowerPC only) If this file is set to a nonzero value, the PowerPC htab (see
kernel file Documentation/powerpc/ppc_htab.txt) is pruned each time the sys-
tem hits the idle loop.

/proc/sys/kernel/keys/
This directory contains various files that define parameters and limits for the
key-management facility. These files are described in keyrings(7).

/proc/sys/kernel/kptr_restrict (since Linux 2.6.38)
The value in this file determines whether kernel addresses are exposed via
/proc files and other interfaces. A value of 0 in this file imposes no restric-
tions. If the value is 1, kernel pointers printed using the %pK format specifier
will be replaced with zeros unless the user has the CAP_SYSLOG capability.
If the value is 2, kernel pointers printed using the %pK format specifier will be
replaced with zeros regardless of the user’s capabilities. The initial default
value for this file was 1, but the default was changed to 0 in Linux 2.6.39.
Since Linux 3.4, only users with the CAP_SYS_ADMIN capability can

Linux man-pages 6.13 2024-06-28 2994

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

change the value in this file.

/proc/sys/kernel/l2cr
(PowerPC only) This file contains a flag that controls the L2 cache of G3
processor boards. If 0, the cache is disabled. Enabled if nonzero.

/proc/sys/kernel/modprobe
This file contains the pathname for the kernel module loader. The default
value is /sbin/modprobe. The file is present only if the kernel is built with the
CONFIG_MODULES (CONFIG_KMOD in Linux 2.6.26 and earlier) op-
tion enabled. It is described by the Linux kernel source file Documenta-
tion/kmod.txt (present only in Linux 2.4 and earlier).

/proc/sys/kernel/modules_disabled (since Linux 2.6.31)
A toggle value indicating if modules are allowed to be loaded in an otherwise
modular kernel. This toggle defaults to off (0), but can be set true (1). Once
true, modules can be neither loaded nor unloaded, and the toggle cannot be set
back to false. The file is present only if the kernel is built with the CON-
FIG_MODULES option enabled.

/proc/sys/kernel/msgmax (since Linux 2.2)
This file defines a system-wide limit specifying the maximum number of bytes
in a single message written on a System V message queue.

/proc/sys/kernel/msgmni (since Linux 2.4)
This file defines the system-wide limit on the number of message queue identi-
fiers. See also /proc/sys/kernel/auto_msgmni.

/proc/sys/kernel/msgmnb (since Linux 2.2)
This file defines a system-wide parameter used to initialize the msg_qbytes
setting for subsequently created message queues. The msg_qbytes setting
specifies the maximum number of bytes that may be written to the message
queue.

/proc/sys/kernel/ngroups_max (since Linux 2.6.4)
This is a read-only file that displays the upper limit on the number of a
process’s group memberships.

/proc/sys/kernel/ns_last_pid (since Linux 3.3)
See pid_namespaces(7).

/proc/sys/kernel/ostype
/proc/sys/kernel/osrelease

These files give substrings of /proc/version.

/proc/sys/kernel/overflowgid
/proc/sys/kernel/overflowuid

These files duplicate the files /proc/sys/fs/overflowgid and /proc/sys/fs/over-
flowuid .

/proc/sys/kernel/panic
This file gives read/write access to the kernel variable panic_timeout. If this
is zero, the kernel will loop on a panic; if nonzero, it indicates that the kernel
should autoreboot after this number of seconds. When you use the software
watchdog device driver, the recommended setting is 60.

Linux man-pages 6.13 2024-06-28 2995

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

/proc/sys/kernel/panic_on_oops (since Linux 2.5.68)
This file controls the kernel’s behavior when an oops or BUG is encountered.
If this file contains 0, then the system tries to continue operation. If it contains
1, then the system delays a few seconds (to give klogd time to record the oops
output) and then panics. If the /proc/sys/kernel/panic file is also nonzero, then
the machine will be rebooted.

/proc/sys/kernel/pid_max (since Linux 2.5.34)
This file specifies the value at which PIDs wrap around (i.e., the value in this
file is one greater than the maximum PID). PIDs greater than this value are
not allocated; thus, the value in this file also acts as a system-wide limit on the
total number of processes and threads. The default value for this file, 32768,
results in the same range of PIDs as on earlier kernels. On 32-bit platforms,
32768 is the maximum value for pid_max. On 64-bit systems, pid_max can
be set to any value up to 2^22 (PID_MAX_LIMIT, approximately 4 million).

/proc/sys/kernel/powersave-nap (PowerPC only)
This file contains a flag. If set, Linux-PPC will use the "nap" mode of power-
saving, otherwise the "doze" mode will be used.

/proc/sys/kernel/printk
See syslog(2).

/proc/sys/kernel/pty (since Linux 2.6.4)
This directory contains two files relating to the number of UNIX 98 pseudoter-
minals (see pts(4)) on the system.

/proc/sys/kernel/pty/max
This file defines the maximum number of pseudoterminals.

/proc/sys/kernel/pty/nr
This read-only file indicates how many pseudoterminals are currently in use.

/proc/sys/kernel/random/
This directory contains various parameters controlling the operation of the file
/dev/random. See random(4) for further information.

/proc/sys/kernel/random/uuid (since Linux 2.4)
Each read from this read-only file returns a randomly generated 128-bit UUID,
as a string in the standard UUID format.

/proc/sys/kernel/randomize_va_space (since Linux 2.6.12)
Select the address space layout randomization (ASLR) policy for the system
(on architectures that support ASLR). Three values are supported for this file:

0 Turn ASLR off. This is the default for architectures that don’t support
ASLR, and when the kernel is booted with the norandmaps parameter.

1 Make the addresses of mmap(2) allocations, the stack, and the VDSO
page randomized. Among other things, this means that shared libraries
will be loaded at randomized addresses. The text segment of PIE-
linked binaries will also be loaded at a randomized address. This value
is the default if the kernel was configured with CONFIG_COM-
PAT_BRK.

Linux man-pages 6.13 2024-06-28 2996

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

2 (Since Linux 2.6.25) Also support heap randomization. This value is
the default if the kernel was not configured with CONFIG_COM-
PAT_BRK.

/proc/sys/kernel/real-root-dev
This file is documented in the Linux kernel source file Documentation/ad-
min-guide/initrd.rst (or Documentation/initrd.txt before Linux 4.10).

/proc/sys/kernel/reboot-cmd (Sparc only)
This file seems to be a way to give an argument to the SPARC ROM/Flash
boot loader. Maybe to tell it what to do after rebooting?

/proc/sys/kernel/rtsig-max
(Up to and including Linux 2.6.7; see setrlimit(2)) This file can be used to tune
the maximum number of POSIX real-time (queued) signals that can be out-
standing in the system.

/proc/sys/kernel/rtsig-nr
(Up to and including Linux 2.6.7.) This file shows the number of POSIX real-
time signals currently queued.

/proc/ pid /sched_autogroup_enabled (since Linux 2.6.38)
See sched(7).

/proc/sys/kernel/sched_child_runs_first (since Linux 2.6.23)
If this file contains the value zero, then, after a fork(2), the parent is first
scheduled on the CPU. If the file contains a nonzero value, then the child is
scheduled first on the CPU. (Of course, on a multiprocessor system, the par-
ent and the child might both immediately be scheduled on a CPU.)

/proc/sys/kernel/sched_rr_timeslice_ms (since Linux 3.9)
See sched_rr_get_interval(2).

/proc/sys/kernel/sched_rt_period_us (since Linux 2.6.25)
See sched(7).

/proc/sys/kernel/sched_rt_runtime_us (since Linux 2.6.25)
See sched(7).

/proc/sys/kernel/seccomp/ (since Linux 4.14)
This directory provides additional seccomp information and configuration.
See seccomp(2) for further details.

/proc/sys/kernel/sem (since Linux 2.4)
This file contains 4 numbers defining limits for System V IPC semaphores.
These fields are, in order:

SEMMSL
The maximum semaphores per semaphore set.

SEMMNS
A system-wide limit on the number of semaphores in all semaphore
sets.

SEMOPM
The maximum number of operations that may be specified in a se-
mop(2) call.

Linux man-pages 6.13 2024-06-28 2997

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

SEMMNI
A system-wide limit on the maximum number of semaphore identi-
fiers.

/proc/sys/kernel/sg-big-buff
This file shows the size of the generic SCSI device (sg) buffer. You can’t tune
it just yet, but you could change it at compile time by editing include/scsi/sg.h
and changing the value of SG_BIG_BUFF. However, there shouldn’t be any
reason to change this value.

/proc/sys/kernel/shm_rmid_forced (since Linux 3.1)
If this file is set to 1, all System V shared memory segments will be marked
for destruction as soon as the number of attached processes falls to zero; in
other words, it is no longer possible to create shared memory segments that
exist independently of any attached process.

The effect is as though a shmctl(2) IPC_RMID is performed on all existing
segments as well as all segments created in the future (until this file is reset to
0). Note that existing segments that are attached to no process will be immedi-
ately destroyed when this file is set to 1. Setting this option will also destroy
segments that were created, but never attached, upon termination of the
process that created the segment with shmget(2).

Setting this file to 1 provides a way of ensuring that all System V shared mem-
ory segments are counted against the resource usage and resource limits (see
the description of RLIMIT_AS in getrlimit(2)) of at least one process.

Because setting this file to 1 produces behavior that is nonstandard and could
also break existing applications, the default value in this file is 0. Set this file
to 1 only if you have a good understanding of the semantics of the applications
using System V shared memory on your system.

/proc/sys/kernel/shmall (since Linux 2.2)
This file contains the system-wide limit on the total number of pages of Sys-
tem V shared memory.

/proc/sys/kernel/shmmax (since Linux 2.2)
This file can be used to query and set the run-time limit on the maximum (Sys-
tem V IPC) shared memory segment size that can be created. Shared memory
segments up to 1 GB are now supported in the kernel. This value defaults to
SHMMAX.

/proc/sys/kernel/shmmni (since Linux 2.4)
This file specifies the system-wide maximum number of System V shared
memory segments that can be created.

/proc/sys/kernel/sysctl_writes_strict (since Linux 3.16)
The value in this file determines how the file offset affects the behavior of up-
dating entries in files under /proc/sys. The file has three possible values:

-1 This provides legacy handling, with no printk warnings. Each write(2)
must fully contain the value to be written, and multiple writes on the
same file descriptor will overwrite the entire value, regardless of the file
position.

Linux man-pages 6.13 2024-06-28 2998

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

(default) This provides the same behavior as for -1,
but printk warnings are written for processes that perform writes when
the file offset is not 0.

1 Respect the file offset when writing strings into /proc/sys files. Multiple
writes will append to the value buffer. Anything written beyond the max-
imum length of the value buffer will be ignored. Writes to numeric
/proc/sys entries must always be at file offset 0 and the value must be
fully contained in the buffer provided to write(2).

/proc/sys/kernel/sysrq
This file controls the functions allowed to be invoked by the SysRq key. By
default, the file contains 1 meaning that every possible SysRq request is al-
lowed (in older kernel versions, SysRq was disabled by default, and you were
required to specifically enable it at run-time, but this is not the case any more).
Possible values in this file are:

Disable sysrq completely

1 Enable all functions of sysrq

> 1 Bit mask of allowed sysrq functions, as follows:
2 Enable control of console logging level
4 Enable control of keyboard (SAK, unraw)
8 Enable debugging dumps of processes etc.
16 Enable sync command
32 Enable remount read-only
64 Enable signaling of processes (term, kill, oom-kill)
128 Allow reboot/poweroff
256 Allow nicing of all real-time tasks

This file is present only if the CONFIG_MAGIC_SYSRQ kernel configura-
tion option is enabled. For further details see the Linux kernel source file
Documentation/admin-guide/sysrq.rst (or Documentation/sysrq.txt before
Linux 4.10).

/proc/sys/kernel/version
This file contains a string such as:

#5 Wed Feb 25 21:49:24 MET 1998

The "#5" means that this is the fifth kernel built from this source base and the
date following it indicates the time the kernel was built.

/proc/sys/kernel/threads-max (since Linux 2.3.11)
This file specifies the system-wide limit on the number of threads (tasks) that
can be created on the system.

Since Linux 4.1, the value that can be written to threads-max is bounded.
The minimum value that can be written is 20. The maximum value that can be
written is given by the constant FUTEX_TID_MASK (0x3fffffff). If a value
outside of this range is written to threads-max, the error EINVAL occurs.

The value written is checked against the available RAM pages. If the thread
structures would occupy too much (more than 1/8th) of the available RAM
pages, threads-max is reduced accordingly.

Linux man-pages 6.13 2024-06-28 2999

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

/proc/sys/kernel/yama/ptrace_scope (since Linux 3.5)
See ptrace(2).

/proc/sys/kernel/zero-paged (PowerPC only)
This file contains a flag. When enabled (nonzero), Linux-PPC will pre-zero
pages in the idle loop, possibly speeding up get_free_pages.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.13 2024-06-28 3000

proc_sys_net(5) File Formats Manual proc_sys_net(5)

NAME
/proc/sys/net/ - networking

DESCRIPTION
/proc/sys/net/

This directory contains networking stuff. Explanations for some of the files
under this directory can be found in tcp(7) and ip(7).

/proc/sys/net/core/bpf_jit_enable
See bpf(2).

/proc/sys/net/core/somaxconn
This file defines a ceiling value for the backlog argument of listen(2); see the
listen(2) manual page for details.

SEE ALSO
proc(5), proc_net(5)

Linux man-pages 6.13 2024-05-02 3001

proc_sys_proc(5) File Formats Manual proc_sys_proc(5)

NAME
/proc/sys/proc/ - ???

DESCRIPTION
/proc/sys/proc/

This directory may be empty.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.13 2024-05-02 3002

proc_sys_sunrpc(5) File Formats Manual proc_sys_sunrpc(5)

NAME
/proc/sys/sunrpc/ - Sun remote procedure call for NFS

DESCRIPTION
/proc/sys/sunrpc/

This directory supports Sun remote procedure call for network filesystem
(NFS). On some systems, it is not present.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.13 2024-05-02 3003

proc_sys_user(5) File Formats Manual proc_sys_user(5)

NAME
/proc/sys/user/ - limits on the number of namespaces of various types

DESCRIPTION
/proc/sys/user/ (since Linux 4.9)

See namespaces(7).

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.13 2024-05-02 3004

proc_sys_vm(5) File Formats Manual proc_sys_vm(5)

NAME
/proc/sys/vm/ - virtual memory subsystem

DESCRIPTION
/proc/sys/vm/

This directory contains files for memory management tuning, buffer, and
cache management.

/proc/sys/vm/admin_reserve_kbytes (since Linux 3.10)
This file defines the amount of free memory (in KiB) on the system that
should be reserved for users with the capability CAP_SYS_ADMIN.

The default value in this file is the minimum of [3% of free pages, 8MiB] ex-
pressed as KiB. The default is intended to provide enough for the superuser to
log in and kill a process, if necessary, under the default overcommit ’guess’
mode (i.e., 0 in /proc/sys/vm/overcommit_memory).

Systems running in "overcommit never" mode (i.e., 2 in /proc/sys/vm/over-
commit_memory) should increase the value in this file to account for the full
virtual memory size of the programs used to recover (e.g., login(1) ssh(1), and
top(1)) Otherwise, the superuser may not be able to log in to recover the sys-
tem. For example, on x86-64 a suitable value is 131072 (128MiB reserved).

Changing the value in this file takes effect whenever an application requests
memory.

/proc/sys/vm/compact_memory (since Linux 2.6.35)
When 1 is written to this file, all zones are compacted such that free memory is
available in contiguous blocks where possible. The effect of this action can be
seen by examining /proc/buddyinfo.

Present only if the kernel was configured with CONFIG_COMPACTION.

/proc/sys/vm/drop_caches (since Linux 2.6.16)
Writing to this file causes the kernel to drop clean caches, dentries, and inodes
from memory, causing that memory to become free. This can be useful for
memory management testing and performing reproducible filesystem bench-
marks. Because writing to this file causes the benefits of caching to be lost, it
can degrade overall system performance.

To free pagecache, use:

echo 1 > /proc/sys/vm/drop_caches

To free dentries and inodes, use:

echo 2 > /proc/sys/vm/drop_caches

To free pagecache, dentries, and inodes, use:

echo 3 > /proc/sys/vm/drop_caches

Because writing to this file is a nondestructive operation and dirty objects are
not freeable, the user should run sync(1) first.

/proc/sys/vm/sysctl_hugetlb_shm_group (since Linux 2.6.7)
This writable file contains a group ID that is allowed to allocate memory using
huge pages. If a process has a filesystem group ID or any supplementary

Linux man-pages 6.13 2024-05-02 3005

proc_sys_vm(5) File Formats Manual proc_sys_vm(5)

group ID that matches this group ID, then it can make huge-page allocations
without holding the CAP_IPC_LOCK capability; see memfd_create(2),
mmap(2), and shmget(2).

/proc/sys/vm/legacy_va_layout (since Linux 2.6.9)
If nonzero, this disables the new 32-bit memory-mapping layout; the kernel
will use the legacy (2.4) layout for all processes.

/proc/sys/vm/memory_failure_early_kill (since Linux 2.6.32)
Control how to kill processes when an uncorrected memory error (typically a
2-bit error in a memory module) that cannot be handled by the kernel is de-
tected in the background by hardware. In some cases (like the page still hav-
ing a valid copy on disk), the kernel will handle the failure transparently with-
out affecting any applications. But if there is no other up-to-date copy of the
data, it will kill processes to prevent any data corruptions from propagating.

The file has one of the following values:

1 Kill all processes that have the corrupted-and-not-reloadable page
mapped as soon as the corruption is detected. Note that this is not sup-
ported for a few types of pages, such as kernel internally allocated data
or the swap cache, but works for the majority of user pages.

0 Unmap the corrupted page from all processes and kill a process only if
it tries to access the page.

The kill is performed using a SIGBUS signal with si_code set to
BUS_MCEERR_AO. Processes can handle this if they want to; see sigac-
tion(2) for more details.

This feature is active only on architectures/platforms with advanced machine
check handling and depends on the hardware capabilities.

Applications can override the memory_failure_early_kill setting individually
with the prctl(2) PR_MCE_KILL operation.

Present only if the kernel was configured with CONFIG_MEMORY_FAIL-
URE.

/proc/sys/vm/memory_failure_recovery (since Linux 2.6.32)
Enable memory failure recovery (when supported by the platform).

1 Attempt recovery.

0 Always panic on a memory failure.

Present only if the kernel was configured with CONFIG_MEMORY_FAIL-
URE.

/proc/sys/vm/oom_dump_tasks (since Linux 2.6.25)
Enables a system-wide task dump (excluding kernel threads) to be produced
when the kernel performs an OOM-killing. The dump includes the following
information for each task (thread, process): thread ID, real user ID, thread
group ID (process ID), virtual memory size, resident set size, the CPU that the
task is scheduled on, oom_adj score (see the description of
/proc/ pid /oom_adj), and command name. This is helpful to determine why
the OOM-killer was invoked and to identify the rogue task that caused it.

Linux man-pages 6.13 2024-05-02 3006

proc_sys_vm(5) File Formats Manual proc_sys_vm(5)

If this contains the value zero, this information is suppressed. On very large
systems with thousands of tasks, it may not be feasible to dump the memory
state information for each one. Such systems should not be forced to incur a
performance penalty in OOM situations when the information may not be de-
sired.

If this is set to nonzero, this information is shown whenever the OOM-killer
actually kills a memory-hogging task.

The default value is 0.

/proc/sys/vm/oom_kill_allocating_task (since Linux 2.6.24)
This enables or disables killing the OOM-triggering task in out-of-memory sit-
uations.

If this is set to zero, the OOM-killer will scan through the entire tasklist and
select a task based on heuristics to kill. This normally selects a rogue mem-
ory-hogging task that frees up a large amount of memory when killed.

If this is set to nonzero, the OOM-killer simply kills the task that triggered the
out-of-memory condition. This avoids a possibly expensive tasklist scan.

If /proc/sys/vm/panic_on_oom is nonzero, it takes precedence over whatever
value is used in /proc/sys/vm/oom_kill_allocating_task.

The default value is 0.

/proc/sys/vm/overcommit_kbytes (since Linux 3.14)
This writable file provides an alternative to /proc/sys/vm/overcommit_ratio for
controlling the CommitLimit when /proc/sys/vm/overcommit_memory has the
value 2. It allows the amount of memory overcommitting to be specified as an
absolute value (in kB), rather than as a percentage, as is done with overcom-
mit_ratio. This allows for finer-grained control of CommitLimit on systems
with extremely large memory sizes.

Only one of overcommit_kbytes or overcommit_ratio can have an effect: if
overcommit_kbytes has a nonzero value, then it is used to calculate Com-
mitLimit, otherwise overcommit_ratio is used. Writing a value to either of
these files causes the value in the other file to be set to zero.

/proc/sys/vm/overcommit_memory
This file contains the kernel virtual memory accounting mode. Values are:

0: heuristic overcommit (this is the default)
1: always overcommit, never check
2: always check, never overcommit

In mode 0, calls of mmap(2) with MAP_NORESERVE are not checked, and
the default check is very weak, leading to the risk of getting a process "OOM-
killed".

In mode 1, the kernel pretends there is always enough memory, until memory
actually runs out. One use case for this mode is scientific computing applica-
tions that employ large sparse arrays. Before Linux 2.6.0, any nonzero value
implies mode 1.

Linux man-pages 6.13 2024-05-02 3007

proc_sys_vm(5) File Formats Manual proc_sys_vm(5)

In mode 2 (available since Linux 2.6), the total virtual address space that can
be allocated (CommitLimit in /proc/meminfo) is calculated as

CommitLimit = (total_RAM - total_huge_TLB) *
overcommit_ratio / 100 + total_swap

where:

• total_RAM is the total amount of RAM on the system;

• total_huge_TLB is the amount of memory set aside for huge pages;

• overcommit_ratio is the value in /proc/sys/vm/overcommit_ratio; and

• total_swap is the amount of swap space.

For example, on a system with 16 GB of physical RAM, 16 GB of swap, no
space dedicated to huge pages, and an overcommit_ratio of 50, this formula
yields a CommitLimit of 24 GB.

Since Linux 3.14, if the value in /proc/sys/vm/overcommit_kbytes is nonzero,
then CommitLimit is instead calculated as:

CommitLimit = overcommit_kbytes + total_swap

See also the description of /proc/sys/vm/admin_reserve_kbytes and
/proc/sys/vm/user_reserve_kbytes.

/proc/sys/vm/overcommit_ratio (since Linux 2.6.0)
This writable file defines a percentage by which memory can be overcommit-
ted. The default value in the file is 50. See the description of
/proc/sys/vm/overcommit_memory.

/proc/sys/vm/panic_on_oom (since Linux 2.6.18)
This enables or disables a kernel panic in an out-of-memory situation.

If this file is set to the value 0, the kernel’s OOM-killer will kill some rogue
process. Usually, the OOM-killer is able to kill a rogue process and the sys-
tem will survive.

If this file is set to the value 1, then the kernel normally panics when out-of-
memory happens. However, if a process limits allocations to certain nodes us-
ing memory policies (mbind(2) MPOL_BIND) or cpusets (cpuset(7)) and
those nodes reach memory exhaustion status, one process may be killed by the
OOM-killer. No panic occurs in this case: because other nodes’ memory may
be free, this means the system as a whole may not have reached an out-of-
memory situation yet.

If this file is set to the value 2, the kernel always panics when an out-of-mem-
ory condition occurs.

The default value is 0. 1 and 2 are for failover of clustering. Select either ac-
cording to your policy of failover.

/proc/sys/vm/swappiness
The value in this file controls how aggressively the kernel will swap memory
pages. Higher values increase aggressiveness, lower values decrease aggres-
siveness. The default value is 60.

Linux man-pages 6.13 2024-05-02 3008

proc_sys_vm(5) File Formats Manual proc_sys_vm(5)

/proc/sys/vm/user_reserve_kbytes (since Linux 3.10)
Specifies an amount of memory (in KiB) to reserve for user processes. This is
intended to prevent a user from starting a single memory hogging process,
such that they cannot recover (kill the hog). The value in this file has an effect
only when /proc/sys/vm/overcommit_memory is set to 2 ("overcommit never"
mode). In this case, the system reserves an amount of memory that is the min-
imum of [3% of current process size, user_reserve_kbytes].

The default value in this file is the minimum of [3% of free pages, 128MiB]
expressed as KiB.

If the value in this file is set to zero, then a user will be allowed to allocate all
free memory with a single process (minus the amount reserved by
/proc/sys/vm/admin_reserve_kbytes). Any subsequent attempts to execute a
command will result in "fork: Cannot allocate memory".

Changing the value in this file takes effect whenever an application requests
memory.

/proc/sys/vm/unprivileged_userfaultfd (since Linux 5.2)
This (writable) file exposes a flag that controls whether unprivileged processes
are allowed to employ userfaultfd(2). If this file has the value 1, then unprivi-
leged processes may use userfaultfd(2). If this file has the value 0, then only
processes that have the CAP_SYS_PTRACE capability may employ user-
faultfd(2). The default value in this file is 1.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.13 2024-05-02 3009

proc_sysrq-trigger(5) File Formats Manual proc_sysrq-trigger(5)

NAME
/proc/sysrq-trigger - SysRq function

DESCRIPTION
/proc/sysrq-trigger (since Linux 2.4.21)

Writing a character to this file triggers the same SysRq function as typing
ALT-SysRq-<character> (see the description of /proc/sys/kernel/sysrq). This
file is normally writable only by root. For further details see the Linux kernel
source file Documentation/admin-guide/sysrq.rst (or Documentation/sysrq.txt
before Linux 4.10).

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-06-28 3010

proc_sysvipc(5) File Formats Manual proc_sysvipc(5)

NAME
/proc/sysvipc/ - System V IPC

DESCRIPTION
/proc/sysvipc/

Subdirectory containing the pseudo-files msg, sem and shm. These files list
the System V Interprocess Communication (IPC) objects (respectively: mes-
sage queues, semaphores, and shared memory) that currently exist on the sys-
tem, providing similar information to that available via ipcs(1)These files have
headers and are formatted (one IPC object per line) for easy understanding.
sysvipc(7) provides further background on the information shown by these
files.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 3011

proc_tid_children(5) File Formats Manual proc_tid_children(5)

NAME
/proc/tid/children - child tasks

DESCRIPTION
/proc/ tid /children (since Linux 3.5)

A space-separated list of child tasks of this task. Each child task is repre-
sented by its TID.

This option is intended for use by the checkpoint-restore (CRIU) system, and
reliably provides a list of children only if all of the child processes are stopped
or frozen. It does not work properly if children of the target task exit while the
file is being read! Exiting children may cause non-exiting children to be omit-
ted from the list. This makes this interface even more unreliable than classic
PID-based approaches if the inspected task and its children aren’t frozen, and
most code should probably not use this interface.

Until Linux 4.2, the presence of this file was governed by the CON-
FIG_CHECKPOINT_RESTORE kernel configuration option. Since Linux
4.2, it is governed by the CONFIG_PROC_CHILDREN option.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 3012

proc_timer_list(5) File Formats Manual proc_timer_list(5)

NAME
/proc/timer_list - pending timers

DESCRIPTION
/proc/timer_list (since Linux 2.6.21)

This read-only file exposes a list of all currently pending (high-resolution)
timers, all clock-event sources, and their parameters in a human-readable
form.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 3013

proc_timer_stats(5) File Formats Manual proc_timer_stats(5)

NAME
/proc/timer_stats - timer statistics

DESCRIPTION
/proc/timer_stats (from Linux 2.6.21 until Linux 4.10)

This is a debugging facility to make timer (ab)use in a Linux system visible to
kernel and user-space developers. It can be used by kernel and user-space de-
velopers to verify that their code does not make undue use of timers. The goal
is to avoid unnecessary wakeups, thereby optimizing power consumption.

If enabled in the kernel (CONFIG_TIMER_STATS), but not used, it has al-
most zero run-time overhead and a relatively small data-structure overhead.
Even if collection is enabled at run time, overhead is low: all the locking is
per-CPU and lookup is hashed.

The /proc/timer_stats file is used both to control sampling facility and to read
out the sampled information.

The timer_stats functionality is inactive on bootup. A sampling period can be
started using the following command:

echo 1 > /proc/timer_stats

The following command stops a sampling period:

echo 0 > /proc/timer_stats

The statistics can be retrieved by:

$ cat /proc/timer_stats

While sampling is enabled, each readout from /proc/timer_stats will see newly
updated statistics. Once sampling is disabled, the sampled information is kept
until a new sample period is started. This allows multiple readouts.

Sample output from /proc/timer_stats:

$ cat /proc/timer_stats
Timer Stats Version: v0.3
Sample period: 1.764 s
Collection: active

255, 0 swapper/3 hrtimer_start_range_ns (tick_sched_timer)
71, 0 swapper/1 hrtimer_start_range_ns (tick_sched_timer)
58, 0 swapper/0 hrtimer_start_range_ns (tick_sched_timer)

4, 1694 gnome-shell mod_delayed_work_on (delayed_work_timer_fn)
17, 7 rcu_sched rcu_gp_kthread (process_timeout)

...
1, 4911 kworker/u16:0 mod_delayed_work_on (delayed_work_timer_fn)

1D, 2522 kworker/0:0 queue_delayed_work_on (delayed_work_timer_fn)
1029 total events, 583.333 events/sec

The output columns are:

[1] a count of the number of events, optionally (since Linux 2.6.23) fol-
lowed by the letter 'D' if this is a deferrable timer;

Linux man-pages 6.13 2024-05-02 3014

proc_timer_stats(5) File Formats Manual proc_timer_stats(5)

[2] the PID of the process that initialized the timer;

[3] the name of the process that initialized the timer;

[4] the function where the timer was initialized; and (in parentheses) the
callback function that is associated with the timer.

During the Linux 4.11 development cycle, this file was removed because of
security concerns, as it exposes information across namespaces. Furthermore,
it is possible to obtain the same information via in-kernel tracing facilities
such as ftrace.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 3015

proc_tty(5) File Formats Manual proc_tty(5)

NAME
/proc/tty/ - tty

DESCRIPTION
/proc/tty/

Subdirectory containing the pseudo-files and subdirectories for tty drivers and
line disciplines.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 3016

proc_uptime(5) File Formats Manual proc_uptime(5)

NAME
/proc/uptime - system uptime

DESCRIPTION
/proc/uptime

This file contains two numbers (values in seconds): the uptime of the system
(including time spent in suspend) and the amount of time spent in the idle
process.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 3017

proc_version(5) File Formats Manual proc_version(5)

NAME
/proc/version - kernel version

DESCRIPTION
/proc/version

This string identifies the kernel version that is currently running. It includes
the contents of /proc/sys/kernel/ostype, /proc/sys/kernel/osrelease, and
/proc/sys/kernel/version. For example:

Linux version 1.0.9 (quinlan@phaze) #1 Sat May 14 01:51:54 EDT 1994

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 3018

proc_vmstat(5) File Formats Manual proc_vmstat(5)

NAME
/proc/vmstat - virtual memory statistics

DESCRIPTION
/proc/vmstat (since Linux 2.6.0)

This file displays various virtual memory statistics. Each line of this file con-
tains a single name-value pair, delimited by white space. Some lines are
present only if the kernel was configured with suitable options. (In some
cases, the options required for particular files have changed across kernel ver-
sions, so they are not listed here. Details can be found by consulting the ker-
nel source code.) The following fields may be present:

nr_free_pages (since Linux 2.6.31)

nr_alloc_batch (since Linux 3.12)

nr_inactive_anon (since Linux 2.6.28)

nr_active_anon (since Linux 2.6.28)

nr_inactive_file (since Linux 2.6.28)

nr_active_file (since Linux 2.6.28)

nr_unevictable (since Linux 2.6.28)

nr_mlock (since Linux 2.6.28)

nr_anon_pages (since Linux 2.6.18)

nr_mapped (since Linux 2.6.0)

nr_file_pages (since Linux 2.6.18)

nr_dirty (since Linux 2.6.0)

nr_writeback (since Linux 2.6.0)

nr_slab_reclaimable (since Linux 2.6.19)

nr_slab_unreclaimable (since Linux 2.6.19)

nr_page_table_pages (since Linux 2.6.0)

nr_kernel_stack (since Linux 2.6.32)
Amount of memory allocated to kernel stacks.

nr_unstable (since Linux 2.6.0)

nr_bounce (since Linux 2.6.12)

nr_vmscan_write (since Linux 2.6.19)

nr_vmscan_immediate_reclaim (since Linux 3.2)

nr_writeback_temp (since Linux 2.6.26)

nr_isolated_anon (since Linux 2.6.32)

nr_isolated_file (since Linux 2.6.32)

nr_shmem (since Linux 2.6.32)
Pages used by shmem and tmpfs(5).

Linux man-pages 6.13 2024-05-02 3019

proc_vmstat(5) File Formats Manual proc_vmstat(5)

nr_dirtied (since Linux 2.6.37)

nr_written (since Linux 2.6.37)

nr_pages_scanned (since Linux 3.17)

numa_hit (since Linux 2.6.18)

numa_miss (since Linux 2.6.18)

numa_foreign (since Linux 2.6.18)

numa_interleave (since Linux 2.6.18)

numa_local (since Linux 2.6.18)

numa_other (since Linux 2.6.18)

workingset_refault (since Linux 3.15)

workingset_activate (since Linux 3.15)

workingset_nodereclaim (since Linux 3.15)

nr_anon_transparent_hugepages (since Linux 2.6.38)

nr_free_cma (since Linux 3.7)
Number of free CMA (Contiguous Memory Allocator) pages.

nr_dirty_threshold (since Linux 2.6.37)

nr_dirty_background_threshold (since Linux 2.6.37)

pgpgin (since Linux 2.6.0)

pgpgout (since Linux 2.6.0)

pswpin (since Linux 2.6.0)

pswpout (since Linux 2.6.0)

pgalloc_dma (since Linux 2.6.5)

pgalloc_dma32 (since Linux 2.6.16)

pgalloc_normal (since Linux 2.6.5)

pgalloc_high (since Linux 2.6.5)

pgalloc_movable (since Linux 2.6.23)

pgfree (since Linux 2.6.0)

pgactivate (since Linux 2.6.0)

pgdeactivate (since Linux 2.6.0)

pgfault (since Linux 2.6.0)

pgmajfault (since Linux 2.6.0)

pgrefill_dma (since Linux 2.6.5)

pgrefill_dma32 (since Linux 2.6.16)

pgrefill_normal (since Linux 2.6.5)

Linux man-pages 6.13 2024-05-02 3020

proc_vmstat(5) File Formats Manual proc_vmstat(5)

pgrefill_high (since Linux 2.6.5)

pgrefill_movable (since Linux 2.6.23)

pgsteal_kswapd_dma (since Linux 3.4)

pgsteal_kswapd_dma32 (since Linux 3.4)

pgsteal_kswapd_normal (since Linux 3.4)

pgsteal_kswapd_high (since Linux 3.4)

pgsteal_kswapd_movable (since Linux 3.4)

pgsteal_direct_dma

pgsteal_direct_dma32 (since Linux 3.4)

pgsteal_direct_normal (since Linux 3.4)

pgsteal_direct_high (since Linux 3.4)

pgsteal_direct_movable (since Linux 2.6.23)

pgscan_kswapd_dma

pgscan_kswapd_dma32 (since Linux 2.6.16)

pgscan_kswapd_normal (since Linux 2.6.5)

pgscan_kswapd_high

pgscan_kswapd_movable (since Linux 2.6.23)

pgscan_direct_dma

pgscan_direct_dma32 (since Linux 2.6.16)

pgscan_direct_normal

pgscan_direct_high

pgscan_direct_movable (since Linux 2.6.23)

pgscan_direct_throttle (since Linux 3.6)

zone_reclaim_failed (since linux 2.6.31)

pginodesteal (since linux 2.6.0)

slabs_scanned (since linux 2.6.5)

kswapd_inodesteal (since linux 2.6.0)

kswapd_low_wmark_hit_quickly (since Linux 2.6.33)

kswapd_high_wmark_hit_quickly (since Linux 2.6.33)

pageoutrun (since Linux 2.6.0)

allocstall (since Linux 2.6.0)

pgrotated (since Linux 2.6.0)

drop_pagecache (since Linux 3.15)

Linux man-pages 6.13 2024-05-02 3021

proc_vmstat(5) File Formats Manual proc_vmstat(5)

drop_slab (since Linux 3.15)

numa_pte_updates (since Linux 3.8)

numa_huge_pte_updates (since Linux 3.13)

numa_hint_faults (since Linux 3.8)

numa_hint_faults_local (since Linux 3.8)

numa_pages_migrated (since Linux 3.8)

pgmigrate_success (since Linux 3.8)

pgmigrate_fail (since Linux 3.8)

compact_migrate_scanned (since Linux 3.8)

compact_free_scanned (since Linux 3.8)

compact_isolated (since Linux 3.8)

compact_stall (since Linux 2.6.35)
See the kernel source file Documentation/admin-guide/mm/tran-
shuge.rst.

compact_fail (since Linux 2.6.35)
See the kernel source file Documentation/admin-guide/mm/tran-
shuge.rst.

compact_success (since Linux 2.6.35)
See the kernel source file Documentation/admin-guide/mm/tran-
shuge.rst.

htlb_buddy_alloc_success (since Linux 2.6.26)

htlb_buddy_alloc_fail (since Linux 2.6.26)

unevictable_pgs_culled (since Linux 2.6.28)

unevictable_pgs_scanned (since Linux 2.6.28)

unevictable_pgs_rescued (since Linux 2.6.28)

unevictable_pgs_mlocked (since Linux 2.6.28)

unevictable_pgs_munlocked (since Linux 2.6.28)

unevictable_pgs_cleared (since Linux 2.6.28)

unevictable_pgs_stranded (since Linux 2.6.28)

thp_fault_alloc (since Linux 2.6.39)
See the kernel source file Documentation/admin-guide/mm/tran-
shuge.rst.

thp_fault_fallback (since Linux 2.6.39)
See the kernel source file Documentation/admin-guide/mm/tran-
shuge.rst.

thp_collapse_alloc (since Linux 2.6.39)
See the kernel source file Documentation/admin-guide/mm/tran-
shuge.rst.

Linux man-pages 6.13 2024-05-02 3022

proc_vmstat(5) File Formats Manual proc_vmstat(5)

thp_collapse_alloc_failed (since Linux 2.6.39)
See the kernel source file Documentation/admin-guide/mm/tran-
shuge.rst.

thp_split (since Linux 2.6.39)
See the kernel source file Documentation/admin-guide/mm/tran-
shuge.rst.

thp_zero_page_alloc (since Linux 3.8)
See the kernel source file Documentation/admin-guide/mm/tran-
shuge.rst.

thp_zero_page_alloc_failed (since Linux 3.8)
See the kernel source file Documentation/admin-guide/mm/tran-
shuge.rst.

balloon_inflate (since Linux 3.18)

balloon_deflate (since Linux 3.18)

balloon_migrate (since Linux 3.18)

nr_tlb_remote_flush (since Linux 3.12)

nr_tlb_remote_flush_received (since Linux 3.12)

nr_tlb_local_flush_all (since Linux 3.12)

nr_tlb_local_flush_one (since Linux 3.12)

vmacache_find_calls (since Linux 3.16)

vmacache_find_hits (since Linux 3.16)

vmacache_full_flushes (since Linux 3.19)

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 3023

proc_zoneinfo(5) File Formats Manual proc_zoneinfo(5)

NAME
/proc/zoneinfo - memory zones

DESCRIPTION
/proc/zoneinfo (since Linux 2.6.13)

This file displays information about memory zones. This is useful for analyz-
ing virtual memory behavior.

SEE ALSO
proc(5)

Linux man-pages 6.13 2024-05-02 3024

protocols(5) File Formats Manual protocols(5)

NAME
protocols - protocols definition file

DESCRIPTION
This file is a plain ASCII file, describing the various DARPA internet protocols that
are available from the TCP/IP subsystem. It should be consulted instead of using the
numbers in the ARPA include files, or, even worse, just guessing them. These num-
bers will occur in the protocol field of any IP header.

Keep this file untouched since changes would result in incorrect IP packages. Proto-
col numbers and names are specified by the IANA (Internet Assigned Numbers Au-
thority).

Each line is of the following format:

protocol number aliases . . .

where the fields are delimited by spaces or tabs. Empty lines are ignored. If a line
contains a hash mark (#), the hash mark and the part of the line following it are ig-
nored.

The field descriptions are:

protocol
the native name for the protocol. For example ip, tcp, or udp.

number
the official number for this protocol as it will appear within the IP header.

aliases
optional aliases for the protocol.

This file might be distributed over a network using a network-wide naming service
like Yellow Pages/NIS or BIND/Hesiod.

FILES
/etc/protocols

The protocols definition file.

SEE ALSO
getprotoent(3)

〈http://www.iana.org/assignments/protocol-numbers〉

Linux man-pages 6.13 2024-05-02 3025

repertoiremap(5) File Formats Manual repertoiremap(5)

NAME
repertoiremap - map symbolic character names to Unicode code points

DESCRIPTION
A repertoire map defines mappings between symbolic character names (mnemonics)
and Unicode code points when compiling a locale with localedef(1). Using a reper-
toire map is optional, it is needed only when symbolic names are used instead of now
preferred Unicode code points.

Syntax
The repertoiremap file starts with a header that may consist of the following key-
words:

comment_char
is followed by a character that will be used as the comment character for the
rest of the file. It defaults to the number sign (#).

escape_char
is followed by a character that should be used as the escape character for the
rest of the file to mark characters that should be interpreted in a special way. It
defaults to the backslash (\).

The mapping section starts with the keyword CHARIDS in the first column.

The mapping lines have the following form:

<symbolic-name> <code-point> comment
This defines exactly one mapping, comment being optional.

The mapping section ends with the string END CHARIDS.

FILES
/usr/share/i18n/repertoiremaps

Usual default repertoire map path.

STANDARDS
POSIX.2.

NOTES
Repertoire maps are deprecated in favor of Unicode code points.

EXAMPLES
A mnemonic for the Euro sign can be defined as follows:

<Eu> <U20AC> EURO SIGN

SEE ALSO
locale(1), localedef(1), charmap(5), locale(5)

Linux man-pages 6.13 2024-06-15 3026

resolv.conf (5) File Formats Manual resolv.conf (5)

NAME
resolv.conf - resolver configuration file

SYNOPSIS
/etc/resolv.conf

DESCRIPTION
The resolver is a set of routines in the C library that provide access to the Internet Do-
main Name System (DNS). The resolver configuration file contains information that
is read by the resolver routines the first time they are invoked by a process. The file is
designed to be human readable and contains a list of keywords with values that pro-
vide various types of resolver information. The configuration file is considered a
trusted source of DNS information; see the trust-ad option below for details.

If this file does not exist, only the name server on the local machine will be queried,
and the search list contains the local domain name determined from the hostname.

The different configuration options are:

nameserver Name server IP address
Internet address of a name server that the resolver should query, either an IPv4
address (in dot notation), or an IPv6 address in colon (and possibly dot) nota-
tion as per RFC 2373. Up to MAXNS (currently 3, see <resolv.h>) name
servers may be listed, one per keyword. If there are multiple servers, the re-
solver library queries them in the order listed. If no nameserver entries are
present, the default is to use the name server on the local machine. (The algo-
rithm used is to try a name server, and if the query times out, try the next, until
out of name servers, then repeat trying all the name servers until a maximum
number of retries are made.)

search Search list for host-name lookup.
By default, the search list contains one entry, the local domain name. It is de-
termined from the local hostname returned by gethostname(2); the local do-
main name is taken to be everything after the first '.'. Finally, if the hostname
does not contain a '.', the root domain is assumed as the local domain name.

This may be changed by listing the desired domain search path following the
search keyword with spaces or tabs separating the names. Resolver queries
having fewer than ndots dots (default is 1) in them will be attempted using
each component of the search path in turn until a match is found. For environ-
ments with multiple subdomains please read options ndots:n below to avoid
man-in-the-middle attacks and unnecessary traffic for the root-dns-servers.
Note that this process may be slow and will generate a lot of network traffic if
the servers for the listed domains are not local, and that queries will time out if
no server is available for one of the domains.

If there are multiple search directives, only the search list from the last in-
stance is used.

In glibc 2.25 and earlier, the search list is limited to six domains with a total of
256 characters. Since glibc 2.26, the search list is unlimited.

The domain directive is an obsolete name for the search directive that handles
one search list entry only.

4th Berkeley Distribution 2024-05-02 3027

resolv.conf (5) File Formats Manual resolv.conf (5)

sortlist
This option allows addresses returned by gethostbyname(3) to be sorted. A
sortlist is specified by IP-address-netmask pairs. The netmask is optional and
defaults to the natural netmask of the net. The IP address and optional net-
work pairs are separated by slashes. Up to 10 pairs may be specified. Here is
an example:

sortlist 130.155.160.0/255.255.240.0 130.155.0.0

options
Options allows certain internal resolver variables to be modified. The syntax
is

options option ...

where option is one of the following:

debug
Sets RES_DEBUG in _res.options (effective only if glibc was built
with debug support; see resolver(3)).

ndots:n
Sets a threshold for the number of dots which must appear in a name
given to res_query(3) (see resolver(3)) before an initial absolute query
will be made. The default for n is 1, meaning that if there are any dots
in a name, the name will be tried first as an absolute name before any
search list elements are appended to it. The value for this option is
silently capped to 15.

timeout:n
Sets the amount of time the resolver will wait for a response from a re-
mote name server before retrying the query via a different name server.
This may not be the total time taken by any resolver API call and there
is no guarantee that a single resolver API call maps to a single timeout.
Measured in seconds, the default is RES_TIMEOUT (currently 5, see
<resolv.h>). The value for this option is silently capped to 30.

attempts:n
Sets the number of times the resolver will send a query to its name
servers before giving up and returning an error to the calling applica-
tion. The default is RES_DFLRETRY (currently 2, see <resolv.h>).
The value for this option is silently capped to 5.

rotate
Sets RES_ROTATE in _res.options, which causes round-robin selec-
tion of name servers from among those listed. This has the effect of
spreading the query load among all listed servers, rather than having all
clients try the first listed server first every time.

no-aaaa (since glibc 2.36)
Sets RES_NOAAAA in _res.options, which suppresses AAAA
queries made by the stub resolver, including AAAA lookups triggered
by NSS-based interfaces such as getaddrinfo(3). Only DNS lookups
are affected: IPv6 data in hosts(5) is still used, getaddrinfo(3) with
AI_PASSIVE will still produce IPv6 addresses, and configured IPv6

4th Berkeley Distribution 2024-05-02 3028

resolv.conf (5) File Formats Manual resolv.conf (5)

name servers are still used. To produce correct Name Error (NXDO-
MAIN) results, AAAA queries are translated to A queries. This option
is intended preliminary for diagnostic purposes, to rule out that AAAA
DNS queries have adverse impact. It is incompatible with EDNS0 us-
age and DNSSEC validation by applications.

no-check-names
Sets RES_NOCHECKNAME in _res.options, which disables the
modern BIND checking of incoming hostnames and mail names for in-
valid characters such as underscore (_), non-ASCII, or control charac-
ters.

inet6 Sets RES_USE_INET6 in _res.options. This has the effect of trying
an AAAA query before an A query inside the gethostbyname(3) func-
tion, and of mapping IPv4 responses in IPv6 "tunneled form" if no
AAAA records are found but an A record set exists. Since glibc 2.25,
this option is deprecated; applications should use getaddrinfo(3), rather
than gethostbyname(3).

ip6-bytestring (since glibc 2.3.4 to glibc 2.24)
Sets RES_USEBSTRING in _res.options. This causes reverse IPv6
lookups to be made using the bit-label format described in RFC 2673;
if this option is not set (which is the default), then nibble format is
used. This option was removed in glibc 2.25, since it relied on a back-
ward-incompatible DNS extension that was never deployed on the In-
ternet.

ip6-dotint/no-ip6-dotint (glibc 2.3.4 to glibc 2.24)
Clear/set RES_NOIP6DOTINT in _res.options. When this option is
clear (ip6-dotint), reverse IPv6 lookups are made in the (deprecated)
ip6.int zone; when this option is set (no-ip6-dotint), reverse IPv6
lookups are made in the ip6.arpa zone by default. These options are
available up to glibc 2.24, where no-ip6-dotint is the default. Since
ip6-dotint support long ago ceased to be available on the Internet,
these options were removed in glibc 2.25.

edns0 (since glibc 2.6)
Sets RES_USE_EDNS0 in _res.options. This enables support for the
DNS extensions described in RFC 2671.

single-request (since glibc 2.10)
Sets RES_SNGLKUP in _res.options. By default, glibc performs
IPv4 and IPv6 lookups in parallel since glibc 2.9. Some appliance
DNS servers cannot handle these queries properly and make the re-
quests time out. This option disables the behavior and makes glibc
perform the IPv6 and IPv4 requests sequentially (at the cost of some
slowdown of the resolving process).

single-request-reopen (since glibc 2.9)
Sets RES_SNGLKUPREOP in _res.options. The resolver uses the
same socket for the A and AAAA requests. Some hardware mistak-
enly sends back only one reply. When that happens the client system
will sit and wait for the second reply. Turning this option on changes

4th Berkeley Distribution 2024-05-02 3029

resolv.conf (5) File Formats Manual resolv.conf (5)

this behavior so that if two requests from the same port are not handled
correctly it will close the socket and open a new one before sending the
second request.

no-tld-query (since glibc 2.14)
Sets RES_NOTLDQUERY in _res.options. This option causes
res_nsearch() to not attempt to resolve an unqualified name as if it
were a top level domain (TLD). This option can cause problems if the
site has ‘‘localhost’’ as a TLD rather than having localhost on one or
more elements of the search list. This option has no effect if neither
RES_DEFNAMES or RES_DNSRCH is set.

use-vc (since glibc 2.14)
Sets RES_USEVC in _res.options. This option forces the use of TCP
for DNS resolutions.

no-reload (since glibc 2.26)
Sets RES_NORELOAD in _res.options. This option disables auto-
matic reloading of a changed configuration file.

trust-ad (since glibc 2.31)
Sets RES_TRUSTAD in _res.options. This option controls the AD bit
behavior of the stub resolver. If a validating resolver sets the AD bit in
a response, it indicates that the data in the response was verified ac-
cording to the DNSSEC protocol. In order to rely on the AD bit, the
local system has to trust both the DNSSEC-validating resolver and the
network path to it, which is why an explicit opt-in is required. If the
trust-ad option is active, the stub resolver sets the AD bit in outgoing
DNS queries (to enable AD bit support), and preserves the AD bit in
responses. Without this option, the AD bit is not set in queries, and it
is always removed from responses before they are returned to the ap-
plication. This means that applications can trust the AD bit in re-
sponses if the trust-ad option has been set correctly.

In glibc 2.30 and earlier, the AD is not set automatically in queries, and
is passed through unchanged to applications in responses.

The search keyword of a system’s resolv.conf file can be overridden on a per-process
basis by setting the environment variable LOCALDOMAIN to a space-separated list
of search domains.

The options keyword of a system’s resolv.conf file can be amended on a per-process
basis by setting the environment variable RES_OPTIONS to a space-separated list of
resolver options as explained above under options.

The keyword and value must appear on a single line, and the keyword (e.g., name-
server) must start the line. The value follows the keyword, separated by white space.

Lines that contain a semicolon (;) or hash character (#) in the first column are treated
as comments.

FILES
/etc/resolv.conf , <resolv.h>

4th Berkeley Distribution 2024-05-02 3030

resolv.conf (5) File Formats Manual resolv.conf (5)

SEE ALSO
gethostbyname(3), resolver(3), host.conf(5), hosts(5), nsswitch.conf(5), hostname(7),
named(8)

Name Server Operations Guide for BIND

4th Berkeley Distribution 2024-05-02 3031

rpc(5) File Formats Manual rpc(5)

NAME
rpc - RPC program number data base

SYNOPSIS
/etc/rpc

DESCRIPTION
The rpc file contains user readable names that can be used in place of RPC program
numbers. Each line has the following information:

• name of server for the RPC program
• RPC program number
• aliases

Items are separated by any number of blanks and/or tab characters. A '#' indicates the
beginning of a comment; characters from the '#' to the end of the line are not inter-
preted by routines which search the file.

Here is an example of the /etc/rpc file from the Sun RPC Source distribution.

#
rpc 88/08/01 4.0 RPCSRC; from 1.12 88/02/07 SMI
#
portmapper 100000 portmap sunrpc
rstatd 100001 rstat rstat_svc rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007
walld 100008 rwall shutdown
yppasswdd 100009 yppasswd
etherstatd 100010 etherstat
rquotad 100011 rquotaprog quota rquota
sprayd 100012 spray
3270_mapper 100013
rje_mapper 100014
selection_svc 100015 selnsvc
database_svc 100016
rexd 100017 rex
alis 100018
sched 100019
llockmgr 100020
nlockmgr 100021
x25.inr 100022
statmon 100023
status 100024
bootparam 100026
ypupdated 100028 ypupdate
keyserv 100029 keyserver
tfsd 100037
nsed 100038

Linux man-pages 6.13 2024-05-02 3032

rpc(5) File Formats Manual rpc(5)

nsemntd 100039

FILES
/etc/rpc

RPC program number data base

SEE ALSO
getrpcent(3)

Linux man-pages 6.13 2024-05-02 3033

securetty(5) File Formats Manual securetty(5)

NAME
securetty - list of terminals on which root is allowed to login

DESCRIPTION
The file /etc/securetty contains the names of terminals (one per line, without leading
/dev/) which are considered secure for the transmission of certain authentication to-
kens.

It is used by (some versions of) login(1) to restrict the terminals on which root is al-
lowed to login. See login.defs(5) if you use the shadow suite.

On PAM enabled systems, it is used for the same purpose by pam_securetty(8) to re-
strict the terminals on which empty passwords are accepted.

FILES
/etc/securetty

SEE ALSO
login(1), login.defs(5), pam_securetty(8)

Linux man-pages 6.13 2024-05-02 3034

services(5) File Formats Manual services(5)

NAME
services - Internet network services list

DESCRIPTION
services is a plain ASCII file providing a mapping between human-friendly textual
names for internet services, and their underlying assigned port numbers and protocol
types. Every networking program should look into this file to get the port number
(and protocol) for its service. The C library routines getservent(3), getservbyname(3),
getservbyport(3), setservent(3), and endservent(3) support querying this file from pro-
grams.

Port numbers are assigned by the IANA (Internet Assigned Numbers Authority), and
their current policy is to assign both TCP and UDP protocols when assigning a port
number. Therefore, most entries will have two entries, even for TCP-only services.

Port numbers below 1024 (so-called "low numbered" ports) can be bound to only by
root (see bind(2), tcp(7), and udp(7)). This is so clients connecting to low numbered
ports can trust that the service running on the port is the standard implementation, and
not a rogue service run by a user of the machine. Well-known port numbers specified
by the IANA are normally located in this root-only space.

The presence of an entry for a service in the services file does not necessarily mean
that the service is currently running on the machine. See inetd.conf (5) for the config-
uration of Internet services offered. Note that not all networking services are started
by inetd(8), and so won’t appear in inetd.conf (5)In particular, news (NNTP) and mail
(SMTP) servers are often initialized from the system boot scripts.

The location of the services file is defined by _PATH_SERVICES in <netdb.h>.
This is usually set to /etc/services.

Each line describes one service, and is of the form:

service-name port/protocol [aliases ...]

where:

service-name
is the friendly name the service is known by and looked up under. It is case
sensitive. Often, the client program is named after the service-name.

port is the port number (in decimal) to use for this service.

protocol
is the type of protocol to be used. This field should match an entry in the pro-
tocols(5) file. Typical values include tcp and udp.

aliases
is an optional space or tab separated list of other names for this service.
Again, the names are case sensitive.

Either spaces or tabs may be used to separate the fields.

Comments are started by the hash sign (#) and continue until the end of the line.
Blank lines are skipped.

The service-name should begin in the first column of the file, since leading spaces are
not stripped. service-names can be any printable characters excluding space and tab.
However, a conservative choice of characters should be used to minimize

Linux man-pages 6.13 2024-05-02 3035

services(5) File Formats Manual services(5)

compatibility problems. For example, a-z, 0-9, and hyphen (-) would seem a sensi-
ble choice.

Lines not matching this format should not be present in the file. (Currently, they are
silently skipped by getservent(3), getservbyname(3), and getservbyport(3). However,
this behavior should not be relied on.)

This file might be distributed over a network using a network-wide naming service
like Yellow Pages/NIS or BIND/Hesiod.

A sample services file might look like this:

netstat 15/tcp
qotd 17/tcp quote
msp 18/tcp # message send protocol
msp 18/udp # message send protocol
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp 21/tcp
22 - unassigned
telnet 23/tcp

FILES
/etc/services

The Internet network services list

<netdb.h>
Definition of _PATH_SERVICES

SEE ALSO
listen(2), endservent(3), getservbyname(3), getservbyport(3), getservent(3), setser-
vent(3), inetd.conf (5), protocols(5), inetd(8)

Assigned Numbers RFC, most recently RFC 1700, (AKA STD0002).

Linux man-pages 6.13 2024-05-02 3036

shells(5) File Formats Manual shells(5)

NAME
shells - pathnames of valid login shells

DESCRIPTION
/etc/shells is a text file which contains the full pathnames of valid login shells. This
file is consulted by chsh(1) and available to be queried by other programs.

Be aware that there are programs which consult this file to find out if a user is a nor-
mal user; for example, FTP daemons traditionally disallow access to users with shells
not included in this file.

FILES
/etc/shells

EXAMPLES
/etc/shells may contain the following paths:

/bin/sh
/bin/bash
/bin/csh

SEE ALSO
chsh(1), getusershell(3), pam_shells(8)

Linux man-pages 6.13 2024-05-02 3037

slabinfo(5) File Formats Manual slabinfo(5)

NAME
slabinfo - kernel slab allocator statistics

SYNOPSIS
cat /proc/slabinfo

DESCRIPTION
Frequently used objects in the Linux kernel (buffer heads, inodes, dentries, etc.) have
their own cache. The file /proc/slabinfo gives statistics on these caches. The follow-
ing (edited) output shows an example of the contents of this file:

$ sudo cat /proc/slabinfo
slabinfo - version: 2.1
name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ...
sigqueue 100 100 160 25 1 : tunables 0 0 0 : slabdata 4 4 0
sighand_cache 355 405 2112 15 8 : tunables 0 0 0 : slabdata 27 27 0
kmalloc-8192 96 96 8192 4 8 : tunables 0 0 0 : slabdata 24 24 0
...

The first line of output includes a version number, which allows an application that is
reading the file to handle changes in the file format. (See VERSIONS, below.) The
next line lists the names of the columns in the remaining lines.

Each of the remaining lines displays information about a specified cache. Following
the cache name, the output shown in each line shows three components for each
cache:

• statistics

• tunables

• slabdata

The statistics are as follows:

active_objs
The number of objects that are currently active (i.e., in use).

num_objs
The total number of allocated objects (i.e., objects that are both in use and not
in use).

objsize
The size of objects in this slab, in bytes.

objperslab
The number of objects stored in each slab.

pagesperslab
The number of pages allocated for each slab.

The tunables entries in each line show tunable parameters for the corresponding
cache. When using the default SLUB allocator, there are no tunables, the
/proc/slabinfo file is not writable, and the value 0 is shown in these fields. When us-
ing the older SLAB allocator, the tunables for a particular cache can be set by writing
lines of the following form to /proc/slabinfo:

echo 'name limit batchcount sharedfactor' > /proc/slabinfo

Linux man-pages 6.13 2024-05-02 3038

slabinfo(5) File Formats Manual slabinfo(5)

Here, name is the cache name, and limit, batchcount, and sharedfactor are integers
defining new values for the corresponding tunables. The limit value should be a posi-
tive value, batchcount should be a positive value that is less than or equal to limit, and
sharedfactor should be nonnegative. If any of the specified values is invalid, the
cache settings are left unchanged.

The tunables entries in each line contain the following fields:

limit The maximum number of objects that will be cached.

batchcount
On SMP systems, this specifies the number of objects to transfer at one time
when refilling the available object list.

sharedfactor
[To be documented]

The slabdata entries in each line contain the following fields:

active_slabs
The number of active slabs.

nums_slabs
The total number of slabs.

sharedavail
[To be documented]

Note that because of object alignment and slab cache overhead, objects are not nor-
mally packed tightly into pages. Pages with even one in-use object are considered in-
use and cannot be freed.

Kernels configured with CONFIG_DEBUG_SLAB will also have additional statis-
tics fields in each line, and the first line of the file will contain the string "(statistics)".
The statistics field include : the high water mark of active objects; the number of times
objects have been allocated; the number of times the cache has grown (new pages
added to this cache); the number of times the cache has been reaped (unused pages re-
moved from this cache); and the number of times there was an error allocating new
pages to this cache.

VERSIONS
The /proc/slabinfo file first appeared in Linux 2.1.23. The file is versioned, and over
time there have been a number of versions with different layouts:

1.0 Present throughout the Linux 2.2.x kernel series.

1.1 Present in the Linux 2.4.x kernel series.

1.2 A format that was briefly present in the Linux 2.5 development series.

2.0 Present in Linux 2.6.x kernels up to and including Linux 2.6.9.

2.1 The current format, which first appeared in Linux 2.6.10.

NOTES
Only root can read and (if the kernel was configured with CONFIG_SLAB) write the
/proc/slabinfo file.

The total amount of memory allocated to the SLAB/SLUB cache is shown in the Slab

Linux man-pages 6.13 2024-05-02 3039

slabinfo(5) File Formats Manual slabinfo(5)

field of /proc/meminfo.

SEE ALSO
slabtop(1)

The kernel source file Documentation/vm/slub.txt and tools/vm/slabinfo.c.

Linux man-pages 6.13 2024-05-02 3040

sysfs(5) File Formats Manual sysfs(5)

NAME
sysfs - a filesystem for exporting kernel objects

DESCRIPTION
The sysfs filesystem is a pseudo-filesystem which provides an interface to kernel data
structures. (More precisely, the files and directories in sysfs provide a view of the
kobject structures defined internally within the kernel.) The files under sysfs provide
information about devices, kernel modules, filesystems, and other kernel components.

The sysfs filesystem is commonly mounted at /sys. Typically, it is mounted automati-
cally by the system, but it can also be mounted manually using a command such as:

mount -t sysfs sysfs /sys

Many of the files in the sysfs filesystem are read-only, but some files are writable, al-
lowing kernel variables to be changed. To avoid redundancy, symbolic links are heav-
ily used to connect entries across the filesystem tree.

Files and directories
The following list describes some of the files and directories under the /sys hierarchy.

/sys/block
This subdirectory contains one symbolic link for each block device that has
been discovered on the system. The symbolic links point to corresponding di-
rectories under /sys/devices.

/sys/bus
This directory contains one subdirectory for each of the bus types in the ker-
nel. Inside each of these directories are two subdirectories:

devices
This subdirectory contains symbolic links to entries in /sys/devices that
correspond to the devices discovered on this bus.

drivers
This subdirectory contains one subdirectory for each device driver that
is loaded on this bus.

/sys/class
This subdirectory contains a single layer of further subdirectories for each of
the device classes that have been registered on the system (e.g., terminals, net-
work devices, block devices, graphics devices, sound devices, and so on). In-
side each of these subdirectories are symbolic links for each of the devices in
this class. These symbolic links refer to entries in the /sys/devices directory.

/sys/class/net
Each of the entries in this directory is a symbolic link representing one of the
real or virtual networking devices that are visible in the network namespace of
the process that is accessing the directory. Each of these symbolic links refers
to entries in the /sys/devices directory.

/sys/dev
This directory contains two subdirectories block/ and char/ , corresponding,
respectively, to the block and character devices on the system. Inside each of
these subdirectories are symbolic links with names of the form major-
ID:minor-ID, where the ID values correspond to the major and minor ID of a

Linux man-pages 6.13 2024-06-15 3041

sysfs(5) File Formats Manual sysfs(5)

specific device. Each symbolic link points to the sysfs directory for a device.
The symbolic links inside /sys/dev thus provide an easy way to look up the
sysfs interface using the device IDs returned by a call to stat(2) (or similar).

The following shell session shows an example from /sys/dev:

$ stat -c "%t %T" /dev/null
1 3
$ readlink /sys/dev/char/1\:3
../../devices/virtual/mem/null
$ ls -Fd /sys/devices/virtual/mem/null
/sys/devices/virtual/mem/null/
$ ls -d1 /sys/devices/virtual/mem/null/*
/sys/devices/virtual/mem/null/dev
/sys/devices/virtual/mem/null/power/
/sys/devices/virtual/mem/null/subsystem@
/sys/devices/virtual/mem/null/uevent

/sys/devices
This is a directory that contains a filesystem representation of the kernel de-
vice tree, which is a hierarchy of device structures within the kernel.

/sys/firmware
This subdirectory contains interfaces for viewing and manipulating firmware-
specific objects and attributes.

/sys/fs
This directory contains subdirectories for some filesystems. A filesystem will
have a subdirectory here only if it chose to explicitly create the subdirectory.

/sys/fs/cgroup
This directory conventionally is used as a mount point for a tmpfs(5) filesys-
tem containing mount points for cgroups(7) filesystems.

/sys/fs/smackfs
The directory contains configuration files for the SMACK LSM. See the ker-
nel source file Documentation/admin-guide/LSM/Smack.rst.

/sys/hypervisor
[To be documented]

/sys/kernel
This subdirectory contains various files and subdirectories that provide infor-
mation about the running kernel.

/sys/kernel/cgroup/
For information about the files in this directory, see cgroups(7).

/sys/kernel/debug/tracing
Mount point for the tracefs filesystem used by the kernel’s ftrace facility.
(For information on ftrace, see the kernel source file Documenta-
tion/trace/ftrace.txt.)

/sys/kernel/mm
This subdirectory contains various files and subdirectories that provide infor-
mation about the kernel’s memory management subsystem.

Linux man-pages 6.13 2024-06-15 3042

sysfs(5) File Formats Manual sysfs(5)

/sys/kernel/mm/hugepages
This subdirectory contains one subdirectory for each of the huge page sizes
that the system supports. The subdirectory name indicates the huge page size
(e.g., hugepages-2048kB). Within each of these subdirectories is a set of files
that can be used to view and (in some cases) change settings associated with
that huge page size. For further information, see the kernel source file Docu-
mentation/admin-guide/mm/hugetlbpage.rst.

/sys/module
This subdirectory contains one subdirectory for each module that is loaded
into the kernel. The name of each directory is the name of the module. In
each of the subdirectories, there may be following files:

coresize
[to be documented]

initsize
[to be documented]

initstate
[to be documented]

refcnt [to be documented]

srcversion
[to be documented]

taint [to be documented]

uevent
[to be documented]

version
[to be documented]

In each of the subdirectories, there may be following subdirectories:

drivers
[To be documented]

holders
[To be documented]

notes [To be documented]

parameters
This directory contains one file for each module parameter, with each
file containing the value of the corresponding parameter. Some of
these files are writable, allowing the

sections
This subdirectories contains files with information about module sec-
tions. This information is mainly used for debugging.

[To be documented]

/sys/power
[To be documented]

Linux man-pages 6.13 2024-06-15 3043

sysfs(5) File Formats Manual sysfs(5)

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

NOTES
This manual page is incomplete, possibly inaccurate, and is the kind of thing that
needs to be updated very often.

SEE ALSO
proc(5), udev(7)

P. Mochel. (2005). The sysfs filesystem. Proceedings of the 2005 Ottawa Linux Sym-
posium.

The kernel source file Documentation/filesystems/sysfs.txt and various other files in
Documentation/ABI and Documentation/*/sysfs.txt

Linux man-pages 6.13 2024-06-15 3044

termcap(5) File Formats Manual termcap(5)

NAME
termcap - terminal capability database

DESCRIPTION
The termcap database is an obsolete facility for describing the capabilities of char-
acter-cell terminals and printers. It is retained only for compatibility with old pro-
grams; new programs should use the terminfo(5) database and associated libraries.

/etc/termcap is an ASCII file (the database master) that lists the capabilities of many
different types of terminals. Programs can read termcap to find the particular escape
codes needed to control the visual attributes of the terminal actually in use. (Other as-
pects of the terminal are handled by stty(1)The termcap database is indexed on the
TERM environment variable.

Termcap entries must be defined on a single logical line, with '\' used to suppress the
newline. Fields are separated by ':'. The first field of each entry starts at the left-hand
margin, and contains a list of names for the terminal, separated by '|'.

The first subfield may (in BSD termcap entries from 4.3BSD and earlier) contain a
short name consisting of two characters. This short name may consist of capital or
small letters. In 4.4BSD, termcap entries this field is omitted.

The second subfield (first, in the newer 4.4BSD format) contains the name used by the
environment variable TERM. It should be spelled in lowercase letters. Selectable
hardware capabilities should be marked by appending a hyphen and a suffix to this
name. See below for an example. Usual suffixes are w (more than 80 characters
wide), am (automatic margins), nam (no automatic margins), and rv (reverse video
display). The third subfield contains a long and descriptive name for this termcap en-
try.

Subsequent fields contain the terminal capabilities; any continued capability lines
must be indented one tab from the left margin.

Although there is no defined order, it is suggested to write first boolean, then numeric,
and then string capabilities, each sorted alphabetically without looking at lower or up-
per spelling. Capabilities of similar functions can be written in one line.

Example for:

Head line: vt|vt101|DEC VT 101 terminal in 80 character mode:\
Head line: Vt|vt101-w|DEC VT 101 terminal in (wide) 132 character mode:\
Boolean: :bs:\
Numeric: :co#80:\
String: :sr=\E[H:\

Boolean capabilities
5i Printer will not echo on screen
am Automatic margins which means automatic line wrap
bs Control-H (8 dec.) performs a backspace
bw Backspace on left margin wraps to previous line and right margin
da Display retained above screen
db Display retained below screen
eo A space erases all characters at cursor position
es Escape sequences and special characters work in status line
gn Generic device

Linux man-pages 6.13 2024-06-15 3045

termcap(5) File Formats Manual termcap(5)

hc This is a hardcopy terminal
HC The cursor is hard to see when not on bottom line
hs Has a status line
hz Hazeltine bug, the terminal can not print tilde characters
in Terminal inserts null bytes, not spaces, to fill whitespace
km Terminal has a meta key
mi Cursor movement works in insert mode
ms Cursor movement works in standout/underline mode
NP No pad character
NR ti does not reverse te
nx No padding, must use XON/XOFF
os Terminal can overstrike
ul Terminal underlines although it can not overstrike
xb Beehive glitch, f1 sends ESCAPE, f2 sends ^C
xn Newline/wraparound glitch
xo Terminal uses xon/xoff protocol
xs Text typed over standout text will be displayed in standout
xt Teleray glitch, destructive tabs and odd standout mode

Numeric capabilities
co Number of columns
dB Delay in milliseconds for backspace on hardcopy terminals
dC Delay in milliseconds for carriage return on hardcopy terminals
dF Delay in milliseconds for form feed on hardcopy terminals
dN Delay in milliseconds for new line on hardcopy terminals
dT Delay in milliseconds for tabulator stop on hardcopy terminals
dV Delay in milliseconds for vertical tabulator stop on

hardcopy terminals
it Difference between tab positions
lh Height of soft labels
lm Lines of memory
lw Width of soft labels
li Number of lines
Nl Number of soft labels
pb Lowest baud rate which needs padding
sg Standout glitch
ug Underline glitch
vt virtual terminal number
ws Width of status line if different from screen width

String capabilities
!1 shifted save key
!2 shifted suspend key
!3 shifted undo key
#1 shifted help key
#2 shifted home key
#3 shifted input key
#4 shifted cursor left key
%0 redo key
%1 help key

Linux man-pages 6.13 2024-06-15 3046

termcap(5) File Formats Manual termcap(5)

%2 mark key
%3 message key
%4 move key
%5 next-object key
%6 open key
%7 options key
%8 previous-object key
%9 print key
%a shifted message key
%b shifted move key
%c shifted next key
%d shifted options key
%e shifted previous key
%f shifted print key
%g shifted redo key
%h shifted replace key
%i shifted cursor right key
%j shifted resume key
&0 shifted cancel key
&1 reference key
&2 refresh key
&3 replace key
&4 restart key
&5 resume key
&6 save key
&7 suspend key
&8 undo key
&9 shifted begin key
*0 shifted find key
*1 shifted command key
*2 shifted copy key
*3 shifted create key
*4 shifted delete character
*5 shifted delete line
*6 select key
*7 shifted end key
*8 shifted clear line key
*9 shifted exit key
@0 find key
@1 begin key
@2 cancel key
@3 close key
@4 command key
@5 copy key
@6 create key
@7 end key
@8 enter/send key
@9 exit key
al Insert one line

Linux man-pages 6.13 2024-06-15 3047

termcap(5) File Formats Manual termcap(5)

AL Insert %1 lines
ac Pairs of block graphic characters to map alternate character set
ae End alternative character set
as Start alternative character set for block graphic characters
bc Backspace, if not ^H
bl Audio bell
bt Move to previous tab stop
cb Clear from beginning of line to cursor
cc Dummy command character
cd Clear to end of screen
ce Clear to end of line
ch Move cursor horizontally only to column %1
cl Clear screen and cursor home
cm Cursor move to row %1 and column %2 (on screen)
CM Move cursor to row %1 and column %2 (in memory)
cr Carriage return
cs Scroll region from line %1 to %2
ct Clear tabs
cv Move cursor vertically only to line %1
dc Delete one character
DC Delete %1 characters
dl Delete one line
DL Delete %1 lines
dm Begin delete mode
do Cursor down one line
DO Cursor down #1 lines
ds Disable status line
eA Enable alternate character set
ec Erase %1 characters starting at cursor
ed End delete mode
ei End insert mode
ff Formfeed character on hardcopy terminals
fs Return character to its position before going to status line
F1 The string sent by function key f11
F2 The string sent by function key f12
F3 The string sent by function key f13
... ...
F9 The string sent by function key f19
FA The string sent by function key f20
FB The string sent by function key f21
... ...
FZ The string sent by function key f45
Fa The string sent by function key f46
Fb The string sent by function key f47
... ...
Fr The string sent by function key f63
hd Move cursor a half line down
ho Cursor home
hu Move cursor a half line up

Linux man-pages 6.13 2024-06-15 3048

termcap(5) File Formats Manual termcap(5)

i1 Initialization string 1 at login
i3 Initialization string 3 at login
is Initialization string 2 at login
ic Insert one character
IC Insert %1 characters
if Initialization file
im Begin insert mode
ip Insert pad time and needed special characters after insert
iP Initialization program
K1 upper left key on keypad
K2 center key on keypad
K3 upper right key on keypad
K4 bottom left key on keypad
K5 bottom right key on keypad
k0 Function key 0
k1 Function key 1
k2 Function key 2
k3 Function key 3
k4 Function key 4
k5 Function key 5
k6 Function key 6
k7 Function key 7
k8 Function key 8
k9 Function key 9
k; Function key 10
ka Clear all tabs key
kA Insert line key
kb Backspace key
kB Back tab stop
kC Clear screen key
kd Cursor down key
kD Key for delete character under cursor
ke turn keypad off
kE Key for clear to end of line
kF Key for scrolling forward/down
kh Cursor home key
kH Cursor hown down key
kI Insert character/Insert mode key
kl Cursor left key
kL Key for delete line
kM Key for exit insert mode
kN Key for next page
kP Key for previous page
kr Cursor right key
kR Key for scrolling backward/up
ks Turn keypad on
kS Clear to end of screen key
kt Clear this tab key
kT Set tab here key

Linux man-pages 6.13 2024-06-15 3049

termcap(5) File Formats Manual termcap(5)

ku Cursor up key
l0 Label of zeroth function key, if not f0
l1 Label of first function key, if not f1
l2 Label of first function key, if not f2
... ...
la Label of tenth function key, if not f10
le Cursor left one character
ll Move cursor to lower left corner
LE Cursor left %1 characters
LF Turn soft labels off
LO Turn soft labels on
mb Start blinking
MC Clear soft margins
md Start bold mode
me End all mode like so, us, mb, md, and mr
mh Start half bright mode
mk Dark mode (Characters invisible)
ML Set left soft margin
mm Put terminal in meta mode
mo Put terminal out of meta mode
mp Turn on protected attribute
mr Start reverse mode
MR Set right soft margin
nd Cursor right one character
nw Carriage return command
pc Padding character
pf Turn printer off
pk Program key %1 to send string %2 as if typed by user
pl Program key %1 to execute string %2 in local mode
pn Program soft label %1 to show string %2
po Turn the printer on
pO Turn the printer on for %1 (<256) bytes
ps Print screen contents on printer
px Program key %1 to send string %2 to computer
r1 Reset string 1 to set terminal to sane modes
r2 Reset string 2 to set terminal to sane modes
r3 Reset string 3 to set terminal to sane modes
RA disable automatic margins
rc Restore saved cursor position
rf Reset string filename
RF Request for input from terminal
RI Cursor right %1 characters
rp Repeat character %1 for %2 times
rP Padding after character sent in replace mode
rs Reset string
RX Turn off XON/XOFF flow control
sa Set %1 %2 %3 %4 %5 %6 %7 %8 %9 attributes
SA enable automatic margins
sc Save cursor position

Linux man-pages 6.13 2024-06-15 3050

termcap(5) File Formats Manual termcap(5)

se End standout mode
sf Normal scroll one line
SF Normal scroll %1 lines
so Start standout mode
sr Reverse scroll
SR scroll back %1 lines
st Set tabulator stop in all rows at current column
SX Turn on XON/XOFF flow control
ta move to next hardware tab
tc Read in terminal description from another entry
te End program that uses cursor motion
ti Begin program that uses cursor motion
ts Move cursor to column %1 of status line
uc Underline character under cursor and move cursor right
ue End underlining
up Cursor up one line
UP Cursor up %1 lines
us Start underlining
vb Visible bell
ve Normal cursor visible
vi Cursor invisible
vs Standout cursor
wi Set window from line %1 to %2 and column %3 to %4
XF XOFF character if not ^S

There are several ways of defining the control codes for string capabilities:

Every normal character represents itself, except '^', '\', and '%'.

A ^x means Control-x. Control-A equals 1 decimal.

\x means a special code. x can be one of the following characters:
E Escape (27)
n Linefeed (10)
r Carriage return (13)
t Tabulation (9)
b Backspace (8)
f Form feed (12)
0 Null character. A \xxx specifies the octal character xxx.

i Increments parameters by one.

r Single parameter capability

+ Add value of next character to this parameter and do binary output

2 Do ASCII output of this parameter with a field with of 2

d Do ASCII output of this parameter with a field with of 3

% Print a '%'

If you use binary output, then you should avoid the null character ('\0') because it ter-
minates the string. You should reset tabulator expansion if a tabulator can be the bi-
nary output of a parameter.

Linux man-pages 6.13 2024-06-15 3051

termcap(5) File Formats Manual termcap(5)

Warning:
The above metacharacters for parameters may be wrong: they document Minix
termcap which may not be compatible with Linux termcap.

The block graphic characters can be specified by three string capabilities:

as start the alternative charset

ae end the alternative charset

ac pairs of characters. The first character is the name of the block graphic sym-
bol and the second characters is its definition.

The following names are available:

+ right arrow (>)
, left arrow (<)
. down arrow (v)
0 full square (#)
I lantern (#)
- upper arrow (^)
’ rhombus (+)
a chess board (:)
f degree (’)
g plus-minus (#)
h square (#)
j right bottom corner (+)
k right upper corner (+)
l left upper corner (+)
m left bottom corner (+)
n cross (+)
o upper horizontal line (-)
q middle horizontal line (-)
s bottom horizontal line (_)
t left tee (+)
u right tee (+)
v bottom tee (+)
w normal tee (+)
x vertical line (|)
~ paragraph (???)

The values in parentheses are suggested defaults which are used by the curses library,
if the capabilities are missing.

SEE ALSO
ncurses(3), termcap(3), terminfo(5)

Linux man-pages 6.13 2024-06-15 3052

tmpfs(5) File Formats Manual tmpfs(5)

NAME
tmpfs - a virtual memory filesystem

DESCRIPTION
The tmpfs facility allows the creation of filesystems whose contents reside in virtual
memory. Since the files on such filesystems typically reside in RAM, file access is
extremely fast.

The filesystem is automatically created when mounting a filesystem with the type
tmpfs via a command such as the following:

$ sudo mount -t tmpfs -o size=10M tmpfs /mnt/mytmpfs

A tmpfs filesystem has the following properties:

• The filesystem can employ swap space when physical memory pressure demands
it.

• The filesystem consumes only as much physical memory and swap space as is re-
quired to store the current contents of the filesystem.

• During a remount operation (mount -o remount), the filesystem size can be
changed (without losing the existing contents of the filesystem).

If a tmpfs filesystem is unmounted, its contents are discarded (lost).

Mount options
The tmpfs filesystem supports the following mount options:

size=bytes
Specify an upper limit on the size of the filesystem. The size is given in bytes,
and rounded up to entire pages. The limit is removed if the size is 0.

The size may have a k, m, or g suffix for Ki, Mi, Gi (binary kilo (kibi), binary
mega (mebi), and binary giga (gibi)).

The size may also have a % suffix to limit this instance to a percentage of
physical RAM.

The default, when neither size nor nr_blocks is specified, is size=50%.

nr_blocks=blocks
The same as size, but in blocks of PAGE_CACHE_SIZE.

Blocks may be specified with k, m, or g suffixes like size, but not a % suffix.

nr_inodes=inodes
The maximum number of inodes for this instance. The default is half of the
number of your physical RAM pages, or (on a machine with highmem) the
number of lowmem RAM pages, whichever is smaller. The limit is removed if
the number is 0.

Inodes may be specified with k, m, or g suffixes like size, but not a % suffix.

noswap(since Linux 6.4)
Disables swap. Remounts must respect the original settings. By default swap
is enabled.

Linux man-pages 6.13 2024-05-02 3053

tmpfs(5) File Formats Manual tmpfs(5)

mode=mode
Set initial permissions of the root directory.

gid=gid (since Linux 2.5.7)
Set the initial group ID of the root directory.

uid=uid (since Linux 2.5.7)
Set the initial user ID of the root directory.

huge=huge_option (since Linux 4.7.0)
Set the huge table memory allocation policy for all files in this instance (if
CONFIG_TRANSPARENT_HUGEPAGE is enabled).

The huge_option value is one of the following:

never Do not allocate huge pages. This is the default.

always
Attempt to allocate huge pages every time a new page is needed.

within_size
Only allocate huge page if it will be fully within i_size. Also respect
fadvise(2) and madvise(2) hints

advise
Only allocate huge pages if requested with fadvise(2) or madvise(2).

deny For use in emergencies, to force the huge option off from all mounts.

force Force the huge option on for all mounts; useful for testing.

mpol=mpol_option (since Linux 2.6.15)
Set the NUMA memory allocation policy for all files in this instance (if CON-
FIG_NUMA is enabled).

The mpol_option value is one of the following:

default
Use the process allocation policy (see set_mempolicy(2)).

prefer:node
Preferably allocate memory from the given node.

bind:nodelist
Allocate memory only from nodes in nodelist.

interleave
Allocate from each node in turn.

interleave:nodelist
Allocate from each node of in turn.

local Preferably allocate memory from the local node.

In the above, nodelist is a comma-separated list of decimal numbers and
ranges that specify NUMA nodes. A range is a pair of hyphen-separated deci-
mal numbers, the smallest and largest node numbers in the range. For exam-
ple, mpol=bind:0-3,5,7,9-15.

Linux man-pages 6.13 2024-05-02 3054

tmpfs(5) File Formats Manual tmpfs(5)

VERSIONS
The tmpfs facility was added in Linux 2.4, as a successor to the older ramfs facility,
which did not provide limit checking or allow for the use of swap space.

NOTES
In order for user-space tools and applications to create tmpfs filesystems, the kernel
must be configured with the CONFIG_TMPFS option.

The tmpfs filesystem supports extended attributes (see xattr(7)), but user extended at-
tributes are not permitted.

An internal shared memory filesystem is used for System V shared memory
(shmget(2)) and shared anonymous mappings (mmap(2) with the MAP_SHARED
and MAP_ANONYMOUS flags). This filesystem is available regardless of whether
the kernel was configured with the CONFIG_TMPFS option.

A tmpfs filesystem mounted at /dev/shm is used for the implementation of POSIX
shared memory (shm_overview(7)) and POSIX semaphores (sem_overview(7)).

The amount of memory consumed by all tmpfs filesystems is shown in the Shmem
field of /proc/meminfo and in the shared field displayed by free(1)

The tmpfs facility was formerly called shmfs.

SEE ALSO
df (1), du(1), memfd_create(2), mmap(2), set_mempolicy(2), shm_open(3), mount(8)

The kernel source files Documentation/filesystems/tmpfs.txt and Documentation/ad-
min-guide/mm/transhuge.rst.

Linux man-pages 6.13 2024-05-02 3055

ttytype(5) File Formats Manual ttytype(5)

NAME
ttytype - terminal device to default terminal type mapping

DESCRIPTION
The /etc/ttytype file associates termcap(5) and terminfo(5) terminal type names with
tty lines. Each line consists of a terminal type, followed by whitespace, followed by a
tty name (a device name without the /dev/ prefix).

This association is used by the program tset(1) to set the environment variable TERM
to the default terminal name for the user’s current tty.

This facility was designed for a traditional time-sharing environment featuring char-
acter-cell terminals hardwired to a UNIX minicomputer. It is little used on modern
workstation and personal UNIX systems.

FILES
/etc/ttytype

the tty definitions file.

EXAMPLES
A typical /etc/ttytype is:

con80x25 tty1
vt320 ttys0

SEE ALSO
termcap(5), terminfo(5), agetty(8), mingetty(8)

Linux man-pages 6.13 2024-05-02 3056

tzfile(5) File Formats Manual tzfile(5)

NAME
tzfile - timezone information

DESCRIPTION
The timezone information files used by tzset(3) are typically found under a directory
with a name like /usr/share/zoneinfo. These files use the format described in Internet
RFC 8536. Each file is a sequence of 8-bit bytes. In a file, a binary integer is repre-
sented by a sequence of one or more bytes in network order (bigendian, or high-order
byte first), with all bits significant, a signed binary integer is represented using two’s
complement, and a boolean is represented by a one-byte binary integer that is either 0
(false) or 1 (true). The format begins with a 44-byte header containing the following
fields:

• The magic four-byte ASCII sequence “TZif” identifies the file as a timezone in-
formation file.

• A byte identifying the version of the file’s format (as of 2021, either an ASCII
NUL, “2”, “3”, or “4”).

• Fifteen bytes containing zeros reserved for future use.

• Six four-byte integer values, in the following order:

tzh_ttisutcnt
The number of UT/local indicators stored in the file. (UT is Universal Time.)

tzh_ttisstdcnt
The number of standard/wall indicators stored in the file.

tzh_leapcnt
The number of leap seconds for which data entries are stored in the file.

tzh_timecnt
The number of transition times for which data entries are stored in the file.

tzh_typecnt
The number of local time types for which data entries are stored in the file
(must not be zero).

tzh_charcnt
The number of bytes of time zone abbreviation strings stored in the file.

The above header is followed by the following fields, whose lengths depend on the
contents of the header:

• tzh_timecnt four-byte signed integer values sorted in ascending order. These
values are written in network byte order. Each is used as a transition time (as
returned by time(2)) at which the rules for computing local time change.

• tzh_timecnt one-byte unsigned integer values; each one but the last tells which
of the different types of local time types described in the file is associated with
the time period starting with the same-indexed transition time and continuing
up to but not including the next transition time. (The last time type is present
only for consistency checking with the POSIX.1-2017-style TZ string described
below.) These values serve as indices into the next field.

Time Zone Database 3057

tzfile(5) File Formats Manual tzfile(5)

• tzh_typecnt ttinfo entries, each defined as follows:

struct ttinfo {
int32_t tt_utoff;
unsigned char tt_isdst;
unsigned char tt_desigidx;

};

Each structure is written as a four-byte signed integer value for tt_utoff, in net-
work byte order, followed by a one-byte boolean for tt_isdst and a one-byte
value for tt_desigidx. In each structure, tt_utoff gives the number of seconds
to be added to UT, tt_isdst tells whether tm_isdst should be set by localtime(3)
and tt_desigidx serves as an index into the array of time zone abbreviation
bytes that follow the ttinfo entries in the file; if the designated string is "-00",
the ttinfo entry is a placeholder indicating that local time is unspecified. The
tt_utoff value is never equal to -2**31, to let 32-bit clients negate it without
overflow. Also, in realistic applications tt_utoff is in the range [-89999,
93599] (i.e., more than -25 hours and less than 26 hours); this allows easy sup-
port by implementations that already support the POSIX-required range
[-24:59:59, 25:59:59].

• tzh_charcnt bytes that represent time zone designations, which are null-termi-
nated byte strings, each indexed by the tt_desigidx values mentioned above.
The byte strings can overlap if one is a suffix of the other. The encoding of
these strings is not specified.

• tzh_leapcnt pairs of four-byte values, written in network byte order; the first
value of each pair gives the nonnegative time (as returned by time(2)) at which a
leap second occurs or at which the leap second table expires; the second is a
signed integer specifying the correction, which is the total number of leap sec-
onds to be applied during the time period starting at the given time. The pairs
of values are sorted in strictly ascending order by time. Each pair denotes one
leap second, either positive or negative, except that if the last pair has the same
correction as the previous one, the last pair denotes the leap second table’s expi-
ration time. Each leap second is at the end of a UTC calendar month. The first
leap second has a nonnegative occurrence time, and is a positive leap second if
and only if its correction is positive; the correction for each leap second after
the first differs from the previous leap second by either 1 for a positive leap sec-
ond, or -1 for a negative leap second. If the leap second table is empty, the
leap-second correction is zero for all timestamps; otherwise, for timestamps be-
fore the first occurrence time, the leap-second correction is zero if the first pair’s
correction is 1 or -1, and is unspecified otherwise (which can happen only in
files truncated at the start).

• tzh_ttisstdcnt standard/wall indicators, each stored as a one-byte boolean; they
tell whether the transition times associated with local time types were specified
as standard time or local (wall clock) time.

• tzh_ttisutcnt UT/local indicators, each stored as a one-byte boolean; they tell
whether the transition times associated with local time types were specified as
UT or local time. If a UT/local indicator is set, the corresponding standard/wall

Time Zone Database 3058

tzfile(5) File Formats Manual tzfile(5)

indicator must also be set.

The standard/wall and UT/local indicators were designed for transforming a TZif
file’s transition times into transitions appropriate for another time zone specified via a
POSIX.1-2017-style TZ string that lacks rules. For example, when
TZ="EET-2EEST" and there is no TZif file "EET-2EEST", the idea was to adapt the
transition times from a TZif file with the well-known name "posixrules" that is present
only for this purpose and is a copy of the file "Europe/Brussels", a file with a different
UT offset. POSIX does not specify this obsolete transformational behavior, the de-
fault rules are installation-dependent, and no implementation is known to support this
feature for timestamps past 2037, so users desiring (say) Greek time should instead
specify TZ="Europe/Athens" for better historical coverage, falling back on
TZ="EET-2EEST,M3.5.0/3,M10.5.0/4" if POSIX conformance is required and older
timestamps need not be handled accurately.

The localtime(3) function normally uses the first ttinfo structure in the file if either
tzh_timecnt is zero or the time argument is less than the first transition time recorded
in the file.

Version 2 format
For version-2-format timezone files, the above header and data are followed by a sec-
ond header and data, identical in format except that eight bytes are used for each tran-
sition time or leap second time. (Leap second counts remain four bytes.) After the
second header and data comes a newline-enclosed string in the style of the contents of
a POSIX.1-2017 TZ environment variable, for use in handling instants after the last
transition time stored in the file or for all instants if the file has no transitions. The TZ
string is empty (i.e., nothing between the newlines) if there is no POSIX.1-2017-style
representation for such instants. If nonempty, the TZ string must agree with the local
time type after the last transition time if present in the eight-byte data; for example,
given the string “WET0WEST,M3.5.0/1,M10.5.0” then if a last transition time is in
July, the transition’s local time type must specify a daylight-saving time abbreviated
“WEST” that is one hour east of UT. Also, if there is at least one transition, time type
0 is associated with the time period from the indefinite past up to but not including the
earliest transition time.

Version 3 format
For version-3-format timezone files, the TZ string may use two minor extensions to
the POSIX.1-2017 TZ format, as described in newtzset(3)First, the hours part of its
transition times may be signed and range from -167 through 167 instead of the
POSIX-required unsigned values from 0 through 24. Second, DST is in effect all year
if it starts January 1 at 00:00 and ends December 31 at 24:00 plus the difference be-
tween daylight saving and standard time.

Version 4 format
For version-4-format TZif files, the first leap second record can have a correction that
is neither +1 nor -1, to represent truncation of the TZif file at the start. Also, if two or
more leap second transitions are present and the last entry’s correction equals the pre-
vious one, the last entry denotes the expiration of the leap second table instead of a
leap second; timestamps after this expiration are unreliable in that future releases will
likely add leap second entries after the expiration, and the added leap seconds will
change how post-expiration timestamps are treated.

Time Zone Database 3059

tzfile(5) File Formats Manual tzfile(5)

Interoperability considerations
Future changes to the format may append more data.

Version 1 files are considered a legacy format and should not be generated, as they do
not support transition times after the year 2038. Readers that understand only Version
1 must ignore any data that extends beyond the calculated end of the version 1 data
block.

Other than version 1, writers should generate the lowest version number needed by a
file’s data. For example, a writer should generate a version 4 file only if its leap sec-
ond table either expires or is truncated at the start. Likewise, a writer not generating a
version 4 file should generate a version 3 file only if TZ string extensions are neces-
sary to accurately model transition times.

The sequence of time changes defined by the version 1 header and data block should
be a contiguous sub-sequence of the time changes defined by the version 2+ header
and data block, and by the footer. This guideline helps obsolescent version 1 readers
agree with current readers about timestamps within the contiguous sub-sequence. It
also lets writers not supporting obsolescent readers use a tzh_timecnt of zero in the
version 1 data block to save space.

When a TZif file contains a leap second table expiration time, TZif readers should ei-
ther refuse to process post-expiration timestamps, or process them as if the expiration
time did not exist (possibly with an error indication).

Time zone designations should consist of at least three (3) and no more than six (6)
ASCII characters from the set of alphanumerics, “-”, and “+”. This is for compatibil-
ity with POSIX requirements for time zone abbreviations.

When reading a version 2 or higher file, readers should ignore the version 1 header
and data block except for the purpose of skipping over them.

Readers should calculate the total lengths of the headers and data blocks and check
that they all fit within the actual file size, as part of a validity check for the file.

When a positive leap second occurs, readers should append an extra second to the lo-
cal minute containing the second just before the leap second. If this occurs when the
UTC offset is not a multiple of 60 seconds, the leap second occurs earlier than the last
second of the local minute and the minute’s remaining local seconds are numbered
through 60 instead of the usual 59; the UTC offset is unaffected.

Common interoperability issues
This section documents common problems in reading or writing TZif files. Most of
these are problems in generating TZif files for use by older readers. The goals of this
section are:

• to help TZif writers output files that avoid common pitfalls in older or buggy
TZif readers,

• to help TZif readers avoid common pitfalls when reading files generated by fu-
ture TZif writers, and

• to help any future specification authors see what sort of problems arise when
the TZif format is changed.

When new versions of the TZif format have been defined, a design goal has been that

Time Zone Database 3060

tzfile(5) File Formats Manual tzfile(5)

a reader can successfully use a TZif file even if the file is of a later TZif version than
what the reader was designed for. When complete compatibility was not achieved, an
attempt was made to limit glitches to rarely used timestamps and allow simple partial
workarounds in writers designed to generate new-version data useful even for older-
version readers. This section attempts to document these compatibility issues and
workarounds, as well as to document other common bugs in readers.

Interoperability problems with TZif include the following:

• Some readers examine only version 1 data. As a partial workaround, a writer
can output as much version 1 data as possible. However, a reader should ignore
version 1 data, and should use version 2+ data even if the reader’s native time-
stamps have only 32 bits.

• Some readers designed for version 2 might mishandle timestamps after a ver-
sion 3 or higher file’s last transition, because they cannot parse extensions to
POSIX.1-2017 in the TZ-like string. As a partial workaround, a writer can out-
put more transitions than necessary, so that only far-future timestamps are mis-
handled by version 2 readers.

• Some readers designed for version 2 do not support permanent daylight saving
time with transitions after 24:00 – e.g., a TZ string “EST5EDT,0/0,J365/25” de-
noting permanent Eastern Daylight Time (-04). As a workaround, a writer can
substitute standard time for two time zones east, e.g.,
“XXX3EDT4,0/0,J365/23” for a time zone with a never-used standard time
(XXX, -03) and negative daylight saving time (EDT, -04) all year. Alterna-
tively, as a partial workaround a writer can substitute standard time for the next
time zone east – e.g., “AST4” for permanent Atlantic Standard Time (-04).

• Some readers designed for version 2 or 3, and that require strict conformance to
RFC 8536, reject version 4 files whose leap second tables are truncated at the
start or that end in expiration times.

• Some readers ignore the footer, and instead predict future timestamps from the
time type of the last transition. As a partial workaround, a writer can output
more transitions than necessary.

• Some readers do not use time type 0 for timestamps before the first transition,
in that they infer a time type using a heuristic that does not always select time
type 0. As a partial workaround, a writer can output a dummy (no-op) first
transition at an early time.

• Some readers mishandle timestamps before the first transition that has a time-
stamp not less than -2**31. Readers that support only 32-bit timestamps are
likely to be more prone to this problem, for example, when they process 64-bit
transitions only some of which are representable in 32 bits. As a partial
workaround, a writer can output a dummy transition at timestamp -2**31.

• Some readers mishandle a transition if its timestamp has the minimum possible
signed 64-bit value. Timestamps less than -2**59 are not recommended.

• Some readers mishandle TZ strings that contain “<” or “>”. As a partial
workaround, a writer can avoid using “<” or “>” for time zone abbreviations
containing only alphabetic characters.

Time Zone Database 3061

tzfile(5) File Formats Manual tzfile(5)

• Many readers mishandle time zone abbreviations that contain non-ASCII char-
acters. These characters are not recommended.

• Some readers may mishandle time zone abbreviations that contain fewer than 3
or more than 6 characters, or that contain ASCII characters other than alphanu-
merics, “-”, and “+”. These abbreviations are not recommended.

• Some readers mishandle TZif files that specify daylight-saving time UT offsets
that are less than the UT offsets for the corresponding standard time. These
readers do not support locations like Ireland, which uses the equivalent of the
TZ string “IST-1GMT0,M10.5.0,M3.5.0/1”, observing standard time (IST,
+01) in summer and daylight saving time (GMT, +00) in winter. As a partial
workaround, a writer can output data for the equivalent of the TZ string
“GMT0IST,M3.5.0/1,M10.5.0”, thus swapping standard and daylight saving
time. Although this workaround misidentifies which part of the year uses day-
light saving time, it records UT offsets and time zone abbreviations correctly.

• Some readers generate ambiguous timestamps for positive leap seconds that oc-
cur when the UTC offset is not a multiple of 60 seconds. For example, in a
timezone with UTC offset +01:23:45 and with a positive leap second 78796801
(1972-06-30 23:59:60 UTC), some readers will map both 78796800 and
78796801 to 01:23:45 local time the next day instead of mapping the latter to
01:23:46, and they will map 78796815 to 01:23:59 instead of to 01:23:60. This
has not yet been a practical problem, since no civil authority has observed such
UTC offsets since leap seconds were introduced in 1972.

Some interoperability problems are reader bugs that are listed here mostly as warnings
to developers of readers.

• Some readers do not support negative timestamps. Developers of distributed
applications should keep this in mind if they need to deal with pre-1970 data.

• Some readers mishandle timestamps before the first transition that has a non-
negative timestamp. Readers that do not support negative timestamps are likely
to be more prone to this problem.

• Some readers mishandle time zone abbreviations like “-08” that contain “+”,
“-”, or digits.

• Some readers mishandle UT offsets that are out of the traditional range of -12
through +12 hours, and so do not support locations like Kiritimati that are out-
side this range.

• Some readers mishandle UT offsets in the range [-3599, -1] seconds from UT,
because they integer-divide the offset by 3600 to get 0 and then display the hour
part as “+00”.

• Some readers mishandle UT offsets that are not a multiple of one hour, or of 15
minutes, or of 1 minute.

SEE ALSO
time(2), localtime(3), tzset(3), tzselect(8), zdump(8), zic(8).

Olson A, Eggert P, Murchison K. The Time Zone Information Format (TZif). 2019
Feb. Internet RFC 8536 〈https://datatracker.ietf.org/doc/html/rfc8536〉
doi:10.17487/RFC8536 〈https://doi.org/10.17487/RFC8536〉.

Time Zone Database 3062

utmp(5) File Formats Manual utmp(5)

NAME
utmp, wtmp - login records

SYNOPSIS
#include <utmp.h>

DESCRIPTION
The utmp file allows one to discover information about who is currently using the sys-
tem. There may be more users currently using the system, because not all programs
use utmp logging.

Warning: utmp must not be writable by the user class "other", because many system
programs (foolishly) depend on its integrity. You risk faked system logfiles and modi-
fications of system files if you leave utmp writable to any user other than the owner
and group owner of the file.

The file is a sequence of utmp structures, declared as follows in <utmp.h> (note that
this is only one of several definitions around; details depend on the version of libc):

/* Values for ut_type field, below */

#define EMPTY 0 /* Record does not contain valid info
(formerly known as UT_UNKNOWN on Linux) */

#define RUN_LVL 1 /* Change in system run-level (see
init(1)) */

#define BOOT_TIME 2 /* Time of system boot (in ut_tv) */
#define NEW_TIME 3 /* Time after system clock change

(in ut_tv) */
#define OLD_TIME 4 /* Time before system clock change

(in ut_tv) */
#define INIT_PROCESS 5 /* Process spawned by init(1) */
#define LOGIN_PROCESS 6 /* Session leader process for user login */
#define USER_PROCESS 7 /* Normal process */
#define DEAD_PROCESS 8 /* Terminated process */
#define ACCOUNTING 9 /* Not implemented */

#define UT_LINESIZE 32
#define UT_NAMESIZE 32
#define UT_HOSTSIZE 256

struct exit_status { /* Type for ut_exit, below */
short e_termination; /* Process termination status */
short e_exit; /* Process exit status */

};

struct utmp {
short ut_type; /* Type of record */
pid_t ut_pid; /* PID of login process */
char ut_line[UT_LINESIZE]; /* Device name of tty - "/dev/" */
char ut_id[4]; /* Terminal name suffix,

or inittab(5) ID */
char ut_user[UT_NAMESIZE]; /* Username */

Linux man-pages 6.13 2024-09-01 3063

utmp(5) File Formats Manual utmp(5)

char ut_host[UT_HOSTSIZE]; /* Hostname for remote login, or
kernel version for run-level
messages */

struct exit_status ut_exit; /* Exit status of a process
marked as DEAD_PROCESS; not
used by Linux init(1) */

/* The ut_session and ut_tv fields must be the same size when
compiled 32- and 64-bit. This allows data files and shared
memory to be shared between 32- and 64-bit applications. */

#if __WORDSIZE == 64 && defined __WORDSIZE_COMPAT32
int32_t ut_session; /* Session ID (getsid(2)),

used for windowing */
struct {

int32_t tv_sec; /* Seconds */
int32_t tv_usec; /* Microseconds */

} ut_tv; /* Time entry was made */
#else

long ut_session; /* Session ID */
struct timeval ut_tv; /* Time entry was made */

#endif

int32_t ut_addr_v6[4]; /* Internet address of remote
host; IPv4 address uses
just ut_addr_v6[0] */

char __unused[20]; /* Reserved for future use */
};

/* Backward compatibility hacks */
#define ut_name ut_user
#ifndef _NO_UT_TIME
#define ut_time ut_tv.tv_sec
#endif
#define ut_xtime ut_tv.tv_sec
#define ut_addr ut_addr_v6[0]

This structure gives the name of the special file associated with the user’s terminal, the
user’s login name, and the time of login in the form of time(2). String fields are termi-
nated by a null byte ('\0') if they are shorter than the size of the field.

The first entries ever created result from init(1) processing inittab(5)Before an entry is
processed, though, init(1) cleans up utmp by setting ut_type to DEAD_PROCESS,
clearing ut_user, ut_host, and ut_time with null bytes for each record which ut_type is
not DEAD_PROCESS or RUN_LVL and where no process with PID ut_pid exists.
If no empty record with the needed ut_id can be found, init(1) creates a new one. It
sets ut_id from the inittab, ut_pid and ut_time to the current values, and ut_type to
INIT_PROCESS.

mingetty(8) (or agetty(8)) locates the entry by the PID, changes ut_type to LO-
GIN_PROCESS, changes ut_time, sets ut_line, and waits for connection to be estab-
lished. login(1), after a user has been authenticated, changes ut_type to

Linux man-pages 6.13 2024-09-01 3064

utmp(5) File Formats Manual utmp(5)

USER_PROCESS, changes ut_time, and sets ut_host and ut_addr. Depending on
mingetty(8) (or agetty(8)) and login(1), records may be located by ut_line instead of
the preferable ut_pid.

When init(1) finds that a process has exited, it locates its utmp entry by ut_pid , sets
ut_type to DEAD_PROCESS, and clears ut_user, ut_host, and ut_time with null
bytes.

xterm(1) and other terminal emulators directly create a USER_PROCESS record and
generate the ut_id by using the string that suffix part of the terminal name (the charac-
ters following /dev/ [pt]ty). If they find a DEAD_PROCESS for this ID, they recycle
it, otherwise they create a new entry. If they can, they will mark it as
DEAD_PROCESS on exiting and it is advised that they null ut_line, ut_time,
ut_user, and ut_host as well.

telnetd(8) sets up a LOGIN_PROCESS entry and leaves the rest to login(1) as usual.
After the telnet session ends, telnetd(8) cleans up utmp in the described way.

The wtmp file records all logins and logouts. Its format is exactly like utmp except
that a null username indicates a logout on the associated terminal. Furthermore, the
terminal name ~ with username shutdown or reboot indicates a system shutdown or
reboot and the pair of terminal names |/} logs the old/new system time when date(1)
changes it. wtmp is maintained by login(1), init(1), and some versions of getty(8)
(e.g., mingetty(8) or agetty(8)). None of these programs creates the file, so if it is re-
moved, record-keeping is turned off.

FILES
/var/run/utmp
/var/log/wtmp

VERSIONS
POSIX.1 does not specify a utmp structure, but rather one named utmpx (as part of the
XSI extension), with specifications for the fields ut_type, ut_pid , ut_line, ut_id ,
ut_user, and ut_tv. POSIX.1 does not specify the lengths of the ut_line and ut_user
fields.

Linux defines the utmpx structure to be the same as the utmp structure.

STANDARDS
Linux.

HISTORY
Linux utmp entries conform neither to v7/BSD nor to System V; they are a mix of the
two.

v7/BSD has fewer fields; most importantly it lacks ut_type, which causes native
v7/BSD-like programs to display (for example) dead or login entries. Further, there is
no configuration file which allocates slots to sessions. BSD does so because it lacks
ut_id fields.

In Linux (as in System V), the ut_id field of a record will never change once it has
been set, which reserves that slot without needing a configuration file. Clearing ut_id
may result in race conditions leading to corrupted utmp entries and potential security
holes. Clearing the abovementioned fields by filling them with null bytes is not re-
quired by System V semantics, but makes it possible to run many programs which

Linux man-pages 6.13 2024-09-01 3065

utmp(5) File Formats Manual utmp(5)

assume BSD semantics and which do not modify utmp. Linux uses the BSD conven-
tions for line contents, as documented above.

System V has no ut_host or ut_addr_v6 fields.

NOTES
Unlike various other systems, where utmp logging can be disabled by removing the
file, utmp must always exist on Linux. If you want to disable who(1), then do not
make utmp world readable.

The file format is machine-dependent, so it is recommended that it be processed only
on the machine architecture where it was created.

Note that on biarch platforms, that is, systems which can run both 32-bit and 64-bit
applications (x86-64, ppc64, s390x, etc.), ut_tv is the same size in 32-bit mode as in
64-bit mode. The same goes for ut_session and ut_time if they are present. This al-
lows data files and shared memory to be shared between 32-bit and 64-bit applica-
tions. This is achieved by changing the type of ut_session to int32_t, and that of ut_tv
to a struct with two int32_t fields tv_sec and tv_usec. Since ut_tv may not be the
same as struct timeval, then instead of the call:

gettimeofday((struct timeval *) &ut.ut_tv, NULL);

the following method of setting this field is recommended:

struct utmp ut;
struct timeval tv;

gettimeofday(&tv, NULL);
ut.ut_tv.tv_sec = tv.tv_sec;
ut.ut_tv.tv_usec = tv.tv_usec;

SEE ALSO
ac(1), date(1), init(1), last(1), login(1), logname(1), lslogins(1), users(1), utmp-
dump(1), who(1), getutent(3), getutmp(3), login(3), logout(3), logwtmp(3), up-
dwtmp(3)

Linux man-pages 6.13 2024-09-01 3066

intro(6) Games Manual intro(6)

NAME
intro - introduction to games

DESCRIPTION
Section 6 of the manual describes the games and funny little programs available on
the system.

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright condi-
tions. Note that these can be different from page to page!

Linux man-pages 6.13 2024-05-02 3067

intro(7) Miscellaneous Information Manual intro(7)

NAME
intro - introduction to overview and miscellany section

DESCRIPTION
Section 7 of the manual provides overviews on various topics, and describes conven-
tions and protocols, character set standards, the standard filesystem layout, and mis-
cellaneous other things.

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright condi-
tions. Note that these can be different from page to page!

SEE ALSO
standards(7)

Linux man-pages 6.13 2024-05-02 3068

address_families(7) Miscellaneous Information Manual address_families(7)

NAME
address_families - socket address families (domains)

SYNOPSIS
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
The domain argument of the socket(2) specifies a communication domain; this selects
the protocol family which will be used for communication. These families are defined
in <sys/socket.h>. The formats currently understood by the Linux kernel include:

AF_UNIX
AF_LOCAL

Local communication. For further information, see unix(7).

AF_INET
IPv4 Internet protocols. For further information, see ip(7).

AF_AX25
Amateur radio AX.25 protocol. For further information, see ax25(4)

AF_IPX
IPX - Novell protocols.

AF_APPLETALK
AppleTalk For further information, see ddp(7).

AF_NETROM
AX.25 packet layer protocol. For further information, see netrom(4), The
Packet Radio Protocols and Linux
〈https://www.tldp.org/HOWTO/AX25-HOWTO/x61.html〉 and the AX.25,
NET/ROM , and ROSE network programming chapters of the Linux Amateur
Radio AX.25 HOWTO
〈https://www.tldp.org/HOWTO/AX25-HOWTO/x2107.html〉.

AF_BRIDGE
Can’t be used for creating sockets; mostly used for bridge links in rtnetlink(7)
protocol commands.

AF_ATMPVC
Access to raw ATM Permanent Virtual Circuits (PVCs). For further informa-
tion, see the ATM on Linux HOWTO
〈https://www.tldp.org/HOWTO/text/ATM-Linux-HOWTO〉.

AF_X25
ITU-T X.25 / ISO/IEC 8208 protocol. For further information, see x25(7).

AF_INET6
IPv6 Internet protocols. For further information, see ipv6(7).

AF_ROSE
RATS (Radio Amateur Telecommunications Society). Open Systems environ-
ment (ROSE) AX.25 packet layer protocol. For further information, see the
resources listed for AF_NETROM.

Linux man-pages 6.13 2024-06-11 3069

address_families(7) Miscellaneous Information Manual address_families(7)

AF_DECnet
DECet protocol sockets. See Documentation/networking/decnet.txt in the
Linux kernel source tree for details.

AF_NETBEUI
Reserved for "802.2LLC project"; never used.

AF_SECURITY
This was a short-lived (between Linux 2.1.30 and 2.1.99pre2) protocol family
for firewall upcalls.

AF_KEY
Key management protocol, originally developed for usage with IPsec (since
Linux 2.1.38). This has no relation to keyctl(2) and the in-kernel key storage
facility. See RFC 2367 PF_KEY Key Management API, Version 2
〈https://tools.ietf.org/html/rfc2367〉 for details.

AF_NETLINK
Kernel user interface device. For further information, see netlink(7).

AF_PACKET
Low-level packet interface. For further information, see packet(7).

AF_ECONET
Acorn Econet protocol (removed in Linux 3.5). See the Econet documentation
〈http://www.8bs.com/othrdnld/manuals/econet.shtml〉 for details.

AF_ATMSVC
Access to ATM Switched Virtual Circuits (SVCs) See the ATM on Linux
HOWTO 〈https://www.tldp.org/HOWTO/text/ATM-Linux-HOWTO〉 for de-
tails.

AF_RDS
Reliable Datagram Sockets (RDS) protocol (since Linux 2.6.30). RDS over
RDMA has no relation to AF_SMC or AF_XDP. For further information, see
rds(7), rds-rdma(7), and Documentation/networking/rds.txt in the Linux ker-
nel source tree.

AF_IRDA
Socket interface over IrDA (moved to staging in Linux 4.14, removed in Linux
4.17). For further information, see irda(7)

AF_PPPOX
Generic PPP transport layer, for setting up L2 tunnels (L2TP and PPPoE). See
Documentation/networking/l2tp.txt in the Linux kernel source tree for details.

AF_WANPIPE
Legacy protocol for wide area network (WAN) connectivity that was used by
Sangoma WAN cards (called "WANPIPE"); removed in Linux 2.6.21.

AF_LLC
Logical link control (IEEE 802.2 LLC) protocol, upper part of data link layer
of ISO/OSI networking protocol stack (since Linux 2.4); has no relation to
AF_PACKET. See chapter 13.5.3. Logical Link Control in Understanding
Linux Kernel Internals (O’Reilly Media, 2006) and IEEE Standards for Local
Area Networks: Logical Link Control (The Institute of Electronics and

Linux man-pages 6.13 2024-06-11 3070

address_families(7) Miscellaneous Information Manual address_families(7)

Electronics Engineers, Inc., New York, New York, 1985) for details. See also
some historical notes 〈https://wiki.linuxfoundation.org/networking/llc〉 regard-
ing its development.

AF_IB
InfiniBand native addressing (since Linux 3.11).

AF_MPLS
Multiprotocol Label Switching (since Linux 4.1); mostly used for configuring
MPLS routing via netlink(7), as it doesn’t expose ability to create sockets to
user space.

AF_CAN
Controller Area Network automotive bus protocol (since Linux 2.6.25). See
Documentation/networking/can.rst in the Linux kernel source tree for details.

AF_TIPC
TIPC, "cluster domain sockets" protocol (since Linux 2.6.16). See TIPC Pro-
grammer’s Guide 〈http://tipc.io/programming.html〉 and the protocol descrip-
tion 〈http://tipc.io/protocol.html〉 for details.

AF_BLUETOOTH
Bluetooth low-level socket protocol (since Linux 3.11). See Bluetooth Man-
agement API overview 〈https://git.kernel.org/pub/scm/bluetooth/bluez.git
/tree/doc/mgmt-api.txt〉 and An Introduction to Bluetooth Programming by Al-
bert Huang 〈https://people.csail.mit.edu/albert/bluez-intro/〉 for details.

AF_IUCV
IUCV (inter-user communication vehicle) z/VM protocol for hypervisor-guest
interaction (since Linux 2.6.21); has no relation to AF_VSOCK and/or
AF_SMC See IUCV protocol overview 〈https://www.ibm.com/support
/knowledgecenter/en/SSB27U_6.4.0/com.ibm.zvm.v640.hcpb4/iucv.htm〉 for
details.

AF_RXRPC
Rx, Andrew File System remote procedure call protocol (since Linux 2.6.22).
See Documentation/networking/rxrpc.txt in the Linux kernel source tree for
details.

AF_ISDN
New "modular ISDN" driver interface protocol (since Linux 2.6.27). See the
mISDN wiki 〈http://www.misdn.eu/wiki/Main_Page/〉 for details.

AF_PHONET
Nokia cellular modem IPC/RPC interface (since Linux 2.6.31). See Docu-
mentation/networking/phonet.txt in the Linux kernel source tree for details.

AF_IEEE802154
IEEE 802.15.4 WPAN (wireless personal area network) raw packet protocol
(since Linux 2.6.31). See Documentation/networking/ieee802154.txt in the
Linux kernel source tree for details.

AF_CAIF
Ericsson’s Communication CPU to Application CPU interface (CAIF) proto-
col (since Linux 2.6.36). See Documentation/networking/caif/Linux-CAIF.txt

Linux man-pages 6.13 2024-06-11 3071

address_families(7) Miscellaneous Information Manual address_families(7)

in the Linux kernel source tree for details.

AF_ALG
Interface to kernel crypto API (since Linux 2.6.38). See Documenta-
tion/crypto/userspace-if.rst in the Linux kernel source tree for details.

AF_VSOCK
VMWare VSockets protocol for hypervisor-guest interaction (since Linux
3.9); has no relation to AF_IUCV and AF_SMC. For further information, see
vsock(7).

AF_KCM
KCM (kernel connection multiplexer) interface (since Linux 4.6). See Docu-
mentation/networking/kcm.txt in the Linux kernel source tree for details.

AF_QIPCRTR
Qualcomm IPC router interface protocol (since Linux 4.7).

AF_SMC
SMC-R (shared memory communications over RDMA) protocol (since Linux
4.11), and SMC-D (shared memory communications, direct memory access)
protocol for intra-node z/VM quest interaction (since Linux 4.19); has no rela-
tion to AF_RDS, AF_IUCV or AF_VSOCK. See RFC 7609 IBM’s Shared
Memory Communications over RDMA (SMC-R) Protocol
〈https://tools.ietf.org/html/rfc7609〉 for details regarding SMC-R. See SMC-D
Reference Information 〈https://www-01.ibm.com/software/network
/commserver/SMC-D/index.html〉 for details regarding SMC-D.

AF_XDP
XDP (express data path) interface (since Linux 4.18). See Documenta-
tion/networking/af_xdp.rst in the Linux kernel source tree for details.

SEE ALSO
socket(2), socket(7)

Linux man-pages 6.13 2024-06-11 3072

AIO(7) Miscellaneous Information Manual AIO(7)

NAME
aio - POSIX asynchronous I/O overview

DESCRIPTION
The POSIX asynchronous I/O (AIO) interface allows applications to initiate one or
more I/O operations that are performed asynchronously (i.e., in the background). The
application can elect to be notified of completion of the I/O operation in a variety of
ways: by delivery of a signal, by instantiation of a thread, or no notification at all.

The POSIX AIO interface consists of the following functions:

aio_read(3)
Enqueue a read request. This is the asynchronous analog of read(2).

aio_write(3)
Enqueue a write request. This is the asynchronous analog of write(2).

aio_fsync(3)
Enqueue a sync request for the I/O operations on a file descriptor. This is the
asynchronous analog of fsync(2) and fdatasync(2).

aio_error(3)
Obtain the error status of an enqueued I/O request.

aio_return(3)
Obtain the return status of a completed I/O request.

aio_suspend(3)
Suspend the caller until one or more of a specified set of I/O requests com-
pletes.

aio_cancel(3)
Attempt to cancel outstanding I/O requests on a specified file descriptor.

lio_listio(3)
Enqueue multiple I/O requests using a single function call.

The aiocb ("asynchronous I/O control block") structure defines parameters that con-
trol an I/O operation. An argument of this type is employed with all of the functions
listed above. This structure has the following form:

#include <aiocb.h>

struct aiocb {
/* The order of these fields is implementation-dependent */

int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Location of buffer */
size_t aio_nbytes; /* Length of transfer */
int aio_reqprio; /* Request priority */
struct sigevent aio_sigevent; /* Notification method */
int aio_lio_opcode; /* Operation to be performed;

lio_listio() only */

/* Various implementation-internal fields not shown */

Linux man-pages 6.13 2024-06-15 3073

AIO(7) Miscellaneous Information Manual AIO(7)

};

/* Operation codes for 'aio_lio_opcode': */

enum { LIO_READ, LIO_WRITE, LIO_NOP };

The fields of this structure are as follows:

aio_fildes
The file descriptor on which the I/O operation is to be performed.

aio_offset
This is the file offset at which the I/O operation is to be performed.

aio_buf
This is the buffer used to transfer data for a read or write operation.

aio_nbytes
This is the size of the buffer pointed to by aio_buf .

aio_reqprio
This field specifies a value that is subtracted from the calling thread’s real-time
priority in order to determine the priority for execution of this I/O request (see
pthread_setschedparam(3)). The specified value must be between 0 and the
value returned by sysconf(_SC_AIO_PRIO_DELTA_MAX). This field is ig-
nored for file synchronization operations.

aio_sigevent
This field is a structure that specifies how the caller is to be notified when the
asynchronous I/O operation completes. Possible values for
aio_sigevent.sigev_notify are SIGEV_NONE, SIGEV_SIGNAL, and
SIGEV_THREAD. See sigevent(3type) for further details.

aio_lio_opcode
The type of operation to be performed; used only for lio_listio(3).

In addition to the standard functions listed above, the GNU C library provides the fol-
lowing extension to the POSIX AIO API:

aio_init(3)
Set parameters for tuning the behavior of the glibc POSIX AIO implementa-
tion.

ERRORS
EINVAL

The aio_reqprio field of the aiocb structure was less than 0, or was greater
than the limit returned by the call sysconf(_SC_AIO_PRIO_DELTA_MAX).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. glibc 2.1.

NOTES
It is a good idea to zero out the control block buffer before use (see memset(3)). The
control block buffer and the buffer pointed to by aio_buf must not be changed while

Linux man-pages 6.13 2024-06-15 3074

AIO(7) Miscellaneous Information Manual AIO(7)

the I/O operation is in progress. These buffers must remain valid until the I/O opera-
tion completes.

Simultaneous asynchronous read or write operations using the same aiocb structure
yield undefined results.

The current Linux POSIX AIO implementation is provided in user space by glibc.
This has a number of limitations, most notably that maintaining multiple threads to
perform I/O operations is expensive and scales poorly. Work has been in progress for
some time on a kernel state-machine-based implementation of asynchronous I/O (see
io_submit(2), io_setup(2), io_cancel(2), io_destroy(2), io_getevents(2)), but this im-
plementation hasn’t yet matured to the point where the POSIX AIO implementation
can be completely reimplemented using the kernel system calls.

EXAMPLES
The program below opens each of the files named in its command-line arguments and
queues a request on the resulting file descriptor using aio_read(3). The program then
loops, periodically monitoring each of the I/O operations that is still in progress using
aio_error(3). Each of the I/O requests is set up to provide notification by delivery of a
signal. After all I/O requests have completed, the program retrieves their status using
aio_return(3).

The SIGQUIT signal (generated by typing control-\) causes the program to request
cancelation of each of the outstanding requests using aio_cancel(3).

Here is an example of what we might see when running this program. In this exam-
ple, the program queues two requests to standard input, and these are satisfied by two
lines of input containing "abc" and "x".

$./a.out /dev/stdin /dev/stdin
opened /dev/stdin on descriptor 3
opened /dev/stdin on descriptor 4
aio_error():

for request 0 (descriptor 3): In progress
for request 1 (descriptor 4): In progress

abc
I/O completion signal received
aio_error():

for request 0 (descriptor 3): I/O succeeded
for request 1 (descriptor 4): In progress

aio_error():
for request 1 (descriptor 4): In progress

x
I/O completion signal received
aio_error():

for request 1 (descriptor 4): I/O succeeded
All I/O requests completed
aio_return():

for request 0 (descriptor 3): 4
for request 1 (descriptor 4): 2

Linux man-pages 6.13 2024-06-15 3075

AIO(7) Miscellaneous Information Manual AIO(7)

Program source

#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <aio.h>
#include <signal.h>

#define BUF_SIZE 20 /* Size of buffers for read operations */

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0)

struct ioRequest { /* Application-defined structure for tracking
I/O requests */

int reqNum;
int status;
struct aiocb *aiocbp;

};

static volatile sig_atomic_t gotSIGQUIT = 0;
/* On delivery of SIGQUIT, we attempt to

cancel all outstanding I/O requests */

static void /* Handler for SIGQUIT */
quitHandler(int sig)
{

gotSIGQUIT = 1;
}

#define IO_SIGNAL SIGUSR1 /* Signal used to notify I/O completion */

static void /* Handler for I/O completion signal */
aioSigHandler(int sig, siginfo_t *si, void *ucontext)
{

if (si->si_code == SI_ASYNCIO) {
write(STDOUT_FILENO, "I/O completion signal received\n", 31);

/* The corresponding ioRequest structure would be available as
struct ioRequest *ioReq = si->si_value.sival_ptr;

and the file descriptor would then be available via
ioReq->aiocbp->aio_fildes */

}
}

int
main(int argc, char *argv[])
{

Linux man-pages 6.13 2024-06-15 3076

AIO(7) Miscellaneous Information Manual AIO(7)

struct sigaction sa;
int s;
int numReqs; /* Total number of queued I/O requests */
int openReqs; /* Number of I/O requests still in progress */

if (argc < 2) {
fprintf(stderr, "Usage: %s <pathname> <pathname>...\n",

argv[0]);
exit(EXIT_FAILURE);

}

numReqs = argc - 1;

/* Allocate our arrays. */

struct ioRequest *ioList = calloc(numReqs, sizeof(*ioList));
if (ioList == NULL)

errExit("calloc");

struct aiocb *aiocbList = calloc(numReqs, sizeof(*aiocbList));
if (aiocbList == NULL)

errExit("calloc");

/* Establish handlers for SIGQUIT and the I/O completion signal. */

sa.sa_flags = SA_RESTART;
sigemptyset(&sa.sa_mask);

sa.sa_handler = quitHandler;
if (sigaction(SIGQUIT, &sa, NULL) == -1)

errExit("sigaction");

sa.sa_flags = SA_RESTART | SA_SIGINFO;
sa.sa_sigaction = aioSigHandler;
if (sigaction(IO_SIGNAL, &sa, NULL) == -1)

errExit("sigaction");

/* Open each file specified on the command line, and queue
a read request on the resulting file descriptor. */

for (size_t j = 0; j < numReqs; j++) {
ioList[j].reqNum = j;
ioList[j].status = EINPROGRESS;
ioList[j].aiocbp = &aiocbList[j];

ioList[j].aiocbp->aio_fildes = open(argv[j + 1], O_RDONLY);
if (ioList[j].aiocbp->aio_fildes == -1)

errExit("open");
printf("opened %s on descriptor %d\n", argv[j + 1],

Linux man-pages 6.13 2024-06-15 3077

AIO(7) Miscellaneous Information Manual AIO(7)

ioList[j].aiocbp->aio_fildes);

ioList[j].aiocbp->aio_buf = malloc(BUF_SIZE);
if (ioList[j].aiocbp->aio_buf == NULL)

errExit("malloc");

ioList[j].aiocbp->aio_nbytes = BUF_SIZE;
ioList[j].aiocbp->aio_reqprio = 0;
ioList[j].aiocbp->aio_offset = 0;
ioList[j].aiocbp->aio_sigevent.sigev_notify = SIGEV_SIGNAL;
ioList[j].aiocbp->aio_sigevent.sigev_signo = IO_SIGNAL;
ioList[j].aiocbp->aio_sigevent.sigev_value.sival_ptr =

&ioList[j];

s = aio_read(ioList[j].aiocbp);
if (s == -1)

errExit("aio_read");
}

openReqs = numReqs;

/* Loop, monitoring status of I/O requests. */

while (openReqs > 0) {
sleep(3); /* Delay between each monitoring step */

if (gotSIGQUIT) {

/* On receipt of SIGQUIT, attempt to cancel each of the
outstanding I/O requests, and display status returned
from the cancelation requests. */

printf("got SIGQUIT; canceling I/O requests: \n");

for (size_t j = 0; j < numReqs; j++) {
if (ioList[j].status == EINPROGRESS) {

printf(" Request %zu on descriptor %d:", j,
ioList[j].aiocbp->aio_fildes);

s = aio_cancel(ioList[j].aiocbp->aio_fildes,
ioList[j].aiocbp);

if (s == AIO_CANCELED)
printf("I/O canceled\n");

else if (s == AIO_NOTCANCELED)
printf("I/O not canceled\n");

else if (s == AIO_ALLDONE)
printf("I/O all done\n");

else
perror("aio_cancel");

}

Linux man-pages 6.13 2024-06-15 3078

AIO(7) Miscellaneous Information Manual AIO(7)

}

gotSIGQUIT = 0;
}

/* Check the status of each I/O request that is still
in progress. */

printf("aio_error():\n");
for (size_t j = 0; j < numReqs; j++) {

if (ioList[j].status == EINPROGRESS) {
printf(" for request %zu (descriptor %d): ",

j, ioList[j].aiocbp->aio_fildes);
ioList[j].status = aio_error(ioList[j].aiocbp);

switch (ioList[j].status) {
case 0:

printf("I/O succeeded\n");
break;

case EINPROGRESS:
printf("In progress\n");
break;

case ECANCELED:
printf("Canceled\n");
break;

default:
perror("aio_error");
break;

}

if (ioList[j].status != EINPROGRESS)
openReqs--;

}
}

}

printf("All I/O requests completed\n");

/* Check status return of all I/O requests. */

printf("aio_return():\n");
for (size_t j = 0; j < numReqs; j++) {

ssize_t s;

s = aio_return(ioList[j].aiocbp);
printf(" for request %zu (descriptor %d): %zd\n",

j, ioList[j].aiocbp->aio_fildes, s);
}

Linux man-pages 6.13 2024-06-15 3079

AIO(7) Miscellaneous Information Manual AIO(7)

exit(EXIT_SUCCESS);
}

SEE ALSO
io_cancel(2), io_destroy(2), io_getevents(2), io_setup(2), io_submit(2), aio_cancel(3),
aio_error(3), aio_init(3), aio_read(3), aio_return(3), aio_write(3), lio_listio(3)

"Asynchronous I/O Support in Linux 2.5", Bhattacharya, Pratt, Pulavarty, and
Morgan, Proceedings of the Linux Symposium, 2003,
〈https://www.kernel.org/doc/ols/2003/ols2003-pages-351-366.pdf〉

Linux man-pages 6.13 2024-06-15 3080

ARMSCII-8(7) Miscellaneous Information Manual ARMSCII-8(7)

NAME
armscii-8 - Armenian character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The Armenian Standard Code for Information Interchange, 8-bit coded character set.

ArmSCII-8 characters
The following table displays the characters in ArmSCII-8 that are printable and un-
listed in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
242 162 A2 ARMENIAN SMALL LIGATURE ECH YIWN
243 163 A3 ARMENIAN FULL STOP
244 164 A4) RIGHT PARENTHESIS
245 165 A5 (LEFT PARENTHESIS
246 166 A6 » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
247 167 A7 « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
250 168 A8 — EM DASH
251 169 A9 . FULL STOP
252 170 AA ARMENIAN COMMA
253 171 AB , COMMA
254 172 AC - HYPHEN-MINUS
255 173 AD ARMENIAN HYPHEN
256 174 AE … HORIZONTAL ELLIPSIS
257 175 AF ARMENIAN EXCLAMATION MARK
260 176 B0 ARMENIAN EMPHASIS MARK
261 177 B1 ARMENIAN QUESTION MARK
262 178 B2 ARMENIAN CAPITAL LETTER AYB
263 179 B3 ARMENIAN SMALL LETTER AYB
264 180 B4 ARMENIAN CAPITAL LETTER BEN
265 181 B5 ARMENIAN SMALL LETTER BEN
266 182 B6 ARMENIAN CAPITAL LETTER GIM
267 183 B7 ARMENIAN SMALL LETTER GIM
270 184 B8 ARMENIAN CAPITAL LETTER DA
271 185 B9 ARMENIAN SMALL LETTER DA
272 186 BA ARMENIAN CAPITAL LETTER ECH
273 187 BB ARMENIAN SMALL LETTER ECH
274 188 BC ARMENIAN CAPITAL LETTER ZA
275 189 BD ARMENIAN SMALL LETTER ZA
276 190 BE ARMENIAN CAPITAL LETTER EH
277 191 BF ARMENIAN SMALL LETTER EH
300 192 C0 ARMENIAN CAPITAL LETTER ET
301 193 C1 ARMENIAN SMALL LETTER ET
302 194 C2 ARMENIAN CAPITAL LETTER TO
303 195 C3 ARMENIAN SMALL LETTER TO
304 196 C4 ARMENIAN CAPITAL LETTER ZHE
305 197 C5 ARMENIAN SMALL LETTER ZHE
306 198 C6 ARMENIAN CAPITAL LETTER INI
307 199 C7 ARMENIAN SMALL LETTER INI

Linux man-pages 6.13 2024-05-02 3081

ARMSCII-8(7) Miscellaneous Information Manual ARMSCII-8(7)

310 200 C8 ARMENIAN CAPITAL LETTER LIWN
311 201 C9 ARMENIAN SMALL LETTER LIWN
312 202 CA ARMENIAN CAPITAL LETTER XEH
313 203 CB ARMENIAN SMALL LETTER XEH
314 204 CC ARMENIAN CAPITAL LETTER CA
315 205 CD ARMENIAN SMALL LETTER CA
316 206 CE ARMENIAN CAPITAL LETTER KEN
317 207 CF ARMENIAN SMALL LETTER KEN
320 208 D0 ARMENIAN CAPITAL LETTER HO
321 209 D1 ARMENIAN SMALL LETTER HO
322 210 D2 ARMENIAN CAPITAL LETTER JA
323 211 D3 ARMENIAN SMALL LETTER JA
324 212 D4 ARMENIAN CAPITAL LETTER GHAD
325 213 D5 ARMENIAN SMALL LETTER GHAD
326 214 D6 ARMENIAN CAPITAL LETTER CHEH
327 215 D7 ARMENIAN SMALL LETTER CHEH
330 216 D8 ARMENIAN CAPITAL LETTER MEN
331 217 D9 ARMENIAN SMALL LETTER MEN
332 218 DA ARMENIAN CAPITAL LETTER YI
333 219 DB ARMENIAN SMALL LETTER YI
334 220 DC ARMENIAN CAPITAL LETTER NOW
335 221 DD ARMENIAN SMALL LETTER NOW
336 222 DE ARMENIAN CAPITAL LETTER SHA
337 223 DF ARMENIAN SMALL LETTER SHA
340 224 E0 ARMENIAN CAPITAL LETTER VO
341 225 E1 ARMENIAN SMALL LETTER VO
342 226 E2 ARMENIAN CAPITAL LETTER CHA
343 227 E3 ARMENIAN SMALL LETTER CHA
344 228 E4 ARMENIAN CAPITAL LETTER PEH
345 229 E5 ARMENIAN SMALL LETTER PEH
346 230 E6 ARMENIAN CAPITAL LETTER JHEH
347 231 E7 ARMENIAN SMALL LETTER JHEH
350 232 E8 ARMENIAN CAPITAL LETTER RA
351 233 E9 ARMENIAN SMALL LETTER RA
352 234 EA ARMENIAN CAPITAL LETTER SEH
353 235 EB ARMENIAN SMALL LETTER SEH
354 236 EC ARMENIAN CAPITAL LETTER VEW
355 237 ED ARMENIAN SMALL LETTER VEW
356 238 EE ARMENIAN CAPITAL LETTER TIWN
357 239 EF ARMENIAN SMALL LETTER TIWN
360 240 F0 ARMENIAN CAPITAL LETTER REH
361 241 F1 ARMENIAN SMALL LETTER REH
362 242 F2 ARMENIAN CAPITAL LETTER CO
363 243 F3 ARMENIAN SMALL LETTER CO
364 244 F4 ARMENIAN CAPITAL LETTER YIWN
365 245 F5 ARMENIAN SMALL LETTER YIWN
366 246 F6 ARMENIAN CAPITAL LETTER PIWR
367 247 F7 ARMENIAN SMALL LETTER PIWR

Linux man-pages 6.13 2024-05-02 3082

ARMSCII-8(7) Miscellaneous Information Manual ARMSCII-8(7)

370 248 F8 ARMENIAN CAPITAL LETTER KEH
371 249 F9 ARMENIAN SMALL LETTER KEH
372 250 FA ARMENIAN CAPITAL LETTER OH
373 251 FB ARMENIAN SMALL LETTER OH
374 252 FC ARMENIAN CAPITAL LETTER FEH
375 253 FD ARMENIAN SMALL LETTER FEH
376 254 FE ARMENIAN APOSTROPHE

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3083

arp(7) Miscellaneous Information Manual arp(7)

NAME
arp - Linux ARP kernel module.

DESCRIPTION
This kernel protocol module implements the Address Resolution Protocol defined in
RFC 826. It is used to convert between Layer2 hardware addresses and IPv4 protocol
addresses on directly connected networks. The user normally doesn’t interact directly
with this module except to configure it; instead it provides a service for other proto-
cols in the kernel.

A user process can receive ARP packets by using packet(7) sockets. There is also a
mechanism for managing the ARP cache in user-space by using netlink(7) sockets.
The ARP table can also be controlled via ioctl(2) on any AF_INET socket.

The ARP module maintains a cache of mappings between hardware addresses and
protocol addresses. The cache has a limited size so old and less frequently used en-
tries are garbage-collected. Entries which are marked as permanent are never deleted
by the garbage-collector. The cache can be directly manipulated by the use of ioctls
and its behavior can be tuned by the /proc interfaces described below.

When there is no positive feedback for an existing mapping after some time (see the
/proc interfaces below), a neighbor cache entry is considered stale. Positive feedback
can be gotten from a higher layer; for example from a successful TCP ACK. Other
protocols can signal forward progress using the MSG_CONFIRM flag to
sendmsg(2). When there is no forward progress, ARP tries to reprobe. It first tries to
ask a local arp daemon app_solicit times for an updated MAC address. If that fails
and an old MAC address is known, a unicast probe is sent ucast_solicit times. If that
fails too, it will broadcast a new ARP request to the network. Requests are sent only
when there is data queued for sending.

Linux will automatically add a nonpermanent proxy arp entry when it receives a re-
quest for an address it forwards to and proxy arp is enabled on the receiving interface.
When there is a reject route for the target, no proxy arp entry is added.

Ioctls
Three ioctls are available on all AF_INET sockets. They take a pointer to a struct
arpreq as their argument.

struct arpreq {
struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
int arp_flags; /* flags */
struct sockaddr arp_netmask; /* netmask of protocol address */
char arp_dev[16];

};

SIOCSARP, SIOCDARP and SIOCGARP respectively set, delete, and get an ARP
mapping. Setting and deleting ARP maps are privileged operations and may be per-
formed only by a process with the CAP_NET_ADMIN capability or an effective
UID of 0.

arp_pa must be an AF_INET address and arp_ha must have the same type as the de-
vice which is specified in arp_dev. arp_dev is a zero-terminated string which names
a device.

Linux man-pages 6.13 2024-05-02 3084

arp(7) Miscellaneous Information Manual arp(7)

arp_flags
flag meaning
ATF_COM Lookup complete
ATF_PERM Permanent entry
ATF_PUBL Publish entry
ATF_USETRAILERS Trailers requested
ATF_NETMASK Use a netmask
ATF_DONTPUB Don’t answer

If the ATF_NETMASK flag is set, then arp_netmask should be valid. Linux 2.2
does not support proxy network ARP entries, so this should be set to 0xffffffff, or 0 to
remove an existing proxy arp entry. ATF_USETRAILERS is obsolete and should
not be used.

/proc interfaces
ARP supports a range of /proc interfaces to configure parameters on a global or per-
interface basis. The interfaces can be accessed by reading or writing the
/proc/sys/net/ipv4/neigh/*/* files. Each interface in the system has its own directory
in /proc/sys/net/ipv4/neigh/ . The setting in the "default" directory is used for all
newly created devices. Unless otherwise specified, time-related interfaces are speci-
fied in seconds.

anycast_delay (since Linux 2.2)
The maximum number of jiffies to delay before replying to a IPv6 neighbor
solicitation message. Anycast support is not yet implemented. Defaults to 1
second.

app_solicit (since Linux 2.2)
The maximum number of probes to send to the user space ARP daemon via
netlink before dropping back to multicast probes (see mcast_solicit). Defaults
to 0.

base_reachable_time (since Linux 2.2)
Once a neighbor has been found, the entry is considered to be valid for at least
a random value between base_reachable_time/2 and 3*base_reach-
able_time/2. An entry’s validity will be extended if it receives positive feed-
back from higher level protocols. Defaults to 30 seconds. This file is now ob-
solete in favor of base_reachable_time_ms.

base_reachable_time_ms (since Linux 2.6.12)
As for base_reachable_time, but measures time in milliseconds. Defaults to
30000 milliseconds.

delay_first_probe_time (since Linux 2.2)
Delay before first probe after it has been decided that a neighbor is stale. De-
faults to 5 seconds.

gc_interval (since Linux 2.2)
How frequently the garbage collector for neighbor entries should attempt to
run. Defaults to 30 seconds.

Linux man-pages 6.13 2024-05-02 3085

arp(7) Miscellaneous Information Manual arp(7)

gc_stale_time (since Linux 2.2)
Determines how often to check for stale neighbor entries. When a neighbor
entry is considered stale, it is resolved again before sending data to it. De-
faults to 60 seconds.

gc_thresh1 (since Linux 2.2)
The minimum number of entries to keep in the ARP cache. The garbage col-
lector will not run if there are fewer than this number of entries in the cache.
Defaults to 128.

gc_thresh2 (since Linux 2.2)
The soft maximum number of entries to keep in the ARP cache. The garbage
collector will allow the number of entries to exceed this for 5 seconds before
collection will be performed. Defaults to 512.

gc_thresh3 (since Linux 2.2)
The hard maximum number of entries to keep in the ARP cache. The garbage
collector will always run if there are more than this number of entries in the
cache. Defaults to 1024.

locktime (since Linux 2.2)
The minimum number of jiffies to keep an ARP entry in the cache. This pre-
vents ARP cache thrashing if there is more than one potential mapping (gener-
ally due to network misconfiguration). Defaults to 1 second.

mcast_solicit (since Linux 2.2)
The maximum number of attempts to resolve an address by multicast/broad-
cast before marking the entry as unreachable. Defaults to 3.

proxy_delay (since Linux 2.2)
When an ARP request for a known proxy-ARP address is received, delay up to
proxy_delay jiffies before replying. This is used to prevent network flooding
in some cases. Defaults to 0.8 seconds.

proxy_qlen (since Linux 2.2)
The maximum number of packets which may be queued to proxy-ARP ad-
dresses. Defaults to 64.

retrans_time (since Linux 2.2)
The number of jiffies to delay before retransmitting a request. Defaults to 1
second. This file is now obsolete in favor of retrans_time_ms.

retrans_time_ms (since Linux 2.6.12)
The number of milliseconds to delay before retransmitting a request. Defaults
to 1000 milliseconds.

ucast_solicit (since Linux 2.2)
The maximum number of attempts to send unicast probes before asking the
ARP daemon (see app_solicit). Defaults to 3.

unres_qlen (since Linux 2.2)
The maximum number of packets which may be queued for each unresolved
address by other network layers. Defaults to 3.

Linux man-pages 6.13 2024-05-02 3086

arp(7) Miscellaneous Information Manual arp(7)

VERSIONS
The struct arpreq changed in Linux 2.0 to include the arp_dev member and the ioctl
numbers changed at the same time. Support for the old ioctls was dropped in Linux
2.2.

Support for proxy arp entries for networks (netmask not equal 0xffffffff) was dropped
in Linux 2.2. It is replaced by automatic proxy arp setup by the kernel for all reach-
able hosts on other interfaces (when forwarding and proxy arp is enabled for the inter-
face).

The neigh/* interfaces did not exist before Linux 2.2.

BUGS
Some timer settings are specified in jiffies, which is architecture- and kernel version-
dependent; see time(7).

There is no way to signal positive feedback from user space. This means connection-
oriented protocols implemented in user space will generate excessive ARP traffic, be-
cause ndisc will regularly reprobe the MAC address. The same problem applies for
some kernel protocols (e.g., NFS over UDP).

This man page mashes together functionality that is IPv4-specific with functionality
that is shared between IPv4 and IPv6.

SEE ALSO
capabilities(7), ip(7), arpd(8)

RFC 826 for a description of ARP. RFC 2461 for a description of IPv6 neighbor dis-
covery and the base algorithms used. Linux 2.2+ IPv4 ARP uses the IPv6 algorithms
when applicable.

Linux man-pages 6.13 2024-05-02 3087

ascii(7) Miscellaneous Information Manual ascii(7)

NAME
ascii - ASCII character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
ASCII is the American Standard Code for Information Interchange. It is a 7-bit code.
Many 8-bit codes (e.g., ISO/IEC 8859-1) contain ASCII as their lower half. The in-
ternational counterpart of ASCII is known as ISO/IEC 646-IRV.

The following table contains the 128 ASCII characters.

C program '\X' escapes are noted.

Oct Dec Hex Char Oct Dec Hex Char

000 0 00 NUL '\0' (null character) 100 64 40 @
001 1 01 SOH (start of heading) 101 65 41 A
002 2 02 STX (start of text) 102 66 42 B
003 3 03 ETX (end of text) 103 67 43 C
004 4 04 EOT (end of transmission) 104 68 44 D
005 5 05 ENQ (enquiry) 105 69 45 E
006 6 06 ACK (acknowledge) 106 70 46 F
007 7 07 BEL '\a' (bell) 107 71 47 G
010 8 08 BS '\b' (backspace) 110 72 48 H
011 9 09 HT '\t' (horizontal tab) 111 73 49 I
012 10 0A LF '\n' (new line) 112 74 4A J
013 11 0B VT '\v' (vertical tab) 113 75 4B K
014 12 0C FF '\f' (form feed) 114 76 4C L
015 13 0D CR '\r' (carriage ret) 115 77 4D M
016 14 0E SO (shift out) 116 78 4E N
017 15 0F SI (shift in) 117 79 4F O
020 16 10 DLE (data link escape) 120 80 50 P
021 17 11 DC1 (device control 1) 121 81 51 Q
022 18 12 DC2 (device control 2) 122 82 52 R
023 19 13 DC3 (device control 3) 123 83 53 S
024 20 14 DC4 (device control 4) 124 84 54 T
025 21 15 NAK (negative ack.) 125 85 55 U
026 22 16 SYN (synchronous idle) 126 86 56 V
027 23 17 ETB (end of trans. blk) 127 87 57 W
030 24 18 CAN (cancel) 130 88 58 X
031 25 19 EM (end of medium) 131 89 59 Y
032 26 1A SUB (substitute) 132 90 5A Z
033 27 1B ESC (escape) 133 91 5B [
034 28 1C FS (file separator) 134 92 5C \ '\\'
035 29 1D GS (group separator) 135 93 5D]
036 30 1E RS (record separator) 136 94 5E ^
037 31 1F US (unit separator) 137 95 5F _
040 32 20 SPACE 140 96 60 `
041 33 21 ! 141 97 61 a
042 34 22 " 142 98 62 b
043 35 23 # 143 99 63 c
044 36 24 $ 144 100 64 d

Linux man-pages 6.13 2024-06-15 3088

ascii(7) Miscellaneous Information Manual ascii(7)

045 37 25 % 145 101 65 e
046 38 26 & 146 102 66 f
047 39 27 ' 147 103 67 g
050 40 28 (150 104 68 h
051 41 29) 151 105 69 i
052 42 2A * 152 106 6A j
053 43 2B + 153 107 6B k
054 44 2C , 154 108 6C l
055 45 2D - 155 109 6D m
056 46 2E . 156 110 6E n
057 47 2F / 157 111 6F o
060 48 30 0 160 112 70 p
061 49 31 1 161 113 71 q
062 50 32 2 162 114 72 r
063 51 33 3 163 115 73 s
064 52 34 4 164 116 74 t
065 53 35 5 165 117 75 u
066 54 36 6 166 118 76 v
067 55 37 7 167 119 77 w
070 56 38 8 170 120 78 x
071 57 39 9 171 121 79 y
072 58 3A : 172 122 7A z
073 59 3B ; 173 123 7B {
074 60 3C < 174 124 7C |
075 61 3D = 175 125 7D }
076 62 3E > 176 126 7E ~
077 63 3F ? 177 127 7F DEL

Tables
For convenience, below are more compact tables in hex and decimal.

2 3 4 5 6 7 30 40 50 60 70 80 90 100 110 120
------------- ---------------------------------

0: 0 @ P ` p 0: (2 < F P Z d n x
1: ! 1 A Q a q 1:) 3 = G Q [e o y
2: " 2 B R b r 2: * 4 > H R \ f p z
3: # 3 C S c s 3: ! + 5 ? I S] g q {
4: $ 4 D T d t 4: " , 6 @ J T ^ h r |
5: % 5 E U e u 5: # - 7 A K U _ i s }
6: & 6 F V f v 6: $. 8 B L V ` j t ~
7: ' 7 G W g w 7: % / 9 C M W a k u DEL
8: (8 H X h x 8: & 0 : D N X b l v
9:) 9 I Y i y 9: ' 1 ; E O Y c m w
A: * : J Z j z
B: + ; K [k {
C: , < L \ l |
D: - = M] m }
E: . > N ^ n ~
F: / ? O _ o DEL

Linux man-pages 6.13 2024-06-15 3089

ascii(7) Miscellaneous Information Manual ascii(7)

NOTES
History

/etc/ascii (VII) appears in the UNIX Programmer’s Manual.

On older terminals, the underscore code is displayed as a left arrow, called backarrow,
the caret is displayed as an up-arrow and the vertical bar has a hole in the middle.

Uppercase and lowercase characters differ by just one bit and the ASCII character 2
differs from the double quote by just one bit, too. That made it much easier to encode
characters mechanically or with a non-microcontroller-based electronic keyboard and
that pairing was found on old teletypes.

The ASCII standard was published by the United States of America Standards Insti-
tute (USASI) in 1968.

SEE ALSO
charsets(7), iso_8859-1(7), iso_8859-2(7), iso_8859-3(7), iso_8859-4(7),
iso_8859-5(7), iso_8859-6(7), iso_8859-7(7), iso_8859-8(7), iso_8859-9(7),
iso_8859-10(7), iso_8859-11(7), iso_8859-13(7), iso_8859-14(7), iso_8859-15(7),
iso_8859-16(7), utf-8(7)

Linux man-pages 6.13 2024-06-15 3090

attributes(7) Miscellaneous Information Manual attributes(7)

NAME
attributes - POSIX safety concepts

DESCRIPTION
Note: the text of this man page is based on the material taken from the "POSIX Safety
Concepts" section of the GNU C Library manual. Further details on the topics de-
scribed here can be found in that manual.

Various function manual pages include a section ATTRIBUTES that describes the
safety of calling the function in various contexts. This section annotates functions
with the following safety markings:

MT-Safe
MT-Safe or Thread-Safe functions are safe to call in the presence of other
threads. MT, in MT-Safe, stands for Multi Thread.

Being MT-Safe does not imply a function is atomic, nor that it uses any of the
memory synchronization mechanisms POSIX exposes to users. It is even pos-
sible that calling MT-Safe functions in sequence does not yield an MT-Safe
combination. For example, having a thread call two MT-Safe functions one
right after the other does not guarantee behavior equivalent to atomic execu-
tion of a combination of both functions, since concurrent calls in other threads
may interfere in a destructive way.

Whole-program optimizations that could inline functions across library inter-
faces may expose unsafe reordering, and so performing inlining across the
GNU C Library interface is not recommended. The documented MT-Safety
status is not guaranteed under whole-program optimization. However, func-
tions defined in user-visible headers are designed to be safe for inlining.

MT-Unsafe
MT-Unsafe functions are not safe to call in a multithreaded programs.

Other keywords that appear in safety notes are defined in subsequent sections.

Conditionally safe features
For some features that make functions unsafe to call in certain contexts, there are
known ways to avoid the safety problem other than refraining from calling the func-
tion altogether. The keywords that follow refer to such features, and each of their def-
initions indicates how the whole program needs to be constrained in order to remove
the safety problem indicated by the keyword. Only when all the reasons that make a
function unsafe are observed and addressed, by applying the documented constraints,
does the function become safe to call in a context.

init Functions marked with init as an MT-Unsafe feature perform MT-Unsafe ini-
tialization when they are first called.

Calling such a function at least once in single-threaded mode removes this
specific cause for the function to be regarded as MT-Unsafe. If no other cause
for that remains, the function can then be safely called after other threads are
started.

race Functions annotated with race as an MT-Safety issue operate on objects in
ways that may cause data races or similar forms of destructive interference out
of concurrent execution. In some cases, the objects are passed to the functions

Linux man-pages 6.13 2024-11-17 3091

attributes(7) Miscellaneous Information Manual attributes(7)

by users; in others, they are used by the functions to return values to users; in
others, they are not even exposed to users.

const Functions marked with const as an MT-Safety issue non-atomically modify in-
ternal objects that are better regarded as constant, because a substantial portion
of the GNU C Library accesses them without synchronization. Unlike race,
which causes both readers and writers of internal objects to be regarded as
MT-Unsafe, this mark is applied to writers only. Writers remain MT-Unsafe to
call, but the then-mandatory constness of objects they modify enables readers
to be regarded as MT-Safe (as long as no other reasons for them to be unsafe
remain), since the lack of synchronization is not a problem when the objects
are effectively constant.

The identifier that follows the const mark will appear by itself as a safety note
in readers. Programs that wish to work around this safety issue, so as to call
writers, may use a non-recursive read-write lock associated with the identifier,
and guard all calls to functions marked with const followed by the identifier
with a write lock, and all calls to functions marked with the identifier by itself
with a read lock.

sig Functions marked with sig as a MT-Safety issue may temporarily install a sig-
nal handler for internal purposes, which may interfere with other uses of the
signal, identified after a colon.

This safety problem can be worked around by ensuring that no other uses of
the signal will take place for the duration of the call. Holding a non-recursive
mutex while calling all functions that use the same temporary signal; blocking
that signal before the call and resetting its handler afterwards is recommended.

term Functions marked with term as an MT-Safety issue may change the terminal
settings in the recommended way, namely: call tcgetattr(3), modify some
flags, and then call tcsetattr(3), this creates a window in which changes made
by other threads are lost. Thus, functions marked with term are MT-Unsafe.

It is thus advisable for applications using the terminal to avoid concurrent and
reentrant interactions with it, by not using it in signal handlers or blocking sig-
nals that might use it, and holding a lock while calling these functions and in-
teracting with the terminal. This lock should also be used for mutual exclu-
sion with functions marked with race:tcattr(fd), where fd is a file descriptor
for the controlling terminal. The caller may use a single mutex for simplicity,
or use one mutex per terminal, even if referenced by different file descriptors.

Other safety remarks
Additional keywords may be attached to functions, indicating features that do not
make a function unsafe to call, but that may need to be taken into account in certain
classes of programs:

locale Functions annotated with locale as an MT-Safety issue read from the locale
object without any form of synchronization. Functions annotated with locale
called concurrently with locale changes may behave in ways that do not corre-
spond to any of the locales active during their execution, but an unpredictable
mix thereof.

Linux man-pages 6.13 2024-11-17 3092

attributes(7) Miscellaneous Information Manual attributes(7)

We do not mark these functions as MT-Unsafe, however, because functions
that modify the locale object are marked with const:locale and regarded as un-
safe. Being unsafe, the latter are not to be called when multiple threads are
running or asynchronous signals are enabled, and so the locale can be consid-
ered effectively constant in these contexts, which makes the former safe.

env Functions marked with env as an MT-Safety issue access the environment with
getenv(3) or similar, without any guards to ensure safety in the presence of
concurrent modifications.

We do not mark these functions as MT-Unsafe, however, because functions
that modify the environment are all marked with const:env and regarded as un-
safe. Being unsafe, the latter are not to be called when multiple threads are
running or asynchronous signals are enabled, and so the environment can be
considered effectively constant in these contexts, which makes the former safe.

hostid
Functions marked with hostid as an MT-Safety issue read from the system-
wide data structures that hold the "host ID" of the machine. These data struc-
tures cannot generally be modified atomically. Since it is expected that the
"host ID" will not normally change, the function that reads from it (geth-
ostid(3)) is regarded as safe, whereas the function that modifies it
(sethostid(3)) is marked with const:hostid , indicating it may require special
care if it is to be called. In this specific case, the special care amounts to sys-
tem-wide (not merely intra-process) coordination.

sigintr
Functions marked with sigintr as an MT-Safety issue access the GNU C Li-
brary _sigintr internal data structure without any guards to ensure safety in the
presence of concurrent modifications.

We do not mark these functions as MT-Unsafe, however, because functions
that modify this data structure are all marked with const:sigintr and regarded
as unsafe. Being unsafe, the latter are not to be called when multiple threads
are running or asynchronous signals are enabled, and so the data structure can
be considered effectively constant in these contexts, which makes the former
safe.

cwd Functions marked with cwd as an MT-Safety issue may temporarily change
the current working directory during their execution, which may cause relative
pathnames to be resolved in unexpected ways in other threads or within asyn-
chronous signal or cancelation handlers.

This is not enough of a reason to mark so-marked functions as MT-Unsafe, but
when this behavior is optional (e.g., nftw(3) with FTW_CHDIR), avoiding the
option may be a good alternative to using full pathnames or file descriptor-rel-
ative (e.g., openat(2)) system calls.

:identifier
Annotations may sometimes be followed by identifiers, intended to group sev-
eral functions that, for example, access the data structures in an unsafe way, as
in race and const, or to provide more specific information, such as naming a
signal in a function marked with sig. It is envisioned that it may be applied to

Linux man-pages 6.13 2024-11-17 3093

attributes(7) Miscellaneous Information Manual attributes(7)

lock and corrupt as well in the future.

In most cases, the identifier will name a set of functions, but it may name
global objects or function arguments, or identifiable properties or logical com-
ponents associated with them, with a notation such as, for example, :buf(arg)
to denote a buffer associated with the argument arg, or :tcattr(fd) to denote the
terminal attributes of a file descriptor fd .

The most common use for identifiers is to provide logical groups of functions
and arguments that need to be protected by the same synchronization primitive
in order to ensure safe operation in a given context.

/condition
Some safety annotations may be conditional, in that they only apply if a
boolean expression involving arguments, global variables or even the underly-
ing kernel evaluates to true. For example, /!ps and /one_per_line indicate the
preceding marker only applies when argument ps is NULL, or global variable
one_per_line is nonzero.

When all marks that render a function unsafe are adorned with such condi-
tions, and none of the named conditions hold, then the function can be re-
garded as safe.

SEE ALSO
pthreads(7), signal-safety(7)

Linux man-pages 6.13 2024-11-17 3094

boot(7) Miscellaneous Information Manual boot(7)

NAME
boot - System bootup process based on UNIX System V Release 4

DESCRIPTION
The bootup process (or "boot sequence") varies in details among systems, but can be
roughly divided into phases controlled by the following components:

(1) hardware

(2) operating system (OS) loader

(3) kernel

(4) root user-space process (init and inittab)

(5) boot scripts

Each of these is described below in more detail.

Hardware
After power-on or hard reset, control is given to a program stored in read-only mem-
ory (normally PROM); for historical reasons involving the personal computer, this
program is often called "the BIOS".

This program normally performs a basic self-test of the machine and accesses non-
volatile memory to read further parameters. This memory in the PC is battery-backed
CMOS memory, so most people refer to it as "the CMOS"; outside of the PC world, it
is usually called "the NVRAM" (nonvolatile RAM).

The parameters stored in the NVRAM vary among systems, but as a minimum, they
should specify which device can supply an OS loader, or at least which devices may
be probed for one; such a device is known as "the boot device". The hardware boot
stage loads the OS loader from a fixed position on the boot device, and then transfers
control to it.

Note: The device from which the OS loader is read may be attached via a network,
in which case the details of booting are further specified by protocols such as
DHCP, TFTP, PXE, Etherboot, etc.

OS loader
The main job of the OS loader is to locate the kernel on some device, load it, and run
it. Most OS loaders allow interactive use, in order to enable specification of an alter-
native kernel (maybe a backup in case the one last compiled isn’t functioning) and to
pass optional parameters to the kernel.

In a traditional PC, the OS loader is located in the initial 512-byte block of the boot
device; this block is known as "the MBR" (Master Boot Record).

In most systems, the OS loader is very limited due to various constraints. Even on
non-PC systems, there are some limitations on the size and complexity of this loader,
but the size limitation of the PC MBR (512 bytes, including the partition table) makes
it almost impossible to squeeze much functionality into it.

Therefore, most systems split the role of loading the OS between a primary OS loader
and a secondary OS loader; this secondary OS loader may be located within a larger
portion of persistent storage, such as a disk partition.

In Linux, the OS loader is often grub(8) (an alternative is lilo(8)).

Linux man-pages 6.13 2024-05-02 3095

boot(7) Miscellaneous Information Manual boot(7)

Kernel
When the kernel is loaded, it initializes various components of the computer and oper-
ating system; each portion of software responsible for such a task is usually consider
"a driver" for the applicable component. The kernel starts the virtual memory swap-
per (it is a kernel process, called "kswapd" in a modern Linux kernel), and mounts
some filesystem at the root path, / .

Some of the parameters that may be passed to the kernel relate to these activities (for
example, the default root filesystem can be overridden); for further information on
Linux kernel parameters, read bootparam(7).

Only then does the kernel create the initial userland process, which is given the num-
ber 1 as its PID (process ID). Traditionally, this process executes the program
/sbin/init, to which are passed the parameters that haven’t already been handled by
the kernel.

Root user-space process
Note: The following description applies to an OS based on UNIX System V Release

4. However, a number of widely used systems have adopted a related but fun-
damentally different approach known as systemd(1), for which the bootup
process is detailed in its associated bootup(7)

When /sbin/init starts, it reads /etc/inittab for further instructions. This file defines
what should be run when the /sbin/init program is instructed to enter a particular run
level, giving the administrator an easy way to establish an environment for some us-
age; each run level is associated with a set of services (for example, run level S is sin-
gle-user mode, and run level 2 entails running most network services).

The administrator may change the current run level via init(1), and query the current
run level via runlevel(8)

However, since it is not convenient to manage individual services by editing this file,
/etc/inittab only bootstraps a set of scripts that actually start/stop the individual ser-
vices.

Boot scripts
Note: The following description applies to an OS based on UNIX System V Release

4. However, a number of widely used systems (Slackware Linux, FreeBSD,
OpenBSD) have a somewhat different scheme for boot scripts.

For each managed service (mail, nfs server, cron, etc.), there is a single startup script
located in a specific directory (/etc/init.d in most versions of Linux). Each of these
scripts accepts as a single argument the word "start" (causing it to start the service) or
the word "stop" (causing it to stop the service). The script may optionally accept
other "convenience" parameters (e.g., "restart" to stop and then start, "status" to dis-
play the service status, etc.). Running the script without parameters displays the pos-
sible arguments.

Sequencing directories
To make specific scripts start/stop at specific run levels and in a specific order, there
are sequencing directories, normally of the form /etc/rc[0-6S].d. In each of these di-
rectories, there are links (usually symbolic) to the scripts in the /etc/init.d directory.

A primary script (usually /etc/rc) is called from inittab(5); this primary script calls
each service’s script via a link in the relevant sequencing directory. Each link whose

Linux man-pages 6.13 2024-05-02 3096

boot(7) Miscellaneous Information Manual boot(7)

name begins with 'S' is called with the argument "start" (thereby starting the service).
Each link whose name begins with 'K' is called with the argument "stop" (thereby
stopping the service).

To define the starting or stopping order within the same run level, the name of a link
contains an order-number. Also, for clarity, the name of a link usually ends with the
name of the service to which it refers. For example, the link /etc/rc2.d/S80sendmail
starts the sendmail(8) service on run level 2. This happens after /etc/rc2.d/S12syslog
is run but before /etc/rc2.d/S90xfs is run.

To manage these links is to manage the boot order and run levels; under many sys-
tems, there are tools to help with this task (e.g., chkconfig(8)).

Boot configuration
A program that provides a service is often called a "daemon". Usually, a daemon
may receive various command-line options and parameters. To allow a system admin-
istrator to change these inputs without editing an entire boot script, some separate
configuration file is used, and is located in a specific directory where an associated
boot script may find it (/etc/sysconfig on older Red Hat systems).

In older UNIX systems, such a file contained the actual command line options for a
daemon, but in modern Linux systems (and also in HP-UX), it just contains shell vari-
ables. A boot script in /etc/init.d reads and includes its configuration file (that is, it
"sources" its configuration file) and then uses the variable values.

FILES
/etc/init.d/ , /etc/rc[S0-6].d/ , /etc/sysconfig/

SEE ALSO
init(1), systemd(1), inittab(5), bootparam(7), bootup(7), runlevel(8), shutdown(8)

Linux man-pages 6.13 2024-05-02 3097

bootparam(7) Miscellaneous Information Manual bootparam(7)

NAME
bootparam - introduction to boot time parameters of the Linux kernel

DESCRIPTION
The Linux kernel accepts certain ’command-line options’ or ’boot time parameters’ at
the moment it is started. In general, this is used to supply the kernel with information
about hardware parameters that the kernel would not be able to determine on its own,
or to avoid/override the values that the kernel would otherwise detect.

When the kernel is booted directly by the BIOS, you have no opportunity to specify
any parameters. So, in order to take advantage of this possibility you have to use a
boot loader that is able to pass parameters, such as GRUB.

The argument list
The kernel command line is parsed into a list of strings (boot arguments) separated by
spaces. Most of the boot arguments have the form:

name[=value_1][,value_2]...[,value_10]

where ’name’ is a unique keyword that is used to identify what part of the kernel the
associated values (if any) are to be given to. Note the limit of 10 is real, as the present
code handles only 10 comma separated parameters per keyword. (However, you can
reuse the same keyword with up to an additional 10 parameters in unusually compli-
cated situations, assuming the setup function supports it.)

Most of the sorting is coded in the kernel source file init/main.c. First, the kernel
checks to see if the argument is any of the special arguments ’root=’, ’nfsroot=’, ’nf-
saddrs=’, ’ro’, ’rw’, ’debug’, or ’init’. The meaning of these special arguments is de-
scribed below.

Then it walks a list of setup functions to see if the specified argument string (such as
’foo’) has been associated with a setup function (’foo_setup()’) for a particular device
or part of the kernel. If you passed the kernel the line foo=3,4,5,6 then the kernel
would search the bootsetups array to see if ’foo’ was registered. If it was, then it
would call the setup function associated with ’foo’ (foo_setup()) and hand it the argu-
ments 3, 4, 5, and 6 as given on the kernel command line.

Anything of the form ’foo=bar’ that is not accepted as a setup function as described
above is then interpreted as an environment variable to be set. A (useless?) example
would be to use ’TERM=vt100’ as a boot argument.

Any remaining arguments that were not picked up by the kernel and were not inter-
preted as environment variables are then passed onto PID 1, which is usually the
init(1) program. The most common argument that is passed to the init process is the
word ’single’ which instructs it to boot the computer in single user mode, and not
launch all the usual daemons. Check the manual page for the version of init(1) in-
stalled on your system to see what arguments it accepts.

General non-device-specific boot arguments
’init=...’

This sets the initial command to be executed by the kernel. If this is not set, or
cannot be found, the kernel will try /sbin/init, then /etc/init, then /bin/init,
then /bin/sh and panic if all of this fails.

Linux man-pages 6.13 2024-06-28 3098

bootparam(7) Miscellaneous Information Manual bootparam(7)

’nfsaddrs=...’
This sets the NFS boot address to the given string. This boot address is used
in case of a net boot.

’nfsroot=...’
This sets the NFS root name to the given string. If this string does not begin
with ’/’ or ’,’ or a digit, then it is prefixed by ’/tftpboot/’. This root name is
used in case of a net boot.

’root=...’
This argument tells the kernel what device is to be used as the root filesystem
while booting. The default of this setting is determined at compile time, and
usually is the value of the root device of the system that the kernel was built
on. To override this value, and select the second floppy drive as the root de-
vice, one would use ’root=/dev/fd1’.

The root device can be specified symbolically or numerically. A symbolic
specification has the form /dev/XXYN , where XX designates the device type
(e.g., ’hd’ for ST-506 compatible hard disk, with Y in ’a’–’d’; ’sd’ for SCSI
compatible disk, with Y in ’a’–’e’), Y the driver letter or number, and N the
number (in decimal) of the partition on this device.

Note that this has nothing to do with the designation of these devices on your
filesystem. The ’/dev/’ part is purely conventional.

The more awkward and less portable numeric specification of the above possi-
ble root devices in major/minor format is also accepted. (For example,
/dev/sda3 is major 8, minor 3, so you could use ’root=0x803’ as an alterna-
tive.)

’rootdelay=’
This parameter sets the delay (in seconds) to pause before attempting to mount
the root filesystem.

’rootflags=...’
This parameter sets the mount option string for the root filesystem (see also
fstab(5)).

’rootfstype=...’
The ’rootfstype’ option tells the kernel to mount the root filesystem as if it
where of the type specified. This can be useful (for example) to mount an ext3
filesystem as ext2 and then remove the journal in the root filesystem, in fact re-
verting its format from ext3 to ext2 without the need to boot the box from al-
ternate media.

’ro’
’rw’ The ’ro’ option tells the kernel to mount the root filesystem as ’read-only’ so

that filesystem consistency check programs (fsck) can do their work on a qui-
escent filesystem. No processes can write to files on the filesystem in question
until it is ’remounted’ as read/write capable, for example, by ’mount -w -n -o
remount /’. (See also mount(8)

The ’rw’ option tells the kernel to mount the root filesystem read/write. This
is the default.

Linux man-pages 6.13 2024-06-28 3099

bootparam(7) Miscellaneous Information Manual bootparam(7)

’resume=...’
This tells the kernel the location of the suspend-to-disk data that you want the
machine to resume from after hibernation. Usually, it is the same as your
swap partition or file. Example:

resume=/dev/hda2

’reserve=...’
This is used to protect I/O port regions from probes. The form of the com-
mand is:

reserve=iobase,extent[,iobase,extent]...

In some machines it may be necessary to prevent device drivers from checking
for devices (auto-probing) in a specific region. This may be because of hard-
ware that reacts badly to the probing, or hardware that would be mistakenly
identified, or merely hardware you don’t want the kernel to initialize.

The reserve boot-time argument specifies an I/O port region that shouldn’t be
probed. A device driver will not probe a reserved region, unless another boot
argument explicitly specifies that it do so.

For example, the boot line

reserve=0x300,32 blah=0x300

keeps all device drivers except the driver for ’blah’ from probing
0x300-0x31f.

’panic=N’
By default, the kernel will not reboot after a panic, but this option will cause a
kernel reboot after N seconds (if N is greater than zero). This panic timeout
can also be set by

echo N > /proc/sys/kernel/panic

’reboot=[warm|cold][,[bios|hard]]’
Since Linux 2.0.22, a reboot is by default a cold reboot. One asks for the old
default with ’reboot=warm’. (A cold reboot may be required to reset certain
hardware, but might destroy not yet written data in a disk cache. A warm re-
boot may be faster.) By default, a reboot is hard, by asking the keyboard con-
troller to pulse the reset line low, but there is at least one type of motherboard
where that doesn’t work. The option ’reboot=bios’ will instead jump through
the BIOS.

’nosmp’
’maxcpus=N’

(Only when __SMP__ is defined.) A command-line option of ’nosmp’ or
’maxcpus=0’ will disable SMP activation entirely; an option ’maxcpus=N’
limits the maximum number of CPUs activated in SMP mode to N.

Boot arguments for use by kernel developers
’debug’

Kernel messages are handed off to a daemon (e.g., klogd(8) or similar) so that
they may be logged to disk. Messages with a priority above console_loglevel
are also printed on the console. (For a discussion of log levels, see syslog(2).)

Linux man-pages 6.13 2024-06-28 3100

bootparam(7) Miscellaneous Information Manual bootparam(7)

By default, console_loglevel is set to log messages at levels higher than
KERN_DEBUG. This boot argument will cause the kernel to also print mes-
sages logged at level KERN_DEBUG. The console loglevel can also be set
on a booted system via the /proc/sys/kernel/printk file (described in syslog(2)),
the syslog(2) SYSLOG_ACTION_CONSOLE_LEVEL operation, or
dmesg(8)

’profile=N’
It is possible to enable a kernel profiling function, if one wishes to find out
where the kernel is spending its CPU cycles. Profiling is enabled by setting
the variable prof_shift to a nonzero value. This is done either by specifying
CONFIG_PROFILE at compile time, or by giving the ’profile=’ option.
Now the value that prof_shift gets will be N, when given, or CONFIG_PRO-
FILE_SHIFT, when that is given, or 2, the default. The significance of this
variable is that it gives the granularity of the profiling: each clock tick, if the
system was executing kernel code, a counter is incremented:

profile[address >> prof_shift]++;

The raw profiling information can be read from /proc/profile. Probably you’ll
want to use a tool such as readprofile.c to digest it. Writing to /proc/profile
will clear the counters.

Boot arguments for ramdisk use
(Only if the kernel was compiled with CONFIG_BLK_DEV_RAM.) In general it is
a bad idea to use a ramdisk under Linux—the system will use available memory more
efficiently itself. But while booting, it is often useful to load the floppy contents into a
ramdisk. One might also have a system in which first some modules (for filesystem or
hardware) must be loaded before the main disk can be accessed.

In Linux 1.3.48, ramdisk handling was changed drastically. Earlier, the mem-
ory was allocated statically, and there was a ’ramdisk=N’ parameter to tell its
size. (This could also be set in the kernel image at compile time.) These days
ram disks use the buffer cache, and grow dynamically. For a lot of informa-
tion on the current ramdisk setup, see the kernel source file Documenta-
tion/blockdev/ramdisk.txt (Documentation/ramdisk.txt in older kernels).

There are four parameters, two boolean and two integral.

’load_ramdisk=N’
If N=1, do load a ramdisk. If N=0, do not load a ramdisk. (This is the de-
fault.)

’prompt_ramdisk=N’
If N=1, do prompt for insertion of the floppy. (This is the default.) If N=0, do
not prompt. (Thus, this parameter is never needed.)

’ramdisk_size=N’ or (obsolete) ’ramdisk=N’
Set the maximal size of the ramdisk(s) to N kB. The default is 4096 (4 MB).

’ramdisk_start=N’
Sets the starting block number (the offset on the floppy where the ramdisk
starts) to N. This is needed in case the ramdisk follows a kernel image.

Linux man-pages 6.13 2024-06-28 3101

bootparam(7) Miscellaneous Information Manual bootparam(7)

’noinitrd’
(Only if the kernel was compiled with CONFIG_BLK_DEV_RAM and
CONFIG_BLK_DEV_INITRD.) These days it is possible to compile the
kernel to use initrd. When this feature is enabled, the boot process will load
the kernel and an initial ramdisk; then the kernel converts initrd into a "nor-
mal" ramdisk, which is mounted read-write as root device; then /linuxrc is ex-
ecuted; afterward the "real" root filesystem is mounted, and the initrd filesys-
tem is moved over to /initrd; finally the usual boot sequence (e.g., invocation
of /sbin/init) is performed.

For a detailed description of the initrd feature, see the kernel source file Docu-
mentation/admin-guide/initrd.rst (or Documentation/initrd.txt before Linux
4.10).

The ’noinitrd’ option tells the kernel that although it was compiled for opera-
tion with initrd, it should not go through the above steps, but leave the initrd
data under /dev/initrd . (This device can be used only once: the data is freed as
soon as the last process that used it has closed /dev/initrd .)

Boot arguments for SCSI devices
General notation for this section:

iobase -- the first I/O port that the SCSI host occupies. These are specified in hexa-
decimal notation, and usually lie in the range from 0x200 to 0x3ff.

irq -- the hardware interrupt that the card is configured to use. Valid values will be
dependent on the card in question, but will usually be 5, 7, 9, 10, 11, 12, and 15. The
other values are usually used for common peripherals like IDE hard disks, floppies,
serial ports, and so on.

scsi-id -- the ID that the host adapter uses to identify itself on the SCSI bus. Only
some host adapters allow you to change this value, as most have it permanently speci-
fied internally. The usual default value is 7, but the Seagate and Future Domain
TMC-950 boards use 6.

parity -- whether the SCSI host adapter expects the attached devices to supply a par-
ity value with all information exchanges. Specifying a one indicates parity checking
is enabled, and a zero disables parity checking. Again, not all adapters will support
selection of parity behavior as a boot argument.

’max_scsi_luns=...’
A SCSI device can have a number of ’subdevices’ contained within itself. The
most common example is one of the new SCSI CD-ROMs that handle more
than one disk at a time. Each CD is addressed as a ’Logical Unit Number’
(LUN) of that particular device. But most devices, such as hard disks, tape
drives, and such are only one device, and will be assigned to LUN zero.

Some poorly designed SCSI devices cannot handle being probed for LUNs not
equal to zero. Therefore, if the compile-time flag CON-
FIG_SCSI_MULTI_LUN is not set, newer kernels will by default probe only
LUN zero.

To specify the number of probed LUNs at boot, one enters ’max_scsi_luns=n’
as a boot arg, where n is a number between one and eight. To avoid problems
as described above, one would use n=1 to avoid upsetting such broken devices.

Linux man-pages 6.13 2024-06-28 3102

bootparam(7) Miscellaneous Information Manual bootparam(7)

SCSI tape configuration
Some boot time configuration of the SCSI tape driver can be achieved by us-
ing the following:

st=buf_size[,write_threshold[,max_bufs]]

The first two numbers are specified in units of kB. The default buf_size is
32k B, and the maximum size that can be specified is a ridiculous 16384 kB.
The write_threshold is the value at which the buffer is committed to tape, with
a default value of 30 kB. The maximum number of buffers varies with the
number of drives detected, and has a default of two. An example usage would
be:

st=32,30,2

Full details can be found in the file Documentation/scsi/st.txt (or dri-
vers/scsi/README.st for older kernels) in the Linux kernel source.

Hard disks
IDE Disk/CD-ROM Driver Parameters

The IDE driver accepts a number of parameters, which range from disk geom-
etry specifications, to support for broken controller chips. Drive-specific op-
tions are specified by using ’hdX=’ with X in ’a’–’h’.

Non-drive-specific options are specified with the prefix ’hd=’. Note that using
a drive-specific prefix for a non-drive-specific option will still work, and the
option will just be applied as expected.

Also note that ’hd=’ can be used to refer to the next unspecified drive in the (a,
..., h) sequence. For the following discussions, the ’hd=’ option will be cited
for brevity. See the file Documentation/ide/ide.txt (or Documentation/ide.txt
in older kernels, or drivers/block/README.ide in ancient kernels) in the
Linux kernel source for more details.

The ’hd=cyls,heads,sects[,wpcom[,irq]]’ options
These options are used to specify the physical geometry of the disk. Only the
first three values are required. The cylinder/head/sectors values will be those
used by fdisk. The write precompensation value is ignored for IDE disks. The
IRQ value specified will be the IRQ used for the interface that the drive resides
on, and is not really a drive-specific parameter.

The ’hd=serialize’ option
The dual IDE interface CMD-640 chip is broken as designed such that when
drives on the secondary interface are used at the same time as drives on the
primary interface, it will corrupt your data. Using this option tells the driver to
make sure that both interfaces are never used at the same time.

The ’hd=noprobe’ option
Do not probe for this drive. For example,

hdb=noprobe hdb=1166,7,17

would disable the probe, but still specify the drive geometry so that it would
be registered as a valid block device, and hence usable.

Linux man-pages 6.13 2024-06-28 3103

bootparam(7) Miscellaneous Information Manual bootparam(7)

The ’hd=nowerr’ option
Some drives apparently have the WRERR_STAT bit stuck on permanently.
This enables a work-around for these broken devices.

The ’hd=cdrom’ option
This tells the IDE driver that there is an ATAPI compatible CD-ROM attached
in place of a normal IDE hard disk. In most cases the CD-ROM is identified
automatically, but if it isn’t then this may help.

Standard ST-506 Disk Driver Options (’hd=’)
The standard disk driver can accept geometry arguments for the disks similar
to the IDE driver. Note however that it expects only three values (C/H/S); any
more or any less and it will silently ignore you. Also, it accepts only ’hd=’ as
an argument, that is, ’hda=’ and so on are not valid here. The format is as fol-
lows:

hd=cyls,heads,sects

If there are two disks installed, the above is repeated with the geometry para-
meters of the second disk.

Ethernet devices
Different drivers make use of different parameters, but they all at least share having an
IRQ, an I/O port base value, and a name. In its most generic form, it looks something
like this:

ether=irq,iobase[,param_1[,...param_8]],name

The first nonnumeric argument is taken as the name. The param_n values (if applica-
ble) usually have different meanings for each different card/driver. Typical param_n
values are used to specify things like shared memory address, interface selection,
DMA channel and the like.

The most common use of this parameter is to force probing for a second ethercard, as
the default is to probe only for one. This can be accomplished with a simple:

ether=0,0,eth1

Note that the values of zero for the IRQ and I/O base in the above example tell the dri-
ver(s) to autoprobe.

The Ethernet-HowTo has extensive documentation on using multiple cards and on the
card/driver-specific implementation of the param_n values where used. Interested
readers should refer to the section in that document on their particular card.

The floppy disk driver
There are many floppy driver options, and they are all listed in Documentation/block-
dev/floppy.txt (or Documentation/floppy.txt in older kernels, or dri-
vers/block/README.fd for ancient kernels) in the Linux kernel source. See that file
for the details.

The sound driver
The sound driver can also accept boot arguments to override the compiled-in values.
This is not recommended, as it is rather complex. It is described in the Linux kernel
source file Documentation/sound/oss/README.OSS (drivers/sound/Readme.linux in
older kernel versions). It accepts a boot argument of the form:

Linux man-pages 6.13 2024-06-28 3104

bootparam(7) Miscellaneous Information Manual bootparam(7)

sound=device1[,device2[,device3...[,device10]]]

where each deviceN value is of the following format 0xTaaaId and the bytes are used
as follows:

T - device type: 1=FM, 2=SB, 3=PAS, 4=GUS, 5=MPU401, 6=SB16,
7=SB16-MPU401

aaa - I/O address in hex.

I - interrupt line in hex (i.e., 10=a, 11=b, ...)

d - DMA channel.

As you can see, it gets pretty messy, and you are better off to compile in your own
personal values as recommended. Using a boot argument of ’sound=0’ will disable
the sound driver entirely.

The line printer driver
’lp=’

Syntax:

lp=0
lp=auto
lp=reset
lp=port[,port...]

You can tell the printer driver what ports to use and what ports not to use. The
latter comes in handy if you don’t want the printer driver to claim all available
parallel ports, so that other drivers (e.g., PLIP, PPA) can use them instead.

The format of the argument is multiple port names. For example, lp=none,par-
port0 would use the first parallel port for lp1, and disable lp0. To disable the
printer driver entirely, one can use lp=0.

SEE ALSO
klogd(8), mount(8)

For up-to-date information, see the kernel source file Documentation/admin-
guide/kernel-parameters.txt.

Linux man-pages 6.13 2024-06-28 3105

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

NAME
BPF-HELPERS - list of eBPF helper functions

DESCRIPTION
The extended Berkeley Packet Filter (eBPF) subsystem consists in programs written
in a pseudo-assembly language, then attached to one of the several kernel hooks and
run in reaction of specific events. This framework differs from the older, "classic"
BPF (or "cBPF") in several aspects, one of them being the ability to call special func-
tions (or "helpers") from within a program. These functions are restricted to a
white-list of helpers defined in the kernel.

These helpers are used by eBPF programs to interact with the system, or with the con-
text in which they work. For instance, they can be used to print debugging messages,
to get the time since the system was booted, to interact with eBPF maps, or to manip-
ulate network packets. Since there are several eBPF program types, and that they do
not run in the same context, each program type can only call a subset of those helpers.

Due to eBPF conventions, a helper can not have more than five arguments.

Internally, eBPF programs call directly into the compiled helper functions without re-
quiring any foreign-function interface. As a result, calling helpers introduces no over-
head, thus offering excellent performance.

This document is an attempt to list and document the helpers available to eBPF devel-
opers. They are sorted by chronological order (the oldest helpers in the kernel at the
top).

HELPERS
void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)

Description
Perform a lookup in map for an entry associated to key.

Return
Map value associated to key, or NULL if no entry was found.

long bpf_map_update_elem(struct bpf_map *map, const void *key, const void
*value, u64 flags)

Description
Add or update the value of the entry associated to key in map with
value. flags is one of:

BPF_NOEXIST
The entry for key must not exist in the map.

BPF_EXIST
The entry for key must already exist in the map.

BPF_ANY
No condition on the existence of the entry for key.

Flag value BPF_NOEXIST cannot be used for maps of types
BPF_MAP_TYPE_ARRAY or

Linux v6.13 2024-10-10 3106

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

BPF_MAP_TYPE_PERCPU_ARRAY (all elements always ex-
ist), the helper would return an error.

Return
0 on success, or a negative error in case of failure.

long bpf_map_delete_elem(struct bpf_map *map, const void *key)

Description
Delete entry with key from map.

Return
0 on success, or a negative error in case of failure.

long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)

Description
For tracing programs, safely attempt to read size bytes from kernel
space address unsafe_ptr and store the data in dst.

Generally, use bpf_probe_read_user() or bpf_probe_read_kernel()
instead.

Return
0 on success, or a negative error in case of failure.

u64 bpf_ktime_get_ns(void)

Description
Return the time elapsed since system boot, in nanoseconds. Does not
include time the system was suspended. See: clock_get-
time(CLOCK_MONOTONIC)

Return
Current ktime.

long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)

Description
This helper is a "printk()-like" facility for debugging. It prints a mes-
sage defined by format fmt (of size fmt_size) to file /sys/kernel/trac-
ing/trace from TraceFS, if available. It can take up to three additional
u64 arguments (as an eBPF helpers, the total number of arguments is
limited to five).

Each time the helper is called, it appends a line to the trace. Lines are
discarded while /sys/kernel/tracing/trace is open, use /sys/kernel/trac-
ing/trace_pipe to avoid this. The format of the trace is customizable,
and the exact output one will get depends on the options set in
/sys/kernel/tracing/trace_options (see also the README file under
the same directory). However, it usually defaults to something like:

telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>

In the above:

Linux v6.13 2024-10-10 3107

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• telnet is the name of the current task.

• 470 is the PID of the current task.

• 001 is the CPU number on which the task is running.

• In .N.., each character refers to a set of options (whether irqs
are enabled, scheduling options, whether hard/softirqs are
running, level of preempt_disabled respectively). N means
that TIF_NEED_RESCHED and PRE-
EMPT_NEED_RESCHED are set.

• 419421.045894 is a timestamp.

• 0x00000001 is a fake value used by BPF for the instruction
pointer register.

• <formatted msg> is the message formatted with fmt.

The conversion specifiers supported by fmt are similar, but more lim-
ited than for printk(). They are %d, %i, %u, %x, %ld, %li, %lu,
%lx, %lld, %lli, %llu, %llx, %p, %s. No modifier (size of field,
padding with zeroes, etc.) is available, and the helper will return
-EINVAL (but print nothing) if it encounters an unknown specifier.

Also, note that bpf_trace_printk() is slow, and should only be used
for debugging purposes. For this reason, a notice block (spanning
several lines) is printed to kernel logs and states that the helper
should not be used "for production use" the first time this helper is
used (or more precisely, when trace_printk() buffers are allocated).
For passing values to user space, perf events should be preferred.

Return
The number of bytes written to the buffer, or a negative error in case
of failure.

u32 bpf_get_prandom_u32(void)

Description
Get a pseudo-random number.

From a security point of view, this helper uses its own pseudo-ran-
dom internal state, and cannot be used to infer the seed of other ran-
dom functions in the kernel. However, it is essential to note that the
generator used by the helper is not cryptographically secure.

Return
A random 32-bit unsigned value.

u32 bpf_get_smp_processor_id(void)

Description
Get the SMP (symmetric multiprocessing) processor id. Note that all
programs run with migration disabled, which means that the SMP
processor id is stable during all the execution of the program.

Linux v6.13 2024-10-10 3108

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
The SMP id of the processor running the program.

long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32
len, u64 flags)

Description
Store len bytes from address from into the packet associated to skb, at
offset. flags are a combination of BPF_F_RECOMPUTE_CSUM
(automatically recompute the checksum for the packet after storing
the bytes) and BPF_F_INVALIDATE_HASH (set skb->hash,
skb->swhash and skb->l4hash to 0).

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64
size)

Description
Recompute the layer 3 (e.g. IP) checksum for the packet associated to
skb. Computation is incremental, so the helper must know the former
value of the header field that was modified (from), the new value of
this field (to), and the number of bytes (2 or 4) for this field, stored in
size. Alternatively, it is possible to store the difference between the
previous and the new values of the header field in to, by setting from
and size to 0. For both methods, offset indicates the location of the IP
checksum within the packet.

This helper works in combination with bpf_csum_diff(), which does
not update the checksum in-place, but offers more flexibility and can
handle sizes larger than 2 or 4 for the checksum to update.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64
flags)

Description
Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
packet associated to skb. Computation is incremental, so the helper
must know the former value of the header field that was modified

Linux v6.13 2024-10-10 3109

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

(from), the new value of this field (to), and the number of bytes (2 or
4) for this field, stored on the lowest four bits of flags. Alternatively, it
is possible to store the difference between the previous and the new
values of the header field in to, by setting from and the four lowest
bits of flags to 0. For both methods, offset indicates the location of the
IP checksum within the packet. In addition to the size of the field,
flags can be added (bitwise OR) actual flags. With
BPF_F_MARK_MANGLED_0, a null checksum is left untouched
(unless BPF_F_MARK_ENFORCE is added as well), and for up-
dates resulting in a null checksum the value is set to CSUM_MAN-
GLED_0 instead. Flag BPF_F_PSEUDO_HDR indicates the check-
sum is to be computed against a pseudo-header.

This helper works in combination with bpf_csum_diff(), which does
not update the checksum in-place, but offers more flexibility and can
handle sizes larger than 2 or 4 for the checksum to update.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)

Description
This special helper is used to trigger a "tail call", or in other words, to
jump into another eBPF program. The same stack frame is used (but
values on stack and in registers for the caller are not accessible to the
callee). This mechanism allows for program chaining, either for rais-
ing the maximum number of available eBPF instructions, or to exe-
cute given programs in conditional blocks. For security reasons, there
is an upper limit to the number of successive tail calls that can be per-
formed.

Upon call of this helper, the program attempts to jump into a program
referenced at index index in prog_array_map, a special map of type
BPF_MAP_TYPE_PROG_ARRAY, and passes ctx, a pointer to the
context.

If the call succeeds, the kernel immediately runs the first instruction
of the new program. This is not a function call, and it never returns to
the previous program. If the call fails, then the helper has no effect,
and the caller continues to run its subsequent instructions. A call can
fail if the destination program for the jump does not exist (i.e. index is
superior to the number of entries in prog_array_map), or if the maxi-
mum number of tail calls has been reached for this chain of programs.
This limit is defined in the kernel by the macro

Linux v6.13 2024-10-10 3110

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

MAX_TAIL_CALL_CNT (not accessible to user space), which is
currently set to 33.

Return
0 on success, or a negative error in case of failure.

long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)

Description
Clone and redirect the packet associated to skb to another net device
of index ifindex. Both ingress and egress interfaces can be used for
redirection. The BPF_F_INGRESS value in flags is used to make the
distinction (ingress path is selected if the flag is present, egress path
otherwise). This is the only flag supported for now.

In comparison with bpf_redirect() helper, bpf_clone_redirect() has
the associated cost of duplicating the packet buffer, but this can be ex-
ecuted out of the eBPF program. Conversely, bpf_redirect() is more
efficient, but it is handled through an action code where the redirec-
tion happens only after the eBPF program has returned.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure. Positive error indi-
cates a potential drop or congestion in the target device. The particu-
lar positive error codes are not defined.

u64 bpf_get_current_pid_tgid(void)

Description
Get the current pid and tgid.

Return
A 64-bit integer containing the current tgid and pid, and created as
such: current_task->tgid << 32 | current_task->pid.

u64 bpf_get_current_uid_gid(void)

Description
Get the current uid and gid.

Return
A 64-bit integer containing the current GID and UID, and created as
such: current_gid << 32 | current_uid.

long bpf_get_current_comm(void *buf, u32 size_of_buf)

Description
Copy the comm attribute of the current task into buf of size_of_buf.
The comm attribute contains the name of the executable (excluding
the path) for the current task. The size_of_buf must be strictly posi-
tive. On success, the helper makes sure that the buf is

Linux v6.13 2024-10-10 3111

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

NUL-terminated. On failure, it is filled with zeroes.

Return
0 on success, or a negative error in case of failure.

u32 bpf_get_cgroup_classid(struct sk_buff *skb)

Description
Retrieve the classid for the current task, i.e. for the net_cls cgroup to
which skb belongs.

This helper can be used on TC egress path, but not on ingress.

The net_cls cgroup provides an interface to tag network packets based
on a user-provided identifier for all traffic coming from the tasks be-
longing to the related cgroup. See also the related kernel documenta-
tion, available from the Linux sources in file Documentation/ad-
min-guide/cgroup-v1/net_cls.rst.

The Linux kernel has two versions for cgroups: there are cgroups v1
and cgroups v2. Both are available to users, who can use a mixture of
them, but note that the net_cls cgroup is for cgroup v1 only. This
makes it incompatible with BPF programs run on cgroups, which is a
cgroup-v2-only feature (a socket can only hold data for one version
of cgroups at a time).

This helper is only available is the kernel was compiled with the
CONFIG_CGROUP_NET_CLASSID configuration option set to
"y" or to "m".

Return
The classid, or 0 for the default unconfigured classid.

long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)

Description
Push a vlan_tci (VLAN tag control information) of protocol
vlan_proto to the packet associated to skb, then update the checksum.
Note that if vlan_proto is different from ETH_P_8021Q and
ETH_P_8021AD, it is considered to be ETH_P_8021Q.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_vlan_pop(struct sk_buff *skb)

Description
Pop a VLAN header from the packet associated to skb.

Linux v6.13 2024-10-10 3112

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key,
u32 size, u64 flags)

Description
Get tunnel metadata. This helper takes a pointer key to an empty
struct bpf_tunnel_key of size, that will be filled with tunnel meta-
data for the packet associated to skb. The flags can be set to
BPF_F_TUNINFO_IPV6, which indicates that the tunnel is based
on IPv6 protocol instead of IPv4.

The struct bpf_tunnel_key is an object that generalizes the principal
parameters used by various tunneling protocols into a single struct.
This way, it can be used to easily make a decision based on the con-
tents of the encapsulation header, "summarized" in this struct. In par-
ticular, it holds the IP address of the remote end (IPv4 or IPv6, de-
pending on the case) in key->remote_ipv4 or key->remote_ipv6.
Also, this struct exposes the key->tunnel_id, which is generally
mapped to a VNI (Virtual Network Identifier), making it programma-
ble together with the bpf_skb_set_tunnel_key() helper.

Let's imagine that the following code is part of a program attached to
the TC ingress interface, on one end of a GRE tunnel, and is supposed
to filter out all messages coming from remote ends with IPv4 address
other than 10.0.0.1:

int ret;
struct bpf_tunnel_key key = {};
ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
if (ret < 0)

return TC_ACT_SHOT; // drop packet
if (key.remote_ipv4 != 0x0a000001)

return TC_ACT_SHOT; // drop packet
return TC_ACT_OK; // accept packet

This interface can also be used with all encapsulation devices that
can operate in "collect metadata" mode: instead of having one net-
work device per specific configuration, the "collect metadata" mode
only requires a single device where the configuration can be ex-
tracted from this helper.

This can be used together with various tunnels such as VXLan, Gen-
eve, GRE or IP in IP (IPIP).

Linux v6.13 2024-10-10 3113

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
0 on success, or a negative error in case of failure.

long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key,
u32 size, u64 flags)

Description
Populate tunnel metadata for packet associated to skb. The tunnel
metadata is set to the contents of key, of size. The flags can be set to a
combination of the following values:

BPF_F_TUNINFO_IPV6
Indicate that the tunnel is based on IPv6 protocol instead of
IPv4.

BPF_F_ZERO_CSUM_TX
For IPv4 packets, add a flag to tunnel metadata indicating
that checksum computation should be skipped and checksum
set to zeroes.

BPF_F_DONT_FRAGMENT
Add a flag to tunnel metadata indicating that the packet
should not be fragmented.

BPF_F_SEQ_NUMBER
Add a flag to tunnel metadata indicating that a sequence
number should be added to tunnel header before sending the
packet. This flag was added for GRE encapsulation, but
might be used with other protocols as well in the future.

BPF_F_NO_TUNNEL_KEY
Add a flag to tunnel metadata indicating that no tunnel key
should be set in the resulting tunnel header.

Here is a typical usage on the transmit path:

struct bpf_tunnel_key key;
populate key ...

bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);

See also the description of the bpf_skb_get_tunnel_key() helper for
additional information.

Return
0 on success, or a negative error in case of failure.

u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)

Description
Read the value of a perf event counter. This helper relies on a map of
type BPF_MAP_TYPE_PERF_EVENT_ARRAY. The nature of
the perf event counter is selected when map is updated with perf event
file descriptors. The map is an array whose size is the number of
available CPUs, and each cell contains a value relative to one CPU.

Linux v6.13 2024-10-10 3114

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

The value to retrieve is indicated by flags, that contains the index of
the CPU to look up, masked with BPF_F_INDEX_MASK. Alterna-
tively, flags can be set to BPF_F_CURRENT_CPU to indicate that
the value for the current CPU should be retrieved.

Note that before Linux 4.13, only hardware perf event can be re-
trieved.

Also, be aware that the newer helper bpf_perf_event_read_value() is
recommended over bpf_perf_event_read() in general. The latter has
some ABI quirks where error and counter value are used as a return
code (which is wrong to do since ranges may overlap). This issue is
fixed with bpf_perf_event_read_value(), which at the same time
provides more features over the bpf_perf_event_read() interface.
Please refer to the description of bpf_perf_event_read_value() for
details.

Return
The value of the perf event counter read from the map, or a negative
error code in case of failure.

long bpf_redirect(u32 ifindex, u64 flags)

Description
Redirect the packet to another net device of index ifindex. This helper
is somewhat similar to bpf_clone_redirect(), except that the packet is
not cloned, which provides increased performance.

Except for XDP, both ingress and egress interfaces can be used for
redirection. The BPF_F_INGRESS value in flags is used to make the
distinction (ingress path is selected if the flag is present, egress path
otherwise). Currently, XDP only supports redirection to the egress in-
terface, and accepts no flag at all.

The same effect can also be attained with the more generic bpf_redi-
rect_map(), which uses a BPF map to store the redirect target instead
of providing it directly to the helper.

Return
For XDP, the helper returns XDP_REDIRECT on success or
XDP_ABORTED on error. For other program types, the values are
TC_ACT_REDIRECT on success or TC_ACT_SHOT on error.

u32 bpf_get_route_realm(struct sk_buff *skb)

Description
Retrieve the realm or the route, that is to say the tclassid field of the
destination for the skb. The identifier retrieved is a user-provided tag,
similar to the one used with the net_cls cgroup (see description for
bpf_get_cgroup_classid() helper), but here this tag is held by a route
(a destination entry), not by a task.

Linux v6.13 2024-10-10 3115

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Retrieving this identifier works with the clsact TC egress hook (see
also tc-bpf(8)), or alternatively on conventional classful egress
qdiscs, but not on TC ingress path. In case of clsact TC egress hook,
this has the advantage that, internally, the destination entry has not
been dropped yet in the transmit path. Therefore, the destination entry
does not need to be artificially held via netif_keep_dst() for a classful
qdisc until the skb is freed.

This helper is available only if the kernel was compiled with CON-
FIG_IP_ROUTE_CLASSID configuration option.

Return
The realm of the route for the packet associated to skb, or 0 if none
was found.

long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void
*data, u64 size)

Description
Write raw data blob into a special BPF perf event held by map of
type BPF_MAP_TYPE_PERF_EVENT_ARRAY. This perf event
must have the following attributes: PERF_SAMPLE_RAW as sam-
ple_type, PERF_TYPE_SOFTWARE as type, and
PERF_COUNT_SW_BPF_OUTPUT as config.

The flags are used to indicate the index in map for which the value
must be put, masked with BPF_F_INDEX_MASK. Alternatively,
flags can be set to BPF_F_CURRENT_CPU to indicate that the in-
dex of the current CPU core should be used.

The value to write, of size, is passed through eBPF stack and pointed
by data.

The context of the program ctx needs also be passed to the helper.

On user space, a program willing to read the values needs to call
perf_event_open() on the perf event (either for one or for all CPUs)
and to store the file descriptor into the map. This must be done before
the eBPF program can send data into it. An example is available in
file samples/bpf/trace_output_user.c in the Linux kernel source tree
(the eBPF program counterpart is in samples/bpf/trace_out-
put_kern.c).

bpf_perf_event_output() achieves better performance than
bpf_trace_printk() for sharing data with user space, and is much bet-
ter suitable for streaming data from eBPF programs.

Note that this helper is not restricted to tracing use cases and can be
used with programs attached to TC or XDP as well, where it allows
for passing data to user space listeners. Data can be:

Linux v6.13 2024-10-10 3116

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• Only custom structs,

• Only the packet payload, or

• A combination of both.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)

Description
This helper was provided as an easy way to load data from a packet. It
can be used to load len bytes from offset from the packet associated to
skb, into the buffer pointed by to.

Since Linux 4.7, usage of this helper has mostly been replaced by "di-
rect packet access", enabling packet data to be manipulated with
skb->data and skb->data_end pointing respectively to the first byte
of packet data and to the byte after the last byte of packet data. How-
ever, it remains useful if one wishes to read large quantities of data at
once from a packet into the eBPF stack.

Return
0 on success, or a negative error in case of failure.

long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)

Description
Walk a user or a kernel stack and return its id. To achieve this, the
helper needs ctx, which is a pointer to the context on which the trac-
ing program is executed, and a pointer to a map of type
BPF_MAP_TYPE_STACK_TRACE.

The last argument, flags, holds the number of stack frames to skip
(from 0 to 255), masked with BPF_F_SKIP_FIELD_MASK. The
next bits can be used to set a combination of the following flags:

BPF_F_USER_STACK
Collect a user space stack instead of a kernel stack.

BPF_F_FAST_STACK_CMP
Compare stacks by hash only.

BPF_F_REUSE_STACKID
If two different stacks hash into the same stackid, discard the
old one.

The stack id retrieved is a 32 bit long integer handle which can be
further combined with other data (including other stack ids) and
used as a key into maps. This can be useful for generating a variety
of graphs (such as flame graphs or off-cpu graphs).

For walking a stack, this helper is an improvement over
bpf_probe_read(), which can be used with unrolled loops but is not

Linux v6.13 2024-10-10 3117

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

efficient and consumes a lot of eBPF instructions. Instead,
bpf_get_stackid() can collect up to
PERF_MAX_STACK_DEPTH both kernel and user frames. Note
that this limit can be controlled with the sysctl program, and that it
should be manually increased in order to profile long user stacks
(such as stacks for Java programs). To do so, use:

sysctl kernel.perf_event_max_stack=<new value>

Return
The positive or null stack id on success, or a negative error in case of
failure.

s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum
seed)

Description
Compute a checksum difference, from the raw buffer pointed by from,
of length from_size (that must be a multiple of 4), towards the raw
buffer pointed by to, of size to_size (same remark). An optional seed
can be added to the value (this can be cascaded, the seed may come
from a previous call to the helper).

This is flexible enough to be used in several ways:

• With from_size == 0, to_size > 0 and seed set to checksum, it can
be used when pushing new data.

• With from_size > 0, to_size == 0 and seed set to checksum, it can
be used when removing data from a packet.

• With from_size > 0, to_size > 0 and seed set to 0, it can be used to
compute a diff. Note that from_size and to_size do not need to be
equal.

This helper can be used in combination with bpf_l3_csum_re-
place() and bpf_l4_csum_replace(), to which one can feed in the
difference computed with bpf_csum_diff().

Return
The checksum result, or a negative error code in case of failure.

long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)

Description
Retrieve tunnel options metadata for the packet associated to skb, and
store the raw tunnel option data to the buffer opt of size.

This helper can be used with encapsulation devices that can operate in
"collect metadata" mode (please refer to the related note in the de-
scription of bpf_skb_get_tunnel_key() for more details). A particu-
lar example where this can be used is in combination with the Geneve
encapsulation protocol, where it allows for pushing (with
bpf_skb_get_tunnel_opt() helper) and retrieving arbitrary TLVs

Linux v6.13 2024-10-10 3118

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

(Type-Length-Value headers) from the eBPF program. This allows
for full customization of these headers.

Return
The size of the option data retrieved.

long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)

Description
Set tunnel options metadata for the packet associated to skb to the op-
tion data contained in the raw buffer opt of size.

See also the description of the bpf_skb_get_tunnel_opt() helper for
additional information.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)

Description
Change the protocol of the skb to proto. Currently supported are tran-
sition from IPv4 to IPv6, and from IPv6 to IPv4. The helper takes
care of the groundwork for the transition, including resizing the
socket buffer. The eBPF program is expected to fill the new headers,
if any, via skb_store_bytes() and to recompute the checksums with
bpf_l3_csum_replace() and bpf_l4_csum_replace(). The main case
for this helper is to perform NAT64 operations out of an eBPF pro-
gram.

Internally, the GSO type is marked as dodgy so that headers are
checked and segments are recalculated by the GSO/GRO engine. The
size for GSO target is adapted as well.

All values for flags are reserved for future usage, and must be left at
zero.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_change_type(struct sk_buff *skb, u32 type)

Description
Change the packet type for the packet associated to skb. This comes
down to setting skb->pkt_type to type, except the eBPF program
does not have a write access to skb->pkt_type beside this helper. Us-
ing a helper here allows for graceful handling of errors.

The major use case is to change incoming skb*s to

Linux v6.13 2024-10-10 3119

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

**PACKET_HOST* in a programmatic way instead of having to re-
circulate via redirect(..., BPF_F_INGRESS), for example.

Note that type only allows certain values. At this time, they are:

PACKET_HOST
Packet is for us.

PACKET_BROADCAST
Send packet to all.

PACKET_MULTICAST
Send packet to group.

PACKET_OTHERHOST
Send packet to someone else.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 in-
dex)

Description
Check whether skb is a descendant of the cgroup2 held by map of
type BPF_MAP_TYPE_CGROUP_ARRAY, at index.

Return
The return value depends on the result of the test, and can be:

• 0, if the skb failed the cgroup2 descendant test.

• 1, if the skb succeeded the cgroup2 descendant test.

• A negative error code, if an error occurred.

u32 bpf_get_hash_recalc(struct sk_buff *skb)

Description
Retrieve the hash of the packet, skb->hash. If it is not set, in particu-
lar if the hash was cleared due to mangling, recompute this hash.
Later accesses to the hash can be done directly with skb->hash.

Calling bpf_set_hash_invalid(), changing a packet prototype with
bpf_skb_change_proto(), or calling bpf_skb_store_bytes() with the
BPF_F_INVALIDATE_HASH are actions susceptible to clear the
hash and to trigger a new computation for the next call to
bpf_get_hash_recalc().

Return
The 32-bit hash.

u64 bpf_get_current_task(void)

Description
Get the current task.

Linux v6.13 2024-10-10 3120

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
A pointer to the current task struct.

long bpf_probe_write_user(void *dst, const void *src, u32 len)

Description
Attempt in a safe way to write len bytes from the buffer src to dst in
memory. It only works for threads that are in user context, and dst
must be a valid user space address.

This helper should not be used to implement any kind of security
mechanism because of TOC-TOU attacks, but rather to debug, divert,
and manipulate execution of semi-cooperative processes.

Keep in mind that this feature is meant for experiments, and it has a
risk of crashing the system and running programs. Therefore, when
an eBPF program using this helper is attached, a warning including
PID and process name is printed to kernel logs.

Return
0 on success, or a negative error in case of failure.

long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)

Description
Check whether the probe is being run is the context of a given subset
of the cgroup2 hierarchy. The cgroup2 to test is held by map of type
BPF_MAP_TYPE_CGROUP_ARRAY, at index.

Return
The return value depends on the result of the test, and can be:

• 1, if current task belongs to the cgroup2.

• 0, if current task does not belong to the cgroup2.

• A negative error code, if an error occurred.

long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)

Description
Resize (trim or grow) the packet associated to skb to the new len. The
flags are reserved for future usage, and must be left at zero.

The basic idea is that the helper performs the needed work to change
the size of the packet, then the eBPF program rewrites the rest via
helpers like bpf_skb_store_bytes(), bpf_l3_csum_replace(),
bpf_l3_csum_replace() and others. This helper is a slow path utility
intended for replies with control messages. And because it is targeted
for slow path, the helper itself can afford to be slow: it implicitly lin-
earizes, unclones and drops offloads from the skb.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the

Linux v6.13 2024-10-10 3121

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_pull_data(struct sk_buff *skb, u32 len)

Description
Pull in non-linear data in case the skb is non-linear and not all of len
are part of the linear section. Make len bytes from skb readable and
writable. If a zero value is passed for len, then all bytes in the linear
part of skb will be made readable and writable.

This helper is only needed for reading and writing with direct packet
access.

For direct packet access, testing that offsets to access are within
packet boundaries (test on skb->data_end) is susceptible to fail if
offsets are invalid, or if the requested data is in non-linear parts of the
skb. On failure the program can just bail out, or in the case of a
non-linear buffer, use a helper to make the data available. The
bpf_skb_load_bytes() helper is a first solution to access the data. An-
other one consists in using bpf_skb_pull_data to pull in once the
non-linear parts, then retesting and eventually access the data.

At the same time, this also makes sure the skb is uncloned, which is a
necessary condition for direct write. As this needs to be an invariant
for the write part only, the verifier detects writes and adds a prologue
that is calling bpf_skb_pull_data() to effectively unclone the skb
from the very beginning in case it is indeed cloned.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)

Description
Add the checksum csum into skb->csum in case the driver has sup-
plied a checksum for the entire packet into that field. Return an error
otherwise. This helper is intended to be used in combination with
bpf_csum_diff(), in particular when the checksum needs to be up-
dated after data has been written into the packet through direct packet
access.

Return
The checksum on success, or a negative error code in case of failure.

Linux v6.13 2024-10-10 3122

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

void bpf_set_hash_invalid(struct sk_buff *skb)

Description
Invalidate the current skb->hash. It can be used after mangling on
headers through direct packet access, in order to indicate that the hash
is outdated and to trigger a recalculation the next time the kernel tries
to access this hash or when the bpf_get_hash_recalc() helper is
called.

Return
void.

long bpf_get_numa_node_id(void)

Description
Return the id of the current NUMA node. The primary use case for
this helper is the selection of sockets for the local NUMA node, when
the program is attached to sockets using the SO_ATTACH_REUSE-
PORT_EBPF option (see also socket(7)), but the helper is also avail-
able to other eBPF program types, similarly to bpf_get_smp_proces-
sor_id().

Return
The id of current NUMA node.

long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)

Description
Grows headroom of packet associated to skb and adjusts the offset of
the MAC header accordingly, adding len bytes of space. It automati-
cally extends and reallocates memory as required.

This helper can be used on a layer 3 skb to push a MAC header for
redirection into a layer 2 device.

All values for flags are reserved for future usage, and must be left at
zero.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)

Description
Adjust (move) xdp_md->data by delta bytes. Note that it is possible
to use a negative value for delta. This helper can be used to prepare
the packet for pushing or popping headers.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done

Linux v6.13 2024-10-10 3123

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)

Description
Copy a NUL terminated string from an unsafe kernel address un-
safe_ptr to dst. See bpf_probe_read_kernel_str() for more details.

Generally, use bpf_probe_read_user_str() or bpf_probe_read_ker-
nel_str() instead.

Return
On success, the strictly positive length of the string, including the
trailing NUL character. On error, a negative value.

u64 bpf_get_socket_cookie(struct sk_buff *skb)

Description
If the struct sk_buff pointed by skb has a known socket, retrieve the
cookie (generated by the kernel) of this socket. If no cookie has been
set yet, generate a new cookie. Once generated, the socket cookie re-
mains stable for the life of the socket. This helper can be useful for
monitoring per socket networking traffic statistics as it provides a
global socket identifier that can be assumed unique.

Return
A 8-byte long unique number on success, or 0 if the socket field is
missing inside skb.

u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)

Description
Equivalent to bpf_get_socket_cookie() helper that accepts skb, but
gets socket from struct bpf_sock_addr context.

Return
A 8-byte long unique number.

u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)

Description
Equivalent to bpf_get_socket_cookie() helper that accepts skb, but
gets socket from struct bpf_sock_ops context.

Return
A 8-byte long unique number.

u64 bpf_get_socket_cookie(struct sock *sk)

Description
Equivalent to bpf_get_socket_cookie() helper that accepts sk, but
gets socket from a BTF struct sock. This helper also works for sleep-
able programs.

Linux v6.13 2024-10-10 3124

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
A 8-byte long unique number or 0 if sk is NULL.

u32 bpf_get_socket_uid(struct sk_buff *skb)

Description
Get the owner UID of the socked associated to skb.

Return
The owner UID of the socket associated to skb. If the socket is
NULL, or if it is not a full socket (i.e. if it is a time-wait or a request
socket instead), overflowuid value is returned (note that overflowuid
might also be the actual UID value for the socket).

long bpf_set_hash(struct sk_buff *skb, u32 hash)

Description
Set the full hash for skb (set the field skb->hash) to value hash.

Return

long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int
optlen)

Description
Emulate a call to setsockopt() on the socket associated to bpf_socket,
which must be a full socket. The level at which the option resides and
the name optname of the option must be specified, see setsockopt(2)
for more information. The option value of length optlen is pointed by
optval.

bpf_socket should be one of the following:

• struct bpf_sock_ops for BPF_PROG_TYPE_SOCK_OPS.

• struct bpf_sock_addr for BPF_CGROUP_INET4_CON-
NECT, BPF_CGROUP_INET6_CONNECT and
BPF_CGROUP_UNIX_CONNECT.

This helper actually implements a subset of setsockopt(). It sup-
ports the following levels:

• SOL_SOCKET, which supports the following optnames:
SO_RCVBUF, SO_SNDBUF, SO_MAX_PACING_RATE,
SO_PRIORITY, SO_RCVLOWAT, SO_MARK, SO_BIND-
TODEVICE, SO_KEEPALIVE, SO_REUSEADDR,
SO_REUSEPORT, SO_BINDTOIFINDEX, SO_TXREHASH.

• IPPROTO_TCP, which supports the following optnames:
TCP_CONGESTION, TCP_BPF_IW, TCP_BPF_SND-
CWND_CLAMP, TCP_SAVE_SYN, TCP_KEEPIDLE,
TCP_KEEPINTVL, TCP_KEEPCNT, TCP_SYNCNT,
TCP_USER_TIMEOUT, TCP_NOTSENT_LOWAT,
TCP_NODELAY, TCP_MAXSEG, TCP_WIN-
DOW_CLAMP, TCP_THIN_LINEAR_TIMEOUTS,
TCP_BPF_DELACK_MAX, TCP_BPF_RTO_MIN,

Linux v6.13 2024-10-10 3125

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

TCP_BPF_SOCK_OPS_CB_FLAGS.

• IPPROTO_IP, which supports optname IP_TOS.

• IPPROTO_IPV6, which supports the following optnames:
IPV6_TCLASS, IPV6_AUTOFLOWLABEL.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)

Description
Grow or shrink the room for data in the packet associated to skb by
len_diff, and according to the selected mode.

By default, the helper will reset any offloaded checksum indicator of
the skb to CHECKSUM_NONE. This can be avoided by the follow-
ing flag:

• BPF_F_ADJ_ROOM_NO_CSUM_RESET: Do not reset of-
floaded checksum data of the skb to CHECKSUM_NONE.

There are two supported modes at this time:

• BPF_ADJ_ROOM_MAC: Adjust room at the mac layer (room
space is added or removed between the layer 2 and layer 3 head-
ers).

• BPF_ADJ_ROOM_NET: Adjust room at the network layer
(room space is added or removed between the layer 3 and layer 4
headers).

The following flags are supported at this time:

• BPF_F_ADJ_ROOM_FIXED_GSO: Do not adjust gso_size.
Adjusting mss in this way is not allowed for datagrams.

• BPF_F_ADJ_ROOM_ENCAP_L3_IPV4,
BPF_F_ADJ_ROOM_ENCAP_L3_IPV6: Any new space is re-
served to hold a tunnel header. Configure skb offsets and other
fields accordingly.

• BPF_F_ADJ_ROOM_ENCAP_L4_GRE,
BPF_F_ADJ_ROOM_ENCAP_L4_UDP: Use with ENCAP_L3
flags to further specify the tunnel type.

• BPF_F_ADJ_ROOM_ENCAP_L2(len): Use with EN-
CAP_L3/L4 flags to further specify the tunnel type; len is the
length of the inner MAC header.

• BPF_F_ADJ_ROOM_ENCAP_L2_ETH: Use with
BPF_F_ADJ_ROOM_ENCAP_L2 flag to further specify the L2
type as Ethernet.

Linux v6.13 2024-10-10 3126

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• BPF_F_ADJ_ROOM_DECAP_L3_IPV4,
BPF_F_ADJ_ROOM_DECAP_L3_IPV6: Indicate the new IP
header version after decapsulating the outer IP header. Used when
the inner and outer IP versions are different.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously
done by the verifier are invalidated and must be performed again, if
the helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_redirect_map(struct bpf_map *map, u64 key, u64 flags)

Description
Redirect the packet to the endpoint referenced by map at index key.
Depending on its type, this map can contain references to net devices
(for forwarding packets through other ports), or to CPUs (for redirect-
ing XDP frames to another CPU; but this is only implemented for na-
tive XDP (with driver support) as of this writing).

The lower two bits of flags are used as the return code if the map
lookup fails. This is so that the return value can be one of the XDP
program return codes up to XDP_TX, as chosen by the caller. The
higher bits of flags can be set to BPF_F_BROADCAST or
BPF_F_EXCLUDE_INGRESS as defined below.

With BPF_F_BROADCAST the packet will be broadcasted to all the
interfaces in the map, with BPF_F_EXCLUDE_INGRESS the ingress
interface will be excluded when do broadcasting.

See also bpf_redirect(), which only supports redirecting to an
ifindex, but doesn't require a map to do so.

Return
XDP_REDIRECT on success, or the value of the two lower bits of
the flags argument on error.

long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key,
u64 flags)

Description
Redirect the packet to the socket referenced by map (of type
BPF_MAP_TYPE_SOCKMAP) at index key. Both ingress and
egress interfaces can be used for redirection. The BPF_F_INGRESS
value in flags is used to make the distinction (ingress path is selected
if the flag is present, egress path otherwise). This is the only flag sup-
ported for now.

Return
SK_PASS on success, or SK_DROP on error.

Linux v6.13 2024-10-10 3127

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map,
void *key, u64 flags)

Description
Add an entry to, or update a map referencing sockets. The skops is
used as a new value for the entry associated to key. flags is one of:

BPF_NOEXIST
The entry for key must not exist in the map.

BPF_EXIST
The entry for key must already exist in the map.

BPF_ANY
No condition on the existence of the entry for key.

If the map has eBPF programs (parser and verdict), those will be in-
herited by the socket being added. If the socket is already attached to
eBPF programs, this results in an error.

Return
0 on success, or a negative error in case of failure.

long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)

Description
Adjust the address pointed by xdp_md->data_meta by delta (which
can be positive or negative). Note that this operation modifies the ad-
dress stored in xdp_md->data, so the latter must be loaded only after
the helper has been called.

The use of xdp_md->data_meta is optional and programs are not re-
quired to use it. The rationale is that when the packet is processed
with XDP (e.g. as DoS filter), it is possible to push further meta data
along with it before passing to the stack, and to give the guarantee
that an ingress eBPF program attached as a TC classifier on the same
device can pick this up for further post-processing. Since TC works
with socket buffers, it remains possible to set from XDP the mark or
priority pointers, or other pointers for the socket buffer. Having this
scratch space generic and programmable allows for more flexibility as
the user is free to store whatever meta data they need.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct
bpf_perf_event_value *buf, u32 buf_size)

Linux v6.13 2024-10-10 3128

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Read the value of a perf event counter, and store it into buf of size
buf_size. This helper relies on a map of type
BPF_MAP_TYPE_PERF_EVENT_ARRAY. The nature of the
perf event counter is selected when map is updated with perf event
file descriptors. The map is an array whose size is the number of
available CPUs, and each cell contains a value relative to one CPU.
The value to retrieve is indicated by flags, that contains the index of
the CPU to look up, masked with BPF_F_INDEX_MASK. Alterna-
tively, flags can be set to BPF_F_CURRENT_CPU to indicate that
the value for the current CPU should be retrieved.

This helper behaves in a way close to bpf_perf_event_read() helper,
save that instead of just returning the value observed, it fills the buf
structure. This allows for additional data to be retrieved: in particular,
the enabled and running times (in buf->enabled and buf->running,
respectively) are copied. In general, bpf_perf_event_read_value() is
recommended over bpf_perf_event_read(), which has some ABI is-
sues and provides fewer functionalities.

These values are interesting, because hardware PMU (Performance
Monitoring Unit) counters are limited resources. When there are more
PMU based perf events opened than available counters, kernel will
multiplex these events so each event gets certain percentage (but not
all) of the PMU time. In case that multiplexing happens, the number
of samples or counter value will not reflect the case compared to
when no multiplexing occurs. This makes comparison between differ-
ent runs difficult. Typically, the counter value should be normalized
before comparing to other experiments. The usual normalization is
done as follows.

normalized_counter = counter * t_enabled / t_running

Where t_enabled is the time enabled for event and t_running is the
time running for event since last normalization. The enabled and
running times are accumulated since the perf event open. To achieve
scaling factor between two invocations of an eBPF program, users
can use CPU id as the key (which is typical for perf array usage
model) to remember the previous value and do the calculation inside
the eBPF program.

Return
0 on success, or a negative error in case of failure.

long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct
bpf_perf_event_value *buf, u32 buf_size)

Description
For an eBPF program attached to a perf event, retrieve the value of
the event counter associated to ctx and store it in the structure pointed

Linux v6.13 2024-10-10 3129

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

by buf and of size buf_size. Enabled and running times are also stored
in the structure (see description of helper
bpf_perf_event_read_value() for more details).

Return
0 on success, or a negative error in case of failure.

long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int
optlen)

Description
Emulate a call to getsockopt() on the socket associated to bpf_socket,
which must be a full socket. The level at which the option resides and
the name optname of the option must be specified, see getsockopt(2)
for more information. The retrieved value is stored in the structure
pointed by opval and of length optlen.

bpf_socket should be one of the following:

• struct bpf_sock_ops for BPF_PROG_TYPE_SOCK_OPS.

• struct bpf_sock_addr for BPF_CGROUP_INET4_CON-
NECT, BPF_CGROUP_INET6_CONNECT and
BPF_CGROUP_UNIX_CONNECT.

This helper actually implements a subset of getsockopt(). It sup-
ports the same set of optnames that is supported by the bpf_setsock-
opt() helper. The exceptions are TCP_BPF_* is bpf_setsockopt()
only and TCP_SAVED_SYN is bpf_getsockopt() only.

Return
0 on success, or a negative error in case of failure.

long bpf_override_return(struct pt_regs *regs, u64 rc)

Description
Used for error injection, this helper uses kprobes to override the re-
turn value of the probed function, and to set it to rc. The first argu-
ment is the context regs on which the kprobe works.

This helper works by setting the PC (program counter) to an override
function which is run in place of the original probed function. This
means the probed function is not run at all. The replacement function
just returns with the required value.

This helper has security implications, and thus is subject to restric-
tions. It is only available if the kernel was compiled with the CON-
FIG_BPF_KPROBE_OVERRIDE configuration option, and in this
case it only works on functions tagged with ALLOW_ERROR_IN-
JECTION in the kernel code.

Return

Linux v6.13 2024-10-10 3130

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)

Description
Attempt to set the value of the bpf_sock_ops_cb_flags field for the
full TCP socket associated to bpf_sock_ops to argval.

The primary use of this field is to determine if there should be calls to
eBPF programs of type BPF_PROG_TYPE_SOCK_OPS at various
points in the TCP code. A program of the same type can change its
value, per connection and as necessary, when the connection is estab-
lished. This field is directly accessible for reading, but this helper
must be used for updates in order to return an error if an eBPF pro-
gram tries to set a callback that is not supported in the current kernel.

argval is a flag array which can combine these flags:

• BPF_SOCK_OPS_RTO_CB_FLAG (retransmission time out)

• BPF_SOCK_OPS_RETRANS_CB_FLAG (retransmission)

• BPF_SOCK_OPS_STATE_CB_FLAG (TCP state change)

• BPF_SOCK_OPS_RTT_CB_FLAG (every RTT)

Therefore, this function can be used to clear a callback flag by set-
ting the appropriate bit to zero. e.g. to disable the RTO callback:

bpf_sock_ops_cb_flags_set(bpf_sock,
bpf_sock->bpf_sock_ops_cb_flags &
˜BPF_SOCK_OPS_RTO_CB_FLAG)

Here are some examples of where one could call such eBPF pro-
gram:

• When RTO fires.

• When a packet is retransmitted.

• When the connection terminates.

• When a packet is sent.

• When a packet is received.

Return
Code -EINVAL if the socket is not a full TCP socket; otherwise, a
positive number containing the bits that could not be set is returned
(which comes down to 0 if all bits were set as required).

long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32
key, u64 flags)

Description
This helper is used in programs implementing policies at the socket
level. If the message msg is allowed to pass (i.e. if the verdict eBPF
program returns SK_PASS), redirect it to the socket referenced by
map (of type BPF_MAP_TYPE_SOCKMAP) at index key. Both

Linux v6.13 2024-10-10 3131

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

ingress and egress interfaces can be used for redirection. The
BPF_F_INGRESS value in flags is used to make the distinction
(ingress path is selected if the flag is present, egress path otherwise).
This is the only flag supported for now.

Return
SK_PASS on success, or SK_DROP on error.

long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)

Description
For socket policies, apply the verdict of the eBPF program to the next
bytes (number of bytes) of message msg.

For example, this helper can be used in the following cases:

• A single sendmsg() or sendfile() system call contains multiple
logical messages that the eBPF program is supposed to read and
for which it should apply a verdict.

• An eBPF program only cares to read the first bytes of a msg. If the
message has a large payload, then setting up and calling the eBPF
program repeatedly for all bytes, even though the verdict is al-
ready known, would create unnecessary overhead.

When called from within an eBPF program, the helper sets a counter
internal to the BPF infrastructure, that is used to apply the last ver-
dict to the next bytes. If bytes is smaller than the current data being
processed from a sendmsg() or sendfile() system call, the first bytes
will be sent and the eBPF program will be re-run with the pointer
for start of data pointing to byte number bytes + 1. If bytes is larger
than the current data being processed, then the eBPF verdict will be
applied to multiple sendmsg() or sendfile() calls until bytes are con-
sumed.

Note that if a socket closes with the internal counter holding a
non-zero value, this is not a problem because data is not being
buffered for bytes and is sent as it is received.

Return

long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)

Description
For socket policies, prevent the execution of the verdict eBPF pro-
gram for message msg until bytes (byte number) have been accumu-
lated.

This can be used when one needs a specific number of bytes before a
verdict can be assigned, even if the data spans multiple sendmsg() or
sendfile() calls. The extreme case would be a user calling sendmsg()
repeatedly with 1-byte long message segments. Obviously, this is bad
for performance, but it is still valid. If the eBPF program needs bytes

Linux v6.13 2024-10-10 3132

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

bytes to validate a header, this helper can be used to prevent the eBPF
program to be called again until bytes have been accumulated.

Return

long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)

Description
For socket policies, pull in non-linear data from user space for msg
and set pointers msg->data and msg->data_end to start and end
bytes offsets into msg, respectively.

If a program of type BPF_PROG_TYPE_SK_MSG is run on a msg
it can only parse data that the (data, data_end) pointers have already
consumed. For sendmsg() hooks this is likely the first scatterlist ele-
ment. But for calls relying on the sendpage handler (e.g. sendfile())
this will be the range (0, 0) because the data is shared with user space
and by default the objective is to avoid allowing user space to modify
data while (or after) eBPF verdict is being decided. This helper can be
used to pull in data and to set the start and end pointer to given values.
Data will be copied if necessary (i.e. if data was not linear and if start
and end pointers do not point to the same chunk).

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

All values for flags are reserved for future usage, and must be left at
zero.

Return
0 on success, or a negative error in case of failure.

long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)

Description
Bind the socket associated to ctx to the address pointed by addr, of
length addr_len. This allows for making outgoing connection from
the desired IP address, which can be useful for example when all
processes inside a cgroup should use one single IP address on a host
that has multiple IP configured.

This helper works for IPv4 and IPv6, TCP and UDP sockets. The do-
main (addr->sa_family) must be AF_INET (or AF_INET6). It's ad-
vised to pass zero port (sin_port or sin6_port) which triggers
IP_BIND_ADDRESS_NO_PORT-like behavior and lets the kernel
efficiently pick up an unused port as long as 4-tuple is unique. Pass-
ing non-zero port might lead to degraded performance.

Return
0 on success, or a negative error in case of failure.

Linux v6.13 2024-10-10 3133

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)

Description
Adjust (move) xdp_md->data_end by delta bytes. It is possible to
both shrink and grow the packet tail. Shrink done via delta being a
negative integer.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct
bpf_xfrm_state *xfrm_state, u32 size, u64 flags)

Description
Retrieve the XFRM state (IP transform framework, see also
ip-xfrm(8)) at index in XFRM "security path" for skb.

The retrieved value is stored in the struct bpf_xfrm_state pointed by
xfrm_state and of length size.

All values for flags are reserved for future usage, and must be left at
zero.

This helper is available only if the kernel was compiled with CON-
FIG_XFRM configuration option.

Return
0 on success, or a negative error in case of failure.

long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)

Description
Return a user or a kernel stack in bpf program provided buffer. To
achieve this, the helper needs ctx, which is a pointer to the context on
which the tracing program is executed. To store the stacktrace, the
bpf program provides buf with a nonnegative size.

The last argument, flags, holds the number of stack frames to skip
(from 0 to 255), masked with BPF_F_SKIP_FIELD_MASK. The
next bits can be used to set the following flags:

BPF_F_USER_STACK
Collect a user space stack instead of a kernel stack.

BPF_F_USER_BUILD_ID
Collect (build_id, file_offset) instead of ips for user stack,
only valid if BPF_F_USER_STACK is also specified.

file_offset is an offset relative to the beginning of the

Linux v6.13 2024-10-10 3134

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

executable or shared object file backing the vma which the ip
falls in. It is not an offset relative to that object's base ad-
dress. Accordingly, it must be adjusted by adding (sh_addr -
sh_offset), where sh_{addr,offset} correspond to the exe-
cutable section containing file_offset in the object, for com-
parisons to symbols' st_value to be valid.

bpf_get_stack() can collect up to PERF_MAX_STACK_DEPTH
both kernel and user frames, subject to sufficient large buffer size.
Note that this limit can be controlled with the sysctl program, and
that it should be manually increased in order to profile long user
stacks (such as stacks for Java programs). To do so, use:

sysctl kernel.perf_event_max_stack=<new value>

Return
The non-negative copied buf length equal to or less than size on suc-
cess, or a negative error in case of failure.

long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len,
u32 start_header)

Description
This helper is similar to bpf_skb_load_bytes() in that it provides an
easy way to load len bytes from offset from the packet associated to
skb, into the buffer pointed by to. The difference to
bpf_skb_load_bytes() is that a fifth argument start_header exists in
order to select a base offset to start from. start_header can be one of:

BPF_HDR_START_MAC
Base offset to load data from is skb's mac header.

BPF_HDR_START_NET
Base offset to load data from is skb's network header.

In general, "direct packet access" is the preferred method to access
packet data, however, this helper is in particular useful in socket fil-
ters where skb->data does not always point to the start of the mac
header and where "direct packet access" is not available.

Return
0 on success, or a negative error in case of failure.

long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)

Description
Do FIB lookup in kernel tables using parameters in params. If
lookup is successful and result shows packet is to be forwarded, the
neighbor tables are searched for the nexthop. If successful (ie., FIB
lookup shows forwarding and nexthop is resolved), the nexthop ad-
dress is returned in ipv4_dst or ipv6_dst based on family, smac is set
to mac address of egress device, dmac is set to nexthop mac address,
rt_metric is set to metric from route (IPv4/IPv6 only), and ifindex is

Linux v6.13 2024-10-10 3135

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

set to the device index of the nexthop from the FIB lookup.

plen argument is the size of the passed in struct. flags argument can
be a combination of one or more of the following values:

BPF_FIB_LOOKUP_DIRECT
Do a direct table lookup vs full lookup using FIB rules.

BPF_FIB_LOOKUP_TBID
Used with BPF_FIB_LOOKUP_DIRECT. Use the routing
table ID present in params->tbid for the fib lookup.

BPF_FIB_LOOKUP_OUTPUT
Perform lookup from an egress perspective (default is
ingress).

BPF_FIB_LOOKUP_SKIP_NEIGH
Skip the neighbour table lookup. params->dmac and
params->smac will not be set as output. A common use case
is to call bpf_redirect_neigh() after doing
bpf_fib_lookup().

BPF_FIB_LOOKUP_SRC
Derive and set source IP addr in params->ipv{4,6}_src for
the nexthop. If the src addr cannot be derived,
BPF_FIB_LKUP_RET_NO_SRC_ADDR is returned. In
this case, params->dmac and params->smac are not set ei-
ther.

BPF_FIB_LOOKUP_MARK
Use the mark present in params->mark for the fib lookup.
This option should not be used with
BPF_FIB_LOOKUP_DIRECT, as it only has meaning for
full lookups.

ctx is either struct xdp_md for XDP programs or struct sk_buff tc
cls_act programs.

Return

• < 0 if any input argument is invalid

• 0 on success (packet is forwarded, nexthop neighbor exists)

• > 0 one of BPF_FIB_LKUP_RET_ codes explaining why the
packet is not forwarded or needs assist from full stack

If lookup fails with BPF_FIB_LKUP_RET_FRAG_NEEDED, then
the MTU was exceeded and output params->mtu_result contains the
MTU.

long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map,
void *key, u64 flags)

Linux v6.13 2024-10-10 3136

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Add an entry to, or update a sockhash map referencing sockets. The
skops is used as a new value for the entry associated to key. flags is
one of:

BPF_NOEXIST
The entry for key must not exist in the map.

BPF_EXIST
The entry for key must already exist in the map.

BPF_ANY
No condition on the existence of the entry for key.

If the map has eBPF programs (parser and verdict), those will be in-
herited by the socket being added. If the socket is already attached to
eBPF programs, this results in an error.

Return
0 on success, or a negative error in case of failure.

long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map,
void *key, u64 flags)

Description
This helper is used in programs implementing policies at the socket
level. If the message msg is allowed to pass (i.e. if the verdict eBPF
program returns SK_PASS), redirect it to the socket referenced by
map (of type BPF_MAP_TYPE_SOCKHASH) using hash key.
Both ingress and egress interfaces can be used for redirection. The
BPF_F_INGRESS value in flags is used to make the distinction
(ingress path is selected if the flag is present, egress path otherwise).
This is the only flag supported for now.

Return
SK_PASS on success, or SK_DROP on error.

long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key,
u64 flags)

Description
This helper is used in programs implementing policies at the skb
socket level. If the sk_buff skb is allowed to pass (i.e. if the verdict
eBPF program returns SK_PASS), redirect it to the socket referenced
by map (of type BPF_MAP_TYPE_SOCKHASH) using hash key.
Both ingress and egress interfaces can be used for redirection. The
BPF_F_INGRESS value in flags is used to make the distinction
(ingress path is selected if the flag is present, egress otherwise). This
is the only flag supported for now.

Return
SK_PASS on success, or SK_DROP on error.

Linux v6.13 2024-10-10 3137

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)

Description
Encapsulate the packet associated to skb within a Layer 3 protocol
header. This header is provided in the buffer at address hdr, with len
its size in bytes. type indicates the protocol of the header and can be
one of:

BPF_LWT_ENCAP_SEG6
IPv6 encapsulation with Segment Routing Header (struct
ipv6_sr_hdr). hdr only contains the SRH, the IPv6 header is
computed by the kernel.

BPF_LWT_ENCAP_SEG6_INLINE
Only works if skb contains an IPv6 packet. Insert a Segment
Routing Header (struct ipv6_sr_hdr) inside the IPv6
header.

BPF_LWT_ENCAP_IP
IP encapsulation (GRE/GUE/IPIP/etc). The outer header
must be IPv4 or IPv6, followed by zero or more additional
headers, up to LWT_BPF_MAX_HEADROOM total bytes
in all prepended headers. Please note that if skb_is_gso(skb)
is true, no more than two headers can be prepended, and the
inner header, if present, should be either GRE or UDP/GUE.

BPF_LWT_ENCAP_SEG6* types can be called by BPF programs
of type BPF_PROG_TYPE_LWT_IN; BPF_LWT_ENCAP_IP
type can be called by bpf programs of types
BPF_PROG_TYPE_LWT_IN and
BPF_PROG_TYPE_LWT_XMIT.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously
done by the verifier are invalidated and must be performed again, if
the helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
u32 len)

Description
Store len bytes from address from into the packet associated to skb, at
offset. Only the flags, tag and TLVs inside the outermost IPv6 Seg-
ment Routing Header can be modified through this helper.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Linux v6.13 2024-10-10 3138

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
0 on success, or a negative error in case of failure.

long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)

Description
Adjust the size allocated to TLVs in the outermost IPv6 Segment
Routing Header contained in the packet associated to skb, at position
offset by delta bytes. Only offsets after the segments are accepted.
delta can be as well positive (growing) as negative (shrinking).

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32
param_len)

Description
Apply an IPv6 Segment Routing action of type action to the packet
associated to skb. Each action takes a parameter contained at address
param, and of length param_len bytes. action can be one of:

SEG6_LOCAL_ACTION_END_X
End.X action: Endpoint with Layer-3 cross-connect. Type
of param: struct in6_addr.

SEG6_LOCAL_ACTION_END_T
End.T action: Endpoint with specific IPv6 table lookup.
Type of param: int.

SEG6_LOCAL_ACTION_END_B6
End.B6 action: Endpoint bound to an SRv6 policy. Type of
param: struct ipv6_sr_hdr.

SEG6_LOCAL_ACTION_END_B6_ENCAP
End.B6.Encap action: Endpoint bound to an SRv6 encapsu-
lation policy. Type of param: struct ipv6_sr_hdr.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously
done by the verifier are invalidated and must be performed again, if
the helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_rc_repeat(void *ctx)

Description
This helper is used in programs implementing IR decoding, to report
a successfully decoded repeat key message. This delays the

Linux v6.13 2024-10-10 3139

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

generation of a key up event for previously generated key down event.

Some IR protocols like NEC have a special IR message for repeating
last button, for when a button is held down.

The ctx should point to the lirc sample as passed into the program.

This helper is only available is the kernel was compiled with the
CONFIG_BPF_LIRC_MODE2 configuration option set to "y".

Return

long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)

Description
This helper is used in programs implementing IR decoding, to report
a successfully decoded key press with scancode, toggle value in the
given protocol. The scancode will be translated to a keycode using the
rc keymap, and reported as an input key down event. After a period a
key up event is generated. This period can be extended by calling ei-
ther bpf_rc_keydown() again with the same values, or calling
bpf_rc_repeat().

Some protocols include a toggle bit, in case the button was released
and pressed again between consecutive scancodes.

The ctx should point to the lirc sample as passed into the program.

The protocol is the decoded protocol number (see enum rc_proto for
some predefined values).

This helper is only available is the kernel was compiled with the
CONFIG_BPF_LIRC_MODE2 configuration option set to "y".

Return

u64 bpf_skb_cgroup_id(struct sk_buff *skb)

Description
Return the cgroup v2 id of the socket associated with the skb. This is
roughly similar to the bpf_get_cgroup_classid() helper for cgroup v1
by providing a tag resp. identifier that can be matched on or used for
map lookups e.g. to implement policy. The cgroup v2 id of a given
path in the hierarchy is exposed in user space through the f_handle
API in order to get to the same 64-bit id.

This helper can be used on TC egress path, but not on ingress, and is
available only if the kernel was compiled with the CON-
FIG_SOCK_CGROUP_DATA configuration option.

Return
The id is returned or 0 in case the id could not be retrieved.

Linux v6.13 2024-10-10 3140

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

u64 bpf_get_current_cgroup_id(void)

Description
Get the current cgroup id based on the cgroup within which the cur-
rent task is running.

Return
A 64-bit integer containing the current cgroup id based on the cgroup
within which the current task is running.

void *bpf_get_local_storage(void *map, u64 flags)

Description
Get the pointer to the local storage area. The type and the size of the
local storage is defined by the map argument. The flags meaning is
specific for each map type, and has to be 0 for cgroup local storage.

Depending on the BPF program type, a local storage area can be
shared between multiple instances of the BPF program, running si-
multaneously.

A user should care about the synchronization by himself. For exam-
ple, by using the BPF_ATOMIC instructions to alter the shared data.

Return
A pointer to the local storage area.

long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map
*map, void *key, u64 flags)

Description
Select a SO_REUSEPORT socket from a
BPF_MAP_TYPE_REUSEPORT_SOCKARRAY map. It checks
the selected socket is matching the incoming request in the socket
buffer.

Return
0 on success, or a negative error in case of failure.

u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)

Description
Return id of cgroup v2 that is ancestor of cgroup associated with the
skb at the ancestor_level. The root cgroup is at ancestor_level zero
and each step down the hierarchy increments the level. If ances-
tor_level == level of cgroup associated with skb, then return value
will be same as that of bpf_skb_cgroup_id().

The helper is useful to implement policies based on cgroups that are
upper in hierarchy than immediate cgroup associated with skb.

The format of returned id and helper limitations are same as in
bpf_skb_cgroup_id().

Linux v6.13 2024-10-10 3141

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
The id is returned or 0 in case the id could not be retrieved.

struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32
tuple_size, u64 netns, u64 flags)

Description
Look for TCP socket matching tuple, optionally in a child network
namespace netns. The return value must be checked, and if
non-NULL, released via bpf_sk_release().

The ctx should point to the context of the program, such as the skb or
socket (depending on the hook in use). This is used to determine the
base network namespace for the lookup.

tuple_size must be one of:

sizeof(tuple->ipv4)
Look for an IPv4 socket.

sizeof(tuple->ipv6)
Look for an IPv6 socket.

If the netns is a negative signed 32-bit integer, then the socket
lookup table in the netns associated with the ctx will be used. For the
TC hooks, this is the netns of the device in the skb. For socket
hooks, this is the netns of the socket. If netns is any other signed
32-bit value greater than or equal to zero then it specifies the ID of
the netns relative to the netns associated with the ctx. netns values
beyond the range of 32-bit integers are reserved for future use.

All values for flags are reserved for future usage, and must be left at
zero.

This helper is available only if the kernel was compiled with CON-
FIG_NET configuration option.

Return
Pointer to struct bpf_sock, or NULL in case of failure. For sockets
with reuseport option, the struct bpf_sock result is from
reuse->socks[] using the hash of the tuple.

struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32
tuple_size, u64 netns, u64 flags)

Description
Look for UDP socket matching tuple, optionally in a child network
namespace netns. The return value must be checked, and if
non-NULL, released via bpf_sk_release().

The ctx should point to the context of the program, such as the skb or
socket (depending on the hook in use). This is used to determine the
base network namespace for the lookup.

Linux v6.13 2024-10-10 3142

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

tuple_size must be one of:

sizeof(tuple->ipv4)
Look for an IPv4 socket.

sizeof(tuple->ipv6)
Look for an IPv6 socket.

If the netns is a negative signed 32-bit integer, then the socket
lookup table in the netns associated with the ctx will be used. For the
TC hooks, this is the netns of the device in the skb. For socket
hooks, this is the netns of the socket. If netns is any other signed
32-bit value greater than or equal to zero then it specifies the ID of
the netns relative to the netns associated with the ctx. netns values
beyond the range of 32-bit integers are reserved for future use.

All values for flags are reserved for future usage, and must be left at
zero.

This helper is available only if the kernel was compiled with CON-
FIG_NET configuration option.

Return
Pointer to struct bpf_sock, or NULL in case of failure. For sockets
with reuseport option, the struct bpf_sock result is from
reuse->socks[] using the hash of the tuple.

long bpf_sk_release(void *sock)

Description
Release the reference held by sock. sock must be a non-NULL
pointer that was returned from bpf_sk_lookup_xxx().

Return
0 on success, or a negative error in case of failure.

long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)

Description
Push an element value in map. flags is one of:

BPF_EXIST
If the queue/stack is full, the oldest element is removed to
make room for this.

Return
0 on success, or a negative error in case of failure.

long bpf_map_pop_elem(struct bpf_map *map, void *value)

Description
Pop an element from map.

Return
0 on success, or a negative error in case of failure.

Linux v6.13 2024-10-10 3143

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_map_peek_elem(struct bpf_map *map, void *value)

Description
Get an element from map without removing it.

Return
0 on success, or a negative error in case of failure.

long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)

Description
For socket policies, insert len bytes into msg at offset start.

If a program of type BPF_PROG_TYPE_SK_MSG is run on a msg
it may want to insert metadata or options into the msg. This can later
be read and used by any of the lower layer BPF hooks.

This helper may fail if under memory pressure (a malloc fails) in
these cases BPF programs will get an appropriate error and BPF pro-
grams will need to handle them.

Return
0 on success, or a negative error in case of failure.

long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)

Description
Will remove len bytes from a msg starting at byte start. This may re-
sult in ENOMEM errors under certain situations if an allocation and
copy are required due to a full ring buffer. However, the helper will
try to avoid doing the allocation if possible. Other errors can occur if
input parameters are invalid either due to start byte not being valid
part of msg payload and/or pop value being to large.

Return
0 on success, or a negative error in case of failure.

long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)

Description
This helper is used in programs implementing IR decoding, to report
a successfully decoded pointer movement.

The ctx should point to the lirc sample as passed into the program.

This helper is only available is the kernel was compiled with the
CONFIG_BPF_LIRC_MODE2 configuration option set to "y".

Return

long bpf_spin_lock(struct bpf_spin_lock *lock)

Description
Acquire a spinlock represented by the pointer lock, which is stored as
part of a value of a map. Taking the lock allows to safely update the
rest of the fields in that value. The spinlock can (and must) later be

Linux v6.13 2024-10-10 3144

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

released with a call to bpf_spin_unlock(lock).

Spinlocks in BPF programs come with a number of restrictions and
constraints:

• bpf_spin_lock objects are only allowed inside maps of types
BPF_MAP_TYPE_HASH and BPF_MAP_TYPE_ARRAY
(this list could be extended in the future).

• BTF description of the map is mandatory.

• The BPF program can take ONE lock at a time, since taking two
or more could cause dead locks.

• Only one struct bpf_spin_lock is allowed per map element.

• When the lock is taken, calls (either BPF to BPF or helpers) are
not allowed.

• The BPF_LD_ABS and BPF_LD_IND instructions are not al-
lowed inside a spinlock-ed region.

• The BPF program MUST call bpf_spin_unlock() to release the
lock, on all execution paths, before it returns.

• The BPF program can access struct bpf_spin_lock only via the
bpf_spin_lock() and bpf_spin_unlock() helpers. Loading or stor-
ing data into the struct bpf_spin_lock lock; field of a map is not
allowed.

• To use the bpf_spin_lock() helper, the BTF description of the
map value must be a struct and have struct bpf_spin_lock any-
name; field at the top level. Nested lock inside another struct is
not allowed.

• The struct bpf_spin_lock lock field in a map value must be
aligned on a multiple of 4 bytes in that value.

• Syscall with command BPF_MAP_LOOKUP_ELEM does not
copy the bpf_spin_lock field to user space.

• Syscall with command BPF_MAP_UPDATE_ELEM, or update
from a BPF program, do not update the bpf_spin_lock field.

• bpf_spin_lock cannot be on the stack or inside a networking
packet (it can only be inside of a map values).

• bpf_spin_lock is available to root only.

• Tracing programs and socket filter programs cannot use
bpf_spin_lock() due to insufficient preemption checks (but this
may change in the future).

• bpf_spin_lock is not allowed in inner maps of map-in-map.

Return

Linux v6.13 2024-10-10 3145

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_spin_unlock(struct bpf_spin_lock *lock)

Description
Release the lock previously locked by a call to bpf_spin_lock(lock).

Return

struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)

Description
This helper gets a struct bpf_sock pointer such that all the fields in
this bpf_sock can be accessed.

Return
A struct bpf_sock pointer on success, or NULL in case of failure.

struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)

Description
This helper gets a struct bpf_tcp_sock pointer from a struct
bpf_sock pointer.

Return
A struct bpf_tcp_sock pointer on success, or NULL in case of fail-
ure.

long bpf_skb_ecn_set_ce(struct sk_buff *skb)

Description
Set ECN (Explicit Congestion Notification) field of IP header to CE
(Congestion Encountered) if current value is ECT (ECN Capable
Transport). Otherwise, do nothing. Works with IPv6 and IPv4.

Return
1 if the CE flag is set (either by the current helper call or because it
was already present), 0 if it is not set.

struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)

Description
Return a struct bpf_sock pointer in TCP_LISTEN state.
bpf_sk_release() is unnecessary and not allowed.

Return
A struct bpf_sock pointer on success, or NULL in case of failure.

struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32
tuple_size, u64 netns, u64 flags)

Description
Look for TCP socket matching tuple, optionally in a child network
namespace netns. The return value must be checked, and if
non-NULL, released via bpf_sk_release().

This function is identical to bpf_sk_lookup_tcp(), except that it also
returns timewait or request sockets. Use bpf_sk_fullsock() or
bpf_tcp_sock() to access the full structure.

Linux v6.13 2024-10-10 3146

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

This helper is available only if the kernel was compiled with CON-
FIG_NET configuration option.

Return
Pointer to struct bpf_sock, or NULL in case of failure. For sockets
with reuseport option, the struct bpf_sock result is from
reuse->socks[] using the hash of the tuple.

long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th,
u32 th_len)

Description
Check whether iph and th contain a valid SYN cookie ACK for the
listening socket in sk.

iph points to the start of the IPv4 or IPv6 header, while iph_len con-
tains sizeof(struct iphdr) or sizeof(struct ipv6hdr).

th points to the start of the TCP header, while th_len contains the
length of the TCP header (at least sizeof(struct tcphdr)).

Return
0 if iph and th are a valid SYN cookie ACK, or a negative error other-
wise.

long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64
flags)

Description
Get name of sysctl in /proc/sys/ and copy it into provided by program
buffer buf of size buf_len.

The buffer is always NUL terminated, unless it's zero-sized.

If flags is zero, full name (e.g. "net/ipv4/tcp_mem") is copied. Use
BPF_F_SYSCTL_BASE_NAME flag to copy base name only (e.g.
"tcp_mem").

Return
Number of character copied (not including the trailing NUL).

-E2BIG if the buffer wasn't big enough (buf will contain truncated
name in this case).

long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t
buf_len)

Description
Get current value of sysctl as it is presented in /proc/sys (incl. new-
line, etc), and copy it as a string into provided by program buffer buf
of size buf_len.

The whole value is copied, no matter what file position user space is-
sued e.g. sys_read at.

Linux v6.13 2024-10-10 3147

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

The buffer is always NUL terminated, unless it's zero-sized.

Return
Number of character copied (not including the trailing NUL).

-E2BIG if the buffer wasn't big enough (buf will contain truncated
name in this case).

-EINVAL if current value was unavailable, e.g. because sysctl is
uninitialized and read returns -EIO for it.

long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)

Description
Get new value being written by user space to sysctl (before the actual
write happens) and copy it as a string into provided by program buffer
buf of size buf_len.

User space may write new value at file position > 0.

The buffer is always NUL terminated, unless it's zero-sized.

Return
Number of character copied (not including the trailing NUL).

-E2BIG if the buffer wasn't big enough (buf will contain truncated
name in this case).

-EINVAL if sysctl is being read.

long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t
buf_len)

Description
Override new value being written by user space to sysctl with value
provided by program in buffer buf of size buf_len.

buf should contain a string in same form as provided by user space on
sysctl write.

User space may write new value at file position > 0. To override the
whole sysctl value file position should be set to zero.

Return
0 on success.

-E2BIG if the buf_len is too big.

-EINVAL if sysctl is being read.

long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)

Linux v6.13 2024-10-10 3148

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Convert the initial part of the string from buffer buf of size buf_len to
a long integer according to the given base and save the result in res.

The string may begin with an arbitrary amount of white space (as de-
termined by isspace(3)) followed by a single optional '-' sign.

Five least significant bits of flags encode base, other bits are currently
unused.

Base must be either 8, 10, 16 or 0 to detect it automatically similar to
user space strtol(3).

Return
Number of characters consumed on success. Must be positive but no
more than buf_len.

-EINVAL if no valid digits were found or unsupported base was pro-
vided.

-ERANGE if resulting value was out of range.

long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)

Description
Convert the initial part of the string from buffer buf of size buf_len to
an unsigned long integer according to the given base and save the re-
sult in res.

The string may begin with an arbitrary amount of white space (as de-
termined by isspace(3)).

Five least significant bits of flags encode base, other bits are currently
unused.

Base must be either 8, 10, 16 or 0 to detect it automatically similar to
user space strtoul(3).

Return
Number of characters consumed on success. Must be positive but no
more than buf_len.

-EINVAL if no valid digits were found or unsupported base was pro-
vided.

-ERANGE if resulting value was out of range.

void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags)

Description
Get a bpf-local-storage from a sk.

Linux v6.13 2024-10-10 3149

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Logically, it could be thought of getting the value from a map with sk
as the key. From this perspective, the usage is not much different
from bpf_map_lookup_elem(map, &sk) except this helper enforces
the key must be a full socket and the map must be a
BPF_MAP_TYPE_SK_STORAGE also.

Underneath, the value is stored locally at sk instead of the map. The
map is used as the bpf-local-storage "type". The bpf-local-storage
"type" (i.e. the map) is searched against all bpf-local-storages resid-
ing at sk.

sk is a kernel struct sock pointer for LSM program. sk is a struct
bpf_sock pointer for other program types.

An optional flags (BPF_SK_STORAGE_GET_F_CREATE) can be
used such that a new bpf-local-storage will be created if one does not
exist. value can be used together with BPF_SK_STOR-
AGE_GET_F_CREATE to specify the initial value of a bpf-lo-
cal-storage. If value is NULL, the new bpf-local-storage will be
zero initialized.

Return
A bpf-local-storage pointer is returned on success.

NULL if not found or there was an error in adding a new bpf-lo-
cal-storage.

long bpf_sk_storage_delete(struct bpf_map *map, void *sk)

Description
Delete a bpf-local-storage from a sk.

Return
0 on success.

-ENOENT if the bpf-local-storage cannot be found. -EINVAL if
sk is not a fullsock (e.g. a request_sock).

long bpf_send_signal(u32 sig)

Description
Send signal sig to the process of the current task. The signal may be
delivered to any of this process's threads.

Return
0 on success or successfully queued.

-EBUSY if work queue under nmi is full.

-EINVAL if sig is invalid.

-EPERM if no permission to send the sig.

Linux v6.13 2024-10-10 3150

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

-EAGAIN if bpf program can try again.

s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th,
u32 th_len)

Description
Try to issue a SYN cookie for the packet with corresponding IP/TCP
headers, iph and th, on the listening socket in sk.

iph points to the start of the IPv4 or IPv6 header, while iph_len con-
tains sizeof(struct iphdr) or sizeof(struct ipv6hdr).

th points to the start of the TCP header, while th_len contains the
length of the TCP header with options (at least sizeof(struct
tcphdr)).

Return
On success, lower 32 bits hold the generated SYN cookie in followed
by 16 bits which hold the MSS value for that cookie, and the top 16
bits are unused.

On failure, the returned value is one of the following:

-EINVAL SYN cookie cannot be issued due to error

-ENOENT SYN cookie should not be issued (no SYN flood)

-EOPNOTSUPP kernel configuration does not enable SYN cookies

-EPROTONOSUPPORT IP packet version is not 4 or 6

long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64
size)

Description
Write raw data blob into a special BPF perf event held by map of
type BPF_MAP_TYPE_PERF_EVENT_ARRAY. This perf event
must have the following attributes: PERF_SAMPLE_RAW as sam-
ple_type, PERF_TYPE_SOFTWARE as type, and
PERF_COUNT_SW_BPF_OUTPUT as config.

The flags are used to indicate the index in map for which the value
must be put, masked with BPF_F_INDEX_MASK. Alternatively,
flags can be set to BPF_F_CURRENT_CPU to indicate that the in-
dex of the current CPU core should be used.

The value to write, of size, is passed through eBPF stack and pointed
by data.

ctx is a pointer to in-kernel struct sk_buff.

This helper is similar to bpf_perf_event_output() but restricted to

Linux v6.13 2024-10-10 3151

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

raw_tracepoint bpf programs.

Return
0 on success, or a negative error in case of failure.

long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)

Description
Safely attempt to read size bytes from user space address unsafe_ptr
and store the data in dst.

Return
0 on success, or a negative error in case of failure.

long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)

Description
Safely attempt to read size bytes from kernel space address unsafe_ptr
and store the data in dst.

Return
0 on success, or a negative error in case of failure.

long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)

Description
Copy a NUL terminated string from an unsafe user address un-
safe_ptr to dst. The size should include the terminating NUL byte. In
case the string length is smaller than size, the target is not padded
with further NUL bytes. If the string length is larger than size, just
size-1 bytes are copied and the last byte is set to NUL.

On success, returns the number of bytes that were written, including
the terminal NUL. This makes this helper useful in tracing programs
for reading strings, and more importantly to get its length at runtime.
See the following snippet:

SEC("kprobe/sys_open")
void bpf_sys_open(struct pt_regs *ctx)
{

char buf[PATHLEN]; // PATHLEN is defined to 256
int res = bpf_probe_read_user_str(buf, sizeof(buf),

ctx->di);
// Consume buf, for example push it to
// userspace via bpf_perf_event_output(); we
// can use res (the string length) as event
// size, after checking its boundaries.

}

In comparison, using bpf_probe_read_user() helper here instead to
read the string would require to estimate the length at compile time,
and would often result in copying more memory than necessary.

Another useful use case is when parsing individual process

Linux v6.13 2024-10-10 3152

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

arguments or individual environment variables navigating cur-
rent->mm->arg_start and current->mm->env_start: using this
helper and the return value, one can quickly iterate at the right offset
of the memory area.

Return
On success, the strictly positive length of the output string, including
the trailing NUL character. On error, a negative value.

long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)

Description
Copy a NUL terminated string from an unsafe kernel address un-
safe_ptr to dst. Same semantics as with bpf_probe_read_user_str()
apply.

Return
On success, the strictly positive length of the string, including the
trailing NUL character. On error, a negative value.

long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)

Description
Send out a tcp-ack. tp is the in-kernel struct tcp_sock. rcv_nxt is the
ack_seq to be sent out.

Return
0 on success, or a negative error in case of failure.

long bpf_send_signal_thread(u32 sig)

Description
Send signal sig to the thread corresponding to the current task.

Return
0 on success or successfully queued.

-EBUSY if work queue under nmi is full.

-EINVAL if sig is invalid.

-EPERM if no permission to send the sig.

-EAGAIN if bpf program can try again.

u64 bpf_jiffies64(void)

Description
Obtain the 64bit jiffies

Return
The 64 bit jiffies

long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32
size, u64 flags)

Linux v6.13 2024-10-10 3153

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
For an eBPF program attached to a perf event, retrieve the branch
records (struct perf_branch_entry) associated to ctx and store it in
the buffer pointed by buf up to size size bytes.

Return
On success, number of bytes written to buf. On error, a negative
value.

The flags can be set to BPF_F_GET_BRANCH_RECORDS_SIZE
to instead return the number of bytes required to store all the branch
entries. If this flag is set, buf may be NULL.

-EINVAL if arguments invalid or size not a multiple of sizeof(struct
perf_branch_entry).

-ENOENT if architecture does not support branch records.

long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *ns-
data, u32 size)

Description
Returns 0 on success, values for pid and tgid as seen from the current
namespace will be returned in nsdata.

Return
0 on success, or one of the following in case of failure:

-EINVAL if dev and inum supplied don't match dev_t and inode
number with nsfs of current task, or if dev conversion to dev_t lost
high bits.

-ENOENT if pidns does not exists for the current task.

long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64
size)

Description
Write raw data blob into a special BPF perf event held by map of
type BPF_MAP_TYPE_PERF_EVENT_ARRAY. This perf event
must have the following attributes: PERF_SAMPLE_RAW as sam-
ple_type, PERF_TYPE_SOFTWARE as type, and
PERF_COUNT_SW_BPF_OUTPUT as config.

The flags are used to indicate the index in map for which the value
must be put, masked with BPF_F_INDEX_MASK. Alternatively,
flags can be set to BPF_F_CURRENT_CPU to indicate that the in-
dex of the current CPU core should be used.

The value to write, of size, is passed through eBPF stack and pointed
by data.

Linux v6.13 2024-10-10 3154

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

ctx is a pointer to in-kernel struct xdp_buff.

This helper is similar to bpf_perf_eventoutput() but restricted to
raw_tracepoint bpf programs.

Return
0 on success, or a negative error in case of failure.

u64 bpf_get_netns_cookie(void *ctx)

Description
Retrieve the cookie (generated by the kernel) of the network name-
space the input ctx is associated with. The network namespace cookie
remains stable for its lifetime and provides a global identifier that can
be assumed unique. If ctx is NULL, then the helper returns the cookie
for the initial network namespace. The cookie itself is very similar to
that of bpf_get_socket_cookie() helper, but for network namespaces
instead of sockets.

Return
A 8-byte long opaque number.

u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)

Description
Return id of cgroup v2 that is ancestor of the cgroup associated with
the current task at the ancestor_level. The root cgroup is at ances-
tor_level zero and each step down the hierarchy increments the level.
If ancestor_level == level of cgroup associated with the current task,
then return value will be the same as that of bpf_get_cur-
rent_cgroup_id().

The helper is useful to implement policies based on cgroups that are
upper in hierarchy than immediate cgroup associated with the current
task.

The format of returned id and helper limitations are same as in
bpf_get_current_cgroup_id().

Return
The id is returned or 0 in case the id could not be retrieved.

long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags)

Description
Helper is overloaded depending on BPF program type. This descrip-
tion applies to BPF_PROG_TYPE_SCHED_CLS and
BPF_PROG_TYPE_SCHED_ACT programs.

Assign the sk to the skb. When combined with appropriate routing
configuration to receive the packet towards the socket, will cause skb
to be delivered to the specified socket. Subsequent redirection of skb
via bpf_redirect(), bpf_clone_redirect() or other methods outside
of BPF may interfere with successful delivery to the socket.

Linux v6.13 2024-10-10 3155

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

This operation is only valid from TC ingress path.

The flags argument must be zero.

Return
0 on success, or a negative error in case of failure:

-EINVAL if specified flags are not supported.

-ENOENT if the socket is unavailable for assignment.

-ENETUNREACH if the socket is unreachable (wrong netns).

-EOPNOTSUPP if the operation is not supported, for example a call
from outside of TC ingress.

long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)

Description
Helper is overloaded depending on BPF program type. This descrip-
tion applies to BPF_PROG_TYPE_SK_LOOKUP programs.

Select the sk as a result of a socket lookup.

For the operation to succeed passed socket must be compatible with
the packet description provided by the ctx object.

L4 protocol (IPPROTO_TCP or IPPROTO_UDP) must be an exact
match. While IP family (AF_INET or AF_INET6) must be compati-
ble, that is IPv6 sockets that are not v6-only can be selected for IPv4
packets.

Only TCP listeners and UDP unconnected sockets can be selected. sk
can also be NULL to reset any previous selection.

flags argument can combination of following values:

• BPF_SK_LOOKUP_F_REPLACE to override the previous
socket selection, potentially done by a BPF program that ran be-
fore us.

• BPF_SK_LOOKUP_F_NO_REUSEPORT to skip load-bal-
ancing within reuseport group for the socket being selected.

On success ctx->sk will point to the selected socket.

Return
0 on success, or a negative errno in case of failure.

• -EAFNOSUPPORT if socket family (sk->family) is not com-
patible with packet family (ctx->family).

Linux v6.13 2024-10-10 3156

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• -EEXIST if socket has been already selected, potentially by an-
other program, and BPF_SK_LOOKUP_F_REPLACE flag was
not specified.

• -EINVAL if unsupported flags were specified.

• -EPROTOTYPE if socket L4 protocol (sk->protocol) doesn't
match packet protocol (ctx->protocol).

• -ESOCKTNOSUPPORT if socket is not in allowed state (TCP
listening or UDP unconnected).

u64 bpf_ktime_get_boot_ns(void)

Description
Return the time elapsed since system boot, in nanoseconds. Does in-
clude the time the system was suspended. See: clock_get-
time(CLOCK_BOOTTIME)

Return
Current ktime.

long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void
*data, u32 data_len)

Description
bpf_seq_printf() uses seq_file seq_printf() to print out the format
string. The m represents the seq_file. The fmt and fmt_size are for the
format string itself. The data and data_len are format string argu-
ments. The data are a u64 array and corresponding format string val-
ues are stored in the array. For strings and pointers where pointees are
accessed, only the pointer values are stored in the data array. The
data_len is the size of data in bytes - must be a multiple of 8.

Formats %s, %p{i,I}{4,6} requires to read kernel memory. Reading
kernel memory may fail due to either invalid address or valid address
but requiring a major memory fault. If reading kernel memory fails,
the string for %s will be an empty string, and the ip address for
%p{i,I}{4,6} will be 0. Not returning error to bpf program is consis-
tent with what bpf_trace_printk() does for now.

Return
0 on success, or a negative error in case of failure:

-EBUSY if per-CPU memory copy buffer is busy, can try again by
returning 1 from bpf program.

-EINVAL if arguments are invalid, or if fmt is invalid/unsupported.

-E2BIG if fmt contains too many format specifiers.

-EOVERFLOW if an overflow happened: The same object will be
tried again.

Linux v6.13 2024-10-10 3157

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_seq_write(struct seq_file *m, const void *data, u32 len)

Description
bpf_seq_write() uses seq_file seq_write() to write the data. The m
represents the seq_file. The data and len represent the data to write in
bytes.

Return
0 on success, or a negative error in case of failure:

-EOVERFLOW if an overflow happened: The same object will be
tried again.

u64 bpf_sk_cgroup_id(void *sk)

Description
Return the cgroup v2 id of the socket sk.

sk must be a non-NULL pointer to a socket, e.g. one returned from
bpf_sk_lookup_xxx(), bpf_sk_fullsock(), etc. The format of re-
turned id is same as in bpf_skb_cgroup_id().

This helper is available only if the kernel was compiled with the
CONFIG_SOCK_CGROUP_DATA configuration option.

Return
The id is returned or 0 in case the id could not be retrieved.

u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level)

Description
Return id of cgroup v2 that is ancestor of cgroup associated with the
sk at the ancestor_level. The root cgroup is at ancestor_level zero
and each step down the hierarchy increments the level. If ances-
tor_level == level of cgroup associated with sk, then return value will
be same as that of bpf_sk_cgroup_id().

The helper is useful to implement policies based on cgroups that are
upper in hierarchy than immediate cgroup associated with sk.

The format of returned id and helper limitations are same as in
bpf_sk_cgroup_id().

Return
The id is returned or 0 in case the id could not be retrieved.

long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)

Description
Copy size bytes from data into a ring buffer ringbuf. If
BPF_RB_NO_WAKEUP is specified in flags, no notification of new
data availability is sent. If BPF_RB_FORCE_WAKEUP is speci-
fied in flags, notification of new data availability is sent uncondition-
ally. If 0 is specified in flags, an adaptive notification of new data
availability is sent.

Linux v6.13 2024-10-10 3158

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

An adaptive notification is a notification sent whenever the
user-space process has caught up and consumed all available pay-
loads. In case the user-space process is still processing a previous
payload, then no notification is needed as it will process the newly
added payload automatically.

Return
0 on success, or a negative error in case of failure.

void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)

Description
Reserve size bytes of payload in a ring buffer ringbuf. flags must be
0.

Return
Valid pointer with size bytes of memory available; NULL, otherwise.

void bpf_ringbuf_submit(void *data, u64 flags)

Description
Submit reserved ring buffer sample, pointed to by data. If
BPF_RB_NO_WAKEUP is specified in flags, no notification of new
data availability is sent. If BPF_RB_FORCE_WAKEUP is speci-
fied in flags, notification of new data availability is sent uncondition-
ally. If 0 is specified in flags, an adaptive notification of new data
availability is sent.

See 'bpf_ringbuf_output()' for the definition of adaptive notification.

Return
Nothing. Always succeeds.

void bpf_ringbuf_discard(void *data, u64 flags)

Description
Discard reserved ring buffer sample, pointed to by data. If
BPF_RB_NO_WAKEUP is specified in flags, no notification of new
data availability is sent. If BPF_RB_FORCE_WAKEUP is speci-
fied in flags, notification of new data availability is sent uncondition-
ally. If 0 is specified in flags, an adaptive notification of new data
availability is sent.

See 'bpf_ringbuf_output()' for the definition of adaptive notification.

Return
Nothing. Always succeeds.

u64 bpf_ringbuf_query(void *ringbuf, u64 flags)

Description
Query various characteristics of provided ring buffer. What exactly is
queries is determined by flags:

Linux v6.13 2024-10-10 3159

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• BPF_RB_AVAIL_DATA: Amount of data not yet consumed.

• BPF_RB_RING_SIZE: The size of ring buffer.

• BPF_RB_CONS_POS: Consumer position (can wrap around).

• BPF_RB_PROD_POS: Producer(s) position (can wrap around).

Data returned is just a momentary snapshot of actual values and
could be inaccurate, so this facility should be used to power heuris-
tics and for reporting, not to make 100% correct calculation.

Return
Requested value, or 0, if flags are not recognized.

long bpf_csum_level(struct sk_buff *skb, u64 level)

Description
Change the skbs checksum level by one layer up or down, or reset it
entirely to none in order to have the stack perform checksum valida-
tion. The level is applicable to the following protocols: TCP, UDP,
GRE, SCTP, FCOE. For example, a decap of | ETH | IP | UDP | GUE |
IP | TCP | into | ETH | IP | TCP | through bpf_skb_adjust_room()
helper with passing in BPF_F_ADJ_ROOM_NO_CSUM_RESET
flag would require one call to bpf_csum_level() with
BPF_CSUM_LEVEL_DEC since the UDP header is removed. Sim-
ilarly, an encap of the latter into the former could be accompanied by
a helper call to bpf_csum_level() with BPF_CSUM_LEVEL_INC
if the skb is still intended to be processed in higher layers of the stack
instead of just egressing at tc.

There are three supported level settings at this time:

• BPF_CSUM_LEVEL_INC: Increases skb->csum_level for skbs
with CHECKSUM_UNNECESSARY.

• BPF_CSUM_LEVEL_DEC: Decreases skb->csum_level for
skbs with CHECKSUM_UNNECESSARY.

• BPF_CSUM_LEVEL_RESET: Resets skb->csum_level to 0
and sets CHECKSUM_NONE to force checksum validation by
the stack.

• BPF_CSUM_LEVEL_QUERY: No-op, returns the current
skb->csum_level.

Return
0 on success, or a negative error in case of failure. In the case of
BPF_CSUM_LEVEL_QUERY, the current skb->csum_level is re-
turned or the error code -EACCES in case the skb is not subject to
CHECKSUM_UNNECESSARY.

struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)

Linux v6.13 2024-10-10 3160

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Dynamically cast a sk pointer to a tcp6_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)

Description
Dynamically cast a sk pointer to a tcp_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)

Description
Dynamically cast a sk pointer to a tcp_timewait_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)

Description
Dynamically cast a sk pointer to a tcp_request_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)

Description
Dynamically cast a sk pointer to a udp6_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)

Description
Return a user or a kernel stack in bpf program provided buffer. Note:
the user stack will only be populated if the task is the current task; all
other tasks will return -EOPNOTSUPP. To achieve this, the helper
needs task, which is a valid pointer to struct task_struct. To store the
stacktrace, the bpf program provides buf with a nonnegative size.

The last argument, flags, holds the number of stack frames to skip
(from 0 to 255), masked with BPF_F_SKIP_FIELD_MASK. The
next bits can be used to set the following flags:

BPF_F_USER_STACK
Collect a user space stack instead of a kernel stack. The task
must be the current task.

BPF_F_USER_BUILD_ID
Collect buildid+offset instead of ips for user stack, only valid
if BPF_F_USER_STACK is also specified.

Linux v6.13 2024-10-10 3161

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

bpf_get_task_stack() can collect up to
PERF_MAX_STACK_DEPTH both kernel and user frames, sub-
ject to sufficient large buffer size. Note that this limit can be con-
trolled with the sysctl program, and that it should be manually in-
creased in order to profile long user stacks (such as stacks for Java
programs). To do so, use:

sysctl kernel.perf_event_max_stack=<new value>

Return
The non-negative copied buf length equal to or less than size on suc-
cess, or a negative error in case of failure.

long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len,
u64 flags)

Description
Load header option. Support reading a particular TCP header option
for bpf program (BPF_PROG_TYPE_SOCK_OPS).

If flags is 0, it will search the option from the skops->skb_data. The
comment in struct bpf_sock_ops has details on what skb_data con-
tains under different skops->op.

The first byte of the searchby_res specifies the kind that it wants to
search.

If the searching kind is an experimental kind (i.e. 253 or 254 accord-
ing to RFC6994). It also needs to specify the "magic" which is either
2 bytes or 4 bytes. It then also needs to specify the size of the magic
by using the 2nd byte which is "kind-length" of a TCP header option
and the "kind-length" also includes the first 2 bytes "kind" and
"kind-length" itself as a normal TCP header option also does.

For example, to search experimental kind 254 with 2 byte magic
0xeB9F, the searchby_res should be [254, 4, 0xeB, 0x9F, 0, 0, 0].

To search for the standard window scale option (3), the searchby_res
should be [3, 0, 0, 0]. Note, kind-length must be 0 for regular
option.

Searching for No-Op (0) and End-of-Option-List (1) are not sup-
ported.

len must be at least 2 bytes which is the minimal size of a header op-
tion.

Supported flags:

Linux v6.13 2024-10-10 3162

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• BPF_LOAD_HDR_OPT_TCP_SYN to search from the
saved_syn packet or the just-received syn packet.

Return
> 0 when found, the header option is copied to searchby_res. The re-
turn value is the total length copied. On failure, a negative error code
is returned:

-EINVAL if a parameter is invalid.

-ENOMSG if the option is not found.

-ENOENT if no syn packet is available when
BPF_LOAD_HDR_OPT_TCP_SYN is used.

-ENOSPC if there is not enough space. Only len number of bytes
are copied.

-EFAULT on failure to parse the header options in the packet.

-EPERM if the helper cannot be used under the current skops->op.

long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len,
u64 flags)

Description
Store header option. The data will be copied from buffer from with
length len to the TCP header.

The buffer from should have the whole option that includes the kind,
kind-length, and the actual option data. The len must be at least
kind-length long. The kind-length does not have to be 4 byte
aligned. The kernel will take care of the padding and setting the 4
bytes aligned value to th->doff.

This helper will check for duplicated option by searching the same
option in the outgoing skb.

This helper can only be called during
BPF_SOCK_OPS_WRITE_HDR_OPT_CB.

Return
0 on success, or negative error in case of failure:

-EINVAL If param is invalid.

-ENOSPC if there is not enough space in the header. Nothing has
been written

-EEXIST if the option already exists.

Linux v6.13 2024-10-10 3163

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

-EFAULT on failure to parse the existing header options.

-EPERM if the helper cannot be used under the current skops->op.

long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags)

Description
Reserve len bytes for the bpf header option. The space will be used
by bpf_store_hdr_opt() later in
BPF_SOCK_OPS_WRITE_HDR_OPT_CB.

If bpf_reserve_hdr_opt() is called multiple times, the total number
of bytes will be reserved.

This helper can only be called during
BPF_SOCK_OPS_HDR_OPT_LEN_CB.

Return
0 on success, or negative error in case of failure:

-EINVAL if a parameter is invalid.

-ENOSPC if there is not enough space in the header.

-EPERM if the helper cannot be used under the current skops->op.

void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64
flags)

Description
Get a bpf_local_storage from an inode.

Logically, it could be thought of as getting the value from a map with
inode as the key. From this perspective, the usage is not much differ-
ent from bpf_map_lookup_elem(map, &inode) except this helper
enforces the key must be an inode and the map must also be a
BPF_MAP_TYPE_INODE_STORAGE.

Underneath, the value is stored locally at inode instead of the map.
The map is used as the bpf-local-storage "type". The bpf-local-stor-
age "type" (i.e. the map) is searched against all bpf_local_storage re-
siding at inode.

An optional flags (BPF_LOCAL_STORAGE_GET_F_CREATE)
can be used such that a new bpf_local_storage will be created if one
does not exist. value can be used together with BPF_LO-
CAL_STORAGE_GET_F_CREATE to specify the initial value of
a bpf_local_storage. If value is NULL, the new bpf_local_storage
will be zero initialized.

Linux v6.13 2024-10-10 3164

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
A bpf_local_storage pointer is returned on success.

NULL if not found or there was an error in adding a new bpf_lo-
cal_storage.

int bpf_inode_storage_delete(struct bpf_map *map, void *inode)

Description
Delete a bpf_local_storage from an inode.

Return
0 on success.

-ENOENT if the bpf_local_storage cannot be found.

long bpf_d_path(struct path *path, char *buf, u32 sz)

Description
Return full path for given struct path object, which needs to be the
kernel BTF path object. The path is returned in the provided buffer
buf of size sz and is zero terminated.

Return
On success, the strictly positive length of the string, including the
trailing NUL character. On error, a negative value.

long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr)

Description
Read size bytes from user space address user_ptr and store the data in
dst. This is a wrapper of copy_from_user().

Return
0 on success, or a negative error in case of failure.

long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size,
u64 flags)

Description
Use BTF to store a string representation of ptr->ptr in str, using
ptr->type_id. This value should specify the type that ptr->ptr points
to. LLVM __builtin_btf_type_id(type, 1) can be used to look up vm-
linux BTF type ids. Traversing the data structure using BTF, the type
information and values are stored in the first str_size - 1 bytes of str.
Safe copy of the pointer data is carried out to avoid kernel crashes
during operation. Smaller types can use string space on the stack;
larger programs can use map data to store the string representation.

The string can be subsequently shared with userspace via
bpf_perf_event_output() or ring buffer interfaces. bpf_trace_printk()
is to be avoided as it places too small a limit on string size to be use-
ful.

flags is a combination of

Linux v6.13 2024-10-10 3165

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

BTF_F_COMPACT
no formatting around type information

BTF_F_NONAME
no struct/union member names/types

BTF_F_PTR_RAW
show raw (unobfuscated) pointer values; equivalent to printk
specifier %px.

BTF_F_ZERO
show zero-valued struct/union members; they are not dis-
played by default

Return
The number of bytes that were written (or would have been written if
output had to be truncated due to string size), or a negative error in
cases of failure.

long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64
flags)

Description
Use BTF to write to seq_write a string representation of ptr->ptr, us-
ing ptr->type_id as per bpf_snprintf_btf(). flags are identical to those
used for bpf_snprintf_btf.

Return
0 on success or a negative error in case of failure.

u64 bpf_skb_cgroup_classid(struct sk_buff *skb)

Description
See bpf_get_cgroup_classid() for the main description. This helper
differs from bpf_get_cgroup_classid() in that the cgroup v1 net_cls
class is retrieved only from the skb's associated socket instead of the
current process.

Return
The id is returned or 0 in case the id could not be retrieved.

long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64
flags)

Description
Redirect the packet to another net device of index ifindex and fill in
L2 addresses from neighboring subsystem. This helper is somewhat
similar to bpf_redirect(), except that it populates L2 addresses as
well, meaning, internally, the helper relies on the neighbor lookup for
the L2 address of the nexthop.

The helper will perform a FIB lookup based on the skb's networking
header to get the address of the next hop, unless this is supplied by
the caller in the params argument. The plen argument indicates the
len of params and should be set to 0 if params is NULL.

Linux v6.13 2024-10-10 3166

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

The flags argument is reserved and must be 0. The helper is currently
only supported for tc BPF program types, and enabled for IPv4 and
IPv6 protocols.

Return
The helper returns TC_ACT_REDIRECT on success or
TC_ACT_SHOT on error.

void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu)

Description
Take a pointer to a percpu ksym, percpu_ptr, and return a pointer to
the percpu kernel variable on cpu. A ksym is an extern variable deco-
rated with '__ksym'. For ksym, there is a global var (either static or
global) defined of the same name in the kernel. The ksym is percpu if
the global var is percpu. The returned pointer points to the global
percpu var on cpu.

bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the ker-
nel, except that bpf_per_cpu_ptr() may return NULL. This happens if
cpu is larger than nr_cpu_ids. The caller of bpf_per_cpu_ptr() must
check the returned value.

Return
A pointer pointing to the kernel percpu variable on cpu, or NULL, if
cpu is invalid.

void *bpf_this_cpu_ptr(const void *percpu_ptr)

Description
Take a pointer to a percpu ksym, percpu_ptr, and return a pointer to
the percpu kernel variable on this cpu. See the description of 'ksym' in
bpf_per_cpu_ptr().

bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in the ker-
nel. Different from bpf_per_cpu_ptr(), it would never return NULL.

Return
A pointer pointing to the kernel percpu variable on this cpu.

long bpf_redirect_peer(u32 ifindex, u64 flags)

Description
Redirect the packet to another net device of index ifindex. This helper
is somewhat similar to bpf_redirect(), except that the redirection
happens to the ifindex' peer device and the netns switch takes place
from ingress to ingress without going through the CPU's backlog
queue.

The flags argument is reserved and must be 0. The helper is currently
only supported for tc BPF program types at the ingress hook and for
veth and netkit target device types. The peer device must reside in a
different network namespace.

Linux v6.13 2024-10-10 3167

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
The helper returns TC_ACT_REDIRECT on success or
TC_ACT_SHOT on error.

void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void
*value, u64 flags)

Description
Get a bpf_local_storage from the task.

Logically, it could be thought of as getting the value from a map with
task as the key. From this perspective, the usage is not much differ-
ent from bpf_map_lookup_elem(map, &task) except this helper en-
forces the key must be a task_struct and the map must also be a
BPF_MAP_TYPE_TASK_STORAGE.

Underneath, the value is stored locally at task instead of the map.
The map is used as the bpf-local-storage "type". The bpf-local-stor-
age "type" (i.e. the map) is searched against all bpf_local_storage re-
siding at task.

An optional flags (BPF_LOCAL_STORAGE_GET_F_CREATE)
can be used such that a new bpf_local_storage will be created if one
does not exist. value can be used together with BPF_LO-
CAL_STORAGE_GET_F_CREATE to specify the initial value of
a bpf_local_storage. If value is NULL, the new bpf_local_storage
will be zero initialized.

Return
A bpf_local_storage pointer is returned on success.

NULL if not found or there was an error in adding a new bpf_lo-
cal_storage.

long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task)

Description
Delete a bpf_local_storage from a task.

Return
0 on success.

-ENOENT if the bpf_local_storage cannot be found.

struct task_struct *bpf_get_current_task_btf(void)

Description
Return a BTF pointer to the "current" task. This pointer can also be
used in helpers that accept an ARG_PTR_TO_BTF_ID of type
task_struct.

Return
Pointer to the current task.

Linux v6.13 2024-10-10 3168

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_bprm_opts_set(struct linux_binprm *bprm, u64 flags)

Description
Set or clear certain options on bprm:

BPF_F_BPRM_SECUREEXEC Set the secureexec bit which sets
the AT_SECURE auxv for glibc. The bit is cleared if the flag is not
specified.

Return
-EINVAL if invalid flags are passed, zero otherwise.

u64 bpf_ktime_get_coarse_ns(void)

Description
Return a coarse-grained version of the time elapsed since system
boot, in nanoseconds. Does not include time the system was sus-
pended.

See: clock_gettime(CLOCK_MONOTONIC_COARSE)

Return
Current ktime.

long bpf_ima_inode_hash(struct inode *inode, void *dst, u32 size)

Description
Returns the stored IMA hash of the inode (if it's available). If the
hash is larger than size, then only size bytes will be copied to dst

Return
The hash_algo is returned on success, -EOPNOTSUPP if IMA is
disabled or -EINVAL if invalid arguments are passed.

struct socket *bpf_sock_from_file(struct file *file)

Description
If the given file represents a socket, returns the associated socket.

Return
A pointer to a struct socket on success or NULL if the file is not a
socket.

long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)

Description
Check packet size against exceeding MTU of net device (based on
ifindex). This helper will likely be used in combination with helpers
that adjust/change the packet size.

The argument len_diff can be used for querying with a planned size
change. This allows to check MTU prior to changing packet ctx. Pro-
viding a len_diff adjustment that is larger than the actual packet size
(resulting in negative packet size) will in principle not exceed the
MTU, which is why it is not considered a failure. Other BPF helpers
are needed for performing the planned size change; therefore the

Linux v6.13 2024-10-10 3169

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

responsibility for catching a negative packet size belongs in those
helpers.

Specifying ifindex zero means the MTU check is performed against
the current net device. This is practical if this isn't used prior to redi-
rect.

On input mtu_len must be a valid pointer, else verifier will reject BPF
program. If the value mtu_len is initialized to zero then the ctx packet
size is use. When value mtu_len is provided as input this specify the
L3 length that the MTU check is done against. Remember XDP and
TC length operate at L2, but this value is L3 as this correlate to MTU
and IP-header tot_len values which are L3 (similar behavior as
bpf_fib_lookup).

The Linux kernel route table can configure MTUs on a more specific
per route level, which is not provided by this helper. For route level
MTU checks use the bpf_fib_lookup() helper.

ctx is either struct xdp_md for XDP programs or struct sk_buff for
tc cls_act programs.

The flags argument can be a combination of one or more of the fol-
lowing values:

BPF_MTU_CHK_SEGS
This flag will only works for ctx struct sk_buff. If packet
context contains extra packet segment buffers (often knows
as GSO skb), then MTU check is harder to check at this
point, because in transmit path it is possible for the skb
packet to get re-segmented (depending on net device fea-
tures). This could still be a MTU violation, so this flag en-
ables performing MTU check against segments, with a dif-
ferent violation return code to tell it apart. Check cannot use
len_diff.

On return mtu_len pointer contains the MTU value of the net device.
Remember the net device configured MTU is the L3 size, which is
returned here and XDP and TC length operate at L2. Helper take
this into account for you, but remember when using MTU value in
your BPF-code.

Return

• 0 on success, and populate MTU value in mtu_len pointer.

• < 0 if any input argument is invalid (mtu_len not updated)

MTU violations return positive values, but also populate MTU value
in mtu_len pointer, as this can be needed for implementing PMTU
handing:

Linux v6.13 2024-10-10 3170

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• BPF_MTU_CHK_RET_FRAG_NEEDED

• BPF_MTU_CHK_RET_SEGS_TOOBIG

long bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, void
*callback_ctx, u64 flags)

Description
For each element in map, call callback_fn function with map, call-
back_ctx and other map-specific parameters. The callback_fn
should be a static function and the callback_ctx should be a pointer
to the stack. The flags is used to control certain aspects of the helper.
Currently, the flags must be 0.

The following are a list of supported map types and their respective
expected callback signatures:

BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_PERCPU_HASH,
BPF_MAP_TYPE_LRU_HASH, BPF_MAP_TYPE_LRU_PER-
CPU_HASH, BPF_MAP_TYPE_ARRAY, BPF_MAP_TYPE_PER-
CPU_ARRAY

long (*callback_fn)(struct bpf_map *map, const void *key, void
*value, void *ctx);

For per_cpu maps, the map_value is the value on the cpu where the
bpf_prog is running.

If callback_fn return 0, the helper will continue to the next element.
If return value is 1, the helper will skip the rest of elements and re-
turn. Other return values are not used now.

Return
The number of traversed map elements for success, -EINVAL for in-
valid flags.

long bpf_snprintf(char *str, u32 str_size, const char *fmt, u64 *data, u32 data_len)

Description
Outputs a string into the str buffer of size str_size based on a format
string stored in a read-only map pointed by fmt.

Each format specifier in fmt corresponds to one u64 element in the
data array. For strings and pointers where pointees are accessed, only
the pointer values are stored in the data array. The data_len is the size
of data in bytes - must be a multiple of 8.

Formats %s and %p{i,I}{4,6} require to read kernel memory. Read-
ing kernel memory may fail due to either invalid address or valid ad-
dress but requiring a major memory fault. If reading kernel memory
fails, the string for %s will be an empty string, and the ip address for
%p{i,I}{4,6} will be 0. Not returning error to bpf program is

Linux v6.13 2024-10-10 3171

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

consistent with what bpf_trace_printk() does for now.

Return
The strictly positive length of the formatted string, including the trail-
ing zero character. If the return value is greater than str_size, str con-
tains a truncated string, guaranteed to be zero-terminated except
when str_size is 0.

Or -EBUSY if the per-CPU memory copy buffer is busy.

long bpf_sys_bpf(u32 cmd, void *attr, u32 attr_size)

Description
Execute bpf syscall with given arguments.

Return
A syscall result.

long bpf_btf_find_by_name_kind(char *name, int name_sz, u32 kind, int flags)

Description
Find BTF type with given name and kind in vmlinux BTF or in mod-
ule's BTFs.

Return
Returns btf_id and btf_obj_fd in lower and upper 32 bits.

long bpf_sys_close(u32 fd)

Description
Execute close syscall for given FD.

Return
A syscall result.

long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, u64 flags)

Description
Initialize the timer. First 4 bits of flags specify clockid. Only
CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOT-
TIME are allowed. All other bits of flags are reserved. The verifier
will reject the program if timer is not from the same map.

Return
0 on success. -EBUSY if timer is already initialized. -EINVAL if
invalid flags are passed. -EPERM if timer is in a map that doesn't
have any user references. The user space should either hold a file de-
scriptor to a map with timers or pin such map in bpffs. When map is
unpinned or file descriptor is closed all timers in the map will be can-
celled and freed.

long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn)

Description
Configure the timer to call callback_fn static function.

Linux v6.13 2024-10-10 3172

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
0 on success. -EINVAL if timer was not initialized with
bpf_timer_init() earlier. -EPERM if timer is in a map that doesn't
have any user references. The user space should either hold a file de-
scriptor to a map with timers or pin such map in bpffs. When map is
unpinned or file descriptor is closed all timers in the map will be can-
celled and freed.

long bpf_timer_start(struct bpf_timer *timer, u64 nsecs, u64 flags)

Description
Set timer expiration N nanoseconds from the current time. The con-
figured callback will be invoked in soft irq context on some cpu and
will not repeat unless another bpf_timer_start() is made. In such case
the next invocation can migrate to a different cpu. Since struct
bpf_timer is a field inside map element the map owns the timer. The
bpf_timer_set_callback() will increment refcnt of BPF program to
make sure that callback_fn code stays valid. When user space refer-
ence to a map reaches zero all timers in a map are cancelled and cor-
responding program's refcnts are decremented. This is done to make
sure that Ctrl-C of a user process doesn't leave any timers running. If
map is pinned in bpffs the callback_fn can re-arm itself indefinitely.
bpf_map_update/delete_elem() helpers and user space sys_bpf com-
mands cancel and free the timer in the given map element. The map
can contain timers that invoke callback_fn-s from different programs.
The same callback_fn can serve different timers from different maps
if key/value layout matches across maps. Every bpf_timer_set_call-
back() can have different callback_fn.

flags can be one of:

BPF_F_TIMER_ABS
Start the timer in absolute expire value instead of the default
relative one.

BPF_F_TIMER_CPU_PIN
Timer will be pinned to the CPU of the caller.

Return
0 on success. -EINVAL if timer was not initialized with
bpf_timer_init() earlier or invalid flags are passed.

long bpf_timer_cancel(struct bpf_timer *timer)

Description
Cancel the timer and wait for callback_fn to finish if it was running.

Return
0 if the timer was not active. 1 if the timer was active. -EINVAL if
timer was not initialized with bpf_timer_init() earlier. -EDEADLK
if callback_fn tried to call bpf_timer_cancel() on its own timer which
would have led to a deadlock otherwise.

Linux v6.13 2024-10-10 3173

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

u64 bpf_get_func_ip(void *ctx)

Description
Get address of the traced function (for tracing and kprobe programs).

When called for kprobe program attached as uprobe it returns probe
address for both entry and return uprobe.

Return
Address of the traced function for kprobe. 0 for kprobes placed
within the function (not at the entry). Address of the probe for uprobe
and return uprobe.

u64 bpf_get_attach_cookie(void *ctx)

Description
Get bpf_cookie value provided (optionally) during the program at-
tachment. It might be different for each individual attachment, even if
BPF program itself is the same. Expects BPF program context ctx as
a first argument.

Supported for the following program types:

• kprobe/uprobe;

• tracepoint;

• perf_event.

Return
Value specified by user at BPF link creation/attachment time or 0, if it
was not specified.

long bpf_task_pt_regs(struct task_struct *task)

Description
Get the struct pt_regs associated with task.

Return
A pointer to struct pt_regs.

long bpf_get_branch_snapshot(void *entries, u32 size, u64 flags)

Description
Get branch trace from hardware engines like Intel LBR. The hardware
engine is stopped shortly after the helper is called. Therefore, the user
need to filter branch entries based on the actual use case. To capture
branch trace before the trigger point of the BPF program, the helper
should be called at the beginning of the BPF program.

The data is stored as struct perf_branch_entry into output buffer en-
tries. size is the size of entries in bytes. flags is reserved for now and
must be zero.

Return
On success, number of bytes written to buf. On error, a negative
value.

Linux v6.13 2024-10-10 3174

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

-EINVAL if flags is not zero.

-ENOENT if architecture does not support branch records.

long bpf_trace_vprintk(const char *fmt, u32 fmt_size, const void *data, u32
data_len)

Description
Behaves like bpf_trace_printk() helper, but takes an array of u64 to
format and can handle more format args as a result.

Arguments are to be used as in bpf_seq_printf() helper.

Return
The number of bytes written to the buffer, or a negative error in case
of failure.

struct unix_sock *bpf_skc_to_unix_sock(void *sk)

Description
Dynamically cast a sk pointer to a unix_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

long bpf_kallsyms_lookup_name(const char *name, int name_sz, int flags, u64
*res)

Description
Get the address of a kernel symbol, returned in res. res is set to 0 if
the symbol is not found.

Return
On success, zero. On error, a negative value.

-EINVAL if flags is not zero.

-EINVAL if string name is not the same size as name_sz.

-ENOENT if symbol is not found.

-EPERM if caller does not have permission to obtain kernel address.

long bpf_find_vma(struct task_struct *task, u64 addr, void *callback_fn, void
*callback_ctx, u64 flags)

Description
Find vma of task that contains addr, call callback_fn function with
task, vma, and callback_ctx. The callback_fn should be a static func-
tion and the callback_ctx should be a pointer to the stack. The flags is
used to control certain aspects of the helper. Currently, the flags must
be 0.

The expected callback signature is

Linux v6.13 2024-10-10 3175

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long (*callback_fn)(struct task_struct *task, struct vm_area_struct
*vma, void *callback_ctx);

Return
0 on success. -ENOENT if task->mm is NULL, or no vma contains
addr. -EBUSY if failed to try lock mmap_lock. -EINVAL for in-
valid flags.

long bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, u64 flags)

Description
For nr_loops, call callback_fn function with callback_ctx as the
context parameter. The callback_fn should be a static function and
the callback_ctx should be a pointer to the stack. The flags is used to
control certain aspects of the helper. Currently, the flags must be 0.
Currently, nr_loops is limited to 1 << 23 (˜8 million) loops.

long (*callback_fn)(u64 index, void *ctx);

where index is the current index in the loop. The index is zero-in-
dexed.

If callback_fn returns 0, the helper will continue to the next loop. If
return value is 1, the helper will skip the rest of the loops and return.
Other return values are not used now, and will be rejected by the veri-
fier.

Return
The number of loops performed, -EINVAL for invalid flags,
-E2BIG if nr_loops exceeds the maximum number of loops.

long bpf_strncmp(const char *s1, u32 s1_sz, const char *s2)

Description
Do strncmp() between s1 and s2. s1 doesn't need to be null-termi-
nated and s1_sz is the maximum storage size of s1. s2 must be a
read-only string.

Return
An integer less than, equal to, or greater than zero if the first s1_sz
bytes of s1 is found to be less than, to match, or be greater than s2.

long bpf_get_func_arg(void *ctx, u32 n, u64 *value)

Description
Get n-th argument register (zero based) of the traced function (for
tracing programs) returned in value.

Return
0 on success. -EINVAL if n >= argument register count of traced
function.

long bpf_get_func_ret(void *ctx, u64 *value)

Linux v6.13 2024-10-10 3176

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Get return value of the traced function (for tracing programs) in
value.

Return
0 on success. -EOPNOTSUPP for tracing programs other than
BPF_TRACE_FEXIT or BPF_MODIFY_RETURN.

long bpf_get_func_arg_cnt(void *ctx)

Description
Get number of registers of the traced function (for tracing programs)
where function arguments are stored in these registers.

Return
The number of argument registers of the traced function.

int bpf_get_retval(void)

Description
Get the BPF program's return value that will be returned to the upper
layers.

This helper is currently supported by cgroup programs and only by
the hooks where BPF program's return value is returned to the user-
space via errno.

Return
The BPF program's return value.

int bpf_set_retval(int retval)

Description
Set the BPF program's return value that will be returned to the upper
layers.

This helper is currently supported by cgroup programs and only by
the hooks where BPF program's return value is returned to the user-
space via errno.

Note that there is the following corner case where the program ex-
ports an error via bpf_set_retval but signals success via 'return 1':

bpf_set_retval(-EPERM); return 1;

In this case, the BPF program's return value will use helper's
-EPERM. This still holds true for cgroup/bind{4,6} which supports
extra 'return 3' success case.

Return
0 on success, or a negative error in case of failure.

u64 bpf_xdp_get_buff_len(struct xdp_buff *xdp_md)

Description
Get the total size of a given xdp buff (linear and paged area)

Linux v6.13 2024-10-10 3177

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
The total size of a given xdp buffer.

long bpf_xdp_load_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)

Description
This helper is provided as an easy way to load data from a xdp buffer.
It can be used to load len bytes from offset from the frame associated
to xdp_md, into the buffer pointed by buf.

Return
0 on success, or a negative error in case of failure.

long bpf_xdp_store_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)

Description
Store len bytes from buffer buf into the frame associated to xdp_md,
at offset.

Return
0 on success, or a negative error in case of failure.

long bpf_copy_from_user_task(void *dst, u32 size, const void *user_ptr, struct
task_struct *tsk, u64 flags)

Description
Read size bytes from user space address user_ptr in tsk's address
space, and stores the data in dst. flags is not used yet and is provided
for future extensibility. This helper can only be used by sleepable pro-
grams.

Return
0 on success, or a negative error in case of failure. On error dst buffer
is zeroed out.

long bpf_skb_set_tstamp(struct sk_buff *skb, u64 tstamp, u32 tstamp_type)

Description
Change the __sk_buff->tstamp_type to tstamp_type and set tstamp to
the __sk_buff->tstamp together.

If there is no need to change the __sk_buff->tstamp_type, the tstamp
value can be directly written to __sk_buff->tstamp instead.

BPF_SKB_TSTAMP_DELIVERY_MONO is the only tstamp that
will be kept during bpf_redirect_*(). A non zero tstamp must be used
with the BPF_SKB_TSTAMP_DELIVERY_MONO tstamp_type.

A BPF_SKB_TSTAMP_UNSPEC tstamp_type can only be used with
a zero tstamp.

Only IPv4 and IPv6 skb->protocol are supported.

This function is most useful when it needs to set a mono delivery time
to __sk_buff->tstamp and then bpf_redirect_*() to the egress of an

Linux v6.13 2024-10-10 3178

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

iface. For example, changing the (rcv) timestamp in
__sk_buff->tstamp at ingress to a mono delivery time and then
bpf_redirect_*() to <sch_fq@phy-dev> .

Return
0 on success. -EINVAL for invalid input -EOPNOTSUPP for un-
supported protocol

long bpf_ima_file_hash(struct file *file, void *dst, u32 size)

Description
Returns a calculated IMA hash of the file. If the hash is larger than
size, then only size bytes will be copied to dst

Return
The hash_algo is returned on success, -EOPNOTSUPP if the hash
calculation failed or -EINVAL if invalid arguments are passed.

void *bpf_kptr_xchg(void *dst, void *ptr)

Description
Exchange kptr at pointer dst with ptr, and return the old value. dst
can be map value or local kptr. ptr can be NULL, otherwise it must be
a referenced pointer which will be released when this helper is called.

Return
The old value of kptr (which can be NULL). The returned pointer if
not NULL, is a reference which must be released using its corre-
sponding release function, or moved into a BPF map before program
exit.

void *bpf_map_lookup_percpu_elem(struct bpf_map *map, const void *key, u32
cpu)

Description
Perform a lookup in percpu map for an entry associated to key on cpu.

Return
Map value associated to key on cpu, or NULL if no entry was found
or cpu is invalid.

struct mptcp_sock *bpf_skc_to_mptcp_sock(void *sk)

Description
Dynamically cast a sk pointer to a mptcp_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

long bpf_dynptr_from_mem(void *data, u32 size, u64 flags, struct bpf_dynptr
*ptr)

Description
Get a dynptr to local memory data.

data must be a ptr to a map value. The maximum size supported is
DYNPTR_MAX_SIZE. flags is currently unused.

Linux v6.13 2024-10-10 3179

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
0 on success, -E2BIG if the size exceeds DYNPTR_MAX_SIZE,
-EINVAL if flags is not 0.

long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct
bpf_dynptr *ptr)

Description
Reserve size bytes of payload in a ring buffer ringbuf through the
dynptr interface. flags must be 0.

Please note that a corresponding bpf_ringbuf_submit_dynptr or
bpf_ringbuf_discard_dynptr must be called on ptr, even if the reserva-
tion fails. This is enforced by the verifier.

Return
0 on success, or a negative error in case of failure.

void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags)

Description
Submit reserved ring buffer sample, pointed to by data, through the
dynptr interface. This is a no-op if the dynptr is invalid/null.

For more information on flags, please see 'bpf_ringbuf_submit'.

Return
Nothing. Always succeeds.

void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags)

Description
Discard reserved ring buffer sample through the dynptr interface. This
is a no-op if the dynptr is invalid/null.

For more information on flags, please see 'bpf_ringbuf_discard'.

Return
Nothing. Always succeeds.

long bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr *src, u32 offset,
u64 flags)

Description
Read len bytes from src into dst, starting from offset into src. flags is
currently unused.

Return
0 on success, -E2BIG if offset + len exceeds the length of src's data,
-EINVAL if src is an invalid dynptr or if flags is not 0.

long bpf_dynptr_write(const struct bpf_dynptr *dst, u32 offset, void *src, u32 len,
u64 flags)

Description
Write len bytes from src into dst, starting from offset into dst.

Linux v6.13 2024-10-10 3180

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

flags must be 0 except for skb-type dynptrs.

For skb-type dynptrs:

• All data slices of the dynptr are automatically invalidated
after bpf_dynptr_write(). This is because writing may
pull the skb and change the underlying packet buffer.

• For flags, please see the flags accepted by
bpf_skb_store_bytes().

Return
0 on success, -E2BIG if offset + len exceeds the length of dst's data,
-EINVAL if dst is an invalid dynptr or if dst is a read-only dynptr or
if flags is not correct. For skb-type dynptrs, other errors correspond
to errors returned by bpf_skb_store_bytes().

void *bpf_dynptr_data(const struct bpf_dynptr *ptr, u32 offset, u32 len)

Description
Get a pointer to the underlying dynptr data.

len must be a statically known value. The returned data slice is invali-
dated whenever the dynptr is invalidated.

skb and xdp type dynptrs may not use bpf_dynptr_data. They should
instead use bpf_dynptr_slice and bpf_dynptr_slice_rdwr.

Return
Pointer to the underlying dynptr data, NULL if the dynptr is
read-only, if the dynptr is invalid, or if the offset and length is out of
bounds.

s64 bpf_tcp_raw_gen_syncookie_ipv4(struct iphdr *iph, struct tcphdr *th, u32
th_len)

Description
Try to issue a SYN cookie for the packet with corresponding
IPv4/TCP headers, iph and th, without depending on a listening
socket.

iph points to the IPv4 header.

th points to the start of the TCP header, while th_len contains the
length of the TCP header (at least sizeof(struct tcphdr)).

Return
On success, lower 32 bits hold the generated SYN cookie in followed
by 16 bits which hold the MSS value for that cookie, and the top 16
bits are unused.

On failure, the returned value is one of the following:

-EINVAL if th_len is invalid.

Linux v6.13 2024-10-10 3181

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

s64 bpf_tcp_raw_gen_syncookie_ipv6(struct ipv6hdr *iph, struct tcphdr *th, u32
th_len)

Description
Try to issue a SYN cookie for the packet with corresponding
IPv6/TCP headers, iph and th, without depending on a listening
socket.

iph points to the IPv6 header.

th points to the start of the TCP header, while th_len contains the
length of the TCP header (at least sizeof(struct tcphdr)).

Return
On success, lower 32 bits hold the generated SYN cookie in followed
by 16 bits which hold the MSS value for that cookie, and the top 16
bits are unused.

On failure, the returned value is one of the following:

-EINVAL if th_len is invalid.

-EPROTONOSUPPORT if CONFIG_IPV6 is not builtin.

long bpf_tcp_raw_check_syncookie_ipv4(struct iphdr *iph, struct tcphdr *th)

Description
Check whether iph and th contain a valid SYN cookie ACK without
depending on a listening socket.

iph points to the IPv4 header.

th points to the TCP header.

Return
0 if iph and th are a valid SYN cookie ACK.

On failure, the returned value is one of the following:

-EACCES if the SYN cookie is not valid.

long bpf_tcp_raw_check_syncookie_ipv6(struct ipv6hdr *iph, struct tcphdr *th)

Description
Check whether iph and th contain a valid SYN cookie ACK without
depending on a listening socket.

iph points to the IPv6 header.

th points to the TCP header.

Linux v6.13 2024-10-10 3182

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
0 if iph and th are a valid SYN cookie ACK.

On failure, the returned value is one of the following:

-EACCES if the SYN cookie is not valid.

-EPROTONOSUPPORT if CONFIG_IPV6 is not builtin.

u64 bpf_ktime_get_tai_ns(void)

Description
A nonsettable system-wide clock derived from wall-clock time but
ignoring leap seconds. This clock does not experience discontinuities
and backwards jumps caused by NTP inserting leap seconds as
CLOCK_REALTIME does.

See: clock_gettime(CLOCK_TAI)

Return
Current ktime.

long bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx,
u64 flags)

Description
Drain samples from the specified user ring buffer, and invoke the pro-
vided callback for each such sample:

long (*callback_fn)(const struct bpf_dynptr *dynptr, void *ctx);

If callback_fn returns 0, the helper will continue to try and drain the
next sample, up to a maximum of BPF_MAX_USER_RING-
BUF_SAMPLES samples. If the return value is 1, the helper will skip
the rest of the samples and return. Other return values are not used
now, and will be rejected by the verifier.

Return
The number of drained samples if no error was encountered while
draining samples, or 0 if no samples were present in the ring buffer. If
a user-space producer was epoll-waiting on this map, and at least
one sample was drained, they will receive an event notification notify-
ing them of available space in the ring buffer. If the
BPF_RB_NO_WAKEUP flag is passed to this function, no wakeup
notification will be sent. If the BPF_RB_FORCE_WAKEUP flag is
passed, a wakeup notification will be sent even if no sample was
drained.

On failure, the returned value is one of the following:

-EBUSY if the ring buffer is contended, and another calling context
was concurrently draining the ring buffer.

Linux v6.13 2024-10-10 3183

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

-EINVAL if user-space is not properly tracking the ring buffer due
to the producer position not being aligned to 8 bytes, a sample not be-
ing aligned to 8 bytes, or the producer position not matching the ad-
vertised length of a sample.

-E2BIG if user-space has tried to publish a sample which is larger
than the size of the ring buffer, or which cannot fit within a struct
bpf_dynptr.

void *bpf_cgrp_storage_get(struct bpf_map *map, struct cgroup *cgroup, void
*value, u64 flags)

Description
Get a bpf_local_storage from the cgroup.

Logically, it could be thought of as getting the value from a map with
cgroup as the key. From this perspective, the usage is not much dif-
ferent from bpf_map_lookup_elem(map, &cgroup) except this
helper enforces the key must be a cgroup struct and the map must also
be a BPF_MAP_TYPE_CGRP_STORAGE.

In reality, the local-storage value is embedded directly inside of the
cgroup object itself, rather than being located in the
BPF_MAP_TYPE_CGRP_STORAGE map. When the local-stor-
age value is queried for some map on a cgroup object, the kernel will
perform an O(n) iteration over all of the live local-storage values for
that cgroup object until the local-storage value for the map is found.

An optional flags (BPF_LOCAL_STORAGE_GET_F_CREATE)
can be used such that a new bpf_local_storage will be created if one
does not exist. value can be used together with BPF_LO-
CAL_STORAGE_GET_F_CREATE to specify the initial value of
a bpf_local_storage. If value is NULL, the new bpf_local_storage
will be zero initialized.

Return
A bpf_local_storage pointer is returned on success.

NULL if not found or there was an error in adding a new bpf_lo-
cal_storage.

long bpf_cgrp_storage_delete(struct bpf_map *map, struct cgroup *cgroup)

Description
Delete a bpf_local_storage from a cgroup.

Return
0 on success.

-ENOENT if the bpf_local_storage cannot be found.

Linux v6.13 2024-10-10 3184

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

EXAMPLES
Example usage for most of the eBPF helpers listed in this manual page are available
within the Linux kernel sources, at the following locations:

• samples/bpf/

• tools/testing/selftests/bpf/

LICENSE
eBPF programs can have an associated license, passed along with the bytecode in-
structions to the kernel when the programs are loaded. The format for that string is
identical to the one in use for kernel modules (Dual licenses, such as "Dual
BSD/GPL", may be used). Some helper functions are only accessible to programs that
are compatible with the GNU General Public License (GNU GPL).

In order to use such helpers, the eBPF program must be loaded with the correct li-
cense string passed (via attr) to the bpf() system call, and this generally translates
into the C source code of the program containing a line similar to the following:

char ____license[] __attribute__((section("license"), used)) = "GPL";

IMPLEMENTATION
This manual page is an effort to document the existing eBPF helper functions. But as
of this writing, the BPF sub-system is under heavy development. New eBPF program
or map types are added, along with new helper functions. Some helpers are occasion-
ally made available for additional program types. So in spite of the efforts of the com-
munity, this page might not be up-to-date. If you want to check by yourself what
helper functions exist in your kernel, or what types of programs they can support, here
are some files among the kernel tree that you may be interested in:

• include/uapi/linux/bpf.h is the main BPF header. It contains the full list of all helper
functions, as well as many other BPF definitions including most of the flags, structs
or constants used by the helpers.

• net/core/filter.c contains the definition of most network-related helper functions,
and the list of program types from which they can be used.

• kernel/trace/bpf_trace.c is the equivalent for most tracing program-related helpers.

• kernel/bpf/verifier.c contains the functions used to check that valid types of eBPF
maps are used with a given helper function.

• kernel/bpf/ directory contains other files in which additional helpers are defined (for
cgroups, sockmaps, etc.).

• The bpftool utility can be used to probe the availability of helper functions on the
system (as well as supported program and map types, and a number of other para-
meters). To do so, run bpftool feature probe (see bpftool-feature(8) for details).
Add the unprivileged keyword to list features available to unprivileged users.

Compatibility between helper functions and program types can generally be found in
the files where helper functions are defined. Look for the struct bpf_func_proto ob-
jects and for functions returning them: these functions contain a list of helpers that a
given program type can call. Note that the default: label of the switch ... case used to
filter helpers can call other functions, themselves allowing access to additional

Linux v6.13 2024-10-10 3185

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

helpers. The requirement for GPL license is also in those struct bpf_func_proto.

Compatibility between helper functions and map types can be found in the
check_map_func_compatibility() function in file kernel/bpf/verifier.c.

Helper functions that invalidate the checks on data and data_end pointers for net-
work processing are listed in function bpf_helper_changes_pkt_data() in file
net/core/filter.c.

SEE ALSO
bpf(2), bpftool(8), cgroups(7), ip(8), perf_event_open(2), sendmsg(2), socket(7),
tc-bpf(8)

Linux v6.13 2024-10-10 3186

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

NAME
capabilities - overview of Linux capabilities

DESCRIPTION
For the purpose of performing permission checks, traditional UNIX implementations
distinguish two categories of processes: privileged processes (whose effective user ID
is 0, referred to as superuser or root), and unprivileged processes (whose effective
UID is nonzero). Privileged processes bypass all kernel permission checks, while un-
privileged processes are subject to full permission checking based on the process’s
credentials (usually: effective UID, effective GID, and supplementary group list).

Starting with Linux 2.2, Linux divides the privileges traditionally associated with su-
peruser into distinct units, known as capabilities, which can be independently enabled
and disabled. Capabilities are a per-thread attribute.

Capabilities list
The following list shows the capabilities implemented on Linux, and the operations or
behaviors that each capability permits:

CAP_AUDIT_CONTROL (since Linux 2.6.11)
Enable and disable kernel auditing; change auditing filter rules; retrieve audit-
ing status and filtering rules.

CAP_AUDIT_READ (since Linux 3.16)
Allow reading the audit log via a multicast netlink socket.

CAP_AUDIT_WRITE (since Linux 2.6.11)
Write records to kernel auditing log.

CAP_BLOCK_SUSPEND (since Linux 3.5)
Employ features that can block system suspend (epoll(7) EPOLLWAKEUP,
/proc/sys/wake_lock).

CAP_BPF (since Linux 5.8)
Employ privileged BPF operations; see bpf(2) and bpf-helpers(7).

This capability was added in Linux 5.8 to separate out BPF functionality from
the overloaded CAP_SYS_ADMIN capability.

CAP_CHECKPOINT_RESTORE (since Linux 5.9)
• Update /proc/sys/kernel/ns_last_pid (see pid_namespaces(7));
• employ the set_tid feature of clone3(2);
• read the contents of the symbolic links in /proc/ pid /map_files for other

processes.

This capability was added in Linux 5.9 to separate out checkpoint/restore
functionality from the overloaded CAP_SYS_ADMIN capability.

CAP_CHOWN
Make arbitrary changes to file UIDs and GIDs (see chown(2)).

CAP_DAC_OVERRIDE
Bypass file read, write, and execute permission checks. (DAC is an abbrevia-
tion of "discretionary access control".)

Linux man-pages 6.13 2024-06-13 3187

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

CAP_DAC_READ_SEARCH
• Bypass file read permission checks and directory read and execute permis-

sion checks;
• invoke open_by_handle_at(2);
• use the linkat(2) AT_EMPTY_PATH flag to create a link to a file referred

to by a file descriptor.

CAP_FOWNER
• Bypass permission checks on operations that normally require the filesys-

tem UID of the process to match the UID of the file (e.g., chmod(2),
utime(2)), excluding those operations covered by CAP_DAC_OVER-
RIDE and CAP_DAC_READ_SEARCH;

• set inode flags (see FS_IOC_SETFLAGS(2const)) on arbitrary files;
• set Access Control Lists (ACLs) on arbitrary files;
• ignore directory sticky bit on file deletion;
• modify user extended attributes on sticky directory owned by any user;
• specify O_NOATIME for arbitrary files in open(2) and fcntl(2).

CAP_FSETID
• Don’t clear set-user-ID and set-group-ID mode bits when a file is modi-

fied;
• set the set-group-ID bit for a file whose GID does not match the filesystem

or any of the supplementary GIDs of the calling process.

CAP_IPC_LOCK
• Lock memory (mlock(2), mlockall(2), mmap(2), shmctl(2));
• Allocate memory using huge pages (memfd_create(2), mmap(2), shm-

ctl(2)).

CAP_IPC_OWNER
Bypass permission checks for operations on System V IPC objects.

CAP_KILL
Bypass permission checks for sending signals (see kill(2)). This includes use
of the ioctl(2) KDSIGACCEPT operation.

CAP_LEASE (since Linux 2.4)
Establish leases on arbitrary files (see fcntl(2)).

CAP_LINUX_IMMUTABLE
Set the FS_APPEND_FL and FS_IMMUTABLE_FL inode flags (see
FS_IOC_SETFLAGS(2const)).

CAP_MAC_ADMIN (since Linux 2.6.25)
Allow MAC configuration or state changes. Implemented for the Smack
Linux Security Module (LSM).

CAP_MAC_OVERRIDE (since Linux 2.6.25)
Override Mandatory Access Control (MAC). Implemented for the Smack
LSM.

CAP_MKNOD (since Linux 2.4)
Create special files using mknod(2).

Linux man-pages 6.13 2024-06-13 3188

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

CAP_NET_ADMIN
Perform various network-related operations:
• interface configuration;
• administration of IP firewall, masquerading, and accounting;
• modify routing tables;
• bind to any address for transparent proxying;
• set type-of-service (TOS);
• clear driver statistics;
• set promiscuous mode;
• enabling multicasting;
• use setsockopt(2) to set the following socket options: SO_DEBUG,

SO_MARK, SO_PRIORITY (for a priority outside the range 0 to 6),
SO_RCVBUFFORCE, and SO_SNDBUFFORCE.

CAP_NET_BIND_SERVICE
Bind a socket to Internet domain privileged ports (port numbers less than
1024).

CAP_NET_BROADCAST
(Unused) Make socket broadcasts, and listen to multicasts.

CAP_NET_RAW
• Use RAW and PACKET sockets;
• bind to any address for transparent proxying.

CAP_PERFMON (since Linux 5.8)
Employ various performance-monitoring mechanisms, including:

• call perf_event_open(2);
• employ various BPF operations that have performance implications.

This capability was added in Linux 5.8 to separate out performance monitor-
ing functionality from the overloaded CAP_SYS_ADMIN capability. See
also the kernel source file Documentation/admin-guide/perf-security.rst.

CAP_SETGID
• Make arbitrary manipulations of process GIDs and supplementary GID

list;
• forge GID when passing socket credentials via UNIX domain sockets;
• write a group ID mapping in a user namespace (see user_namespaces(7)).

CAP_SETFCAP (since Linux 2.6.24)
Set arbitrary capabilities on a file.

Since Linux 5.12, this capability is also needed to map user ID 0 in a new user
namespace; see user_namespaces(7) for details.

CAP_SETPCAP
If file capabilities are supported (i.e., since Linux 2.6.24): add any capability
from the calling thread’s bounding set to its inheritable set; drop capabilities
from the bounding set (via prctl(2) PR_CAPBSET_DROP); make changes to
the securebits flags.

If file capabilities are not supported (i.e., before Linux 2.6.24): grant or re-
move any capability in the caller’s permitted capability set to or from any

Linux man-pages 6.13 2024-06-13 3189

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

other process. (This property of CAP_SETPCAP is not available when the
kernel is configured to support file capabilities, since CAP_SETPCAP has en-
tirely different semantics for such kernels.)

CAP_SETUID
• Make arbitrary manipulations of process UIDs (setuid(2), setreuid(2), se-

tresuid(2), setfsuid(2));
• forge UID when passing socket credentials via UNIX domain sockets;
• write a user ID mapping in a user namespace (see user_namespaces(7)).

CAP_SYS_ADMIN
Note: this capability is overloaded; see Notes to kernel developers below.

• Perform a range of system administration operations including:
quotactl(2), mount(2), umount(2), pivot_root(2), swapon(2), swapoff(2),
sethostname(2), and setdomainname(2);

• perform privileged syslog(2) operations (since Linux 2.6.37, CAP_SYS-
LOG should be used to permit such operations);

• perform VM86_REQUEST_IRQ vm86(2) command;
• access the same checkpoint/restore functionality that is governed by

CAP_CHECKPOINT_RESTORE (but the latter, weaker capability is
preferred for accessing that functionality).

• perform the same BPF operations as are governed by CAP_BPF (but the
latter, weaker capability is preferred for accessing that functionality).

• employ the same performance monitoring mechanisms as are governed by
CAP_PERFMON (but the latter, weaker capability is preferred for ac-
cessing that functionality).

• perform IPC_SET and IPC_RMID operations on arbitrary System V IPC
objects;

• override RLIMIT_NPROC resource limit;
• perform operations on trusted and security extended attributes (see

xattr(7));
• use lookup_dcookie(2);
• use ioprio_set(2) to assign IOPRIO_CLASS_RT and (before Linux

2.6.25) IOPRIO_CLASS_IDLE I/O scheduling classes;
• forge PID when passing socket credentials via UNIX domain sockets;
• exceed /proc/sys/fs/file-max, the system-wide limit on the number of open

files, in system calls that open files (e.g., accept(2), execve(2), open(2),
pipe(2));

• employ CLONE_* flags that create new namespaces with clone(2) and
unshare(2) (but, since Linux 3.8, creating user namespaces does not re-
quire any capability);

• access privileged perf event information;
• call setns(2) (requires CAP_SYS_ADMIN in the target namespace);
• call fanotify_init(2);
• perform privileged KEYCTL_CHOWN and KEYCTL_SETPERM

keyctl(2) operations;
• perform madvise(2) MADV_HWPOISON operation;

Linux man-pages 6.13 2024-06-13 3190

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

• employ the TIOCSTI ioctl(2) to insert characters into the input queue of a
terminal other than the caller’s controlling terminal;

• employ the obsolete nfsservctl(2) system call;
• employ the obsolete bdflush(2) system call;
• perform various privileged block-device ioctl(2) operations;
• perform various privileged filesystem ioctl(2) operations;
• perform privileged ioctl(2) operations on the /dev/random device (see ran-

dom(4));
• install a seccomp(2) filter without first having to set the no_new_privs

thread attribute;
• modify allow/deny rules for device control groups;
• employ the ptrace(2) PTRACE_SECCOMP_GET_FILTER operation to

dump tracee’s seccomp filters;
• employ the ptrace(2) PTRACE_SETOPTIONS operation to suspend the

tracee’s seccomp protections (i.e., the PTRACE_O_SUSPEND_SEC-
COMP flag);

• perform administrative operations on many device drivers;
• modify autogroup nice values by writing to /proc/ pid /autogroup (see

sched(7)).

CAP_SYS_BOOT
Use reboot(2) and kexec_load(2).

CAP_SYS_CHROOT
• Use chroot(2);
• change mount namespaces using setns(2).

CAP_SYS_MODULE
• Load and unload kernel modules (see init_module(2) and

delete_module(2));
• before Linux 2.6.25: drop capabilities from the system-wide capability

bounding set.

CAP_SYS_NICE
• Lower the process nice value (nice(2), setpriority(2)) and change the nice

value for arbitrary processes;
• set real-time scheduling policies for calling process, and set scheduling

policies and priorities for arbitrary processes (sched_setscheduler(2),
sched_setparam(2), sched_setattr(2));

• set CPU affinity for arbitrary processes (sched_setaffinity(2));
• set I/O scheduling class and priority for arbitrary processes (io-

prio_set(2));
• apply migrate_pages(2) to arbitrary processes and allow processes to be

migrated to arbitrary nodes;
• apply move_pages(2) to arbitrary processes;
• use the MPOL_MF_MOVE_ALL flag with mbind(2) and

move_pages(2).

CAP_SYS_PACCT
Use acct(2).

Linux man-pages 6.13 2024-06-13 3191

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

CAP_SYS_PTRACE
• Trace arbitrary processes using ptrace(2);
• apply get_robust_list(2) to arbitrary processes;
• transfer data to or from the memory of arbitrary processes using

process_vm_readv(2) and process_vm_writev(2);
• inspect processes using kcmp(2).

CAP_SYS_RAWIO
• Perform I/O port operations (iopl(2) and ioperm(2));
• access /proc/kcore;
• employ the FIBMAP ioctl(2) operation;
• open devices for accessing x86 model-specific registers (MSRs, see

msr(4));
• update /proc/sys/vm/mmap_min_addr;
• create memory mappings at addresses below the value specified by

/proc/sys/vm/mmap_min_addr;
• map files in /proc/bus/pci;
• open /dev/mem and /dev/kmem;
• perform various SCSI device commands;
• perform certain operations on hpsa(4) and cciss(4) devices;
• perform a range of device-specific operations on other devices.

CAP_SYS_RESOURCE
• Use reserved space on ext2 filesystems;
• make ioctl(2) calls controlling ext3 journaling;
• override disk quota limits;
• increase resource limits (see setrlimit(2));
• override RLIMIT_NPROC resource limit;
• override maximum number of consoles on console allocation;
• override maximum number of keymaps;
• allow more than 64hz interrupts from the real-time clock;
• raise msg_qbytes limit for a System V message queue above the limit in

/proc/sys/kernel/msgmnb (see msgop(2) and msgctl(2));
• allow the RLIMIT_NOFILE resource limit on the number of "in-flight"

file descriptors to be bypassed when passing file descriptors to another
process via a UNIX domain socket (see unix(7));

• override the /proc/sys/fs/pipe-size-max limit when setting the capacity of
a pipe using the F_SETPIPE_SZ fcntl(2) command;

• use F_SETPIPE_SZ to increase the capacity of a pipe above the limit
specified by /proc/sys/fs/pipe-max-size;

• override /proc/sys/fs/mqueue/queues_max, /proc/sys/fs/mqueue/msg_max,
and /proc/sys/fs/mqueue/msgsize_max limits when creating POSIX mes-
sage queues (see mq_overview(7));

• employ the prctl(2) PR_SET_MM operation;
• set /proc/ pid /oom_score_adj to a value lower than the value last set by a

process with CAP_SYS_RESOURCE.

CAP_SYS_TIME
Set system clock (settimeofday(2), stime(2), adjtimex(2)); set real-time (hard-
ware) clock.

Linux man-pages 6.13 2024-06-13 3192

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

CAP_SYS_TTY_CONFIG
Use vhangup(2); employ various privileged ioctl(2) operations on virtual ter-
minals.

CAP_SYSLOG (since Linux 2.6.37)
• Perform privileged syslog(2) operations. See syslog(2) for information on

which operations require privilege.
• View kernel addresses exposed via /proc and other interfaces when

/proc/sys/kernel/kptr_restrict has the value 1. (See the discussion of the
kptr_restrict in proc(5).)

CAP_WAKE_ALARM (since Linux 3.0)
Trigger something that will wake up the system (set CLOCK_REAL-
TIME_ALARM and CLOCK_BOOTTIME_ALARM timers).

Past and current implementation
A full implementation of capabilities requires that:

• For all privileged operations, the kernel must check whether the thread has the re-
quired capability in its effective set.

• The kernel must provide system calls allowing a thread’s capability sets to be
changed and retrieved.

• The filesystem must support attaching capabilities to an executable file, so that a
process gains those capabilities when the file is executed.

Before Linux 2.6.24, only the first two of these requirements are met; since Linux
2.6.24, all three requirements are met.

Notes to kernel developers
When adding a new kernel feature that should be governed by a capability, consider
the following points.

• The goal of capabilities is divide the power of superuser into pieces, such that if a
program that has one or more capabilities is compromised, its power to do damage
to the system would be less than the same program running with root privilege.

• You have the choice of either creating a new capability for your new feature, or as-
sociating the feature with one of the existing capabilities. In order to keep the set
of capabilities to a manageable size, the latter option is preferable, unless there are
compelling reasons to take the former option. (There is also a technical limit: the
size of capability sets is currently limited to 64 bits.)

• To determine which existing capability might best be associated with your new
feature, review the list of capabilities above in order to find a "silo" into which
your new feature best fits. One approach to take is to determine if there are other
features requiring capabilities that will always be used along with the new feature.
If the new feature is useless without these other features, you should use the same
capability as the other features.

• Don’t choose CAP_SYS_ADMIN if you can possibly avoid it! A vast proportion
of existing capability checks are associated with this capability (see the partial list
above). It can plausibly be called "the new root", since on the one hand, it confers
a wide range of powers, and on the other hand, its broad scope means that this is
the capability that is required by many privileged programs. Don’t make the

Linux man-pages 6.13 2024-06-13 3193

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

problem worse. The only new features that should be associated with
CAP_SYS_ADMIN are ones that closely match existing uses in that silo.

• If you have determined that it really is necessary to create a new capability for
your feature, don’t make or name it as a "single-use" capability. Thus, for exam-
ple, the addition of the highly specific CAP_SYS_PACCT was probably a mis-
take. Instead, try to identify and name your new capability as a broader silo into
which other related future use cases might fit.

Thread capability sets
Each thread has the following capability sets containing zero or more of the above ca-
pabilities:

Permitted
This is a limiting superset for the effective capabilities that the thread may as-
sume. It is also a limiting superset for the capabilities that may be added to
the inheritable set by a thread that does not have the CAP_SETPCAP capabil-
ity in its effective set.

If a thread drops a capability from its permitted set, it can never reacquire that
capability (unless it execve(2)s either a set-user-ID-root program, or a program
whose associated file capabilities grant that capability).

Inheritable
This is a set of capabilities preserved across an execve(2). Inheritable capabili-
ties remain inheritable when executing any program, and inheritable capabili-
ties are added to the permitted set when executing a program that has the cor-
responding bits set in the file inheritable set.

Because inheritable capabilities are not generally preserved across execve(2)
when running as a non-root user, applications that wish to run helper programs
with elevated capabilities should consider using ambient capabilities, de-
scribed below.

Effective
This is the set of capabilities used by the kernel to perform permission checks
for the thread.

Bounding (per-thread since Linux 2.6.25)
The capability bounding set is a mechanism that can be used to limit the capa-
bilities that are gained during execve(2).

Since Linux 2.6.25, this is a per-thread capability set. In older kernels, the ca-
pability bounding set was a system wide attribute shared by all threads on the
system.

For more details, see Capability bounding set below.

Ambient (since Linux 4.3)
This is a set of capabilities that are preserved across an execve(2) of a program
that is not privileged. The ambient capability set obeys the invariant that no
capability can ever be ambient if it is not both permitted and inheritable.

The ambient capability set can be directly modified using prctl(2). Ambient
capabilities are automatically lowered if either of the corresponding permitted
or inheritable capabilities is lowered.

Linux man-pages 6.13 2024-06-13 3194

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

Executing a program that changes UID or GID due to the set-user-ID or set-
group-ID bits or executing a program that has any file capabilities set will
clear the ambient set. Ambient capabilities are added to the permitted set and
assigned to the effective set when execve(2) is called. If ambient capabilities
cause a process’s permitted and effective capabilities to increase during an ex-
ecve(2), this does not trigger the secure-execution mode described in ld.so(8).

A child created via fork(2) inherits copies of its parent’s capability sets. For details on
how execve(2) affects capabilities, see Transformation of capabilities during execve()
below.

Using capset(2), a thread may manipulate its own capability sets; see Programmati-
cally adjusting capability sets below.

Since Linux 3.2, the file /proc/sys/kernel/cap_last_cap exposes the numerical value of
the highest capability supported by the running kernel; this can be used to determine
the highest bit that may be set in a capability set.

File capabilities
Since Linux 2.6.24, the kernel supports associating capability sets with an executable
file using setcap(8)The file capability sets are stored in an extended attribute (see setx-
attr(2) and xattr(7)) named security.capability. Writing to this extended attribute re-
quires the CAP_SETFCAP capability. The file capability sets, in conjunction with
the capability sets of the thread, determine the capabilities of a thread after an ex-
ecve(2).

The three file capability sets are:

Permitted (formerly known as forced):
These capabilities are automatically permitted to the thread, regardless of the
thread’s inheritable capabilities.

Inheritable (formerly known as allowed):
This set is ANDed with the thread’s inheritable set to determine which inheri-
table capabilities are enabled in the permitted set of the thread after the ex-
ecve(2).

Effective:
This is not a set, but rather just a single bit. If this bit is set, then during an ex-
ecve(2) all of the new permitted capabilities for the thread are also raised in
the effective set. If this bit is not set, then after an execve(2), none of the new
permitted capabilities is in the new effective set.

Enabling the file effective capability bit implies that any file permitted or in-
heritable capability that causes a thread to acquire the corresponding permitted
capability during an execve(2) (see Transformation of capabilities during ex-
ecve() below) will also acquire that capability in its effective set. Therefore,
when assigning capabilities to a file (setcap(8), cap_set_file(3),
cap_set_fd(3)), if we specify the effective flag as being enabled for any capa-
bility, then the effective flag must also be specified as enabled for all other ca-
pabilities for which the corresponding permitted or inheritable flag is enabled.

File capability extended attribute versioning
To allow extensibility, the kernel supports a scheme to encode a version number inside
the security.capability extended attribute that is used to implement file capabilities.

Linux man-pages 6.13 2024-06-13 3195

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

These version numbers are internal to the implementation, and not directly visible to
user-space applications. To date, the following versions are supported:

VFS_CAP_REVISION_1
This was the original file capability implementation, which supported 32-bit
masks for file capabilities.

VFS_CAP_REVISION_2 (since Linux 2.6.25)
This version allows for file capability masks that are 64 bits in size, and was
necessary as the number of supported capabilities grew beyond 32. The kernel
transparently continues to support the execution of files that have 32-bit ver-
sion 1 capability masks, but when adding capabilities to files that did not pre-
viously have capabilities, or modifying the capabilities of existing files, it au-
tomatically uses the version 2 scheme (or possibly the version 3 scheme, as
described below).

VFS_CAP_REVISION_3 (since Linux 4.14)
Version 3 file capabilities are provided to support namespaced file capabilities
(described below).

As with version 2 file capabilities, version 3 capability masks are 64 bits in
size. But in addition, the root user ID of namespace is encoded in the secu-
rity.capability extended attribute. (A namespace’s root user ID is the value
that user ID 0 inside that namespace maps to in the initial user namespace.)

Version 3 file capabilities are designed to coexist with version 2 capabilities;
that is, on a modern Linux system, there may be some files with version 2 ca-
pabilities while others have version 3 capabilities.

Before Linux 4.14, the only kind of file capability extended attribute that could be at-
tached to a file was a VFS_CAP_REVISION_2 attribute. Since Linux 4.14, the ver-
sion of the security.capability extended attribute that is attached to a file depends on
the circumstances in which the attribute was created.

Starting with Linux 4.14, a security.capability extended attribute is automatically cre-
ated as (or converted to) a version 3 (VFS_CAP_REVISION_3) attribute if both of
the following are true:

• The thread writing the attribute resides in a noninitial user namespace. (More pre-
cisely: the thread resides in a user namespace other than the one from which the
underlying filesystem was mounted.)

• The thread has the CAP_SETFCAP capability over the file inode, meaning that
(a) the thread has the CAP_SETFCAP capability in its own user namespace; and
(b) the UID and GID of the file inode have mappings in the writer’s user name-
space.

When a VFS_CAP_REVISION_3 security.capability extended attribute is created,
the root user ID of the creating thread’s user namespace is saved in the extended at-
tribute.

By contrast, creating or modifying a security.capability extended attribute from a
privileged (CAP_SETFCAP) thread that resides in the namespace where the underly-
ing filesystem was mounted (this normally means the initial user namespace) automat-
ically results in the creation of a version 2 (VFS_CAP_REVISION_2) attribute.

Linux man-pages 6.13 2024-06-13 3196

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

Note that the creation of a version 3 security.capability extended attribute is auto-
matic. That is to say, when a user-space application writes (setxattr(2)) a security.ca-
pability attribute in the version 2 format, the kernel will automatically create a version
3 attribute if the attribute is created in the circumstances described above. Corre-
spondingly, when a version 3 security.capability attribute is retrieved (getxattr(2)) by
a process that resides inside a user namespace that was created by the root user ID (or
a descendant of that user namespace), the returned attribute is (automatically) simpli-
fied to appear as a version 2 attribute (i.e., the returned value is the size of a version 2
attribute and does not include the root user ID). These automatic translations mean
that no changes are required to user-space tools (e.g., setcap(1) and getcap(1)) in or-
der for those tools to be used to create and retrieve version 3 security.capability attrib-
utes.

Note that a file can have either a version 2 or a version 3 security.capability extended
attribute associated with it, but not both: creation or modification of the security.capa-
bility extended attribute will automatically modify the version according to the cir-
cumstances in which the extended attribute is created or modified.

Transformation of capabilities during execve()
During an execve(2), the kernel calculates the new capabilities of the process using the
following algorithm:

P’(ambient) = (file is privileged) ? 0 : P(ambient)

P’(permitted) = (P(inheritable) & F(inheritable)) |
(F(permitted) & P(bounding)) | P’(ambient)

P’(effective) = F(effective) ? P’(permitted) : P’(ambient)

P’(inheritable) = P(inheritable) [i.e., unchanged]

P’(bounding) = P(bounding) [i.e., unchanged]

where:

P() denotes the value of a thread capability set before the execve(2)

P’() denotes the value of a thread capability set after the execve(2)

F() denotes a file capability set

Note the following details relating to the above capability transformation rules:

• The ambient capability set is present only since Linux 4.3. When determining the
transformation of the ambient set during execve(2), a privileged file is one that has
capabilities or has the set-user-ID or set-group-ID bit set.

• Prior to Linux 2.6.25, the bounding set was a system-wide attribute shared by all
threads. That system-wide value was employed to calculate the new permitted set
during execve(2) in the same manner as shown above for P(bounding).

Note: during the capability transitions described above, file capabilities may be ig-
nored (treated as empty) for the same reasons that the set-user-ID and set-group-ID
bits are ignored; see execve(2). File capabilities are similarly ignored if the kernel
was booted with the no_file_caps option.

Linux man-pages 6.13 2024-06-13 3197

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

Note: according to the rules above, if a process with nonzero user IDs performs an ex-
ecve(2) then any capabilities that are present in its permitted and effective sets will be
cleared. For the treatment of capabilities when a process with a user ID of zero per-
forms an execve(2), see Capabilities and execution of programs by root below.

Safety checking for capability-dumb binaries
A capability-dumb binary is an application that has been marked to have file capabili-
ties, but has not been converted to use the libcap(3) API to manipulate its capabilities.
(In other words, this is a traditional set-user-ID-root program that has been switched
to use file capabilities, but whose code has not been modified to understand capabili-
ties.) For such applications, the effective capability bit is set on the file, so that the file
permitted capabilities are automatically enabled in the process effective set when exe-
cuting the file. The kernel recognizes a file which has the effective capability bit set
as capability-dumb for the purpose of the check described here.

When executing a capability-dumb binary, the kernel checks if the process obtained
all permitted capabilities that were specified in the file permitted set, after the capabil-
ity transformations described above have been performed. (The typical reason why
this might not occur is that the capability bounding set masked out some of the capa-
bilities in the file permitted set.) If the process did not obtain the full set of file per-
mitted capabilities, then execve(2) fails with the error EPERM. This prevents possi-
ble security risks that could arise when a capability-dumb application is executed with
less privilege than it needs. Note that, by definition, the application could not itself
recognize this problem, since it does not employ the libcap(3) API.

Capabilities and execution of programs by root
In order to mirror traditional UNIX semantics, the kernel performs special treatment
of file capabilities when a process with UID 0 (root) executes a program and when a
set-user-ID-root program is executed.

After having performed any changes to the process effective ID that were triggered by
the set-user-ID mode bit of the binary—e.g., switching the effective user ID to 0 (root)
because a set-user-ID-root program was executed—the kernel calculates the file capa-
bility sets as follows:

(1) If the real or effective user ID of the process is 0 (root), then the file inheritable
and permitted sets are ignored; instead they are notionally considered to be all
ones (i.e., all capabilities enabled). (There is one exception to this behavior, de-
scribed in Set-user-ID-root programs that have file capabilities below.)

(2) If the effective user ID of the process is 0 (root) or the file effective bit is in fact
enabled, then the file effective bit is notionally defined to be one (enabled).

These notional values for the file’s capability sets are then used as described above to
calculate the transformation of the process’s capabilities during execve(2).

Thus, when a process with nonzero UIDs execve(2)s a set-user-ID-root program that
does not have capabilities attached, or when a process whose real and effective UIDs
are zero execve(2)s a program, the calculation of the process’s new permitted capabili-
ties simplifies to:

P’(permitted) = P(inheritable) | P(bounding)

P’(effective) = P’(permitted)

Linux man-pages 6.13 2024-06-13 3198

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

Consequently, the process gains all capabilities in its permitted and effective capabil-
ity sets, except those masked out by the capability bounding set. (In the calculation of
P’(permitted), the P’(ambient) term can be simplified away because it is by definition
a proper subset of P(inheritable).)

The special treatments of user ID 0 (root) described in this subsection can be disabled
using the securebits mechanism described below.

Set-user-ID-root programs that have file capabilities
There is one exception to the behavior described in Capabilities and execution of pro-
grams by root above. If (a) the binary that is being executed has capabilities attached
and (b) the real user ID of the process is not 0 (root) and (c) the effective user ID of
the process is 0 (root), then the file capability bits are honored (i.e., they are not no-
tionally considered to be all ones). The usual way in which this situation can arise is
when executing a set-UID-root program that also has file capabilities. When such a
program is executed, the process gains just the capabilities granted by the program
(i.e., not all capabilities, as would occur when executing a set-user-ID-root program
that does not have any associated file capabilities).

Note that one can assign empty capability sets to a program file, and thus it is possible
to create a set-user-ID-root program that changes the effective and saved set-user-ID
of the process that executes the program to 0, but confers no capabilities to that
process.

Capability bounding set
The capability bounding set is a security mechanism that can be used to limit the ca-
pabilities that can be gained during an execve(2). The bounding set is used in the fol-
lowing ways:

• During an execve(2), the capability bounding set is ANDed with the file permitted
capability set, and the result of this operation is assigned to the thread’s permitted
capability set. The capability bounding set thus places a limit on the permitted ca-
pabilities that may be granted by an executable file.

• (Since Linux 2.6.25) The capability bounding set acts as a limiting superset for the
capabilities that a thread can add to its inheritable set using capset(2). This means
that if a capability is not in the bounding set, then a thread can’t add this capability
to its inheritable set, even if it was in its permitted capabilities, and thereby cannot
have this capability preserved in its permitted set when it execve(2)s a file that has
the capability in its inheritable set.

Note that the bounding set masks the file permitted capabilities, but not the inheritable
capabilities. If a thread maintains a capability in its inheritable set that is not in its
bounding set, then it can still gain that capability in its permitted set by executing a
file that has the capability in its inheritable set.

Depending on the kernel version, the capability bounding set is either a system-wide
attribute, or a per-process attribute.

Capability bounding set from Linux 2.6.25 onward

From Linux 2.6.25, the capability bounding set is a per-thread attribute. (The system-
wide capability bounding set described below no longer exists.)

The bounding set is inherited at fork(2) from the thread’s parent, and is preserved

Linux man-pages 6.13 2024-06-13 3199

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

across an execve(2).

A thread may remove capabilities from its capability bounding set using the prctl(2)
PR_CAPBSET_DROP operation, provided it has the CAP_SETPCAP capability.
Once a capability has been dropped from the bounding set, it cannot be restored to
that set. A thread can determine if a capability is in its bounding set using the prctl(2)
PR_CAPBSET_READ operation.

Removing capabilities from the bounding set is supported only if file capabilities are
compiled into the kernel. Before Linux 2.6.33, file capabilities were an optional fea-
ture configurable via the CONFIG_SECURITY_FILE_CAPABILITIES option.
Since Linux 2.6.33, the configuration option has been removed and file capabilities
are always part of the kernel. When file capabilities are compiled into the kernel, the
init process (the ancestor of all processes) begins with a full bounding set. If file ca-
pabilities are not compiled into the kernel, then init begins with a full bounding set
minus CAP_SETPCAP, because this capability has a different meaning when there
are no file capabilities.

Removing a capability from the bounding set does not remove it from the thread’s in-
heritable set. However it does prevent the capability from being added back into the
thread’s inheritable set in the future.

Capability bounding set prior to Linux 2.6.25

Before Linux 2.6.25, the capability bounding set is a system-wide attribute that affects
all threads on the system. The bounding set is accessible via the file /proc/sys/ker-
nel/cap-bound . (Confusingly, this bit mask parameter is expressed as a signed deci-
mal number in /proc/sys/kernel/cap-bound .)

Only the init process may set capabilities in the capability bounding set; other than
that, the superuser (more precisely: a process with the CAP_SYS_MODULE capa-
bility) may only clear capabilities from this set.

On a standard system the capability bounding set always masks out the CAP_SETP-
CAP capability. To remove this restriction (dangerous!), modify the definition of
CAP_INIT_EFF_SET in include/linux/capability.h and rebuild the kernel.

The system-wide capability bounding set feature was added to Linux 2.2.11.

Effect of user ID changes on capabilities
To preserve the traditional semantics for transitions between 0 and nonzero user IDs,
the kernel makes the following changes to a thread’s capability sets on changes to the
thread’s real, effective, saved set, and filesystem user IDs (using setuid(2),
setresuid(2), or similar):

• If one or more of the real, effective, or saved set user IDs was previously 0, and as
a result of the UID changes all of these IDs have a nonzero value, then all capabil-
ities are cleared from the permitted, effective, and ambient capability sets.

• If the effective user ID is changed from 0 to nonzero, then all capabilities are
cleared from the effective set.

• If the effective user ID is changed from nonzero to 0, then the permitted set is
copied to the effective set.

Linux man-pages 6.13 2024-06-13 3200

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

• If the filesystem user ID is changed from 0 to nonzero (see setfsuid(2)), then the
following capabilities are cleared from the effective set: CAP_CHOWN,
CAP_DAC_OVERRIDE, CAP_DAC_READ_SEARCH, CAP_FOWNER,
CAP_FSETID, CAP_LINUX_IMMUTABLE (since Linux 2.6.30),
CAP_MAC_OVERRIDE, and CAP_MKNOD (since Linux 2.6.30). If the
filesystem UID is changed from nonzero to 0, then any of these capabilities that
are enabled in the permitted set are enabled in the effective set.

If a thread that has a 0 value for one or more of its user IDs wants to prevent its per-
mitted capability set being cleared when it resets all of its user IDs to nonzero values,
it can do so using the SECBIT_KEEP_CAPS securebits flag described below.

Programmatically adjusting capability sets
A thread can retrieve and change its permitted, effective, and inheritable capability
sets using the capget(2) and capset(2) system calls. However, the use of
cap_get_proc(3) and cap_set_proc(3), both provided in the libcap package, is pre-
ferred for this purpose. The following rules govern changes to the thread capability
sets:

• If the caller does not have the CAP_SETPCAP capability, the new inheritable set
must be a subset of the combination of the existing inheritable and permitted sets.

• (Since Linux 2.6.25) The new inheritable set must be a subset of the combination
of the existing inheritable set and the capability bounding set.

• The new permitted set must be a subset of the existing permitted set (i.e., it is not
possible to acquire permitted capabilities that the thread does not currently have).

• The new effective set must be a subset of the new permitted set.

The securebits flags: establishing a capabilities-only environment
Starting with Linux 2.6.26, and with a kernel in which file capabilities are enabled,
Linux implements a set of per-thread securebits flags that can be used to disable spe-
cial handling of capabilities for UID 0 (root). These flags are as follows:

SECBIT_KEEP_CAPS
Setting this flag allows a thread that has one or more 0 UIDs to retain capabili-
ties in its permitted set when it switches all of its UIDs to nonzero values. If
this flag is not set, then such a UID switch causes the thread to lose all permit-
ted capabilities. This flag is always cleared on an execve(2).

Note that even with the SECBIT_KEEP_CAPS flag set, the effective capabil-
ities of a thread are cleared when it switches its effective UID to a nonzero
value. However, if the thread has set this flag and its effective UID is already
nonzero, and the thread subsequently switches all other UIDs to nonzero val-
ues, then the effective capabilities will not be cleared.

The setting of the SECBIT_KEEP_CAPS flag is ignored if the
SECBIT_NO_SETUID_FIXUP flag is set. (The latter flag provides a super-
set of the effect of the former flag.)

This flag provides the same functionality as the older prctl(2)
PR_SET_KEEPCAPS operation.

Linux man-pages 6.13 2024-06-13 3201

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

SECBIT_NO_SETUID_FIXUP
Setting this flag stops the kernel from adjusting the process’s permitted, effec-
tive, and ambient capability sets when the thread’s effective and filesystem
UIDs are switched between zero and nonzero values. See Effect of user ID
changes on capabilities above.

SECBIT_NOROOT
If this bit is set, then the kernel does not grant capabilities when a set-user-ID-
root program is executed, or when a process with an effective or real UID of 0
calls execve(2). (See Capabilities and execution of programs by root above.)

SECBIT_NO_CAP_AMBIENT_RAISE
Setting this flag disallows raising ambient capabilities via the prctl(2)
PR_CAP_AMBIENT_RAISE operation.

Each of the above "base" flags has a companion "locked" flag. Setting any of the
"locked" flags is irreversible, and has the effect of preventing further changes to the
corresponding "base" flag. The locked flags are:
SECBIT_KEEP_CAPS_LOCKED, SECBIT_NO_SETUID_FIXUP_LOCKED,
SECBIT_NOROOT_LOCKED, and SECBIT_NO_CAP_AMBI-
ENT_RAISE_LOCKED.

The securebits flags can be modified and retrieved using the prctl(2) PR_SET_SE-
CUREBITS and PR_GET_SECUREBITS operations. The CAP_SETPCAP capa-
bility is required to modify the flags. Note that the SECBIT_* constants are available
only after including the <linux/securebits.h> header file.

The securebits flags are inherited by child processes. During an execve(2), all of the
flags are preserved, except SECBIT_KEEP_CAPS which is always cleared.

An application can use the following call to lock itself, and all of its descendants, into
an environment where the only way of gaining capabilities is by executing a program
with associated file capabilities:

prctl(PR_SET_SECUREBITS,
/* SECBIT_KEEP_CAPS off */
SECBIT_KEEP_CAPS_LOCKED |
SECBIT_NO_SETUID_FIXUP |
SECBIT_NO_SETUID_FIXUP_LOCKED |
SECBIT_NOROOT |
SECBIT_NOROOT_LOCKED);
/* Setting/locking SECBIT_NO_CAP_AMBIENT_RAISE

is not required */

Per-user-namespace "set-user-ID-root" programs
A set-user-ID program whose UID matches the UID that created a user namespace
will confer capabilities in the process’s permitted and effective sets when executed by
any process inside that namespace or any descendant user namespace.

The rules about the transformation of the process’s capabilities during the execve(2)
are exactly as described in Transformation of capabilities during execve() and Capa-
bilities and execution of programs by root above, with the difference that, in the latter
subsection, "root" is the UID of the creator of the user namespace.

Linux man-pages 6.13 2024-06-13 3202

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

Namespaced file capabilities
Traditional (i.e., version 2) file capabilities associate only a set of capability masks
with a binary executable file. When a process executes a binary with such capabili-
ties, it gains the associated capabilities (within its user namespace) as per the rules de-
scribed in Transformation of capabilities during execve() above.

Because version 2 file capabilities confer capabilities to the executing process regard-
less of which user namespace it resides in, only privileged processes are permitted to
associate capabilities with a file. Here, "privileged" means a process that has the
CAP_SETFCAP capability in the user namespace where the filesystem was mounted
(normally the initial user namespace). This limitation renders file capabilities useless
for certain use cases. For example, in user-namespaced containers, it can be desirable
to be able to create a binary that confers capabilities only to processes executed inside
that container, but not to processes that are executed outside the container.

Linux 4.14 added so-called namespaced file capabilities to support such use cases.
Namespaced file capabilities are recorded as version 3 (i.e., VFS_CAP_REVI-
SION_3) security.capability extended attributes. Such an attribute is automatically
created in the circumstances described in File capability extended attribute versioning
above. When a version 3 security.capability extended attribute is created, the kernel
records not just the capability masks in the extended attribute, but also the namespace
root user ID.

As with a binary that has VFS_CAP_REVISION_2 file capabilities, a binary with
VFS_CAP_REVISION_3 file capabilities confers capabilities to a process during ex-
ecve(). However, capabilities are conferred only if the binary is executed by a process
that resides in a user namespace whose UID 0 maps to the root user ID that is saved in
the extended attribute, or when executed by a process that resides in a descendant of
such a namespace.

Interaction with user namespaces
For further information on the interaction of capabilities and user namespaces, see
user_namespaces(7).

STANDARDS
No standards govern capabilities, but the Linux capability implementation is based on
the withdrawn POSIX.1e draft standard 〈https://archive.org/details
/posix_1003.1e-990310〉.

NOTES
When attempting to strace(1) binaries that have capabilities (or set-user-ID-root bina-
ries), you may find the -u <username> option useful. Something like:

$ sudo strace -o trace.log -u ceci ./myprivprog

From Linux 2.5.27 to Linux 2.6.26, capabilities were an optional kernel component,
and could be enabled/disabled via the CONFIG_SECURITY_CAPABILITIES ker-
nel configuration option.

The /proc/ pid /task/TID/status file can be used to view the capability sets of a thread.
The /proc/ pid /status file shows the capability sets of a process’s main thread. Before
Linux 3.8, nonexistent capabilities were shown as being enabled (1) in these sets.
Since Linux 3.8, all nonexistent capabilities (above CAP_LAST_CAP) are shown as
disabled (0).

Linux man-pages 6.13 2024-06-13 3203

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

The libcap package provides a suite of routines for setting and getting capabilities that
is more comfortable and less likely to change than the interface provided by capset(2)
and capget(2). This package also provides the setcap(8) and getcap(8) programs. It
can be found at
〈https://git.kernel.org/pub/scm/libs/libcap/libcap.git/refs/〉.

Before Linux 2.6.24, and from Linux 2.6.24 to Linux 2.6.32 if file capabilities are not
enabled, a thread with the CAP_SETPCAP capability can manipulate the capabilities
of threads other than itself. However, this is only theoretically possible, since no
thread ever has CAP_SETPCAP in either of these cases:

• In the pre-2.6.25 implementation the system-wide capability bounding set,
/proc/sys/kernel/cap-bound , always masks out the CAP_SETPCAP capability,
and this can not be changed without modifying the kernel source and rebuilding
the kernel.

• If file capabilities are disabled (i.e., the kernel CONFIG_SECU-
RITY_FILE_CAPABILITIES option is disabled), then init starts out with the
CAP_SETPCAP capability removed from its per-process bounding set, and that
bounding set is inherited by all other processes created on the system.

SEE ALSO
capsh(1), setpriv(1), prctl(2), setfsuid(2), cap_clear(3), cap_copy_ext(3),
cap_from_text(3), cap_get_file(3), cap_get_proc(3), cap_init(3), capgetp(3),
capsetp(3), libcap(3), proc(5), credentials(7), pthreads(7), user_namespaces(7),
captest(8), filecap(8), getcap(8), getpcaps(8), netcap(8), pscap(8), setcap(8)

include/linux/capability.h in the Linux kernel source tree

Linux man-pages 6.13 2024-06-13 3204

cgroup_namespaces(7) Miscellaneous Information Manual cgroup_namespaces(7)

NAME
cgroup_namespaces - overview of Linux cgroup namespaces

DESCRIPTION
For an overview of namespaces, see namespaces(7).

Cgroup namespaces virtualize the view of a process’s cgroups (see cgroups(7)) as
seen via /proc/ pid /cgroup and /proc/ pid /mountinfo.

Each cgroup namespace has its own set of cgroup root directories. These root directo-
ries are the base points for the relative locations displayed in the corresponding
records in the /proc/ pid /cgroup file. When a process creates a new cgroup name-
space using clone(2) or unshare(2) with the CLONE_NEWCGROUP flag, its cur-
rent cgroups directories become the cgroup root directories of the new namespace.
(This applies both for the cgroups version 1 hierarchies and the cgroups version 2 uni-
fied hierarchy.)

When reading the cgroup memberships of a "target" process from /proc/ pid /cgroup,
the pathname shown in the third field of each record will be relative to the reading
process’s root directory for the corresponding cgroup hierarchy. If the cgroup direc-
tory of the target process lies outside the root directory of the reading process’s
cgroup namespace, then the pathname will show ../ entries for each ancestor level in
the cgroup hierarchy.

The following shell session demonstrates the effect of creating a new cgroup name-
space.

First, (as superuser) in a shell in the initial cgroup namespace, we create a child
cgroup in the freezer hierarchy, and place a process in that cgroup that we will use as
part of the demonstration below:

mkdir -p /sys/fs/cgroup/freezer/sub2
sleep 10000 & # Create a process that lives for a while
[1] 20124
echo 20124 > /sys/fs/cgroup/freezer/sub2/cgroup.procs

We then create another child cgroup in the freezer hierarchy and put the shell into
that cgroup:

mkdir -p /sys/fs/cgroup/freezer/sub
echo $$ # Show PID of this shell
30655
echo 30655 > /sys/fs/cgroup/freezer/sub/cgroup.procs
cat /proc/self/cgroup | grep freezer
7:freezer:/sub

Next, we use unshare(1) to create a process running a new shell in new cgroup and
mount namespaces:

PS1="sh2# " unshare -Cm bash

From the new shell started by unshare(1), we then inspect the /proc/ pid /cgroup files
of, respectively, the new shell, a process that is in the initial cgroup namespace (init,
with PID 1), and the process in the sibling cgroup (sub2):

sh2# cat /proc/self/cgroup | grep freezer

Linux man-pages 6.13 2024-05-02 3205

cgroup_namespaces(7) Miscellaneous Information Manual cgroup_namespaces(7)

7:freezer:/
sh2# cat /proc/1/cgroup | grep freezer
7:freezer:/..
sh2# cat /proc/20124/cgroup | grep freezer
7:freezer:/../sub2

From the output of the first command, we see that the freezer cgroup membership of
the new shell (which is in the same cgroup as the initial shell) is shown defined rela-
tive to the freezer cgroup root directory that was established when the new cgroup
namespace was created. (In absolute terms, the new shell is in the /sub freezer
cgroup, and the root directory of the freezer cgroup hierarchy in the new cgroup
namespace is also /sub. Thus, the new shell’s cgroup membership is displayed as '/'.)

However, when we look in /proc/self/mountinfo we see the following anomaly:

sh2# cat /proc/self/mountinfo | grep freezer
155 145 0:32 /.. /sys/fs/cgroup/freezer ...

The fourth field of this line (/..) should show the directory in the cgroup filesystem
which forms the root of this mount. Since by the definition of cgroup namespaces, the
process’s current freezer cgroup directory became its root freezer cgroup directory, we
should see '/' in this field. The problem here is that we are seeing a mount entry for
the cgroup filesystem corresponding to the initial cgroup namespace (whose cgroup
filesystem is indeed rooted at the parent directory of sub). To fix this problem, we
must remount the freezer cgroup filesystem from the new shell (i.e., perform the
mount from a process that is in the new cgroup namespace), after which we see the
expected results:

sh2# mount --make-rslave / # Don't propagate mount events
to other namespaces

sh2# umount /sys/fs/cgroup/freezer
sh2# mount -t cgroup -o freezer freezer /sys/fs/cgroup/freezer
sh2# cat /proc/self/mountinfo | grep freezer
155 145 0:32 / /sys/fs/cgroup/freezer rw,relatime ...

STANDARDS
Linux.

NOTES
Use of cgroup namespaces requires a kernel that is configured with the CON-
FIG_CGROUPS option.

The virtualization provided by cgroup namespaces serves a number of purposes:

• It prevents information leaks whereby cgroup directory paths outside of a con-
tainer would otherwise be visible to processes in the container. Such leakages
could, for example, reveal information about the container framework to con-
tainerized applications.

• It eases tasks such as container migration. The virtualization provided by cgroup
namespaces allows containers to be isolated from knowledge of the pathnames of
ancestor cgroups. Without such isolation, the full cgroup pathnames (displayed in
/proc/self/cgroups) would need to be replicated on the target system when migrat-
ing a container; those pathnames would also need to be unique, so that they don’t
conflict with other pathnames on the target system.

Linux man-pages 6.13 2024-05-02 3206

cgroup_namespaces(7) Miscellaneous Information Manual cgroup_namespaces(7)

• It allows better confinement of containerized processes, because it is possible to
mount the container’s cgroup filesystems such that the container processes can’t
gain access to ancestor cgroup directories. Consider, for example, the following
scenario:

• We have a cgroup directory, /cg/1, that is owned by user ID 9000.

• We have a process, X , also owned by user ID 9000, that is namespaced under
the cgroup /cg/1/2 (i.e., X was placed in a new cgroup namespace via clone(2)
or unshare(2) with the CLONE_NEWCGROUP flag).

In the absence of cgroup namespacing, because the cgroup directory /cg/1 is
owned (and writable) by UID 9000 and process X is also owned by user ID 9000,
process X would be able to modify the contents of cgroups files (i.e., change
cgroup settings) not only in /cg/1/2 but also in the ancestor cgroup directory /cg/1.
Namespacing process X under the cgroup directory /cg/1/2, in combination with
suitable mount operations for the cgroup filesystem (as shown above), prevents it
modifying files in /cg/1, since it cannot even see the contents of that directory (or
of further removed cgroup ancestor directories). Combined with correct enforce-
ment of hierarchical limits, this prevents process X from escaping the limits im-
posed by ancestor cgroups.

SEE ALSO
unshare(1), clone(2), setns(2), unshare(2), proc(5), cgroups(7), credentials(7), name-
spaces(7), user_namespaces(7)

Linux man-pages 6.13 2024-05-02 3207

cgroups(7) Miscellaneous Information Manual cgroups(7)

NAME
cgroups - Linux control groups

DESCRIPTION
Control groups, usually referred to as cgroups, are a Linux kernel feature which allow
processes to be organized into hierarchical groups whose usage of various types of re-
sources can then be limited and monitored. The kernel’s cgroup interface is provided
through a pseudo-filesystem called cgroupfs. Grouping is implemented in the core
cgroup kernel code, while resource tracking and limits are implemented in a set of
per-resource-type subsystems (memory, CPU, and so on).

Terminology
A cgroup is a collection of processes that are bound to a set of limits or parameters
defined via the cgroup filesystem.

A subsystem is a kernel component that modifies the behavior of the processes in a
cgroup. Various subsystems have been implemented, making it possible to do things
such as limiting the amount of CPU time and memory available to a cgroup, account-
ing for the CPU time used by a cgroup, and freezing and resuming execution of the
processes in a cgroup. Subsystems are sometimes also known as resource controllers
(or simply, controllers).

The cgroups for a controller are arranged in a hierarchy. This hierarchy is defined by
creating, removing, and renaming subdirectories within the cgroup filesystem. At
each level of the hierarchy, attributes (e.g., limits) can be defined. The limits, control,
and accounting provided by cgroups generally have effect throughout the subhierar-
chy underneath the cgroup where the attributes are defined. Thus, for example, the
limits placed on a cgroup at a higher level in the hierarchy cannot be exceeded by de-
scendant cgroups.

Cgroups version 1 and version 2
The initial release of the cgroups implementation was in Linux 2.6.24. Over time,
various cgroup controllers have been added to allow the management of various types
of resources. However, the development of these controllers was largely uncoordi-
nated, with the result that many inconsistencies arose between controllers and man-
agement of the cgroup hierarchies became rather complex. A longer description of
these problems can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v2.rst (or Documentation/cgroup-v2.txt in Linux 4.17 and ear-
lier).

Because of the problems with the initial cgroups implementation (cgroups version 1),
starting in Linux 3.10, work began on a new, orthogonal implementation to remedy
these problems. Initially marked experimental, and hidden behind the -o __DE-
VEL__sane_behavior mount option, the new version (cgroups version 2) was eventu-
ally made official with the release of Linux 4.5. Differences between the two versions
are described in the text below. The file cgroup.sane_behavior, present in cgroups v1,
is a relic of this mount option. The file always reports "0" and is only retained for
backward compatibility.

Although cgroups v2 is intended as a replacement for cgroups v1, the older system
continues to exist (and for compatibility reasons is unlikely to be removed). Cur-
rently, cgroups v2 implements only a subset of the controllers available in cgroups v1.
The two systems are implemented so that both v1 controllers and v2 controllers can

Linux man-pages 6.13 2024-12-04 3208

cgroups(7) Miscellaneous Information Manual cgroups(7)

be mounted on the same system. Thus, for example, it is possible to use those con-
trollers that are supported under version 2, while also using version 1 controllers
where version 2 does not yet support those controllers. The only restriction here is
that a controller can’t be simultaneously employed in both a cgroups v1 hierarchy and
in the cgroups v2 hierarchy.

CGROUPS VERSION 1
Under cgroups v1, each controller may be mounted against a separate cgroup filesys-
tem that provides its own hierarchical organization of the processes on the system. It
is also possible to comount multiple (or even all) cgroups v1 controllers against the
same cgroup filesystem, meaning that the comounted controllers manage the same hi-
erarchical organization of processes.

For each mounted hierarchy, the directory tree mirrors the control group hierarchy.
Each control group is represented by a directory, with each of its child control cgroups
represented as a child directory. For instance, /user/joe/1.session represents control
group 1.session, which is a child of cgroup joe, which is a child of /user. Under each
cgroup directory is a set of files which can be read or written to, reflecting resource
limits and a few general cgroup properties.

Tasks (threads) versus processes
In cgroups v1, a distinction is drawn between processes and tasks. In this view, a
process can consist of multiple tasks (more commonly called threads, from a user-
space perspective, and called such in the remainder of this man page). In cgroups v1,
it is possible to independently manipulate the cgroup memberships of the threads in a
process.

The cgroups v1 ability to split threads across different cgroups caused problems in
some cases. For example, it made no sense for the memory controller, since all of the
threads of a process share a single address space. Because of these problems, the abil-
ity to independently manipulate the cgroup memberships of the threads in a process
was removed in the initial cgroups v2 implementation, and subsequently restored in a
more limited form (see the discussion of "thread mode" below).

Mounting v1 controllers
The use of cgroups requires a kernel built with the CONFIG_CGROUP option. In
addition, each of the v1 controllers has an associated configuration option that must
be set in order to employ that controller.

In order to use a v1 controller, it must be mounted against a cgroup filesystem. The
usual place for such mounts is under a tmpfs(5) filesystem mounted at /sys/fs/cgroup.
Thus, one might mount the cpu controller as follows:

mount -t cgroup -o cpu none /sys/fs/cgroup/cpu

It is possible to comount multiple controllers against the same hierarchy. For exam-
ple, here the cpu and cpuacct controllers are comounted against a single hierarchy:

mount -t cgroup -o cpu,cpuacct none /sys/fs/cgroup/cpu,cpuacct

Comounting controllers has the effect that a process is in the same cgroup for all of
the comounted controllers. Separately mounting controllers allows a process to be in
cgroup /foo1 for one controller while being in /foo2/foo3 for another.

It is possible to comount all v1 controllers against the same hierarchy:

Linux man-pages 6.13 2024-12-04 3209

cgroups(7) Miscellaneous Information Manual cgroups(7)

mount -t cgroup -o all cgroup /sys/fs/cgroup

(One can achieve the same result by omitting -o all, since it is the default if no con-
trollers are explicitly specified.)

It is not possible to mount the same controller against multiple cgroup hierarchies.
For example, it is not possible to mount both the cpu and cpuacct controllers against
one hierarchy, and to mount the cpu controller alone against another hierarchy. It is
possible to create multiple mounts with exactly the same set of comounted controllers.
However, in this case all that results is multiple mount points providing a view of the
same hierarchy.

Note that on many systems, the v1 controllers are automatically mounted under
/sys/fs/cgroup; in particular, systemd(1) automatically creates such mounts.

Unmounting v1 controllers
A mounted cgroup filesystem can be unmounted using the umount(8) command, as in
the following example:

umount /sys/fs/cgroup/pids

But note well: a cgroup filesystem is unmounted only if it is not busy, that is, it has no
child cgroups. If this is not the case, then the only effect of the umount(8) is to make
the mount invisible. Thus, to ensure that the mount is really removed, one must first
remove all child cgroups, which in turn can be done only after all member processes
have been moved from those cgroups to the root cgroup.

Cgroups version 1 controllers
Each of the cgroups version 1 controllers is governed by a kernel configuration option
(listed below). Additionally, the availability of the cgroups feature is governed by the
CONFIG_CGROUPS kernel configuration option.

cpu (since Linux 2.6.24; CONFIG_CGROUP_SCHED)
Cgroups can be guaranteed a minimum number of "CPU shares" when a sys-
tem is busy. This does not limit a cgroup’s CPU usage if the CPUs are not
busy. For further information, see Documentation/scheduler/sched-de-
sign-CFS.rst (or Documentation/scheduler/sched-design-CFS.txt in Linux
5.2 and earlier).

In Linux 3.2, this controller was extended to provide CPU "bandwidth" con-
trol. If the kernel is configured with CONFIG_CFS_BANDWIDTH, then
within each scheduling period (defined via a file in the cgroup directory), it is
possible to define an upper limit on the CPU time allocated to the processes in
a cgroup. This upper limit applies even if there is no other competition for the
CPU. Further information can be found in the kernel source file Documenta-
tion/scheduler/sched-bwc.rst (or Documentation/scheduler/sched-bwc.txt in
Linux 5.2 and earlier).

cpuacct (since Linux 2.6.24; CONFIG_CGROUP_CPUACCT)
This provides accounting for CPU usage by groups of processes.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/cpuacct.rst (or Documentation/cgroup-v1/cpuacct.txt
in Linux 5.2 and earlier).

Linux man-pages 6.13 2024-12-04 3210

cgroups(7) Miscellaneous Information Manual cgroups(7)

cpuset (since Linux 2.6.24; CONFIG_CPUSETS)
This cgroup can be used to bind the processes in a cgroup to a specified set of
CPUs and NUMA nodes.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/cpusets.rst (or Documentation/cgroup-v1/cpusets.txt
in Linux 5.2 and earlier).

memory (since Linux 2.6.25; CONFIG_MEMCG)
The memory controller supports reporting and limiting of process memory,
kernel memory, and swap used by cgroups.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/memory.rst (or Documentation/cgroup-v1/memory.txt
in Linux 5.2 and earlier).

devices (since Linux 2.6.26; CONFIG_CGROUP_DEVICE)
This supports controlling which processes may create (mknod) devices as well
as open them for reading or writing. The policies may be specified as allow-
lists and deny-lists. Hierarchy is enforced, so new rules must not violate exist-
ing rules for the target or ancestor cgroups.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/devices.rst (or Documentation/cgroup-v1/devices.txt
in Linux 5.2 and earlier).

freezer (since Linux 2.6.28; CONFIG_CGROUP_FREEZER)
The freezer cgroup can suspend and restore (resume) all processes in a
cgroup. Freezing a cgroup /A also causes its children, for example, processes
in /A/B, to be frozen.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/freezer-subsystem.rst (or Documenta-
tion/cgroup-v1/freezer-subsystem.txt in Linux 5.2 and earlier).

net_cls (since Linux 2.6.29; CONFIG_CGROUP_NET_CLASSID)
This places a classid, specified for the cgroup, on network packets created by a
cgroup. These classids can then be used in firewall rules, as well as used to
shape traffic using tc(8)This applies only to packets leaving the cgroup, not to
traffic arriving at the cgroup.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/net_cls.rst (or Documentation/cgroup-v1/net_cls.txt in
Linux 5.2 and earlier).

blkio (since Linux 2.6.33; CONFIG_BLK_CGROUP)
The blkio cgroup controls and limits access to specified block devices by ap-
plying IO control in the form of throttling and upper limits against leaf nodes
and intermediate nodes in the storage hierarchy.

Two policies are available. The first is a proportional-weight time-based divi-
sion of disk implemented with CFQ. This is in effect for leaf nodes using
CFQ. The second is a throttling policy which specifies upper I/O rate limits
on a device.

Linux man-pages 6.13 2024-12-04 3211

cgroups(7) Miscellaneous Information Manual cgroups(7)

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/blkio-controller.rst (or Documenta-
tion/cgroup-v1/blkio-controller.txt in Linux 5.2 and earlier).

perf_event (since Linux 2.6.39; CONFIG_CGROUP_PERF)
This controller allows perf monitoring of the set of processes grouped in a
cgroup.

Further information can be found in the kernel source files

net_prio (since Linux 3.3; CONFIG_CGROUP_NET_PRIO)
This allows priorities to be specified, per network interface, for cgroups.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/net_prio.rst (or Documenta-
tion/cgroup-v1/net_prio.txt in Linux 5.2 and earlier).

hugetlb (since Linux 3.5; CONFIG_CGROUP_HUGETLB)
This supports limiting the use of huge pages by cgroups.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/hugetlb.rst (or Documentation/cgroup-v1/hugetlb.txt
in Linux 5.2 and earlier).

pids (since Linux 4.3; CONFIG_CGROUP_PIDS)
This controller permits limiting the number of process that may be created in a
cgroup (and its descendants).

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/pids.rst (or Documentation/cgroup-v1/pids.txt in
Linux 5.2 and earlier).

rdma (since Linux 4.11; CONFIG_CGROUP_RDMA)
The RDMA controller permits limiting the use of RDMA/IB-specific re-
sources per cgroup.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/rdma.rst (or Documentation/cgroup-v1/rdma.txt in
Linux 5.2 and earlier).

Creating cgroups and moving processes
A cgroup filesystem initially contains a single root cgroup, ’/’, which all processes be-
long to. A new cgroup is created by creating a directory in the cgroup filesystem:

mkdir /sys/fs/cgroup/cpu/cg1

This creates a new empty cgroup.

A process may be moved to this cgroup by writing its PID into the cgroup’s
cgroup.procs file:

echo $$ > /sys/fs/cgroup/cpu/cg1/cgroup.procs

Only one PID at a time should be written to this file.

Writing the value 0 to a cgroup.procs file causes the writing process to be moved to
the corresponding cgroup.

When writing a PID into the cgroup.procs, all threads in the process are moved into

Linux man-pages 6.13 2024-12-04 3212

cgroups(7) Miscellaneous Information Manual cgroups(7)

the new cgroup at once.

Within a hierarchy, a process can be a member of exactly one cgroup. Writing a
process’s PID to a cgroup.procs file automatically removes it from the cgroup of
which it was previously a member.

The cgroup.procs file can be read to obtain a list of the processes that are members of
a cgroup. The returned list of PIDs is not guaranteed to be in order. Nor is it guaran-
teed to be free of duplicates. (For example, a PID may be recycled while reading
from the list.)

In cgroups v1, an individual thread can be moved to another cgroup by writing its
thread ID (i.e., the kernel thread ID returned by clone(2) and gettid(2)) to the tasks file
in a cgroup directory. This file can be read to discover the set of threads that are
members of the cgroup.

Removing cgroups
To remove a cgroup, it must first have no child cgroups and contain no (nonzombie)
processes. So long as that is the case, one can simply remove the corresponding di-
rectory pathname. Note that files in a cgroup directory cannot and need not be re-
moved.

Cgroups v1 release notification
Two files can be used to determine whether the kernel provides notifications when a
cgroup becomes empty. A cgroup is considered to be empty when it contains no child
cgroups and no member processes.

A special file in the root directory of each cgroup hierarchy, release_agent, can be
used to register the pathname of a program that may be invoked when a cgroup in the
hierarchy becomes empty. The pathname of the newly empty cgroup (relative to the
cgroup mount point) is provided as the sole command-line argument when the
release_agent program is invoked. The release_agent program might remove the
cgroup directory, or perhaps repopulate it with a process.

The default value of the release_agent file is empty, meaning that no release agent is
invoked.

The content of the release_agent file can also be specified via a mount option when
the cgroup filesystem is mounted:

mount -o release_agent=pathname ...

Whether or not the release_agent program is invoked when a particular cgroup be-
comes empty is determined by the value in the notify_on_release file in the corre-
sponding cgroup directory. If this file contains the value 0, then the release_agent
program is not invoked. If it contains the value 1, the release_agent program is in-
voked. The default value for this file in the root cgroup is 0. At the time when a new
cgroup is created, the value in this file is inherited from the corresponding file in the
parent cgroup.

Cgroup v1 named hierarchies
In cgroups v1, it is possible to mount a cgroup hierarchy that has no attached con-
trollers:

mount -t cgroup -o none,name=somename none /some/mount/point

Linux man-pages 6.13 2024-12-04 3213

cgroups(7) Miscellaneous Information Manual cgroups(7)

Multiple instances of such hierarchies can be mounted; each hierarchy must have a
unique name. The only purpose of such hierarchies is to track processes. (See the
discussion of release notification below.) An example of this is the name=systemd
cgroup hierarchy that is used by systemd(1) to track services and user sessions.

Since Linux 5.0, the cgroup_no_v1 kernel boot option (described below) can be used
to disable cgroup v1 named hierarchies, by specifying cgroup_no_v1=named .

CGROUPS VERSION 2
In cgroups v2, all mounted controllers reside in a single unified hierarchy. While (dif-
ferent) controllers may be simultaneously mounted under the v1 and v2 hierarchies, it
is not possible to mount the same controller simultaneously under both the v1 and the
v2 hierarchies.

The new behaviors in cgroups v2 are summarized here, and in some cases elaborated
in the following subsections.

• Cgroups v2 provides a unified hierarchy against which all controllers are mounted.

• "Internal" processes are not permitted. With the exception of the root cgroup,
processes may reside only in leaf nodes (cgroups that do not themselves contain
child cgroups). The details are somewhat more subtle than this, and are described
below.

• Active cgroups must be specified via the files cgroup.controllers and cgroup.sub-
tree_control.

• The tasks file has been removed. In addition, the cgroup.clone_children file that
is employed by the cpuset controller has been removed.

• An improved mechanism for notification of empty cgroups is provided by the
cgroup.events file.

For more changes, see the Documentation/admin-guide/cgroup-v2.rst file in the ker-
nel source (or Documentation/cgroup-v2.txt in Linux 4.17 and earlier).

Some of the new behaviors listed above saw subsequent modification with the addi-
tion in Linux 4.14 of "thread mode" (described below).

Cgroups v2 unified hierarchy
In cgroups v1, the ability to mount different controllers against different hierarchies
was intended to allow great flexibility for application design. In practice, though, the
flexibility turned out to be less useful than expected, and in many cases added com-
plexity. Therefore, in cgroups v2, all available controllers are mounted against a sin-
gle hierarchy. The available controllers are automatically mounted, meaning that it is
not necessary (or possible) to specify the controllers when mounting the cgroup v2
filesystem using a command such as the following:

mount -t cgroup2 none /mnt/cgroup2

A cgroup v2 controller is available only if it is not currently in use via a mount against
a cgroup v1 hierarchy. Or, to put things another way, it is not possible to employ the
same controller against both a v1 hierarchy and the unified v2 hierarchy. This means
that it may be necessary first to unmount a v1 controller (as described above) before
that controller is available in v2. Since systemd(1) makes heavy use of some v1 con-
trollers by default, it can in some cases be simpler to boot the system with selected v1

Linux man-pages 6.13 2024-12-04 3214

cgroups(7) Miscellaneous Information Manual cgroups(7)

controllers disabled. To do this, specify the cgroup_no_v1=list option on the kernel
boot command line; list is a comma-separated list of the names of the controllers to
disable, or the word all to disable all v1 controllers. (This situation is correctly han-
dled by systemd(1), which falls back to operating without the specified controllers.)

Note that on many modern systems, systemd(1) automatically mounts the cgroup2
filesystem at /sys/fs/cgroup/unified during the boot process.

Cgroups v2 mount options
The following options (mount -o) can be specified when mounting the group v2
filesystem:

nsdelegate (since Linux 4.15)
Treat cgroup namespaces as delegation boundaries. For details, see below.

memory_localevents (since Linux 5.2)
The memory.events should show statistics only for the cgroup itself, and not
for any descendant cgroups. This was the behavior before Linux 5.2. Since
Linux 5.2, the default behavior is to include statistics for descendant cgroups
in memory.events, and this mount option can be used to revert to the legacy be-
havior. This option is system wide and can be set on mount or modified
through remount only from the initial mount namespace; it is silently ignored
in noninitial namespaces.

Cgroups v2 controllers
The following controllers, documented in the kernel source file Documentation/ad-
min-guide/cgroup-v2.rst (or Documentation/cgroup-v2.txt in Linux 4.17 and ear-
lier), are supported in cgroups version 2:

cpu (since Linux 4.15)
This is the successor to the version 1 cpu and cpuacct controllers.

cpuset (since Linux 5.0)
This is the successor of the version 1 cpuset controller.

freezer (since Linux 5.2)
This is the successor of the version 1 freezer controller.

hugetlb (since Linux 5.6)
This is the successor of the version 1 hugetlb controller.

io (since Linux 4.5)
This is the successor of the version 1 blkio controller.

memory (since Linux 4.5)
This is the successor of the version 1 memory controller.

perf_event (since Linux 4.11)
This is the same as the version 1 perf_event controller.

pids (since Linux 4.5)
This is the same as the version 1 pids controller.

rdma (since Linux 4.11)
This is the same as the version 1 rdma controller.

There is no direct equivalent of the net_cls and net_prio controllers from cgroups ver-
sion 1. Instead, support has been added to iptables(8) to allow eBPF filters that hook

Linux man-pages 6.13 2024-12-04 3215

cgroups(7) Miscellaneous Information Manual cgroups(7)

on cgroup v2 pathnames to make decisions about network traffic on a per-cgroup ba-
sis.

The v2 devices controller provides no interface files; instead, device control is gated
by attaching an eBPF (BPF_CGROUP_DEVICE) program to a v2 cgroup.

Cgroups v2 subtree control
Each cgroup in the v2 hierarchy contains the following two files:

cgroup.controllers
This read-only file exposes a list of the controllers that are available in this
cgroup. The contents of this file match the contents of the cgroup.sub-
tree_control file in the parent cgroup.

cgroup.subtree_control
This is a list of controllers that are active (enabled) in the cgroup. The set of
controllers in this file is a subset of the set in the cgroup.controllers of this
cgroup. The set of active controllers is modified by writing strings to this file
containing space-delimited controller names, each preceded by ’+’ (to enable a
controller) or ’-’ (to disable a controller), as in the following example:

echo '+pids -memory' > x/y/cgroup.subtree_control

An attempt to enable a controller that is not present in cgroup.controllers leads
to an ENOENT error when writing to the cgroup.subtree_control file.

Because the list of controllers in cgroup.subtree_control is a subset of those
cgroup.controllers, a controller that has been disabled in one cgroup in the hierarchy
can never be re-enabled in the subtree below that cgroup.

A cgroup’s cgroup.subtree_control file determines the set of controllers that are exer-
cised in the child cgroups. When a controller (e.g., pids) is present in the cgroup.sub-
tree_control file of a parent cgroup, then the corresponding controller-interface files
(e.g., pids.max) are automatically created in the children of that cgroup and can be
used to exert resource control in the child cgroups.

Cgroups v2 "no internal processes" rule
Cgroups v2 enforces a so-called "no internal processes" rule. Roughly speaking, this
rule means that, with the exception of the root cgroup, processes may reside only in
leaf nodes (cgroups that do not themselves contain child cgroups). This avoids the
need to decide how to partition resources between processes which are members of
cgroup A and processes in child cgroups of A.

For instance, if cgroup /cg1/cg2 exists, then a process may reside in /cg1/cg2, but not
in /cg1. This is to avoid an ambiguity in cgroups v1 with respect to the delegation of
resources between processes in /cg1 and its child cgroups. The recommended ap-
proach in cgroups v2 is to create a subdirectory called leaf for any nonleaf cgroup
which should contain processes, but no child cgroups. Thus, processes which previ-
ously would have gone into /cg1 would now go into /cg1/leaf . This has the advan-
tage of making explicit the relationship between processes in /cg1/leaf and /cg1’s
other children.

The "no internal processes" rule is in fact more subtle than stated above. More pre-
cisely, the rule is that a (nonroot) cgroup can’t both (1) have member processes, and
(2) distribute resources into child cgroups—that is, have a nonempty

Linux man-pages 6.13 2024-12-04 3216

cgroups(7) Miscellaneous Information Manual cgroups(7)

cgroup.subtree_control file. Thus, it is possible for a cgroup to have both member
processes and child cgroups, but before controllers can be enabled for that cgroup, the
member processes must be moved out of the cgroup (e.g., perhaps into the child
cgroups).

With the Linux 4.14 addition of "thread mode" (described below), the "no internal
processes" rule has been relaxed in some cases.

Cgroups v2 cgroup.events file
Each nonroot cgroup in the v2 hierarchy contains a read-only file, cgroup.events,
whose contents are key-value pairs (delimited by newline characters, with the key and
value separated by spaces) providing state information about the cgroup:

$ cat mygrp/cgroup.events
populated 1
frozen 0

The following keys may appear in this file:

populated
The value of this key is either 1, if this cgroup or any of its descendants has
member processes, or otherwise 0.

frozen (since Linux 5.2)
The value of this key is 1 if this cgroup is currently frozen, or 0 if it is not.

The cgroup.events file can be monitored, in order to receive notification when the
value of one of its keys changes. Such monitoring can be done using inotify(7), which
notifies changes as IN_MODIFY events, or poll(2), which notifies changes by return-
ing the POLLPRI and POLLERR bits in the revents field.

Cgroup v2 release notification
Cgroups v2 provides a new mechanism for obtaining notification when a cgroup be-
comes empty. The cgroups v1 release_agent and notify_on_release files are removed,
and replaced by the populated key in the cgroup.events file. This key either has the
value 0, meaning that the cgroup (and its descendants) contain no (nonzombie) mem-
ber processes, or 1, meaning that the cgroup (or one of its descendants) contains mem-
ber processes.

The cgroups v2 release-notification mechanism offers the following advantages over
the cgroups v1 release_agent mechanism:

• It allows for cheaper notification, since a single process can monitor multiple
cgroup.events files (using the techniques described earlier). By contrast, the
cgroups v1 mechanism requires the expense of creating a process for each notifi-
cation.

• Notification for different cgroup subhierarchies can be delegated to different
processes. By contrast, the cgroups v1 mechanism allows only one release agent
for an entire hierarchy.

Cgroups v2 cgroup.stat file
Each cgroup in the v2 hierarchy contains a read-only cgroup.stat file (first introduced
in Linux 4.14) that consists of lines containing key-value pairs. The following keys
currently appear in this file:

Linux man-pages 6.13 2024-12-04 3217

cgroups(7) Miscellaneous Information Manual cgroups(7)

nr_descendants
This is the total number of visible (i.e., living) descendant cgroups underneath
this cgroup.

nr_dying_descendants
This is the total number of dying descendant cgroups underneath this cgroup.
A cgroup enters the dying state after being deleted. It remains in that state for
an undefined period (which will depend on system load) while resources are
freed before the cgroup is destroyed. Note that the presence of some cgroups
in the dying state is normal, and is not indicative of any problem.

A process can’t be made a member of a dying cgroup, and a dying cgroup
can’t be brought back to life.

Limiting the number of descendant cgroups
Each cgroup in the v2 hierarchy contains the following files, which can be used to
view and set limits on the number of descendant cgroups under that cgroup:

cgroup.max.depth (since Linux 4.14)
This file defines a limit on the depth of nesting of descendant cgroups. A
value of 0 in this file means that no descendant cgroups can be created. An at-
tempt to create a descendant whose nesting level exceeds the limit fails
(mkdir(2) fails with the error EAGAIN).

Writing the string "max" to this file means that no limit is imposed. The de-
fault value in this file is "max".

cgroup.max.descendants (since Linux 4.14)
This file defines a limit on the number of live descendant cgroups that this
cgroup may have. An attempt to create more descendants than allowed by the
limit fails (mkdir(2) fails with the error EAGAIN).

Writing the string "max" to this file means that no limit is imposed. The de-
fault value in this file is "max".

CGROUPS DELEGATION: DELEGATING A HIERARCHY TO A
LESS PRIVILEGED USER
In the context of cgroups, delegation means passing management of some subtree of
the cgroup hierarchy to a nonprivileged user. Cgroups v1 provides support for delega-
tion based on file permissions in the cgroup hierarchy but with less strict containment
rules than v2 (as noted below). Cgroups v2 supports delegation with containment by
explicit design. The focus of the discussion in this section is on delegation in cgroups
v2, with some differences for cgroups v1 noted along the way.

Some terminology is required in order to describe delegation. A delegater is a privi-
leged user (i.e., root) who owns a parent cgroup. A delegatee is a nonprivileged user
who will be granted the permissions needed to manage some subhierarchy under that
parent cgroup, known as the delegated subtree.

To perform delegation, the delegater makes certain directories and files writable by
the delegatee, typically by changing the ownership of the objects to be the user ID of
the delegatee. Assuming that we want to delegate the hierarchy rooted at (say)
/dlgt_grp and that there are not yet any child cgroups under that cgroup, the owner-
ship of the following is changed to the user ID of the delegatee:

Linux man-pages 6.13 2024-12-04 3218

cgroups(7) Miscellaneous Information Manual cgroups(7)

/dlgt_grp
Changing the ownership of the root of the subtree means that any new cgroups
created under the subtree (and the files they contain) will also be owned by the
delegatee.

/dlgt_grp/cgroup.procs
Changing the ownership of this file means that the delegatee can move
processes into the root of the delegated subtree.

/dlgt_grp/cgroup.subtree_control (cgroups v2 only)
Changing the ownership of this file means that the delegatee can enable con-
trollers (that are present in /dlgt_grp/cgroup.controllers) in order to further re-
distribute resources at lower levels in the subtree. (As an alternative to chang-
ing the ownership of this file, the delegater might instead add selected con-
trollers to this file.)

/dlgt_grp/cgroup.threads (cgroups v2 only)
Changing the ownership of this file is necessary if a threaded subtree is being
delegated (see the description of "thread mode", below). This permits the del-
egatee to write thread IDs to the file. (The ownership of this file can also be
changed when delegating a domain subtree, but currently this serves no pur-
pose, since, as described below, it is not possible to move a thread between do-
main cgroups by writing its thread ID to the cgroup.threads file.)

In cgroups v1, the corresponding file that should instead be delegated is the
tasks file.

The delegater should not change the ownership of any of the controller interfaces files
(e.g., pids.max, memory.high) in dlgt_grp. Those files are used from the next level
above the delegated subtree in order to distribute resources into the subtree, and the
delegatee should not have permission to change the resources that are distributed into
the delegated subtree.

See also the discussion of the /sys/kernel/cgroup/delegate file in NOTES for informa-
tion about further delegatable files in cgroups v2.

After the aforementioned steps have been performed, the delegatee can create child
cgroups within the delegated subtree (the cgroup subdirectories and the files they con-
tain will be owned by the delegatee) and move processes between cgroups in the sub-
tree. If some controllers are present in dlgt_grp/cgroup.subtree_control, or the own-
ership of that file was passed to the delegatee, the delegatee can also control the fur-
ther redistribution of the corresponding resources into the delegated subtree.

Cgroups v2 delegation: nsdelegate and cgroup namespaces
Starting with Linux 4.13, there is a second way to perform cgroup delegation in the
cgroups v2 hierarchy. This is done by mounting or remounting the cgroup v2 filesys-
tem with the nsdelegate mount option. For example, if the cgroup v2 filesystem has
already been mounted, we can remount it with the nsdelegate option as follows:

mount -t cgroup2 -o remount,nsdelegate \
none /sys/fs/cgroup/unified

The effect of this mount option is to cause cgroup namespaces to automatically be-
come delegation boundaries. More specifically, the following restrictions apply for
processes inside the cgroup namespace:

Linux man-pages 6.13 2024-12-04 3219

cgroups(7) Miscellaneous Information Manual cgroups(7)

• Writes to controller interface files in the root directory of the namespace will fail
with the error EPERM. Processes inside the cgroup namespace can still write to
delegatable files in the root directory of the cgroup namespace such as
cgroup.procs and cgroup.subtree_control, and can create subhierarchy underneath
the root directory.

• Attempts to migrate processes across the namespace boundary are denied (with
the error ENOENT). Processes inside the cgroup namespace can still (subject to
the containment rules described below) move processes between cgroups within
the subhierarchy under the namespace root.

The ability to define cgroup namespaces as delegation boundaries makes cgroup
namespaces more useful. To understand why, suppose that we already have one
cgroup hierarchy that has been delegated to a nonprivileged user, cecilia, using the
older delegation technique described above. Suppose further that cecilia wanted to
further delegate a subhierarchy under the existing delegated hierarchy. (For example,
the delegated hierarchy might be associated with an unprivileged container run by ce-
cilia.) Even if a cgroup namespace was employed, because both hierarchies are
owned by the unprivileged user cecilia, the following illegitimate actions could be
performed:

• A process in the inferior hierarchy could change the resource controller settings in
the root directory of that hierarchy. (These resource controller settings are in-
tended to allow control to be exercised from the parent cgroup; a process inside
the child cgroup should not be allowed to modify them.)

• A process inside the inferior hierarchy could move processes into and out of the
inferior hierarchy if the cgroups in the superior hierarchy were somehow visible.

Employing the nsdelegate mount option prevents both of these possibilities.

The nsdelegate mount option only has an effect when performed in the initial mount
namespace; in other mount namespaces, the option is silently ignored.

Note: On some systems, systemd(1) automatically mounts the cgroup v2 filesystem.
In order to experiment with the nsdelegate operation, it may be useful to boot the ker-
nel with the following command-line options:

cgroup_no_v1=all systemd.legacy_systemd_cgroup_controller

These options cause the kernel to boot with the cgroups v1 controllers disabled
(meaning that the controllers are available in the v2 hierarchy), and tells systemd(1)
not to mount and use the cgroup v2 hierarchy, so that the v2 hierarchy can be manu-
ally mounted with the desired options after boot-up.

Cgroup delegation containment rules
Some delegation containment rules ensure that the delegatee can move processes be-
tween cgroups within the delegated subtree, but can’t move processes from outside the
delegated subtree into the subtree or vice versa. A nonprivileged process (i.e., the del-
egatee) can write the PID of a "target" process into a cgroup.procs file only if all of
the following are true:

• The writer has write permission on the cgroup.procs file in the destination cgroup.

Linux man-pages 6.13 2024-12-04 3220

cgroups(7) Miscellaneous Information Manual cgroups(7)

• The writer has write permission on the cgroup.procs file in the nearest common
ancestor of the source and destination cgroups. Note that in some cases, the near-
est common ancestor may be the source or destination cgroup itself. This require-
ment is not enforced for cgroups v1 hierarchies, with the consequence that con-
tainment in v1 is less strict than in v2. (For example, in cgroups v1 the user that
owns two distinct delegated subhierarchies can move a process between the hierar-
chies.)

• If the cgroup v2 filesystem was mounted with the nsdelegate option, the writer
must be able to see the source and destination cgroups from its cgroup namespace.

• In cgroups v1: the effective UID of the writer (i.e., the delegatee) matches the real
user ID or the saved set-user-ID of the target process. Before Linux 4.11, this re-
quirement also applied in cgroups v2 (This was a historical requirement inherited
from cgroups v1 that was later deemed unnecessary, since the other rules suffice
for containment in cgroups v2.)

Note: one consequence of these delegation containment rules is that the unprivileged
delegatee can’t place the first process into the delegated subtree; instead, the delegater
must place the first process (a process owned by the delegatee) into the delegated sub-
tree.

CGROUPS VERSION 2 THREAD MODE
Among the restrictions imposed by cgroups v2 that were not present in cgroups v1 are
the following:

• No thread-granularity control: all of the threads of a process must be in the same
cgroup.

• No internal processes: a cgroup can’t both have member processes and exercise
controllers on child cgroups.

Both of these restrictions were added because the lack of these restrictions had caused
problems in cgroups v1. In particular, the cgroups v1 ability to allow thread-level
granularity for cgroup membership made no sense for some controllers. (A notable
example was the memory controller: since threads share an address space, it made no
sense to split threads across different memory cgroups.)

Notwithstanding the initial design decision in cgroups v2, there were use cases for
certain controllers, notably the cpu controller, for which thread-level granularity of
control was meaningful and useful. To accommodate such use cases, Linux 4.14
added thread mode for cgroups v2.

Thread mode allows the following:

• The creation of threaded subtrees in which the threads of a process may be spread
across cgroups inside the tree. (A threaded subtree may contain multiple multi-
threaded processes.)

• The concept of threaded controllers, which can distribute resources across the
cgroups in a threaded subtree.

• A relaxation of the "no internal processes rule", so that, within a threaded subtree,
a cgroup can both contain member threads and exercise resource control over
child cgroups.

Linux man-pages 6.13 2024-12-04 3221

cgroups(7) Miscellaneous Information Manual cgroups(7)

With the addition of thread mode, each nonroot cgroup now contains a new file,
cgroup.type, that exposes, and in some circumstances can be used to change, the
"type" of a cgroup. This file contains one of the following type values:

domain
This is a normal v2 cgroup that provides process-granularity control. If a
process is a member of this cgroup, then all threads of the process are (by defi-
nition) in the same cgroup. This is the default cgroup type, and provides the
same behavior that was provided for cgroups in the initial cgroups v2 imple-
mentation.

threaded
This cgroup is a member of a threaded subtree. Threads can be added to this
cgroup, and controllers can be enabled for the cgroup.

domain threaded
This is a domain cgroup that serves as the root of a threaded subtree. This
cgroup type is also known as "threaded root".

domain invalid
This is a cgroup inside a threaded subtree that is in an "invalid" state.
Processes can’t be added to the cgroup, and controllers can’t be enabled for
the cgroup. The only thing that can be done with this cgroup (other than delet-
ing it) is to convert it to a threaded cgroup by writing the string "threaded" to
the cgroup.type file.

The rationale for the existence of this "interim" type during the creation of a
threaded subtree (rather than the kernel simply immediately converting all
cgroups under the threaded root to the type threaded) is to allow for possible
future extensions to the thread mode model

Threaded versus domain controllers
With the addition of threads mode, cgroups v2 now distinguishes two types of re-
source controllers:

• Threaded controllers: these controllers support thread-granularity for resource
control and can be enabled inside threaded subtrees, with the result that the corre-
sponding controller-interface files appear inside the cgroups in the threaded sub-
tree. As at Linux 4.19, the following controllers are threaded: cpu, perf_event,
and pids.

• Domain controllers: these controllers support only process granularity for re-
source control. From the perspective of a domain controller, all threads of a
process are always in the same cgroup. Domain controllers can’t be enabled in-
side a threaded subtree.

Creating a threaded subtree
There are two pathways that lead to the creation of a threaded subtree. The first path-
way proceeds as follows:

(1) We write the string "threaded" to the cgroup.type file of a cgroup y/z that cur-
rently has the type domain. This has the following effects:

Linux man-pages 6.13 2024-12-04 3222

cgroups(7) Miscellaneous Information Manual cgroups(7)

• The type of the cgroup y/z becomes threaded .

• The type of the parent cgroup, y, becomes domain threaded . The parent
cgroup is the root of a threaded subtree (also known as the "threaded root").

• All other cgroups under y that were not already of type threaded (because
they were inside already existing threaded subtrees under the new threaded
root) are converted to type domain invalid . Any subsequently created
cgroups under y will also have the type domain invalid .

(2) We write the string "threaded" to each of the domain invalid cgroups under y,
in order to convert them to the type threaded . As a consequence of this step, all
threads under the threaded root now have the type threaded and the threaded
subtree is now fully usable. The requirement to write "threaded" to each of
these cgroups is somewhat cumbersome, but allows for possible future exten-
sions to the thread-mode model.

The second way of creating a threaded subtree is as follows:

(1) In an existing cgroup, z, that currently has the type domain, we (1.1) enable one
or more threaded controllers and (1.2) make a process a member of z. (These
two steps can be done in either order.) This has the following consequences:

• The type of z becomes domain threaded .

• All of the descendant cgroups of z that were not already of type threaded
are converted to type domain invalid .

(2) As before, we make the threaded subtree usable by writing the string "threaded"
to each of the domain invalid cgroups under z, in order to convert them to the
type threaded .

One of the consequences of the above pathways to creating a threaded subtree is that
the threaded root cgroup can be a parent only to threaded (and domain invalid)
cgroups. The threaded root cgroup can’t be a parent of a domain cgroups, and a
threaded cgroup can’t have a sibling that is a domain cgroup.

Using a threaded subtree
Within a threaded subtree, threaded controllers can be enabled in each subgroup
whose type has been changed to threaded; upon doing so, the corresponding con-
troller interface files appear in the children of that cgroup.

A process can be moved into a threaded subtree by writing its PID to the cgroup.procs
file in one of the cgroups inside the tree. This has the effect of making all of the
threads in the process members of the corresponding cgroup and makes the process a
member of the threaded subtree. The threads of the process can then be spread across
the threaded subtree by writing their thread IDs (see gettid(2)) to the cgroup.threads
files in different cgroups inside the subtree. The threads of a process must all reside
in the same threaded subtree.

As with writing to cgroup.procs, some containment rules apply when writing to the
cgroup.threads file:

• The writer must have write permission on the cgroup.threads file in the destination
cgroup.

Linux man-pages 6.13 2024-12-04 3223

cgroups(7) Miscellaneous Information Manual cgroups(7)

• The writer must have write permission on the cgroup.procs file in the common an-
cestor of the source and destination cgroups. (In some cases, the common ances-
tor may be the source or destination cgroup itself.)

• The source and destination cgroups must be in the same threaded subtree. (Out-
side a threaded subtree, an attempt to move a thread by writing its thread ID to the
cgroup.threads file in a different domain cgroup fails with the error EOPNOT-
SUPP.)

The cgroup.threads file is present in each cgroup (including domain cgroups) and can
be read in order to discover the set of threads that is present in the cgroup. The set of
thread IDs obtained when reading this file is not guaranteed to be ordered or free of
duplicates.

The cgroup.procs file in the threaded root shows the PIDs of all processes that are
members of the threaded subtree. The cgroup.procs files in the other cgroups in the
subtree are not readable.

Domain controllers can’t be enabled in a threaded subtree; no controller-interface files
appear inside the cgroups underneath the threaded root. From the point of view of a
domain controller, threaded subtrees are invisible: a multithreaded process inside a
threaded subtree appears to a domain controller as a process that resides in the
threaded root cgroup.

Within a threaded subtree, the "no internal processes" rule does not apply: a cgroup
can both contain member processes (or thread) and exercise controllers on child
cgroups.

Rules for writing to cgroup.type and creating threaded subtrees
A number of rules apply when writing to the cgroup.type file:

• Only the string "threaded" may be written. In other words, the only explicit tran-
sition that is possible is to convert a domain cgroup to type threaded .

• The effect of writing "threaded" depends on the current value in cgroup.type, as
follows:

• domain or domain threaded: start the creation of a threaded subtree (whose
root is the parent of this cgroup) via the first of the pathways described above;

• domain invalid: convert this cgroup (which is inside a threaded subtree) to a
usable (i.e., threaded) state;

• threaded: no effect (a "no-op").

• We can’t write to a cgroup.type file if the parent’s type is domain invalid . In other
words, the cgroups of a threaded subtree must be converted to the threaded state
in a top-down manner.

There are also some constraints that must be satisfied in order to create a threaded
subtree rooted at the cgroup x:

• There can be no member processes in the descendant cgroups of x. (The cgroup x
can itself have member processes.)

• No domain controllers may be enabled in x’s cgroup.subtree_control file.

If any of the above constraints is violated, then an attempt to write "threaded" to a

Linux man-pages 6.13 2024-12-04 3224

cgroups(7) Miscellaneous Information Manual cgroups(7)

cgroup.type file fails with the error ENOTSUP.

The "domain threaded" cgroup type
According to the pathways described above, the type of a cgroup can change to do-
main threaded in either of the following cases:

• The string "threaded" is written to a child cgroup.

• A threaded controller is enabled inside the cgroup and a process is made a mem-
ber of the cgroup.

A domain threaded cgroup, x, can revert to the type domain if the above conditions
no longer hold true—that is, if all threaded child cgroups of x are removed and either
x no longer has threaded controllers enabled or no longer has member processes.

When a domain threaded cgroup x reverts to the type domain:

• All domain invalid descendants of x that are not in lower-level threaded subtrees
revert to the type domain.

• The root cgroups in any lower-level threaded subtrees revert to the type domain
threaded .

Exceptions for the root cgroup
The root cgroup of the v2 hierarchy is treated exceptionally: it can be the parent of
both domain and threaded cgroups. If the string "threaded" is written to the
cgroup.type file of one of the children of the root cgroup, then

• The type of that cgroup becomes threaded .

• The type of any descendants of that cgroup that are not part of lower-level
threaded subtrees changes to domain invalid .

Note that in this case, there is no cgroup whose type becomes domain threaded . (No-
tionally, the root cgroup can be considered as the threaded root for the cgroup whose
type was changed to threaded .)

The aim of this exceptional treatment for the root cgroup is to allow a threaded cgroup
that employs the cpu controller to be placed as high as possible in the hierarchy, so as
to minimize the (small) cost of traversing the cgroup hierarchy.

The cgroups v2 "cpu" controller and realtime threads
As at Linux 4.19, the cgroups v2 cpu controller does not support control of realtime
threads (specifically threads scheduled under any of the policies SCHED_FIFO,
SCHED_RR, described SCHED_DEADLINE; see sched(7)). Therefore, the cpu
controller can be enabled in the root cgroup only if all realtime threads are in the root
cgroup. (If there are realtime threads in nonroot cgroups, then a write(2) of the string
"+cpu" to the cgroup.subtree_control file fails with the error EINVAL.)

On some systems, systemd(1) places certain realtime threads in nonroot cgroups in
the v2 hierarchy. On such systems, these threads must first be moved to the root
cgroup before the cpu controller can be enabled.

ERRORS
The following errors can occur for mount(2):

Linux man-pages 6.13 2024-12-04 3225

cgroups(7) Miscellaneous Information Manual cgroups(7)

EBUSY
An attempt to mount a cgroup version 1 filesystem specified neither the
name= option (to mount a named hierarchy) nor a controller name (or all).

NOTES
A child process created via fork(2) inherits its parent’s cgroup memberships. A
process’s cgroup memberships are preserved across execve(2).

The clone3(2) CLONE_INTO_CGROUP flag can be used to create a child process
that begins its life in a different version 2 cgroup from the parent process.

/proc files
/proc/cgroups (since Linux 2.6.24)

This file contains information about the controllers that are compiled into the
kernel. An example of the contents of this file (reformatted for readability) is
the following:

#subsys_name hierarchy num_cgroups enabled
cpuset 4 1 1
cpu 8 1 1
cpuacct 8 1 1
blkio 6 1 1
memory 3 1 1
devices 10 84 1
freezer 7 1 1
net_cls 9 1 1
perf_event 5 1 1
net_prio 9 1 1
hugetlb 0 1 0
pids 2 1 1

The fields in this file are, from left to right:

[1] The name of the controller.

[2] The unique ID of the cgroup hierarchy on which this controller is
mounted. If multiple cgroups v1 controllers are bound to the same hier-
archy, then each will show the same hierarchy ID in this field. The
value in this field will be 0 if:

• the controller is not mounted on a cgroups v1 hierarchy;

• the controller is bound to the cgroups v2 single unified hierarchy; or

• the controller is disabled (see below).

[3] The number of control groups in this hierarchy using this controller.

[4] This field contains the value 1 if this controller is enabled, or 0 if it has
been disabled (via the cgroup_disable kernel command-line boot para-
meter).

/proc/ pid /cgroup (since Linux 2.6.24)
This file describes control groups to which the process with the corresponding
PID belongs. The displayed information differs for cgroups version 1 and ver-
sion 2 hierarchies.

Linux man-pages 6.13 2024-12-04 3226

cgroups(7) Miscellaneous Information Manual cgroups(7)

For each cgroup hierarchy of which the process is a member, there is one entry
containing three colon-separated fields:

hierarchy-ID:controller-list:cgroup-path

For example:

5:cpuacct,cpu,cpuset:/daemons

The colon-separated fields are, from left to right:

[1] For cgroups version 1 hierarchies, this field contains a unique hierarchy
ID number that can be matched to a hierarchy ID in /proc/cgroups. For
the cgroups version 2 hierarchy, this field contains the value 0.

[2] For cgroups version 1 hierarchies, this field contains a comma-separated
list of the controllers bound to the hierarchy. For the cgroups version 2
hierarchy, this field is empty.

[3] This field contains the pathname of the control group in the hierarchy to
which the process belongs. This pathname is relative to the mount point
of the hierarchy.

/sys/kernel/cgroup files
/sys/kernel/cgroup/delegate (since Linux 4.15)

This file exports a list of the cgroups v2 files (one per line) that are delegatable
(i.e., whose ownership should be changed to the user ID of the delegatee). In
the future, the set of delegatable files may change or grow, and this file pro-
vides a way for the kernel to inform user-space applications of which files
must be delegated. As at Linux 4.15, one sees the following when inspecting
this file:

$ cat /sys/kernel/cgroup/delegate
cgroup.procs
cgroup.subtree_control
cgroup.threads

/sys/kernel/cgroup/features (since Linux 4.15)
Over time, the set of cgroups v2 features that are provided by the kernel may
change or grow, or some features may not be enabled by default. This file pro-
vides a way for user-space applications to discover what features the running
kernel supports and has enabled. Features are listed one per line:

$ cat /sys/kernel/cgroup/features
nsdelegate
memory_localevents

The entries that can appear in this file are:

memory_localevents (since Linux 5.2)
The kernel supports the memory_localevents mount option.

nsdelegate (since Linux 4.15)
The kernel supports the nsdelegate mount option.

memory_recursiveprot (since Linux 5.7)
The kernel supports the memory_recursiveprot mount option.

Linux man-pages 6.13 2024-12-04 3227

cgroups(7) Miscellaneous Information Manual cgroups(7)

SEE ALSO
prlimit(1), systemd(1), systemd-cgls(1), systemd-cgtop(1), clone(2), ioprio_set(2),
perf_event_open(2), setrlimit(2), cgroup_namespaces(7), cpuset(7), namespaces(7),
sched(7), user_namespaces(7)

The kernel source file Documentation/admin-guide/cgroup-v2.rst.

Linux man-pages 6.13 2024-12-04 3228

charsets(7) Miscellaneous Information Manual charsets(7)

NAME
charsets - character set standards and internationalization

DESCRIPTION
This manual page gives an overview on different character set standards and how they
were used on Linux before Unicode became ubiquitous. Some of this information is
still helpful for people working with legacy systems and documents.

Standards discussed include such as ASCII, GB 2312, ISO/IEC 8859, JIS, KOI8-R,
KS, and Unicode.

The primary emphasis is on character sets that were actually used by locale character
sets, not the myriad others that could be found in data from other systems.

ASCII
ASCII (American Standard Code For Information Interchange) is the original 7-bit
character set, originally designed for American English. Also known as US-ASCII.
It is currently described by the ISO/IEC 646:1991 IRV (International Reference Ver-
sion) standard.

Various ASCII variants replacing the dollar sign with other currency symbols and re-
placing punctuation with non-English alphabetic characters to cover German, French,
Spanish, and others in 7 bits emerged. All are deprecated; glibc does not support lo-
cales whose character sets are not true supersets of ASCII.

As Unicode, when using UTF-8, is ASCII-compatible, plain ASCII text still renders
properly on modern UTF-8 using systems.

ISO/IEC 8859
ISO/IEC 8859 is a series of 15 8-bit character sets, all of which have ASCII in their
low (7-bit) half, invisible control characters in positions 128 to 159, and 96 fixed-
width graphics in positions 160–255.

Of these, the most important is ISO/IEC 8859-1 ("Latin Alphabet No. 1" / Latin-1). It
was widely adopted and supported by different systems, and is gradually being re-
placed with Unicode. The ISO/IEC 8859-1 characters are also the first 256 characters
of Unicode.

Console support for the other ISO/IEC 8859 character sets is available under Linux
through user-mode utilities (such as setfont(8)) that modify keyboard bindings and the
EGA graphics table and employ the "user mapping" font table in the console driver.

Here are brief descriptions of each character set:

ISO/IEC 8859-1 (Latin-1)
Latin-1 covers many European languages such as Albanian, Basque, Danish,
English, Faroese, Galician, Icelandic, Irish, Italian, Norwegian, Portuguese,
Spanish, and Swedish. The lack of the ligatures Dutch IJ/ij, French œ, and
„German“ quotation marks was considered tolerable.

ISO/IEC 8859-2 (Latin-2)
Latin-2 supports many Latin-written Central and East European languages
such as Bosnian, Croatian, Czech, German, Hungarian, Polish, Slovak, and
Slovene. Replacing Romanian ș/ț with ş/ţ was considered tolerable.

Linux man-pages 6.13 2024-06-15 3229

charsets(7) Miscellaneous Information Manual charsets(7)

ISO/IEC 8859-3 (Latin-3)
Latin-3 was designed to cover of Esperanto, Maltese, and Turkish, but
ISO/IEC 8859-9 later superseded it for Turkish.

ISO/IEC 8859-4 (Latin-4)
Latin-4 introduced letters for North European languages such as Estonian, Lat-
vian, and Lithuanian, but was superseded by ISO/IEC 8859-10 and
ISO/IEC 8859-13.

ISO/IEC 8859-5
Cyrillic letters supporting Bulgarian, Byelorussian, Macedonian, Russian, Ser-
bian, and (almost completely) Ukrainian. It was never widely used, see the
discussion of KOI8-R/KOI8-U below.

ISO/IEC 8859-6
Was created for Arabic. The ISO/IEC 8859-6 glyph table is a fixed font of
separate letter forms, but a proper display engine should combine these using
the proper initial, medial, and final forms.

ISO/IEC 8859-7
Was created for Modern Greek in 1987, updated in 2003.

ISO/IEC 8859-8
Supports Modern Hebrew without niqud (punctuation signs). Niqud and full-
fledged Biblical Hebrew were outside the scope of this character set.

ISO/IEC 8859-9 (Latin-5)
This is a variant of Latin-1 that replaces Icelandic letters with Turkish ones.

ISO/IEC 8859-10 (Latin-6)
Latin-6 added the Inuit (Greenlandic) and Sami (Lappish) letters that were
missing in Latin-4 to cover the entire Nordic area.

ISO/IEC 8859-11
Supports the Thai alphabet and is nearly identical to the TIS-620 standard.

ISO/IEC 8859-12
This character set does not exist.

ISO/IEC 8859-13 (Latin-7)
Supports the Baltic Rim languages; in particular, it includes Latvian characters
not found in Latin-4.

ISO/IEC 8859-14 (Latin-8)
This is the Celtic character set, covering Old Irish, Manx, Gaelic, Welsh, Cor-
nish, and Breton.

ISO/IEC 8859-15 (Latin-9)
Latin-9 is similar to the widely used Latin-1 but replaces some less common
symbols with the Euro sign and French and Finnish letters that were missing
in Latin-1.

ISO/IEC 8859-16 (Latin-10)
This character set covers many Southeast European languages, and most im-
portantly supports Romanian more completely than Latin-2.

Linux man-pages 6.13 2024-06-15 3230

charsets(7) Miscellaneous Information Manual charsets(7)

KOI8-R / KOI8-U
KOI8-R is a non-ISO character set popular in Russia before Unicode. The lower half
is ASCII; the upper is a Cyrillic character set somewhat better designed than
ISO/IEC 8859-5. KOI8-U, based on KOI8-R, has better support for Ukrainian. Nei-
ther of these sets are ISO/IEC 2022 compatible, unlike the ISO/IEC 8859 series.

Console support for KOI8-R is available under Linux through user-mode utilities that
modify keyboard bindings and the EGA graphics table, and employ the "user map-
ping" font table in the console driver.

GB 2312
GB 2312 is a mainland Chinese national standard character set used to express simpli-
fied Chinese. Just like JIS X 0208, characters are mapped into a 94x94 two-byte ma-
trix used to construct EUC-CN. EUC-CN is the most important encoding for Linux
and includes ASCII and GB 2312. Note that EUC-CN is often called as GB, GB
2312, or CN-GB.

Big5
Big5 was a popular character set in Taiwan to express traditional Chinese. (Big5 is
both a character set and an encoding.) It is a superset of ASCII. Non-ASCII charac-
ters are expressed in two bytes. Bytes 0xa1–0xfe are used as leading bytes for two-
byte characters. Big5 and its extension were widely used in Taiwan and Hong Kong.
It is not ISO/IEC 2022 compliant.

JIS X 0208
JIS X 0208 is a Japanese national standard character set. Though there are some more
Japanese national standard character sets (like JIS X 0201, JIS X 0212, and JIS X
0213), this is the most important one. Characters are mapped into a 94x94 two-byte
matrix, whose each byte is in the range 0x21–0x7e. Note that JIS X 0208 is a charac-
ter set, not an encoding. This means that JIS X 0208 itself is not used for expressing
text data. JIS X 0208 is used as a component to construct encodings such as EUC-JP,
Shift_JIS, and ISO/IEC 2022-JP. EUC-JP is the most important encoding for Linux
and includes ASCII and JIS X 0208. In EUC-JP, JIS X 0208 characters are expressed
in two bytes, each of which is the JIS X 0208 code plus 0x80.

KS X 1001
KS X 1001 is a Korean national standard character set. Just as JIS X 0208, characters
are mapped into a 94x94 two-byte matrix. KS X 1001 is used like JIS X 0208, as a
component to construct encodings such as EUC-KR, Johab, and ISO/IEC 2022-KR.
EUC-KR is the most important encoding for Linux and includes ASCII and KS X
1001. KS C 5601 is an older name for KS X 1001.

ISO/IEC 2022 and ISO/IEC 4873
The ISO/IEC 2022 and ISO/IEC 4873 standards describe a font-control model based
on VT100 practice. This model is (partially) supported by the Linux kernel and by
xterm(1)Several ISO/IEC 2022-based character encodings have been defined, espe-
cially for Japanese.

There are 4 graphic character sets, called G0, G1, G2, and G3, and one of them is the
current character set for codes with high bit zero (initially G0), and one of them is the
current character set for codes with high bit one (initially G1). Each graphic character
set has 94 or 96 characters, and is essentially a 7-bit character set. It uses codes either
040–0177 (041–0176) or 0240–0377 (0241–0376). G0 always has size 94 and uses

Linux man-pages 6.13 2024-06-15 3231

charsets(7) Miscellaneous Information Manual charsets(7)

codes 041–0176.

Switching between character sets is done using the shift functions ^N (SO or LS1),
^O (SI or LS0), ESC n (LS2), ESC o (LS3), ESC N (SS2), ESC O (SS3), ESC ~
(LS1R), ESC } (LS2R), ESC | (LS3R). The function LSn makes character set Gn the
current one for codes with high bit zero. The function LSnR makes character set Gn
the current one for codes with high bit one. The function SSn makes character set Gn
(n=2 or 3) the current one for the next character only (regardless of the value of its
high order bit).

A 94-character set is designated as Gn character set by an escape sequence ESC (xx
(for G0), ESC) xx (for G1), ESC * xx (for G2), ESC + xx (for G3), where xx is a
symbol or a pair of symbols found in the ISO/IEC 2375 International Register of
Coded Character Sets. For example, ESC (@ selects the ISO/IEC 646 character set
as G0, ESC (A selects the UK standard character set (with pound instead of number
sign), ESC (B selects ASCII (with dollar instead of currency sign), ESC (M selects a
character set for African languages, ESC (! A selects the Cuban character set, and so
on.

A 96-character set is designated as Gn character set by an escape sequence ESC - xx
(for G1), ESC . xx (for G2) or ESC / xx (for G3). For example, ESC - G selects the
Hebrew alphabet as G1.

A multibyte character set is designated as Gn character set by an escape sequence
ESC $ xx or ESC $ (xx (for G0), ESC $) xx (for G1), ESC $ * xx (for G2), ESC $ +
xx (for G3). For example, ESC $ (C selects the Korean character set for G0. The
Japanese character set selected by ESC $ B has a more recent version selected by ESC
& @ ESC $ B.

ISO/IEC 4873 stipulates a narrower use of character sets, where G0 is fixed (always
ASCII), so that G1, G2, and G3 can be invoked only for codes with the high order bit
set. In particular, ^N and ^O are not used anymore, ESC (xx can be used only with
xx=B, and ESC) xx, ESC * xx, ESC + xx are equivalent to ESC - xx, ESC . xx, ESC
/ xx, respectively.

TIS-620
TIS-620 is a Thai national standard character set and a superset of ASCII. In the
same fashion as the ISO/IEC 8859 series, Thai characters are mapped into 0xa1–0xfe.

Unicode
Unicode (ISO/IEC 10646) is a standard which aims to unambiguously represent every
character in every human language. Unicode’s structure permits 20.1 bits to encode
every character. Since most computers don’t include 20.1-bit integers, Unicode is
usually encoded as 32-bit integers internally and either a series of 16-bit integers
(UTF-16) (needing two 16-bit integers only when encoding certain rare characters) or
a series of 8-bit bytes (UTF-8).

Linux represents Unicode using the 8-bit Unicode Transformation Format (UTF-8).
UTF-8 is a variable length encoding of Unicode. It uses 1 byte to code 7 bits, 2 bytes
for 11 bits, 3 bytes for 16 bits, 4 bytes for 21 bits, 5 bytes for 26 bits, 6 bytes for 31
bits.

Let 0,1,x stand for a zero, one, or arbitrary bit. A byte 0xxxxxxx stands for the Uni-
code 00000000 0xxxxxxx which codes the same symbol as the ASCII 0xxxxxxx.

Linux man-pages 6.13 2024-06-15 3232

charsets(7) Miscellaneous Information Manual charsets(7)

Thus, ASCII goes unchanged into UTF-8, and people using only ASCII do not notice
any change: not in code, and not in file size.

A byte 110xxxxx is the start of a 2-byte code, and 110xxxxx 10yyyyyy is assembled
into 00000xxx xxyyyyyy. A byte 1110xxxx is the start of a 3-byte code, and
1110xxxx 10yyyyyy 10zzzzzz is assembled into xxxxyyyy yyzzzzzz. (When UTF-8
is used to code the 31-bit ISO/IEC 10646 then this progression continues up to 6-byte
codes.)

For most texts in ISO/IEC 8859 character sets, this means that the characters outside
of ASCII are now coded with two bytes. This tends to expand ordinary text files by
only one or two percent. For Russian or Greek texts, this expands ordinary text files
by 100%, since text in those languages is mostly outside of ASCII. For Japanese
users this means that the 16-bit codes now in common use will take three bytes.
While there are algorithmic conversions from some character sets (especially
ISO/IEC 8859-1) to Unicode, general conversion requires carrying around conversion
tables, which can be quite large for 16-bit codes.

Note that UTF-8 is self-synchronizing: 10xxxxxx is a tail, any other byte is the head
of a code. Note that the only way ASCII bytes occur in a UTF-8 stream, is as them-
selves. In particular, there are no embedded NULs ('\0') or '/'s that form part of some
larger code.

Since ASCII, and, in particular, NUL and '/', are unchanged, the kernel does not notice
that UTF-8 is being used. It does not care at all what the bytes it is handling stand for.

Rendering of Unicode data streams is typically handled through "subfont" tables
which map a subset of Unicode to glyphs. Internally the kernel uses Unicode to de-
scribe the subfont loaded in video RAM. This means that in the Linux console in
UTF-8 mode, one can use a character set with 512 different symbols. This is not
enough for Japanese, Chinese, and Korean, but it is enough for most other purposes.

SEE ALSO
iconv(1), ascii(7), iso_8859-1(7), unicode(7), utf-8(7)

Linux man-pages 6.13 2024-06-15 3233

complex(7) Miscellaneous Information Manual complex(7)

NAME
complex - basics of complex mathematics

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

DESCRIPTION
Complex numbers are numbers of the form z = a+b*i, where a and b are real numbers
and i = sqrt(-1), so that i*i = -1.

There are other ways to represent that number. The pair (a,b) of real numbers may be
viewed as a point in the plane, given by X- and Y-coordinates. This same point may
also be described by giving the pair of real numbers (r,phi), where r is the distance to
the origin O, and phi the angle between the X-axis and the line Oz. Now z =
r*exp(i*phi) = r*(cos(phi)+i*sin(phi)).

The basic operations are defined on z = a+b*i and w = c+d*i as:

addition: z+w = (a+c) + (b+d)*i

multiplication: z*w = (a*c - b*d) + (a*d + b*c)*i

division: z/w = ((a*c + b*d)/(c*c + d*d)) + ((b*c - a*d)/(c*c + d*d))*i

Nearly all math function have a complex counterpart but there are some complex-only
functions.

EXAMPLES
Your C-compiler can work with complex numbers if it supports the C99 standard.
The imaginary unit is represented by I.

/* check that exp(i * pi) == -1 */
#include <math.h> /* for atan */
#include <stdio.h>
#include <complex.h>

int
main(void)
{

double pi = 4 * atan(1.0);
double complex z = cexp(I * pi);
printf("%f + %f * i\n", creal(z), cimag(z));

}

SEE ALSO
cabs(3), cacos(3), cacosh(3), carg(3), casin(3), casinh(3), catan(3), catanh(3),
ccos(3), ccosh(3), cerf (3), cexp(3), cexp2(3), cimag(3), clog(3), clog10(3), clog2(3),
conj(3), cpow(3), cproj(3), creal(3), csin(3), csinh(3), csqrt(3), ctan(3), ctanh(3)

Linux man-pages 6.13 2024-07-23 3234

cp1251(7) Miscellaneous Information Manual cp1251(7)

NAME
cp1251 - CP 1251 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The Windows Code Pages include several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). CP 1251 encodes the characters used in Cyrillic
scripts.

CP 1251 characters
The following table displays the characters in CP 1251 that are printable and unlisted
in the ascii(7) manual page.
Oct Dec Hex Char Description

200 128 80 Ђ CYRILLIC CAPITAL LETTER DJE
201 129 81 Ѓ CYRILLIC CAPITAL LETTER GJE
202 130 82 ‚ SINGLE LOW-9 QUOTATION MARK
203 131 83 ѓ CYRILLIC SMALL LETTER GJE
204 132 84 „ DOUBLE LOW-9 QUOTATION MARK
205 133 85 … HORIZONTAL ELLIPSIS
206 134 86 † DAGGER
207 135 87 ‡ DOUBLE DAGGER
210 136 88 € EURO SIGN
211 137 89 ‰ PER MILLE SIGN
212 138 8A Љ CYRILLIC CAPITAL LETTER LJE
213 139 8B ‹ SINGLE LEFT-POINTING ANGLE QUOTATION MARK
214 140 8C Њ CYRILLIC CAPITAL LETTER NJE
215 141 8D Ќ CYRILLIC CAPITAL LETTER KJE
216 142 8E Ћ CYRILLIC CAPITAL LETTER TSHE
217 143 8F Џ CYRILLIC CAPITAL LETTER DZHE
220 144 90 ђ CYRILLIC SMALL LETTER DJE
221 145 91 ‘ LEFT SINGLE QUOTATION MARK
222 146 92 ’ RIGHT SINGLE QUOTATION MARK
223 147 93 “ LEFT DOUBLE QUOTATION MARK
224 148 94 ” RIGHT DOUBLE QUOTATION MARK
225 149 95 • BULLET
226 150 96 – EN DASH
227 151 97 — EM DASH
230 152 98 UNDEFINED
231 153 99 ™ TRADE MARK SIGN
232 154 9A љ CYRILLIC SMALL LETTER LJE
233 155 9B › SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
234 156 9C њ CYRILLIC SMALL LETTER NJE
235 157 9D ќ CYRILLIC SMALL LETTER KJE
236 158 9E ћ CYRILLIC SMALL LETTER TSHE
237 159 9F џ CYRILLIC SMALL LETTER DZHE
240 160 A0 NO-BREAK SPACE
241 161 A1 Ў CYRILLIC CAPITAL LETTER SHORT U
242 162 A2 ў CYRILLIC SMALL LETTER SHORT U
243 163 A3 Ј CYRILLIC CAPITAL LETTER JE
244 164 A4 ¤ CURRENCY SIGN

Linux man-pages 6.13 2024-05-02 3235

cp1251(7) Miscellaneous Information Manual cp1251(7)

245 165 A5 Ґ CYRILLIC CAPITAL LETTER GHE WITH UPTURN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 Ё CYRILLIC CAPITAL LETTER IO
251 169 A9 © COPYRIGHT SIGN
252 170 AA Є CYRILLIC CAPITAL LETTER UKRAINIAN IE
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF Ї CYRILLIC CAPITAL LETTER YI
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 І CYRILLIC CAPITAL LETTER

BYELORUSSIAN-UKRAINIAN I
263 179 B3 і CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
264 180 B4 ґ CYRILLIC SMALL LETTER GHE WITH UPTURN
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ё CYRILLIC SMALL LETTER IO
271 185 B9 № NUMERO SIGN
272 186 BA є CYRILLIC SMALL LETTER UKRAINIAN IE
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ј CYRILLIC SMALL LETTER JE
275 189 BD Ѕ CYRILLIC CAPITAL LETTER DZE
276 190 BE ѕ CYRILLIC SMALL LETTER DZE
277 191 BF ї CYRILLIC SMALL LETTER YI
300 192 C0 А CYRILLIC CAPITAL LETTER A
301 193 C1 Б CYRILLIC CAPITAL LETTER BE
302 194 C2 В CYRILLIC CAPITAL LETTER VE
303 195 C3 Г CYRILLIC CAPITAL LETTER GHE
304 196 C4 Д CYRILLIC CAPITAL LETTER DE
305 197 C5 Е CYRILLIC CAPITAL LETTER IE
306 198 C6 Ж CYRILLIC CAPITAL LETTER ZHE
307 199 C7 З CYRILLIC CAPITAL LETTER ZE
310 200 C8 И CYRILLIC CAPITAL LETTER I
311 201 C9 Й CYRILLIC CAPITAL LETTER SHORT I
312 202 CA К CYRILLIC CAPITAL LETTER KA
313 203 CB Л CYRILLIC CAPITAL LETTER EL
314 204 CC М CYRILLIC CAPITAL LETTER EM
315 205 CD Н CYRILLIC CAPITAL LETTER EN
316 206 CE О CYRILLIC CAPITAL LETTER O
317 207 CF П CYRILLIC CAPITAL LETTER PE
320 208 D0 Р CYRILLIC CAPITAL LETTER ER
321 209 D1 С CYRILLIC CAPITAL LETTER ES
322 210 D2 Т CYRILLIC CAPITAL LETTER TE
323 211 D3 У CYRILLIC CAPITAL LETTER U

Linux man-pages 6.13 2024-05-02 3236

cp1251(7) Miscellaneous Information Manual cp1251(7)

324 212 D4 Ф CYRILLIC CAPITAL LETTER EF
325 213 D5 Х CYRILLIC CAPITAL LETTER HA
326 214 D6 Ц CYRILLIC CAPITAL LETTER TSE
327 215 D7 Ч CYRILLIC CAPITAL LETTER CHE
330 216 D8 Ш CYRILLIC CAPITAL LETTER SHA
331 217 D9 Щ CYRILLIC CAPITAL LETTER SHCHA
332 218 DA Ъ CYRILLIC CAPITAL LETTER HARD SIGN
333 219 DB Ы CYRILLIC CAPITAL LETTER YERU
334 220 DC Ь CYRILLIC CAPITAL LETTER SOFT SIGN
335 221 DD - CYRILLIC CAPITAL LETTER E
336 222 DE Ю CYRILLIC CAPITAL LETTER YU
337 223 DF Я CYRILLIC CAPITAL LETTER YA
340 224 E0 а CYRILLIC SMALL LETTER A
341 225 E1 б CYRILLIC SMALL LETTER BE
342 226 E2 в CYRILLIC SMALL LETTER VE
343 227 E3 г CYRILLIC SMALL LETTER GHE
344 228 E4 д CYRILLIC SMALL LETTER DE
345 229 E5 е CYRILLIC SMALL LETTER IE
346 230 E6 ж CYRILLIC SMALL LETTER ZHE
347 231 E7 з CYRILLIC SMALL LETTER ZE
350 232 E8 и CYRILLIC SMALL LETTER I
351 233 E9 й CYRILLIC SMALL LETTER SHORT I
352 234 EA к CYRILLIC SMALL LETTER KA
353 235 EB л CYRILLIC SMALL LETTER EL
354 236 EC м CYRILLIC SMALL LETTER EM
355 237 ED н CYRILLIC SMALL LETTER EN
356 238 EE о CYRILLIC SMALL LETTER O
357 239 EF п CYRILLIC SMALL LETTER PE
360 240 F0 р CYRILLIC SMALL LETTER ER
361 241 F1 с CYRILLIC SMALL LETTER ES
362 242 F2 т CYRILLIC SMALL LETTER TE
363 243 F3 у CYRILLIC SMALL LETTER U
364 244 F4 ф CYRILLIC SMALL LETTER EF
365 245 F5 х CYRILLIC SMALL LETTER HA
366 246 F6 ц CYRILLIC SMALL LETTER TSE
367 247 F7 ч CYRILLIC SMALL LETTER CHE
370 248 F8 ш CYRILLIC SMALL LETTER SHA
371 249 F9 щ CYRILLIC SMALL LETTER SHCHA
372 250 FA ъ CYRILLIC SMALL LETTER HARD SIGN
373 251 FB ы CYRILLIC SMALL LETTER YERU
374 252 FC ь CYRILLIC SMALL LETTER SOFT SIGN
375 253 FD э CYRILLIC SMALL LETTER E
376 254 FE ю CYRILLIC SMALL LETTER YU
377 255 FF я CYRILLIC SMALL LETTER YA

NOTES
CP 1251 is also known as Windows Cyrillic.

Linux man-pages 6.13 2024-05-02 3237

cp1251(7) Miscellaneous Information Manual cp1251(7)

SEE ALSO
ascii(7), charsets(7), cp1252(7), iso_8859-5(7), koi8-r(7), koi8-u(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3238

cp1252(7) Miscellaneous Information Manual cp1252(7)

NAME
cp1252 - CP 1252 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The Windows Code Pages include several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). CP 1252 encodes the characters used in many
West European languages.

CP 1252 characters
The following table displays the characters in CP 1252 that are printable and unlisted
in the ascii(7) manual page.
Oct Dec Hex Char Description

200 128 80 € EURO SIGN
202 130 82 ‚ SINGLE LOW-9 QUOTATION MARK
203 131 83 ƒ LATIN SMALL LETTER F WITH HOOK
204 132 84 „ DOUBLE LOW-9 QUOTATION MARK
205 133 85 … HORIZONTAL ELLIPSIS
206 134 86 † DAGGER
207 135 87 ‡ DOUBLE DAGGER
210 136 88 ˆ MODIFIER LETTER CIRCUMFLEX ACCENT
211 137 89 ‰ PER MILLE SIGN
212 138 8A Š LATIN CAPITAL LETTER S WITH CARON
213 139 8B ‹ SINGLE LEFT-POINTING ANGLE QUOTATION MARK
214 140 8C Œ LATIN CAPITAL LIGATURE OE
216 142 8E Ž LATIN CAPITAL LETTER Z WITH CARON
221 145 91 ‘ LEFT SINGLE QUOTATION MARK
222 146 92 ’ RIGHT SINGLE QUOTATION MARK
223 147 93 “ LEFT DOUBLE QUOTATION MARK
224 148 94 ” RIGHT DOUBLE QUOTATION MARK
225 149 95 • BULLET
226 150 96 – EN DASH
227 151 97 — EM DASH
230 152 98 ˜ SMALL TILDE
231 153 99 ™ TRADE MARK SIGN
232 154 9A š LATIN SMALL LETTER S WITH CARON
233 155 9B › SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
234 156 9C œ LATIN SMALL LIGATURE OE
236 158 9E ž LATIN SMALL LETTER Z WITH CARON
237 159 9F Ÿ LATIN CAPITAL LETTER Y WITH DIAERESIS
240 160 A0 NO-BREAK SPACE
241 161 A1 ¡ INVERTED EXCLAMATION MARK
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 ¥ YEN SIGN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 © COPYRIGHT SIGN

Linux man-pages 6.13 2024-05-02 3239

cp1252(7) Miscellaneous Information Manual cp1252(7)

252 170 AA ª FEMININE ORDINAL INDICATOR
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 ´ ACUTE ACCENT
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ¸ CEDILLA
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA º MASCULINE ORDINAL INDICATOR
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ¼ VULGAR FRACTION ONE QUARTER
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE ¾ VULGAR FRACTION THREE QUARTERS
277 191 BF ¿ INVERTED QUESTION MARK
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ð LATIN CAPITAL LETTER ETH
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE

Linux man-pages 6.13 2024-05-02 3240

cp1252(7) Miscellaneous Information Manual cp1252(7)

332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Þ LATIN CAPITAL LETTER THORN
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ð LATIN SMALL LETTER ETH
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE þ LATIN SMALL LETTER THORN
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
CP 1252 is also known as Windows-1252.

SEE ALSO
ascii(7), charsets(7), cp1251(7), iso_8859-1(7), iso_8859-15(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3241

cpuset(7) Miscellaneous Information Manual cpuset(7)

NAME
cpuset - confine processes to processor and memory node subsets

DESCRIPTION
The cpuset filesystem is a pseudo-filesystem interface to the kernel cpuset mechanism,
which is used to control the processor placement and memory placement of processes.
It is commonly mounted at /dev/cpuset.

On systems with kernels compiled with built in support for cpusets, all processes are
attached to a cpuset, and cpusets are always present. If a system supports cpusets,
then it will have the entry nodev cpuset in the file /proc/filesystems. By mounting the
cpuset filesystem (see the EXAMPLES section below), the administrator can config-
ure the cpusets on a system to control the processor and memory placement of
processes on that system. By default, if the cpuset configuration on a system is not
modified or if the cpuset filesystem is not even mounted, then the cpuset mechanism,
though present, has no effect on the system’s behavior.

A cpuset defines a list of CPUs and memory nodes.

The CPUs of a system include all the logical processing units on which a process can
execute, including, if present, multiple processor cores within a package and Hyper-
Threads within a processor core. Memory nodes include all distinct banks of main
memory; small and SMP systems typically have just one memory node that contains
all the system’s main memory, while NUMA (non-uniform memory access) systems
have multiple memory nodes.

Cpusets are represented as directories in a hierarchical pseudo-filesystem, where the
top directory in the hierarchy (/dev/cpuset) represents the entire system (all online
CPUs and memory nodes) and any cpuset that is the child (descendant) of another
parent cpuset contains a subset of that parent’s CPUs and memory nodes. The direc-
tories and files representing cpusets have normal filesystem permissions.

Every process in the system belongs to exactly one cpuset. A process is confined to
run only on the CPUs in the cpuset it belongs to, and to allocate memory only on the
memory nodes in that cpuset. When a process fork(2)s, the child process is placed in
the same cpuset as its parent. With sufficient privilege, a process may be moved from
one cpuset to another and the allowed CPUs and memory nodes of an existing cpuset
may be changed.

When the system begins booting, a single cpuset is defined that includes all CPUs and
memory nodes on the system, and all processes are in that cpuset. During the boot
process, or later during normal system operation, other cpusets may be created, as
subdirectories of this top cpuset, under the control of the system administrator, and
processes may be placed in these other cpusets.

Cpusets are integrated with the sched_setaffinity(2) scheduling affinity mechanism
and the mbind(2) and set_mempolicy(2) memory-placement mechanisms in the kernel.
Neither of these mechanisms let a process make use of a CPU or memory node that is
not allowed by that process’s cpuset. If changes to a process’s cpuset placement con-
flict with these other mechanisms, then cpuset placement is enforced even if it means
overriding these other mechanisms. The kernel accomplishes this overriding by
silently restricting the CPUs and memory nodes requested by these other mechanisms
to those allowed by the invoking process’s cpuset. This can result in these other calls

Linux man-pages 6.13 2024-06-15 3242

cpuset(7) Miscellaneous Information Manual cpuset(7)

returning an error, if for example, such a call ends up requesting an empty set of CPUs
or memory nodes, after that request is restricted to the invoking process’s cpuset.

Typically, a cpuset is used to manage the CPU and memory-node confinement for a
set of cooperating processes such as a batch scheduler job, and these other mecha-
nisms are used to manage the placement of individual processes or memory regions
within that set or job.

FILES
Each directory below /dev/cpuset represents a cpuset and contains a fixed set of
pseudo-files describing the state of that cpuset.

New cpusets are created using the mkdir(2) system call or the mkdir(1) command.
The properties of a cpuset, such as its flags, allowed CPUs and memory nodes, and at-
tached processes, are queried and modified by reading or writing to the appropriate
file in that cpuset’s directory, as listed below.

The pseudo-files in each cpuset directory are automatically created when the cpuset is
created, as a result of the mkdir(2) invocation. It is not possible to directly add or re-
move these pseudo-files.

A cpuset directory that contains no child cpuset directories, and has no attached
processes, can be removed using rmdir(2) or rmdir(1)It is not necessary, or possible,
to remove the pseudo-files inside the directory before removing it.

The pseudo-files in each cpuset directory are small text files that may be read and
written using traditional shell utilities such as cat(1), and echo(1), or from a program
by using file I/O library functions or system calls, such as open(2), read(2), write(2),
and close(2).

The pseudo-files in a cpuset directory represent internal kernel state and do not have
any persistent image on disk. Each of these per-cpuset files is listed and described be-
low.

tasks List of the process IDs (PIDs) of the processes in that cpuset. The list is for-
matted as a series of ASCII decimal numbers, each followed by a newline. A
process may be added to a cpuset (automatically removing it from the cpuset
that previously contained it) by writing its PID to that cpuset’s tasks file (with
or without a trailing newline).

Warning: only one PID may be written to the tasks file at a time. If a string is
written that contains more than one PID, only the first one will be used.

notify_on_release
Flag (0 or 1). If set (1), that cpuset will receive special handling after it is re-
leased, that is, after all processes cease using it (i.e., terminate or are moved to
a different cpuset) and all child cpuset directories have been removed. See the
Notify On Release section, below.

cpuset.cpus
List of the physical numbers of the CPUs on which processes in that cpuset are
allowed to execute. See List Format below for a description of the format of
cpus.

The CPUs allowed to a cpuset may be changed by writing a new list to its cpus
file.

Linux man-pages 6.13 2024-06-15 3243

cpuset(7) Miscellaneous Information Manual cpuset(7)

cpuset.cpu_exclusive
Flag (0 or 1). If set (1), the cpuset has exclusive use of its CPUs (no sibling or
cousin cpuset may overlap CPUs). By default, this is off (0). Newly created
cpusets also initially default this to off (0).

Two cpusets are sibling cpusets if they share the same parent cpuset in the
/dev/cpuset hierarchy. Two cpusets are cousin cpusets if neither is the ances-
tor of the other. Regardless of the cpu_exclusive setting, if one cpuset is the
ancestor of another, and if both of these cpusets have nonempty cpus, then
their cpus must overlap, because the cpus of any cpuset are always a subset of
the cpus of its parent cpuset.

cpuset.mems
List of memory nodes on which processes in this cpuset are allowed to allo-
cate memory. See List Format below for a description of the format of mems.

cpuset.mem_exclusive
Flag (0 or 1). If set (1), the cpuset has exclusive use of its memory nodes (no
sibling or cousin may overlap). Also if set (1), the cpuset is a Hardwall
cpuset (see below). By default, this is off (0). Newly created cpusets also ini-
tially default this to off (0).

Regardless of the mem_exclusive setting, if one cpuset is the ancestor of an-
other, then their memory nodes must overlap, because the memory nodes of
any cpuset are always a subset of the memory nodes of that cpuset’s parent
cpuset.

cpuset.mem_hardwall (since Linux 2.6.26)
Flag (0 or 1). If set (1), the cpuset is a Hardwall cpuset (see below). Unlike
mem_exclusive, there is no constraint on whether cpusets marked
mem_hardwall may have overlapping memory nodes with sibling or cousin
cpusets. By default, this is off (0). Newly created cpusets also initially default
this to off (0).

cpuset.memory_migrate (since Linux 2.6.16)
Flag (0 or 1). If set (1), then memory migration is enabled. By default, this is
off (0). See the Memory Migration section, below.

cpuset.memory_pressure (since Linux 2.6.16)
A measure of how much memory pressure the processes in this cpuset are
causing. See the Memory Pressure section, below. Unless memory_pres-
sure_enabled is enabled, always has value zero (0). This file is read-only. See
the WARNINGS section, below.

cpuset.memory_pressure_enabled (since Linux 2.6.16)
Flag (0 or 1). This file is present only in the root cpuset, normally
/dev/cpuset. If set (1), the memory_pressure calculations are enabled for all
cpusets in the system. By default, this is off (0). See the Memory Pressure
section, below.

cpuset.memory_spread_page (since Linux 2.6.17)
Flag (0 or 1). If set (1), pages in the kernel page cache (filesystem buffers) are
uniformly spread across the cpuset. By default, this is off (0) in the top cpuset,
and inherited from the parent cpuset in newly created cpusets. See the

Linux man-pages 6.13 2024-06-15 3244

cpuset(7) Miscellaneous Information Manual cpuset(7)

Memory Spread section, below.

cpuset.memory_spread_slab (since Linux 2.6.17)
Flag (0 or 1). If set (1), the kernel slab caches for file I/O (directory and inode
structures) are uniformly spread across the cpuset. By default, is off (0) in the
top cpuset, and inherited from the parent cpuset in newly created cpusets. See
the Memory Spread section, below.

cpuset.sched_load_balance (since Linux 2.6.24)
Flag (0 or 1). If set (1, the default) the kernel will automatically load balance
processes in that cpuset over the allowed CPUs in that cpuset. If cleared (0)
the kernel will avoid load balancing processes in this cpuset, unless some
other cpuset with overlapping CPUs has its sched_load_balance flag set. See
Scheduler Load Balancing, below, for further details.

cpuset.sched_relax_domain_level (since Linux 2.6.26)
Integer, between -1 and a small positive value. The sched_relax_do-
main_level controls the width of the range of CPUs over which the kernel
scheduler performs immediate rebalancing of runnable tasks across CPUs. If
sched_load_balance is disabled, then the setting of sched_relax_domain_level
does not matter, as no such load balancing is done. If sched_load_balance is
enabled, then the higher the value of the sched_relax_domain_level, the wider
the range of CPUs over which immediate load balancing is attempted. See
Scheduler Relax Domain Level, below, for further details.

In addition to the above pseudo-files in each directory below /dev/cpuset, each
process has a pseudo-file, /proc/ pid /cpuset, that displays the path of the process’s
cpuset directory relative to the root of the cpuset filesystem.

Also the /proc/ pid /status file for each process has four added lines, displaying the
process’s Cpus_allowed (on which CPUs it may be scheduled) and Mems_allowed
(on which memory nodes it may obtain memory), in the two formats Mask Format
and List Format (see below) as shown in the following example:

Cpus_allowed: ffffffff,ffffffff,ffffffff,ffffffff
Cpus_allowed_list: 0-127
Mems_allowed: ffffffff,ffffffff
Mems_allowed_list: 0-63

The "allowed" fields were added in Linux 2.6.24; the "allowed_list" fields were added
in Linux 2.6.26.

EXTENDED CAPABILITIES
In addition to controlling which cpus and mems a process is allowed to use, cpusets
provide the following extended capabilities.

Exclusive cpusets
If a cpuset is marked cpu_exclusive or mem_exclusive, no other cpuset, other than a
direct ancestor or descendant, may share any of the same CPUs or memory nodes.

A cpuset that is mem_exclusive restricts kernel allocations for buffer cache pages and
other internal kernel data pages commonly shared by the kernel across multiple users.
All cpusets, whether mem_exclusive or not, restrict allocations of memory for user
space. This enables configuring a system so that several independent jobs can share
common kernel data, while isolating each job’s user allocation in its own cpuset. To

Linux man-pages 6.13 2024-06-15 3245

cpuset(7) Miscellaneous Information Manual cpuset(7)

do this, construct a large mem_exclusive cpuset to hold all the jobs, and construct
child, non-mem_exclusive cpusets for each individual job. Only a small amount of
kernel memory, such as requests from interrupt handlers, is allowed to be placed on
memory nodes outside even a mem_exclusive cpuset.

Hardwall
A cpuset that has mem_exclusive or mem_hardwall set is a hardwall cpuset. A hard-
wall cpuset restricts kernel allocations for page, buffer, and other data commonly
shared by the kernel across multiple users. All cpusets, whether hardwall or not, re-
strict allocations of memory for user space.

This enables configuring a system so that several independent jobs can share common
kernel data, such as filesystem pages, while isolating each job’s user allocation in its
own cpuset. To do this, construct a large hardwall cpuset to hold all the jobs, and
construct child cpusets for each individual job which are not hardwall cpusets.

Only a small amount of kernel memory, such as requests from interrupt handlers, is
allowed to be taken outside even a hardwall cpuset.

Notify on release
If the notify_on_release flag is enabled (1) in a cpuset, then whenever the last process
in the cpuset leaves (exits or attaches to some other cpuset) and the last child cpuset of
that cpuset is removed, the kernel will run the command /sbin/cpuset_release_agent,
supplying the pathname (relative to the mount point of the cpuset filesystem) of the
abandoned cpuset. This enables automatic removal of abandoned cpusets.

The default value of notify_on_release in the root cpuset at system boot is disabled
(0). The default value of other cpusets at creation is the current value of their parent’s
notify_on_release setting.

The command /sbin/cpuset_release_agent is invoked, with the name (/dev/cpuset rel-
ative path) of the to-be-released cpuset in argv[1].

The usual contents of the command /sbin/cpuset_release_agent is simply the shell
script:

#!/bin/sh
rmdir /dev/cpuset/$1

As with other flag values below, this flag can be changed by writing an ASCII number
0 or 1 (with optional trailing newline) into the file, to clear or set the flag, respectively.

Memory pressure
The memory_pressure of a cpuset provides a simple per-cpuset running average of the
rate that the processes in a cpuset are attempting to free up in-use memory on the
nodes of the cpuset to satisfy additional memory requests.

This enables batch managers that are monitoring jobs running in dedicated cpusets to
efficiently detect what level of memory pressure that job is causing.

This is useful both on tightly managed systems running a wide mix of submitted jobs,
which may choose to terminate or reprioritize jobs that are trying to use more memory
than allowed on the nodes assigned them, and with tightly coupled, long-running,
massively parallel scientific computing jobs that will dramatically fail to meet re-
quired performance goals if they start to use more memory than allowed to them.

Linux man-pages 6.13 2024-06-15 3246

cpuset(7) Miscellaneous Information Manual cpuset(7)

This mechanism provides a very economical way for the batch manager to monitor a
cpuset for signs of memory pressure. It’s up to the batch manager or other user code
to decide what action to take if it detects signs of memory pressure.

Unless memory pressure calculation is enabled by setting the pseudo-file
/dev/cpuset/cpuset.memory_pressure_enabled , it is not computed for any cpuset, and
reads from any memory_pressure always return zero, as represented by the ASCII
string "0\n". See the WARNINGS section, below.

A per-cpuset, running average is employed for the following reasons:

• Because this meter is per-cpuset rather than per-process or per virtual memory re-
gion, the system load imposed by a batch scheduler monitoring this metric is
sharply reduced on large systems, because a scan of the tasklist can be avoided on
each set of queries.

• Because this meter is a running average rather than an accumulating counter, a
batch scheduler can detect memory pressure with a single read, instead of having
to read and accumulate results for a period of time.

• Because this meter is per-cpuset rather than per-process, the batch scheduler can
obtain the key information—memory pressure in a cpuset—with a single read,
rather than having to query and accumulate results over all the (dynamically
changing) set of processes in the cpuset.

The memory_pressure of a cpuset is calculated using a per-cpuset simple digital filter
that is kept within the kernel. For each cpuset, this filter tracks the recent rate at
which processes attached to that cpuset enter the kernel direct reclaim code.

The kernel direct reclaim code is entered whenever a process has to satisfy a memory
page request by first finding some other page to repurpose, due to lack of any readily
available already free pages. Dirty filesystem pages are repurposed by first writing
them to disk. Unmodified filesystem buffer pages are repurposed by simply dropping
them, though if that page is needed again, it will have to be reread from disk.

The cpuset.memory_pressure file provides an integer number representing the recent
(half-life of 10 seconds) rate of entries to the direct reclaim code caused by any
process in the cpuset, in units of reclaims attempted per second, times 1000.

Memory spread
There are two Boolean flag files per cpuset that control where the kernel allocates
pages for the filesystem buffers and related in-kernel data structures. They are called
cpuset.memory_spread_page and cpuset.memory_spread_slab.

If the per-cpuset Boolean flag file cpuset.memory_spread_page is set, then the kernel
will spread the filesystem buffers (page cache) evenly over all the nodes that the fault-
ing process is allowed to use, instead of preferring to put those pages on the node
where the process is running.

If the per-cpuset Boolean flag file cpuset.memory_spread_slab is set, then the kernel
will spread some filesystem-related slab caches, such as those for inodes and directory
entries, evenly over all the nodes that the faulting process is allowed to use, instead of
preferring to put those pages on the node where the process is running.

The setting of these flags does not affect the data segment (see brk(2)) or stack seg-
ment pages of a process.

Linux man-pages 6.13 2024-06-15 3247

cpuset(7) Miscellaneous Information Manual cpuset(7)

By default, both kinds of memory spreading are off and the kernel prefers to allocate
memory pages on the node local to where the requesting process is running. If that
node is not allowed by the process’s NUMA memory policy or cpuset configuration or
if there are insufficient free memory pages on that node, then the kernel looks for the
nearest node that is allowed and has sufficient free memory.

When new cpusets are created, they inherit the memory spread settings of their parent.

Setting memory spreading causes allocations for the affected page or slab caches to
ignore the process’s NUMA memory policy and be spread instead. However, the ef-
fect of these changes in memory placement caused by cpuset-specified memory
spreading is hidden from the mbind(2) or set_mempolicy(2) calls. These two NUMA
memory policy calls always appear to behave as if no cpuset-specified memory
spreading is in effect, even if it is. If cpuset memory spreading is subsequently turned
off, the NUMA memory policy most recently specified by these calls is automatically
reapplied.

Both cpuset.memory_spread_page and cpuset.memory_spread_slab are Boolean flag
files. By default, they contain "0", meaning that the feature is off for that cpuset. If a
"1" is written to that file, that turns the named feature on.

Cpuset-specified memory spreading behaves similarly to what is known (in other con-
texts) as round-robin or interleave memory placement.

Cpuset-specified memory spreading can provide substantial performance improve-
ments for jobs that:

• need to place thread-local data on memory nodes close to the CPUs which are run-
ning the threads that most frequently access that data; but also

• need to access large filesystem data sets that must to be spread across the several
nodes in the job’s cpuset in order to fit.

Without this policy, the memory allocation across the nodes in the job’s cpuset can be-
come very uneven, especially for jobs that might have just a single thread initializing
or reading in the data set.

Memory migration
Normally, under the default setting (disabled) of cpuset.memory_migrate, once a page
is allocated (given a physical page of main memory), then that page stays on whatever
node it was allocated, so long as it remains allocated, even if the cpuset’s memory-
placement policy mems subsequently changes.

When memory migration is enabled in a cpuset, if the mems setting of the cpuset is
changed, then any memory page in use by any process in the cpuset that is on a mem-
ory node that is no longer allowed will be migrated to a memory node that is allowed.

Furthermore, if a process is moved into a cpuset with memory_migrate enabled, any
memory pages it uses that were on memory nodes allowed in its previous cpuset, but
which are not allowed in its new cpuset, will be migrated to a memory node allowed
in the new cpuset.

The relative placement of a migrated page within the cpuset is preserved during these
migration operations if possible. For example, if the page was on the second valid
node of the prior cpuset, then the page will be placed on the second valid node of the
new cpuset, if possible.

Linux man-pages 6.13 2024-06-15 3248

cpuset(7) Miscellaneous Information Manual cpuset(7)

Scheduler load balancing
The kernel scheduler automatically load balances processes. If one CPU is underuti-
lized, the kernel will look for processes on other more overloaded CPUs and move
those processes to the underutilized CPU, within the constraints of such placement
mechanisms as cpusets and sched_setaffinity(2).

The algorithmic cost of load balancing and its impact on key shared kernel data struc-
tures such as the process list increases more than linearly with the number of CPUs
being balanced. For example, it costs more to load balance across one large set of
CPUs than it does to balance across two smaller sets of CPUs, each of half the size of
the larger set. (The precise relationship between the number of CPUs being balanced
and the cost of load balancing depends on implementation details of the kernel
process scheduler, which is subject to change over time, as improved kernel scheduler
algorithms are implemented.)

The per-cpuset flag sched_load_balance provides a mechanism to suppress this auto-
matic scheduler load balancing in cases where it is not needed and suppressing it
would have worthwhile performance benefits.

By default, load balancing is done across all CPUs, except those marked isolated us-
ing the kernel boot time "isolcpus=" argument. (See Scheduler Relax Domain
Level, below, to change this default.)

This default load balancing across all CPUs is not well suited to the following two sit-
uations:

• On large systems, load balancing across many CPUs is expensive. If the system is
managed using cpusets to place independent jobs on separate sets of CPUs, full
load balancing is unnecessary.

• Systems supporting real-time on some CPUs need to minimize system overhead
on those CPUs, including avoiding process load balancing if that is not needed.

When the per-cpuset flag sched_load_balance is enabled (the default setting), it re-
quests load balancing across all the CPUs in that cpuset’s allowed CPUs, ensuring that
load balancing can move a process (not otherwise pinned, as by sched_setaffinity(2))
from any CPU in that cpuset to any other.

When the per-cpuset flag sched_load_balance is disabled, then the scheduler will
avoid load balancing across the CPUs in that cpuset, except in so far as is necessary
because some overlapping cpuset has sched_load_balance enabled.

So, for example, if the top cpuset has the flag sched_load_balance enabled, then the
scheduler will load balance across all CPUs, and the setting of the sched_load_bal-
ance flag in other cpusets has no effect, as we’re already fully load balancing.

Therefore in the above two situations, the flag sched_load_balance should be disabled
in the top cpuset, and only some of the smaller, child cpusets would have this flag en-
abled.

When doing this, you don’t usually want to leave any unpinned processes in the top
cpuset that might use nontrivial amounts of CPU, as such processes may be artificially
constrained to some subset of CPUs, depending on the particulars of this flag setting
in descendant cpusets. Even if such a process could use spare CPU cycles in some
other CPUs, the kernel scheduler might not consider the possibility of load balancing

Linux man-pages 6.13 2024-06-15 3249

cpuset(7) Miscellaneous Information Manual cpuset(7)

that process to the underused CPU.

Of course, processes pinned to a particular CPU can be left in a cpuset that disables
sched_load_balance as those processes aren’t going anywhere else anyway.

Scheduler relax domain level
The kernel scheduler performs immediate load balancing whenever a CPU becomes
free or another task becomes runnable. This load balancing works to ensure that as
many CPUs as possible are usefully employed running tasks. The kernel also per-
forms periodic load balancing off the software clock described in time(7). The setting
of sched_relax_domain_level applies only to immediate load balancing. Regardless
of the sched_relax_domain_level setting, periodic load balancing is attempted over all
CPUs (unless disabled by turning off sched_load_balance.) In any case, of course,
tasks will be scheduled to run only on CPUs allowed by their cpuset, as modified by
sched_setaffinity(2) system calls.

On small systems, such as those with just a few CPUs, immediate load balancing is
useful to improve system interactivity and to minimize wasteful idle CPU cycles. But
on large systems, attempting immediate load balancing across a large number of
CPUs can be more costly than it is worth, depending on the particular performance
characteristics of the job mix and the hardware.

The exact meaning of the small integer values of sched_relax_domain_level will de-
pend on internal implementation details of the kernel scheduler code and on the non-
uniform architecture of the hardware. Both of these will evolve over time and vary by
system architecture and kernel version.

As of this writing, when this capability was introduced in Linux 2.6.26, on certain
popular architectures, the positive values of sched_relax_domain_level have the fol-
lowing meanings.

1 Perform immediate load balancing across Hyper-Thread siblings on the same
core.

2 Perform immediate load balancing across other cores in the same package.
3 Perform immediate load balancing across other CPUs on the same node or

blade.
4 Perform immediate load balancing across over several (implementation detail)

nodes [On NUMA systems].
5 Perform immediate load balancing across over all CPUs in system [On NUMA

systems].

The sched_relax_domain_level value of zero (0) always means don’t perform imme-
diate load balancing, hence that load balancing is done only periodically, not immedi-
ately when a CPU becomes available or another task becomes runnable.

The sched_relax_domain_level value of minus one (-1) always means use the system
default value. The system default value can vary by architecture and kernel version.
This system default value can be changed by kernel boot-time "relax_domain_level="
argument.

In the case of multiple overlapping cpusets which have conflicting sched_relax_do-
main_level values, then the highest such value applies to all CPUs in any of the over-
lapping cpusets. In such cases, -1 is the lowest value, overridden by any other value,
and 0 is the next lowest value.

Linux man-pages 6.13 2024-06-15 3250

cpuset(7) Miscellaneous Information Manual cpuset(7)

FORMATS
The following formats are used to represent sets of CPUs and memory nodes.

Mask format
The Mask Format is used to represent CPU and memory-node bit masks in the
/proc/ pid /status file.

This format displays each 32-bit word in hexadecimal (using ASCII characters "0" -
"9" and "a" - "f"); words are filled with leading zeros, if required. For masks longer
than one word, a comma separator is used between words. Words are displayed in
big-endian order, which has the most significant bit first. The hex digits within a word
are also in big-endian order.

The number of 32-bit words displayed is the minimum number needed to display all
bits of the bit mask, based on the size of the bit mask.

Examples of the Mask Format:

00000001 # just bit 0 set
40000000,00000000,00000000 # just bit 94 set
00000001,00000000,00000000 # just bit 64 set
000000ff,00000000 # bits 32-39 set
00000000,000e3862 # 1,5,6,11-13,17-19 set

A mask with bits 0, 1, 2, 4, 8, 16, 32, and 64 set displays as:

00000001,00000001,00010117

The first "1" is for bit 64, the second for bit 32, the third for bit 16, the fourth for bit 8,
the fifth for bit 4, and the "7" is for bits 2, 1, and 0.

List format
The List Format for cpus and mems is a comma-separated list of CPU or memory-
node numbers and ranges of numbers, in ASCII decimal.

Examples of the List Format:

0-4,9 # bits 0, 1, 2, 3, 4, and 9 set
0-2,7,12-14 # bits 0, 1, 2, 7, 12, 13, and 14 set

RULES
The following rules apply to each cpuset:

• Its CPUs and memory nodes must be a (possibly equal) subset of its parent’s.

• It can be marked cpu_exclusive only if its parent is.

• It can be marked mem_exclusive only if its parent is.

• If it is cpu_exclusive, its CPUs may not overlap any sibling.

• If it is mem_exclusive, its memory nodes may not overlap any sibling.

PERMISSIONS
The permissions of a cpuset are determined by the permissions of the directories and
pseudo-files in the cpuset filesystem, normally mounted at /dev/cpuset.

For instance, a process can put itself in some other cpuset (than its current one) if it
can write the tasks file for that cpuset. This requires execute permission on the en-
compassing directories and write permission on the tasks file.

Linux man-pages 6.13 2024-06-15 3251

cpuset(7) Miscellaneous Information Manual cpuset(7)

An additional constraint is applied to requests to place some other process in a cpuset.
One process may not attach another to a cpuset unless it would have permission to
send that process a signal (see kill(2)).

A process may create a child cpuset if it can access and write the parent cpuset direc-
tory. It can modify the CPUs or memory nodes in a cpuset if it can access that
cpuset’s directory (execute permissions on the each of the parent directories) and
write the corresponding cpus or mems file.

There is one minor difference between the manner in which these permissions are
evaluated and the manner in which normal filesystem operation permissions are evalu-
ated. The kernel interprets relative pathnames starting at a process’s current working
directory. Even if one is operating on a cpuset file, relative pathnames are interpreted
relative to the process’s current working directory, not relative to the process’s current
cpuset. The only ways that cpuset paths relative to a process’s current cpuset can be
used are if either the process’s current working directory is its cpuset (it first did a cd
or chdir(2) to its cpuset directory beneath /dev/cpuset, which is a bit unusual) or if
some user code converts the relative cpuset path to a full filesystem path.

In theory, this means that user code should specify cpusets using absolute pathnames,
which requires knowing the mount point of the cpuset filesystem (usually, but not nec-
essarily, /dev/cpuset). In practice, all user level code that this author is aware of sim-
ply assumes that if the cpuset filesystem is mounted, then it is mounted at /dev/cpuset.
Furthermore, it is common practice for carefully written user code to verify the pres-
ence of the pseudo-file /dev/cpuset/tasks in order to verify that the cpuset pseudo-
filesystem is currently mounted.

WARNINGS
Enabling memory_pressure

By default, the per-cpuset file cpuset.memory_pressure always contains zero (0). Un-
less this feature is enabled by writing "1" to the pseudo-file /dev/cpuset/cpuset.mem-
ory_pressure_enabled , the kernel does not compute per-cpuset memory_pressure.

Using the echo command
When using the echo command at the shell prompt to change the values of cpuset
files, beware that the built-in echo command in some shells does not display an error
message if the write(2) system call fails. For example, if the command:

echo 19 > cpuset.mems

failed because memory node 19 was not allowed (perhaps the current system does not
have a memory node 19), then the echo command might not display any error. It is
better to use the /bin/echo external command to change cpuset file settings, as this
command will display write(2) errors, as in the example:

/bin/echo 19 > cpuset.mems
/bin/echo: write error: Invalid argument

EXCEPTIONS
Memory placement

Not all allocations of system memory are constrained by cpusets, for the following
reasons.

If hot-plug functionality is used to remove all the CPUs that are currently assigned to
a cpuset, then the kernel will automatically update the cpus_allowed of all processes

Linux man-pages 6.13 2024-06-15 3252

cpuset(7) Miscellaneous Information Manual cpuset(7)

attached to CPUs in that cpuset to allow all CPUs. When memory hot-plug function-
ality for removing memory nodes is available, a similar exception is expected to apply
there as well. In general, the kernel prefers to violate cpuset placement, rather than
starving a process that has had all its allowed CPUs or memory nodes taken offline.
User code should reconfigure cpusets to refer only to online CPUs and memory nodes
when using hot-plug to add or remove such resources.

A few kernel-critical, internal memory-allocation requests, marked GFP_ATOMIC,
must be satisfied immediately. The kernel may drop some request or malfunction if
one of these allocations fail. If such a request cannot be satisfied within the current
process’s cpuset, then we relax the cpuset, and look for memory anywhere we can find
it. It’s better to violate the cpuset than stress the kernel.

Allocations of memory requested by kernel drivers while processing an interrupt lack
any relevant process context, and are not confined by cpusets.

Renaming cpusets
You can use the rename(2) system call to rename cpusets. Only simple renaming is
supported; that is, changing the name of a cpuset directory is permitted, but moving a
directory into a different directory is not permitted.

ERRORS
The Linux kernel implementation of cpusets sets errno to specify the reason for a
failed system call affecting cpusets.

The possible errno settings and their meaning when set on a failed cpuset call are as
listed below.

E2BIG
Attempted a write(2) on a special cpuset file with a length larger than some
kernel-determined upper limit on the length of such writes.

EACCES
Attempted to write(2) the process ID (PID) of a process to a cpuset tasks file
when one lacks permission to move that process.

EACCES
Attempted to add, using write(2), a CPU or memory node to a cpuset, when
that CPU or memory node was not already in its parent.

EACCES
Attempted to set, using write(2), cpuset.cpu_exclusive or cpuset.mem_exclu-
sive on a cpuset whose parent lacks the same setting.

EACCES
Attempted to write(2) a cpuset.memory_pressure file.

EACCES
Attempted to create a file in a cpuset directory.

EBUSY
Attempted to remove, using rmdir(2), a cpuset with attached processes.

EBUSY
Attempted to remove, using rmdir(2), a cpuset with child cpusets.

Linux man-pages 6.13 2024-06-15 3253

cpuset(7) Miscellaneous Information Manual cpuset(7)

EBUSY
Attempted to remove a CPU or memory node from a cpuset that is also in a
child of that cpuset.

EEXIST
Attempted to create, using mkdir(2), a cpuset that already exists.

EEXIST
Attempted to rename(2) a cpuset to a name that already exists.

EFAULT
Attempted to read(2) or write(2) a cpuset file using a buffer that is outside the
writing processes accessible address space.

EINVAL
Attempted to change a cpuset, using write(2), in a way that would violate a
cpu_exclusive or mem_exclusive attribute of that cpuset or any of its siblings.

EINVAL
Attempted to write(2) an empty cpuset.cpus or cpuset.mems list to a cpuset
which has attached processes or child cpusets.

EINVAL
Attempted to write(2) a cpuset.cpus or cpuset.mems list which included a
range with the second number smaller than the first number.

EINVAL
Attempted to write(2) a cpuset.cpus or cpuset.mems list which included an in-
valid character in the string.

EINVAL
Attempted to write(2) a list to a cpuset.cpus file that did not include any online
CPUs.

EINVAL
Attempted to write(2) a list to a cpuset.mems file that did not include any on-
line memory nodes.

EINVAL
Attempted to write(2) a list to a cpuset.mems file that included a node that held
no memory.

EIO Attempted to write(2) a string to a cpuset tasks file that does not begin with an
ASCII decimal integer.

EIO Attempted to rename(2) a cpuset into a different directory.

ENAMETOOLONG
Attempted to read(2) a /proc/ pid /cpuset file for a cpuset path that is longer
than the kernel page size.

ENAMETOOLONG
Attempted to create, using mkdir(2), a cpuset whose base directory name is
longer than 255 characters.

ENAMETOOLONG
Attempted to create, using mkdir(2), a cpuset whose full pathname, including
the mount point (typically "/dev/cpuset/") prefix, is longer than 4095

Linux man-pages 6.13 2024-06-15 3254

cpuset(7) Miscellaneous Information Manual cpuset(7)

characters.

ENODEV
The cpuset was removed by another process at the same time as a write(2) was
attempted on one of the pseudo-files in the cpuset directory.

ENOENT
Attempted to create, using mkdir(2), a cpuset in a parent cpuset that doesn’t
exist.

ENOENT
Attempted to access(2) or open(2) a nonexistent file in a cpuset directory.

ENOMEM
Insufficient memory is available within the kernel; can occur on a variety of
system calls affecting cpusets, but only if the system is extremely short of
memory.

ENOSPC
Attempted to write(2) the process ID (PID) of a process to a cpuset tasks file
when the cpuset had an empty cpuset.cpus or empty cpuset.mems setting.

ENOSPC
Attempted to write(2) an empty cpuset.cpus or cpuset.mems setting to a cpuset
that has tasks attached.

ENOTDIR
Attempted to rename(2) a nonexistent cpuset.

EPERM
Attempted to remove a file from a cpuset directory.

ERANGE
Specified a cpuset.cpus or cpuset.mems list to the kernel which included a
number too large for the kernel to set in its bit masks.

ESRCH
Attempted to write(2) the process ID (PID) of a nonexistent process to a
cpuset tasks file.

VERSIONS
Cpusets appeared in Linux 2.6.12.

NOTES
Despite its name, the pid parameter is actually a thread ID, and each thread in a
threaded group can be attached to a different cpuset. The value returned from a call to
gettid(2) can be passed in the argument pid .

BUGS
cpuset.memory_pressure cpuset files can be opened for writing, creation, or trunca-
tion, but then the write(2) fails with errno set to EACCES, and the creation and trun-
cation options on open(2) have no effect.

EXAMPLES
The following examples demonstrate querying and setting cpuset options using shell
commands.

Linux man-pages 6.13 2024-06-15 3255

cpuset(7) Miscellaneous Information Manual cpuset(7)

Creating and attaching to a cpuset.
To create a new cpuset and attach the current command shell to it, the steps are:

(1) mkdir /dev/cpuset (if not already done)
(2) mount -t cpuset none /dev/cpuset (if not already done)
(3) Create the new cpuset using mkdir(1)
(4) Assign CPUs and memory nodes to the new cpuset.
(5) Attach the shell to the new cpuset.

For example, the following sequence of commands will set up a cpuset named "Char-
lie", containing just CPUs 2 and 3, and memory node 1, and then attach the current
shell to that cpuset.

$ mkdir /dev/cpuset
$ mount -t cpuset cpuset /dev/cpuset
$ cd /dev/cpuset
$ mkdir Charlie
$ cd Charlie
$ /bin/echo 2-3 > cpuset.cpus
$ /bin/echo 1 > cpuset.mems
$ /bin/echo $$ > tasks
The current shell is now running in cpuset Charlie
The next line should display '/Charlie'
$ cat /proc/self/cpuset

Migrating a job to different memory nodes.
To migrate a job (the set of processes attached to a cpuset) to different CPUs and
memory nodes in the system, including moving the memory pages currently allocated
to that job, perform the following steps.

(1) Let’s say we want to move the job in cpuset alpha (CPUs 4–7 and memory
nodes 2–3) to a new cpuset beta (CPUs 16–19 and memory nodes 8–9).

(2) First create the new cpuset beta.
(3) Then allow CPUs 16–19 and memory nodes 8–9 in beta.
(4) Then enable memory_migration in beta.
(5) Then move each process from alpha to beta.

The following sequence of commands accomplishes this.

$ cd /dev/cpuset
$ mkdir beta
$ cd beta
$ /bin/echo 16-19 > cpuset.cpus
$ /bin/echo 8-9 > cpuset.mems
$ /bin/echo 1 > cpuset.memory_migrate
$ while read i; do /bin/echo $i; done < ../alpha/tasks > tasks

The above should move any processes in alpha to beta, and any memory held by
these processes on memory nodes 2–3 to memory nodes 8–9, respectively.

Notice that the last step of the above sequence did not do:

$ cp ../alpha/tasks tasks

The while loop, rather than the seemingly easier use of the cp(1) command, was

Linux man-pages 6.13 2024-06-15 3256

cpuset(7) Miscellaneous Information Manual cpuset(7)

necessary because only one process PID at a time may be written to the tasks file.

The same effect (writing one PID at a time) as the while loop can be accomplished
more efficiently, in fewer keystrokes and in syntax that works on any shell, but alas
more obscurely, by using the -u (unbuffered) option of sed(1):

$ sed -un p < ../alpha/tasks > tasks

SEE ALSO
taskset(1), get_mempolicy(2), getcpu(2), mbind(2), sched_getaffinity(2),
sched_setaffinity(2), sched_setscheduler(2), set_mempolicy(2), CPU_SET(3), proc(5),
cgroups(7), numa(7), sched(7), migratepages(8), numactl(8)

Documentation/admin-guide/cgroup-v1/cpusets.rst in the Linux kernel source tree
(or Documentation/cgroup-v1/cpusets.txt before Linux 4.18, and Documenta-
tion/cpusets.txt before Linux 2.6.29)

Linux man-pages 6.13 2024-06-15 3257

credentials(7) Miscellaneous Information Manual credentials(7)

NAME
credentials - process identifiers

DESCRIPTION
Process ID (PID)

Each process has a unique nonnegative integer identifier that is assigned when the
process is created using fork(2). A process can obtain its PID using getpid(2). A PID
is represented using the type pid_t (defined in <sys/types.h>).

PIDs are used in a range of system calls to identify the process affected by the call, for
example: kill(2), ptrace(2), setpriority(2), setpgid(2), setsid(2), sigqueue(3), and wait-
pid(2).

A process’s PID is preserved across an execve(2).

Parent process ID (PPID)
A process’s parent process ID identifies the process that created this process using
fork(2). A process can obtain its PPID using getppid(2). A PPID is represented using
the type pid_t.

A process’s PPID is preserved across an execve(2).

Process group ID and session ID
Each process has a session ID and a process group ID, both represented using the type
pid_t. A process can obtain its session ID using getsid(2), and its process group ID
using getpgrp(2).

A child created by fork(2) inherits its parent’s session ID and process group ID. A
process’s session ID and process group ID are preserved across an execve(2).

Sessions and process groups are abstractions devised to support shell job control. A
process group (sometimes called a "job") is a collection of processes that share the
same process group ID; the shell creates a new process group for the process(es) used
to execute single command or pipeline (e.g., the two processes created to execute the
command "ls | wc" are placed in the same process group). A process’s group mem-
bership can be set using setpgid(2). The process whose process ID is the same as its
process group ID is the process group leader for that group.

A session is a collection of processes that share the same session ID. All of the mem-
bers of a process group also have the same session ID (i.e., all of the members of a
process group always belong to the same session, so that sessions and process groups
form a strict two-level hierarchy of processes.) A new session is created when a
process calls setsid(2), which creates a new session whose session ID is the same as
the PID of the process that called setsid(2). The creator of the session is called the
session leader.

All of the processes in a session share a controlling terminal. The controlling termi-
nal is established when the session leader first opens a terminal (unless the
O_NOCTTY flag is specified when calling open(2)). A terminal may be the control-
ling terminal of at most one session.

At most one of the jobs in a session may be the foreground job; other jobs in the ses-
sion are background jobs. Only the foreground job may read from the terminal; when
a process in the background attempts to read from the terminal, its process group is
sent a SIGTTIN signal, which suspends the job. If the TOSTOP flag has been set for

Linux man-pages 6.13 2024-05-02 3258

credentials(7) Miscellaneous Information Manual credentials(7)

the terminal (see termios(3)), then only the foreground job may write to the terminal;
writes from background jobs cause a SIGTTOU signal to be generated, which sus-
pends the job. When terminal keys that generate a signal (such as the interrupt key,
normally control-C) are pressed, the signal is sent to the processes in the foreground
job.

Various system calls and library functions may operate on all members of a process
group, including kill(2), killpg(3), getpriority(2), setpriority(2), ioprio_get(2), io-
prio_set(2), waitid(2), and waitpid(2). See also the discussion of the F_GETOWN,
F_GETOWN_EX, F_SETOWN, and F_SETOWN_EX operations in fcntl(2).

User and group identifiers
Each process has various associated user and group IDs. These IDs are integers, re-
spectively represented using the types uid_t and gid_t (defined in <sys/types.h>).

On Linux, each process has the following user and group identifiers:

• Real user ID and real group ID. These IDs determine who owns the process. A
process can obtain its real user (group) ID using getuid(2) (getgid(2)).

• Effective user ID and effective group ID. These IDs are used by the kernel to de-
termine the permissions that the process will have when accessing shared re-
sources such as message queues, shared memory, and semaphores. On most
UNIX systems, these IDs also determine the permissions when accessing files.
However, Linux uses the filesystem IDs described below for this task. A process
can obtain its effective user (group) ID using geteuid(2) (getegid(2)).

• Saved set-user-ID and saved set-group-ID. These IDs are used in set-user-ID and
set-group-ID programs to save a copy of the corresponding effective IDs that were
set when the program was executed (see execve(2)). A set-user-ID program can
assume and drop privileges by switching its effective user ID back and forth be-
tween the values in its real user ID and saved set-user-ID. This switching is done
via calls to seteuid(2), setreuid(2), or setresuid(2). A set-group-ID program per-
forms the analogous tasks using setegid(2), setregid(2), or setresgid(2). A process
can obtain its saved set-user-ID (set-group-ID) using getresuid(2) (getresgid(2)).

• Filesystem user ID and filesystem group ID (Linux-specific). These IDs, in con-
junction with the supplementary group IDs described below, are used to determine
permissions for accessing files; see path_resolution(7) for details. Whenever a
process’s effective user (group) ID is changed, the kernel also automatically
changes the filesystem user (group) ID to the same value. Consequently, the
filesystem IDs normally have the same values as the corresponding effective ID,
and the semantics for file-permission checks are thus the same on Linux as on
other UNIX systems. The filesystem IDs can be made to differ from the effective
IDs by calling setfsuid(2) and setfsgid(2).

• Supplementary group IDs. This is a set of additional group IDs that are used for
permission checks when accessing files and other shared resources. Before Linux
2.6.4, a process can be a member of up to 32 supplementary groups; since Linux
2.6.4, a process can be a member of up to 65536 supplementary groups. The call
sysconf(_SC_NGROUPS_MAX) can be used to determine the number of supple-
mentary groups of which a process may be a member. A process can obtain its set
of supplementary group IDs using getgroups(2).

Linux man-pages 6.13 2024-05-02 3259

credentials(7) Miscellaneous Information Manual credentials(7)

A child process created by fork(2) inherits copies of its parent’s user and groups IDs.
During an execve(2), a process’s real user and group ID and supplementary group IDs
are preserved; the effective and saved set IDs may be changed, as described in ex-
ecve(2).

Aside from the purposes noted above, a process’s user IDs are also employed in a
number of other contexts:

• when determining the permissions for sending signals (see kill(2));

• when determining the permissions for setting process-scheduling parameters (nice
value, real time scheduling policy and priority, CPU affinity, I/O priority) using
setpriority(2), sched_setaffinity(2), sched_setscheduler(2), sched_setparam(2),
sched_setattr(2), and ioprio_set(2);

• when checking resource limits (see getrlimit(2));

• when checking the limit on the number of inotify instances that the process may
create (see inotify(7)).

Modifying process user and group IDs
Subject to rules described in the relevant manual pages, a process can use the follow-
ing APIs to modify its user and group IDs:

setuid(2) (setgid(2))
Modify the process’s real (and possibly effective and saved-set) user (group)
IDs.

seteuid(2) (setegid(2))
Modify the process’s effective user (group) ID.

setfsuid(2) (setfsgid(2))
Modify the process’s filesystem user (group) ID.

setreuid(2) (setregid(2))
Modify the process’s real and effective (and possibly saved-set) user (group)
IDs.

setresuid(2) (setresgid(2))
Modify the process’s real, effective, and saved-set user (group) IDs.

setgroups(2)
Modify the process’s supplementary group list.

Any changes to a process’s effective user (group) ID are automatically carried over to
the process’s filesystem user (group) ID. Changes to a process’s effective user or
group ID can also affect the process "dumpable" attribute, as described in prctl(2).

Changes to process user and group IDs can affect the capabilities of the process, as
described in capabilities(7).

STANDARDS
Process IDs, parent process IDs, process group IDs, and session IDs are specified in
POSIX.1. The real, effective, and saved set user and groups IDs, and the supplemen-
tary group IDs, are specified in POSIX.1.

The filesystem user and group IDs are a Linux extension.

Linux man-pages 6.13 2024-05-02 3260

credentials(7) Miscellaneous Information Manual credentials(7)

NOTES
Various fields in the /proc/ pid /status file show the process credentials described
above. See proc(5) for further information.

The POSIX threads specification requires that credentials are shared by all of the
threads in a process. However, at the kernel level, Linux maintains separate user and
group credentials for each thread. The NPTL threading implementation does some
work to ensure that any change to user or group credentials (e.g., calls to setuid(2), se-
tresuid(2)) is carried through to all of the POSIX threads in a process. See nptl(7) for
further details.

SEE ALSO
bash(1), csh(1), groups(1), id(1), newgrp(1), ps(1), runuser(1), setpriv(1), sg(1),
su(1), access(2), execve(2), faccessat(2), fork(2), getgroups(2), getpgrp(2), getpid(2),
getppid(2), getsid(2), kill(2), setegid(2), seteuid(2), setfsgid(2), setfsuid(2), setgid(2),
setgroups(2), setpgid(2), setresgid(2), setresuid(2), setsid(2), setuid(2), waitpid(2), eu-
idaccess(3), initgroups(3), killpg(3), tcgetpgrp(3), tcgetsid(3), tcsetpgrp(3), group(5),
passwd(5), shadow(5), capabilities(7), namespaces(7), path_resolution(7), pid_name-
spaces(7), pthreads(7), signal(7), system_data_types(7), unix(7), user_namespaces(7),
sudo(8)

Linux man-pages 6.13 2024-05-02 3261

ddp(7) Miscellaneous Information Manual ddp(7)

NAME
ddp - Linux AppleTalk protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netatalk/at.h>

ddp_socket = socket(AF_APPLETALK, SOCK_DGRAM, 0);
raw_socket = socket(AF_APPLETALK, SOCK_RAW, protocol);

DESCRIPTION
Linux implements the AppleTalk protocols described in Inside AppleTalk. Only the
DDP layer and AARP are present in the kernel. They are designed to be used via the
netatalk protocol libraries. This page documents the interface for those who wish or
need to use the DDP layer directly.

The communication between AppleTalk and the user program works using a BSD-
compatible socket interface. For more information on sockets, see socket(7).

An AppleTalk socket is created by calling the socket(2) function with a AF_AP-
PLETALK socket family argument. Valid socket types are SOCK_DGRAM to open
a ddp socket or SOCK_RAW to open a raw socket. protocol is the AppleTalk proto-
col to be received or sent. For SOCK_RAW you must specify ATPROTO_DDP.

Raw sockets may be opened only by a process with effective user ID 0 or when the
process has the CAP_NET_RAW capability.

Address format
An AppleTalk socket address is defined as a combination of a network number, a node
number, and a port number.

struct at_addr {
unsigned short s_net;
unsigned char s_node;

};

struct sockaddr_atalk {
sa_family_t sat_family; /* address family */
unsigned char sat_port; /* port */
struct at_addr sat_addr; /* net/node */

};

sat_family is always set to AF_APPLETALK. sat_port contains the port. The port
numbers below 129 are known as reserved ports. Only processes with the effective
user ID 0 or the CAP_NET_BIND_SERVICE capability may bind(2) to these sock-
ets. sat_addr is the host address. The net member of struct at_addr contains the host
network in network byte order. The value of AT_ANYNET is a wildcard and also
implies “this network.” The node member of struct at_addr contains the host node
number. The value of AT_ANYNODE is a wildcard and also implies “this node.”
The value of ATADDR_BCAST is a link local broadcast address.

Socket options
No protocol-specific socket options are supported.

Linux man-pages 6.13 2024-06-28 3262

ddp(7) Miscellaneous Information Manual ddp(7)

/proc interfaces
IP supports a set of /proc interfaces to configure some global AppleTalk parameters.
The parameters can be accessed by reading or writing files in the directory
/proc/sys/net/atalk/ .

aarp-expiry-time
The time interval (in seconds) before an AARP cache entry expires.

aarp-resolve-time
The time interval (in seconds) before an AARP cache entry is resolved.

aarp-retransmit-limit
The number of retransmissions of an AARP query before the node is declared
dead.

aarp-tick-time
The timer rate (in seconds) for the timer driving AARP.

The default values match the specification and should never need to be changed.

Ioctls
All ioctls described in socket(7) apply to DDP.

ERRORS
EACCES

The user tried to execute an operation without the necessary permissions.
These include sending to a broadcast address without having the broadcast flag
set, and trying to bind to a reserved port without effective user ID 0 or
CAP_NET_BIND_SERVICE.

EADDRINUSE
Tried to bind to an address already in use.

EADDRNOTAVAIL
A nonexistent interface was requested or the requested source address was not
local.

EAGAIN
Operation on a nonblocking socket would block.

EALREADY
A connection operation on a nonblocking socket is already in progress.

ECONNABORTED
A connection was closed during an accept(2).

EHOSTUNREACH
No routing table entry matches the destination address.

EINVAL
Invalid argument passed.

EISCONN
connect(2) was called on an already connected socket.

EMSGSIZE
Datagram is bigger than the DDP MTU.

Linux man-pages 6.13 2024-06-28 3263

ddp(7) Miscellaneous Information Manual ddp(7)

ENODEV
Network device not available or not capable of sending IP.

ENOENT
SIOCGSTAMP was called on a socket where no packet arrived.

ENOMEM
ENOBUFS

Not enough memory available.

ENOPKG
A kernel subsystem was not configured.

ENOPROTOOPT
EOPNOTSUPP

Invalid socket option passed.

ENOTCONN
The operation is defined only on a connected socket, but the socket wasn’t
connected.

EPERM
User doesn’t have permission to set high priority, make a configuration
change, or send signals to the requested process or group.

EPIPE
The connection was unexpectedly closed or shut down by the other end.

ESOCKTNOSUPPORT
The socket was unconfigured, or an unknown socket type was requested.

VERSIONS
AppleTalk is supported by Linux 2.0 or higher. The /proc interfaces exist since Linux
2.2.

NOTES
Be very careful with the SO_BROADCAST option; it is not privileged in Linux. It is
easy to overload the network with careless sending to broadcast addresses.

Compatibility
The basic AppleTalk socket interface is compatible with netatalk on BSD-derived
systems. Many BSD systems fail to check SO_BROADCAST when sending broad-
cast frames; this can lead to compatibility problems.

The raw socket mode is unique to Linux and exists to support the alternative CAP
package and AppleTalk monitoring tools more easily.

BUGS
There are too many inconsistent error values.

The ioctls used to configure routing tables, devices, AARP tables, and other devices
are not yet described.

SEE ALSO
recvmsg(2), sendmsg(2), capabilities(7), socket(7)

Linux man-pages 6.13 2024-06-28 3264

environ(7) Miscellaneous Information Manual environ(7)

NAME
environ - user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
The variable environ points to an array of pointers to strings called the "environment".
The last pointer in this array has the value NULL. This array of strings is made avail-
able to the process by the execve(2) call when a new program is started. When a child
process is created via fork(2), it inherits a copy of its parent’s environment.

By convention, the strings in environ have the form "name=value". The name is case-
sensitive and may not contain the character "=". The value can be anything that can
be represented as a string. The name and the value may not contain an embedded null
byte ('\0'), since this is assumed to terminate the string.

Environment variables may be placed in the shell’s environment by the export com-
mand in sh(1), or by the setenv command if you use csh(1)

The initial environment of the shell is populated in various ways, such as definitions
from /etc/environment that are processed by pam_env(8) for all users at login time
(on systems that employ pam(8)). In addition, various shell initialization scripts, such
as the system-wide /etc/profile script and per-user initializations script may include
commands that add variables to the shell’s environment; see the manual page of your
preferred shell for details.

Bourne-style shells support the syntax

NAME=value command

to create an environment variable definition only in the scope of the process that exe-
cutes command . Multiple variable definitions, separated by white space, may precede
command .

Arguments may also be placed in the environment at the point of an exec(3). A C pro-
gram can manipulate its environment using the functions getenv(3), putenv(3),
setenv(3), and unsetenv(3).

What follows is a list of environment variables typically seen on a system. This list is
incomplete and includes only common variables seen by average users in their day-to-
day routine. Environment variables specific to a particular program or library func-
tion are documented in the ENVIRONMENT section of the appropriate manual page.

USER
The name of the logged-in user (used by some BSD-derived programs). Set at
login time, see section NOTES below.

LOGNAME
The name of the logged-in user (used by some System-V derived programs).
Set at login time, see section NOTES below.

HOME
A user’s login directory. Set at login time, see section NOTES below.

Linux man-pages 6.13 2024-06-15 3265

environ(7) Miscellaneous Information Manual environ(7)

LANG
The name of a locale to use for locale categories when not overridden by
LC_ALL or more specific environment variables such as LC_COLLATE,
LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and
LC_TIME (see locale(7) for further details of the LC_* environment vari-
ables).

PATH
The sequence of directory prefixes that sh(1) and many other programs em-
ploy when searching for an executable file that is specified as a simple file-
name (i.a., a pathname that contains no slashes). The prefixes are separated by
colons (:). The list of prefixes is searched from beginning to end, by checking
the pathname formed by concatenating a prefix, a slash, and the filename, until
a file with execute permission is found.

As a legacy feature, a zero-length prefix (specified as two adjacent colons, or
an initial or terminating colon) is interpreted to mean the current working di-
rectory. However, use of this feature is deprecated, and POSIX notes that a
conforming application shall use an explicit pathname (e.g., .) to specify the
current working directory.

Analogously to PATH, one has CDPATH used by some shells to find the tar-
get of a change directory command, MANPATH used by man(1) to find man-
ual pages, and so on.

PWD Absolute path to the current working directory; required to be partially canoni-
cal (no . or .. components).

SHELL
The absolute pathname of the user’s login shell. Set at login time, see section
NOTES below.

TERM
The terminal type for which output is to be prepared.

PAGER
The user’s preferred utility to display text files. Any string acceptable as a
command-string operand to the sh -c command shall be valid. If PAGER is
null or is not set, then applications that launch a pager will default to a pro-
gram such as less(1) or more(1)

EDITOR/VISUAL
The user’s preferred utility to edit text files. Any string acceptable as a com-
mand_string operand to the sh -c command shall be valid.

Note that the behavior of many programs and library routines is influenced by the
presence or value of certain environment variables. Examples include the following:

• The variables LANG, LANGUAGE, NLSPATH, LOCPATH, LC_ALL,
LC_MESSAGES, and so on influence locale handling; see catopen(3), gettext(3),
and locale(7).

• TMPDIR influences the path prefix of names created by tempnam(3) and other
routines, and the temporary directory used by sort(1) and other programs.

Linux man-pages 6.13 2024-06-15 3266

environ(7) Miscellaneous Information Manual environ(7)

• LD_LIBRARY_PATH, LD_PRELOAD, and other LD_* variables influence the
behavior of the dynamic loader/linker. See also ld.so(8).

• POSIXLY_CORRECT makes certain programs and library routines follow the
prescriptions of POSIX.

• The behavior of malloc(3) is influenced by MALLOC_* variables.

• The variable HOSTALIASES gives the name of a file containing aliases to be
used with gethostbyname(3).

• TZ and TZDIR give timezone information used by tzset(3) and through that by
functions like ctime(3), localtime(3), mktime(3), strftime(3). See also tzselect(8).

• TERMCAP gives information on how to address a given terminal (or gives the
name of a file containing such information).

• COLUMNS and LINES tell applications about the window size, possibly over-
riding the actual size.

• PRINTER or LPDEST may specify the desired printer to use. See lpr(1)

NOTES
Historically and by standard, environ must be declared in the user program. However,
as a (nonstandard) programmer convenience, environ is declared in the header file
<unistd.h> if the _GNU_SOURCE feature test macro is defined (see fea-
ture_test_macros(7)).

The prctl(2) PR_SET_MM_ENV_START and PR_SET_MM_ENV_END opera-
tions can be used to control the location of the process’s environment.

The HOME, LOGNAME, SHELL, and USER variables are set when the user is
changed via a session management interface, typically by a program such as login(1)
from a user database (such as passwd(5)). (Switching to the root user using su(1)
may result in a mixed environment where LOGNAME and USER are retained from
old user; see the su(1) manual page.)

BUGS
Clearly there is a security risk here. Many a system command has been tricked into
mischief by a user who specified unusual values for IFS or LD_LIBRARY_PATH.

There is also the risk of name space pollution. Programs like make and autoconf al-
low overriding of default utility names from the environment with similarly named
variables in all caps. Thus one uses CC to select the desired C compiler (and simi-
larly MAKE, AR, AS, FC, LD, LEX, RM, YACC, etc.). However, in some tradi-
tional uses such an environment variable gives options for the program instead of a
pathname. Thus, one has MORE and LESS. Such usage is considered mistaken, and
to be avoided in new programs.

SEE ALSO
bash(1), csh(1), env(1), login(1), printenv(1), sh(1), su(1), tcsh(1), execve(2),
clearenv(3), exec(3), getenv(3), putenv(3), setenv(3), unsetenv(3), locale(7), ld.so(8),
pam_env(8)

Linux man-pages 6.13 2024-06-15 3267

epoll(7) Miscellaneous Information Manual epoll(7)

NAME
epoll - I/O event notification facility

SYNOPSIS
#include <sys/epoll.h>

DESCRIPTION
The epoll API performs a similar task to poll(2): monitoring multiple file descriptors
to see if I/O is possible on any of them. The epoll API can be used either as an edge-
triggered or a level-triggered interface and scales well to large numbers of watched
file descriptors.

The central concept of the epoll API is the epoll instance, an in-kernel data structure
which, from a user-space perspective, can be considered as a container for two lists:

• The interest list (sometimes also called the epoll set): the set of file descriptors
that the process has registered an interest in monitoring.

• The ready list: the set of file descriptors that are "ready" for I/O. The ready list is
a subset of (or, more precisely, a set of references to) the file descriptors in the in-
terest list. The ready list is dynamically populated by the kernel as a result of I/O
activity on those file descriptors.

The following system calls are provided to create and manage an epoll instance:

• epoll_create(2) creates a new epoll instance and returns a file descriptor referring
to that instance. (The more recent epoll_create1(2) extends the functionality of
epoll_create(2).)

• Interest in particular file descriptors is then registered via epoll_ctl(2), which adds
items to the interest list of the epoll instance.

• epoll_wait(2) waits for I/O events, blocking the calling thread if no events are cur-
rently available. (This system call can be thought of as fetching items from the
ready list of the epoll instance.)

Level-triggered and edge-triggered
The epoll event distribution interface is able to behave both as edge-triggered (ET)
and as level-triggered (LT). The difference between the two mechanisms can be de-
scribed as follows. Suppose that this scenario happens:

(1) The file descriptor that represents the read side of a pipe (rfd) is registered on
the epoll instance.

(2) A pipe writer writes 2 kB of data on the write side of the pipe.

(3) A call to epoll_wait(2) is done that will return rfd as a ready file descriptor.

(4) The pipe reader reads 1 kB of data from rfd .

(5) A call to epoll_wait(2) is done.

If the rfd file descriptor has been added to the epoll interface using the EPOLLET
(edge-triggered) flag, the call to epoll_wait(2) done in step 5 will probably hang de-
spite the available data still present in the file input buffer; meanwhile the remote peer
might be expecting a response based on the data it already sent. The reason for this is
that edge-triggered mode delivers events only when changes occur on the monitored
file descriptor, that is, an event will be generated upon each receipt of a chunk of data.

Linux man-pages 6.13 2024-08-21 3268

epoll(7) Miscellaneous Information Manual epoll(7)

So, in step 5 the caller might end up waiting for some data that is already present in-
side the input buffer. In the above example, an event on rfd will be generated because
of the write done in 2 and the event is consumed in 3. Since the read operation done
in 4 does not consume the whole buffer data, the call to epoll_wait(2) done in step 5
might block indefinitely.

An application that employs the EPOLLET flag should use nonblocking file descrip-
tors to avoid having a blocking read or write starve a task that is handling multiple file
descriptors. The suggested way to use epoll as an edge-triggered (EPOLLET) inter-
face is as follows:

(1) with nonblocking file descriptors; and

(2) by waiting for an event only after read(2) or write(2) return EAGAIN.

By contrast, when used as a level-triggered interface (the default, when EPOLLET is
not specified), epoll is simply a faster poll(2), and can be used wherever the latter is
used since it shares the same semantics.

Since even with edge-triggered epoll, multiple events can be generated upon receipt
of multiple chunks of data, the caller has the option to specify the EPOL-
LONESHOT flag, to tell epoll to disable the associated file descriptor after the re-
ceipt of an event with epoll_wait(2). When the EPOLLONESHOT flag is specified,
it is the caller’s responsibility to rearm the file descriptor using epoll_ctl(2) with
EPOLL_CTL_MOD.

If multiple threads (or processes, if child processes have inherited the epoll file de-
scriptor across fork(2)) are blocked in epoll_wait(2) waiting on the same epoll file de-
scriptor and a file descriptor in the interest list that is marked for edge-triggered
(EPOLLET) notification becomes ready, just one of the threads (or processes) is
awoken from epoll_wait(2). This provides a useful optimization for avoiding "thun-
dering herd" wake-ups in some scenarios.

Interaction with autosleep
If the system is in autosleep mode via /sys/power/autosleep and an event happens
which wakes the device from sleep, the device driver will keep the device awake only
until that event is queued. To keep the device awake until the event has been
processed, it is necessary to use the epoll_ctl(2) EPOLLWAKEUP flag.

When the EPOLLWAKEUP flag is set in the events field for a struct epoll_event, the
system will be kept awake from the moment the event is queued, through the
epoll_wait(2) call which returns the event until the subsequent epoll_wait(2) call. If
the event should keep the system awake beyond that time, then a separate wake_lock
should be taken before the second epoll_wait(2) call.

/proc interfaces
The following interfaces can be used to limit the amount of kernel memory consumed
by epoll:

/proc/sys/fs/epoll/max_user_watches (since Linux 2.6.28)
This specifies a limit on the total number of file descriptors that a user can reg-
ister across all epoll instances on the system. The limit is per real user ID.
Each registered file descriptor costs roughly 90 bytes on a 32-bit kernel, and
roughly 160 bytes on a 64-bit kernel. Currently, the default value for
max_user_watches is 1/25 (4%) of the available low memory, divided by the

Linux man-pages 6.13 2024-08-21 3269

epoll(7) Miscellaneous Information Manual epoll(7)

registration cost in bytes.

Example for suggested usage
While the usage of epoll when employed as a level-triggered interface does have the
same semantics as poll(2), the edge-triggered usage requires more clarification to
avoid stalls in the application event loop. In this example, listener is a nonblocking
socket on which listen(2) has been called. The function do_use_fd() uses the new
ready file descriptor until EAGAIN is returned by either read(2) or write(2). An
event-driven state machine application should, after having received EAGAIN, record
its current state so that at the next call to do_use_fd() it will continue to read(2) or
write(2) from where it stopped before.

#define MAX_EVENTS 10
struct epoll_event ev, events[MAX_EVENTS];
int listen_sock, conn_sock, nfds, epollfd;

/* Code to set up listening socket, 'listen_sock',
(socket(), bind(), listen()) omitted. */

epollfd = epoll_create1(0);
if (epollfd == -1) {

perror("epoll_create1");
exit(EXIT_FAILURE);

}

ev.events = EPOLLIN;
ev.data.fd = listen_sock;
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, listen_sock, &ev) == -1) {

perror("epoll_ctl: listen_sock");
exit(EXIT_FAILURE);

}

for (;;) {
nfds = epoll_wait(epollfd, events, MAX_EVENTS, -1);
if (nfds == -1) {

perror("epoll_wait");
exit(EXIT_FAILURE);

}

for (n = 0; n < nfds; ++n) {
if (events[n].data.fd == listen_sock) {

conn_sock = accept(listen_sock,
(struct sockaddr *) &addr, &addrlen);

if (conn_sock == -1) {
perror("accept");
exit(EXIT_FAILURE);

}
setnonblocking(conn_sock);
ev.events = EPOLLIN | EPOLLET;
ev.data.fd = conn_sock;

Linux man-pages 6.13 2024-08-21 3270

epoll(7) Miscellaneous Information Manual epoll(7)

if (epoll_ctl(epollfd, EPOLL_CTL_ADD, conn_sock,
&ev) == -1) {

perror("epoll_ctl: conn_sock");
exit(EXIT_FAILURE);

}
} else {

do_use_fd(events[n].data.fd);
}

}
}

When used as an edge-triggered interface, for performance reasons, it is possible to
add the file descriptor inside the epoll interface (EPOLL_CTL_ADD) once by speci-
fying (EPOLLIN|EPOLLOUT). This allows you to avoid continuously switching
between EPOLLIN and EPOLLOUT calling epoll_ctl(2) with
EPOLL_CTL_MOD.

Questions and answers
• What is the key used to distinguish the file descriptors registered in an interest

list?

The key is the combination of the file descriptor number and the open file descrip-
tion (also known as an "open file handle", the kernel’s internal representation of an
open file).

• What happens if you register the same file descriptor on an epoll instance twice?

You will probably get EEXIST. However, it is possible to add a duplicate
(dup(2), dup2(2), fcntl(2) F_DUPFD) file descriptor to the same epoll instance.
This can be a useful technique for filtering events, if the duplicate file descriptors
are registered with different events masks.

• Can two epoll instances wait for the same file descriptor? If so, are events re-
ported to both epoll file descriptors?

Yes, and events would be reported to both. However, careful programming may
be needed to do this correctly.

• Is the epoll file descriptor itself poll/epoll/selectable?

Yes. If an epoll file descriptor has events waiting, then it will indicate as being
readable.

• What happens if one attempts to put an epoll file descriptor into its own file de-
scriptor set?

The epoll_ctl(2) call fails (EINVAL). However, you can add an epoll file descrip-
tor inside another epoll file descriptor set.

• Can I send an epoll file descriptor over a UNIX domain socket to another process?

Yes, but it does not make sense to do this, since the receiving process would not
have copies of the file descriptors in the interest list.

• Will closing a file descriptor cause it to be removed from all epoll interest lists?

Yes, but be aware of the following point. A file descriptor is a reference to an
open file description (see open(2)). Whenever a file descriptor is duplicated via

Linux man-pages 6.13 2024-08-21 3271

epoll(7) Miscellaneous Information Manual epoll(7)

dup(2), dup2(2), fcntl(2) F_DUPFD, or fork(2), a new file descriptor referring to
the same open file description is created. An open file description continues to ex-
ist until all file descriptors referring to it have been closed.

A file descriptor is removed from an interest list only after all the file descriptors
referring to the underlying open file description have been closed. This means
that even after a file descriptor that is part of an interest list has been closed,
events may be reported for that file descriptor if other file descriptors referring to
the same underlying file description remain open. To prevent this happening, the
file descriptor must be explicitly removed from the interest list (using epoll_ctl(2)
EPOLL_CTL_DEL) before it is duplicated. Alternatively, the application must
ensure that all file descriptors are closed (which may be difficult if file descriptors
were duplicated behind the scenes by library functions that used dup(2) or
fork(2)).

• If more than one event occurs between epoll_wait(2) calls, are they combined or
reported separately?

They will be combined.

• Does an operation on a file descriptor affect the already collected but not yet re-
ported events?

You can do two operations on an existing file descriptor. Remove would be mean-
ingless for this case. Modify will reread available I/O.

• Do I need to continuously read/write a file descriptor until EAGAIN when using
the EPOLLET flag (edge-triggered behavior)?

Receiving an event from epoll_wait(2) should suggest to you that such file de-
scriptor is ready for the requested I/O operation. You must consider it ready until
the next (nonblocking) read/write yields EAGAIN. When and how you will use
the file descriptor is entirely up to you.

For packet/token-oriented files (e.g., datagram socket, terminal in canonical
mode), the only way to detect the end of the read/write I/O space is to continue to
read/write until EAGAIN.

For stream-oriented files (e.g., pipe, FIFO, stream socket), the condition that the
read/write I/O space is exhausted can also be detected by checking the amount of
data read from / written to the target file descriptor. For example, if you call
read(2) by asking to read a certain amount of data and read(2) returns a lower
number of bytes, you can be sure of having exhausted the read I/O space for the
file descriptor. The same is true when writing using write(2). (Avoid this latter
technique if you cannot guarantee that the monitored file descriptor always refers
to a stream-oriented file.)

Possible pitfalls and ways to avoid them
• Starvation (edge-triggered)

If there is a large amount of I/O space, it is possible that by trying to drain it the
other files will not get processed causing starvation. (This problem is not specific
to epoll.)

The solution is to maintain a ready list and mark the file descriptor as ready in its
associated data structure, thereby allowing the application to remember which

Linux man-pages 6.13 2024-08-21 3272

epoll(7) Miscellaneous Information Manual epoll(7)

files need to be processed but still round robin amongst all the ready files. This
also supports ignoring subsequent events you receive for file descriptors that are
already ready.

• If using an event cache...

If you use an event cache or store all the file descriptors returned from
epoll_wait(2), then make sure to provide a way to mark its closure dynamically
(i.e., caused by a previous event’s processing). Suppose you receive 100 events
from epoll_wait(2), and in event #47 a condition causes event #13 to be closed. If
you remove the structure and close(2) the file descriptor for event #13, then your
event cache might still say there are events waiting for that file descriptor causing
confusion.

One solution for this is to call, during the processing of event 47,
epoll_ctl(EPOLL_CTL_DEL) to delete file descriptor 13 and close(2), then mark
its associated data structure as removed and link it to a cleanup list. If you find
another event for file descriptor 13 in your batch processing, you will discover the
file descriptor had been previously removed and there will be no confusion.

VERSIONS
Some other systems provide similar mechanisms; for example, FreeBSD has kqueue,
and Solaris has /dev/poll.

STANDARDS
Linux.

HISTORY
Linux 2.5.44. glibc 2.3.2.

NOTES
The set of file descriptors that is being monitored via an epoll file descriptor can be
viewed via the entry for the epoll file descriptor in the process’s /proc/ pid /fdinfo di-
rectory. See proc(5) for further details.

The kcmp(2) KCMP_EPOLL_TFD operation can be used to test whether a file de-
scriptor is present in an epoll instance.

SEE ALSO
epoll_create(2), epoll_create1(2), epoll_ctl(2), epoll_wait(2), ioctl_eventpoll(2),
poll(2), select(2)

Linux man-pages 6.13 2024-08-21 3273

fanotify(7) Miscellaneous Information Manual fanotify(7)

NAME
fanotify - monitoring filesystem events

DESCRIPTION
The fanotify API provides notification and interception of filesystem events. Use
cases include virus scanning and hierarchical storage management. In the original
fanotify API, only a limited set of events was supported. In particular, there was no
support for create, delete, and move events. The support for those events was added
in Linux 5.1. (See inotify(7) for details of an API that did notify those events pre
Linux 5.1.)

Additional capabilities compared to the inotify(7) API include the ability to monitor
all of the objects in a mounted filesystem, the ability to make access permission deci-
sions, and the possibility to read or modify files before access by other applications.

The following system calls are used with this API: fanotify_init(2), fanotify_mark(2),
read(2), write(2), and close(2).

fanotify_init(), fanotify_mark(), and notification groups
The fanotify_init(2) system call creates and initializes an fanotify notification group
and returns a file descriptor referring to it.

An fanotify notification group is a kernel-internal object that holds a list of files, di-
rectories, filesystems, and mounts for which events shall be created.

For each entry in an fanotify notification group, two bit masks exist: the mark mask
and the ignore mask. The mark mask defines file activities for which an event shall be
created. The ignore mask defines activities for which no event shall be generated.
Having these two types of masks permits a filesystem, mount, or directory to be
marked for receiving events, while at the same time ignoring events for specific ob-
jects under a mount or directory.

The fanotify_mark(2) system call adds a file, directory, filesystem, or mount to a noti-
fication group and specifies which events shall be reported (or ignored), or removes or
modifies such an entry.

A possible usage of the ignore mask is for a file cache. Events of interest for a file
cache are modification of a file and closing of the same. Hence, the cached directory
or mount is to be marked to receive these events. After receiving the first event in-
forming that a file has been modified, the corresponding cache entry will be invali-
dated. No further modification events for this file are of interest until the file is
closed. Hence, the modify event can be added to the ignore mask. Upon receiving
the close event, the modify event can be removed from the ignore mask and the file
cache entry can be updated.

The entries in the fanotify notification groups refer to files and directories via their in-
ode number and to mounts via their mount ID. If files or directories are renamed or
moved within the same mount, the respective entries survive. If files or directories are
deleted or moved to another mount or if filesystems or mounts are unmounted, the
corresponding entries are deleted.

The event queue
As events occur on the filesystem objects monitored by a notification group, the fan-
otify system generates events that are collected in a queue. These events can then be
read (using read(2) or similar) from the fanotify file descriptor returned by

Linux man-pages 6.13 2024-11-17 3274

fanotify(7) Miscellaneous Information Manual fanotify(7)

fanotify_init(2).

Two types of events are generated: notification events and permission events. Notifi-
cation events are merely informative and require no action to be taken by the receiving
application with one exception: if a valid file descriptor is provided within a generic
event, the file descriptor must be closed. Permission events are requests to the receiv-
ing application to decide whether permission for a file access shall be granted. For
these events, the recipient must write a response which decides whether access is
granted or not.

An event is removed from the event queue of the fanotify group when it has been
read. Permission events that have been read are kept in an internal list of the fanotify
group until either a permission decision has been taken by writing to the fanotify file
descriptor or the fanotify file descriptor is closed.

Reading fanotify events
Calling read(2) for the file descriptor returned by fanotify_init(2) blocks (if the flag
FAN_NONBLOCK is not specified in the call to fanotify_init(2)) until either a file
event occurs or the call is interrupted by a signal (see signal(7)).

After a successful read(2), the read buffer contains one or more of the following struc-
tures:

struct fanotify_event_metadata {
__u32 event_len;
__u8 vers;
__u8 reserved;
__u16 metadata_len;
__aligned_u64 mask;
__s32 fd;
__s32 pid;

};

Information records are supplemental pieces of information that may be provided
alongside the generic fanotify_event_metadata structure. The flags passed to fan-
otify_init(2) have influence over the type of information records that may be returned
for an event. For example, if a notification group is initialized with FAN_RE-
PORT_FID or FAN_REPORT_DIR_FID, then event listeners should also expect to
receive a fanotify_event_info_fid structure alongside the fanotify_event_metadata
structure, whereby file handles are used to identify filesystem objects rather than file
descriptors. Information records may also be stacked, meaning that using the various
FAN_REPORT_* flags in conjunction with one another is supported. In such cases,
multiple information records can be returned for an event alongside the generic fan-
otify_event_metadata structure. For example, if a notification group is initialized with
FAN_REPORT_TARGET_FID and FAN_REPORT_PIDFD, then an event listener
should expect to receive up to two fanotify_event_info_fid information records and
one fanotify_event_info_pidfd information record alongside the generic fan-
otify_event_metadata structure. Importantly, fanotify provides no guarantee around
the ordering of information records when a notification group is initialized with a
stacked based configuration. Each information record has a nested structure of type
fanotify_event_info_header. It is imperative for event listeners to inspect the
info_type field of this structure in order to determine the type of information record

Linux man-pages 6.13 2024-11-17 3275

fanotify(7) Miscellaneous Information Manual fanotify(7)

that had been received for a given event.

In cases where an fanotify group identifies filesystem objects by file handles, event
listeners should also expect to receive one or more of the below information record
objects alongside the generic fanotify_event_metadata structure within the read
buffer:

struct fanotify_event_info_fid {
struct fanotify_event_info_header hdr;
__kernel_fsid_t fsid;
unsigned char handle[];

};

In cases where an fanotify group is initialized with FAN_REPORT_PIDFD, event
listeners should expect to receive the below information record object alongside the
generic fanotify_event_metadata structure within the read buffer:

struct fanotify_event_info_pidfd {
struct fanotify_event_info_header hdr;
__s32 pidfd;

};

In case of a FAN_FS_ERROR event, an additional information record describing the
error that occurred is returned alongside the generic fanotify_event_metadata struc-
ture within the read buffer. This structure is defined as follows:

struct fanotify_event_info_error {
struct fanotify_event_info_header hdr;
__s32 error;
__u32 error_count;

};

All information records contain a nested structure of type fan-
otify_event_info_header. This structure holds meta-information about the informa-
tion record that may have been returned alongside the generic fanotify_event_meta-
data structure. This structure is defined as follows:

struct fanotify_event_info_header {
__u8 info_type;
__u8 pad;
__u16 len;

};

For performance reasons, it is recommended to use a large buffer size (for example,
4096 bytes), so that multiple events can be retrieved by a single read(2).

The return value of read(2) is the number of bytes placed in the buffer, or -1 in case
of an error (but see BUGS).

The fields of the fanotify_event_metadata structure are as follows:

event_len
This is the size of the data for the current event and the offset to the next event
in the buffer. Unless the group identifies filesystem objects by file handles, the
value of event_len is always FAN_EVENT_METADATA_LEN. For a group
that identifies filesystem objects by file handles, event_len also includes the

Linux man-pages 6.13 2024-11-17 3276

fanotify(7) Miscellaneous Information Manual fanotify(7)

variable size file identifier records.

vers This field holds a version number for the structure. It must be compared to
FANOTIFY_METADATA_VERSION to verify that the structures returned
at run time match the structures defined at compile time. In case of a mis-
match, the application should abandon trying to use the fanotify file descriptor.

reserved
This field is not used.

metadata_len
This is the size of the structure. The field was introduced to facilitate the im-
plementation of optional headers per event type. No such optional headers ex-
ist in the current implementation.

mask This is a bit mask describing the event (see below).

fd This is an open file descriptor for the object being accessed, or FAN_NOFD if
a queue overflow occurred. With an fanotify group that identifies filesystem
objects by file handles, applications should expect this value to be set to
FAN_NOFD for each event that is received. The file descriptor can be used to
access the contents of the monitored file or directory. The reading application
is responsible for closing this file descriptor.

When calling fanotify_init(2), the caller may specify (via the event_f_flags ar-
gument) various file status flags that are to be set on the open file description
that corresponds to this file descriptor. In addition, the (kernel-internal)
FMODE_NONOTIFY file status flag is set on the open file description. This
flag suppresses fanotify event generation. Hence, when the receiver of the fan-
otify event accesses the notified file or directory using this file descriptor, no
additional events will be created.

pid If flag FAN_REPORT_TID was set in fanotify_init(2), this is the TID of the
thread that caused the event. Otherwise, this the PID of the process that
caused the event.

A program listening to fanotify events can compare this PID to the PID returned by
getpid(2), to determine whether the event is caused by the listener itself, or is due to a
file access by another process.

The bit mask in mask indicates which events have occurred for a single filesystem ob-
ject. Multiple bits may be set in this mask, if more than one event occurred for the
monitored filesystem object. In particular, consecutive events for the same filesystem
object and originating from the same process may be merged into a single event, with
the exception that two permission events are never merged into one queue entry.

The bits that may appear in mask are as follows:

FAN_ACCESS
A file or a directory (but see BUGS) was accessed (read).

FAN_OPEN
A file or a directory was opened.

Linux man-pages 6.13 2024-11-17 3277

fanotify(7) Miscellaneous Information Manual fanotify(7)

FAN_OPEN_EXEC
A file was opened with the intent to be executed. See NOTES in fan-
otify_mark(2) for additional details.

FAN_ATTRIB
A file or directory metadata was changed.

FAN_CREATE
A child file or directory was created in a watched parent.

FAN_DELETE
A child file or directory was deleted in a watched parent.

FAN_DELETE_SELF
A watched file or directory was deleted.

FAN_FS_ERROR
A filesystem error was detected.

FAN_RENAME
A file or directory has been moved to or from a watched parent directory.

FAN_MOVED_FROM
A file or directory has been moved from a watched parent directory.

FAN_MOVED_TO
A file or directory has been moved to a watched parent directory.

FAN_MOVE_SELF
A watched file or directory was moved.

FAN_MODIFY
A file was modified.

FAN_CLOSE_WRITE
A file that was opened for writing (O_WRONLY or O_RDWR) was closed.

FAN_CLOSE_NOWRITE
A file or directory that was opened read-only (O_RDONLY) was closed.

FAN_Q_OVERFLOW
The event queue exceeded the limit on number of events. This limit can be
overridden by specifying the FAN_UNLIMITED_QUEUE flag when calling
fanotify_init(2).

FAN_ACCESS_PERM
An application wants to read a file or directory, for example using read(2) or
readdir(2). The reader must write a response (as described below) that deter-
mines whether the permission to access the filesystem object shall be granted.

FAN_OPEN_PERM
An application wants to open a file or directory. The reader must write a re-
sponse that determines whether the permission to open the filesystem object
shall be granted.

FAN_OPEN_EXEC_PERM
An application wants to open a file for execution. The reader must write a re-
sponse that determines whether the permission to open the filesystem object

Linux man-pages 6.13 2024-11-17 3278

fanotify(7) Miscellaneous Information Manual fanotify(7)

for execution shall be granted. See NOTES in fanotify_mark(2) for additional
details.

To check for any close event, the following bit mask may be used:

FAN_CLOSE
A file was closed. This is a synonym for:

FAN_CLOSE_WRITE | FAN_CLOSE_NOWRITE

To check for any move event, the following bit mask may be used:

FAN_MOVE
A file or directory was moved. This is a synonym for:

FAN_MOVED_FROM | FAN_MOVED_TO

The following bits may appear in mask only in conjunction with other event type bits:

FAN_ONDIR
The events described in the mask have occurred on a directory object. Report-
ing events on directories requires setting this flag in the mark mask. See fan-
otify_mark(2) for additional details. The FAN_ONDIR flag is reported in an
event mask only if the fanotify group identifies filesystem objects by file han-
dles.

Information records that are supplied alongside the generic fanotify_event_metadata
structure will always contain a nested structure of type fanotify_event_info_header.
The fields of the fanotify_event_info_header are as follows:

info_type
A unique integer value representing the type of information record object re-
ceived for an event. The value of this field can be set to one of the following:
FAN_EVENT_INFO_TYPE_FID, FAN_EVENT_INFO_TYPE_DFID,
FAN_EVENT_INFO_TYPE_DFID_NAME, or
FAN_EVENT_INFO_TYPE_PIDFD. The value set for this field is depen-
dent on the flags that have been supplied to fanotify_init(2). Refer to the field
details of each information record object type below to understand the differ-
ent cases in which the info_type values can be set.

pad This field is currently not used by any information record object type and
therefore is set to zero.

len The value of len is set to the size of the information record object, including
the fanotify_event_info_header. The total size of all additional information
records is not expected to be larger than (event_len - metadata_len).

The fields of the fanotify_event_info_fid structure are as follows:

hdr This is a structure of type fanotify_event_info_header. For example, when an
fanotify file descriptor is created using FAN_REPORT_FID, a single infor-
mation record is expected to be attached to the event with info_type field value
of FAN_EVENT_INFO_TYPE_FID. When an fanotify file descriptor is
created using the combination of FAN_REPORT_FID and FAN_RE-
PORT_DIR_FID, there may be two information records attached to the event:
one with info_type field value of FAN_EVENT_INFO_TYPE_DFID, identi-
fying a parent directory object, and one with info_type field value of

Linux man-pages 6.13 2024-11-17 3279

fanotify(7) Miscellaneous Information Manual fanotify(7)

FAN_EVENT_INFO_TYPE_FID, identifying a child object. Note that for
the directory entry modification events FAN_CREATE, FAN_DELETE,
FAN_MOVE, and FAN_RENAME, an information record identifying the
created/deleted/moved child object is reported only if an fanotify group was
initialized with the flag FAN_REPORT_TARGET_FID.

fsid This is a unique identifier of the filesystem containing the object associated
with the event. It is a structure of type __kernel_fsid_t and contains the same
value as f_fsid when calling statfs(2). Note that some filesystems (e.g.,
fuse(4)) report zero fsid . In these cases, it is not possible to use fsid to asso-
ciate the event with a specific filesystem instance, so monitoring different
filesystem instances that report zero fsid with the same fanotify group is not
supported.

handle
This field contains a variable-size structure of type struct file_handle. It is an
opaque handle that corresponds to a specified object on a filesystem as re-
turned by name_to_handle_at(2). It can be used to uniquely identify a file on
a filesystem and can be passed as an argument to open_by_handle_at(2). If
the value of info_type field is FAN_EVENT_INFO_TYPE_DFID_NAME,
the file handle is followed by a null terminated string that identifies the cre-
ated/deleted/moved directory entry name. For other events such as
FAN_OPEN, FAN_ATTRIB, FAN_DELETE_SELF, and
FAN_MOVE_SELF, if the value of info_type field is
FAN_EVENT_INFO_TYPE_FID, the handle identifies the object correlated
to the event. If the value of info_type field is
FAN_EVENT_INFO_TYPE_DFID, the handle identifies the directory ob-
ject correlated to the event or the parent directory of a non-directory object
correlated to the event. If the value of info_type field is
FAN_EVENT_INFO_TYPE_DFID_NAME, the handle identifies the same
directory object that would be reported with
FAN_EVENT_INFO_TYPE_DFID and the file handle is followed by a null
terminated string that identifies the name of a directory entry in that directory,
or ’.’ to identify the directory object itself.

The fields of the fanotify_event_info_pidfd structure are as follows:

hdr This is a structure of type fanotify_event_info_header. When an fanotify
group is initialized using FAN_REPORT_PIDFD, the info_type field value of
the fanotify_event_info_header is set to
FAN_EVENT_INFO_TYPE_PIDFD.

pidfd This is a process file descriptor that refers to the process responsible for gener-
ating the event. The returned process file descriptor is no different from one
which could be obtained manually if pidfd_open(2) were to be called on fan-
otify_event_metadata.pid . In the instance that an error is encountered during
pidfd creation, one of two possible error types represented by a negative inte-
ger value may be returned in this pidfd field. In cases where the process re-
sponsible for generating the event has terminated prior to the event listener be-
ing able to read events from the notification queue, FAN_NOPIDFD is re-
turned. The pidfd creation for an event is only performed at the time the
events are read from the notification queue. All other possible pidfd creation

Linux man-pages 6.13 2024-11-17 3280

fanotify(7) Miscellaneous Information Manual fanotify(7)

failures are represented by FAN_EPIDFD. Once the event listener has dealt
with an event and the pidfd is no longer required, the pidfd should be closed
via close(2).

The fields of the fanotify_event_info_error structure are as follows:

hdr This is a structure of type fanotify_event_info_header. The info_type field is
set to FAN_EVENT_INFO_TYPE_ERROR.

error Identifies the type of error that occurred.

error_count
This is a counter of the number of errors suppressed since the last error was
read.

The following macros are provided to iterate over a buffer containing fanotify event
metadata returned by a read(2) from an fanotify file descriptor:

FAN_EVENT_OK(meta, size)
This macro checks the remaining size size of the buffer meta against the size
of the metadata structure and the event_len field of the first metadata structure
in the buffer.

FAN_EVENT_NEXT(meta, size)
This macro uses the size indicated in the event_len field of the metadata struc-
ture pointed to by meta to calculate the address of the next metadata structure
that follows meta. size is the number of bytes of metadata that currently re-
main in the buffer. The macro returns a pointer to the next metadata structure
that follows meta, and reduces size by the number of bytes in the metadata
structure that has been skipped over (i.e., it subtracts meta->event_len from
size).

In addition, there is:

FAN_EVENT_METADATA_LEN
This macro returns the size (in bytes) of the structure fanotify_event_meta-
data. This is the minimum size (and currently the only size) of any event
metadata.

Monitoring an fanotify file descriptor for events
When an fanotify event occurs, the fanotify file descriptor indicates as readable when
passed to epoll(7), poll(2), or select(2).

Dealing with permission events
For permission events, the application must write(2) a structure of the following form
to the fanotify file descriptor:

struct fanotify_response {
__s32 fd;
__u32 response;

};

The fields of this structure are as follows:

fd This is the file descriptor from the structure fanotify_event_metadata.

Linux man-pages 6.13 2024-11-17 3281

fanotify(7) Miscellaneous Information Manual fanotify(7)

response
This field indicates whether or not the permission is to be granted. Its value
must be either FAN_ALLOW to allow the file operation or FAN_DENY to
deny the file operation.

If access is denied, the requesting application call will receive an EPERM error. Ad-
ditionally, if the notification group has been created with the FAN_ENABLE_AUDIT
flag, then the FAN_AUDIT flag can be set in the response field. In that case, the au-
dit subsystem will log information about the access decision to the audit logs.

Monitoring filesystems for errors
A single FAN_FS_ERROR event is stored per filesystem at once. Extra error mes-
sages are suppressed and accounted for in the error_count field of the existing
FAN_FS_ERROR event record, but details about the errors are lost.

Errors reported by FAN_FS_ERROR are generic errno values, but not all kinds of
error types are reported by all filesystems.

Errors not directly related to a file (i.e. super block corruption) are reported with an
invalid handle. For these errors, the handle will have the field handle_type set to
FILEID_INVALID, and the handle buffer size set to 0.

Closing the fanotify file descriptor
When all file descriptors referring to the fanotify notification group are closed, the
fanotify group is released and its resources are freed for reuse by the kernel. Upon
close(2), outstanding permission events will be set to allowed.

/proc interfaces
The file /proc/ pid /fdinfo/ fd contains information about fanotify marks for file de-
scriptor fd of process pid . See proc(5) for details.

Since Linux 5.13 (and 5.10.220), the following interfaces can be used to control the
amount of kernel resources consumed by fanotify:

/proc/sys/fs/fanotify/max_queued_events
The value in this file is used when an application calls fanotify_init(2) to set an
upper limit on the number of events that can be queued to the corresponding
fanotify group. Events in excess of this limit are dropped, but an
FAN_Q_OVERFLOW event is always generated. Prior to Linux kernel 5.13,
the hardcoded limit was 16384 events.

/proc/sys/fs/fanotify/max_user_group
This specifies an upper limit on the number of fanotify groups that can be cre-
ated per real user ID. Prior to Linux kernel 5.13, the hardcoded limit was 128
groups per user.

/proc/sys/fs/fanotify/max_user_marks
This specifies an upper limit on the number of fanotify marks that can be cre-
ated per real user ID. Prior to Linux kernel 5.13, the hardcoded limit was
8192 marks per group (not per user).

ERRORS
In addition to the usual errors for read(2), the following errors can occur when read-
ing from the fanotify file descriptor:

Linux man-pages 6.13 2024-11-17 3282

fanotify(7) Miscellaneous Information Manual fanotify(7)

EINVAL
The buffer is too small to hold the event.

EMFILE
The per-process limit on the number of open files has been reached. See the
description of RLIMIT_NOFILE in getrlimit(2).

ENFILE
The system-wide limit on the total number of open files has been reached. See
/proc/sys/fs/file-max in proc(5).

ETXTBSY
This error is returned by read(2) if O_RDWR or O_WRONLY was specified
in the event_f_flags argument when calling fanotify_init(2) and an event oc-
curred for a monitored file that is currently being executed.

In addition to the usual errors for write(2), the following errors can occur when writ-
ing to the fanotify file descriptor:

EINVAL
Fanotify access permissions are not enabled in the kernel configuration or the
value of response in the response structure is not valid.

ENOENT
The file descriptor fd in the response structure is not valid. This may occur
when a response for the permission event has already been written.

STANDARDS
Linux.

HISTORY
The fanotify API was introduced in Linux 2.6.36 and enabled in Linux 2.6.37. fdinfo
support was added in Linux 3.8.

NOTES
The fanotify API is available only if the kernel was built with the CONFIG_FAN-
OTIFY configuration option enabled. In addition, fanotify permission handling is
available only if the CONFIG_FANOTIFY_ACCESS_PERMISSIONS configura-
tion option is enabled.

Limitations and caveats
Fanotify reports only events that a user-space program triggers through the filesystem
API. As a result, it does not catch remote events that occur on network filesystems.

The fanotify API does not report file accesses and modifications that may occur be-
cause of mmap(2), msync(2), and munmap(2).

Events for directories are created only if the directory itself is opened, read, and
closed. Adding, removing, or changing children of a marked directory does not create
events for the monitored directory itself.

Fanotify monitoring of directories is not recursive: to monitor subdirectories under a
directory, additional marks must be created. The FAN_CREATE event can be used
for detecting when a subdirectory has been created under a marked directory. An ad-
ditional mark must then be set on the newly created subdirectory. This approach is
racy, because it can lose events that occurred inside the newly created subdirectory,

Linux man-pages 6.13 2024-11-17 3283

fanotify(7) Miscellaneous Information Manual fanotify(7)

before a mark is added on that subdirectory. Monitoring mounts offers the capability
to monitor a whole directory tree in a race-free manner. Monitoring filesystems offers
the capability to monitor changes made from any mount of a filesystem instance in a
race-free manner.

The event queue can overflow. In this case, events are lost.

BUGS
Before Linux 3.19, fallocate(2) did not generate fanotify events. Since Linux 3.19,
calls to fallocate(2) generate FAN_MODIFY events.

As of Linux 3.17, the following bugs exist:

• On Linux, a filesystem object may be accessible through multiple paths, for exam-
ple, a part of a filesystem may be remounted using the --bind option of
mount(8)A listener that marked a mount will be notified only of events that were
triggered for a filesystem object using the same mount. Any other event will pass
unnoticed.

• When an event is generated, no check is made to see whether the user ID of the re-
ceiving process has authorization to read or write the file before passing a file de-
scriptor for that file. This poses a security risk, when the CAP_SYS_ADMIN ca-
pability is set for programs executed by unprivileged users.

• If a call to read(2) processes multiple events from the fanotify queue and an error
occurs, the return value will be the total size of the events successfully copied to
the user-space buffer before the error occurred. The return value will not be -1,
and errno will not be set. Thus, the reading application has no way to detect the
error.

EXAMPLES
The two example programs below demonstrate the usage of the fanotify API.

Example program: fanotify_example.c
The first program is an example of fanotify being used with its event object informa-
tion passed in the form of a file descriptor. The program marks the mount passed as a
command-line argument and waits for events of type FAN_OPEN_PERM and
FAN_CLOSE_WRITE. When a permission event occurs, a FAN_ALLOW re-
sponse is given.

The following shell session shows an example of running this program. This session
involved editing the file /home/user/temp/notes. Before the file was opened, a
FAN_OPEN_PERM event occurred. After the file was closed, a
FAN_CLOSE_WRITE event occurred. Execution of the program ends when the
user presses the ENTER key.

./fanotify_example /home
Press enter key to terminate.
Listening for events.
FAN_OPEN_PERM: File /home/user/temp/notes
FAN_CLOSE_WRITE: File /home/user/temp/notes

Listening for events stopped.

Linux man-pages 6.13 2024-11-17 3284

fanotify(7) Miscellaneous Information Manual fanotify(7)

Program source: fanotify_example.c

#define _GNU_SOURCE /* Needed to get O_LARGEFILE definition */
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/fanotify.h>
#include <unistd.h>

/* Read all available fanotify events from the file descriptor 'fd'. */

static void
handle_events(int fd)
{

const struct fanotify_event_metadata *metadata;
struct fanotify_event_metadata buf[200];
ssize_t size;
char path[PATH_MAX];
ssize_t path_len;
char procfd_path[PATH_MAX];
struct fanotify_response response;

/* Loop while events can be read from fanotify file descriptor. */

for (;;) {

/* Read some events. */

size = read(fd, buf, sizeof(buf));
if (size == -1 && errno != EAGAIN) {

perror("read");
exit(EXIT_FAILURE);

}

/* Check if end of available data reached. */

if (size <= 0)
break;

/* Point to the first event in the buffer. */

metadata = buf;

/* Loop over all events in the buffer. */

while (FAN_EVENT_OK(metadata, size)) {

Linux man-pages 6.13 2024-11-17 3285

fanotify(7) Miscellaneous Information Manual fanotify(7)

/* Check that run-time and compile-time structures match. */

if (metadata->vers != FANOTIFY_METADATA_VERSION) {
fprintf(stderr,

"Mismatch of fanotify metadata version.\n");
exit(EXIT_FAILURE);

}

/* metadata->fd contains either FAN_NOFD, indicating a
queue overflow, or a file descriptor (a nonnegative
integer). Here, we simply ignore queue overflow. */

if (metadata->fd >= 0) {

/* Handle open permission event. */

if (metadata->mask & FAN_OPEN_PERM) {
printf("FAN_OPEN_PERM: ");

/* Allow file to be opened. */

response.fd = metadata->fd;
response.response = FAN_ALLOW;
write(fd, &response, sizeof(response));

}

/* Handle closing of writable file event. */

if (metadata->mask & FAN_CLOSE_WRITE)
printf("FAN_CLOSE_WRITE: ");

/* Retrieve and print pathname of the accessed file. */

snprintf(procfd_path, sizeof(procfd_path),
"/proc/self/fd/%d", metadata->fd);

path_len = readlink(procfd_path, path,
sizeof(path) - 1);

if (path_len == -1) {
perror("readlink");
exit(EXIT_FAILURE);

}

path[path_len] = '\0';
printf("File %s\n", path);

/* Close the file descriptor of the event. */

close(metadata->fd);

Linux man-pages 6.13 2024-11-17 3286

fanotify(7) Miscellaneous Information Manual fanotify(7)

}

/* Advance to next event. */

metadata = FAN_EVENT_NEXT(metadata, size);
}

}
}

int
main(int argc, char *argv[])
{

char buf;
int fd, poll_num;
nfds_t nfds;
struct pollfd fds[2];

/* Check mount point is supplied. */

if (argc != 2) {
fprintf(stderr, "Usage: %s MOUNT\n", argv[0]);
exit(EXIT_FAILURE);

}

printf("Press enter key to terminate.\n");

/* Create the file descriptor for accessing the fanotify API. */

fd = fanotify_init(FAN_CLOEXEC | FAN_CLASS_CONTENT | FAN_NONBLOCK,
O_RDONLY | O_LARGEFILE);

if (fd == -1) {
perror("fanotify_init");
exit(EXIT_FAILURE);

}

/* Mark the mount for:
- permission events before opening files
- notification events after closing a write-enabled

file descriptor. */

if (fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_MOUNT,
FAN_OPEN_PERM | FAN_CLOSE_WRITE, AT_FDCWD,
argv[1]) == -1) {

perror("fanotify_mark");
exit(EXIT_FAILURE);

}

/* Prepare for polling. */

Linux man-pages 6.13 2024-11-17 3287

fanotify(7) Miscellaneous Information Manual fanotify(7)

nfds = 2;

fds[0].fd = STDIN_FILENO; /* Console input */
fds[0].events = POLLIN;

fds[1].fd = fd; /* Fanotify input */
fds[1].events = POLLIN;

/* This is the loop to wait for incoming events. */

printf("Listening for events.\n");

while (1) {
poll_num = poll(fds, nfds, -1);
if (poll_num == -1) {

if (errno == EINTR) /* Interrupted by a signal */
continue; /* Restart poll() */

perror("poll"); /* Unexpected error */
exit(EXIT_FAILURE);

}

if (poll_num > 0) {
if (fds[0].revents & POLLIN) {

/* Console input is available: empty stdin and quit. */

while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')
continue;

break;
}

if (fds[1].revents & POLLIN) {

/* Fanotify events are available. */

handle_events(fd);
}

}
}

printf("Listening for events stopped.\n");
exit(EXIT_SUCCESS);

}

Example program: fanotify_fid.c
The second program is an example of fanotify being used with a group that identifies
objects by file handles. The program marks the filesystem object that is passed as a
command-line argument and waits until an event of type FAN_CREATE has

Linux man-pages 6.13 2024-11-17 3288

fanotify(7) Miscellaneous Information Manual fanotify(7)

occurred. The event mask indicates which type of filesystem object—either a file or a
directory—was created. Once all events have been read from the buffer and processed
accordingly, the program simply terminates.

The following shell sessions show two different invocations of this program, with dif-
ferent actions performed on a watched object.

The first session shows a mark being placed on /home/user. This is followed by the
creation of a regular file, /home/user/testfile.txt. This results in a FAN_CREATE
event being generated and reported against the file’s parent watched directory object
and with the created file name. Program execution ends once all events captured
within the buffer have been processed.

./fanotify_fid /home/user
Listening for events.
FAN_CREATE (file created):

Directory /home/user has been modified.
Entry 'testfile.txt' is not a subdirectory.

All events processed successfully. Program exiting.

$ touch /home/user/testfile.txt # In another terminal

The second session shows a mark being placed on /home/user. This is followed by
the creation of a directory, /home/user/testdir. This specific action results in a
FAN_CREATE event being generated and is reported with the FAN_ONDIR flag set
and with the created directory name.

./fanotify_fid /home/user
Listening for events.
FAN_CREATE | FAN_ONDIR (subdirectory created):

Directory /home/user has been modified.
Entry 'testdir' is a subdirectory.

All events processed successfully. Program exiting.

$ mkdir -p /home/user/testdir # In another terminal

Program source: fanotify_fid.c

#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/fanotify.h>
#include <unistd.h>

#define BUF_SIZE 256

int

Linux man-pages 6.13 2024-11-17 3289

fanotify(7) Miscellaneous Information Manual fanotify(7)

main(int argc, char *argv[])
{

int fd, ret, event_fd, mount_fd;
ssize_t size, path_len;
char path[PATH_MAX];
char procfd_path[PATH_MAX];
char events_buf[BUF_SIZE];
struct file_handle *file_handle;
struct fanotify_event_metadata *metadata;
struct fanotify_event_info_fid *fid;
const char *file_name;
struct stat sb;

if (argc != 2) {
fprintf(stderr, "Invalid number of command line arguments.\n");
exit(EXIT_FAILURE);

}

mount_fd = open(argv[1], O_DIRECTORY | O_RDONLY);
if (mount_fd == -1) {

perror(argv[1]);
exit(EXIT_FAILURE);

}

/* Create an fanotify file descriptor with FAN_REPORT_DFID_NAME as
a flag so that program can receive fid events with directory
entry name. */

fd = fanotify_init(FAN_CLASS_NOTIF | FAN_REPORT_DFID_NAME, 0);
if (fd == -1) {

perror("fanotify_init");
exit(EXIT_FAILURE);

}

/* Place a mark on the filesystem object supplied in argv[1]. */

ret = fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_ONLYDIR,
FAN_CREATE | FAN_ONDIR,
AT_FDCWD, argv[1]);

if (ret == -1) {
perror("fanotify_mark");
exit(EXIT_FAILURE);

}

printf("Listening for events.\n");

/* Read events from the event queue into a buffer. */

size = read(fd, events_buf, sizeof(events_buf));

Linux man-pages 6.13 2024-11-17 3290

fanotify(7) Miscellaneous Information Manual fanotify(7)

if (size == -1 && errno != EAGAIN) {
perror("read");
exit(EXIT_FAILURE);

}

/* Process all events within the buffer. */

for (metadata = (struct fanotify_event_metadata *) events_buf;
FAN_EVENT_OK(metadata, size);
metadata = FAN_EVENT_NEXT(metadata, size)) {

fid = (struct fanotify_event_info_fid *) (metadata + 1);
file_handle = (struct file_handle *) fid->handle;

/* Ensure that the event info is of the correct type. */

if (fid->hdr.info_type == FAN_EVENT_INFO_TYPE_FID ||
fid->hdr.info_type == FAN_EVENT_INFO_TYPE_DFID) {
file_name = NULL;

} else if (fid->hdr.info_type == FAN_EVENT_INFO_TYPE_DFID_NAME) {
file_name = file_handle->f_handle +

file_handle->handle_bytes;
} else {

fprintf(stderr, "Received unexpected event info type.\n");
exit(EXIT_FAILURE);

}

if (metadata->mask == FAN_CREATE)
printf("FAN_CREATE (file created):\n");

if (metadata->mask == (FAN_CREATE | FAN_ONDIR))
printf("FAN_CREATE | FAN_ONDIR (subdirectory created):\n");

/* metadata->fd is set to FAN_NOFD when the group identifies
objects by file handles. To obtain a file descriptor for
the file object corresponding to an event you can use the
struct file_handle that's provided within the
fanotify_event_info_fid in conjunction with the
open_by_handle_at(2) system call. A check for ESTALE is
done to accommodate for the situation where the file handle
for the object was deleted prior to this system call. */

event_fd = open_by_handle_at(mount_fd, file_handle, O_RDONLY);
if (event_fd == -1) {

if (errno == ESTALE) {
printf("File handle is no longer valid. "

"File has been deleted\n");
continue;

} else {
perror("open_by_handle_at");

Linux man-pages 6.13 2024-11-17 3291

fanotify(7) Miscellaneous Information Manual fanotify(7)

exit(EXIT_FAILURE);
}

}

snprintf(procfd_path, sizeof(procfd_path), "/proc/self/fd/%d",
event_fd);

/* Retrieve and print the path of the modified dentry. */

path_len = readlink(procfd_path, path, sizeof(path) - 1);
if (path_len == -1) {

perror("readlink");
exit(EXIT_FAILURE);

}

path[path_len] = '\0';
printf("\tDirectory '%s' has been modified.\n", path);

if (file_name) {
ret = fstatat(event_fd, file_name, &sb, 0);
if (ret == -1) {

if (errno != ENOENT) {
perror("fstatat");
exit(EXIT_FAILURE);

}
printf("\tEntry '%s' does not exist.\n", file_name);

} else if ((sb.st_mode & S_IFMT) == S_IFDIR) {
printf("\tEntry '%s' is a subdirectory.\n", file_name);

} else {
printf("\tEntry '%s' is not a subdirectory.\n",

file_name);
}

}

/* Close associated file descriptor for this event. */

close(event_fd);
}

printf("All events processed successfully. Program exiting.\n");
exit(EXIT_SUCCESS);

}

SEE ALSO
fanotify_init(2), fanotify_mark(2), inotify(7)

Linux man-pages 6.13 2024-11-17 3292

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

NAME
feature_test_macros - feature test macros

DESCRIPTION
Feature test macros allow the programmer to control the definitions that are exposed
by system header files when a program is compiled.

NOTE: In order to be effective, a feature test macro must be defined before including
any header files. This can be done either in the compilation command (cc
-DMACRO=value) or by defining the macro within the source code before including
any headers. The requirement that the macro must be defined before including any
header file exists because header files may freely include one another. Thus, for ex-
ample, in the following lines, defining the _GNU_SOURCE macro may have no ef-
fect because the header <abc.h> itself includes <xyz.h> (POSIX explicitly allows
this):

#include <abc.h>
#define _GNU_SOURCE
#include <xyz.h>

Some feature test macros are useful for creating portable applications, by preventing
nonstandard definitions from being exposed. Other macros can be used to expose
nonstandard definitions that are not exposed by default.

The precise effects of each of the feature test macros described below can be ascer-
tained by inspecting the <features.h> header file. Note: applications do not need to
directly include <features.h>; indeed, doing so is actively discouraged. See NOTES.

Specification of feature test macro requirements in manual pages
When a function requires that a feature test macro is defined, the manual page SYN-
OPSIS typically includes a note of the following form (this example from the acct(2)
manual page):

#include <unistd.h>

int acct(const char * filename);

Feature Test Macro Requirements for glibc (see
feature_test_macros(7)):

acct(): _BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE <
500)

The || means that in order to obtain the declaration of acct(2) from <unistd.h>, either
of the following macro definitions must be made before including any header files:

#define _BSD_SOURCE
#define _XOPEN_SOURCE /* or any value < 500 */

Alternatively, equivalent definitions can be included in the compilation command:

cc -D_BSD_SOURCE
cc -D_XOPEN_SOURCE # Or any value < 500

Note that, as described below, some feature test macros are defined by default, so
that it may not always be necessary to explicitly specify the feature test macro(s)
shown in the SYNOPSIS.

Linux man-pages 6.13 2024-06-15 3293

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

In a few cases, manual pages use a shorthand for expressing the feature test macro re-
quirements (this example from readahead(2)):

#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <fcntl.h>

ssize_t readahead(int fd, off_t *offset, size_t count);

This format is employed when the feature test macros ensure that the proper function
declarations are visible, and the macros are not defined by default.

Feature test macros understood by glibc
The paragraphs below explain how feature test macros are handled in glibc 2.x, x > 0.

First, though, a summary of a few details for the impatient:

• The macros that you most likely need to use in modern source code are
_POSIX_C_SOURCE (for definitions from various versions of POSIX.1),
_XOPEN_SOURCE (for definitions from various versions of SUS),
_GNU_SOURCE (for GNU and/or Linux specific stuff), and _DE-
FAULT_SOURCE (to get definitions that would normally be provided by de-
fault).

• Certain macros are defined with default values. Thus, although one or more
macros may be indicated as being required in the SYNOPSIS of a man page, it
may not be necessary to define them explicitly. Full details of the defaults are
given later in this man page.

• Defining _XOPEN_SOURCE with a value of 600 or greater produces the same
effects as defining _POSIX_C_SOURCE with a value of 200112L or greater.
Where one sees

_POSIX_C_SOURCE >= 200112L

in the feature test macro requirements in the SYNOPSIS of a man page, it is im-
plicit that the following has the same effect:

_XOPEN_SOURCE >= 600

• Defining _XOPEN_SOURCE with a value of 700 or greater produces the same
effects as defining _POSIX_C_SOURCE with a value of 200809L or greater.
Where one sees

_POSIX_C_SOURCE >= 200809L

in the feature test macro requirements in the SYNOPSIS of a man page, it is im-
plicit that the following has the same effect:

_XOPEN_SOURCE >= 700

glibc understands the following feature test macros:

__STRICT_ANSI__
ISO Standard C. This macro is implicitly defined by gcc(1) when invoked
with, for example, the -std=c99 or -ansi flag.

Linux man-pages 6.13 2024-06-15 3294

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

_POSIX_C_SOURCE
Defining this macro causes header files to expose definitions as follows:

• The value 1 exposes definitions conforming to POSIX.1-1990 and ISO C
(1990).

• The value 2 or greater additionally exposes definitions for POSIX.2-1992.

• The value 199309L or greater additionally exposes definitions for
POSIX.1b (real-time extensions).

• The value 199506L or greater additionally exposes definitions for
POSIX.1c (threads).

• (Since glibc 2.3.3) The value 200112L or greater additionally exposes defi-
nitions corresponding to the POSIX.1-2001 base specification (excluding
the XSI extension). This value also causes C95 (since glibc 2.12) and C99
(since glibc 2.10) features to be exposed (in other words, the equivalent of
defining _ISOC99_SOURCE).

• (Since glibc 2.10) The value 200809L or greater additionally exposes defi-
nitions corresponding to the POSIX.1-2008 base specification (excluding
the XSI extension).

_POSIX_SOURCE
Defining this obsolete macro with any value is equivalent to defining
_POSIX_C_SOURCE with the value 1.

Since this macro is obsolete, its usage is generally not documented when dis-
cussing feature test macro requirements in the man pages.

_XOPEN_SOURCE
Defining this macro causes header files to expose definitions as follows:

• Defining with any value exposes definitions conforming to POSIX.1,
POSIX.2, and XPG4.

• The value 500 or greater additionally exposes definitions for SUSv2
(UNIX 98).

• (Since glibc 2.2) The value 600 or greater additionally exposes definitions
for SUSv3 (UNIX 03; i.e., the POSIX.1-2001 base specification plus the
XSI extension) and C99 definitions.

• (Since glibc 2.10) The value 700 or greater additionally exposes definitions
for SUSv4 (i.e., the POSIX.1-2008 base specification plus the XSI exten-
sion).

If __STRICT_ANSI__ is not defined, or _XOPEN_SOURCE is defined with
a value greater than or equal to 500 and neither _POSIX_SOURCE nor
_POSIX_C_SOURCE is explicitly defined, then the following macros are
implicitly defined:

• _POSIX_SOURCE is defined with the value 1.

• _POSIX_C_SOURCE is defined, according to the value of
_XOPEN_SOURCE:

Linux man-pages 6.13 2024-06-15 3295

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

_XOPEN_SOURCE < 500
_POSIX_C_SOURCE is defined with the value 2.

500 <= _XOPEN_SOURCE < 600
_POSIX_C_SOURCE is defined with the value 199506L.

600 <= _XOPEN_SOURCE < 700
_POSIX_C_SOURCE is defined with the value 200112L.

700 <= _XOPEN_SOURCE (since glibc 2.10)
_POSIX_C_SOURCE is defined with the value 200809L.

In addition, defining _XOPEN_SOURCE with a value of 500 or greater pro-
duces the same effects as defining _XOPEN_SOURCE_EXTENDED.

_XOPEN_SOURCE_EXTENDED
If this macro is defined, and _XOPEN_SOURCE is defined, then expose def-
initions corresponding to the XPG4v2 (SUSv1) UNIX extensions (UNIX 95).
Defining _XOPEN_SOURCE with a value of 500 or more also produces the
same effect as defining _XOPEN_SOURCE_EXTENDED. Use of
_XOPEN_SOURCE_EXTENDED in new source code should be avoided.

Since defining _XOPEN_SOURCE with a value of 500 or more has the same
effect as defining _XOPEN_SOURCE_EXTENDED, the latter (obsolete)
feature test macro is generally not described in the SYNOPSIS in man pages.

_ISOC99_SOURCE (since glibc 2.1.3)
Exposes declarations consistent with the ISO C99 standard.

Earlier glibc 2.1.x versions recognized an equivalent macro named
_ISOC9X_SOURCE (because the C99 standard had not then been finalized).
Although the use of this macro is obsolete, glibc continues to recognize it for
backward compatibility.

Defining _ISOC99_SOURCE also exposes ISO C (1990) Amendment 1
("C95") definitions. (The primary change in C95 was support for international
character sets.)

Invoking the C compiler with the option -std=c99 produces the same effects
as defining this macro.

_ISOC11_SOURCE (since glibc 2.16)
Exposes declarations consistent with the ISO C11 standard. Defining this
macro also enables C99 and C95 features (like _ISOC99_SOURCE).

Invoking the C compiler with the option -std=c11 produces the same effects
as defining this macro.

_LARGEFILE64_SOURCE
Expose definitions for the alternative API specified by the LFS (Large File
Summit) as a "transitional extension" to the Single UNIX Specification. (See
〈http://opengroup.org/platform/lfs.html〉.) The alternative API consists of a set
of new objects (i.e., functions and types) whose names are suffixed with "64"
(e.g., off64_t versus off_t, lseek64() versus lseek(), etc.). New programs
should not employ this macro; instead _FILE_OFFSET_BITS=64 should be
employed.

Linux man-pages 6.13 2024-06-15 3296

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

_LARGEFILE_SOURCE
This macro was historically used to expose certain functions (specifically
fseeko(3) and ftello(3)) that address limitations of earlier APIs (fseek(3) and
ftell(3)) that use long for file offsets. This macro is implicitly defined if
_XOPEN_SOURCE is defined with a value greater than or equal to 500.
New programs should not employ this macro; defining _XOPEN_SOURCE
as just described or defining _FILE_OFFSET_BITS with the value 64 is the
preferred mechanism to achieve the same result.

_FILE_OFFSET_BITS
Defining this macro with the value 64 automatically converts references to
32-bit functions and data types related to file I/O and filesystem operations
into references to their 64-bit counterparts. This is useful for performing I/O
on large files (> 2 Gigabytes) on 32-bit systems. It is also useful when calling
functions like copy_file_range(2) that were added more recently and that come
only in 64-bit flavors. (Defining this macro permits correctly written programs
to use large files with only a recompilation being required.)

64-bit systems naturally permit file sizes greater than 2 Gigabytes, and on
those systems this macro has no effect.

_TIME_BITS
Defining this macro with the value 64 changes the width of time_t(3type) to
64-bit which allows handling of timestamps beyond 2038. It is closely related
to _FILE_OFFSET_BITS and depending on implementation, may require it
set. This macro is available as of glibc 2.34.

_BSD_SOURCE (deprecated since glibc 2.20)
Defining this macro with any value causes header files to expose BSD-derived
definitions.

In glibc versions up to and including 2.18, defining this macro also causes
BSD definitions to be preferred in some situations where standards conflict,
unless one or more of _SVID_SOURCE, _POSIX_SOURCE,
_POSIX_C_SOURCE, _XOPEN_SOURCE, _XOPEN_SOURCE_EX-
TENDED, or _GNU_SOURCE is defined, in which case BSD definitions are
disfavored. Since glibc 2.19, _BSD_SOURCE no longer causes BSD defini-
tions to be preferred in case of conflicts.

Since glibc 2.20, this macro is deprecated. It now has the same effect as defin-
ing _DEFAULT_SOURCE, but generates a compile-time warning (unless
_DEFAULT_SOURCE is also defined). Use _DEFAULT_SOURCE in-
stead. To allow code that requires _BSD_SOURCE in glibc 2.19 and earlier
and _DEFAULT_SOURCE in glibc 2.20 and later to compile without warn-
ings, define both _BSD_SOURCE and _DEFAULT_SOURCE.

_SVID_SOURCE (deprecated since glibc 2.20)
Defining this macro with any value causes header files to expose System V-de-
rived definitions. (SVID == System V Interface Definition; see standards(7).)

Since glibc 2.20, this macro is deprecated in the same fashion as
_BSD_SOURCE.

Linux man-pages 6.13 2024-06-15 3297

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

_DEFAULT_SOURCE (since glibc 2.19)
This macro can be defined to ensure that the "default" definitions are provided
even when the defaults would otherwise be disabled, as happens when individ-
ual macros are explicitly defined, or the compiler is invoked in one of its "stan-
dard" modes (e.g., cc -std=c99). Defining _DEFAULT_SOURCE without
defining other individual macros or invoking the compiler in one of its "stan-
dard" modes has no effect.

The "default" definitions comprise those required by POSIX.1-2008 and ISO
C99, as well as various definitions originally derived from BSD and System V.
On glibc 2.19 and earlier, these defaults were approximately equivalent to ex-
plicitly defining the following:

cc -D_BSD_SOURCE -D_SVID_SOURCE -D_POSIX_C_SOURCE=200809

_ATFILE_SOURCE (since glibc 2.4)
Defining this macro with any value causes header files to expose declarations
of a range of functions with the suffix "at"; see openat(2). Since glibc 2.10,
this macro is also implicitly defined if _POSIX_C_SOURCE is defined with
a value greater than or equal to 200809L.

_GNU_SOURCE
Defining this macro (with any value) implicitly defines _ATFILE_SOURCE,
_LARGEFILE64_SOURCE, _ISOC99_SOURCE,
_XOPEN_SOURCE_EXTENDED, _POSIX_SOURCE,
_POSIX_C_SOURCE with the value 200809L (200112L before glibc 2.10;
199506L before glibc 2.5; 199309L before glibc 2.1) and
_XOPEN_SOURCE with the value 700 (600 before glibc 2.10; 500 before
glibc 2.2). In addition, various GNU-specific extensions are also exposed.

Since glibc 2.19, defining _GNU_SOURCE also has the effect of implicitly
defining _DEFAULT_SOURCE. Before glibc 2.20, defining
_GNU_SOURCE also had the effect of implicitly defining _BSD_SOURCE
and _SVID_SOURCE.

_REENTRANT
Historically, on various C libraries it was necessary to define this macro in all
multithreaded code. (Some C libraries may still require this.) In glibc, this
macro also exposed definitions of certain reentrant functions.

However, glibc has been thread-safe by default for many years; since glibc 2.3,
the only effect of defining _REENTRANT has been to enable one or two of
the same declarations that are also enabled by defining _POSIX_C_SOURCE
with a value of 199606L or greater.

_REENTRANT is now obsolete. In glibc 2.25 and later, defining _REEN-
TRANT is equivalent to defining _POSIX_C_SOURCE with the value
199606L. If a higher POSIX conformance level is selected by any other
means (such as _POSIX_C_SOURCE itself, _XOPEN_SOURCE, _DE-
FAULT_SOURCE, or _GNU_SOURCE), then defining _REENTRANT has
no effect.

This macro is automatically defined if one compiles with cc -pthread .

Linux man-pages 6.13 2024-06-15 3298

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

_THREAD_SAFE
Synonym for the (deprecated) _REENTRANT, provided for compatibility
with some other implementations.

_FORTIFY_SOURCE (since glibc 2.3.4)
Defining this macro causes some lightweight checks to be performed to detect
some buffer overflow errors when employing various string and memory ma-
nipulation functions (for example, memcpy(3), memset(3), stpcpy(3), strcpy(3),
strncpy(3), strcat(3), strncat(3), sprintf(3), snprintf(3), vsprintf(3),
vsnprintf(3), gets(3), and wide character variants thereof). For some functions,
argument consistency is checked; for example, a check is made that open(2)
has been supplied with a mode argument when the specified flags include
O_CREAT. Not all problems are detected, just some common cases.

If _FORTIFY_SOURCE is set to 1, with compiler optimization level 1
(gcc -O1) and above, checks that shouldn’t change the behavior of conform-
ing programs are performed. With _FORTIFY_SOURCE set to 2, some
more checking is added, but some conforming programs might fail.

Some of the checks can be performed at compile time (via macros logic imple-
mented in header files), and result in compiler warnings; other checks take
place at run time, and result in a run-time error if the check fails.

With _FORTIFY_SOURCE set to 3, additional checking is added to inter-
cept some function calls used with an argument of variable size where the
compiler can deduce an upper bound for its value. For example, a program
where malloc(3)’s size argument is variable can now be fortified.

Use of this macro requires compiler support, available since gcc 4.0 and clang
2.6. Use of _FORTIFY_SOURCE set to 3 requires gcc 12.0 or later, or clang
9.0 or later, in conjunction with glibc 2.33 or later.

Default definitions, implicit definitions, and combining definitions
If no feature test macros are explicitly defined, then the following feature test macros
are defined by default: _BSD_SOURCE (in glibc 2.19 and earlier),
_SVID_SOURCE (in glibc 2.19 and earlier), _DEFAULT_SOURCE (since glibc
2.19), _POSIX_SOURCE, and _POSIX_C_SOURCE=200809L (200112L before
glibc 2.10; 199506L before glibc 2.4; 199309L before glibc 2.1).

If any of __STRICT_ANSI__, _ISOC99_SOURCE, _ISOC11_SOURCE (since
glibc 2.18), _POSIX_SOURCE, _POSIX_C_SOURCE, _XOPEN_SOURCE,
_XOPEN_SOURCE_EXTENDED (in glibc 2.11 and earlier), _BSD_SOURCE (in
glibc 2.19 and earlier), or _SVID_SOURCE (in glibc 2.19 and earlier) is explicitly
defined, then _BSD_SOURCE, _SVID_SOURCE, and _DEFAULT_SOURCE are
not defined by default.

If _POSIX_SOURCE and _POSIX_C_SOURCE are not explicitly defined, and ei-
ther __STRICT_ANSI__ is not defined or _XOPEN_SOURCE is defined with a
value of 500 or more, then

• _POSIX_SOURCE is defined with the value 1; and

• _POSIX_C_SOURCE is defined with one of the following values:

Linux man-pages 6.13 2024-06-15 3299

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

• 2, if _XOPEN_SOURCE is defined with a value less than 500;

• 199506L, if _XOPEN_SOURCE is defined with a value greater than or equal
to 500 and less than 600; or

• (since glibc 2.4) 200112L, if _XOPEN_SOURCE is defined with a value
greater than or equal to 600 and less than 700.

• (Since glibc 2.10) 200809L, if _XOPEN_SOURCE is defined with a value
greater than or equal to 700.

• Older versions of glibc do not know about the values 200112L and 200809L
for _POSIX_C_SOURCE, and the setting of this macro will depend on the
glibc version.

• If _XOPEN_SOURCE is undefined, then the setting of
_POSIX_C_SOURCE depends on the glibc version: 199506L, before glibc
2.4; 200112L, since glibc 2.4 to glibc 2.9; and 200809L, since glibc 2.10.

Multiple macros can be defined; the results are additive.

STANDARDS
POSIX.1 specifies _POSIX_C_SOURCE, _POSIX_SOURCE, and
_XOPEN_SOURCE.

_FILE_OFFSET_BITS is not specified by any standard, but is employed on some
other implementations.

_BSD_SOURCE, _SVID_SOURCE, _DEFAULT_SOURCE, _AT-
FILE_SOURCE, _GNU_SOURCE, _FORTIFY_SOURCE, _REENTRANT, and
_THREAD_SAFE are specific to glibc.

HISTORY
_XOPEN_SOURCE_EXTENDED was specified by XPG4v2 (aka SUSv1), but is
not present in SUSv2 and later.

NOTES
<features.h> is a Linux/glibc-specific header file. Other systems have an analogous
file, but typically with a different name. This header file is automatically included by
other header files as required: it is not necessary to explicitly include it in order to em-
ploy feature test macros.

According to which of the above feature test macros are defined, <features.h> inter-
nally defines various other macros that are checked by other glibc header files. These
macros have names prefixed by two underscores (e.g., __USE_MISC). Programs
should never define these macros directly: instead, the appropriate feature test
macro(s) from the list above should be employed.

EXAMPLES
The program below can be used to explore how the various feature test macros are set
depending on the glibc version and what feature test macros are explicitly set. The
following shell session, on a system with glibc 2.10, shows some examples of what
we would see:

$ cc ftm.c
$./a.out
_POSIX_SOURCE defined

Linux man-pages 6.13 2024-06-15 3300

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

_POSIX_C_SOURCE defined: 200809L
_BSD_SOURCE defined
_SVID_SOURCE defined
_ATFILE_SOURCE defined
$ cc -D_XOPEN_SOURCE=500 ftm.c
$./a.out
_POSIX_SOURCE defined
_POSIX_C_SOURCE defined: 199506L
_XOPEN_SOURCE defined: 500
$ cc -D_GNU_SOURCE ftm.c
$./a.out
_POSIX_SOURCE defined
_POSIX_C_SOURCE defined: 200809L
_ISOC99_SOURCE defined
_XOPEN_SOURCE defined: 700
_XOPEN_SOURCE_EXTENDED defined
_LARGEFILE64_SOURCE defined
_BSD_SOURCE defined
_SVID_SOURCE defined
_ATFILE_SOURCE defined
_GNU_SOURCE defined

Program source

/* ftm.c */

#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{
#ifdef _POSIX_SOURCE

printf("_POSIX_SOURCE defined\n");
#endif

#ifdef _POSIX_C_SOURCE
printf("_POSIX_C_SOURCE defined: %jdL\n",

(intmax_t) _POSIX_C_SOURCE);
#endif

#ifdef _ISOC99_SOURCE
printf("_ISOC99_SOURCE defined\n");

#endif

#ifdef _ISOC11_SOURCE
printf("_ISOC11_SOURCE defined\n");

Linux man-pages 6.13 2024-06-15 3301

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

#endif

#ifdef _XOPEN_SOURCE
printf("_XOPEN_SOURCE defined: %d\n", _XOPEN_SOURCE);

#endif

#ifdef _XOPEN_SOURCE_EXTENDED
printf("_XOPEN_SOURCE_EXTENDED defined\n");

#endif

#ifdef _LARGEFILE64_SOURCE
printf("_LARGEFILE64_SOURCE defined\n");

#endif

#ifdef _FILE_OFFSET_BITS
printf("_FILE_OFFSET_BITS defined: %d\n", _FILE_OFFSET_BITS);

#endif

#ifdef _TIME_BITS
printf("_TIME_BITS defined: %d\n", _TIME_BITS);

#endif

#ifdef _BSD_SOURCE
printf("_BSD_SOURCE defined\n");

#endif

#ifdef _SVID_SOURCE
printf("_SVID_SOURCE defined\n");

#endif

#ifdef _DEFAULT_SOURCE
printf("_DEFAULT_SOURCE defined\n");

#endif

#ifdef _ATFILE_SOURCE
printf("_ATFILE_SOURCE defined\n");

#endif

#ifdef _GNU_SOURCE
printf("_GNU_SOURCE defined\n");

#endif

#ifdef _REENTRANT
printf("_REENTRANT defined\n");

#endif

#ifdef _THREAD_SAFE
printf("_THREAD_SAFE defined\n");

#endif

Linux man-pages 6.13 2024-06-15 3302

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

#ifdef _FORTIFY_SOURCE
printf("_FORTIFY_SOURCE defined\n");

#endif

exit(EXIT_SUCCESS);
}

SEE ALSO
libc(7), standards(7), system_data_types(7)

The section "Feature Test Macros" under info libc.

/usr/include/features.h

Linux man-pages 6.13 2024-06-15 3303

fifo(7) Miscellaneous Information Manual fifo(7)

NAME
fifo - first-in first-out special file, named pipe

DESCRIPTION
A FIFO special file (a named pipe) is similar to a pipe, except that it is accessed as
part of the filesystem. It can be opened by multiple processes for reading or writing.
When processes are exchanging data via the FIFO, the kernel passes all data internally
without writing it to the filesystem. Thus, the FIFO special file has no contents on the
filesystem; the filesystem entry merely serves as a reference point so that processes
can access the pipe using a name in the filesystem.

The kernel maintains exactly one pipe object for each FIFO special file that is opened
by at least one process. The FIFO must be opened on both ends (reading and writing)
before data can be passed. Normally, opening the FIFO blocks until the other end is
opened also.

A process can open a FIFO in nonblocking mode. In this case, opening for read-only
succeeds even if no one has opened on the write side yet and opening for write-only
fails with ENXIO (no such device or address) unless the other end has already been
opened.

Under Linux, opening a FIFO for read and write will succeed both in blocking and
nonblocking mode. POSIX leaves this behavior undefined. This can be used to open
a FIFO for writing while there are no readers available. A process that uses both ends
of the connection in order to communicate with itself should be very careful to avoid
deadlocks.

NOTES
For details of the semantics of I/O on FIFOs, see pipe(7).

When a process tries to write to a FIFO that is not opened for read on the other side,
the process is sent a SIGPIPE signal.

FIFO special files can be created by mkfifo(3), and are indicated by ls -l with the file
type 'p'.

SEE ALSO
mkfifo(1), open(2), pipe(2), sigaction(2), signal(2), socketpair(2), mkfifo(3), pipe(7)

Linux man-pages 6.13 2024-05-02 3304

futex(7) Miscellaneous Information Manual futex(7)

NAME
futex - fast user-space locking

SYNOPSIS
#include <linux/futex.h>

DESCRIPTION
The Linux kernel provides futexes ("Fast user-space mutexes") as a building block for
fast user-space locking and semaphores. Futexes are very basic and lend themselves
well for building higher-level locking abstractions such as mutexes, condition vari-
ables, read-write locks, barriers, and semaphores.

Most programmers will in fact not be using futexes directly but will instead rely on
system libraries built on them, such as the Native POSIX Thread Library (NPTL) (see
pthreads(7)).

A futex is identified by a piece of memory which can be shared between processes or
threads. In these different processes, the futex need not have identical addresses. In
its bare form, a futex has semaphore semantics; it is a counter that can be incremented
and decremented atomically; processes can wait for the value to become positive.

Futex operation occurs entirely in user space for the noncontended case. The kernel is
involved only to arbitrate the contended case. As any sane design will strive for non-
contention, futexes are also optimized for this situation.

In its bare form, a futex is an aligned integer which is touched only by atomic assem-
bler instructions. This integer is four bytes long on all platforms. Processes can share
this integer using mmap(2), via shared memory segments, or because they share mem-
ory space, in which case the application is commonly called multithreaded.

Semantics
Any futex operation starts in user space, but it may be necessary to communicate with
the kernel using the futex(2) system call.

To "up" a futex, execute the proper assembler instructions that will cause the host
CPU to atomically increment the integer. Afterward, check if it has in fact changed
from 0 to 1, in which case there were no waiters and the operation is done. This is the
noncontended case which is fast and should be common.

In the contended case, the atomic increment changed the counter from -1 (or some
other negative number). If this is detected, there are waiters. User space should now
set the counter to 1 and instruct the kernel to wake up any waiters using the FU-
TEX_WAKE operation.

Waiting on a futex, to "down" it, is the reverse operation. Atomically decrement the
counter and check if it changed to 0, in which case the operation is done and the futex
was uncontended. In all other circumstances, the process should set the counter to -1
and request that the kernel wait for another process to up the futex. This is done using
the FUTEX_WAIT operation.

The futex(2) system call can optionally be passed a timeout specifying how long the
kernel should wait for the futex to be upped. In this case, semantics are more com-
plex and the programmer is referred to futex(2) for more details. The same holds for
asynchronous futex waiting.

Linux man-pages 6.13 2024-05-02 3305

futex(7) Miscellaneous Information Manual futex(7)

VERSIONS
Initial futex support was merged in Linux 2.5.7 but with different semantics from
those described above. Current semantics are available from Linux 2.5.40 onward.

NOTES
To reiterate, bare futexes are not intended as an easy-to-use abstraction for end users.
Implementors are expected to be assembly literate and to have read the sources of the
futex user-space library referenced below.

This man page illustrates the most common use of the futex(2) primitives; it is by no
means the only one.

SEE ALSO
clone(2), futex(2), get_robust_list(2), set_robust_list(2), set_tid_address(2),
pthreads(7)

Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux (proceedings of the Ot-
tawa Linux Symposium 2002), futex example library, futex-*.tar.bz2
〈https://mirrors.kernel.org/pub/linux/kernel/people/rusty/〉.

Linux man-pages 6.13 2024-05-02 3306

glob(7) Miscellaneous Information Manual glob(7)

NAME
glob - globbing pathnames

DESCRIPTION
Long ago, in UNIX V6, there was a program /etc/glob that would expand wildcard
patterns. Soon afterward this became a shell built-in.

These days there is also a library routine glob(3) that will perform this function for a
user program.

The rules are as follows (POSIX.2, 3.13).

Wildcard matching
A string is a wildcard pattern if it contains one of the characters '?', '*', or '['. Glob-
bing is the operation that expands a wildcard pattern into the list of pathnames match-
ing the pattern. Matching is defined by:

A '?' (not between brackets) matches any single character.

A '*' (not between brackets) matches any string, including the empty string.

Character classes

An expression "[...]" where the first character after the leading '[' is not an '!' matches
a single character, namely any of the characters enclosed by the brackets. The string
enclosed by the brackets cannot be empty; therefore ']' can be allowed between the
brackets, provided that it is the first character. (Thus, "[][!]" matches the three char-
acters '[', ']', and '!'.)

Ranges

There is one special convention: two characters separated by '-' denote a range.
(Thus, "[A-Fa-f0-9]" is equivalent to "[ABCDEFabcdef0123456789]".) One may
include '-' in its literal meaning by making it the first or last character between the
brackets. (Thus, "[]-]" matches just the two characters ']' and '-', and "[--0]"
matches the three characters '-', '.', and '0', since '/' cannot be matched.)

Complementation

An expression "[!...]" matches a single character, namely any character that is not
matched by the expression obtained by removing the first '!' from it. (Thus, "[!]a-]"
matches any single character except ']', 'a', and '-'.)

One can remove the special meaning of '?', '*', and '[' by preceding them by a back-
slash, or, in case this is part of a shell command line, enclosing them in quotes. Be-
tween brackets these characters stand for themselves. Thus, "[[?*\]" matches the four
characters '[', '?', '*', and '\'.

Pathnames
Globbing is applied on each of the components of a pathname separately. A '/' in a
pathname cannot be matched by a '?' or '*' wildcard, or by a range like "[.-0]". A
range containing an explicit '/' character is syntactically incorrect. (POSIX requires
that syntactically incorrect patterns are left unchanged.)

If a filename starts with a '.', this character must be matched explicitly. (Thus, rm *
will not remove .profile, and tar c * will not archive all your files; tar c . is better.)

Linux man-pages 6.13 2024-06-15 3307

glob(7) Miscellaneous Information Manual glob(7)

Empty lists
The nice and simple rule given above: "expand a wildcard pattern into the list of
matching pathnames" was the original UNIX definition. It allowed one to have pat-
terns that expand into an empty list, as in

xv -wait 0 *.gif *.jpg

where perhaps no *.gif files are present (and this is not an error). However, POSIX
requires that a wildcard pattern is left unchanged when it is syntactically incorrect, or
the list of matching pathnames is empty. With bash one can force the classical behav-
ior using this command:

shopt -s nullglob

(Similar problems occur elsewhere. For example, where old scripts have

rm `find . -name "*~"`

new scripts require

rm -f nosuchfile `find . -name "*~"`

to avoid error messages from rm called with an empty argument list.)

NOTES
Regular expressions

Note that wildcard patterns are not regular expressions, although they are a bit similar.
First of all, they match filenames, rather than text, and secondly, the conventions are
not the same: for example, in a regular expression '*' means zero or more copies of the
preceding thing.

Now that regular expressions have bracket expressions where the negation is indicated
by a '^', POSIX has declared the effect of a wildcard pattern "[^...]" to be undefined.

Character classes and internationalization
Of course ranges were originally meant to be ASCII ranges, so that "[-%]" stands
for "[!"#$%]" and "[a-z]" stands for "any lowercase letter". Some UNIX implemen-
tations generalized this so that a range X-Y stands for the set of characters with code
between the codes for X and for Y. However, this requires the user to know the char-
acter coding in use on the local system, and moreover, is not convenient if the collat-
ing sequence for the local alphabet differs from the ordering of the character codes.
Therefore, POSIX extended the bracket notation greatly, both for wildcard patterns
and for regular expressions. In the above we saw three types of items that can occur
in a bracket expression: namely (i) the negation, (ii) explicit single characters, and (iii)
ranges. POSIX specifies ranges in an internationally more useful way and adds three
more types:

(iii) Ranges X-Y comprise all characters that fall between X and Y (inclusive) in the
current collating sequence as defined by the LC_COLLATE category in the current
locale.

(iv) Named character classes, like

[:alnum:] [:alpha:] [:blank:] [:cntrl:]
[:digit:] [:graph:] [:lower:] [:print:]
[:punct:] [:space:] [:upper:] [:xdigit:]

so that one can say "[[:lower:]]" instead of "[a-z]", and have things work in

Linux man-pages 6.13 2024-06-15 3308

glob(7) Miscellaneous Information Manual glob(7)

Denmark, too, where there are three letters past 'z' in the alphabet. These character
classes are defined by the LC_CTYPE category in the current locale.

(v) Collating symbols, like "[.ch.]" or "[.a-acute.]", where the string between "[." and
".]" is a collating element defined for the current locale. Note that this may be a mul-
ticharacter element.

(vi) Equivalence class expressions, like "[=a=]", where the string between "[=" and
"=]" is any collating element from its equivalence class, as defined for the current lo-
cale. For example, "[[=a=]]" might be equivalent to "[aáàäâ]", that is, to "[a[.a-
acute.][.a-grave.][.a-umlaut.][.a-circumflex.]]".

SEE ALSO
sh(1), fnmatch(3), glob(3), locale(7), regex(7)

Linux man-pages 6.13 2024-06-15 3309

hier(7) Miscellaneous Information Manual hier(7)

NAME
hier - description of the filesystem hierarchy

DESCRIPTION
A typical Linux system has, among others, the following directories:

/ This is the root directory. This is where the whole tree starts.

/bin This directory contains executable programs which are needed in single user
mode and to bring the system up or repair it.

/boot Contains static files for the boot loader. This directory holds only the files
which are needed during the boot process. The map installer and configura-
tion files should go to /sbin and /etc. The operating system kernel (initrd for
example) must be located in either / or /boot.

/dev Special or device files, which refer to physical devices. See mknod(1)

/etc Contains configuration files which are local to the machine. Some larger soft-
ware packages, like X11, can have their own subdirectories below /etc. Site-
wide configuration files may be placed here or in /usr/etc. Nevertheless, pro-
grams should always look for these files in /etc and you may have links for
these files to /usr/etc.

/etc/opt
Host-specific configuration files for add-on applications installed in /opt.

/etc/sgml
This directory contains the configuration files for SGML (optional).

/etc/skel
When a new user account is created, files from this directory are usually
copied into the user’s home directory.

/etc/X11
Configuration files for the X11 window system (optional).

/etc/xml
This directory contains the configuration files for XML (optional).

/home
On machines with home directories for users, these are usually beneath this di-
rectory, directly or not. The structure of this directory depends on local ad-
ministration decisions (optional).

/lib This directory should hold those shared libraries that are necessary to boot the
system and to run the commands in the root filesystem.

/lib<qual>
These directories are variants of /lib on system which support more than one
binary format requiring separate libraries (optional).

/lib/modules
Loadable kernel modules (optional).

/lost+found
This directory contains items lost in the filesystem. These items are usually
chunks of files mangled as a consequence of a faulty disk or a system crash.

Linux man-pages 6.13 2024-05-02 3310

hier(7) Miscellaneous Information Manual hier(7)

/media
This directory contains mount points for removable media such as CD and
DVD disks or USB sticks. On systems where more than one device exists for
mounting a certain type of media, mount directories can be created by append-
ing a digit to the name of those available above starting with ’0’, but the un-
qualified name must also exist.

/media/floppy[1-9]
Floppy drive (optional).

/media/cdrom[1-9]
CD-ROM drive (optional).

/media/cdrecorder[1-9]
CD writer (optional).

/media/zip[1-9]
Zip drive (optional).

/media/usb[1-9]
USB drive (optional).

/mnt This directory is a mount point for a temporarily mounted filesystem. In some
distributions, /mnt contains subdirectories intended to be used as mount points
for several temporary filesystems.

/opt This directory should contain add-on packages that contain static files.

/proc This is a mount point for the proc filesystem, which provides information
about running processes and the kernel. This pseudo-filesystem is described in
more detail in proc(5).

/root This directory is usually the home directory for the root user (optional).

/run This directory contains information which describes the system since it was
booted. Once this purpose was served by /var/run and programs may con-
tinue to use it.

/sbin Like /bin, this directory holds commands needed to boot the system, but
which are usually not executed by normal users.

/srv This directory contains site-specific data that is served by this system.

/sys This is a mount point for the sysfs filesystem, which provides information
about the kernel like /proc, but better structured, following the formalism of
kobject infrastructure.

/tmp This directory contains temporary files which may be deleted with no notice,
such as by a regular job or at system boot up.

/usr This directory is usually mounted from a separate partition. It should hold
only shareable, read-only data, so that it can be mounted by various machines
running Linux.

/usr/X11R6
The X-Window system, version 11 release 6 (present in FHS 2.3, removed in
FHS 3.0).

Linux man-pages 6.13 2024-05-02 3311

hier(7) Miscellaneous Information Manual hier(7)

/usr/X11R6/bin
Binaries which belong to the X-Window system; often, there is a symbolic
link from the more traditional /usr/bin/X11 to here.

/usr/X11R6/lib
Data files associated with the X-Window system.

/usr/X11R6/lib/X11
These contain miscellaneous files needed to run X; Often, there is a symbolic
link from /usr/lib/X11 to this directory.

/usr/X11R6/include/X11
Contains include files needed for compiling programs using the X11 window
system. Often, there is a symbolic link from /usr/include/X11 to this direc-
tory.

/usr/bin
This is the primary directory for executable programs. Most programs exe-
cuted by normal users which are not needed for booting or for repairing the
system and which are not installed locally should be placed in this directory.

/usr/bin/mh
Commands for the MH mail handling system (optional).

/usr/bin/X11
This is the traditional place to look for X11 executables; on Linux, it usually is
a symbolic link to /usr/X11R6/bin.

/usr/dict
Replaced by /usr/share/dict.

/usr/doc
Replaced by /usr/share/doc.

/usr/etc
Site-wide configuration files to be shared between several machines may be
stored in this directory. However, commands should always reference those
files using the /etc directory. Links from files in /etc should point to the ap-
propriate files in /usr/etc.

/usr/games
Binaries for games and educational programs (optional).

/usr/include
Include files for the C compiler.

/usr/include/bsd
BSD compatibility include files (optional).

/usr/include/X11
Include files for the C compiler and the X-Window system. This is usually a
symbolic link to /usr/X11R6/include/X11.

/usr/include/asm
Include files which declare some assembler functions. This used to be a sym-
bolic link to /usr/src/linux/include/asm.

Linux man-pages 6.13 2024-05-02 3312

hier(7) Miscellaneous Information Manual hier(7)

/usr/include/linux
This contains information which may change from system release to system
release and used to be a symbolic link to /usr/src/linux/include/linux to get at
operating-system-specific information.

(Note that one should have include files there that work correctly with the cur-
rent libc and in user space. However, Linux kernel source is not designed to
be used with user programs and does not know anything about the libc you are
using. It is very likely that things will break if you let /usr/include/asm and
/usr/include/linux point at a random kernel tree. Debian systems don’t do this
and use headers from a known good kernel version, provided in the libc*-dev
package.)

/usr/include/g++
Include files to use with the GNU C++ compiler.

/usr/lib
Object libraries, including dynamic libraries, plus some executables which
usually are not invoked directly. More complicated programs may have whole
subdirectories there.

/usr/libexec
Directory contains binaries for internal use only and they are not meant to be
executed directly by users shell or scripts.

/usr/lib<qual>
These directories are variants of /usr/lib on system which support more than
one binary format requiring separate libraries, except that the symbolic link
/usr/libqual /X11 is not required (optional).

/usr/lib/X11
The usual place for data files associated with X programs, and configuration
files for the X system itself. On Linux, it usually is a symbolic link to
/usr/X11R6/lib/X11.

/usr/lib/gcc-lib
contains executables and include files for the GNU C compiler, gcc(1)

/usr/lib/groff
Files for the GNU groff document formatting system.

/usr/lib/uucp
Files for uucp(1)

/usr/local
This is where programs which are local to the site typically go.

/usr/local/bin
Binaries for programs local to the site.

/usr/local/doc
Local documentation.

/usr/local/etc
Configuration files associated with locally installed programs.

Linux man-pages 6.13 2024-05-02 3313

hier(7) Miscellaneous Information Manual hier(7)

/usr/local/games
Binaries for locally installed games.

/usr/local/lib
Files associated with locally installed programs.

/usr/local/lib<qual>
These directories are variants of /usr/local/lib on system which support more
than one binary format requiring separate libraries (optional).

/usr/local/include
Header files for the local C compiler.

/usr/local/info
Info pages associated with locally installed programs.

/usr/local/man
Man pages associated with locally installed programs.

/usr/local/sbin
Locally installed programs for system administration.

/usr/local/share
Local application data that can be shared among different architectures of the
same OS.

/usr/local/src
Source code for locally installed software.

/usr/man
Replaced by /usr/share/man.

/usr/sbin
This directory contains program binaries for system administration which are
not essential for the boot process, for mounting /usr, or for system repair.

/usr/share
This directory contains subdirectories with specific application data, that can
be shared among different architectures of the same OS. Often one finds stuff
here that used to live in /usr/doc or /usr/lib or /usr/man.

/usr/share/color
Contains color management information, like International Color Consortium
(ICC) Color profiles (optional).

/usr/share/dict
Contains the word lists used by spell checkers (optional).

/usr/share/dict/words
List of English words (optional).

/usr/share/doc
Documentation about installed programs (optional).

/usr/share/games
Static data files for games in /usr/games (optional).

Linux man-pages 6.13 2024-05-02 3314

hier(7) Miscellaneous Information Manual hier(7)

/usr/share/info
Info pages go here (optional).

/usr/share/locale
Locale information goes here (optional).

/usr/share/man
Manual pages go here in subdirectories according to the man page sections.

/usr/share/man/ locale /man[1-9]
These directories contain manual pages for the specific locale in source code
form. Systems which use a unique language and code set for all manual pages
may omit the <locale> substring.

/usr/share/misc
Miscellaneous data that can be shared among different architectures of the
same OS.

/usr/share/nls
The message catalogs for native language support go here (optional).

/usr/share/ppd
Postscript Printer Definition (PPD) files (optional).

/usr/share/sgml
Files for SGML (optional).

/usr/share/sgml/docbook
DocBook DTD (optional).

/usr/share/sgml/tei
TEI DTD (optional).

/usr/share/sgml/html
HTML DTD (optional).

/usr/share/sgml/mathml
MathML DTD (optional).

/usr/share/terminfo
The database for terminfo (optional).

/usr/share/tmac
Troff macros that are not distributed with groff (optional).

/usr/share/xml
Files for XML (optional).

/usr/share/xml/docbook
DocBook DTD (optional).

/usr/share/xml/xhtml
XHTML DTD (optional).

/usr/share/xml/mathml
MathML DTD (optional).

Linux man-pages 6.13 2024-05-02 3315

hier(7) Miscellaneous Information Manual hier(7)

/usr/share/zoneinfo
Files for timezone information (optional).

/usr/src
Source files for different parts of the system, included with some packages for
reference purposes. Don’t work here with your own projects, as files below
/usr should be read-only except when installing software (optional).

/usr/src/linux
This was the traditional place for the kernel source. Some distributions put
here the source for the default kernel they ship. You should probably use an-
other directory when building your own kernel.

/usr/tmp
Obsolete. This should be a link to /var/tmp. This link is present only for
compatibility reasons and shouldn’t be used.

/var This directory contains files which may change in size, such as spool and log
files.

/var/account
Process accounting logs (optional).

/var/adm
This directory is superseded by /var/log and should be a symbolic link to
/var/log.

/var/backups
Reserved for historical reasons.

/var/cache
Data cached for programs.

/var/cache/fonts
Locally generated fonts (optional).

/var/cache/man
Locally formatted man pages (optional).

/var/cache/www
WWW proxy or cache data (optional).

/var/cache/<package>
Package specific cache data (optional).

/var/catman/cat[1-9] or /var/cache/man/cat[1-9]
These directories contain preformatted manual pages according to their man
page section. (The use of preformatted manual pages is deprecated.)

/var/crash
System crash dumps (optional).

/var/cron
Reserved for historical reasons.

/var/games
Variable game data (optional).

Linux man-pages 6.13 2024-05-02 3316

hier(7) Miscellaneous Information Manual hier(7)

/var/lib
Variable state information for programs.

/var/lib/color
Variable files containing color management information (optional).

/var/lib/hwclock
State directory for hwclock (optional).

/var/lib/misc
Miscellaneous state data.

/var/lib/xdm
X display manager variable data (optional).

/var/lib/<editor>
Editor backup files and state (optional).

/var/lib/<name>
These directories must be used for all distribution packaging support.

/var/lib/<package>
State data for packages and subsystems (optional).

/var/lib/<pkgtool>
Packaging support files (optional).

/var/local
Variable data for /usr/local.

/var/lock
Lock files are placed in this directory. The naming convention for device lock
files is LCK..<device> where <device> is the device’s name in the filesystem.
The format used is that of HDU UUCP lock files, that is, lock files contain a
PID as a 10-byte ASCII decimal number, followed by a newline character.

/var/log
Miscellaneous log files.

/var/opt
Variable data for /opt.

/var/mail
Users’ mailboxes. Replaces /var/spool/mail.

/var/msgs
Reserved for historical reasons.

/var/preserve
Reserved for historical reasons.

/var/run
Run-time variable files, like files holding process identifiers (PIDs) and logged
user information (utmp). Files in this directory are usually cleared when the
system boots.

/var/spool
Spooled (or queued) files for various programs.

Linux man-pages 6.13 2024-05-02 3317

hier(7) Miscellaneous Information Manual hier(7)

/var/spool/at
Spooled jobs for at(1)

/var/spool/cron
Spooled jobs for cron(8)

/var/spool/lpd
Spooled files for printing (optional).

/var/spool/lpd/printer
Spools for a specific printer (optional).

/var/spool/mail
Replaced by /var/mail.

/var/spool/mqueue
Queued outgoing mail (optional).

/var/spool/news
Spool directory for news (optional).

/var/spool/rwho
Spooled files for rwhod(8) (optional).

/var/spool/smail
Spooled files for the smail(1) mail delivery program.

/var/spool/uucp
Spooled files for uucp(1) (optional).

/var/tmp
Like /tmp, this directory holds temporary files stored for an unspecified dura-
tion.

/var/yp
Database files for NIS, formerly known as the Sun Yellow Pages (YP).

STANDARDS
The Filesystem Hierarchy Standard (FHS), Version 3.0
〈https://refspecs.linuxfoundation.org/fhs.shtml〉, published March 19, 2015

BUGS
This list is not exhaustive; different distributions and systems may be configured dif-
ferently.

SEE ALSO
find(1), ln(1), proc(5), file-hierarchy(7), mount(8)

The Filesystem Hierarchy Standard

Linux man-pages 6.13 2024-05-02 3318

hostname(7) Miscellaneous Information Manual hostname(7)

NAME
hostname - hostname resolution description

DESCRIPTION
Hostnames are domains, where a domain is a hierarchical, dot-separated list of subdo-
mains; for example, the machine "monet", in the "example" subdomain of the "com"
domain would be represented as "monet.example.com".

Each element of the hostname must be from 1 to 63 characters long and the entire
hostname, including the dots, can be at most 253 characters long. Valid characters for
hostnames are ASCII (7) letters from a to z, the digits from 0 to 9, and the hyphen (-).
A hostname may not start with a hyphen.

Hostnames are often used with network client and server programs, which must gen-
erally translate the name to an address for use. (This task is generally performed by
either getaddrinfo(3) or the obsolete gethostbyname(3).)

Hostnames are resolved by the NSS framework in glibc according to the hosts config-
uration in nsswitch.conf(5). The DNS-based name resolver (in the dns NSS service
module) resolves them in the following fashion.

If the name consists of a single component, that is, contains no dot, and if the environ-
ment variable HOSTALIASES is set to the name of a file, that file is searched for any
string matching the input hostname. The file should consist of lines made up of two
white-space separated strings, the first of which is the hostname alias, and the second
of which is the complete hostname to be substituted for that alias. If a case-insensi-
tive match is found between the hostname to be resolved and the first field of a line in
the file, the substituted name is looked up with no further processing.

If the input name ends with a trailing dot, the trailing dot is removed, and the remain-
ing name is looked up with no further processing.

If the input name does not end with a trailing dot, it is looked up by searching through
a list of domains until a match is found. The default search list includes first the local
domain, then its parent domains with at least 2 name components (longest first). For
example, in the domain cs.example.com, the name lithium.cchem will be checked first
as lithium.cchem.cs.example and then as lithium.cchem.example.com.
lithium.cchem.com will not be tried, as there is only one component remaining from
the local domain. The search path can be changed from the default by a system-wide
configuration file (see resolver(5)).

SEE ALSO
getaddrinfo(3), gethostbyname(3), nsswitch.conf(5), resolver(5), mailaddr(7),
named(8)

IETF RFC 1123 〈http://www.ietf.org/rfc/rfc1123.txt〉

IETF RFC 1178 〈http://www.ietf.org/rfc/rfc1178.txt〉

Linux man-pages 6.13 2024-05-02 3319

icmp(7) Miscellaneous Information Manual icmp(7)

NAME
icmp - Linux IPv4 ICMP kernel module.

DESCRIPTION
This kernel protocol module implements the Internet Control Message Protocol de-
fined in RFC 792. It is used to signal error conditions and for diagnosis. The user
doesn’t interact directly with this module; instead it communicates with the other pro-
tocols in the kernel and these pass the ICMP errors to the application layers. The ker-
nel ICMP module also answers ICMP requests.

A user protocol may receive ICMP packets for all local sockets by opening a raw
socket with the protocol IPPROTO_ICMP. See raw(7) for more information. The
types of ICMP packets passed to the socket can be filtered using the ICMP_FILTER
socket option. ICMP packets are always processed by the kernel too, even when
passed to a user socket.

Linux limits the rate of ICMP error packets to each destination. ICMP_REDIRECT
and ICMP_DEST_UNREACH are also limited by the destination route of the in-
coming packets.

/proc interfaces
ICMP supports a set of /proc interfaces to configure some global IP parameters. The
parameters can be accessed by reading or writing files in the directory
/proc/sys/net/ipv4/ . Most of these parameters are rate limitations for specific ICMP
types. Linux 2.2 uses a token bucket filter to limit ICMPs. The value is the timeout in
jiffies until the token bucket filter is cleared after a burst. A jiffy is a system depen-
dent unit, usually 10ms on i386 and about 1ms on alpha and ia64.

icmp_destunreach_rate (Linux 2.2 to Linux 2.4.9)
Maximum rate to send ICMP Destination Unreachable packets. This limits
the rate at which packets are sent to any individual route or destination. The
limit does not affect sending of ICMP_FRAG_NEEDED packets needed for
path MTU discovery.

icmp_echo_ignore_all (since Linux 2.2)
If this value is nonzero, Linux will ignore all ICMP_ECHO requests.

icmp_echo_ignore_broadcasts (since Linux 2.2)
If this value is nonzero, Linux will ignore all ICMP_ECHO packets sent to
broadcast addresses.

icmp_echoreply_rate (Linux 2.2 to Linux 2.4.9)
Maximum rate for sending ICMP_ECHOREPLY packets in response to
ICMP_ECHOREQUEST packets.

icmp_errors_use_inbound_ifaddr (Boolean; default: disabled; since Linux 2.6.12)
If disabled, ICMP error messages are sent with the primary address of the exit-
ing interface.

If enabled, the message will be sent with the primary address of the interface
that received the packet that caused the ICMP error. This is the behavior that
many network administrators will expect from a router. And it can make de-
bugging complicated network layouts much easier.

Linux man-pages 6.13 2024-05-02 3320

icmp(7) Miscellaneous Information Manual icmp(7)

Note that if no primary address exists for the interface selected, then the pri-
mary address of the first non-loopback interface that has one will be used re-
gardless of this setting.

icmp_ignore_bogus_error_responses (Boolean; default: disabled; since Linux 2.2)
Some routers violate RFC1122 by sending bogus responses to broadcast
frames. Such violations are normally logged via a kernel warning. If this pa-
rameter is enabled, the kernel will not give such warnings, which will avoid
log file clutter.

icmp_paramprob_rate (Linux 2.2 to Linux 2.4.9)
Maximum rate for sending ICMP_PARAMETERPROB packets. These
packets are sent when a packet arrives with an invalid IP header.

icmp_ratelimit (integer; default: 1000; since Linux 2.4.10)
Limit the maximum rates for sending ICMP packets whose type matches
icmp_ratemask (see below) to specific targets. 0 to disable any limiting, other-
wise the minimum space between responses in milliseconds.

icmp_ratemask (integer; default: see below; since Linux 2.4.10)
Mask made of ICMP types for which rates are being limited.

Significant bits: IHGFEDCBA9876543210
Default mask: 0000001100000011000 (0x1818)

Bit definitions (see the Linux kernel source file include/linux/icmp.h):
0 Echo Reply
3 Destination Unreachable *
4 Source Quench *
5 Redirect
8 Echo Request
B Time Exceeded *
C Parameter Problem *
D Timestamp Request
E Timestamp Reply
F Info Request
G Info Reply
H Address Mask Request
I Address Mask Reply

The bits marked with an asterisk are rate limited by default (see the default mask
above).

icmp_timeexceed_rate (Linux 2.2 to Linux 2.4.9)
Maximum rate for sending ICMP_TIME_EXCEEDED packets. These
packets are sent to prevent loops when a packet has crossed too many hops.

ping_group_range (two integers; default: see below; since Linux 2.6.39)
Range of the group IDs (minimum and maximum group IDs, inclusive) that
are allowed to create ICMP Echo sockets. The default is "1 0", which means
no group is allowed to create ICMP Echo sockets.

VERSIONS
Support for the ICMP_ADDRESS request was removed in Linux 2.2.

Linux man-pages 6.13 2024-05-02 3321

icmp(7) Miscellaneous Information Manual icmp(7)

Support for ICMP_SOURCE_QUENCH was removed in Linux 2.2.

NOTES
As many other implementations don’t support IPPROTO_ICMP raw sockets, this
feature should not be relied on in portable programs.

ICMP_REDIRECT packets are not sent when Linux is not acting as a router. They
are also accepted only from the old gateway defined in the routing table and the redi-
rect routes are expired after some time.

The 64-bit timestamp returned by ICMP_TIMESTAMP is in milliseconds since the
Epoch, 1970-01-01 00:00:00 +0000 (UTC).

Linux ICMP internally uses a raw socket to send ICMPs. This raw socket may appear
in netstat(8) output with a zero inode.

SEE ALSO
ip(7), rdisc(8)

RFC 792 for a description of the ICMP protocol.

Linux man-pages 6.13 2024-05-02 3322

inode(7) Miscellaneous Information Manual inode(7)

NAME
inode - file inode information

DESCRIPTION
Each file has an inode containing metadata about the file. An application can retrieve
this metadata using stat(2) (or related calls), which returns a stat structure, or statx(2),
which returns a statx structure.

The following is a list of the information typically found in, or associated with, the
file inode, with the names of the corresponding structure fields returned by stat(2) and
statx(2):

Device where inode resides
stat.st_dev; statx.stx_dev_minor and statx.stx_dev_major

Each inode (as well as the associated file) resides in a filesystem that is hosted
on a device. That device is identified by the combination of its major ID
(which identifies the general class of device) and minor ID (which identifies a
specific instance in the general class).

Inode number
stat.st_ino; statx.stx_ino

Each file in a filesystem has a unique inode number. Inode numbers are guar-
anteed to be unique only within a filesystem (i.e., the same inode numbers
may be used by different filesystems, which is the reason that hard links may
not cross filesystem boundaries). This field contains the file’s inode number.

File type and mode
stat.st_mode; statx.stx_mode

See the discussion of file type and mode, below.

Link count
stat.st_nlink; statx.stx_nlink

This field contains the number of hard links to the file. Additional links to an
existing file are created using link(2).

User ID
stat.st_uid; statx.stx_uid

This field records the user ID of the owner of the file. For newly created files,
the file user ID is the effective user ID of the creating process. The user ID of
a file can be changed using chown(2).

Group ID
stat.st_gid; statx.stx_gid

The inode records the ID of the group owner of the file. For newly created
files, the file group ID is either the group ID of the parent directory or the ef-
fective group ID of the creating process, depending on whether or not the set-
group-ID bit is set on the parent directory (see below). The group ID of a file
can be changed using chown(2).

Device represented by this inode
stat.st_rdev; statx.stx_rdev_minor and statx.stx_rdev_major

Linux man-pages 6.13 2024-09-01 3323

inode(7) Miscellaneous Information Manual inode(7)

If this file (inode) represents a device, then the inode records the major and
minor ID of that device.

File size
stat.st_size; statx.stx_size

This field gives the size of the file (if it is a regular file or a symbolic link) in
bytes. The size of a symbolic link is the length of the pathname it contains,
without a terminating null byte.

Preferred block size for I/O
stat.st_blksize; statx.stx_blksize

This field gives the "preferred" blocksize for efficient filesystem I/O. (Writing
to a file in smaller chunks may cause an inefficient read-modify-rewrite.)

Number of blocks allocated to the file
stat.st_blocks; statx.stx_blocks

This field indicates the number of blocks allocated to the file, 512-byte units,
(This may be smaller than st_size/512 when the file has holes.)

The POSIX.1 standard notes that the unit for the st_blocks member of the stat
structure is not defined by the standard. On many implementations it is 512
bytes; on a few systems, a different unit is used, such as 1024. Furthermore,
the unit may differ on a per-filesystem basis.

Last access timestamp (atime)
stat.st_atime; statx.stx_atime

This is the file’s last access timestamp. It is changed by file accesses, for ex-
ample, by execve(2), mknod(2), pipe(2), utime(2), and read(2) (of more than
zero bytes). Other interfaces, such as mmap(2), may or may not update the
atime timestamp

Some filesystem types allow mounting in such a way that file and/or directory
accesses do not cause an update of the atime timestamp. (See noatime, nodi-
ratime, and relatime in mount(8), and related information in mount(2).) In ad-
dition, the atime timestamp is not updated if a file is opened with the O_NOA-
TIME flag; see open(2).

File creation (birth) timestamp (btime)
(not returned in the stat structure); statx.stx_btime

The file’s creation timestamp. This is set on file creation and not changed sub-
sequently.

The btime timestamp was not historically present on UNIX systems and is not
currently supported by most Linux filesystems.

Last modification timestamp (mtime)
stat.st_mtime; statx.stx_mtime

This is the file’s last modification timestamp. It is changed by file modifica-
tions, for example, by mknod(2), truncate(2), utime(2), and write(2) (of more
than zero bytes). Moreover, the mtime timestamp of a directory is changed by
the creation or deletion of files in that directory. The mtime timestamp is not
changed for changes in owner, group, hard link count, or mode.

Linux man-pages 6.13 2024-09-01 3324

inode(7) Miscellaneous Information Manual inode(7)

Last status change timestamp (ctime)
stat.st_ctime; statx.stx_ctime

This is the file’s last status change timestamp. It is changed by writing or by
setting inode information (i.e., owner, group, link count, mode, etc.).

The timestamp fields report time measured with a zero point at the Epoch,
1970-01-01 00:00:00 +0000, UTC (see time(7)).

Nanosecond timestamps are supported on XFS, JFS, Btrfs, and ext4 (since Linux
2.6.23). Nanosecond timestamps are not supported in ext2, ext3, and Reiserfs. In or-
der to return timestamps with nanosecond precision, the timestamp fields in the stat
and statx structures are defined as structures that include a nanosecond component.
See stat(2) and statx(2) for details. On filesystems that do not support subsecond
timestamps, the nanosecond fields in the stat and statx structures are returned with the
value 0.

The file type and mode
The stat.st_mode field (for statx(2), the statx.stx_mode field) contains the file type and
mode.

POSIX refers to the stat.st_mode bits corresponding to the mask S_IFMT (see below)
as the file type, the 12 bits corresponding to the mask 07777 as the file mode bits and
the least significant 9 bits (0777) as the file permission bits.

The following mask values are defined for the file type:
S_IFMT 0170000 bit mask for the file type bit field
S_IFSOCK 0140000 socket
S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 FIFO

Thus, to test for a regular file (for example), one could write:

stat(pathname, &sb);
if ((sb.st_mode & S_IFMT) == S_IFREG) {

/* Handle regular file */
}

Because tests of the above form are common, additional macros are defined by
POSIX to allow the test of the file type in st_mode to be written more concisely:

S_ISREG(m) is it a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) character device?

S_ISBLK (m) block device?

S_ISFIFO(m) FIFO (named pipe)?

S_ISLNK (m) symbolic link? (Not in POSIX.1-1996.)

Linux man-pages 6.13 2024-09-01 3325

inode(7) Miscellaneous Information Manual inode(7)

S_ISSOCK (m) socket? (Not in POSIX.1-1996.)

The preceding code snippet could thus be rewritten as:

stat(pathname, &sb);
if (S_ISREG(sb.st_mode)) {

/* Handle regular file */
}

The definitions of most of the above file type test macros are provided if any of the
following feature test macros is defined: _BSD_SOURCE (in glibc 2.19 and earlier),
_SVID_SOURCE (in glibc 2.19 and earlier), or _DEFAULT_SOURCE (in glibc
2.20 and later). In addition, definitions of all of the above macros except S_IFSOCK
and S_ISSOCK() are provided if _XOPEN_SOURCE is defined.

The definition of S_IFSOCK can also be exposed either by defining
_XOPEN_SOURCE with a value of 500 or greater or (since glibc 2.24) by defining
both _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED.

The definition of S_ISSOCK() is exposed if any of the following feature test macros
is defined: _BSD_SOURCE (in glibc 2.19 and earlier), _DEFAULT_SOURCE (in
glibc 2.20 and later), _XOPEN_SOURCE with a value of 500 or greater,
_POSIX_C_SOURCE with a value of 200112L or greater, or (since glibc 2.24) by
defining both _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED.

The following mask values are defined for the file mode component of the st_mode
field:

S_ISUID 04000 set-user-ID bit (see execve(2))
S_ISGID 02000 set-group-ID bit (see below)
S_ISVTX 01000 sticky bit (see below)
S_IRWXU 00700 owner has read, write, and execute permission
S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission
S_IXUSR 00100 owner has execute permission
S_IRWXG 00070 group has read, write, and execute permission
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission
S_IRWXO 00007 others (not in group) have read, write, and execute per-

mission
S_IROTH 00004 others have read permission
S_IWOTH 00002 others have write permission
S_IXOTH 00001 others have execute permission

The set-group-ID bit (S_ISGID) has several special uses. For a directory, it indicates
that BSD semantics are to be used for that directory: files created there inherit their
group ID from the directory, not from the effective group ID of the creating process,
and directories created there will also get the S_ISGID bit set. For an executable file,
the set-group-ID bit causes the effective group ID of a process that executes the file to
change as described in execve(2). For a file that does not have the group execution bit
(S_IXGRP) set, the set-group-ID bit indicates mandatory file/record locking.

The sticky bit (S_ISVTX) on a directory means that a file in that directory can be

Linux man-pages 6.13 2024-09-01 3326

inode(7) Miscellaneous Information Manual inode(7)

renamed or deleted only by the owner of the file, by the owner of the directory, and by
a privileged process.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

POSIX.1-1990 did not describe the S_IFMT, S_IFSOCK, S_IFLNK, S_IFREG,
S_IFBLK, S_IFDIR, S_IFCHR, S_IFIFO, and S_ISVTX constants, but instead
specified the use of the macros S_ISDIR() and so on.

The S_ISLNK() and S_ISSOCK() macros were not in POSIX.1-1996; the former is
from SVID 4, the latter from SUSv2.

UNIX V7 (and later systems) had S_IREAD, S_IWRITE, S_IEXEC, and where
POSIX prescribes the synonyms S_IRUSR, S_IWUSR, and S_IXUSR.

NOTES
For pseudofiles that are autogenerated by the kernel, the file size (stat.st_size;
statx.stx_size) reported by the kernel is not accurate. For example, the value 0 is re-
turned for many files under the /proc directory, while various files under /sys report a
size of 4096 bytes, even though the file content is smaller. For such files, one should
simply try to read as many bytes as possible (and append '\0' to the returned buffer if it
is to be interpreted as a string).

SEE ALSO
stat(1), stat(2), statx(2), symlink(7)

Linux man-pages 6.13 2024-09-01 3327

inotify(7) Miscellaneous Information Manual inotify(7)

NAME
inotify - monitoring filesystem events

DESCRIPTION
The inotify API provides a mechanism for monitoring filesystem events. Inotify can
be used to monitor individual files, or to monitor directories. When a directory is
monitored, inotify will return events for the directory itself, and for files inside the di-
rectory.

The following system calls are used with this API:

• inotify_init(2) creates an inotify instance and returns a file descriptor referring to
the inotify instance. The more recent inotify_init1(2) is like inotify_init(2), but has
a flags argument that provides access to some extra functionality.

• inotify_add_watch(2) manipulates the "watch list" associated with an inotify in-
stance. Each item ("watch") in the watch list specifies the pathname of a file or di-
rectory, along with some set of events that the kernel should monitor for the file
referred to by that pathname. inotify_add_watch(2) either creates a new watch
item, or modifies an existing watch. Each watch has a unique "watch descriptor",
an integer returned by inotify_add_watch(2) when the watch is created.

• When events occur for monitored files and directories, those events are made
available to the application as structured data that can be read from the inotify file
descriptor using read(2) (see below).

• inotify_rm_watch(2) removes an item from an inotify watch list.

• When all file descriptors referring to an inotify instance have been closed (using
close(2)), the underlying object and its resources are freed for reuse by the kernel;
all associated watches are automatically freed.

With careful programming, an application can use inotify to efficiently monitor and
cache the state of a set of filesystem objects. However, robust applications should al-
low for the fact that bugs in the monitoring logic or races of the kind described below
may leave the cache inconsistent with the filesystem state. It is probably wise to do
some consistency checking, and rebuild the cache when inconsistencies are detected.

Reading events from an inotify file descriptor
To determine what events have occurred, an application read(2)s from the inotify file
descriptor. If no events have so far occurred, then, assuming a blocking file descrip-
tor, read(2) will block until at least one event occurs (unless interrupted by a signal, in
which case the call fails with the error EINTR; see signal(7)).

Each successful read(2) returns a buffer containing one or more of the following
structures:

struct inotify_event {
int wd; /* Watch descriptor */
uint32_t mask; /* Mask describing event */
uint32_t cookie; /* Unique cookie associating related

events (for rename(2)) */
uint32_t len; /* Size of name field */
char name[]; /* Optional null-terminated name */

};

Linux man-pages 6.13 2024-11-17 3328

inotify(7) Miscellaneous Information Manual inotify(7)

wd identifies the watch for which this event occurs. It is one of the watch descriptors
returned by a previous call to inotify_add_watch(2).

mask contains bits that describe the event that occurred (see below).

cookie is a unique integer that connects related events. Currently, this is used only for
rename events, and allows the resulting pair of IN_MOVED_FROM and
IN_MOVED_TO events to be connected by the application. For all other event
types, cookie is set to 0.

The name field is present only when an event is returned for a file inside a watched di-
rectory; it identifies the filename within the watched directory. This filename is null-
terminated, and may include further null bytes ('\0') to align subsequent reads to a
suitable address boundary.

The len field counts all of the bytes in name, including the null bytes; the size of each
inotify_event structure is thus sizeof(struct inotify_event)+size.

The behavior when the buffer given to read(2) is too small to return information about
the next event depends on the kernel version: before Linux 2.6.21, read(2) returns 0;
since Linux 2.6.21, read(2) fails with the error EINVAL. Specifying a buffer of size

sizeof(struct inotify_event) + NAME_MAX + 1

will be sufficient to read at least one event.

inotify events
The inotify_add_watch(2) mask argument and the mask field of the inotify_event
structure returned when read(2)ing an inotify file descriptor are both bit masks identi-
fying inotify events. The following bits can be specified in mask when calling ino-
tify_add_watch(2) and may be returned in the mask field returned by read(2):

IN_ACCESS (+)
File was accessed (e.g., read(2), execve(2)).

IN_ATTRIB (*)
Metadata changed—for example, permissions (e.g., chmod(2)), time-
stamps (e.g., utimensat(2)), extended attributes (setxattr(2)), link count
(since Linux 2.6.25; e.g., for the target of link(2) and for unlink(2)), and
user/group ID (e.g., chown(2)).

IN_CLOSE_WRITE (+)
File opened for writing was closed.

IN_CLOSE_NOWRITE (*)
File or directory not opened for writing was closed.

IN_CREATE (+)
File/directory created in watched directory (e.g., open(2) O_CREAT,
mkdir(2), link(2), symlink(2), bind(2) on a UNIX domain socket).

IN_DELETE (+)
File/directory deleted from watched directory.

IN_DELETE_SELF
Watched file/directory was itself deleted. (This event also occurs if an
object is moved to another filesystem, since mv(1) in effect copies the file
to the other filesystem and then deletes it from the original filesystem.)

Linux man-pages 6.13 2024-11-17 3329

inotify(7) Miscellaneous Information Manual inotify(7)

In addition, an IN_IGNORED event will subsequently be generated for
the watch descriptor.

IN_MODIFY (+)
File was modified (e.g., write(2), truncate(2)).

IN_MOVE_SELF
Watched file/directory was itself moved.

IN_MOVED_FROM (+)
Generated for the directory containing the old filename when a file is re-
named.

IN_MOVED_TO (+)
Generated for the directory containing the new filename when a file is re-
named.

IN_OPEN (*)
File or directory was opened.

Inotify monitoring is inode-based: when monitoring a file (but not when monitoring
the directory containing a file), an event can be generated for activity on any link to
the file (in the same or a different directory).

When monitoring a directory:

• the events marked above with an asterisk (*) can occur both for the directory itself
and for objects inside the directory; and

• the events marked with a plus sign (+) occur only for objects inside the directory
(not for the directory itself).

Note: when monitoring a directory, events are not generated for the files inside the di-
rectory when the events are performed via a pathname (i.e., a link) that lies outside the
monitored directory.

When events are generated for objects inside a watched directory, the name field in
the returned inotify_event structure identifies the name of the file within the directory.

The IN_ALL_EVENTS macro is defined as a bit mask of all of the above events.
This macro can be used as the mask argument when calling inotify_add_watch(2).

Two additional convenience macros are defined:

IN_MOVE
Equates to IN_MOVED_FROM | IN_MOVED_TO.

IN_CLOSE
Equates to IN_CLOSE_WRITE | IN_CLOSE_NOWRITE.

The following further bits can be specified in mask when calling ino-
tify_add_watch(2):

IN_DONT_FOLLOW (since Linux 2.6.15)
Don’t dereference pathname if it is a symbolic link.

IN_EXCL_UNLINK (since Linux 2.6.36)
By default, when watching events on the children of a directory, events
are generated for children even after they have been unlinked from the

Linux man-pages 6.13 2024-11-17 3330

inotify(7) Miscellaneous Information Manual inotify(7)

directory. This can result in large numbers of uninteresting events for
some applications (e.g., if watching /tmp, in which many applications
create temporary files whose names are immediately unlinked). Specify-
ing IN_EXCL_UNLINK changes the default behavior, so that events are
not generated for children after they have been unlinked from the
watched directory.

IN_MASK_ADD
If a watch instance already exists for the filesystem object corresponding
to pathname, add (OR) the events in mask to the watch mask (instead of
replacing the mask); the error EINVAL results if IN_MASK_CREATE
is also specified.

IN_ONESHOT
Monitor the filesystem object corresponding to pathname for one event,
then remove from watch list.

IN_ONLYDIR (since Linux 2.6.15)
Watch pathname only if it is a directory; the error ENOTDIR results if
pathname is not a directory. Using this flag provides an application with
a race-free way of ensuring that the monitored object is a directory.

IN_MASK_CREATE (since Linux 4.18)
Watch pathname only if it does not already have a watch associated with
it; the error EEXIST results if pathname is already being watched.

Using this flag provides an application with a way of ensuring that new
watches do not modify existing ones. This is useful because multiple
paths may refer to the same inode, and multiple calls to ino-
tify_add_watch(2) without this flag may clobber existing watch masks.

The following bits may be set in the mask field returned by read(2):

IN_IGNORED
Watch was removed explicitly (inotify_rm_watch(2)) or automatically
(file was deleted, or filesystem was unmounted). See also BUGS.

IN_ISDIR
Subject of this event is a directory.

IN_Q_OVERFLOW
Event queue overflowed (wd is -1 for this event).

IN_UNMOUNT
Filesystem containing watched object was unmounted. In addition, an
IN_IGNORED event will subsequently be generated for the watch de-
scriptor.

Examples
Suppose an application is watching the directory dir and the file dir/myfile for all
events. The examples below show some events that will be generated for these two
objects.

fd = open("dir/myfile", O_RDWR);
Generates IN_OPEN events for both dir and dir/myfile.

Linux man-pages 6.13 2024-11-17 3331

inotify(7) Miscellaneous Information Manual inotify(7)

read(fd, buf, count);
Generates IN_ACCESS events for both dir and dir/myfile.

write(fd, buf, count);
Generates IN_MODIFY events for both dir and dir/myfile.

fchmod(fd, mode);
Generates IN_ATTRIB events for both dir and dir/myfile.

close(fd);
Generates IN_CLOSE_WRITE events for both dir and dir/myfile.

Suppose an application is watching the directories dir1 and dir2, and the file dir1/my-
file. The following examples show some events that may be generated.

link("dir1/myfile", "dir2/new");
Generates an IN_ATTRIB event for myfile and an IN_CREATE event
for dir2.

rename("dir1/myfile", "dir2/myfile");
Generates an IN_MOVED_FROM event for dir1, an IN_MOVED_TO
event for dir2, and an IN_MOVE_SELF event for myfile. The
IN_MOVED_FROM and IN_MOVED_TO events will have the same
cookie value.

Suppose that dir1/xx and dir2/yy are (the only) links to the same file, and an applica-
tion is watching dir1, dir2, dir1/xx, and dir2/yy. Executing the following calls in the
order given below will generate the following events:

unlink("dir2/yy");
Generates an IN_ATTRIB event for xx (because its link count changes)
and an IN_DELETE event for dir2.

unlink("dir1/xx");
Generates IN_ATTRIB, IN_DELETE_SELF, and IN_IGNORED
events for xx, and an IN_DELETE event for dir1.

Suppose an application is watching the directory dir and (the empty) directory
dir/subdir. The following examples show some events that may be generated.

mkdir("dir/new", mode);
Generates an IN_CREATE | IN_ISDIR event for dir.

rmdir("dir/subdir");
Generates IN_DELETE_SELF and IN_IGNORED events for subdir,
and an IN_DELETE | IN_ISDIR event for dir.

/proc interfaces
The following interfaces can be used to limit the amount of kernel memory consumed
by inotify:

/proc/sys/fs/inotify/max_queued_events
The value in this file is used when an application calls inotify_init(2) to set an
upper limit on the number of events that can be queued to the corresponding
inotify instance. Events in excess of this limit are dropped, but an
IN_Q_OVERFLOW event is always generated.

Linux man-pages 6.13 2024-11-17 3332

inotify(7) Miscellaneous Information Manual inotify(7)

/proc/sys/fs/inotify/max_user_instances
This specifies an upper limit on the number of inotify instances that can be
created per real user ID.

/proc/sys/fs/inotify/max_user_watches
This specifies an upper limit on the number of watches that can be created per
real user ID.

STANDARDS
Linux.

HISTORY
Inotify was merged into Linux 2.6.13. The required library interfaces were added in
glibc 2.4. (IN_DONT_FOLLOW, IN_MASK_ADD, and IN_ONLYDIR were
added in glibc 2.5.)

NOTES
Inotify file descriptors can be monitored using select(2), poll(2), and epoll(7). When
an event is available, the file descriptor indicates as readable.

Since Linux 2.6.25, signal-driven I/O notification is available for inotify file descrip-
tors; see the discussion of F_SETFL (for setting the O_ASYNC flag), F_SETOWN,
and F_SETSIG in fcntl(2). The siginfo_t structure (described in sigaction(2)) that is
passed to the signal handler has the following fields set: si_fd is set to the inotify file
descriptor number; si_signo is set to the signal number; si_code is set to POLL_IN;
and POLLIN is set in si_band .

If successive output inotify events produced on the inotify file descriptor are identical
(same wd , mask, cookie, and name), then they are coalesced into a single event if the
older event has not yet been read (but see BUGS). This reduces the amount of kernel
memory required for the event queue, but also means that an application can’t use ino-
tify to reliably count file events.

The events returned by reading from an inotify file descriptor form an ordered queue.
Thus, for example, it is guaranteed that when renaming from one directory to another,
events will be produced in the correct order on the inotify file descriptor.

The set of watch descriptors that is being monitored via an inotify file descriptor can
be viewed via the entry for the inotify file descriptor in the process’s /proc/ pid /fdinfo
directory. See proc(5) for further details. The FIONREAD ioctl(2) returns the num-
ber of bytes available to read from an inotify file descriptor.

Limitations and caveats
The inotify API provides no information about the user or process that triggered the
inotify event. In particular, there is no easy way for a process that is monitoring
events via inotify to distinguish events that it triggers itself from those that are trig-
gered by other processes.

Inotify reports only events that a user-space program triggers through the filesystem
API. As a result, it does not catch remote events that occur on network filesystems.
(Applications must fall back to polling the filesystem to catch such events.) Further-
more, various pseudo-filesystems such as /proc, /sys, and /dev/pts are not moni-
torable with inotify.

The inotify API does not report file accesses and modifications that may occur

Linux man-pages 6.13 2024-11-17 3333

inotify(7) Miscellaneous Information Manual inotify(7)

because of mmap(2), msync(2), and munmap(2).

The inotify API identifies affected files by filename. However, by the time an applica-
tion processes an inotify event, the filename may already have been deleted or re-
named.

The inotify API identifies events via watch descriptors. It is the application’s respon-
sibility to cache a mapping (if one is needed) between watch descriptors and path-
names. Be aware that directory renamings may affect multiple cached pathnames.

Inotify monitoring of directories is not recursive: to monitor subdirectories under a di-
rectory, additional watches must be created. This can take a significant amount time
for large directory trees.

If monitoring an entire directory subtree, and a new subdirectory is created in that tree
or an existing directory is renamed into that tree, be aware that by the time you create
a watch for the new subdirectory, new files (and subdirectories) may already exist in-
side the subdirectory. Therefore, you may want to scan the contents of the subdirec-
tory immediately after adding the watch (and, if desired, recursively add watches for
any subdirectories that it contains).

Note that the event queue can overflow. In this case, events are lost. Robust applica-
tions should handle the possibility of lost events gracefully. For example, it may be
necessary to rebuild part or all of the application cache. (One simple, but possibly ex-
pensive, approach is to close the inotify file descriptor, empty the cache, create a new
inotify file descriptor, and then re-create watches and cache entries for the objects to
be monitored.)

If a filesystem is mounted on top of a monitored directory, no event is generated, and
no events are generated for objects immediately under the new mount point. If the
filesystem is subsequently unmounted, events will subsequently be generated for the
directory and the objects it contains.

Dealing with rename() events
As noted above, the IN_MOVED_FROM and IN_MOVED_TO event pair that is
generated by rename(2) can be matched up via their shared cookie value. However,
the task of matching has some challenges.

These two events are usually consecutive in the event stream available when reading
from the inotify file descriptor. However, this is not guaranteed. If multiple processes
are triggering events for monitored objects, then (on rare occasions) an arbitrary num-
ber of other events may appear between the IN_MOVED_FROM and
IN_MOVED_TO events. Furthermore, it is not guaranteed that the event pair is
atomically inserted into the queue: there may be a brief interval where the
IN_MOVED_FROM has appeared, but the IN_MOVED_TO has not.

Matching up the IN_MOVED_FROM and IN_MOVED_TO event pair generated by
rename(2) is thus inherently racy. (Don’t forget that if an object is renamed outside of
a monitored directory, there may not even be an IN_MOVED_TO event.) Heuristic
approaches (e.g., assume the events are always consecutive) can be used to ensure a
match in most cases, but will inevitably miss some cases, causing the application to
perceive the IN_MOVED_FROM and IN_MOVED_TO events as being unrelated.
If watch descriptors are destroyed and re-created as a result, then those watch descrip-
tors will be inconsistent with the watch descriptors in any pending events. (Re-

Linux man-pages 6.13 2024-11-17 3334

inotify(7) Miscellaneous Information Manual inotify(7)

creating the inotify file descriptor and rebuilding the cache may be useful to deal with
this scenario.)

Applications should also allow for the possibility that the IN_MOVED_FROM event
was the last event that could fit in the buffer returned by the current call to read(2),
and the accompanying IN_MOVED_TO event might be fetched only on the next
read(2), which should be done with a (small) timeout to allow for the fact that inser-
tion of the IN_MOVED_FROM+IN_MOVED_TO event pair is not atomic, and also
the possibility that there may not be any IN_MOVED_TO event.

BUGS
Before Linux 3.19, fallocate(2) did not create any inotify events. Since Linux 3.19,
calls to fallocate(2) generate IN_MODIFY events.

Before Linux 2.6.16, the IN_ONESHOT mask flag does not work.

As originally designed and implemented, the IN_ONESHOT flag did not cause an
IN_IGNORED event to be generated when the watch was dropped after one event.
However, as an unintended effect of other changes, since Linux 2.6.36, an IN_IG-
NORED event is generated in this case.

Before Linux 2.6.25, the kernel code that was intended to coalesce successive identi-
cal events (i.e., the two most recent events could potentially be coalesced if the older
had not yet been read) instead checked if the most recent event could be coalesced
with the oldest unread event.

When a watch descriptor is removed by calling inotify_rm_watch(2) (or because a
watch file is deleted or the filesystem that contains it is unmounted), any pending un-
read events for that watch descriptor remain available to read. As watch descriptors
are subsequently allocated with inotify_add_watch(2), the kernel cycles through the
range of possible watch descriptors (1 to INT_MAX) incrementally. When allocating
a free watch descriptor, no check is made to see whether that watch descriptor number
has any pending unread events in the inotify queue. Thus, it can happen that a watch
descriptor is reallocated even when pending unread events exist for a previous incar-
nation of that watch descriptor number, with the result that the application might then
read those events and interpret them as belonging to the file associated with the newly
recycled watch descriptor. In practice, the likelihood of hitting this bug may be ex-
tremely low, since it requires that an application cycle through INT_MAX watch de-
scriptors, release a watch descriptor while leaving unread events for that watch de-
scriptor in the queue, and then recycle that watch descriptor. For this reason, and be-
cause there have been no reports of the bug occurring in real-world applications, as of
Linux 3.15, no kernel changes have yet been made to eliminate this possible bug.

EXAMPLES
The following program demonstrates the usage of the inotify API. It marks the direc-
tories passed as a command-line arguments and waits for events of type IN_OPEN,
IN_CLOSE_NOWRITE, and IN_CLOSE_WRITE.

The following output was recorded while editing the file /home/user/temp/foo and
listing directory /tmp. Before the file and the directory were opened, IN_OPEN
events occurred. After the file was closed, an IN_CLOSE_WRITE event occurred.
After the directory was closed, an IN_CLOSE_NOWRITE event occurred. Execu-
tion of the program ended when the user pressed the ENTER key.

Linux man-pages 6.13 2024-11-17 3335

inotify(7) Miscellaneous Information Manual inotify(7)

Example output
$./a.out /tmp /home/user/temp
Press enter key to terminate.
Listening for events.
IN_OPEN: /home/user/temp/foo [file]
IN_CLOSE_WRITE: /home/user/temp/foo [file]
IN_OPEN: /tmp/ [directory]
IN_CLOSE_NOWRITE: /tmp/ [directory]

Listening for events stopped.

Program source

#include <errno.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/inotify.h>
#include <unistd.h>
#include <string.h>

/* Read all available inotify events from the file descriptor 'fd'.
wd is the table of watch descriptors for the directories in argv.
argc is the size of wd and argv.
argv is the list of watched directories.
Entry 0 of wd and argv is unused. */

static void
handle_events(int fd, int *wd, int argc, char* argv[])
{

/* Some systems cannot read integer variables if they are not
properly aligned. On other systems, incorrect alignment may
decrease performance. Hence, the buffer used for reading from
the inotify file descriptor should have the same alignment as
struct inotify_event. */

char buf[4096]
__attribute__ ((aligned(__alignof__(struct inotify_event))));

const struct inotify_event *event;
ssize_t size;

/* Loop while events can be read from inotify file descriptor. */

for (;;) {

/* Read some events. */

size = read(fd, buf, sizeof(buf));
if (size == -1 && errno != EAGAIN) {

Linux man-pages 6.13 2024-11-17 3336

inotify(7) Miscellaneous Information Manual inotify(7)

perror("read");
exit(EXIT_FAILURE);

}

/* If the nonblocking read() found no events to read, then
it returns -1 with errno set to EAGAIN. In that case,
we exit the loop. */

if (size <= 0)
break;

/* Loop over all events in the buffer. */

for (char *ptr = buf; ptr < buf + size;
ptr += sizeof(struct inotify_event) + event->len) {

event = (const struct inotify_event *) ptr;

/* Print event type. */

if (event->mask & IN_OPEN)
printf("IN_OPEN: ");

if (event->mask & IN_CLOSE_NOWRITE)
printf("IN_CLOSE_NOWRITE: ");

if (event->mask & IN_CLOSE_WRITE)
printf("IN_CLOSE_WRITE: ");

/* Print the name of the watched directory. */

for (size_t i = 1; i < argc; ++i) {
if (wd[i] == event->wd) {

printf("%s/", argv[i]);
break;

}
}

/* Print the name of the file. */

if (event->len)
printf("%s", event->name);

/* Print type of filesystem object. */

if (event->mask & IN_ISDIR)
printf(" [directory]\n");

else
printf(" [file]\n");

}
}

Linux man-pages 6.13 2024-11-17 3337

inotify(7) Miscellaneous Information Manual inotify(7)

}

int
main(int argc, char* argv[])
{

char buf;
int fd, i, poll_num;
int *wd;
nfds_t nfds;
struct pollfd fds[2];

if (argc < 2) {
printf("Usage: %s PATH [PATH ...]\n", argv[0]);
exit(EXIT_FAILURE);

}

printf("Press ENTER key to terminate.\n");

/* Create the file descriptor for accessing the inotify API. */

fd = inotify_init1(IN_NONBLOCK);
if (fd == -1) {

perror("inotify_init1");
exit(EXIT_FAILURE);

}

/* Allocate memory for watch descriptors. */

wd = calloc(argc, sizeof(int));
if (wd == NULL) {

perror("calloc");
exit(EXIT_FAILURE);

}

/* Mark directories for events
- file was opened
- file was closed */

for (i = 1; i < argc; i++) {
wd[i] = inotify_add_watch(fd, argv[i],

IN_OPEN | IN_CLOSE);
if (wd[i] == -1) {

fprintf(stderr, "Cannot watch '%s': %s\n",
argv[i], strerror(errno));

exit(EXIT_FAILURE);
}

}

/* Prepare for polling. */

Linux man-pages 6.13 2024-11-17 3338

inotify(7) Miscellaneous Information Manual inotify(7)

nfds = 2;

fds[0].fd = STDIN_FILENO; /* Console input */
fds[0].events = POLLIN;

fds[1].fd = fd; /* Inotify input */
fds[1].events = POLLIN;

/* Wait for events and/or terminal input. */

printf("Listening for events.\n");
while (1) {

poll_num = poll(fds, nfds, -1);
if (poll_num == -1) {

if (errno == EINTR)
continue;

perror("poll");
exit(EXIT_FAILURE);

}

if (poll_num > 0) {

if (fds[0].revents & POLLIN) {

/* Console input is available. Empty stdin and quit. */

while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')
continue;

break;
}

if (fds[1].revents & POLLIN) {

/* Inotify events are available. */

handle_events(fd, wd, argc, argv);
}

}
}

printf("Listening for events stopped.\n");

/* Close inotify file descriptor. */

close(fd);

free(wd);
exit(EXIT_SUCCESS);

Linux man-pages 6.13 2024-11-17 3339

inotify(7) Miscellaneous Information Manual inotify(7)

}

SEE ALSO
inotifywait(1), inotifywatch(1), inotify_add_watch(2), inotify_init(2), inotify_init1(2),
inotify_rm_watch(2), read(2), stat(2), fanotify(7)

Documentation/filesystems/inotify.txt in the Linux kernel source tree

Linux man-pages 6.13 2024-11-17 3340

ip(7) Miscellaneous Information Manual ip(7)

NAME
ip - Linux IPv4 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h> /* superset of previous */

tcp_socket = socket(AF_INET, SOCK_STREAM, 0);
udp_socket = socket(AF_INET, SOCK_DGRAM, 0);
raw_socket = socket(AF_INET, SOCK_RAW, protocol);

DESCRIPTION
Linux implements the Internet Protocol, version 4, described in RFC 791 and
RFC 1122. ip contains a level 2 multicasting implementation conforming to
RFC 1112. It also contains an IP router including a packet filter.

The programming interface is BSD-sockets compatible. For more information on
sockets, see socket(7).

An IP socket is created using socket(2):

socket(AF_INET, socket_type, protocol);

Valid socket types include SOCK_STREAM to open a stream socket,
SOCK_DGRAM to open a datagram socket, and SOCK_RAW to open a raw(7)
socket to access the IP protocol directly.

protocol is the IP protocol in the IP header to be received or sent. Valid values for
protocol include:

• 0 and IPPROTO_TCP for tcp(7) stream sockets;

• 0 and IPPROTO_UDP for udp(7) datagram sockets;

• IPPROTO_SCTP for sctp(7) stream sockets; and

• IPPROTO_UDPLITE for udplite(7) datagram sockets.

For SOCK_RAW you may specify a valid IANA IP protocol defined in RFC 1700 as-
signed numbers.

When a process wants to receive new incoming packets or connections, it should bind
a socket to a local interface address using bind(2). In this case, only one IP socket
may be bound to any given local (address, port) pair. When INADDR_ANY is speci-
fied in the bind call, the socket will be bound to all local interfaces. When listen(2) is
called on an unbound socket, the socket is automatically bound to a random free port
with the local address set to INADDR_ANY. When connect(2) is called on an un-
bound socket, the socket is automatically bound to a random free port or to a usable
shared port with the local address set to INADDR_ANY.

A TCP local socket address that has been bound is unavailable for some time after
closing, unless the SO_REUSEADDR flag has been set. Care should be taken when
using this flag as it makes TCP less reliable.

Address format
An IP socket address is defined as a combination of an IP interface address and a
16-bit port number. The basic IP protocol does not supply port numbers, they are

Linux man-pages 6.13 2024-06-28 3341

ip(7) Miscellaneous Information Manual ip(7)

implemented by higher level protocols like udp(7) and tcp(7). On raw sockets
sin_port is set to the IP protocol.

struct sockaddr_in {
sa_family_t sin_family; /* address family: AF_INET */
in_port_t sin_port; /* port in network byte order */
struct in_addr sin_addr; /* internet address */

};

/* Internet address */
struct in_addr {

uint32_t s_addr; /* address in network byte order */
};

sin_family is always set to AF_INET. This is required; in Linux 2.2 most networking
functions return EINVAL when this setting is missing. sin_port contains the port in
network byte order. The port numbers below 1024 are called privileged ports (or
sometimes: reserved ports). Only a privileged process (on Linux: a process that has
the CAP_NET_BIND_SERVICE capability in the user namespace governing its net-
work namespace) may bind(2) to these sockets. Note that the raw IPv4 protocol as
such has no concept of a port, they are implemented only by higher protocols like
tcp(7) and udp(7).

sin_addr is the IP host address. The s_addr member of struct in_addr contains the
host interface address in network byte order. in_addr should be assigned one of the
INADDR_* values (e.g., INADDR_LOOPBACK) using htonl(3) or set using the
inet_aton(3), inet_addr(3), inet_makeaddr(3) library functions or directly with the
name resolver (see gethostbyname(3)).

IPv4 addresses are divided into unicast, broadcast, and multicast addresses. Unicast
addresses specify a single interface of a host, broadcast addresses specify all hosts on
a network, and multicast addresses address all hosts in a multicast group. Datagrams
to broadcast addresses can be sent or received only when the SO_BROADCAST
socket flag is set. In the current implementation, connection-oriented sockets are al-
lowed to use only unicast addresses.

Note that the address and the port are always stored in network byte order. In particu-
lar, this means that you need to call htons(3) on the number that is assigned to a port.
All address/port manipulation functions in the standard library work in network byte
order.

Special and reserved addresses
There are several special addresses:

INADDR_LOOPBACK (127.0.0.1)
always refers to the local host via the loopback device;

INADDR_ANY (0.0.0.0)
means any address for socket binding;

INADDR_BROADCAST (255.255.255.255)
has the same effect on bind(2) as INADDR_ANY for historical reasons. A
packet addressed to INADDR_BROADCAST through a socket which has
SO_BROADCAST set will be broadcast to all hosts on the local network

Linux man-pages 6.13 2024-06-28 3342

ip(7) Miscellaneous Information Manual ip(7)

segment, as long as the link is broadcast-capable.

Highest-numbered address
Lowest-numbered address

On any locally-attached non-point-to-point IP subnet with a link type that sup-
ports broadcasts, the highest-numbered address (e.g., the .255 address on a
subnet with netmask 255.255.255.0) is designated as a broadcast address. It
cannot usefully be assigned to an individual interface, and can only be ad-
dressed with a socket on which the SO_BROADCAST option has been set.
Internet standards have historically also reserved the lowest-numbered address
(e.g., the .0 address on a subnet with netmask 255.255.255.0) for broadcast,
though they call it "obsolete" for this purpose. (Some sources also refer to this
as the "network address.") Since Linux 5.14, it is treated as an ordinary uni-
cast address and can be assigned to an interface.

Internet standards have traditionally also reserved various addresses for particular
uses, though Linux no longer treats some of these specially.

[0.0.0.1, 0.255.255.255]
[240.0.0.0, 255.255.255.254]

Addresses in these ranges (0/8 and 240/4) are reserved globally. Since Linux
5.3 and Linux 2.6.25, respectively, the 0/8 and 240/4 addresses, other than IN-
ADDR_ANY and INADDR_BROADCAST, are treated as ordinary unicast
addresses. Systems that follow the traditional behaviors may not interoperate
with these historically reserved addresses.

[127.0.0.1, 127.255.255.254]
Addresses in this range (127/8) are treated as loopback addresses akin to the
standardized local loopback address INADDR_LOOPBACK (127.0.0.1);

[224.0.0.0, 239.255.255.255]
Addresses in this range (224/4) are dedicated to multicast use.

Socket options
IP supports some protocol-specific socket options that can be set with setsockopt(2)
and read with getsockopt(2). The socket option level for IP is IPPROTO_IP. A
boolean integer flag is zero when it is false, otherwise true.

When an invalid socket option is specified, getsockopt(2) and setsockopt(2) fail with
the error ENOPROTOOPT.

IP_ADD_MEMBERSHIP (since Linux 1.2)
Join a multicast group. Argument is an ip_mreqn structure.

struct ip_mreqn {
struct in_addr imr_multiaddr; /* IP multicast group

address */
struct in_addr imr_address; /* IP address of local

interface */
int imr_ifindex; /* interface index */

};

imr_multiaddr contains the address of the multicast group the application
wants to join or leave. It must be a valid multicast address (or setsockopt(2)
fails with the error EINVAL). imr_address is the address of the local

Linux man-pages 6.13 2024-06-28 3343

ip(7) Miscellaneous Information Manual ip(7)

interface with which the system should join the multicast group; if it is equal
to INADDR_ANY, an appropriate interface is chosen by the system.
imr_ifindex is the interface index of the interface that should join/leave the
imr_multiaddr group, or 0 to indicate any interface.

The ip_mreqn structure is available only since Linux 2.2. For compatibility,
the old ip_mreq structure (present since Linux 1.2) is still supported; it differs
from ip_mreqn only by not including the imr_ifindex field. (The kernel deter-
mines which structure is being passed based on the size passed in optlen.)

IP_ADD_MEMBERSHIP is valid only for setsockopt(2).

IP_ADD_SOURCE_MEMBERSHIP (since Linux 2.4.22 / Linux 2.5.68)
Join a multicast group and allow receiving data only from a specified source.
Argument is an ip_mreq_source structure.

struct ip_mreq_source {
struct in_addr imr_multiaddr; /* IP multicast group

address */
struct in_addr imr_interface; /* IP address of local

interface */
struct in_addr imr_sourceaddr; /* IP address of

multicast source */
};

The ip_mreq_source structure is similar to ip_mreqn described under
IP_ADD_MEMBERSHIP. The imr_multiaddr field contains the address of
the multicast group the application wants to join or leave. The imr_interface
field is the address of the local interface with which the system should join the
multicast group. Finally, the imr_sourceaddr field contains the address of the
source the application wants to receive data from.

This option can be used multiple times to allow receiving data from more than
one source.

IP_BIND_ADDRESS_NO_PORT (since Linux 4.2)
Inform the kernel to not reserve an ephemeral port when using bind(2) with a
port number of 0. The port will later be automatically chosen at connect(2)
time, in a way that allows sharing a source port as long as the 4-tuple is
unique.

IP_BLOCK_SOURCE (since Linux 2.4.22 / 2.5.68)
Stop receiving multicast data from a specific source in a given group. This is
valid only after the application has subscribed to the multicast group using ei-
ther IP_ADD_MEMBERSHIP or IP_ADD_SOURCE_MEMBERSHIP.

Argument is an ip_mreq_source structure as described under
IP_ADD_SOURCE_MEMBERSHIP.

IP_DROP_MEMBERSHIP (since Linux 1.2)
Leave a multicast group. Argument is an ip_mreqn or ip_mreq structure simi-
lar to IP_ADD_MEMBERSHIP.

Linux man-pages 6.13 2024-06-28 3344

ip(7) Miscellaneous Information Manual ip(7)

IP_DROP_SOURCE_MEMBERSHIP (since Linux 2.4.22 / 2.5.68)
Leave a source-specific group—that is, stop receiving data from a given multi-
cast group that come from a given source. If the application has subscribed to
multiple sources within the same group, data from the remaining sources will
still be delivered. To stop receiving data from all sources at once, use
IP_DROP_MEMBERSHIP.

Argument is an ip_mreq_source structure as described under
IP_ADD_SOURCE_MEMBERSHIP.

IP_FREEBIND (since Linux 2.4)
If enabled, this boolean option allows binding to an IP address that is nonlocal
or does not (yet) exist. This permits listening on a socket, without requiring
the underlying network interface or the specified dynamic IP address to be up
at the time that the application is trying to bind to it. This option is the per-
socket equivalent of the ip_nonlocal_bind /proc interface described below.

IP_HDRINCL (since Linux 2.0)
If enabled, the user supplies an IP header in front of the user data. Valid only
for SOCK_RAW sockets; see raw(7) for more information. When this flag is
enabled, the values set by IP_OPTIONS, IP_TTL, and IP_TOS are ignored.

IP_LOCAL_PORT_RANGE (since Linux 6.3)
Set or get the per-socket default local port range. This option can be used to
clamp down the global local port range, defined by the ip_local_port_range
/proc interface described below, for a given socket.

The option takes an uint32_t value with the high 16 bits set to the upper range
bound, and the low 16 bits set to the lower range bound. Range bounds are in-
clusive. The 16-bit values should be in host byte order.

The lower bound has to be less than the upper bound when both bounds are
not zero. Otherwise, setting the option fails with EINVAL.

If either bound is outside of the global local port range, or is zero, then that
bound has no effect.

To reset the setting, pass zero as both the upper and the lower bound.

IP_MSFILTER (since Linux 2.4.22 / 2.5.68)
This option provides access to the advanced full-state filtering API. Argument
is an ip_msfilter structure.

struct ip_msfilter {
struct in_addr imsf_multiaddr; /* IP multicast group

address */
struct in_addr imsf_interface; /* IP address of local

interface */
uint32_t imsf_fmode; /* Filter-mode */

uint32_t imsf_numsrc; /* Number of sources in
the following array */

struct in_addr imsf_slist[1]; /* Array of source
addresses */

};

Linux man-pages 6.13 2024-06-28 3345

ip(7) Miscellaneous Information Manual ip(7)

There are two macros, MCAST_INCLUDE and MCAST_EXCLUDE,
which can be used to specify the filtering mode. Additionally, the IP_MSFIL-
TER_SIZE(n) macro exists to determine how much memory is needed to store
ip_msfilter structure with n sources in the source list.

For the full description of multicast source filtering refer to RFC 3376.

IP_MTU (since Linux 2.2)
Retrieve the current known path MTU of the current socket. Returns an inte-
ger.

IP_MTU is valid only for getsockopt(2) and can be employed only when the
socket has been connected.

IP_MTU_DISCOVER (since Linux 2.2)
Set or receive the Path MTU Discovery setting for a socket. When enabled,
Linux will perform Path MTU Discovery as defined in RFC 1191 on
SOCK_STREAM sockets. For non-SOCK_STREAM sockets, IP_PM-
TUDISC_DO forces the don’t-fragment flag to be set on all outgoing packets.
It is the user’s responsibility to packetize the data in MTU-sized chunks and to
do the retransmits if necessary. The kernel will reject (with EMSGSIZE)
datagrams that are bigger than the known path MTU. IP_PMTUD-
ISC_WANT will fragment a datagram if needed according to the path MTU,
or will set the don’t-fragment flag otherwise.

The system-wide default can be toggled between IP_PMTUDISC_WANT
and IP_PMTUDISC_DONT by writing (respectively, zero and nonzero val-
ues) to the /proc/sys/net/ipv4/ip_no_pmtu_disc file.
Path MTU discovery value Meaning
IP_PMTUDISC_WANT Use per-route settings.
IP_PMTUDISC_DONT Never do Path MTU Discovery.
IP_PMTUDISC_DO Always do Path MTU Discovery.
IP_PMTUDISC_PROBE Set DF but ignore Path MTU.

When PMTU discovery is enabled, the kernel automatically keeps track of the
path MTU per destination host. When it is connected to a specific peer with
connect(2), the currently known path MTU can be retrieved conveniently us-
ing the IP_MTU socket option (e.g., after an EMSGSIZE error occurred).
The path MTU may change over time. For connectionless sockets with many
destinations, the new MTU for a given destination can also be accessed using
the error queue (see IP_RECVERR). A new error will be queued for every
incoming MTU update.

While MTU discovery is in progress, initial packets from datagram sockets
may be dropped. Applications using UDP should be aware of this and not take
it into account for their packet retransmit strategy.

To bootstrap the path MTU discovery process on unconnected sockets, it is
possible to start with a big datagram size (headers up to 64 kilobytes long) and
let it shrink by updates of the path MTU.

To get an initial estimate of the path MTU, connect a datagram socket to the
destination address using connect(2) and retrieve the MTU by calling getsock-
opt(2) with the IP_MTU option.

Linux man-pages 6.13 2024-06-28 3346

ip(7) Miscellaneous Information Manual ip(7)

It is possible to implement RFC 4821 MTU probing with SOCK_DGRAM or
SOCK_RAW sockets by setting a value of IP_PMTUDISC_PROBE (avail-
able since Linux 2.6.22). This is also particularly useful for diagnostic tools
such as tracepath(8) that wish to deliberately send probe packets larger than
the observed Path MTU.

IP_MULTICAST_ALL (since Linux 2.6.31)
This option can be used to modify the delivery policy of multicast messages.
The argument is a boolean integer (defaults to 1). If set to 1, the socket will
receive messages from all the groups that have been joined globally on the
whole system. Otherwise, it will deliver messages only from the groups that
have been explicitly joined (for example via the IP_ADD_MEMBERSHIP
option) on this particular socket.

IP_MULTICAST_IF (since Linux 1.2)
Set the local device for a multicast socket. The argument for setsockopt(2) is
an ip_mreqn or (since Linux 3.5) ip_mreq structure similar to
IP_ADD_MEMBERSHIP, or an in_addr structure. (The kernel determines
which structure is being passed based on the size passed in optlen.) For get-
sockopt(2), the argument is an in_addr structure.

IP_MULTICAST_LOOP (since Linux 1.2)
Set or read a boolean integer argument that determines whether sent multicast
packets should be looped back to the local sockets.

IP_MULTICAST_TTL (since Linux 1.2)
Set or read the time-to-live value of outgoing multicast packets for this socket.
It is very important for multicast packets to set the smallest TTL possible. The
default is 1 which means that multicast packets don’t leave the local network
unless the user program explicitly requests it. Argument is an integer.

IP_NODEFRAG (since Linux 2.6.36)
If enabled (argument is nonzero), the reassembly of outgoing packets is dis-
abled in the netfilter layer. The argument is an integer.

This option is valid only for SOCK_RAW sockets.

IP_OPTIONS (since Linux 2.0)
Set or get the IP options to be sent with every packet from this socket. The ar-
guments are a pointer to a memory buffer containing the options and the op-
tion length. The setsockopt(2) call sets the IP options associated with a socket.
The maximum option size for IPv4 is 40 bytes. See RFC 791 for the allowed
options. When the initial connection request packet for a SOCK_STREAM
socket contains IP options, the IP options will be set automatically to the op-
tions from the initial packet with routing headers reversed. Incoming packets
are not allowed to change options after the connection is established. The pro-
cessing of all incoming source routing options is disabled by default and can
be enabled by using the accept_source_route /proc interface. Other options
like timestamps are still handled. For datagram sockets, IP options can be set
only by the local user. Calling getsockopt(2) with IP_OPTIONS puts the cur-
rent IP options used for sending into the supplied buffer.

Linux man-pages 6.13 2024-06-28 3347

ip(7) Miscellaneous Information Manual ip(7)

IP_PASSSEC (since Linux 2.6.17)
If labeled IPSEC or NetLabel is configured on the sending and receiving hosts,
this option enables receiving of the security context of the peer socket in an
ancillary message of type SCM_SECURITY retrieved using recvmsg(2).
This option is supported only for UDP sockets; for TCP or SCTP sockets, see
the description of the SO_PEERSEC option below.

The value given as an argument to setsockopt(2) and returned as the result of
getsockopt(2) is an integer boolean flag.

The security context returned in the SCM_SECURITY ancillary message is
of the same format as the one described under the SO_PEERSEC option be-
low.

Note: the reuse of the SCM_SECURITY message type for the IP_PASSSEC
socket option was likely a mistake, since other IP control messages use their
own numbering scheme in the IP namespace and often use the socket option
value as the message type. There is no conflict currently since the IP option
with the same value as SCM_SECURITY is IP_HDRINCL and this is never
used for a control message type.

IP_PKTINFO (since Linux 2.2)
Pass an IP_PKTINFO ancillary message that contains a pktinfo structure that
supplies some information about the incoming packet. This works only for
datagram oriented sockets. The argument is a flag that tells the socket whether
the IP_PKTINFO message should be passed or not. The message itself can
be sent/retrieved only as a control message with a packet using recvmsg(2) or
sendmsg(2).

struct in_pktinfo {
unsigned int ipi_ifindex; /* Interface index */
struct in_addr ipi_spec_dst; /* Local address */
struct in_addr ipi_addr; /* Header Destination

address */
};

ipi_ifindex is the unique index of the interface the packet was received on.
ipi_spec_dst is the local address of the packet and ipi_addr is the destination
address in the packet header. If IP_PKTINFO is passed to sendmsg(2) and
ipi_spec_dst is not zero, then it is used as the local source address for the rout-
ing table lookup and for setting up IP source route options. When ipi_ifindex
is not zero, the primary local address of the interface specified by the index
overwrites ipi_spec_dst for the routing table lookup.

Not supported for SOCK_STREAM sockets.

IP_RECVERR (since Linux 2.2)
Enable extended reliable error message passing. When enabled on a datagram
socket, all generated errors will be queued in a per-socket error queue. When
the user receives an error from a socket operation, the errors can be received
by calling recvmsg(2) with the MSG_ERRQUEUE flag set. The sock_ex-
tended_err structure describing the error will be passed in an ancillary mes-
sage with the type IP_RECVERR and the level IPPROTO_IP. This is

Linux man-pages 6.13 2024-06-28 3348

ip(7) Miscellaneous Information Manual ip(7)

useful for reliable error handling on unconnected sockets. The received data
portion of the error queue contains the error packet.

The IP_RECVERR control message contains a sock_extended_err structure:

#define SO_EE_ORIGIN_NONE 0
#define SO_EE_ORIGIN_LOCAL 1
#define SO_EE_ORIGIN_ICMP 2
#define SO_EE_ORIGIN_ICMP6 3

struct sock_extended_err {
uint32_t ee_errno; /* error number */
uint8_t ee_origin; /* where the error originated */
uint8_t ee_type; /* type */
uint8_t ee_code; /* code */
uint8_t ee_pad;
uint32_t ee_info; /* additional information */
uint32_t ee_data; /* other data */
/* More data may follow */

};

struct sockaddr *SO_EE_OFFENDER(struct sock_extended_err *);

ee_errno contains the errno number of the queued error. ee_origin is the ori-
gin code of where the error originated. The other fields are protocol-specific.
The macro SO_EE_OFFENDER returns a pointer to the address of the net-
work object where the error originated from given a pointer to the ancillary
message. If this address is not known, the sa_family member of the sockaddr
contains AF_UNSPEC and the other fields of the sockaddr are undefined.

IP uses the sock_extended_err structure as follows: ee_origin is set to
SO_EE_ORIGIN_ICMP for errors received as an ICMP packet, or
SO_EE_ORIGIN_LOCAL for locally generated errors. Unknown values
should be ignored. ee_type and ee_code are set from the type and code fields
of the ICMP header. ee_info contains the discovered MTU for EMSGSIZE
errors. The message also contains the sockaddr_in of the node caused the er-
ror, which can be accessed with the SO_EE_OFFENDER macro. The
sin_family field of the SO_EE_OFFENDER address is AF_UNSPEC when
the source was unknown. When the error originated from the network, all IP
options (IP_OPTIONS, IP_TTL, etc.) enabled on the socket and contained in
the error packet are passed as control messages. The payload of the packet
causing the error is returned as normal payload. Note that TCP has no error
queue; MSG_ERRQUEUE is not permitted on SOCK_STREAM sockets.
IP_RECVERR is valid for TCP, but all errors are returned by socket function
return or SO_ERROR only.

For raw sockets, IP_RECVERR enables passing of all received ICMP errors
to the application, otherwise errors are reported only on connected sockets

It sets or retrieves an integer boolean flag. IP_RECVERR defaults to off.

Linux man-pages 6.13 2024-06-28 3349

ip(7) Miscellaneous Information Manual ip(7)

IP_RECVOPTS (since Linux 2.2)
Pass all incoming IP options to the user in a IP_OPTIONS control message.
The routing header and other options are already filled in for the local host.
Not supported for SOCK_STREAM sockets.

IP_RECVORIGDSTADDR (since Linux 2.6.29)
This boolean option enables the IP_ORIGDSTADDR ancillary message in
recvmsg(2), in which the kernel returns the original destination address of the
datagram being received. The ancillary message contains a struct sock-
addr_in. Not supported for SOCK_STREAM sockets.

IP_RECVTOS (since Linux 2.2)
If enabled, the IP_TOS ancillary message is passed with incoming packets. It
contains a byte which specifies the Type of Service/Precedence field of the
packet header. Expects a boolean integer flag. Not supported for
SOCK_STREAM sockets.

IP_RECVTTL (since Linux 2.2)
When this flag is set, pass a IP_TTL control message with the time-to-live
field of the received packet as a 32 bit integer. Not supported for
SOCK_STREAM sockets.

IP_RETOPTS (since Linux 2.2)
Identical to IP_RECVOPTS, but returns raw unprocessed options with time-
stamp and route record options not filled in for this hop. Not supported for
SOCK_STREAM sockets.

IP_ROUTER_ALERT (since Linux 2.2)
Pass all to-be forwarded packets with the IP Router Alert option set to this
socket. Valid only for raw sockets. This is useful, for instance, for user-space
RSVP daemons. The tapped packets are not forwarded by the kernel; it is the
user’s responsibility to send them out again. Socket binding is ignored, such
packets are filtered only by protocol. Expects an integer flag.

IP_TOS (since Linux 1.0)
Set or receive the Type-Of-Service (TOS) field that is sent with every IP
packet originating from this socket. It is used to prioritize packets on the net-
work. TOS is a byte. There are some standard TOS flags defined: IP-
TOS_LOWDELAY to minimize delays for interactive traffic, IP-
TOS_THROUGHPUT to optimize throughput, IPTOS_RELIABILITY to
optimize for reliability, IPTOS_MINCOST should be used for "filler data"
where slow transmission doesn’t matter. At most one of these TOS values can
be specified. Other bits are invalid and shall be cleared. Linux sends IP-
TOS_LOWDELAY datagrams first by default, but the exact behavior depends
on the configured queueing discipline. Some high-priority levels may require
superuser privileges (the CAP_NET_ADMIN capability).

IP_TRANSPARENT (since Linux 2.6.24)
Setting this boolean option enables transparent proxying on this socket. This
socket option allows the calling application to bind to a nonlocal IP address
and operate both as a client and a server with the foreign address as the local
endpoint. NOTE: this requires that routing be set up in a way that packets go-
ing to the foreign address are routed through the TProxy box (i.e., the system

Linux man-pages 6.13 2024-06-28 3350

ip(7) Miscellaneous Information Manual ip(7)

hosting the application that employs the IP_TRANSPARENT socket option).
Enabling this socket option requires superuser privileges (the CAP_NET_AD-
MIN capability).

TProxy redirection with the iptables TPROXY target also requires that this op-
tion be set on the redirected socket.

IP_TTL (since Linux 1.0)
Set or retrieve the current time-to-live field that is used in every packet sent
from this socket.

IP_UNBLOCK_SOURCE (since Linux 2.4.22 / 2.5.68)
Unblock previously blocked multicast source. Returns EADDRNOTAVAIL
when given source is not being blocked.

Argument is an ip_mreq_source structure as described under
IP_ADD_SOURCE_MEMBERSHIP.

SO_PEERSEC (since Linux 2.6.17)
If labeled IPSEC or NetLabel is configured on both the sending and receiving
hosts, this read-only socket option returns the security context of the peer
socket connected to this socket. By default, this will be the same as the secu-
rity context of the process that created the peer socket unless overridden by the
policy or by a process with the required permissions.

The argument to getsockopt(2) is a pointer to a buffer of the specified length in
bytes into which the security context string will be copied. If the buffer length
is less than the length of the security context string, then getsockopt(2) returns
-1, sets errno to ERANGE, and returns the required length via optlen. The
caller should allocate at least NAME_MAX bytes for the buffer initially, al-
though this is not guaranteed to be sufficient. Resizing the buffer to the re-
turned length and retrying may be necessary.

The security context string may include a terminating null character in the re-
turned length, but is not guaranteed to do so: a security context "foo" might be
represented as either {’f’,’o’,’o’} of length 3 or {’f’,’o’,’o’,’\0’} of length 4,
which are considered to be interchangeable. The string is printable, does not
contain non-terminating null characters, and is in an unspecified encoding (in
particular, it is not guaranteed to be ASCII or UTF-8).

The use of this option for sockets in the AF_INET address family is supported
since Linux 2.6.17 for TCP sockets, and since Linux 4.17 for SCTP sockets.

For SELinux, NetLabel conveys only the MLS portion of the security context
of the peer across the wire, defaulting the rest of the security context to the
values defined in the policy for the netmsg initial security identifier (SID).
However, NetLabel can be configured to pass full security contexts over loop-
back. Labeled IPSEC always passes full security contexts as part of establish-
ing the security association (SA) and looks them up based on the association
for each packet.

/proc interfaces
The IP protocol supports a set of /proc interfaces to configure some global parame-
ters. The parameters can be accessed by reading or writing files in the directory
/proc/sys/net/ipv4/ . Interfaces described as Boolean take an integer value, with a

Linux man-pages 6.13 2024-06-28 3351

ip(7) Miscellaneous Information Manual ip(7)

nonzero value ("true") meaning that the corresponding option is enabled, and a zero
value ("false") meaning that the option is disabled.

ip_always_defrag (Boolean; since Linux 2.2.13)
[New with Linux 2.2.13; in earlier kernel versions this feature was controlled
at compile time by the CONFIG_IP_ALWAYS_DEFRAG option; this option
is not present in Linux 2.4.x and later]

When this boolean flag is enabled (not equal 0), incoming fragments (parts of
IP packets that arose when some host between origin and destination decided
that the packets were too large and cut them into pieces) will be reassembled
(defragmented) before being processed, even if they are about to be forwarded.

Enable only if running either a firewall that is the sole link to your network or
a transparent proxy; never ever use it for a normal router or host. Otherwise,
fragmented communication can be disturbed if the fragments travel over dif-
ferent links. Defragmentation also has a large memory and CPU time cost.

This is automagically turned on when masquerading or transparent proxying
are configured.

ip_autoconfig (since Linux 2.2 to Linux 2.6.17)
Not documented.

ip_default_ttl (integer; default: 64; since Linux 2.2)
Set the default time-to-live value of outgoing packets. This can be changed
per socket with the IP_TTL option.

ip_dynaddr (Boolean; default: disabled; since Linux 2.0.31)
Enable dynamic socket address and masquerading entry rewriting on interface
address change. This is useful for dialup interface with changing IP addresses.
0 means no rewriting, 1 turns it on and 2 enables verbose mode.

ip_forward (Boolean; default: disabled; since Linux 1.2)
Enable IP forwarding with a boolean flag. IP forwarding can be also set on a
per-interface basis.

ip_local_port_range (since Linux 2.2)
This file contains two integers that define the default local port range allocated
to sockets that are not explicitly bound to a port number—that is, the range
used for ephemeral ports. An ephemeral port is allocated to a socket in the
following circumstances:

• the port number in a socket address is specified as 0 when calling bind(2);

• listen(2) is called on a stream socket that was not previously bound;

• connect(2) was called on a socket that was not previously bound;

• sendto(2) is called on a datagram socket that was not previously bound.

Allocation of ephemeral ports starts with the first number in ip_lo-
cal_port_range and ends with the second number. If the range of ephemeral
ports is exhausted, then the relevant system call returns an error (but see
BUGS).

Note that the port range in ip_local_port_range should not conflict with the
ports used by masquerading (although the case is handled). Also, arbitrary

Linux man-pages 6.13 2024-06-28 3352

ip(7) Miscellaneous Information Manual ip(7)

choices may cause problems with some firewall packet filters that make as-
sumptions about the local ports in use. The first number should be at least
greater than 1024, or better, greater than 4096, to avoid clashes with well
known ports and to minimize firewall problems.

ip_no_pmtu_disc (Boolean; default: disabled; since Linux 2.2)
If enabled, don’t do Path MTU Discovery for TCP sockets by default. Path
MTU discovery may fail if misconfigured firewalls (that drop all ICMP pack-
ets) or misconfigured interfaces (e.g., a point-to-point link where the both ends
don’t agree on the MTU) are on the path. It is better to fix the broken routers
on the path than to turn off Path MTU Discovery globally, because not doing it
incurs a high cost to the network.

ip_nonlocal_bind (Boolean; default: disabled; since Linux 2.4)
If set, allows processes to bind(2) to nonlocal IP addresses, which can be quite
useful, but may break some applications.

ip6frag_time (integer; default: 30)
Time in seconds to keep an IPv6 fragment in memory.

ip6frag_secret_interval (integer; default: 600)
Regeneration interval (in seconds) of the hash secret (or lifetime for the hash
secret) for IPv6 fragments.

ipfrag_high_thresh (integer)
ipfrag_low_thresh (integer)

If the amount of queued IP fragments reaches ipfrag_high_thresh, the queue is
pruned down to ipfrag_low_thresh. Contains an integer with the number of
bytes.

neigh/*
See arp(7).

Ioctls
All ioctls described in socket(7) apply to ip.

Ioctls to configure generic device parameters are described in netdevice(7).

ERRORS
EACCES

The user tried to execute an operation without the necessary permissions.
These include: sending a packet to a broadcast address without having the
SO_BROADCAST flag set; sending a packet via a prohibit route; modifying
firewall settings without superuser privileges (the CAP_NET_ADMIN capa-
bility); binding to a privileged port without superuser privileges (the
CAP_NET_BIND_SERVICE capability).

EADDRINUSE
Tried to bind to an address already in use.

EADDRNOTAVAIL
A nonexistent interface was requested or the requested source address was not
local.

Linux man-pages 6.13 2024-06-28 3353

ip(7) Miscellaneous Information Manual ip(7)

EAGAIN
Operation on a nonblocking socket would block.

EALREADY
A connection operation on a nonblocking socket is already in progress.

ECONNABORTED
A connection was closed during an accept(2).

EHOSTUNREACH
No valid routing table entry matches the destination address. This error can be
caused by an ICMP message from a remote router or for the local routing ta-
ble.

EINVAL
Invalid argument passed. For send operations this can be caused by sending to
a blackhole route.

EISCONN
connect(2) was called on an already connected socket.

EMSGSIZE
Datagram is bigger than an MTU on the path and it cannot be fragmented.

ENOBUFS
ENOMEM

Not enough free memory. This often means that the memory allocation is lim-
ited by the socket buffer limits, not by the system memory, but this is not
100% consistent.

ENOENT
SIOCGSTAMP was called on a socket where no packet arrived.

ENOPKG
A kernel subsystem was not configured.

ENOPROTOOPT
EOPNOTSUPP

Invalid socket option passed.

ENOTCONN
The operation is defined only on a connected socket, but the socket wasn’t
connected.

EPERM
User doesn’t have permission to set high priority, change configuration, or
send signals to the requested process or group.

EPIPE
The connection was unexpectedly closed or shut down by the other end.

ESOCKTNOSUPPORT
The socket is not configured or an unknown socket type was requested.

Other errors may be generated by the overlaying protocols; see tcp(7), raw(7), udp(7),
and socket(7).

Linux man-pages 6.13 2024-06-28 3354

ip(7) Miscellaneous Information Manual ip(7)

NOTES
IP_FREEBIND, IP_MSFILTER, IP_MTU, IP_MTU_DISCOVER,
IP_RECVORIGDSTADDR, IP_PASSSEC, IP_PKTINFO, IP_RECVERR,
IP_ROUTER_ALERT, and IP_TRANSPARENT are Linux-specific.

Be very careful with the SO_BROADCAST option - it is not privileged in Linux. It
is easy to overload the network with careless broadcasts. For new application proto-
cols it is better to use a multicast group instead of broadcasting. Broadcasting is dis-
couraged. See RFC 6762 for an example of a protocol (mDNS) using the more mod-
ern multicast approach to communicating with an open-ended group of hosts on the
local network.

Some other BSD sockets implementations provide IP_RCVDSTADDR and
IP_RECVIF socket options to get the destination address and the interface of re-
ceived datagrams. Linux has the more general IP_PKTINFO for the same task.

Some BSD sockets implementations also provide an IP_RECVTTL option, but an
ancillary message with type IP_RECVTTL is passed with the incoming packet. This
is different from the IP_TTL option used in Linux.

Using the SOL_IP socket options level isn’t portable; BSD-based stacks use the IP-
PROTO_IP level.

INADDR_ANY (0.0.0.0) and INADDR_BROADCAST (255.255.255.255) are byte-
order-neutral. This means htonl(3) has no effect on them.

Compatibility
For compatibility with Linux 2.0, the obsolete socket(AF_INET, SOCK_PACKET,
protocol) syntax is still supported to open a packet(7) socket. This is deprecated and
should be replaced by socket(AF_PACKET, SOCK_RAW, protocol) instead. The
main difference is the new sockaddr_ll address structure for generic link layer infor-
mation instead of the old sockaddr_pkt.

BUGS
There are too many inconsistent error values.

The error used to diagnose exhaustion of the ephemeral port range differs across the
various system calls (connect(2), bind(2), listen(2), sendto(2)) that can assign
ephemeral ports.

The ioctls to configure IP-specific interface options and ARP tables are not described.

Receiving the original destination address with MSG_ERRQUEUE in msg_name by
recvmsg(2) does not work in some Linux 2.2 kernels.

SEE ALSO
recvmsg(2), sendmsg(2), byteorder(3), capabilities(7), icmp(7), ipv6(7), netdevice(7),
netlink(7), raw(7), socket(7), tcp(7), udp(7), ip(8)

The kernel source file Documentation/networking/ip-sysctl.txt.

RFC 791 for the original IP specification. RFC 1122 for the IPv4 host requirements.
RFC 1812 for the IPv4 router requirements.

Linux man-pages 6.13 2024-06-28 3355

ipc_namespaces(7) Miscellaneous Information Manual ipc_namespaces(7)

NAME
ipc_namespaces - overview of Linux IPC namespaces

DESCRIPTION
IPC namespaces isolate certain IPC resources, namely, System V IPC objects (see
sysvipc(7)) and (since Linux 2.6.30) POSIX message queues (see mq_overview(7)).
The common characteristic of these IPC mechanisms is that IPC objects are identified
by mechanisms other than filesystem pathnames.

Each IPC namespace has its own set of System V IPC identifiers and its own POSIX
message queue filesystem. Objects created in an IPC namespace are visible to all
other processes that are members of that namespace, but are not visible to processes in
other IPC namespaces.

The following /proc interfaces are distinct in each IPC namespace:

• The POSIX message queue interfaces in /proc/sys/fs/mqueue.

• The System V IPC interfaces in /proc/sys/kernel, namely: msgmax, msgmnb, ms-
gmni, sem, shmall, shmmax, shmmni, and shm_rmid_forced .

• The System V IPC interfaces in /proc/sysvipc.

When an IPC namespace is destroyed (i.e., when the last process that is a member of
the namespace terminates), all IPC objects in the namespace are automatically de-
stroyed.

Use of IPC namespaces requires a kernel that is configured with the CON-
FIG_IPC_NS option.

SEE ALSO
nsenter(1), unshare(1), clone(2), setns(2), unshare(2), mq_overview(7), name-
spaces(7), sysvipc(7)

Linux man-pages 6.13 2024-05-02 3356

ipv6(7) Miscellaneous Information Manual ipv6(7)

NAME
ipv6 - Linux IPv6 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp6_socket = socket(AF_INET6, SOCK_STREAM, 0);
raw6_socket = socket(AF_INET6, SOCK_RAW, protocol);
udp6_socket = socket(AF_INET6, SOCK_DGRAM, protocol);

DESCRIPTION
Linux 2.2 optionally implements the Internet Protocol, version 6. This man page con-
tains a description of the IPv6 basic API as implemented by the Linux kernel and
glibc 2.1. The interface is based on the BSD sockets interface; see socket(7).

The IPv6 API aims to be mostly compatible with the IPv4 API (see ip(7)). Only dif-
ferences are described in this man page.

To bind an AF_INET6 socket to any process, the local address should be copied from
the in6addr_any variable which has in6_addr type. In static initializations,
IN6ADDR_ANY_INIT may also be used, which expands to a constant expression.
Both of them are in network byte order.

The IPv6 loopback address (::1) is available in the global in6addr_loopback variable.
For initializations, IN6ADDR_LOOPBACK_INIT should be used.

IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 ad-
dress type; thus a program needs to support only this API type to support both proto-
cols. This is handled transparently by the address handling functions in the C library.

IPv4 and IPv6 share the local port space. When you get an IPv4 connection or packet
to an IPv6 socket, its source address will be mapped to v6.

Address format
struct sockaddr_in6 {

sa_family_t sin6_family; /* AF_INET6 */
in_port_t sin6_port; /* port number */
uint32_t sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id; /* Scope ID (new in Linux 2.4) */

};

struct in6_addr {
unsigned char s6_addr[16]; /* IPv6 address */

};

sin6_family is always set to AF_INET6; sin6_port is the protocol port (see sin_port
in ip(7)); sin6_flowinfo is the IPv6 flow identifier; sin6_addr is the 128-bit IPv6 ad-
dress. sin6_scope_id is an ID depending on the scope of the address. It is new in
Linux 2.4. Linux supports it only for link-local addresses, in that case sin6_scope_id
contains the interface index (see netdevice(7))

IPv6 supports several address types: unicast to address a single host, multicast to ad-
dress a group of hosts, anycast to address the nearest member of a group of hosts (not

Linux man-pages 6.13 2024-05-02 3357

ipv6(7) Miscellaneous Information Manual ipv6(7)

implemented in Linux), IPv4-on-IPv6 to address an IPv4 host, and other reserved ad-
dress types.

The address notation for IPv6 is a group of 8 4-digit hexadecimal numbers, separated
with a ':'. "::" stands for a string of 0 bits. Special addresses are ::1 for loopback and
::FFFF:<IPv4 address> for IPv4-mapped-on-IPv6.

The port space of IPv6 is shared with IPv4.

Socket options
IPv6 supports some protocol-specific socket options that can be set with setsockopt(2)
and read with getsockopt(2). The socket option level for IPv6 is IPPROTO_IPV6. A
boolean integer flag is zero when it is false, otherwise true.

IPV6_ADDRFORM
Turn an AF_INET6 socket into a socket of a different address family. Only
AF_INET is currently supported for that. It is allowed only for IPv6 sockets
that are connected and bound to a v4-mapped-on-v6 address. The argument is
a pointer to an integer containing AF_INET. This is useful to pass
v4-mapped sockets as file descriptors to programs that don’t know how to deal
with the IPv6 API.

IPV6_ADD_MEMBERSHIP, IPV6_DROP_MEMBERSHIP
Control membership in multicast groups. Argument is a pointer to a struct
ipv6_mreq.

IPV6_MTU
getsockopt(): Retrieve the current known path MTU of the current socket.
Valid only when the socket has been connected. Returns an integer.

setsockopt(): Set the MTU to be used for the socket. The MTU is limited by
the device MTU or the path MTU when path MTU discovery is enabled. Ar-
gument is a pointer to integer.

IPV6_MTU_DISCOVER
Control path-MTU discovery on the socket. See IP_MTU_DISCOVER in
ip(7) for details.

IPV6_MULTICAST_HOPS
Set the multicast hop limit for the socket. Argument is a pointer to an integer.
-1 in the value means use the route default, otherwise it should be between 0
and 255.

IPV6_MULTICAST_IF
Set the device for outgoing multicast packets on the socket. This is allowed
only for SOCK_DGRAM and SOCK_RAW socket. The argument is a
pointer to an interface index (see netdevice(7)) in an integer.

IPV6_MULTICAST_LOOP
Control whether the socket sees multicast packets that it has send itself. Argu-
ment is a pointer to boolean.

IPV6_RECVPKTINFO (since Linux 2.6.14)
Set delivery of the IPV6_PKTINFO control message on incoming datagrams.
Such control messages contain a struct in6_pktinfo, as per RFC 3542. Al-
lowed only for SOCK_DGRAM or SOCK_RAW sockets. Argument is a

Linux man-pages 6.13 2024-05-02 3358

ipv6(7) Miscellaneous Information Manual ipv6(7)

pointer to a boolean value in an integer.

IPV6_RTHDR, IPV6_AUTHHDR, IPV6_DSTOPTS, IPV6_HOPOPTS,
IPV6_FLOWINFO, IPV6_HOPLIMIT

Set delivery of control messages for incoming datagrams containing extension
headers from the received packet. IPV6_RTHDR delivers the routing header,
IPV6_AUTHHDR delivers the authentication header, IPV6_DSTOPTS de-
livers the destination options, IPV6_HOPOPTS delivers the hop options,
IPV6_FLOWINFO delivers an integer containing the flow ID, IPV6_HO-
PLIMIT delivers an integer containing the hop count of the packet. The con-
trol messages have the same type as the socket option. All these header op-
tions can also be set for outgoing packets by putting the appropriate control
message into the control buffer of sendmsg(2). Allowed only for
SOCK_DGRAM or SOCK_RAW sockets. Argument is a pointer to a
boolean value.

IPV6_RECVERR
Control receiving of asynchronous error options. See IP_RECVERR in ip(7)
for details. Argument is a pointer to boolean.

IPV6_ROUTER_ALERT
Pass forwarded packets containing a router alert hop-by-hop option to this
socket. Allowed only for SOCK_RAW sockets. The tapped packets are not
forwarded by the kernel, it is the user’s responsibility to send them out again.
Argument is a pointer to an integer. A positive integer indicates a router alert
option value to intercept. Packets carrying a router alert option with a value
field containing this integer will be delivered to the socket. A negative integer
disables delivery of packets with router alert options to this socket.

IPV6_UNICAST_HOPS
Set the unicast hop limit for the socket. Argument is a pointer to an integer.
-1 in the value means use the route default, otherwise it should be between 0
and 255.

IPV6_V6ONLY (since Linux 2.4.21 and 2.6)
If this flag is set to true (nonzero), then the socket is restricted to sending and
receiving IPv6 packets only. In this case, an IPv4 and an IPv6 application can
bind to a single port at the same time.

If this flag is set to false (zero), then the socket can be used to send and receive
packets to and from an IPv6 address or an IPv4-mapped IPv6 address.

The argument is a pointer to a boolean value in an integer.

The default value for this flag is defined by the contents of the file
/proc/sys/net/ipv6/bindv6only. The default value for that file is 0 (false).

ERRORS
ENODEV

The user tried to bind(2) to a link-local IPv6 address, but the sin6_scope_id in
the supplied sockaddr_in6 structure is not a valid interface index.

VERSIONS
Linux 2.4 will break binary compatibility for the sockaddr_in6 for 64-bit hosts by
changing the alignment of in6_addr and adding an additional sin6_scope_id field.

Linux man-pages 6.13 2024-05-02 3359

ipv6(7) Miscellaneous Information Manual ipv6(7)

The kernel interfaces stay compatible, but a program including sockaddr_in6 or
in6_addr into other structures may not be. This is not a problem for 32-bit hosts like
i386.

The sin6_flowinfo field is new in Linux 2.4. It is transparently passed/read by the ker-
nel when the passed address length contains it. Some programs that pass a longer ad-
dress buffer and then check the outgoing address length may break.

NOTES
The sockaddr_in6 structure is bigger than the generic sockaddr. Programs that as-
sume that all address types can be stored safely in a struct sockaddr need to be
changed to use struct sockaddr_storage for that instead.

SOL_IP, SOL_IPV6, SOL_ICMPV6, and other SOL_* socket options are non-
portable variants of IPPROTO_*. See also ip(7).

BUGS
The IPv6 extended API as in RFC 2292 is currently only partly implemented; al-
though the 2.2 kernel has near complete support for receiving options, the macros for
generating IPv6 options are missing in glibc 2.1.

IPSec support for EH and AH headers is missing.

Flow label management is not complete and not documented here.

This man page is not complete.

SEE ALSO
cmsg(3), ip(7)

RFC 2553: IPv6 BASIC API; Linux tries to be compliant to this. RFC 2460: IPv6
specification.

Linux man-pages 6.13 2024-05-02 3360

ISO_8859-1(7) Miscellaneous Information Manual ISO_8859-1(7)

NAME
iso_8859-1 - ISO/IEC 8859-1 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-1 encodes the characters used
in many West European languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-1 characters
The following table displays the characters in ISO/IEC 8859-1 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 ¡ INVERTED EXCLAMATION MARK
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 ¥ YEN SIGN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 © COPYRIGHT SIGN
252 170 AA ª FEMININE ORDINAL INDICATOR
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN

Linux man-pages 6.13 2024-05-02 3361

ISO_8859-1(7) Miscellaneous Information Manual ISO_8859-1(7)

262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 ´ ACUTE ACCENT
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ¸ CEDILLA
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA º MASCULINE ORDINAL INDICATOR
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ¼ VULGAR FRACTION ONE QUARTER
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE ¾ VULGAR FRACTION THREE QUARTERS
277 191 BF ¿ INVERTED QUESTION MARK
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ð LATIN CAPITAL LETTER ETH
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Þ LATIN CAPITAL LETTER THORN
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE

Linux man-pages 6.13 2024-05-02 3362

ISO_8859-1(7) Miscellaneous Information Manual ISO_8859-1(7)

342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ð LATIN SMALL LETTER ETH
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE þ LATIN SMALL LETTER THORN
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
ISO/IEC 8859-1 is also known as Latin-1.

SEE ALSO
ascii(7), charsets(7), cp1252(7), iso_8859-15(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3363

ISO_8859-2(7) Miscellaneous Information Manual ISO_8859-2(7)

NAME
iso_8859-2 - ISO/IEC 8859-2 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-2 encodes the Latin characters
used in many Central and East European languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-2 characters
The following table displays the characters in ISO/IEC 8859-2 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ą LATIN CAPITAL LETTER A WITH OGONEK
242 162 A2 ˘ BREVE
243 163 A3 Ł LATIN CAPITAL LETTER L WITH STROKE
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 Ľ LATIN CAPITAL LETTER L WITH CARON
246 166 A6 Ś LATIN CAPITAL LETTER S WITH ACUTE
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 Š LATIN CAPITAL LETTER S WITH CARON
252 170 AA Ş LATIN CAPITAL LETTER S WITH CEDILLA
253 171 AB Ť LATIN CAPITAL LETTER T WITH CARON
254 172 AC Ź LATIN CAPITAL LETTER Z WITH ACUTE
255 173 AD SOFT HYPHEN
256 174 AE Ž LATIN CAPITAL LETTER Z WITH CARON
257 175 AF Ż LATIN CAPITAL LETTER Z WITH DOT ABOVE
260 176 B0 ° DEGREE SIGN
261 177 B1 ą LATIN SMALL LETTER A WITH OGONEK

Linux man-pages 6.13 2024-05-02 3364

ISO_8859-2(7) Miscellaneous Information Manual ISO_8859-2(7)

262 178 B2 ˛ OGONEK
263 179 B3 ł LATIN SMALL LETTER L WITH STROKE
264 180 B4 ´ ACUTE ACCENT
265 181 B5 ľ LATIN SMALL LETTER L WITH CARON
266 182 B6 ś LATIN SMALL LETTER S WITH ACUTE
267 183 B7 ˇ CARON
270 184 B8 ¸ CEDILLA
271 185 B9 š LATIN SMALL LETTER S WITH CARON
272 186 BA ş LATIN SMALL LETTER S WITH CEDILLA
273 187 BB ť LATIN SMALL LETTER T WITH CARON
274 188 BC ź LATIN SMALL LETTER Z WITH ACUTE
275 189 BD ˝ DOUBLE ACUTE ACCENT
276 190 BE ž LATIN SMALL LETTER Z WITH CARON
277 191 BF ż LATIN SMALL LETTER Z WITH DOT ABOVE
300 192 C0 Ŕ LATIN CAPITAL LETTER R WITH ACUTE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ă LATIN CAPITAL LETTER A WITH BREVE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Ĺ LATIN CAPITAL LETTER L WITH ACUTE
306 198 C6 Ć LATIN CAPITAL LETTER C WITH ACUTE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 Č LATIN CAPITAL LETTER C WITH CARON
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ę LATIN CAPITAL LETTER E WITH OGONEK
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ě LATIN CAPITAL LETTER E WITH CARON
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ď LATIN CAPITAL LETTER D WITH CARON
320 208 D0 Đ LATIN CAPITAL LETTER D WITH STROKE
321 209 D1 Ń LATIN CAPITAL LETTER N WITH ACUTE
322 210 D2 Ň LATIN CAPITAL LETTER N WITH CARON
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Ő LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ř LATIN CAPITAL LETTER R WITH CARON
331 217 D9 Ů LATIN CAPITAL LETTER U WITH RING ABOVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Ű LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Ţ LATIN CAPITAL LETTER T WITH CEDILLA
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 ŕ LATIN SMALL LETTER R WITH ACUTE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE

Linux man-pages 6.13 2024-05-02 3365

ISO_8859-2(7) Miscellaneous Information Manual ISO_8859-2(7)

342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ă LATIN SMALL LETTER A WITH BREVE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 ĺ LATIN SMALL LETTER L WITH ACUTE
346 230 E6 ć LATIN SMALL LETTER C WITH ACUTE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 č LATIN SMALL LETTER C WITH CARON
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ę LATIN SMALL LETTER E WITH OGONEK
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ě LATIN SMALL LETTER E WITH CARON
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ď LATIN SMALL LETTER D WITH CARON
360 240 F0 đ LATIN SMALL LETTER D WITH STROKE
361 241 F1 ń LATIN SMALL LETTER N WITH ACUTE
362 242 F2 ň LATIN SMALL LETTER N WITH CARON
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 ő LATIN SMALL LETTER O WITH DOUBLE ACUTE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ř LATIN SMALL LETTER R WITH CARON
371 249 F9 ů LATIN SMALL LETTER U WITH RING ABOVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB ű LATIN SMALL LETTER U WITH DOUBLE ACUTE
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE ţ LATIN SMALL LETTER T WITH CEDILLA
377 255 FF ˙ DOT ABOVE

NOTES
ISO/IEC 8859-2 is also known as Latin-2.

SEE ALSO
ascii(7), charsets(7), iso_8859-1(7), iso_8859-16(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3366

ISO_8859-3(7) Miscellaneous Information Manual ISO_8859-3(7)

NAME
iso_8859-3 - ISO/IEC 8859-3 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-3 encodes the characters used
in certain Southeast European languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-3 characters
The following table displays the characters in ISO/IEC 8859-3 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ħ LATIN CAPITAL LETTER H WITH STROKE
242 162 A2 ˘ BREVE
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
246 166 A6 Ĥ LATIN CAPITAL LETTER H WITH CIRCUMFLEX
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 İ LATIN CAPITAL LETTER I WITH DOT ABOVE
252 170 AA Ş LATIN CAPITAL LETTER S WITH CEDILLA
253 171 AB Ğ LATIN CAPITAL LETTER G WITH BREVE
254 172 AC Ĵ LATIN CAPITAL LETTER J WITH CIRCUMFLEX
255 173 AD SOFT HYPHEN
257 175 AF Ż LATIN CAPITAL LETTER Z WITH DOT ABOVE
260 176 B0 ° DEGREE SIGN
261 177 B1 ħ LATIN SMALL LETTER H WITH STROKE
262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE

Linux man-pages 6.13 2024-05-02 3367

ISO_8859-3(7) Miscellaneous Information Manual ISO_8859-3(7)

264 180 B4 ´ ACUTE ACCENT
265 181 B5 µ MICRO SIGN
266 182 B6 ĥ LATIN SMALL LETTER H WITH CIRCUMFLEX
267 183 B7 · MIDDLE DOT
270 184 B8 ¸ CEDILLA
271 185 B9 ı LATIN SMALL LETTER DOTLESS I
272 186 BA ş LATIN SMALL LETTER S WITH CEDILLA
273 187 BB ğ LATIN SMALL LETTER G WITH BREVE
274 188 BC ĵ LATIN SMALL LETTER J WITH CIRCUMFLEX
275 189 BD ½ VULGAR FRACTION ONE HALF
277 191 BF ż LATIN SMALL LETTER Z WITH DOT ABOVE
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Ċ LATIN CAPITAL LETTER C WITH DOT ABOVE
306 198 C6 Ĉ LATIN CAPITAL LETTER C WITH CIRCUMFLEX
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Ġ LATIN CAPITAL LETTER G WITH DOT ABOVE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ĝ LATIN CAPITAL LETTER G WITH CIRCUMFLEX
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ŭ LATIN CAPITAL LETTER U WITH BREVE
336 222 DE Ŝ LATIN CAPITAL LETTER S WITH CIRCUMFLEX
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 ċ LATIN SMALL LETTER C WITH DOT ABOVE
346 230 E6 ĉ LATIN SMALL LETTER C WITH CIRCUMFLEX
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA

Linux man-pages 6.13 2024-05-02 3368

ISO_8859-3(7) Miscellaneous Information Manual ISO_8859-3(7)

350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 ġ LATIN SMALL LETTER G WITH DOT ABOVE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ĝ LATIN SMALL LETTER G WITH CIRCUMFLEX
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ŭ LATIN SMALL LETTER U WITH BREVE
376 254 FE ŝ LATIN SMALL LETTER S WITH CIRCUMFLEX
377 255 FF ˙ DOT ABOVE

NOTES
ISO/IEC 8859-3 is also known as Latin-3.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3369

ISO_8859-4(7) Miscellaneous Information Manual ISO_8859-4(7)

NAME
iso_8859-4 - ISO/IEC 8859-4 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-4 encodes the characters used
in Scandinavian and Baltic languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-4 characters
The following table displays the characters in ISO/IEC 8859-4 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ą LATIN CAPITAL LETTER A WITH OGONEK
242 162 A2 ĸ LATIN SMALL LETTER KRA (Greenlandic)
243 163 A3 Ŗ LATIN CAPITAL LETTER R WITH CEDILLA
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 Ĩ LATIN CAPITAL LETTER I WITH TILDE
246 166 A6 Ļ LATIN CAPITAL LETTER L WITH CEDILLA
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 Š LATIN CAPITAL LETTER S WITH CARON
252 170 AA Ē LATIN CAPITAL LETTER E WITH MACRON
253 171 AB Ģ LATIN CAPITAL LETTER G WITH CEDILLA
254 172 AC Ŧ LATIN CAPITAL LETTER T WITH STROKE
255 173 AD SOFT HYPHEN
256 174 AE Ž LATIN CAPITAL LETTER Z WITH CARON
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ą LATIN SMALL LETTER A WITH OGONEK

Linux man-pages 6.13 2024-05-02 3370

ISO_8859-4(7) Miscellaneous Information Manual ISO_8859-4(7)

262 178 B2 ˛ OGONEK
263 179 B3 ŗ LATIN SMALL LETTER R WITH CEDILLA
264 180 B4 ´ ACUTE ACCENT
265 181 B5 ĩ LATIN SMALL LETTER I WITH TILDE
266 182 B6 ļ LATIN SMALL LETTER L WITH CEDILLA
267 183 B7 ˇ CARON
270 184 B8 ¸ CEDILLA
271 185 B9 š LATIN SMALL LETTER S WITH CARON
272 186 BA ē LATIN SMALL LETTER E WITH MACRON
273 187 BB ģ LATIN SMALL LETTER G WITH CEDILLA
274 188 BC ŧ LATIN SMALL LETTER T WITH STROKE
275 189 BD Ŋ LATIN CAPITAL LETTER ENG
276 190 BE ž LATIN SMALL LETTER Z WITH CARON
277 191 BF ŋ LATIN SMALL LETTER ENG
300 192 C0 Ā LATIN CAPITAL LETTER A WITH MACRON
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Į LATIN CAPITAL LETTER I WITH OGONEK
310 200 C8 Č LATIN CAPITAL LETTER C WITH CARON
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ę LATIN CAPITAL LETTER E WITH OGONEK
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ė LATIN CAPITAL LETTER E WITH DOT ABOVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ī LATIN CAPITAL LETTER I WITH MACRON
320 208 D0 Đ LATIN CAPITAL LETTER D WITH STROKE
321 209 D1 Ņ LATIN CAPITAL LETTER N WITH CEDILLA
322 210 D2 Ō LATIN CAPITAL LETTER O WITH MACRON
323 211 D3 Ķ LATIN CAPITAL LETTER K WITH CEDILLA
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 LA TIN CAPITAL LETTER U WITH OGONEK
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD LA TIN CAPITAL LETTER U WITH TILDE
336 222 DE LA TIN CAPITAL LETTER U WITH MACRON
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 ā LATIN SMALL LETTER A WITH MACRON
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE

Linux man-pages 6.13 2024-05-02 3371

ISO_8859-4(7) Miscellaneous Information Manual ISO_8859-4(7)

342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 LATIN SMALL LETTER I WITH OGONEK
350 232 E8 č LATIN SMALL LETTER C WITH CARON
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ę LATIN SMALL LETTER E WITH OGONEK
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC LATIN SMALL LETTER E WITH DOT ABOVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF LATIN SMALL LETTER I WITH MACRON
360 240 F0 đ LATIN SMALL LETTER D WITH STROKE
361 241 F1 LA TIN SMALL LETTER N WITH CEDILLA
362 242 F2 LA TIN SMALL LETTER O WITH MACRON
363 243 F3 LA TIN SMALL LETTER K WITH CEDILLA
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 LA TIN SMALL LETTER U WITH OGONEK
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD LA TIN SMALL LETTER U WITH TILDE
376 254 FE ū LATIN SMALL LETTER U WITH MACRON
377 255 FF ˙ DOT ABOVE

NOTES
ISO/IEC 8859-4 is also known as Latin-4.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3372

ISO_8859-5(7) Miscellaneous Information Manual ISO_8859-5(7)

NAME
iso_8859-5 - ISO/IEC 8859-5 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-5 encodes the Cyrillic charac-
ters used in many East European languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-5 characters
The following table displays the characters in ISO/IEC 8859-5 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ё CYRILLIC CAPITAL LETTER IO
242 162 A2 Ђ CYRILLIC CAPITAL LETTER DJE
243 163 A3 Ѓ CYRILLIC CAPITAL LETTER GJE
244 164 A4 Є CYRILLIC CAPITAL LETTER UKRAINIAN IE
245 165 A5 Ѕ CYRILLIC CAPITAL LETTER DZE
246 166 A6 І CYRILLIC CAPITAL LETTER

BYELORUSSIAN-UKRAINIAN I
247 167 A7 Ї CYRILLIC CAPITAL LETTER YI
250 168 A8 Ј CYRILLIC CAPITAL LETTER JE
251 169 A9 Љ CYRILLIC CAPITAL LETTER LJE
252 170 AA Њ CYRILLIC CAPITAL LETTER NJE
253 171 AB Ћ CYRILLIC CAPITAL LETTER TSHE
254 172 AC Ќ CYRILLIC CAPITAL LETTER KJE
255 173 AD SOFT HYPHEN
256 174 AE Ў CYRILLIC CAPITAL LETTER SHORT U
257 175 AF Џ CYRILLIC CAPITAL LETTER DZHE
260 176 B0 А CYRILLIC CAPITAL LETTER A

Linux man-pages 6.13 2024-05-02 3373

ISO_8859-5(7) Miscellaneous Information Manual ISO_8859-5(7)

261 177 B1 Б CYRILLIC CAPITAL LETTER BE
262 178 B2 В CYRILLIC CAPITAL LETTER VE
263 179 B3 Г CYRILLIC CAPITAL LETTER GHE
264 180 B4 Д CYRILLIC CAPITAL LETTER DE
265 181 B5 Е CYRILLIC CAPITAL LETTER IE
266 182 B6 Ж CYRILLIC CAPITAL LETTER ZHE
267 183 B7 З CYRILLIC CAPITAL LETTER ZE
270 184 B8 И CYRILLIC CAPITAL LETTER I
271 185 B9 Й CYRILLIC CAPITAL LETTER SHORT I
272 186 BA К CYRILLIC CAPITAL LETTER KA
273 187 BB Л CYRILLIC CAPITAL LETTER EL
274 188 BC М CYRILLIC CAPITAL LETTER EM
275 189 BD Н CYRILLIC CAPITAL LETTER EN
276 190 BE О CYRILLIC CAPITAL LETTER O
277 191 BF П CYRILLIC CAPITAL LETTER PE
300 192 C0 Р CYRILLIC CAPITAL LETTER ER
301 193 C1 С CYRILLIC CAPITAL LETTER ES
302 194 C2 Т CYRILLIC CAPITAL LETTER TE
303 195 C3 У CYRILLIC CAPITAL LETTER U
304 196 C4 Ф CYRILLIC CAPITAL LETTER EF
305 197 C5 Х CYRILLIC CAPITAL LETTER HA
306 198 C6 Ц CYRILLIC CAPITAL LETTER TSE
307 199 C7 Ч CYRILLIC CAPITAL LETTER CHE
310 200 C8 Ш CYRILLIC CAPITAL LETTER SHA
311 201 C9 Щ CYRILLIC CAPITAL LETTER SHCHA
312 202 CA Ъ CYRILLIC CAPITAL LETTER HARD SIGN
313 203 CB Ы CYRILLIC CAPITAL LETTER YERU
314 204 CC Ь CYRILLIC CAPITAL LETTER SOFT SIGN
315 205 CD - CYRILLIC CAPITAL LETTER E
316 206 CE Ю CYRILLIC CAPITAL LETTER YU
317 207 CF Я CYRILLIC CAPITAL LETTER YA
320 208 D0 а CYRILLIC SMALL LETTER A
321 209 D1 б CYRILLIC SMALL LETTER BE
322 210 D2 в CYRILLIC SMALL LETTER VE
323 211 D3 г CYRILLIC SMALL LETTER GHE
324 212 D4 д CYRILLIC SMALL LETTER DE
325 213 D5 е CYRILLIC SMALL LETTER IE
326 214 D6 ж CYRILLIC SMALL LETTER ZHE
327 215 D7 з CYRILLIC SMALL LETTER ZE
330 216 D8 и CYRILLIC SMALL LETTER I
331 217 D9 й CYRILLIC SMALL LETTER SHORT I
332 218 DA к CYRILLIC SMALL LETTER KA
333 219 DB л CYRILLIC SMALL LETTER EL
334 220 DC м CYRILLIC SMALL LETTER EM
335 221 DD н CYRILLIC SMALL LETTER EN
336 222 DE о CYRILLIC SMALL LETTER O
337 223 DF п CYRILLIC SMALL LETTER PE
340 224 E0 р CYRILLIC SMALL LETTER ER

Linux man-pages 6.13 2024-05-02 3374

ISO_8859-5(7) Miscellaneous Information Manual ISO_8859-5(7)

341 225 E1 с CYRILLIC SMALL LETTER ES
342 226 E2 т CYRILLIC SMALL LETTER TE
343 227 E3 у CYRILLIC SMALL LETTER U
344 228 E4 ф CYRILLIC SMALL LETTER EF
345 229 E5 х CYRILLIC SMALL LETTER HA
346 230 E6 ц CYRILLIC SMALL LETTER TSE
347 231 E7 ч CYRILLIC SMALL LETTER CHE
350 232 E8 ш CYRILLIC SMALL LETTER SHA
351 233 E9 щ CYRILLIC SMALL LETTER SHCHA
352 234 EA ъ CYRILLIC SMALL LETTER HARD SIGN
353 235 EB ы CYRILLIC SMALL LETTER YERU
354 236 EC ь CYRILLIC SMALL LETTER SOFT SIGN
355 237 ED э CYRILLIC SMALL LETTER E
356 238 EE ю CYRILLIC SMALL LETTER YU
357 239 EF я CYRILLIC SMALL LETTER YA
360 240 F0 № NUMERO SIGN
361 241 F1 ё CYRILLIC SMALL LETTER IO
362 242 F2 ђ CYRILLIC SMALL LETTER DJE
363 243 F3 ѓ CYRILLIC SMALL LETTER GJE
364 244 F4 є CYRILLIC SMALL LETTER UKRAINIAN IE
365 245 F5 ѕ CYRILLIC SMALL LETTER DZE
366 246 F6 і CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
367 247 F7 ї CYRILLIC SMALL LETTER YI
370 248 F8 ј CYRILLIC SMALL LETTER JE
371 249 F9 љ CYRILLIC SMALL LETTER LJE
372 250 FA њ CYRILLIC SMALL LETTER NJE
373 251 FB ј CYRILLIC SMALL LETTER TSHE
374 252 FC ќ CYRILLIC SMALL LETTER KJE
375 253 FD § SECTION SIGN
376 254 FE ў CYRILLIC SMALL LETTER SHORT U
377 255 FF џ CYRILLIC SMALL LETTER DZHE

SEE ALSO
ascii(7), charsets(7), cp1251(7), koi8-r(7), koi8-u(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3375

ISO_8859-6(7) Miscellaneous Information Manual ISO_8859-6(7)

NAME
iso_8859-6 - ISO/IEC 8859-6 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-6 encodes the characters used
in the Arabic language.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-6 characters
The following table displays the characters in ISO/IEC 8859-6 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
244 164 A4 ¤ CURRENCY SIGN
254 172 AC ARABIC COMMA
255 173 AD SOFT HYPHEN
273 187 BB ARABIC SEMICOLON
277 191 BF ARABIC QUESTION MARK
301 193 C1 ARABIC LETTER HAMZA
302 194 C2 ARABIC LETTER ALEF WITH MADDA ABOVE
303 195 C3 ARABIC LETTER ALEF WITH HAMZA ABOVE
304 196 C4 ARABIC LETTER WAW WITH HAMZA ABOVE
305 197 C5 ARABIC LETTER ALEF WITH HAMZA BELOW
306 198 C6 ARABIC LETTER YEH WITH HAMZA ABOVE
307 199 C7 ARABIC LETTER ALEF
310 200 C8 ARABIC LETTER BEH
311 201 C9 ARABIC LETTER TEH MARBUTA
312 202 CA ARABIC LETTER TEH
313 203 CB ARABIC LETTER THEH
314 204 CC ARABIC LETTER JEEM

Linux man-pages 6.13 2024-05-02 3376

ISO_8859-6(7) Miscellaneous Information Manual ISO_8859-6(7)

315 205 CD ARABIC LETTER HAH
316 206 CE ARABIC LETTER KHAH
317 207 CF ARABIC LETTER DAL
320 208 D0 ARABIC LETTER THAL
321 209 D1 ARABIC LETTER REH
322 210 D2 ARABIC LETTER ZAIN
323 211 D3 ARABIC LETTER SEEN
324 212 D4 ARABIC LETTER SHEEN
325 213 D5 ARABIC LETTER SAD
326 214 D6 ARABIC LETTER DAD
327 215 D7 ARABIC LETTER TAH
330 216 D8 ARABIC LETTER ZAH
331 217 D9 ARABIC LETTER AIN
332 218 DA ARABIC LETTER GHAIN
340 224 E0 ARABIC TATWEEL
341 225 E1 ARABIC LETTER FEH
342 226 E2 ARABIC LETTER QAF
343 227 E3 ARABIC LETTER KAF
344 228 E4 ARABIC LETTER LAM
345 229 E5 ARABIC LETTER MEEM
346 230 E6 ARABIC LETTER NOON
347 231 E7 ARABIC LETTER HEH
350 232 E8 ARABIC LETTER WAW
351 233 E9 ARABIC LETTER ALEF MAKSURA
352 234 EA ARABIC LETTER YEH
353 235 EB ARABIC FATHATAN
354 236 EC ARABIC DAMMATAN
355 237 ED ARABIC KASRATAN
356 238 EE ARABIC FATHA
357 239 EF ARABIC DAMMA
360 240 F0 ARABIC KASRA
361 241 F1 ARABIC SHADDA
362 242 F2 ARABIC SUKUN

NOTES
ISO/IEC 8859-6 lacks the glyphs required for many related languages, such as Urdu
and Persian (Farsi).

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3377

ISO_8859-7(7) Miscellaneous Information Manual ISO_8859-7(7)

NAME
iso_8859-7 - ISO/IEC 8859-7 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-7 encodes the characters used
in modern monotonic Greek.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-7 characters
The following table displays the characters in ISO/IEC 8859-7 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 ‘ LEFT SINGLE QUOTATION MARK
242 162 A2 ’ RIGHT SINGLE QUOTATION MARK
243 163 A3 £ POUND SIGN
244 164 A4 € EURO SIGN
245 165 A5 DRA CHMA SIGN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 © COPYRIGHT SIGN
252 170 AA GREEK YPOGEGRAMMENI
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
257 175 AF — HORIZONTAL BAR
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 ² SUPERSCRIPT TWO

Linux man-pages 6.13 2024-05-02 3378

ISO_8859-7(7) Miscellaneous Information Manual ISO_8859-7(7)

263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 GREEK TONOS
265 181 B5 GREEK DIALYTIKA TONOS
266 182 B6 GREEK CAPIT AL LETTER ALPHA WITH TONOS
267 183 B7 · MIDDLE DOT
270 184 B8 GREEK CAPIT AL LETTER EPSILON WITH TONOS
271 185 B9 GREEK CAPIT AL LETTER ETA WITH TONOS
272 186 BA GREEK CAPIT AL LETTER IOTA WITH TONOS
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC GREEK CAPIT AL LETTER OMICRON WITH TONOS
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE GREEK CAPIT AL LETTER UPSILON WITH TONOS
277 191 BF GREEK CAPIT AL LETTER OMEGA WITH TONOS
300 192 C0 GREEK SMALL LETTER IOTA WITH

DIALYTIKA AND TONOS
301 193 C1 GREEK CAPIT AL LETTER ALPHA
302 194 C2 GREEK CAPIT AL LETTER BETA
303 195 C3 GREEK CAPIT AL LETTER GAMMA
304 196 C4 GREEK CAPIT AL LETTER DELTA
305 197 C5 GREEK CAPIT AL LETTER EPSILON
306 198 C6 GREEK CAPIT AL LETTER ZETA
307 199 C7 GREEK CAPIT AL LETTER ETA
310 200 C8 GREEK CAPIT AL LETTER THETA
311 201 C9 GREEK CAPITAL LETTER IOTA
312 202 CA GREEK CAPIT AL LETTER KAPPA
313 203 CB GREEK CAPIT AL LETTER LAMBDA
314 204 CC GREEK CAPIT AL LETTER MU
315 205 CD GREEK CAPIT AL LETTER NU
316 206 CE GREEK CAPIT AL LETTER XI
317 207 CF GREEK CAPIT AL LETTER OMICRON
320 208 D0 GREEK CAPIT AL LETTER PI
321 209 D1 GREEK CAPIT AL LETTER RHO
323 211 D3 GREEK CAPIT AL LETTER SIGMA
324 212 D4 GREEK CAPIT AL LETTER TAU
325 213 D5 GREEK CAPIT AL LETTER UPSILON
326 214 D6 GREEK CAPIT AL LETTER PHI
327 215 D7 GREEK CAPIT AL LETTER CHI
330 216 D8 GREEK CAPIT AL LETTER PSI
331 217 D9 GREEK CAPIT AL LETTER OMEGA
332 218 DA GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
333 219 DB GREEK CAPIT AL LETTER UPSILON WITH DIALYTIKA
334 220 DC GREEK SMALL LETTER ALPHA WITH T ONOS
335 221 DD GREEK SMALL LETTER EPSILON WITH T ONOS
336 222 DE GREEK SMALL LETTER ET A WITH TONOS
337 223 DF GREEK SMALL LETTER IOTA WITH TONOS
340 224 E0 GREEK SMALL LETTER UPSILON WITH DIALYTIKA

AND TONOS
341 225 E1 α GREEK SMALL LETTER ALPHA

Linux man-pages 6.13 2024-05-02 3379

ISO_8859-7(7) Miscellaneous Information Manual ISO_8859-7(7)

342 226 E2 GREEK SMALL LETTER BET A
343 227 E3 GREEK SMALL LETTER GAMMA
344 228 E4 GREEK SMALL LETTER DEL TA
345 229 E5 GREEK SMALL LETTER EPSILON
346 230 E6 GREEK SMALL LETTER ZETA
347 231 E7 GREEK SMALL LETTER ET A
350 232 E8 GREEK SMALL LETTER THET A
351 233 E9 GREEK SMALL LETTER IOTA
352 234 EA GREEK SMALL LETTER KAPP A
353 235 EB GREEK SMALL LETTER LAMBD A
354 236 EC µ GREEK SMALL LETTER MU
355 237 ED GREEK SMALL LETTER NU
356 238 EE GREEK SMALL LETTER XI
357 239 EF GREEK SMALL LETTER OMICR ON
360 240 F0 GREEK SMALL LETTER PI
361 241 F1 GREEK SMALL LETTER RHO
362 242 F2 GREEK SMALL LETTER FINAL SIGMA
363 243 F3 GREEK SMALL LETTER SIGMA
364 244 F4 GREEK SMALL LETTER TAU
365 245 F5 GREEK SMALL LETTER UPSILON
366 246 F6 GREEK SMALL LETTER PHI
367 247 F7 GREEK SMALL LETTER CHI
370 248 F8 GREEK SMALL LETTER PSI
371 249 F9 GREEK SMALL LETTER OMEGA
372 250 FA GREEK SMALL LETTER IOTA WITH DIALYTIKA
373 251 FB GREEK SMALL LETTER UPSILON WITH DIAL YTIKA
374 252 FC GREEK SMALL LETTER OMICR ON WITH TONOS
375 253 FD GREEK SMALL LETTER UPSILON WITH T ONOS
376 254 FE GREEK SMALL LETTER OMEGA WITH T ONOS

NOTES
ISO/IEC 8859-7 was formerly known as ELOT-928 or ECMA-118:1986.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3380

ISO_8859-8(7) Miscellaneous Information Manual ISO_8859-8(7)

NAME
iso_8859-8 - ISO/IEC 8859-8 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-8 encodes the characters used
in Modern Hebrew.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-8 characters
The following table displays the characters in ISO/IEC 8859-8 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 ¥ YEN SIGN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 © COPYRIGHT SIGN
252 170 AA × MULTIPLICATION SIGN
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 ² SUPERSCRIPT TWO

Linux man-pages 6.13 2024-05-02 3381

ISO_8859-8(7) Miscellaneous Information Manual ISO_8859-8(7)

263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 ´ ACUTE ACCENT
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ¸ CEDILLA
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA ÷ DIVISION SIGN
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ¼ VULGAR FRACTION ONE QUARTER
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE ¾ VULGAR FRACTION THREE QUARTERS
337 223 DF DOUBLE LOW LINE
340 224 E0 HEBREW LETTER ALEF
341 225 E1 HEBREW LETTER BET
342 226 E2 HEBREW LETTER GIMEL
343 227 E3 HEBREW LETTER D ALET
344 228 E4 HEBREW LETTER HE
345 229 E5 HEBREW LETTER VAV
346 230 E6 HEBREW LETTER ZAYIN
347 231 E7 HEBREW LETTER HET
350 232 E8 HEBREW LETTER TET
351 233 E9 HEBREW LETTER YOD
352 234 EA HEBREW LETTER FIN AL KAF
353 235 EB HEBREW LETTER KAF
354 236 EC HEBREW LETTER LAMED
355 237 ED HEBREW LETTER FIN AL MEM
356 238 EE HEBREW LETTER MEM
357 239 EF HEBREW LETTER FINAL NUN
360 240 F0 HEBREW LETTER NUN
361 241 F1 HEBREW LETTER SAMEKH
362 242 F2 HEBREW LETTER A YIN
363 243 F3 HEBREW LETTER FIN AL PE
364 244 F4 HEBREW LETTER PE
365 245 F5 HEBREW LETTER FIN AL TSADI
366 246 F6 HEBREW LETTER TSADI
367 247 F7 HEBREW LETTER QOF
370 248 F8 HEBREW LETTER RESH
371 249 F9 HEBREW LETTER SHIN
372 250 FA HEBREW LETTER T AV
375 253 FD LEFT-TO-RIGHT MARK
376 254 FE RIGHT-TO-LEFT MARK

NOTES
ISO/IEC 8859-8 was also known as ISO-IR-138. ISO/IEC 8859-8 includes neither
short vowels nor diacritical marks, and Yiddish is not provided for.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3382

ISO_8859-9(7) Miscellaneous Information Manual ISO_8859-9(7)

NAME
iso_8859-9 - ISO/IEC 8859-9 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-9 encodes the characters used
in Turkish.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-9 characters
The following table displays the characters in ISO/IEC 8859-9 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 ¡ INVERTED EXCLAMATION MARK
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 ¥ YEN SIGN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 © COPYRIGHT SIGN
252 170 AA ª FEMININE ORDINAL INDICATOR
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN

Linux man-pages 6.13 2024-05-02 3383

ISO_8859-9(7) Miscellaneous Information Manual ISO_8859-9(7)

262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 ´ ACUTE ACCENT
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ¸ CEDILLA
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA º MASCULINE ORDINAL INDICATOR
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ¼ VULGAR FRACTION ONE QUARTER
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE ¾ VULGAR FRACTION THREE QUARTERS
277 191 BF ¿ INVERTED QUESTION MARK
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ğ LATIN CAPITAL LETTER G WITH BREVE
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD İ LATIN CAPITAL LETTER I WITH DOT ABOVE
336 222 DE Ş LATIN CAPITAL LETTER S WITH CEDILLA
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE

Linux man-pages 6.13 2024-05-02 3384

ISO_8859-9(7) Miscellaneous Information Manual ISO_8859-9(7)

342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ğ LATIN SMALL LETTER G WITH BREVE
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ı LATIN SMALL LETTER DOTLESS I
376 254 FE ş LATIN SMALL LETTER S WITH CEDILLA
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
ISO/IEC 8859-9 is also known as Latin-5.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3385

ISO_8859-10(7) Miscellaneous Information Manual ISO_8859-10(7)

NAME
iso_8859-10 - ISO/IEC 8859-10 character set encoded in octal, decimal, and hexa-
decimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-10 encodes the characters used
in Nordic languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-10 characters
The following table displays the characters in ISO/IEC 8859-10 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ą LATIN CAPITAL LETTER A WITH OGONEK
242 162 A2 Ē LATIN CAPITAL LETTER E WITH MACRON
243 163 A3 Ģ LATIN CAPITAL LETTER G WITH CEDILLA
244 164 A4 Ī LATIN CAPITAL LETTER I WITH MACRON
245 165 A5 Ĩ LATIN CAPITAL LETTER I WITH TILDE
246 166 A6 Ķ LATIN CAPITAL LETTER K WITH CEDILLA
247 167 A7 § SECTION SIGN
250 168 A8 Ļ LATIN CAPITAL LETTER L WITH CEDILLA
251 169 A9 Đ LATIN CAPITAL LETTER D WITH STROKE
252 170 AA Š LATIN CAPITAL LETTER S WITH CARON
253 171 AB Ŧ LATIN CAPITAL LETTER T WITH STROKE
254 172 AC Ž LATIN CAPITAL LETTER Z WITH CARON
255 173 AD SOFT HYPHEN
256 174 AE LA TIN CAPITAL LETTER U WITH MACRON
257 175 AF Ŋ LATIN CAPITAL LETTER ENG
260 176 B0 ° DEGREE SIGN
261 177 B1 ą LATIN SMALL LETTER A WITH OGONEK

Linux man-pages 6.13 2024-05-02 3386

ISO_8859-10(7) Miscellaneous Information Manual ISO_8859-10(7)

262 178 B2 ē LATIN SMALL LETTER E WITH MACRON
263 179 B3 ģ LATIN SMALL LETTER G WITH CEDILLA
264 180 B4 LATIN SMALL LETTER I WITH MACRON
265 181 B5 ĩ LATIN SMALL LETTER I WITH TILDE
266 182 B6 LA TIN SMALL LETTER K WITH CEDILLA
267 183 B7 · MIDDLE DOT
270 184 B8 ļ LATIN SMALL LETTER L WITH CEDILLA
271 185 B9 đ LATIN SMALL LETTER D WITH STROKE
272 186 BA š LATIN SMALL LETTER S WITH CARON
273 187 BB ŧ LATIN SMALL LETTER T WITH STROKE
274 188 BC ž LATIN SMALL LETTER Z WITH CARON
275 189 BD — HORIZONTAL BAR
276 190 BE ū LATIN SMALL LETTER U WITH MACRON
277 191 BF ŋ LATIN SMALL LETTER ENG
300 192 C0 Ā LATIN CAPITAL LETTER A WITH MACRON
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Į LATIN CAPITAL LETTER I WITH OGONEK
310 200 C8 Č LATIN CAPITAL LETTER C WITH CARON
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ę LATIN CAPITAL LETTER E WITH OGONEK
312 202 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ė LATIN CAPITAL LETTER E WITH DOT ABOVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ð LATIN CAPITAL LETTER ETH
321 209 D1 Ņ LATIN CAPITAL LETTER N WITH CEDILLA
322 210 D2 Ō LATIN CAPITAL LETTER O WITH MACRON
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 LA TIN CAPITAL LETTER U WITH TILDE
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 LA TIN CAPITAL LETTER U WITH OGONEK
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Þ LATIN CAPITAL LETTER THORN
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 ā LATIN SMALL LETTER A WITH MACRON
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE

Linux man-pages 6.13 2024-05-02 3387

ISO_8859-10(7) Miscellaneous Information Manual ISO_8859-10(7)

342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 LATIN SMALL LETTER I WITH OGONEK
350 232 E8 č LATIN SMALL LETTER C WITH CARON
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ę LATIN SMALL LETTER E WITH OGONEK
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC LATIN SMALL LETTER E WITH DOT ABOVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ð LATIN SMALL LETTER ETH
361 241 F1 LA TIN SMALL LETTER N WITH CEDILLA
362 242 F2 LA TIN SMALL LETTER O WITH MACRON
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 LA TIN SMALL LETTER U WITH TILDE
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 LA TIN SMALL LETTER U WITH OGONEK
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE þ LATIN SMALL LETTER THORN
377 255 FF ĸ LATIN SMALL LETTER KRA

NOTES
ISO/IEC 8859-10 is also known as Latin-6.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3388

ISO_8859-11(7) Miscellaneous Information Manual ISO_8859-11(7)

NAME
iso_8859-11 - ISO/IEC 8859-11 character set encoded in octal, decimal, and hexa-
decimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-11 encodes the characters used
in the Thai language.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-11 characters
The following table displays the characters in ISO/IEC 8859-11 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 THAI CHARACTER KO KAI
242 162 A2 THAI CHARACTER KHO KHAI
243 163 A3 THAI CHARACTER KHO KHUAT
244 164 A4 THAI CHARACTER KHO KHWAI
245 165 A5 THAI CHARACTER KHO KHON
246 166 A6 THAI CHARACTER KHO RAKHANG
247 167 A7 THAI CHARACTER NGO NGU
250 168 A8 THAI CHARACTER CHO CHAN
251 169 A9 THAI CHARACTER CHO CHING
252 170 AA THAI CHARACTER CHO CHANG
253 171 AB THAI CHARACTER SO SO
254 172 AC THAI CHARACTER CHO CHOE
255 173 AD THAI CHARACTER YO YING
256 174 AE THAI CHARACTER DO CHADA
257 175 AF THAI CHARACTER TO PATAK
260 176 B0 THAI CHARACTER THO THAN
261 177 B1 THAI CHARACTER THO NANGMONTHO

Linux man-pages 6.13 2024-05-02 3389

ISO_8859-11(7) Miscellaneous Information Manual ISO_8859-11(7)

262 178 B2 THAI CHARACTER THO PHUTHAO
263 179 B3 THAI CHARACTER NO NEN
264 180 B4 THAI CHARACTER DO DEK
265 181 B5 THAI CHARACTER TO TAO
266 182 B6 THAI CHARACTER THO THUNG
267 183 B7 THAI CHARACTER THO THAHAN
270 184 B8 THAI CHARACTER THO THONG
271 185 B9 THAI CHARACTER NO NU
272 186 BA THAI CHARACTER BO BAIMAI
273 187 BB THAI CHARACTER PO PLA
274 188 BC THAI CHARACTER PHO PHUNG
275 189 BD THAI CHARACTER FO FA
276 190 BE THAI CHARACTER PHO PHAN
277 191 BF THAI CHARACTER FO FAN
300 192 C0 THAI CHARACTER PHO SAMPHAO
301 193 C1 THAI CHARACTER MO MA
302 194 C2 THAI CHARACTER YO YAK
303 195 C3 THAI CHARACTER RO RUA
304 196 C4 THAI CHARACTER RU
305 197 C5 THAI CHARACTER LO LING
306 198 C6 THAI CHARACTER LU
307 199 C7 THAI CHARACTER WO WAEN
310 200 C8 THAI CHARACTER SO SALA
311 201 C9 THAI CHARACTER SO RUSI
312 202 CA THAI CHARACTER SO SUA
313 203 CB THAI CHARACTER HO HIP
314 204 CC THAI CHARACTER LO CHULA
315 205 CD THAI CHARACTER O ANG
316 206 CE THAI CHARACTER HO NOKHUK
317 207 CF THAI CHARACTER PAIYANNOI
320 208 D0 THAI CHARACTER SARA A
321 209 D1 THAI CHARACTER MAI HAN-AKAT
322 210 D2 THAI CHARACTER SARA AA
323 211 D3 THAI CHARACTER SARA AM
324 212 D4 THAI CHARACTER SARA I
325 213 D5 THAI CHARACTER SARA II
326 214 D6 THAI CHARACTER SARA UE
327 215 D7 THAI CHARACTER SARA UEE
330 216 D8 THAI CHARACTER SARA U
331 217 D9 THAI CHARACTER SARA UU
332 218 DA THAI CHARACTER PHINTHU
337 223 DF THAI CURRENCY SYMBOL BAHT
340 224 E0 THAI CHARACTER SARA E
341 225 E1 THAI CHARACTER SARA AE
342 226 E2 THAI CHARACTER SARA O
343 227 E3 THAI CHARACTER SARA AI MAIMUAN
344 228 E4 THAI CHARACTER SARA AI MAIMALAI
345 229 E5 THAI CHARACTER LAKKHANGYAO

Linux man-pages 6.13 2024-05-02 3390

ISO_8859-11(7) Miscellaneous Information Manual ISO_8859-11(7)

346 230 E6 THAI CHARACTER MAIYAMOK
347 231 E7 THAI CHARACTER MAITAIKHU
350 232 E8 THAI CHARACTER MAI EK
351 233 E9 THAI CHARACTER MAI THO
352 234 EA THAI CHARACTER MAI TRI
353 235 EB THAI CHARACTER MAI CHATTAWA
354 236 EC THAI CHARACTER THANTHAKHAT
355 237 ED THAI CHARACTER NIKHAHIT
356 238 EE THAI CHARACTER YAMAKKAN
357 239 EF THAI CHARACTER FONGMAN
360 240 F0 THAI DIGIT ZERO
361 241 F1 THAI DIGIT ONE
362 242 F2 THAI DIGIT TWO
363 243 F3 THAI DIGIT THREE
364 244 F4 THAI DIGIT FOUR
365 245 F5 THAI DIGIT FIVE
366 246 F6 THAI DIGIT SIX
367 247 F7 THAI DIGIT SEVEN
370 248 F8 THAI DIGIT EIGHT
371 249 F9 THAI DIGIT NINE
372 250 FA THAI CHARACTER ANGKHANKHU
373 251 FB THAI CHARACTER KHOMUT

NOTES
ISO/IEC 8859-11 is the same as TIS (Thai Industrial Standard) 620-2253, commonly
known as TIS-620, except for the character in position A0: ISO/IEC 8859-11 defines
this as NO-BREAK SPACE, while TIS-620 leaves it undefined.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3391

ISO_8859-13(7) Miscellaneous Information Manual ISO_8859-13(7)

NAME
iso_8859-13 - ISO/IEC 8859-13 character set encoded in octal, decimal, and hexa-
decimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-13 encodes the characters used
in Baltic Rim languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-13 characters
The following table displays the characters in ISO/IEC 8859-13 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 ” RIGHT DOUBLE QUOTATION MARK
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 „ DOUBLE LOW-9 QUOTATION MARK
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 Ø LATIN CAPITAL LETTER O WITH STROKE
251 169 A9 © COPYRIGHT SIGN
252 170 AA Ŗ LATIN CAPITAL LETTER R WITH CEDILLA
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF Æ LATIN CAPITAL LETTER AE
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN

Linux man-pages 6.13 2024-05-02 3392

ISO_8859-13(7) Miscellaneous Information Manual ISO_8859-13(7)

262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 “ LEFT DOUBLE QUOTATION MARK
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ø LATIN SMALL LETTER O WITH STROKE
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA ŗ LATIN SMALL LETTER R WITH CEDILLA
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ¼ VULGAR FRACTION ONE QUARTER
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE ¾ VULGAR FRACTION THREE QUARTERS
277 191 BF æ LATIN SMALL LETTER AE
300 192 C0 Ą LATIN CAPITAL LETTER A WITH OGONEK
301 193 C1 Į LATIN CAPITAL LETTER I WITH OGONEK
302 194 C2 Ā LATIN CAPITAL LETTER A WITH MACRON
303 195 C3 Ć LATIN CAPITAL LETTER C WITH ACUTE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Ę LATIN CAPITAL LETTER E WITH OGONEK
307 199 C7 Ē LATIN CAPITAL LETTER E WITH MACRON
310 200 C8 Č LATIN CAPITAL LETTER C WITH CARON
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ź LATIN CAPITAL LETTER Z WITH ACUTE
313 203 CB Ė LATIN CAPITAL LETTER E WITH DOT ABOVE
314 204 CC Ģ LATIN CAPITAL LETTER G WITH CEDILLA
315 205 CD Ķ LATIN CAPITAL LETTER K WITH CEDILLA
316 206 CE Ī LATIN CAPITAL LETTER I WITH MACRON
317 207 CF Ļ LATIN CAPITAL LETTER L WITH CEDILLA
320 208 D0 Š LATIN CAPITAL LETTER S WITH CARON
321 209 D1 Ń LATIN CAPITAL LETTER N WITH ACUTE
322 210 D2 Ņ LATIN CAPITAL LETTER N WITH CEDILLA
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ō LATIN CAPITAL LETTER O WITH MACRON
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 LA TIN CAPITAL LETTER U WITH OGONEK
331 217 D9 Ł LATIN CAPITAL LETTER L WITH STROKE
332 218 DA Ś LATIN CAPITAL LETTER S WITH ACUTE
333 219 DB LA TIN CAPITAL LETTER U WITH MACRON
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ż LATIN CAPITAL LETTER Z WITH DOT ABOVE
336 222 DE Ž LATIN CAPITAL LETTER Z WITH CARON
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 ą LATIN SMALL LETTER A WITH OGONEK
341 225 E1 LATIN SMALL LETTER I WITH OGONEK

Linux man-pages 6.13 2024-05-02 3393

ISO_8859-13(7) Miscellaneous Information Manual ISO_8859-13(7)

342 226 E2 ā LATIN SMALL LETTER A WITH MACRON
343 227 E3 ć LATIN SMALL LETTER C WITH ACUTE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 ę LATIN SMALL LETTER E WITH OGONEK
347 231 E7 ē LATIN SMALL LETTER E WITH MACRON
350 232 E8 č LATIN SMALL LETTER C WITH CARON
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ź LATIN SMALL LETTER Z WITH ACUTE
353 235 EB LATIN SMALL LETTER E WITH DOT ABOVE
354 236 EC ģ LATIN SMALL LETTER G WITH CEDILLA
355 237 ED LA TIN SMALL LETTER K WITH CEDILLA
356 238 EE LATIN SMALL LETTER I WITH MACRON
357 239 EF ļ LATIN SMALL LETTER L WITH CEDILLA
360 240 F0 š LATIN SMALL LETTER S WITH CARON
361 241 F1 ń LATIN SMALL LETTER N WITH ACUTE
362 242 F2 LA TIN SMALL LETTER N WITH CEDILLA
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 LA TIN SMALL LETTER O WITH MACRON
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 LA TIN SMALL LETTER U WITH OGONEK
371 249 F9 ł LATIN SMALL LETTER L WITH STROKE
372 250 FA ś LATIN SMALL LETTER S WITH ACUTE
373 251 FB ū LATIN SMALL LETTER U WITH MACRON
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ż LATIN SMALL LETTER Z WITH DOT ABOVE
376 254 FE ž LATIN SMALL LETTER Z WITH CARON
377 255 FF ’ RIGHT SINGLE QUOTATION MARK

NOTES
ISO/IEC 8859-13 is also known as Latin-7.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3394

ISO_8859-14(7) Miscellaneous Information Manual ISO_8859-14(7)

NAME
iso_8859-14 - ISO/IEC 8859-14 character set encoded in octal, decimal, and hexa-
decimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-14 encodes the characters used
in Celtic languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-14 characters
The following table displays the characters in ISO/IEC 8859-14 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 LA TIN CAPITAL LETTER B WITH DOT ABOVE
242 162 A2 ḃ LATIN SMALL LETTER B WITH DOT ABOVE
243 163 A3 £ POUND SIGN
244 164 A4 Ċ LATIN CAPITAL LETTER C WITH DOT ABOVE
245 165 A5 ċ LATIN SMALL LETTER C WITH DOT ABOVE
246 166 A6 LA TIN CAPITAL LETTER D WITH DOT ABOVE
247 167 A7 § SECTION SIGN
250 168 A8 LA TIN CAPITAL LETTER W WITH GRAVE
251 169 A9 © COPYRIGHT SIGN
252 170 AA LA TIN CAPITAL LETTER W WITH ACUTE
253 171 AB LA TIN SMALL LETTER D WITH DOT ABOVE
254 172 AC LA TIN CAPITAL LETTER Y WITH GRAVE
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF Ÿ LATIN CAPITAL LETTER Y WITH DIAERESIS
260 176 B0 LA TIN CAPITAL LETTER F WITH DOT ABOVE
261 177 B1 LATIN SMALL LETTER F WITH DOT ABOVE

Linux man-pages 6.13 2024-05-02 3395

ISO_8859-14(7) Miscellaneous Information Manual ISO_8859-14(7)

262 178 B2 Ġ LATIN CAPITAL LETTER G WITH DOT ABOVE
263 179 B3 ġ LATIN SMALL LETTER G WITH DOT ABOVE
264 180 B4 LA TIN CAPITAL LETTER M WITH DOT ABOVE
265 181 B5 LA TIN SMALL LETTER M WITH DOT ABOVE
266 182 B6 ¶ PILCROW SIGN
267 183 B7 LA TIN CAPITAL LETTER P WITH DOT ABOVE
270 184 B8 LA TIN SMALL LETTER W WITH GRAVE
271 185 B9 LA TIN SMALL LETTER P WITH DOT ABOVE
272 186 BA LA TIN SMALL LETTER W WITH ACUTE
273 187 BB LA TIN CAPITAL LETTER S WITH DOT ABOVE
274 188 BC LA TIN SMALL LETTER Y WITH GRAVE
275 189 BD LA TIN CAPITAL LETTER W WITH DIAERESIS
276 190 BE LA TIN SMALL LETTER W WITH DIAERESIS
277 191 BF LATIN SMALL LETTER S WITH DOT ABOVE
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 LA TIN CAPITAL LETTER W WITH CIRCUMFLEX
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 LA TIN CAPITAL LETTER T WITH DOT ABOVE
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE LA TIN CAPITAL LETTER Y WITH CIRCUMFLEX
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE

Linux man-pages 6.13 2024-05-02 3396

ISO_8859-14(7) Miscellaneous Information Manual ISO_8859-14(7)

342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 LA TIN SMALL LETTER W WITH CIRCUMFLEX
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 LATIN SMALL LETTER T WITH DOT ABOVE
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE LA TIN SMALL LETTER Y WITH CIRCUMFLEX
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
ISO/IEC 8859-14 is also known as Latin-8.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3397

ISO_8859-15(7) Miscellaneous Information Manual ISO_8859-15(7)

NAME
iso_8859-15 - ISO/IEC 8859-15 character set encoded in octal, decimal, and hexa-
decimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-15 encodes the characters used
in many West European languages and adds the Euro sign.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-15 characters
The following table displays the characters in ISO/IEC 8859-15 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 ¡ INVERTED EXCLAMATION MARK
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 € EURO SIGN
245 165 A5 ¥ YEN SIGN
246 166 A6 Š LATIN CAPITAL LETTER S WITH CARON
247 167 A7 § SECTION SIGN
250 168 A8 š LATIN SMALL LETTER S WITH CARON
251 169 A9 © COPYRIGHT SIGN
252 170 AA ª FEMININE ORDINAL INDICATOR
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN

Linux man-pages 6.13 2024-05-02 3398

ISO_8859-15(7) Miscellaneous Information Manual ISO_8859-15(7)

262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 Ž LATIN CAPITAL LETTER Z WITH CARON
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ž LATIN SMALL LETTER Z WITH CARON
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA º MASCULINE ORDINAL INDICATOR
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC Œ LATIN CAPITAL LIGATURE OE
275 189 BD œ LATIN SMALL LIGATURE OE
276 190 BE Ÿ LATIN CAPITAL LETTER Y WITH DIAERESIS
277 191 BF ¿ INVERTED QUESTION MARK
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ð LATIN CAPITAL LETTER ETH
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Þ LATIN CAPITAL LETTER THORN
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE

Linux man-pages 6.13 2024-05-02 3399

ISO_8859-15(7) Miscellaneous Information Manual ISO_8859-15(7)

342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ð LATIN SMALL LETTER ETH
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE þ LATIN SMALL LETTER THORN
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
ISO/IEC 8859-15 is also known as Latin-9 (or sometimes as Latin-0).

SEE ALSO
ascii(7), charsets(7), cp1252(7), iso_8859-1(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3400

ISO_8859-16(7) Miscellaneous Information Manual ISO_8859-16(7)

NAME
iso_8859-16 - ISO/IEC 8859-16 character set encoded in octal, decimal, and hexa-
decimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character
set (also known as ISO/IEC 646-IRV). ISO/IEC 8859-16 encodes the Latin characters
used in Southeast European languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-16 characters
The following table displays the characters in ISO/IEC 8859-16 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ą LATIN CAPITAL LETTER A WITH OGONEK
242 162 A2 ą LATIN SMALL LETTER A WITH OGONEK
243 163 A3 Ł LATIN CAPITAL LETTER L WITH STROKE
244 164 A4 € EURO SIGN
245 165 A5 „ DOUBLE LOW-9 QUOTATION MARK
246 166 A6 Š LATIN CAPITAL LETTER S WITH CARON
247 167 A7 § SECTION SIGN
250 168 A8 š LATIN SMALL LETTER S WITH CARON
251 169 A9 © COPYRIGHT SIGN
252 170 AA LA TIN CAPITAL LETTER S WITH COMMA BELOW
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC Ź LATIN CAPITAL LETTER Z WITH ACUTE
255 173 AD SOFT HYPHEN
256 174 AE ź LATIN SMALL LETTER Z WITH ACUTE
257 175 AF Ż LATIN CAPITAL LETTER Z WITH DOT ABOVE
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN

Linux man-pages 6.13 2024-05-02 3401

ISO_8859-16(7) Miscellaneous Information Manual ISO_8859-16(7)

262 178 B2 Č LATIN CAPITAL LETTER C WITH CARON
263 179 B3 ł LATIN SMALL LETTER L WITH STROKE
264 180 B4 Ž LATIN CAPITAL LETTER Z WITH CARON
265 181 B5 ” LEFT DOUBLE QUOTATION MARK
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ž LATIN SMALL LETTER Z WITH CARON
271 185 B9 č LATIN SMALL LETTER C WITH CARON
272 186 BA ș LATIN SMALL LETTER S WITH COMMA BELOW
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC Œ LATIN CAPITAL LIGATURE OE
275 189 BD œ LATIN SMALL LIGATURE OE
276 190 BE Ÿ LATIN CAPITAL LETTER Y WITH DIAERESIS
277 191 BF ż LATIN SMALL LETTER Z WITH DOT ABOVE
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ă LATIN CAPITAL LETTER A WITH BREVE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Ć LATIN CAPITAL LETTER C WITH ACUTE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Đ LATIN CAPITAL LETTER D WITH STROKE
321 209 D1 Ń LATIN CAPITAL LETTER N WITH ACUTE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Ő LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 Ś LATIN CAPITAL LETTER S WITH ACUTE
330 216 D8 Ű LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ę LATIN CAPITAL LETTER E WITH OGONEK
336 222 DE LA TIN CAPITAL LETTER T WITH COMMA BELOW
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE

Linux man-pages 6.13 2024-05-02 3402

ISO_8859-16(7) Miscellaneous Information Manual ISO_8859-16(7)

342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ă LATIN SMALL LETTER A WITH BREVE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 ć LATIN SMALL LETTER C WITH ACUTE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 đ LATIN SMALL LETTER D WITH STROKE
361 241 F1 ń LATIN SMALL LETTER N WITH ACUTE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 ő LATIN SMALL LETTER O WITH DOUBLE ACUTE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ś LATIN SMALL LETTER S WITH ACUTE
370 248 F8 ű LATIN SMALL LETTER U WITH DOUBLE ACUTE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ę LATIN SMALL LETTER E WITH OGONEK
376 254 FE ț LATIN SMALL LETTER T WITH COMMA BELOW
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
ISO/IEC 8859-16 is also known as Latin-10.

SEE ALSO
ascii(7), charsets(7), iso_8859-3(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3403

ISO_8859-16(7) Miscellaneous Information Manual ISO_8859-16(7)

Linux man-pages 6.13 2024-05-02 3404

kernel_lockdown(7) Miscellaneous Information Manual kernel_lockdown(7)

NAME
kernel_lockdown - kernel image access prevention feature

DESCRIPTION
The Kernel Lockdown feature is designed to prevent both direct and indirect access to
a running kernel image, attempting to protect against unauthorized modification of the
kernel image and to prevent access to security and cryptographic data located in ker-
nel memory, whilst still permitting driver modules to be loaded.

If a prohibited or restricted feature is accessed or used, the kernel will emit a message
that looks like:

Lockdown: X: Y is restricted, see man kernel_lockdown.7

where X indicates the process name and Y indicates what is restricted.

On an EFI-enabled x86 or arm64 machine, lockdown will be automatically enabled if
the system boots in EFI Secure Boot mode.

Coverage
When lockdown is in effect, a number of features are disabled or have their use re-
stricted. This includes special device files and kernel services that allow direct access
of the kernel image:

/dev/mem
/dev/kmem
/dev/kcore
/dev/ioports
BPF
kprobes

and the ability to directly configure and control devices, so as to prevent the use of a
device to access or modify a kernel image:

• The use of module parameters that directly specify hardware parameters to drivers
through the kernel command line or when loading a module.

• The use of direct PCI BAR access.

• The use of the ioperm and iopl instructions on x86.

• The use of the KD*IO console ioctls.

• The use of the TIOCSSERIAL serial ioctl.

• The alteration of MSR registers on x86.

• The replacement of the PCMCIA CIS.

• The overriding of ACPI tables.

• The use of ACPI error injection.

• The specification of the ACPI RDSP address.

• The use of ACPI custom methods.

Certain facilities are restricted:

Linux man-pages 6.13 2024-05-02 3405

kernel_lockdown(7) Miscellaneous Information Manual kernel_lockdown(7)

• Only validly signed modules may be loaded (waived if the module file being
loaded is vouched for by IMA appraisal).

• Only validly signed binaries may be kexec’d (waived if the binary image file to be
executed is vouched for by IMA appraisal).

• Unencrypted hibernation/suspend to swap are disallowed as the kernel image is
saved to a medium that can then be accessed.

• Use of debugfs is not permitted as this allows a whole range of actions including
direct configuration of, access to and driving of hardware.

• IMA requires the addition of the "secure_boot" rules to the policy, whether or not
they are specified on the command line, for both the built-in and custom policies
in secure boot lockdown mode.

VERSIONS
The Kernel Lockdown feature was added in Linux 5.4.

NOTES
The Kernel Lockdown feature is enabled by CONFIG_SECURITY_LOCK-
DOWN_LSM. The lsm=lsm1,...,lsmN command line parameter controls the se-
quence of the initialization of Linux Security Modules. It must contain the string
lockdown to enable the Kernel Lockdown feature. If the command line parameter is
not specified, the initialization falls back to the value of the deprecated security=
command line parameter and further to the value of CONFIG_LSM.

Linux man-pages 6.13 2024-05-02 3406

keyrings(7) Miscellaneous Information Manual keyrings(7)

NAME
keyrings - in-kernel key management and retention facility

DESCRIPTION
The Linux key-management facility is primarily a way for various kernel components
to retain or cache security data, authentication keys, encryption keys, and other data in
the kernel.

System call interfaces are provided so that user-space programs can manage those ob-
jects and also use the facility for their own purposes; see add_key(2), request_key(2),
and keyctl(2).

A library and some user-space utilities are provided to allow access to the facility.
See keyctl(1), keyctl(3), and keyutils(7) for more information.

Keys
A key has the following attributes:

Serial number (ID)
This is a unique integer handle by which a key is referred to in system calls.
The serial number is sometimes synonymously referred as the key ID. Pro-
grammatically, key serial numbers are represented using the type key_serial_t.

Type A key’s type defines what sort of data can be held in the key, how the proposed
content of the key will be parsed, and how the payload will be used.

There are a number of general-purpose types available, plus some specialist
types defined by specific kernel components.

Description (name)
The key description is a printable string that is used as the search term for the
key (in conjunction with the key type) as well as a display name. During
searches, the description may be partially matched or exactly matched.

Payload (data)
The payload is the actual content of a key. This is usually set when a key is
created, but it is possible for the kernel to upcall to user space to finish the in-
stantiation of a key if that key wasn’t already known to the kernel when it was
requested. For further details, see request_key(2).

A key’s payload can be read and updated if the key type supports it and if suit-
able permission is granted to the caller.

Access rights
Much as files do, each key has an owning user ID, an owning group ID, and a
security label. Each key also has a set of permissions, though there are more
than for a normal UNIX file, and there is an additional category—possessor—
beyond the usual user, group, and other (see Possession, below).

Note that keys are quota controlled, since they require unswappable kernel
memory. The owning user ID specifies whose quota is to be debited.

Expiration time
Each key can have an expiration time set. When that time is reached, the key
is marked as being expired and accesses to it fail with the error EKEYEX-
PIRED. If not deleted, updated, or replaced, then, after a set amount of time,

Linux man-pages 6.13 2024-06-28 3407

keyrings(7) Miscellaneous Information Manual keyrings(7)

an expired key is automatically removed (garbage collected) along with all
links to it, and attempts to access the key fail with the error ENOKEY.

Reference count
Each key has a reference count. Keys are referenced by keyrings, by currently
active users, and by a process’s credentials. When the reference count reaches
zero, the key is scheduled for garbage collection.

Key types
The kernel provides several basic types of key:

"keyring"
Keyrings are special keys which store a set of links to other keys (including
other keyrings), analogous to a directory holding links to files. The main pur-
pose of a keyring is to prevent other keys from being garbage collected be-
cause nothing refers to them.

Keyrings with descriptions (names) that begin with a period ('.') are reserved to
the implementation.

"user"
This is a general-purpose key type. The key is kept entirely within kernel
memory. The payload may be read and updated by user-space applications.

The payload for keys of this type is a blob of arbitrary data of up to 32,767
bytes.

The description may be any valid string, though it is preferred that it start with
a colon-delimited prefix representing the service to which the key is of interest
(for instance "afs:mykey").

"logon" (since Linux 3.3)
This key type is essentially the same as "user", but it does not provide reading
(i.e., the keyctl(2) KEYCTL_READ operation), meaning that the key payload
is never visible from user space. This is suitable for storing username-pass-
word pairs that should not be readable from user space.

The description of a "logon" key must start with a non-empty colon-delimited
prefix whose purpose is to identify the service to which the key belongs.
(Note that this differs from keys of the "user" type, where the inclusion of a
prefix is recommended but is not enforced.)

"big_key" (since Linux 3.13)
This key type is similar to the "user" key type, but it may hold a payload of up
to 1 MiB in size. This key type is useful for purposes such as holding Ker-
beros ticket caches.

The payload data may be stored in a tmpfs filesystem, rather than in kernel
memory, if the data size exceeds the overhead of storing the data in the filesys-
tem. (Storing the data in a filesystem requires filesystem structures to be allo-
cated in the kernel. The size of these structures determines the size threshold
above which the tmpfs storage method is used.) Since Linux 4.8, the payload
data is encrypted when stored in tmpfs, thereby preventing it from being writ-
ten unencrypted into swap space.

There are more specialized key types available also, but they aren’t discussed here

Linux man-pages 6.13 2024-06-28 3408

keyrings(7) Miscellaneous Information Manual keyrings(7)

because they aren’t intended for normal user-space use.

Key type names that begin with a period ('.') are reserved to the implementation.

Keyrings
As previously mentioned, keyrings are a special type of key that contain links to other
keys (which may include other keyrings). Keys may be linked to by multiple
keyrings. Keyrings may be considered as analogous to UNIX directories where each
directory contains a set of hard links to files.

Various operations (system calls) may be applied only to keyrings:

Adding
A key may be added to a keyring by system calls that create keys. This pre-
vents the new key from being immediately deleted when the system call re-
leases its last reference to the key.

Linking
A link may be added to a keyring pointing to a key that is already known, pro-
vided this does not create a self-referential cycle.

Unlinking
A link may be removed from a keyring. When the last link to a key is re-
moved, that key will be scheduled for deletion by the garbage collector.

Clearing
All the links may be removed from a keyring.

Searching
A keyring may be considered the root of a tree or subtree in which keyrings
form the branches and non-keyrings the leaves. This tree may be searched for
a key matching a particular type and description.

See keyctl_clear(3), keyctl_link(3), keyctl_search(3), and keyctl_unlink(3) for more
information.

Anchoring keys
To prevent a key from being garbage collected, it must be anchored to keep its refer-
ence count elevated when it is not in active use by the kernel.

Keyrings are used to anchor other keys: each link is a reference on a key. Note that
keyrings themselves are just keys and are also subject to the same anchoring require-
ment to prevent them being garbage collected.

The kernel makes available a number of anchor keyrings. Note that some of these
keyrings will be created only when first accessed.

Process keyrings
Process credentials themselves reference keyrings with specific semantics.
These keyrings are pinned as long as the set of credentials exists, which is usu-
ally as long as the process exists.

There are three keyrings with different inheritance/sharing rules: the session-
keyring(7) (inherited and shared by all child processes), the process-keyring(7)
(shared by all threads in a process) and the thread-keyring(7) (specific to a par-
ticular thread).

Linux man-pages 6.13 2024-06-28 3409

keyrings(7) Miscellaneous Information Manual keyrings(7)

As an alternative to using the actual keyring IDs, in calls to add_key(2),
keyctl(2), and request_key(2), the special keyring values KEY_SPEC_SES-
SION_KEYRING, KEY_SPEC_PROCESS_KEYRING, and
KEY_SPEC_THREAD_KEYRING can be used to refer to the caller’s own
instances of these keyrings.

User keyrings
Each UID known to the kernel has a record that contains two keyrings: the
user-keyring(7) and the user-session-keyring(7). These exist for as long as the
UID record in the kernel exists.

As an alternative to using the actual keyring IDs, in calls to add_key(2),
keyctl(2), and request_key(2), the special keyring values
KEY_SPEC_USER_KEYRING and KEY_SPEC_USER_SES-
SION_KEYRING can be used to refer to the caller’s own instances of these
keyrings.

A link to the user keyring is placed in a new session keyring by
pam_keyinit(8) when a new login session is initiated.

Persistent keyrings
There is a persistent-keyring(7) available to each UID known to the system. It
may persist beyond the life of the UID record previously mentioned, but has
an expiration time set such that it is automatically cleaned up after a set time.
The persistent keyring permits, for example, cron(8) scripts to use credentials
that are left in the persistent keyring after the user logs out.

Note that the expiration time of the persistent keyring is reset every time the
persistent key is requested.

Special keyrings
There are special keyrings owned by the kernel that can anchor keys for spe-
cial purposes. An example of this is the system keyring used for holding en-
cryption keys for module signature verification.

These special keyrings are usually closed to direct alteration by user space.

An originally planned "group keyring", for storing keys associated with each GID
known to the kernel, is not so far implemented, is unlikely to be implemented. Never-
theless, the constant KEY_SPEC_GROUP_KEYRING has been defined for this
keyring.

Possession
The concept of possession is important to understanding the keyrings security model.
Whether a thread possesses a key is determined by the following rules:

(1) Any key or keyring that does not grant search permission to the caller is ig-
nored in all the following rules.

(2) A thread possesses its session-keyring(7), process-keyring(7), and thread-
keyring(7) directly because those keyrings are referred to by its credentials.

(3) If a keyring is possessed, then any key it links to is also possessed.

Linux man-pages 6.13 2024-06-28 3410

keyrings(7) Miscellaneous Information Manual keyrings(7)

(4) If any key a keyring links to is itself a keyring, then rule (3) applies recursively.

(5) If a process is upcalled from the kernel to instantiate a key (see request_key(2)),
then it also possesses the requester’s keyrings as in rule (1) as if it were the re-
quester.

Note that possession is not a fundamental property of a key, but must rather be calcu-
lated each time the key is needed.

Possession is designed to allow set-user-ID programs run from, say a user’s shell to
access the user’s keys. Granting permissions to the key possessor while denying them
to the key owner and group allows the prevention of access to keys on the basis of
UID and GID matches.

When it creates the session keyring, pam_keyinit(8) adds a link to the user-keyring(7),
thus making the user keyring and anything it contains possessed by default.

Access rights
Each key has the following security-related attributes:

• The owning user ID

• The ID of a group that is permitted to access the key

• A security label

• A permissions mask

The permissions mask contains four sets of rights. The first three sets are mutually
exclusive. One and only one will be in force for a particular access check. In order of
descending priority, these three sets are:

user The set specifies the rights granted if the key’s user ID matches the caller’s
filesystem user ID.

group The set specifies the rights granted if the user ID didn’t match and the key’s
group ID matches the caller’s filesystem GID or one of the caller’s supplemen-
tary group IDs.

other The set specifies the rights granted if neither the key’s user ID nor group ID
matched.

The fourth set of rights is:

possessor
The set specifies the rights granted if a key is determined to be possessed by
the caller.

The complete set of rights for a key is the union of whichever of the first three sets is
applicable plus the fourth set if the key is possessed.

The set of rights that may be granted in each of the four masks is as follows:

view The attributes of the key may be read. This includes the type, description, and
access rights (excluding the security label).

read For a key: the payload of the key may be read. For a keyring: the list of serial
numbers (keys) to which the keyring has links may be read.

Linux man-pages 6.13 2024-06-28 3411

keyrings(7) Miscellaneous Information Manual keyrings(7)

write The payload of the key may be updated and the key may be revoked. For a
keyring, links may be added to or removed from the keyring, and the keyring
may be cleared completely (all links are removed),

search
For a key (or a keyring): the key may be found by a search. For a keyring:
keys and keyrings that are linked to by the keyring may be searched.

link Links may be created from keyrings to the key. The initial link to a key that is
established when the key is created doesn’t require this permission.

setattr
The ownership details and security label of the key may be changed, the key’s
expiration time may be set, and the key may be revoked.

In addition to access rights, any active Linux Security Module (LSM) may prevent ac-
cess to a key if its policy so dictates. A key may be given a security label or other at-
tribute by the LSM; this label is retrievable via keyctl_get_security(3)

See keyctl_chown(3), keyctl_describe(3), keyctl_get_security(3), keyctl_setperm(3),
and selinux(8) for more information.

Searching for keys
One of the key features of the Linux key-management facility is the ability to find a
key that a process is retaining. The request_key(2) system call is the primary point of
access for user-space applications to find a key. (Internally, the kernel has something
similar available for use by internal components that make use of keys.)

The search algorithm works as follows:

(1) The process keyrings are searched in the following order: the thread-keyring(7)
if it exists, the process-keyring(7) if it exists, and then either the session-
keyring(7) if it exists or the user-session-keyring(7) if that exists.

(2) If the caller was a process that was invoked by the request_key(2) upcall mecha-
nism, then the keyrings of the original caller of request_key(2) will be searched
as well.

(3) The search of a keyring tree is in breadth-first order: each keyring is searched
first for a match, then the keyrings referred to by that keyring are searched.

(4) If a matching key is found that is valid, then the search terminates and that key
is returned.

(5) If a matching key is found that has an error state attached, that error state is
noted and the search continues.

(6) If no valid matching key is found, then the first noted error state is returned;
otherwise, an ENOKEY error is returned.

It is also possible to search a specific keyring, in which case only steps (3) to (6) ap-
ply.

See request_key(2) and keyctl_search(3) for more information.

On-demand key creation
If a key cannot be found, request_key(2) will, if given a callout_info argument, create
a new key and then upcall to user space to instantiate the key. This allows keys to be

Linux man-pages 6.13 2024-06-28 3412

keyrings(7) Miscellaneous Information Manual keyrings(7)

created on an as-needed basis.

Typically, this will involve the kernel creating a new process that executes the request-
key(8) program, which will then execute the appropriate handler based on its configu-
ration.

The handler is passed a special authorization key that allows it and only it to instanti-
ate the new key. This is also used to permit searches performed by the handler pro-
gram to also search the requester’s keyrings.

See request_key(2), keyctl_assume_authority(3), keyctl_instantiate(3),
keyctl_negate(3), keyctl_reject(3), request-key(8), and request-key.conf (5) for more
information.

Users
The Linux key-management facility has a number of users and usages, but is not lim-
ited to those that already exist.

In-kernel users of this facility include:

Network filesystems - DNS
The kernel uses the upcall mechanism provided by the keys to upcall to user
space to do DNS lookups and then to cache the results.

AF_RXRPC and kAFS - Authentication
The AF_RXRPC network protocol and the in-kernel AFS filesystem use keys
to store the ticket needed to do secured or encrypted traffic. These are then
looked up by network operations on AF_RXRPC and filesystem operations on
kAFS.

NFS - User ID mapping
The NFS filesystem uses keys to store mappings of foreign user IDs to local
user IDs.

CIFS - Password
The CIFS filesystem uses keys to store passwords for accessing remote shares.

Module verification
The kernel build process can be made to cryptographically sign modules. That
signature is then checked when a module is loaded.

User-space users of this facility include:

Kerberos key storage
The MIT Kerberos 5 facility (libkrb5) can use keys to store authentication to-
kens which can be made to be automatically cleaned up a set time after the
user last uses them, but until then permits them to hang around after the user
has logged out so that cron(8) scripts can use them.

FILES
The kernel provides various /proc files that expose information about keys or define
limits on key usage.

/proc/keys (since Linux 2.6.10)
This file exposes a list of the keys for which the reading thread has view per-
mission, providing various information about each key. The thread need not
possess the key for it to be visible in this file.

Linux man-pages 6.13 2024-06-28 3413

keyrings(7) Miscellaneous Information Manual keyrings(7)

The only keys included in the list are those that grant view permission to the
reading process (regardless of whether or not it possesses them). LSM secu-
rity checks are still performed, and may filter out further keys that the process
is not authorized to view.

An example of the data that one might see in this file (with the columns num-
bered for easy reference below) is the following:

(1) (2) (3)(4) (5) (6) (7) (8) (9)
009a2028 I--Q--- 1 perm 3f010000 1000 1000 user krb_ccache:primary: 12
1806c4ba I--Q--- 1 perm 3f010000 1000 1000 keyring _pid: 2
25d3a08f I--Q--- 1 perm 1f3f0000 1000 65534 keyring _uid_ses.1000: 1
28576bd8 I--Q--- 3 perm 3f010000 1000 1000 keyring _krb: 1
2c546d21 I--Q--- 190 perm 3f030000 1000 1000 keyring _ses: 2
30a4e0be I------ 4 2d 1f030000 1000 65534 keyring _persistent.1000: 1
32100fab I--Q--- 4 perm 1f3f0000 1000 65534 keyring _uid.1000: 2
32a387ea I--Q--- 1 perm 3f010000 1000 1000 keyring _pid: 2
3ce56aea I--Q--- 5 perm 3f030000 1000 1000 keyring _ses: 1

The fields shown in each line of this file are as follows:

ID (1) The ID (serial number) of the key, expressed in hexadecimal.

Flags (2)
A set of flags describing the state of the key:

I The key has been instantiated.

R The key has been revoked.

D The key is dead (i.e., the key type has been unregistered). (A
key may be briefly in this state during garbage collection.)

Q The key contributes to the user’s quota.

U The key is under construction via a callback to user space; see
request-key(2)

N The key is negatively instantiated.

i The key has been invalidated.

Usage (3)
This is a count of the number of kernel credential structures that are
pinning the key (approximately: the number of threads and open file
references that refer to this key).

Timeout (4)
The amount of time until the key will expire, expressed in human-read-
able form (weeks, days, hours, minutes, and seconds). The string
perm here means that the key is permanent (no timeout). The string
expd means that the key has already expired, but has not yet been
garbage collected.

Permissions (5)
The key permissions, expressed as four hexadecimal bytes containing,
from left to right, the possessor, user, group, and other permissions.
Within each byte, the permission bits are as follows:

Linux man-pages 6.13 2024-06-28 3414

keyrings(7) Miscellaneous Information Manual keyrings(7)

0x01 view
0x02 read
0x04 write
0x08 search
0x10 link
0x20 setattr

UID (6)
The user ID of the key owner.

GID (7)
The group ID of the key. The value -1 here means that the key has no
group ID; this can occur in certain circumstances for keys created by
the kernel.

Type (8)
The key type (user, keyring, etc.)

Description (9)
The key description (name). This field contains descriptive informa-
tion about the key. For most key types, it has the form

name[: extra-info]

The name subfield is the key’s description (name). The optional
extra-info field provides some further information about the key. The
information that appears here depends on the key type, as follows:

"user"
"logon"

The size in bytes of the key payload (expressed in decimal).

"keyring"
The number of keys linked to the keyring, or the string empty if
there are no keys linked to the keyring.

"big_key"
The payload size in bytes, followed either by the string [file], if
the key payload exceeds the threshold that means that the pay-
load is stored in a (swappable) tmpfs(5) filesystem, or otherwise
the string [buff], indicating that the key is small enough to re-
side in kernel memory.

For the ".request_key_auth" key type (authorization key; see re-
quest_key(2)), the description field has the form shown in the following
example:

key:c9a9b19 pid:28880 ci:10

The three subfields are as follows:

key The hexadecimal ID of the key being instantiated in the re-
questing program.

pid The PID of the requesting program.

Linux man-pages 6.13 2024-06-28 3415

keyrings(7) Miscellaneous Information Manual keyrings(7)

ci The length of the callout data with which the requested key
should be instantiated (i.e., the length of the payload associated
with the authorization key).

/proc/key-users (since Linux 2.6.10)
This file lists various information for each user ID that has at least one key on
the system. An example of the data that one might see in this file is the fol-
lowing:

0: 10 9/9 2/1000000 22/25000000
42: 9 9/9 8/200 106/20000

1000: 11 11/11 10/200 271/20000

The fields shown in each line are as follows:

uid The user ID.

usage This is a kernel-internal usage count for the kernel structure used to
record key users.

nkeys/nikeys
The total number of keys owned by the user, and the number of those
keys that have been instantiated.

qnkeys/maxkeys
The number of keys owned by the user, and the maximum number of
keys that the user may own.

qnbytes/maxbytes
The number of bytes consumed in payloads of the keys owned by this
user, and the upper limit on the number of bytes in key payloads for
that user.

/proc/sys/kernel/keys/gc_delay (since Linux 2.6.32)
The value in this file specifies the interval, in seconds, after which revoked and
expired keys will be garbage collected. The purpose of having such an inter-
val is so that there is a window of time where user space can see an error (re-
spectively EKEYREVOKED and EKEYEXPIRED) that indicates what hap-
pened to the key.

The default value in this file is 300 (i.e., 5 minutes).

/proc/sys/kernel/keys/persistent_keyring_expiry (since Linux 3.13)
This file defines an interval, in seconds, to which the persistent keyring’s expi-
ration timer is reset each time the keyring is accessed (via keyctl_get_persis-
tent(3) or the keyctl(2) KEYCTL_GET_PERSISTENT operation.)

The default value in this file is 259200 (i.e., 3 days).

The following files (which are writable by privileged processes) are used to enforce
quotas on the number of keys and number of bytes of data that can be stored in key
payloads:

/proc/sys/kernel/keys/maxbytes (since Linux 2.6.26)
This is the maximum number of bytes of data that a nonroot user can hold in
the payloads of the keys owned by the user.

Linux man-pages 6.13 2024-06-28 3416

keyrings(7) Miscellaneous Information Manual keyrings(7)

The default value in this file is 20,000.

/proc/sys/kernel/keys/maxkeys (since Linux 2.6.26)
This is the maximum number of keys that a nonroot user may own.

The default value in this file is 200.

/proc/sys/kernel/keys/root_maxbytes (since Linux 2.6.26)
This is the maximum number of bytes of data that the root user (UID 0 in the
root user namespace) can hold in the payloads of the keys owned by root.

The default value in this file is 25,000,000 (20,000 before Linux 3.17).

/proc/sys/kernel/keys/root_maxkeys (since Linux 2.6.26)
This is the maximum number of keys that the root user (UID 0 in the root user
namespace) may own.

The default value in this file is 1,000,000 (200 before Linux 3.17).

With respect to keyrings, note that each link in a keyring consumes 4 bytes of the
keyring payload.

SEE ALSO
keyctl(1), add_key(2), keyctl(2), request_key(2), keyctl(3), keyutils(7), persistent-
keyring(7), process-keyring(7), session-keyring(7), thread-keyring(7), user-keyring(7),
user-session-keyring(7), pam_keyinit(8), request-key(8)

linux.git/Documentation/crypto/asymmetric-keys.txt
linux.git/Documentation/security/keys/

Linux man-pages 6.13 2024-06-28 3417

KOI8-R(7) Miscellaneous Information Manual KOI8-R(7)

NAME
koi8-r - Russian character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
RFC 1489 defines an 8-bit character set, KOI8-R. KOI8-R encodes the characters
used in Russian.

KOI8-R characters
The following table displays the characters in KOI8-R that are printable and unlisted
in the ascii(7) manual page.
Oct Dec Hex Char Description

200 128 80 BO X DRAWINGS LIGHT HORIZONTAL
201 129 81 BOX DRAWINGS LIGHT VERTICAL
202 130 82 BO X DRAWINGS LIGHT DOWN AND RIGHT
203 131 83 BO X DRAWINGS LIGHT DOWN AND LEFT
204 132 84 BO X DRAWINGS LIGHT UP AND RIGHT
205 133 85 BO X DRAWINGS LIGHT UP AND LEFT
206 134 86 BO X DRAWINGS LIGHT VERTICAL AND RIGHT
207 135 87 BO X DRAWINGS LIGHT VERTICAL AND LEFT
210 136 88 BO X DRAWINGS LIGHT DOWN AND HORIZONTAL
211 137 89 BO X DRAWINGS LIGHT UP AND HORIZONTAL
212 138 8A BO X DRAWINGS LIGHT VERTICAL AND HORIZONTAL
213 139 8B UPPER HALF BLOCK
214 140 8C LO WER HALF BLOCK
215 141 8D FULL BLOCK
216 142 8E LEFT HALF BLOCK
217 143 8F RIGHT HALF BLOCK
220 144 90 LIGHT SHADE
221 145 91 MEDIUM SHADE
222 146 92 D ARK SHADE
223 147 93 T OP HALF INTEGRAL
224 148 94 BLA CK SQUARE
225 149 95 BULLET OPERATOR
226 150 96 SQ UARE ROOT
227 151 97 ALMOST EQ UAL TO
230 152 98 LESS-THAN OR EQ UAL TO
231 153 99 GREA TER-THAN OR EQUAL TO
232 154 9A NO-BREAK SPACE
233 155 9B BO TTOM HALF INTEGRAL
234 156 9C ° DEGREE SIGN
235 157 9D ² SUPERSCRIPT TWO
236 158 9E · MIDDLE DOT
237 159 9F ÷ DIVISION SIGN
240 160 A0 BO X DRAWINGS DOUBLE HORIZONTAL
241 161 A1 BO X DRAWINGS DOUBLE VERTICAL
242 162 A2 BO X DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
243 163 A3 ё CYRILLIC SMALL LETTER IO
244 164 A4 BO X DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
245 165 A5 BO X DRAWINGS DOUBLE DOWN AND RIGHT

Linux man-pages 6.13 2024-05-02 3418

KOI8-R(7) Miscellaneous Information Manual KOI8-R(7)

246 166 A6 BO X DRAWINGS DOWN SINGLE AND LEFT DOUBLE
247 167 A7 BO X DRAWINGS DOWN DOUBLE AND LEFT SINGLE
250 168 A8 BO X DRAWINGS DOUBLE DOWN AND LEFT
251 169 A9 BO X DRAWINGS UP SINGLE AND RIGHT DOUBLE
252 170 AA BO X DRAWINGS UP DOUBLE AND RIGHT SINGLE
253 171 AB BO X DRAWINGS DOUBLE UP AND RIGHT
254 172 AC BO X DRAWINGS UP SINGLE AND LEFT DOUBLE
255 173 AD BO X DRAWINGS UP DOUBLE AND LEFT SINGLE
256 174 AE BO X DRAWINGS DOUBLE UP AND LEFT
257 175 AF BO X DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
260 176 B0 BO X DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
261 177 B1 BO X DRAWINGS DOUBLE VERTICAL AND RIGHT
262 178 B2 BO X DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
263 179 B3 Ё CYRILLIC CAPITAL LETTER IO
264 180 B4 BO X DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
265 181 B5 BO X DRAWINGS DOUBLE VERTICAL AND LEFT
266 182 B6 BO X DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
267 183 B7 BO X DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
270 184 B8 BO X DRAWINGS DOUBLE DOWN AND HORIZONTAL
271 185 B9 BO X DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
272 186 BA BO X DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
273 187 BB BO X DRAWINGS DOUBLE UP AND HORIZONTAL
274 188 BC BOX DRAWINGS VERTICAL SINGLE

AND HORIZONTAL DOUBLE
275 189 BD BOX DRAWINGS VERTICAL DOUBLE

AND HORIZONTAL SINGLE
276 190 BE BO X DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
277 191 BF © COPYRIGHT SIGN
300 192 C0 ю CYRILLIC SMALL LETTER YU
301 193 C1 а CYRILLIC SMALL LETTER A
302 194 C2 б CYRILLIC SMALL LETTER BE
303 195 C3 ц CYRILLIC SMALL LETTER TSE
304 196 C4 д CYRILLIC SMALL LETTER DE
305 197 C5 е CYRILLIC SMALL LETTER IE
306 198 C6 ф CYRILLIC SMALL LETTER EF
307 199 C7 г CYRILLIC SMALL LETTER GHE
310 200 C8 х CYRILLIC SMALL LETTER HA
311 201 C9 и CYRILLIC SMALL LETTER I
312 202 CA й CYRILLIC SMALL LETTER SHORT I
313 203 CB к CYRILLIC SMALL LETTER KA
314 204 CC л CYRILLIC SMALL LETTER EL
315 205 CD м CYRILLIC SMALL LETTER EM
316 206 CE н CYRILLIC SMALL LETTER EN
317 207 CF о CYRILLIC SMALL LETTER O
320 208 D0 п CYRILLIC SMALL LETTER PE
321 209 D1 я CYRILLIC SMALL LETTER YA
322 210 D2 р CYRILLIC SMALL LETTER ER
323 211 D3 с CYRILLIC SMALL LETTER ES

Linux man-pages 6.13 2024-05-02 3419

KOI8-R(7) Miscellaneous Information Manual KOI8-R(7)

324 212 D4 т CYRILLIC SMALL LETTER TE
325 213 D5 у CYRILLIC SMALL LETTER U
326 214 D6 ж CYRILLIC SMALL LETTER ZHE
327 215 D7 в CYRILLIC SMALL LETTER VE
330 216 D8 ь CYRILLIC SMALL LETTER SOFT SIGN
331 217 D9 ы CYRILLIC SMALL LETTER YERU
332 218 DA з CYRILLIC SMALL LETTER ZE
333 219 DB ш CYRILLIC SMALL LETTER SHA
334 220 DC э CYRILLIC SMALL LETTER E
335 221 DD щ CYRILLIC SMALL LETTER SHCHA
336 222 DE ч CYRILLIC SMALL LETTER CHE
337 223 DF ъ CYRILLIC SMALL LETTER HARD SIGN
340 224 E0 Ю CYRILLIC CAPITAL LETTER YU
341 225 E1 А CYRILLIC CAPITAL LETTER A
342 226 E2 Б CYRILLIC CAPITAL LETTER BE
343 227 E3 Ц CYRILLIC CAPITAL LETTER TSE
344 228 E4 Д CYRILLIC CAPITAL LETTER DE
345 229 E5 Е CYRILLIC CAPITAL LETTER IE
346 230 E6 Ф CYRILLIC CAPITAL LETTER EF
347 231 E7 Г CYRILLIC CAPITAL LETTER GHE
350 232 E8 Х CYRILLIC CAPITAL LETTER HA
351 233 E9 И CYRILLIC CAPITAL LETTER I
352 234 EA Й CYRILLIC CAPITAL LETTER SHORT I
353 235 EB К CYRILLIC CAPITAL LETTER KA
354 236 EC Л CYRILLIC CAPITAL LETTER EL
355 237 ED М CYRILLIC CAPITAL LETTER EM
356 238 EE Н CYRILLIC CAPITAL LETTER EN
357 239 EF О CYRILLIC CAPITAL LETTER O
360 240 F0 П CYRILLIC CAPITAL LETTER PE
361 241 F1 Я CYRILLIC CAPITAL LETTER YA
362 242 F2 Р CYRILLIC CAPITAL LETTER ER
363 243 F3 С CYRILLIC CAPITAL LETTER ES
364 244 F4 Т CYRILLIC CAPITAL LETTER TE
365 245 F5 У CYRILLIC CAPITAL LETTER U
366 246 F6 Ж CYRILLIC CAPITAL LETTER ZHE
367 247 F7 В CYRILLIC CAPITAL LETTER VE
370 248 F8 Ь CYRILLIC CAPITAL LETTER SOFT SIGN
371 249 F9 Ы CYRILLIC CAPITAL LETTER YERU
372 250 FA З CYRILLIC CAPITAL LETTER ZE
373 251 FB Ш CYRILLIC CAPITAL LETTER SHA
374 252 FC - CYRILLIC CAPITAL LETTER E
375 253 FD Щ CYRILLIC CAPITAL LETTER SHCHA
376 254 FE Ч CYRILLIC CAPITAL LETTER CHE
377 255 FF Ъ CYRILLIC CAPITAL LETTER HARD SIGN

NOTES
The differences with KOI8-U are in the hex positions A4, A6, A7, AD, B4, B6, B7,
and BD.

Linux man-pages 6.13 2024-05-02 3420

KOI8-R(7) Miscellaneous Information Manual KOI8-R(7)

SEE ALSO
ascii(7), charsets(7), cp1251(7), iso_8859-5(7), koi8-u(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3421

KOI8-U(7) Miscellaneous Information Manual KOI8-U(7)

NAME
koi8-u - Ukrainian character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
RFC 2310 defines an 8-bit character set, KOI8-U. KOI8-U encodes the characters
used in Ukrainian and Byelorussian.

KOI8-U characters
The following table displays the characters in KOI8-U that are printable and unlisted
in the ascii(7) manual page.
Oct Dec Hex Char Description

200 128 80 BO X DRAWINGS LIGHT HORIZONTAL
201 129 81 BOX DRAWINGS LIGHT VERTICAL
202 130 82 BO X DRAWINGS LIGHT DOWN AND RIGHT
203 131 83 BO X DRAWINGS LIGHT DOWN AND LEFT
204 132 84 BO X DRAWINGS LIGHT UP AND RIGHT
205 133 85 BO X DRAWINGS LIGHT UP AND LEFT
206 134 86 BO X DRAWINGS LIGHT VERTICAL AND RIGHT
207 135 87 BO X DRAWINGS LIGHT VERTICAL AND LEFT
210 136 88 BO X DRAWINGS LIGHT DOWN AND HORIZONTAL
211 137 89 BO X DRAWINGS LIGHT UP AND HORIZONTAL
212 138 8A BO X DRAWINGS LIGHT VERTICAL AND HORIZONTAL
213 139 8B UPPER HALF BLOCK
214 140 8C LO WER HALF BLOCK
215 141 8D FULL BLOCK
216 142 8E LEFT HALF BLOCK
217 143 8F RIGHT HALF BLOCK
220 144 90 LIGHT SHADE
221 145 91 MEDIUM SHADE
222 146 92 D ARK SHADE
223 147 93 T OP HALF INTEGRAL
224 148 94 BLA CK SQUARE
225 149 95 BULLET OPERATOR
226 150 96 SQ UARE ROOT
227 151 97 ALMOST EQ UAL TO
230 152 98 LESS-THAN OR EQ UAL TO
231 153 99 GREA TER-THAN OR EQUAL TO
232 154 9A NO-BREAK SPACE
233 155 9B BO TTOM HALF INTEGRAL
234 156 9C ° DEGREE SIGN
235 157 9D ² SUPERSCRIPT TWO
236 158 9E · MIDDLE DOT
237 159 9F ÷ DIVISION SIGN
240 160 A0 BO X DRAWINGS DOUBLE HORIZONTAL
241 161 A1 BO X DRAWINGS DOUBLE VERTICAL
242 162 A2 BO X DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
243 163 A3 ё CYRILLIC SMALL LETTER IO
244 164 A4 є CYRILLIC SMALL LETTER UKRAINIAN IE
245 165 A5 BO X DRAWINGS DOUBLE DOWN AND RIGHT

Linux man-pages 6.13 2024-05-02 3422

KOI8-U(7) Miscellaneous Information Manual KOI8-U(7)

246 166 A6 і CYRILLIC SMALL LETTER
BYELORUSSIAN-UKRAINIAN I

247 167 A7 ї CYRILLIC SMALL LETTER YI (Ukrainian)
250 168 A8 BO X DRAWINGS DOUBLE DOWN AND LEFT
251 169 A9 BO X DRAWINGS UP SINGLE AND RIGHT DOUBLE
252 170 AA BO X DRAWINGS UP DOUBLE AND RIGHT SINGLE
253 171 AB BO X DRAWINGS DOUBLE UP AND RIGHT
254 172 AC BO X DRAWINGS UP SINGLE AND LEFT DOUBLE
255 173 AD ґ CYRILLIC SMALL LETTER GHE WITH UPTURN
256 174 AE BO X DRAWINGS DOUBLE UP AND LEFT
257 175 AF BO X DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
260 176 B0 BO X DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
261 177 B1 BO X DRAWINGS DOUBLE VERTICAL AND RIGHT
262 178 B2 BO X DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
263 179 B3 Ё CYRILLIC CAPITAL LETTER IO
264 180 B4 Є CYRILLIC CAPITAL LETTER UKRAINIAN IE
265 181 B5 BO X DRAWINGS DOUBLE VERTICAL AND LEFT
266 182 B6 І CYRILLIC CAPITAL LETTER

BYELORUSSIAN-UKRAINIAN I
267 183 B7 Ї CYRILLIC CAPITAL LETTER YI (Ukrainian)
270 184 B8 BO X DRAWINGS DOUBLE DOWN AND HORIZONTAL
271 185 B9 BO X DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
272 186 BA BO X DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
273 187 BB BO X DRAWINGS DOUBLE UP AND HORIZONTAL
274 188 BC BOX DRAWINGS VERTICAL SINGLE

AND HORIZONTAL DOUBLE
275 189 BD Ґ CYRILLIC CAPITAL LETTER GHE WITH UPTURN
276 190 BE BO X DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
277 191 BF © COPYRIGHT SIGN
300 192 C0 ю CYRILLIC SMALL LETTER YU
301 193 C1 а CYRILLIC SMALL LETTER A
302 194 C2 б CYRILLIC SMALL LETTER BE
303 195 C3 ц CYRILLIC SMALL LETTER TSE
304 196 C4 д CYRILLIC SMALL LETTER DE
305 197 C5 е CYRILLIC SMALL LETTER IE
306 198 C6 ф CYRILLIC SMALL LETTER EF
307 199 C7 г CYRILLIC SMALL LETTER GHE
310 200 C8 х CYRILLIC SMALL LETTER HA
311 201 C9 и CYRILLIC SMALL LETTER I
312 202 CA й CYRILLIC SMALL LETTER SHORT I
313 203 CB к CYRILLIC SMALL LETTER KA
314 204 CC л CYRILLIC SMALL LETTER EL
315 205 CD м CYRILLIC SMALL LETTER EM
316 206 CE н CYRILLIC SMALL LETTER EN
317 207 CF о CYRILLIC SMALL LETTER O
320 208 D0 п CYRILLIC SMALL LETTER PE
321 209 D1 я CYRILLIC SMALL LETTER YA
322 210 D2 р CYRILLIC SMALL LETTER ER

Linux man-pages 6.13 2024-05-02 3423

KOI8-U(7) Miscellaneous Information Manual KOI8-U(7)

323 211 D3 с CYRILLIC SMALL LETTER ES
324 212 D4 т CYRILLIC SMALL LETTER TE
325 213 D5 у CYRILLIC SMALL LETTER U
326 214 D6 ж CYRILLIC SMALL LETTER ZHE
327 215 D7 в CYRILLIC SMALL LETTER VE
330 216 D8 ь CYRILLIC SMALL LETTER SOFT SIGN
331 217 D9 ы CYRILLIC SMALL LETTER YERU
332 218 DA з CYRILLIC SMALL LETTER ZE
333 219 DB ш CYRILLIC SMALL LETTER SHA
334 220 DC э CYRILLIC SMALL LETTER E
335 221 DD щ CYRILLIC SMALL LETTER SHCHA
336 222 DE ч CYRILLIC SMALL LETTER CHE
337 223 DF ъ CYRILLIC SMALL LETTER HARD SIGN
340 224 E0 Ю CYRILLIC CAPITAL LETTER YU
341 225 E1 А CYRILLIC CAPITAL LETTER A
342 226 E2 Б CYRILLIC CAPITAL LETTER BE
343 227 E3 Ц CYRILLIC CAPITAL LETTER TSE
344 228 E4 Д CYRILLIC CAPITAL LETTER DE
345 229 E5 Е CYRILLIC CAPITAL LETTER IE
346 230 E6 Ф CYRILLIC CAPITAL LETTER EF
347 231 E7 Г CYRILLIC CAPITAL LETTER GHE
350 232 E8 Х CYRILLIC CAPITAL LETTER HA
351 233 E9 И CYRILLIC CAPITAL LETTER I
352 234 EA Й CYRILLIC CAPITAL LETTER SHORT I
353 235 EB К CYRILLIC CAPITAL LETTER KA
354 236 EC Л CYRILLIC CAPITAL LETTER EL
355 237 ED М CYRILLIC CAPITAL LETTER EM
356 238 EE Н CYRILLIC CAPITAL LETTER EN
357 239 EF О CYRILLIC CAPITAL LETTER O
360 240 F0 П CYRILLIC CAPITAL LETTER PE
361 241 F1 Я CYRILLIC CAPITAL LETTER YA
362 242 F2 Р CYRILLIC CAPITAL LETTER ER
363 243 F3 С CYRILLIC CAPITAL LETTER ES
364 244 F4 Т CYRILLIC CAPITAL LETTER TE
365 245 F5 У CYRILLIC CAPITAL LETTER U
366 246 F6 Ж CYRILLIC CAPITAL LETTER ZHE
367 247 F7 В CYRILLIC CAPITAL LETTER VE
370 248 F8 Ь CYRILLIC CAPITAL LETTER SOFT SIGN
371 249 F9 Ы CYRILLIC CAPITAL LETTER YERU
372 250 FA З CYRILLIC CAPITAL LETTER ZE
373 251 FB Ш CYRILLIC CAPITAL LETTER SHA
374 252 FC - CYRILLIC CAPITAL LETTER E
375 253 FD Щ CYRILLIC CAPITAL LETTER SHCHA
376 254 FE Ч CYRILLIC CAPITAL LETTER CHE
377 255 FF Ъ CYRILLIC CAPITAL LETTER HARD SIGN

NOTES
The differences from KOI8-R are in the hex positions A4, A6, A7, AD, B4, B6, B7,
and BD.

Linux man-pages 6.13 2024-05-02 3424

KOI8-U(7) Miscellaneous Information Manual KOI8-U(7)

SEE ALSO
ascii(7), charsets(7), cp1251(7), iso_8859-5(7), koi8-r(7), utf-8(7)

Linux man-pages 6.13 2024-05-02 3425

Landlock(7) Miscellaneous Information Manual Landlock(7)

NAME
Landlock - unprivileged access-control

DESCRIPTION
Landlock is an access-control system that enables any processes to securely restrict
themselves and their future children. Because Landlock is a stackable Linux Security
Module (LSM), it makes it possible to create safe security sandboxes as new security
layers in addition to the existing system-wide access-controls. This kind of sandbox
is expected to help mitigate the security impact of bugs, and unexpected or malicious
behaviors in applications.

A Landlock security policy is a set of access rights (e.g., open a file in read-only,
make a directory, etc.) tied to a file hierarchy. Such policy can be configured and en-
forced by processes for themselves using three system calls:

• landlock_create_ruleset(2) creates a new ruleset;

• landlock_add_rule(2) adds a new rule to a ruleset;

• landlock_restrict_self(2) enforces a ruleset on the calling thread.

To be able to use these system calls, the running kernel must support Landlock and it
must be enabled at boot time.

Landlock rules
A Landlock rule describes an action on an object which the process intends to per-
form. A set of rules is aggregated in a ruleset, which can then restrict the thread en-
forcing it, and its future children.

The two existing types of rules are:

Filesystem rules
For these rules, the object is a file hierarchy, and the related filesystem actions
are defined with filesystem access rights.

Network rules (since ABI v4)
For these rules, the object is a TCP port, and the related actions are defined
with network access rights.

Filesystem actions
These flags enable to restrict a sandboxed process to a set of actions on files and direc-
tories. Files or directories opened before the sandboxing are not subject to these re-
strictions. See landlock_add_rule(2) and landlock_create_ruleset(2) for more con-
text.

The following access rights apply only to files:

LANDLOCK_ACCESS_FS_EXECUTE
Execute a file.

LANDLOCK_ACCESS_FS_WRITE_FILE
Open a file with write access.

When opening files for writing, you will often additionally need the LAND-
LOCK_ACCESS_FS_TRUNCATE right. In many cases, these system calls
truncate existing files when overwriting them (e.g., creat(2)).

Linux man-pages 6.13 2025-03-06 3426

Landlock(7) Miscellaneous Information Manual Landlock(7)

LANDLOCK_ACCESS_FS_READ_FILE
Open a file with read access.

LANDLOCK_ACCESS_FS_TRUNCATE
Truncate a file with truncate(2), ftruncate(2), creat(2), or open(2) with
O_TRUNC.

This access right is available since the third version of the Landlock ABI.

Whether an opened file can be truncated with ftruncate(2) or used with ioctl(2) is de-
termined during open(2), in the same way as read and write permissions are checked
during open(2) using LANDLOCK_ACCESS_FS_READ_FILE and LAND-
LOCK_ACCESS_FS_WRITE_FILE.

A directory can receive access rights related to files or directories. The following ac-
cess right is applied to the directory itself, and the directories beneath it:

LANDLOCK_ACCESS_FS_READ_DIR
Open a directory or list its content.

However, the following access rights only apply to the content of a directory, not the
directory itself:

LANDLOCK_ACCESS_FS_REMOVE_DIR
Remove an empty directory or rename one.

LANDLOCK_ACCESS_FS_REMOVE_FILE
Unlink (or rename) a file.

LANDLOCK_ACCESS_FS_MAKE_CHAR
Create (or rename or link) a character device.

LANDLOCK_ACCESS_FS_MAKE_DIR
Create (or rename) a directory.

LANDLOCK_ACCESS_FS_MAKE_REG
Create (or rename or link) a regular file.

LANDLOCK_ACCESS_FS_MAKE_SOCK
Create (or rename or link) a UNIX domain socket.

LANDLOCK_ACCESS_FS_MAKE_FIFO
Create (or rename or link) a named pipe.

LANDLOCK_ACCESS_FS_MAKE_BLOCK
Create (or rename or link) a block device.

LANDLOCK_ACCESS_FS_MAKE_SYM
Create (or rename or link) a symbolic link.

LANDLOCK_ACCESS_FS_REFER
Link or rename a file from or to a different directory (i.e., reparent a file hier-
archy).

This access right is available since the second version of the Landlock ABI.

This is the only access right which is denied by default by any ruleset, even if
the right is not specified as handled at ruleset creation time. The only way to
make a ruleset grant this right is to explicitly allow it for a specific directory

Linux man-pages 6.13 2025-03-06 3427

Landlock(7) Miscellaneous Information Manual Landlock(7)

by adding a matching rule to the ruleset.

In particular, when using the first Landlock ABI version, Landlock will always
deny attempts to reparent files between different directories.

In addition to the source and destination directories having the LAND-
LOCK_ACCESS_FS_REFER access right, the attempted link or rename op-
eration must meet the following constraints:

• The reparented file may not gain more access rights in the destination di-
rectory than it previously had in the source directory. If this is attempted,
the operation results in an EXDEV error.

• When linking or renaming, the LANDLOCK_ACCESS_FS_MAKE_*
right for the respective file type must be granted for the destination direc-
tory. Otherwise, the operation results in an EACCES error.

• When renaming, the LANDLOCK_ACCESS_FS_REMOVE_* right for
the respective file type must be granted for the source directory. Other-
wise, the operation results in an EACCES error.

If multiple requirements are not met, the EACCES error code takes prece-
dence over EXDEV.

The following access right applies to both files and directories:

LANDLOCK_ACCESS_FS_IOCTL_DEV
Invoke ioctl(2) commands on an opened character or block device.

This access right applies to all ioctl(2) commands implemented by device dri-
vers. However, the following common IOCTL commands continue to be in-
vokable independent of the LANDLOCK_ACCESS_FS_IOCTL_DEV
right:

• IOCTL commands targeting file descriptors (FIOCLEX, FIONCLEX),

• IOCTL commands targeting file descriptions (FIONBIO, FIOASYNC),

• IOCTL commands targeting file systems (FIFREEZE, FITHAW,
FIGETBSZ, FS_IOC_GETFSUUID, FS_IOC_GETFSSYSFSPATH)

• Some IOCTL commands which do not make sense when used with de-
vices, but whose implementations are safe and return the right error codes
(FS_IOC_FIEMAP, FICLONE, FICLONERANGE, FID-
EDUPERANGE)

This access right is available since the fifth version of the Landlock ABI.

Network flags
These flags enable to restrict a sandboxed process to a set of network actions.

This is supported since Landlock ABI version 4.

The following access rights apply to TCP port numbers:

LANDLOCK_ACCESS_NET_BIND_TCP
Bind a TCP socket to a local port.

Linux man-pages 6.13 2025-03-06 3428

Landlock(7) Miscellaneous Information Manual Landlock(7)

LANDLOCK_ACCESS_NET_CONNECT_TCP
Connect an active TCP socket to a remote port.

Scope flags
These flags enable isolating a sandboxed process from a set of IPC actions. Setting a
flag for a ruleset will isolate the Landlock domain to forbid connections to resources
outside the domain.

This is supported since Landlock ABI version 6.

The following scopes exist:

LANDLOCK_SCOPE_ABSTRACT_UNIX_SOCKET
Restrict a sandboxed process from connecting to an abstract UNIX socket cre-
ated by a process outside the related Landlock domain (e.g., a parent domain
or a non-sandboxed process).

LANDLOCK_SCOPE_SIGNAL
Restrict a sandboxed process from sending a signal to another process outside
the domain.

Layers of file path access rights
Each time a thread enforces a ruleset on itself, it updates its Landlock domain with a
new layer of policy. Indeed, this complementary policy is composed with the poten-
tially other rulesets already restricting this thread. A sandboxed thread can then safely
add more constraints to itself with a new enforced ruleset.

One policy layer grants access to a file path if at least one of its rules encountered on
the path grants the access. A sandboxed thread can only access a file path if all its en-
forced policy layers grant the access as well as all the other system access controls
(e.g., filesystem DAC, other LSM policies, etc.).

Bind mounts and OverlayFS
Landlock enables restricting access to file hierarchies, which means that these access
rights can be propagated with bind mounts (cf. mount_namespaces(7)) but not with
OverlayFS.

A bind mount mirrors a source file hierarchy to a destination. The destination hierar-
chy is then composed of the exact same files, on which Landlock rules can be tied, ei-
ther via the source or the destination path. These rules restrict access when they are
encountered on a path, which means that they can restrict access to multiple file hier-
archies at the same time, whether these hierarchies are the result of bind mounts or
not.

An OverlayFS mount point consists of upper and lower layers. These layers are com-
bined in a merge directory, result of the mount point. This merge hierarchy may in-
clude files from the upper and lower layers, but modifications performed on the merge
hierarchy only reflect on the upper layer. From a Landlock policy point of view, each
of the OverlayFS layers and merge hierarchies is standalone and contains its own set
of files and directories, which is different from a bind mount. A policy restricting an
OverlayFS layer will not restrict the resulted merged hierarchy, and vice versa. Land-
lock users should then only think about file hierarchies they want to allow access to,
regardless of the underlying filesystem.

Linux man-pages 6.13 2025-03-06 3429

Landlock(7) Miscellaneous Information Manual Landlock(7)

Inheritance
Every new thread resulting from a clone(2) inherits Landlock domain restrictions
from its parent. This is similar to the seccomp(2) inheritance or any other LSM deal-
ing with tasks’ credentials(7). For instance, one process’s thread may apply Landlock
rules to itself, but they will not be automatically applied to other sibling threads (un-
like POSIX thread credential changes, cf. nptl(7)).

When a thread sandboxes itself, we have the guarantee that the related security policy
will stay enforced on all this thread’s descendants. This allows creating standalone
and modular security policies per application, which will automatically be composed
between themselves according to their run-time parent policies.

Ptrace restrictions
A sandboxed process has less privileges than a non-sandboxed process and must then
be subject to additional restrictions when manipulating another process. To be al-
lowed to use ptrace(2) and related syscalls on a target process, a sandboxed process
should have a subset of the target process rules, which means the tracee must be in a
sub-domain of the tracer.

IPC scoping
Similar to the implicit Ptrace restrictions, we may want to further restrict interac-
tions between sandboxes. Therefore, at ruleset creation time, each Landlock domain
can restrict the scope for certain operations, so that these operations can only reach
out to processes within the same Landlock domain or in a nested Landlock domain
(the "scope").

The operations which can be scoped are:

LANDLOCK_SCOPE_SIGNAL
This limits the sending of signals to target processes which run within the
same or a nested Landlock domain.

LANDLOCK_SCOPE_ABSTRACT_UNIX_SOCKET
This limits the set of abstract unix(7) sockets to which we can connect(2) to
socket addresses which were created by a process in the same or a nested
Landlock domain.

A sendto(2) on a non-connected datagram socket is treated as if it were doing
an implicit connect(2) and will be blocked if the remote end does not stem
from the same or a nested Landlock domain.

A sendto(2) on a socket which was previously connected will not be restricted.
This works for both datagram and stream sockets.

IPC scoping does not support exceptions via landlock_add_rule(2). If an operation is
scoped within a domain, no rules can be added to allow access to resources or
processes outside of the scope.

Truncating files
The operations covered by LANDLOCK_ACCESS_FS_WRITE_FILE and LAND-
LOCK_ACCESS_FS_TRUNCATE both change the contents of a file and some-
times overlap in non-intuitive ways. It is recommended to always specify both of
these together.

A particularly surprising example is creat(2). The name suggests that this system call

Linux man-pages 6.13 2025-03-06 3430

Landlock(7) Miscellaneous Information Manual Landlock(7)

requires the rights to create and write files. However, it also requires the truncate right
if an existing file under the same name is already present.

It should also be noted that truncating files does not require the LANDLOCK_AC-
CESS_FS_WRITE_FILE right. Apart from the truncate(2) system call, this can
also be done through open(2) with the flags O_RDONLY | O_TRUNC.

When opening a file, the availability of the LANDLOCK_ACCESS_FS_TRUN-
CATE right is associated with the newly created file descriptor and will be used for
subsequent truncation attempts using ftruncate(2). The behavior is similar to opening
a file for reading or writing, where permissions are checked during open(2), but not
during the subsequent read(2) and write(2) calls.

As a consequence, it is possible to have multiple open file descriptors for the same
file, where one grants the right to truncate the file and the other does not. It is also
possible to pass such file descriptors between processes, keeping their Landlock prop-
erties, even when these processes do not have an enforced Landlock ruleset.

VERSIONS
Landlock was introduced in Linux 5.13.

To determine which Landlock features are available, users should query the Landlock
ABI version:
ABI Kernel Newly introduced access rights

LANDLOCK_ACCESS_FS_EXECUTE
LANDLOCK_ACCESS_FS_WRITE_FILE
LANDLOCK_ACCESS_FS_READ_FILE
LANDLOCK_ACCESS_FS_READ_DIR
LANDLOCK_ACCESS_FS_REMOVE_DIR
LANDLOCK_ACCESS_FS_REMOVE_FILE
LANDLOCK_ACCESS_FS_MAKE_CHAR
LANDLOCK_ACCESS_FS_MAKE_DIR
LANDLOCK_ACCESS_FS_MAKE_REG
LANDLOCK_ACCESS_FS_MAKE_SOCK
LANDLOCK_ACCESS_FS_MAKE_FIFO
LANDLOCK_ACCESS_FS_MAKE_BLOCK
LANDLOCK_ACCESS_FS_MAKE_SYM

1 5.13

2 5.19 LANDLOCK_ACCESS_FS_REFER
3 6.2 LANDLOCK_ACCESS_FS_TRUNCATE

LANDLOCK_ACCESS_NET_BIND_TCP
LANDLOCK_ACCESS_NET_CONNECT_TCP

4 6.7

5 6.10 LANDLOCK_ACCESS_FS_IOCTL_DEV
LANDLOCK_SCOPE_ABSTRACT_UNIX_SOCKET
LANDLOCK_SCOPE_SIGNAL

6 6.12

Users should use the Landlock ABI version rather than the kernel version to deter-
mine which features are available. The mainline kernel versions listed here are only
included for orientation. Kernels from other sources may contain backported features,
and their version numbers may not match.

To query the running kernel’s Landlock ABI version, programs may pass the LAND-
LOCK_CREATE_RULESET_VERSION flag to landlock_create_ruleset(2).

Linux man-pages 6.13 2025-03-06 3431

Landlock(7) Miscellaneous Information Manual Landlock(7)

When building fallback mechanisms for compatibility with older kernels, users are
advised to consider the special semantics of the LANDLOCK_ACCESS_FS_RE-
FER access right: In ABI v1, linking and moving of files between different directories
is always forbidden, so programs relying on such operations are only compatible with
Landlock ABI v2 and higher.

NOTES
Landlock is enabled by CONFIG_SECURITY_LANDLOCK. The
lsm=lsm1,...,lsmN command line parameter controls the sequence of the initialization
of Linux Security Modules. It must contain the string landlock to enable Landlock.
If the command line parameter is not specified, the initialization falls back to the value
of the deprecated security= command line parameter and further to the value of
CONFIG_LSM. We can check that Landlock is enabled by looking for landlock: Up
and running. in kernel logs.

CAVEATS
It is currently not possible to restrict some file-related actions accessible through these
system call families: chdir(2), stat(2), flock(2), chmod(2), chown(2), setxattr(2),
utime(2), fcntl(2), access(2). Future Landlock evolutions will enable to restrict them.

EXAMPLES
We first need to create the ruleset that will contain our rules.

For this example, the ruleset will contain rules that only allow read actions, but write
actions will be denied. The ruleset then needs to handle both of these kinds of ac-
tions. See the DESCRIPTION section for the description of filesystem actions.

struct landlock_ruleset_attr attr = {0};
int ruleset_fd;

attr.handled_access_fs =
LANDLOCK_ACCESS_FS_EXECUTE |
LANDLOCK_ACCESS_FS_WRITE_FILE |
LANDLOCK_ACCESS_FS_READ_FILE |
LANDLOCK_ACCESS_FS_READ_DIR |
LANDLOCK_ACCESS_FS_REMOVE_DIR |
LANDLOCK_ACCESS_FS_REMOVE_FILE |
LANDLOCK_ACCESS_FS_MAKE_CHAR |
LANDLOCK_ACCESS_FS_MAKE_DIR |
LANDLOCK_ACCESS_FS_MAKE_REG |
LANDLOCK_ACCESS_FS_MAKE_SOCK |
LANDLOCK_ACCESS_FS_MAKE_FIFO |
LANDLOCK_ACCESS_FS_MAKE_BLOCK |
LANDLOCK_ACCESS_FS_MAKE_SYM |
LANDLOCK_ACCESS_FS_REFER |
LANDLOCK_ACCESS_FS_TRUNCATE |
LANDLOCK_ACCESS_FS_IOCTL_DEV;

To be compatible with older Linux versions, we detect the available Landlock ABI
version, and only use the available subset of access rights:

/*
* Table of available file system access rights by ABI version,

Linux man-pages 6.13 2025-03-06 3432

Landlock(7) Miscellaneous Information Manual Landlock(7)

* numbers hardcoded to keep the example short.
*/

__u64 landlock_fs_access_rights[] = {
(LANDLOCK_ACCESS_FS_MAKE_SYM << 1) - 1, /* v1 */
(LANDLOCK_ACCESS_FS_REFER << 1) - 1, /* v2: add "refer" */
(LANDLOCK_ACCESS_FS_TRUNCATE << 1) - 1, /* v3: add "truncate" */
(LANDLOCK_ACCESS_FS_TRUNCATE << 1) - 1, /* v4: TCP support */
(LANDLOCK_ACCESS_FS_IOCTL_DEV << 1) - 1, /* v5: add "ioctl_dev" */

};

int abi = landlock_create_ruleset(NULL, 0,
LANDLOCK_CREATE_RULESET_VERSION);

if (abi == -1) {
/*

* Kernel too old, not compiled with Landlock,
* or Landlock was not enabled at boot time.
*/

perror("Unable to use Landlock");
return; /* Graceful fallback: Do nothing. */

}
abi = MIN(abi, 3);

/* Only use the available rights in the ruleset. */
attr.handled_access_fs &= landlock_fs_access_rights[abi - 1];

The available access rights for each ABI version are listed in the VERSIONS section.

If our program needed to create hard links or rename files between different directo-
ries (LANDLOCK_ACCESS_FS_REFER), we would require the following change
to the backwards compatibility logic: Directory reparenting is not possible in a
process restricted with Landlock ABI version 1. Therefore, if the program needed to
do file reparenting, and if only Landlock ABI version 1 was available, we could not
restrict the process.

Now that the ruleset attributes are determined, we create the Landlock ruleset and ac-
quire a file descriptor as a handle to it, using landlock_create_ruleset(2):

ruleset_fd = landlock_create_ruleset(&attr, sizeof(attr), 0);
if (ruleset_fd == -1) {

perror("Failed to create a ruleset");
exit(EXIT_FAILURE);

}

We can now add a new rule to the ruleset through the ruleset’s file descriptor. The re-
quested access rights must be a subset of the access rights which were specified in
attr.handled_access_fs at ruleset creation time.

In this example, the rule will only allow reading the file hierarchy /usr. Without an-
other rule, write actions would then be denied by the ruleset. To add /usr to the rule-
set, we open it with the O_PATH flag and fill the struct landlock_path_beneath_attr
with this file descriptor.

struct landlock_path_beneath_attr path_beneath = {0};

Linux man-pages 6.13 2025-03-06 3433

Landlock(7) Miscellaneous Information Manual Landlock(7)

int err;

path_beneath.allowed_access =
LANDLOCK_ACCESS_FS_EXECUTE |
LANDLOCK_ACCESS_FS_READ_FILE |
LANDLOCK_ACCESS_FS_READ_DIR;

path_beneath.parent_fd = open("/usr", O_PATH | O_CLOEXEC);
if (path_beneath.parent_fd == -1) {

perror("Failed to open file");
close(ruleset_fd);
exit(EXIT_FAILURE);

}
err = landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH,

&path_beneath, 0);
close(path_beneath.parent_fd);
if (err) {

perror("Failed to update ruleset");
close(ruleset_fd);
exit(EXIT_FAILURE);

}

We now have a ruleset with one rule allowing read access to /usr while denying all
other handled accesses for the filesystem. The next step is to restrict the current
thread from gaining more privileges (e.g., thanks to a set-user-ID binary).

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
perror("Failed to restrict privileges");
close(ruleset_fd);
exit(EXIT_FAILURE);

}

The current thread is now ready to sandbox itself with the ruleset.

if (landlock_restrict_self(ruleset_fd, 0)) {
perror("Failed to enforce ruleset");
close(ruleset_fd);
exit(EXIT_FAILURE);

}
close(ruleset_fd);

If the landlock_restrict_self(2) system call succeeds, the current thread is now re-
stricted and this policy will be enforced on all its subsequently created children as
well. Once a thread is landlocked, there is no way to remove its security policy; only
adding more restrictions is allowed. These threads are now in a new Landlock do-
main, merge of their parent one (if any) with the new ruleset.

Full working code can be found in 〈https://git.kernel.org/pub/scm/linux/kernel/git/
stable/linux.git/tree/samples/landlock/sandboxer.c〉

SEE ALSO
landlock_create_ruleset(2), landlock_add_rule(2), landlock_restrict_self(2)

Linux man-pages 6.13 2025-03-06 3434

Landlock(7) Miscellaneous Information Manual Landlock(7)

〈https://landlock.io/〉

Linux man-pages 6.13 2025-03-06 3435

libc(7) Miscellaneous Information Manual libc(7)

NAME
libc - overview of standard C libraries on Linux

DESCRIPTION
The term “libc” is commonly used as a shorthand for the “standard C library” a li-
brary of standard functions that can be used by all C programs (and sometimes by
programs in other languages). Because of some history (see below), use of the term
“libc” to refer to the standard C library is somewhat ambiguous on Linux.

glibc
By far the most widely used C library on Linux is the GNU C Library
〈http://www.gnu.org/software/libc/〉, often referred to as glibc. This is the C library
that is nowadays used in all major Linux distributions. It is also the C library whose
details are documented in the relevant pages of the man-pages project (primarily in
Section 3 of the manual). Documentation of glibc is also available in the glibc man-
ual, available via the command info libc. Release 1.0 of glibc was made in September
1992. (There were earlier 0.x releases.) The next major release of glibc was 2.0, at
the beginning of 1997.

The pathname /lib/libc.so.6 (or something similar) is normally a symbolic link that
points to the location of the glibc library, and executing this pathname will cause glibc
to display various information about the version installed on your system.

Linux libc
In the early to mid 1990s, there was for a while Linux libc, a fork of glibc 1.x created
by Linux developers who felt that glibc development at the time was not sufficing for
the needs of Linux. Often, this library was referred to (ambiguously) as just “libc”.
Linux libc released major versions 2, 3, 4, and 5, as well as many minor versions of
those releases. Linux libc4 was the last version to use the a.out binary format, and the
first version to provide (primitive) shared library support. Linux libc 5 was the first
version to support the ELF binary format; this version used the shared library soname
libc.so.5. For a while, Linux libc was the standard C library in many Linux distribu-
tions.

However, notwithstanding the original motivations of the Linux libc effort, by the
time glibc 2.0 was released (in 1997), it was clearly superior to Linux libc, and all ma-
jor Linux distributions that had been using Linux libc soon switched back to glibc. To
avoid any confusion with Linux libc versions, glibc 2.0 and later used the shared li-
brary soname libc.so.6.

Since the switch from Linux libc to glibc 2.0 occurred long ago, man-pages no longer
takes care to document Linux libc details. Nevertheless, the history is visible in ves-
tiges of information about Linux libc that remain in a few manual pages, in particular,
references to libc4 and libc5.

Other C libraries
There are various other less widely used C libraries for Linux. These libraries are
generally smaller than glibc, both in terms of features and memory footprint, and of-
ten intended for building small binaries, perhaps targeted at development for embed-
ded Linux systems. Among such libraries are uClibc 〈http://www.uclibc.org/〉, di-
etlibc 〈http://www.fefe.de/dietlibc/〉, and musl libc 〈http://www.musl-libc.org/〉. De-
tails of these libraries are covered by the man-pages project, where they are known.

Linux man-pages 6.13 2024-05-02 3436

libc(7) Miscellaneous Information Manual libc(7)

SEE ALSO
syscalls(2), getauxval(3), proc(5), feature_test_macros(7), man-pages(7), stan-
dards(7), vdso(7)

Linux man-pages 6.13 2024-05-02 3437

locale(7) Miscellaneous Information Manual locale(7)

NAME
locale - description of multilanguage support

SYNOPSIS
#include <locale.h>

DESCRIPTION
A locale is a set of language and cultural rules. These cover aspects such as language
for messages, different character sets, lexicographic conventions, and so on. A pro-
gram needs to be able to determine its locale and act accordingly to be portable to dif-
ferent cultures.

The header <locale.h> declares data types, functions, and macros which are useful in
this task.

The functions it declares are setlocale(3) to set the current locale, and localeconv(3) to
get information about number formatting.

There are different categories for locale information a program might need; they are
declared as macros. Using them as the first argument to the setlocale(3) function, it is
possible to set one of these to the desired locale:

LC_ADDRESS (GNU extension, since glibc 2.2)
Change settings that describe the formats (e.g., postal addresses) used to de-
scribe locations and geography-related items. Applications that need this in-
formation can use nl_langinfo(3) to retrieve nonstandard elements, such as
_NL_ADDRESS_COUNTRY_NAME (country name, in the language of the
locale) and _NL_ADDRESS_LANG_NAME (language name, in the lan-
guage of the locale), which return strings such as "Deutschland" and
"Deutsch" (for German-language locales). (Other element names are listed in
<langinfo.h>.)

LC_COLLATE
This category governs the collation rules used for sorting and regular expres-
sions, including character equivalence classes and multicharacter collating ele-
ments. This locale category changes the behavior of the functions strcoll(3)
and strxfrm(3), which are used to compare strings in the local alphabet. For
example, the German sharp s is sorted as "ss".

LC_CTYPE
This category determines the interpretation of byte sequences as characters
(e.g., single versus multibyte characters), character classifications (e.g., alpha-
betic or digit), and the behavior of character classes. On glibc systems, this
category also determines the character transliteration rules for iconv(1) and
iconv(3). It changes the behavior of the character handling and classification
functions, such as isupper(3) and toupper(3), and the multibyte character func-
tions such as mblen(3) or wctomb(3).

LC_IDENTIFICATION (GNU extension, since glibc 2.2)
Change settings that relate to the metadata for the locale. Applications that
need this information can use nl_langinfo(3) to retrieve nonstandard elements,
such as _NL_IDENTIFICATION_TITLE (title of this locale document) and
_NL_IDENTIFICATION_TERRITORY (geographical territory to which
this locale document applies), which might return strings such as "English

Linux man-pages 6.13 2024-06-15 3438

locale(7) Miscellaneous Information Manual locale(7)

locale for the USA" and "USA". (Other element names are listed in <lang-
info.h>.)

LC_MONETARY
This category determines the formatting used for monetary-related numeric
values. This changes the information returned by localeconv(3), which de-
scribes the way numbers are usually printed, with details such as decimal point
versus decimal comma. This information is internally used by the function
strfmon(3).

LC_MESSAGES
This category affects the language in which messages are displayed and what
an affirmative or negative answer looks like. The GNU C library contains the
gettext(3), ngettext(3), and rpmatch(3) functions to ease the use of this infor-
mation. The GNU gettext family of functions also obey the environment vari-
able LANGUAGE (containing a colon-separated list of locales) if the category
is set to a valid locale other than "C". This category also affects the behavior
of catopen(3).

LC_MEASUREMENT (GNU extension, since glibc 2.2)
Change the settings relating to the measurement system in the locale (i.e., met-
ric versus US customary units). Applications can use nl_langinfo(3) to re-
trieve the nonstandard _NL_MEASUREMENT_MEASUREMENT ele-
ment, which returns a pointer to a character that has the value 1 (metric) or 2
(US customary units).

LC_NAME (GNU extension, since glibc 2.2)
Change settings that describe the formats used to address persons. Applica-
tions that need this information can use nl_langinfo(3) to retrieve nonstandard
elements, such as _NL_NAME_NAME_MR (general salutation for men) and
_NL_NAME_NAME_MS (general salutation for women) elements, which
return strings such as "Herr" and "Frau" (for German-language locales).
(Other element names are listed in <langinfo.h>.)

LC_NUMERIC
This category determines the formatting rules used for nonmonetary numeric
values—for example, the thousands separator and the radix character (a period
in most English-speaking countries, but a comma in many other regions). It
affects functions such as printf(3), scanf(3), and strtod(3). This information
can also be read with the localeconv(3) function.

LC_PAPER (GNU extension, since glibc 2.2)
Change the settings relating to the dimensions of the standard paper size (e.g.,
US letter versus A4). Applications that need the dimensions can obtain them
by using nl_langinfo(3) to retrieve the nonstandard _NL_PAPER_WIDTH
and _NL_PAPER_HEIGHT elements, which return int values specifying the
dimensions in millimeters.

LC_TELEPHONE (GNU extension, since glibc 2.2)
Change settings that describe the formats to be used with telephone services.
Applications that need this information can use nl_langinfo(3) to retrieve non-
standard elements, such as _NL_TELEPHONE_INT_PREFIX (interna-
tional prefix used to call numbers in this locale), which returns a string such as

Linux man-pages 6.13 2024-06-15 3439

locale(7) Miscellaneous Information Manual locale(7)

"49" (for Germany). (Other element names are listed in <langinfo.h>.)

LC_TIME
This category governs the formatting used for date and time values. For exam-
ple, most of Europe uses a 24-hour clock versus the 12-hour clock used in the
United States. The setting of this category affects the behavior of functions
such as strftime(3) and strptime(3).

LC_ALL
All of the above.

If the second argument to setlocale(3) is an empty string, "", for the default locale, it
is determined using the following steps:

(1) If there is a non-null environment variable LC_ALL, the value of LC_ALL is
used.

(2) If an environment variable with the same name as one of the categories above
exists and is non-null, its value is used for that category.

(3) If there is a non-null environment variable LANG, the value of LANG is used.

Values about local numeric formatting is made available in a struct lconv returned by
the localeconv(3) function, which has the following declaration:

struct lconv {

/* Numeric (nonmonetary) information */

char *decimal_point; /* Radix character */
char *thousands_sep; /* Separator for digit groups to left

of radix character */
char *grouping; /* Each element is the number of digits in

a group; elements with higher indices
are further left. An element with value
CHAR_MAX means that no further grouping
is done. An element with value 0 means
that the previous element is used for
all groups further left. */

/* Remaining fields are for monetary information */

char *int_curr_symbol; /* First three chars are a currency
symbol from ISO 4217. Fourth char
is the separator. Fifth char
is '\0'. */

char *currency_symbol; /* Local currency symbol */
char *mon_decimal_point; /* Radix character */
char *mon_thousands_sep; /* Like thousands_sep above */
char *mon_grouping; /* Like grouping above */
char *positive_sign; /* Sign for positive values */
char *negative_sign; /* Sign for negative values */
char int_frac_digits; /* International fractional digits */

Linux man-pages 6.13 2024-06-15 3440

locale(7) Miscellaneous Information Manual locale(7)

char frac_digits; /* Local fractional digits */
char p_cs_precedes; /* 1 if currency_symbol precedes a

positive value, 0 if succeeds */
char p_sep_by_space; /* 1 if a space separates

currency_symbol from a positive
value */

char n_cs_precedes; /* 1 if currency_symbol precedes a
negative value, 0 if succeeds */

char n_sep_by_space; /* 1 if a space separates
currency_symbol from a negative
value */

/* Positive and negative sign positions:
0 Parentheses surround the quantity and currency_symbol.
1 The sign string precedes the quantity and currency_symbol.
2 The sign string succeeds the quantity and currency_symbol.
3 The sign string immediately precedes the currency_symbol.
4 The sign string immediately succeeds the currency_symbol. */

char p_sign_posn;
char n_sign_posn;

};

POSIX.1-2008 extensions to the locale API
POSIX.1-2008 standardized a number of extensions to the locale API, based on im-
plementations that first appeared in glibc 2.3. These extensions are designed to ad-
dress the problem that the traditional locale APIs do not mix well with multithreaded
applications and with applications that must deal with multiple locales.

The extensions take the form of new functions for creating and manipulating locale
objects (newlocale(3), freelocale(3), duplocale(3), and uselocale(3)) and various new
library functions with the suffix "_l" (e.g., toupper_l(3)) that extend the traditional lo-
cale-dependent APIs (e.g., toupper(3)) to allow the specification of a locale object that
should apply when executing the function.

ENVIRONMENT
The following environment variable is used by newlocale(3) and setlocale(3), and
thus affects all unprivileged localized programs:

LOCPATH
A list of pathnames, separated by colons (':'), that should be used to find locale
data. If this variable is set, only the individual compiled locale data files from
LOCPATH and the system default locale data path are used; any available lo-
cale archives are not used (see localedef(1)). The individual compiled locale
data files are searched for under subdirectories which depend on the currently
used locale. For example, when en_GB.UTF-8 is used for a category, the fol-
lowing subdirectories are searched for, in this order: en_GB.UTF-8,
en_GB.utf8, en_GB, en.UTF-8, en.utf8, and en.

FILES
/usr/lib/locale/locale-archive

Usual default locale archive location.

Linux man-pages 6.13 2024-06-15 3441

locale(7) Miscellaneous Information Manual locale(7)

/usr/lib/locale
Usual default path for compiled individual locale files.

STANDARDS
POSIX.1-2001.

SEE ALSO
iconv(1), locale(1), localedef(1), catopen(3), gettext(3), iconv(3), localeconv(3), mb-
stowcs(3), newlocale(3), ngettext(3), nl_langinfo(3), rpmatch(3), setlocale(3), str-
coll(3), strfmon(3), strftime(3), strxfrm(3), uselocale(3), wcstombs(3), locale(5),
charsets(7), unicode(7), utf-8(7)

Linux man-pages 6.13 2024-06-15 3442

mailaddr(7) Miscellaneous Information Manual mailaddr(7)

NAME
mailaddr - mail addressing description

DESCRIPTION
This manual page gives a brief introduction to SMTP mail addresses, as used on the
Internet. These addresses are in the general format

user@domain

where a domain is a hierarchical dot-separated list of subdomains. These examples
are valid forms of the same address:

john.doe@monet.example.com
John Doe <john.doe@monet.example.com>
john.doe@monet.example.com (John Doe)

The domain part ("monet.example.com") is a mail-accepting domain. It can be a host
and in the past it usually was, but it doesn’t have to be. The domain part is not case
sensitive.

The local part ("john.doe") is often a username, but its meaning is defined by the local
software. Sometimes it is case sensitive, although that is unusual. If you see a local-
part that looks like garbage, it is usually because of a gateway between an internal e-
mail system and the net, here are some examples:

"surname/admd=telemail/c=us/o=hp/prmd=hp"@some.where
USER%SOMETHING@some.where
machine!machine!name@some.where
I2461572@some.where

(These are, respectively, an X.400 gateway, a gateway to an arbitrary internal mail
system that lacks proper internet support, an UUCP gateway, and the last one is just
boring username policy.)

The real-name part ("John Doe") can either be placed before <>, or in () at the end.
(Strictly speaking the two aren’t the same, but the difference is beyond the scope of
this page.) The name may have to be quoted using "", for example, if it contains ".":

"John Q. Doe" <john.doe@monet.example.com>

Abbreviation
Some mail systems let users abbreviate the domain name. For instance, users at
example.com may get away with "john.doe@monet" to send mail to John Doe. This
behavior is deprecated. Sometimes it works, but you should not depend on it.

Route-addrs
In the past, sometimes one had to route a message through several hosts to get it to its
final destination. Addresses which show these relays are termed "route-addrs". These
use the syntax:

<@hosta,@hostb:user@hostc>

This specifies that the message should be sent to hosta, from there to hostb, and finally
to hostc. Many hosts disregard route-addrs and send directly to hostc.

Route-addrs are very unusual now. They occur sometimes in old mail archives. It is
generally possible to ignore all but the "user@hostc" part of the address to determine
the actual address.

4.2 Berkeley Distribution 2024-05-02 3443

mailaddr(7) Miscellaneous Information Manual mailaddr(7)

Postmaster
Every site is required to have a user or user alias designated "postmaster" to which
problems with the mail system may be addressed. The "postmaster" address is not
case sensitive.

FILES
/etc/aliases
~/.forward

SEE ALSO
mail(1), aliases(5), forward(5), sendmail(8)

IETF RFC 5322 〈http://www.ietf.org/rfc/rfc5322.txt〉

4.2 Berkeley Distribution 2024-05-02 3444

man-pages(7) Miscellaneous Information Manual man-pages(7)

NAME
man-pages - conventions for writing Linux man pages

SYNOPSIS
man [section] title

DESCRIPTION
This page describes the conventions that should be employed when writing man pages
for the Linux man-pages project, which documents the user-space API provided by
the Linux kernel and the GNU C library. The project thus provides most of the pages
in Section 2, many of the pages that appear in Sections 3, 4, and 7, and a few of the
pages that appear in Sections 1, 5, and 8 of the man pages on a Linux system. The
conventions described on this page may also be useful for authors writing man pages
for other projects.

Sections of the manual pages
The manual Sections are traditionally defined as follows:

1 User commands (Programs)
Commands that can be executed by the user from within a shell.

2 System calls
Functions which wrap operations performed by the kernel.

3 Library calls
All library functions excluding the system call wrappers (Most of the libc
functions).

4 Special files (devices)
Files found in /dev which allow to access to devices through the kernel.

5 File formats and configuration files
Describes various human-readable file formats and configuration files.

6 Games
Games and funny little programs available on the system.

7 Overview, conventions, and miscellaneous
Overviews or descriptions of various topics, conventions, and protocols, char-
acter set standards, the standard filesystem layout, and miscellaneous other
things.

8 System management commands
Commands like mount(8), many of which only root can execute.

Macro package
New manual pages should be marked up using the groff an.tmac package described
in man(7). This choice is mainly for consistency: the vast majority of existing Linux
manual pages are marked up using these macros.

Conventions for source file layout
Please limit source code line length to no more than about 75 characters wherever
possible. This helps avoid line-wrapping in some mail clients when patches are sub-
mitted inline.

Linux man-pages 6.13 2025-01-15 3445

man-pages(7) Miscellaneous Information Manual man-pages(7)

Title line
The first command in a man page should be a TH command:

.TH title section date source manual-section

The arguments of the command are as follows:

title The title of the man page.

section
The section number in which the man page should be placed (e.g., 7).

date The date of the last nontrivial change that was made to the man page. (Within
the man-pages project, the necessary updates to these timestamps are handled
automatically by scripts, so there is no need to manually update them as part
of a patch.) Dates should be written in the form YYYY-MM-DD.

source
The name and version of the project that provides the manual page (not neces-
sarily the package that provides the functionality).

manual-section
Normally, this should be empty, since the default value will be good.

Sections within a manual page
The list below shows conventional or suggested sections. Most manual pages should
include at least the highlighted sections. Arrange a new manual page so that sections
are placed in the order shown in the list.

NAME
LIBRARY [Normally only in Sections 2, 3]
SYNOPSIS
CONFIGURATION [Normally only in Section 4]
DESCRIPTION
OPTIONS [Normally only in Sections 1, 8]
EXIT STATUS [Normally only in Sections 1, 8]
RETURN VALUE [Normally only in Sections 2, 3]
ERRORS [Typically only in Sections 2, 3]
ENVIRONMENT
FILES
ATTRIBUTES [Normally only in Sections 2, 3]
VERSIONS [Normally only in Sections 2, 3]
STANDARDS
HISTORY
NOTES
CAVEATS
BUGS
EXAMPLES
AUTHORS [Discouraged]
REPORTING BUGS [Not used in man-pages]
COPYRIGHT [Not used in man-pages]
SEE ALSO

Where a traditional heading would apply, please use it; this kind of consistency can
make the information easier to understand. If you must, you can create your own

Linux man-pages 6.13 2025-01-15 3446

man-pages(7) Miscellaneous Information Manual man-pages(7)

headings if they make things easier to understand (this can be especially useful for
pages in Sections 4 and 5). However, before doing this, consider whether you could
use the traditional headings, with some subsections (.SS) within those sections.

The following list elaborates on the contents of each of the above sections.

NAME
The name of this manual page.

See man(7) for important details of the line(s) that should follow the .SH
NAME command. All words in this line (including the word immediately fol-
lowing the "\-") should be in lowercase, except where English or technical ter-
minological convention dictates otherwise.

LIBRARY
The library providing a symbol.

It shows the common name of the library, and in parentheses, the name of the
library file and, if needed, the linker flag needed to link a program against it:
(libfoo[, -lfoo]).

SYNOPSIS
A brief summary of the command or function’s interface.

For commands, this shows the syntax of the command and its arguments (in-
cluding options); boldface is used for as-is text and italics are used to indicate
replaceable arguments. Brackets ([]) surround optional arguments, vertical
bars (|) separate choices, and ellipses (...) can be repeated. For functions, it
shows any required data declarations or #include directives, followed by the
function declaration.

Where a feature test macro must be defined in order to obtain the declaration
of a function (or a variable) from a header file, then the SYNOPSIS should in-
dicate this, as described in feature_test_macros(7).

CONFIGURATION
Configuration details for a device.

This section normally appears only in Section 4 pages.

DESCRIPTION
An explanation of what the program, function, or format does.

Discuss how it interacts with files and standard input, and what it produces on
standard output or standard error. Omit internals and implementation details
unless they’re critical for understanding the interface. Describe the usual case;
for information on command-line options of a program use the OPTIONS
section.

When describing new behavior or new flags for a system call or library func-
tion, be careful to note the kernel or C library version that introduced the
change. The preferred method of noting this information for flags is as part of
a .TP list, in the following form (here, for a new system call flag):

XYZ_FLAG (since Linux 3.7)
Description of flag...

Linux man-pages 6.13 2025-01-15 3447

man-pages(7) Miscellaneous Information Manual man-pages(7)

Including version information is especially useful to users who are constrained
to using older kernel or C library versions (which is typical in embedded sys-
tems, for example).

OPTIONS
A description of the command-line options accepted by a program and how
they change its behavior.

This section should appear only for Section 1 and 8 manual pages.

EXIT STATUS
A list of the possible exit status values of a program and the conditions that
cause these values to be returned.

This section should appear only for Section 1 and 8 manual pages.

RETURN VALUE
For Section 2 and 3 pages, this section gives a list of the values the library rou-
tine will return to the caller and the conditions that cause these values to be re-
turned.

ERRORS
For Section 2 and 3 manual pages, this is a list of the values that may be
placed in errno in the event of an error, along with information about the cause
of the errors.

Where several different conditions produce the same error, the preferred ap-
proach is to create separate list entries (with duplicate error names) for each of
the conditions. This makes the separate conditions clear, may make the list
easier to read, and allows metainformation (e.g., kernel version number where
the condition first became applicable) to be more easily marked for each con-
dition.

The error list should be in alphabetical order.

ENVIRONMENT
A list of all environment variables that affect the program or function and how
they affect it.

FILES
A list of the files the program or function uses, such as configuration files,
startup files, and files the program directly operates on.

Give the full pathname of these files, and use the installation process to modify
the directory part to match user preferences. For many programs, the default
installation location is in /usr/local, so your base manual page should use
/usr/local as the base.

ATTRIBUTES
A summary of various attributes of the function(s) documented on this page.
See attributes(7) for further details.

VERSIONS
A summary of systems where the API performs differently, or where there’s a
similar API.

Linux man-pages 6.13 2025-01-15 3448

man-pages(7) Miscellaneous Information Manual man-pages(7)

STANDARDS
A description of any standards or conventions that relate to the function or
command described by the manual page.

The preferred terms to use for the various standards are listed as headings in
standards(7).

This section should note the current standards to which the API conforms to.

If the API is not governed by any standards but commonly exists on other sys-
tems, note them. If the call is Linux-specific or GNU-specific, note this. If it’s
available in the BSDs, note that.

If this section consists of just a list of standards (which it commonly does), ter-
minate the list with a period ('.').

HISTORY
A brief summary of the Linux kernel or glibc versions where a system call or
library function appeared, or changed significantly in its operation.

As a general rule, every new interface should include a HISTORY section in
its manual page. Unfortunately, many existing manual pages don’t include
this information (since there was no policy to do so when they were written).
Patches to remedy this are welcome, but, from the perspective of programmers
writing new code, this information probably matters only in the case of kernel
interfaces that have been added in Linux 2.4 or later (i.e., changes since Linux
2.2), and library functions that have been added to glibc since glibc 2.1 (i.e.,
changes since glibc 2.0).

The syscalls(2) manual page also provides information about kernel versions
in which various system calls first appeared.

Old versions of standards should be mentioned here, rather than in STANDARDS, for
example, SUS, SUSv2, and XPG, or the SVr4 and 4.xBSD implementation standards.

NOTES
Miscellaneous notes.

For Section 2 and 3 man pages you may find it useful to include subsections
(SS) named Linux Notes and glibc Notes.

In Section 2, use the heading C library/kernel differences to mark off notes
that describe the differences (if any) between the C library wrapper function
for a system call and the raw system call interface provided by the kernel.

CAVEATS
Warnings about typical user misuse of an API, that don’t constitute an API bug
or design defect.

BUGS
A list of limitations, known defects or inconveniences, and other questionable
activities.

EXAMPLES
One or more examples demonstrating how this function, file, or command is
used.

Linux man-pages 6.13 2025-01-15 3449

man-pages(7) Miscellaneous Information Manual man-pages(7)

For details on writing example programs, see Example programs below.

AUTHORS
A list of authors of the documentation or program.

Use of an AUTHORS section is strongly discouraged. Generally, it is better
not to clutter every page with a list of (over time potentially numerous) au-
thors; if you write or significantly amend a page, add a copyright notice as a
comment in the source file. If you are the author of a device driver and want
to include an address for reporting bugs, place this under the BUGS section.

REPORTING BUGS
The man-pages project doesn’t use a REPORTING BUGS section in manual
pages. Information on reporting bugs is instead supplied in the script-gener-
ated COLOPHON section. However, various projects do use a REPORTING
BUGS section. It is recommended to place it near the foot of the page.

COPYRIGHT
The man-pages project doesn’t use a COPYRIGHT section in manual pages.
Copyright information is instead maintained in the page source. In pages
where this section is present, it is recommended to place it near the foot of the
page, just above SEE ALSO.

SEE ALSO
A comma-separated list of related man pages, possibly followed by other re-
lated pages or documents.

The list should be ordered by section number and then alphabetically by name.
Do not terminate this list with a period.

Where the SEE ALSO list contains many long manual page names, to improve
the visual result of the output, it may be useful to employ the .ad l (don’t right
justify) and .nh (don’t hyphenate) directives. Hyphenation of individual page
names can be prevented by preceding words with the string "\%".

Given the distributed, autonomous nature of FOSS projects and their docu-
mentation, it is sometimes necessary—and in many cases desirable—that the
SEE ALSO section includes references to manual pages provided by other
projects.

FORMATTING AND WORDING CONVENTIONS
The following subsections note some details for preferred formatting and wording
conventions in various sections of the pages in the man-pages project.

SYNOPSIS
Wrap the function prototype(s) in a .nf /.fi pair to prevent filling.

In general, where more than one function prototype is shown in the SYNOPSIS, the
prototypes should not be separated by blank lines. However, blank lines (achieved us-
ing .P) may be added in the following cases:

• to separate long lists of function prototypes into related groups (see for example
list(3));

Linux man-pages 6.13 2025-01-15 3450

man-pages(7) Miscellaneous Information Manual man-pages(7)

• in other cases that may improve readability.

In the SYNOPSIS, a long function prototype may need to be continued over to the
next line. The continuation line is indented according to the following rules:

(1) If there is a single such prototype that needs to be continued, then align the con-
tinuation line so that when the page is rendered on a fixed-width font device
(e.g., on an xterm) the continuation line starts just below the start of the argu-
ment list in the line above. (Exception: the indentation may be adjusted if nec-
essary to prevent a very long continuation line or a further continuation line
where the function prototype is very long.) As an example:

int tcsetattr(int fd , int optional_actions,
const struct termios *termios_p);

(2) But, where multiple functions in the SYNOPSIS require continuation lines, and
the function names have different lengths, then align all continuation lines to
start in the same column. This provides a nicer rendering in PDF output (be-
cause the SYNOPSIS uses a variable width font where spaces render narrower
than most characters). As an example:

int getopt(int argc, char * const argv[],
const char *optstring);

int getopt_long(int argc, char * const argv[],
const char *optstring,
const struct option *longopts, int *longindex);

RETURN VALUE
The preferred wording to describe how errno is set is "errno is set to indicate the er-
ror" or similar. This wording is consistent with the wording used in both POSIX.1
and FreeBSD.

ATTRIBUTES
Note the following:

• Wrap the table in this section in a .ad l/.ad pair to disable text filling and a .nh/.hy
pair to disable hyphenation.

• Ensure that the table occupies the full page width through the use of an lbx de-
scription for one of the columns (usually the first column, though in some cases
the last column if it contains a lot of text).

• Make free use of T{/T} macro pairs to allow table cells to be broken over multiple
lines (also bearing in mind that pages may sometimes be rendered to a width of
less than 80 columns).

For examples of all of the above, see the source code of various pages.

STYLE GUIDE
The following subsections describe the preferred style for the man-pages project. For
details not covered below, the Chicago Manual of Style is usually a good source; try
also grepping for preexisting usage in the project source tree.

Use of gender-neutral language
As far as possible, use gender-neutral language in the text of man pages. Use of
"they" ("them", "themself", "their") as a gender-neutral singular pronoun is

Linux man-pages 6.13 2025-01-15 3451

man-pages(7) Miscellaneous Information Manual man-pages(7)

acceptable.

Formatting conventions for manual pages describing commands
For manual pages that describe a command (typically in Sections 1 and 8), the argu-
ments are always specified using italics, even in the SYNOPSIS section.

The name of the command, and its options, should always be formatted in bold.

Formatting conventions for manual pages describing functions
For manual pages that describe functions (typically in Sections 2 and 3), the argu-
ments are always specified using italics, even in the SYNOPSIS section, where the rest
of the function is specified in bold:

int myfunction(int argc, char **argv);

Variable names should, like argument names, be specified in italics.

Any reference to the subject of the current manual page should be written with the
name in bold followed by a pair of parentheses in Roman (normal) font. For example,
in the fcntl(2) man page, references to the subject of the page would be written as: fc-
ntl(). The preferred way to write this in the source file is:

.BR fcntl ()

(Using this format, rather than the use of "\fB...\fP()" makes it easier to write tools
that parse man page source files.)

Use semantic newlines
In the source of a manual page, new sentences should be started on new lines, long
sentences should be split into lines at clause breaks (commas, semicolons, colons, and
so on), and long clauses should be split at phrase boundaries. This convention, some-
times known as "semantic newlines", makes it easier to see the effect of patches,
which often operate at the level of individual sentences, clauses, or phrases.

Lists
There are different kinds of lists:

Tagged paragraphs
These are used for a list of tags and their descriptions. When the tags are con-
stants (either macros or numbers) they are in bold. Use the .TP macro.

An example is this "Tagged paragraphs" subsection is itself.

Ordered lists
Elements are preceded by a number in parentheses (1), (2). These represent a
set of steps that have an order.

When there are substeps, they will be numbered like (4.2).

Positional lists
Elements are preceded by a number (index) in square brackets [4], [5]. These
represent fields in a set. The first index will be:

0 When it represents fields of a C data structure, to be consistent with ar-
rays.

1 When it represents fields of a file, to be consistent with tools like
cut(1)

Linux man-pages 6.13 2025-01-15 3452

man-pages(7) Miscellaneous Information Manual man-pages(7)

Alternatives list
Elements are preceded by a letter in parentheses (a), (b). These represent a set
of (normally) exclusive alternatives.

Bullet lists
Elements are preceded by bullet symbols (\[bu]). Anything that doesn’t fit
elsewhere is usually covered by this type of list.

Numbered notes
Not really a list, but the syntax is identical to "positional lists".

There should always be exactly 2 spaces between the list symbol and the elements.
This doesn’t apply to "tagged paragraphs", which use the default indentation rules.

Formatting conventions (general)
Paragraphs should be separated by suitable markers (usually either .P or .IP). Do not
separate paragraphs using blank lines, as this results in poor rendering in some output
formats (such as PostScript and PDF).

Filenames (whether pathnames, or references to header files) are always in italics
(e.g., <stdio.h>), except in the SYNOPSIS section, where included files are in bold
(e.g., #include <stdio.h>). When referring to a standard header file include, specify
the header file surrounded by angle brackets, in the usual C way (e.g., <stdio.h>).

Special macros, which are usually in uppercase, are in bold (e.g., MAXINT). Excep-
tion: don’t boldface NULL.

When enumerating a list of error codes, the codes are in bold (this list usually uses the
.TP macro).

Complete commands should, if long, be written as an indented line on their own, with
a blank line before and after the command, for example

man 7 man-pages

If the command is short, then it can be included inline in the text, in italic format, for
example, man 7 man-pages. In this case, it may be worth using nonbreaking spaces
(\~) at suitable places in the command. Command options should be written in italics
(e.g., -l).

Expressions, if not written on a separate indented line, should be specified in italics.
Again, the use of nonbreaking spaces may be appropriate if the expression is inlined
with normal text.

When showing example shell sessions, user input should be formatted in bold, for ex-
ample

$ date
Thu Jul 7 13:01:27 CEST 2016

Any reference to another man page should be written with the name in bold, always
followed by the section number, formatted in Roman (normal) font, without any sepa-
rating spaces (e.g., intro(2)). The preferred way to write this in the source file is:

.BR intro (2)

(Including the section number in cross references lets tools like man2html(1) create
properly hyperlinked pages.)

Linux man-pages 6.13 2025-01-15 3453

man-pages(7) Miscellaneous Information Manual man-pages(7)

Control characters should be written in bold face, with no quotes; for example, ^X.

Spelling
Starting with release 2.59, man-pages follows American spelling conventions (previ-
ously, there was a random mix of British and American spellings); please write all
new pages and patches according to these conventions.

Aside from the well-known spelling differences, there are a few other subtleties to
watch for:

• American English tends to use the forms "backward", "upward", "toward", and so
on rather than the British forms "backwards", "upwards", "towards", and so on.

• Opinions are divided on "acknowledgement" vs "acknowledgment". The latter is
predominant, but not universal usage in American English. POSIX and the BSD
license use the former spelling. In the Linux man-pages project, we use "ac-
knowledgement".

BSD version numbers
The classical scheme for writing BSD version numbers is x.yBSD, where x.y is the
version number (e.g., 4.2BSD). Avoid forms such as BSD 4.3.

Capitalization
In subsection ("SS") headings, capitalize the first word in the heading, but otherwise
use lowercase, except where English usage (e.g., proper nouns) or programming lan-
guage requirements (e.g., identifier names) dictate otherwise. For example:

.SS Unicode under Linux

Indentation of structure definitions, shell session logs, and so on
When structure definitions, shell session logs, and so on are included in running text,
indent them by 4 spaces (i.e., a block enclosed by .in +4n and .in), format them using
the .EX and .EE macros, and surround them with suitable paragraph markers (either
.P or .IP). For example:

.P

.in +4n

.EX
int
main(int argc, char *argv[])
{

return 0;
}
.EE
.in
.P

Preferred terms
The following table lists some preferred terms to use in man pages, mainly to ensure
consistency across pages.
Term Avoid using Notes
built-in builtin

Linux man-pages 6.13 2025-01-15 3454

man-pages(7) Miscellaneous Information Manual man-pages(7)

Epoch epoch For the UNIX
Epoch (00:00:00,
1 Jan 1970 UTC)

filename file name
filesystem file system
hostname host name
inode i-node
lowercase lower case, lower-case
nonzero non-zero
pathname path name
pseudoterminal pseudo-terminal
privileged port reserved port, system

port
real-time realtime, real time
run time runtime
saved set-group-ID saved group ID, saved

set-GID
saved set-user-ID saved user ID, saved

set-UID
set-group-ID set-GID, setgid
set-user-ID set-UID, setuid
superuser super user, super-user
superblock super block, super-

block
symbolic link symlink
timestamp time stamp
timezone time zone
uppercase upper case, upper-case
usable useable
user space userspace
username user name
x86-64 x86_64 Except if referring

to result of "un-
ame -m" or simi-
lar

zeros zeroes

See also the discussion Hyphenation of attributive compounds below.

Terms to avoid
The following table lists some terms to avoid using in man pages, along with some
suggested alternatives, mainly to ensure consistency across pages.
Avoid Use instead Notes
32bit 32-bit same for 8-bit, 16-bit,

etc.
current process calling process A common mistake

made by kernel pro-
grammers when writ-
ing man pages

Linux man-pages 6.13 2025-01-15 3455

man-pages(7) Miscellaneous Information Manual man-pages(7)

manpage man page, manual
page

minus infinity negative infinity
non-root unprivileged user
non-superuser unprivileged user
nonprivileged unprivileged
OS operating system
plus infinity positive infinity
pty pseudoterminal
tty terminal
Unices UNIX systems
Unixes UNIX systems

Trademarks
Use the correct spelling and case for trademarks. The following is a list of the correct
spellings of various relevant trademarks that are sometimes misspelled:

DG/UX
HP-UX
UNIX
UnixWare

NULL, NUL, null pointer, and null byte
A null pointer is a pointer that points to nothing, and is normally indicated by the
constant NULL. On the other hand, NUL is the null byte, a byte with the value 0, rep-
resented in C via the character constant '\0' .

The preferred term for the pointer is "null pointer" or simply "NULL"; avoid writing
"NULL pointer".

The preferred term for the byte is "null byte". Avoid writing "NUL", since it is too
easily confused with "NULL". Avoid also the terms "zero byte" and "null character".
The byte that terminates a C string should be described as "the terminating null byte";
strings may be described as "null-terminated", but avoid the use of "NUL-terminated".

Hyperlinks
For hyperlinks, use the .UR/.UE macro pair (see groff_man(7)). This produces proper
hyperlinks that can be used in a web browser, when rendering a page with, say:

BROWSER=firefox man -H pagename

Use of e.g., i.e., etc., a.k.a., and similar
In general, the use of abbreviations such as "e.g.", "i.e.", "etc.", "cf.", and "a.k.a."
should be avoided, in favor of suitable full wordings ("for example", "that is", "and so
on", "compare to", "also known as").

The only place where such abbreviations may be acceptable is in short parenthetical
asides (e.g., like this one).

Always include periods in such abbreviations, as shown here. In addition, "e.g." and
"i.e." should always be followed by a comma.

Em-dashes
The way to write an em-dash—the glyph that appears at either end of this sub-
phrase—in *roff is with the macro "\[em]". (On an ASCII terminal, an em-dash

Linux man-pages 6.13 2025-01-15 3456

man-pages(7) Miscellaneous Information Manual man-pages(7)

typically renders as two hyphens, but in other typographical contexts it renders as a
long dash.) Em-dashes should be written without surrounding spaces.

Hyphenation of attributive compounds
Compound terms should be hyphenated when used attributively (i.e., to qualify a fol-
lowing noun). Some examples:

32-bit value
command-line argument
floating-point number
run-time check
user-space function
wide-character string

Hyphenation with multi, non, pre, re, sub, and so on
The general tendency in modern English is not to hyphenate after prefixes such as
"multi", "non", "pre", "re", "sub", and so on. Manual pages should generally follow
this rule when these prefixes are used in natural English constructions with simple
suffixes. The following list gives some examples of the preferred forms:

interprocess
multithreaded
multiprocess
nonblocking
nondefault
nonempty
noninteractive
nonnegative
nonportable
nonzero
preallocated
precreate
prerecorded
reestablished
reinitialize
rearm
reread
subcomponent
subdirectory
subsystem

Hyphens should be retained when the prefixes are used in nonstandard English words,
with trademarks, proper nouns, acronyms, or compound terms. Some examples:

non-ASCII
non-English
non-NULL
non-real-time

Finally, note that "re-create" and "recreate" are two different verbs, and the former is
probably what you want.

Linux man-pages 6.13 2025-01-15 3457

man-pages(7) Miscellaneous Information Manual man-pages(7)

Generating optimal glyphs
Where a real minus character is required (e.g., for numbers such as -1, for man page
cross references such as utf-8(7), or when writing options that have a leading dash,
such as in ls -l), use the following form in the man page source:

\-

This guideline applies also to code examples.

The use of real minus signs serves the following purposes:

• To provide better renderings on various targets other than ASCII terminals, no-
tably in PDF and on Unicode/UTF-8-capable terminals.

• To generate glyphs that when copied from rendered pages will produce real minus
signs when pasted into a terminal.

To produce unslanted single quotes that render well in ASCII, UTF-8, and PDF, use
"\[aq]" ("apostrophe quote"); for example

\[aq]C\[aq]

where C is the quoted character. This guideline applies also to character constants
used in code examples.

Where a proper caret (^) that renders well in both a terminal and PDF is required, use
"\[ha]". This is especially necessary in code samples, to get a nicely rendered caret
when rendering to PDF.

Using a naked "~" character results in a poor rendering in PDF. Instead use "\[ti]".
This is especially necessary in code samples, to get a nicely rendered tilde when ren-
dering to PDF.

Example programs and shell sessions
Manual pages may include example programs demonstrating how to use a system call
or library function. However, note the following:

• Example programs should be written in C.

• An example program is necessary and useful only if it demonstrates something be-
yond what can easily be provided in a textual description of the interface. An ex-
ample program that does nothing other than call an interface usually serves little
purpose.

• Example programs should ideally be short (e.g., a good example can often be pro-
vided in less than 100 lines of code), though in some cases longer programs may
be necessary to properly illustrate the use of an API.

• Expressive code is appreciated.

• Comments should included where helpful. Complete sentences in free-standing
comments should be terminated by a period. Periods should generally be omitted
in "tag" comments (i.e., comments that are placed on the same line of code); such
comments are in any case typically brief phrases rather than complete sentences.

• Example programs should do error checking after system calls and library func-
tion calls.

Linux man-pages 6.13 2025-01-15 3458

man-pages(7) Miscellaneous Information Manual man-pages(7)

• Example programs should be complete, and compile without warnings when com-
piled with cc -Wall.

• Where possible and appropriate, example programs should allow experimentation,
by varying their behavior based on inputs (ideally from command-line arguments,
or alternatively, via input read by the program).

• Example programs should be laid out according to Kernighan and Ritchie style,
with 4-space indents. (Avoid the use of TAB characters in source code!) The fol-
lowing command can be used to format your source code to something close to
the preferred style:

indent -npro -kr -i4 -ts4 -sob -l72 -ss -nut -psl prog.c

• For consistency, all example programs should terminate using either of:

exit(EXIT_SUCCESS);
exit(EXIT_FAILURE);

Avoid using the following forms to terminate a program:

exit(0);
exit(1);
return n;

• If there is extensive explanatory text before the program source code, mark off the
source code with a subsection heading Program source, as in:

.SS Program source

Always do this if the explanatory text includes a shell session log.

If you include a shell session log demonstrating the use of a program or other system
feature:

• Place the session log above the source code listing.

• Indent the session log by four spaces.

• Boldface the user input text, to distinguish it from output produced by the system.

For some examples of what example programs should look like, see wait(2) and
pipe(2).

EXAMPLES
For canonical examples of how man pages in the man-pages package should look, see
pipe(2) and fcntl(2).

SEE ALSO
man(1), man2html(1), attributes(7), groff (7), groff_man(7), man(7), mdoc(7)

Linux man-pages 6.13 2025-01-15 3459

math_error(7) Miscellaneous Information Manual math_error(7)

NAME
math_error - detecting errors from mathematical functions

SYNOPSIS
#include <math.h>
#include <errno.h>
#include <fenv.h>

DESCRIPTION
When an error occurs, most library functions indicate this fact by returning a special
value (e.g., -1 or NULL). Because they typically return a floating-point number, the
mathematical functions declared in <math.h> indicate an error using other mecha-
nisms. There are two error-reporting mechanisms: the older one sets errno; the newer
one uses the floating-point exception mechanism (the use of feclearexcept(3) and
fetestexcept(3), as outlined below) described in fenv(3).

A portable program that needs to check for an error from a mathematical function
should set errno to zero, and make the following call

feclearexcept(FE_ALL_EXCEPT);

before calling a mathematical function.

Upon return from the mathematical function, if errno is nonzero, or the following call
(see fenv(3)) returns nonzero

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |
FE_UNDERFLOW);

then an error occurred in the mathematical function.

The error conditions that can occur for mathematical functions are described below.

Domain error
A domain error occurs when a mathematical function is supplied with an argument
whose value falls outside the domain for which the function is defined (e.g., giving a
negative argument to log(3)). When a domain error occurs, math functions commonly
return a NaN (though some functions return a different value in this case); errno is set
to EDOM, and an "invalid" (FE_INVALID) floating-point exception is raised.

Pole error
A pole error occurs when the mathematical result of a function is an exact infinity
(e.g., the logarithm of 0 is negative infinity). When a pole error occurs, the function
returns the (signed) value HUGE_VAL, HUGE_VALF, or HUGE_VALL, depend-
ing on whether the function result type is double, float, or long double. The sign of
the result is that which is mathematically correct for the function. errno is set to
ERANGE, and a "divide-by-zero" (FE_DIVBYZERO) floating-point exception is
raised.

Range error
A range error occurs when the magnitude of the function result means that it cannot
be represented in the result type of the function. The return value of the function de-
pends on whether the range error was an overflow or an underflow.

A floating result overflows if the result is finite, but is too large to represented in the
result type. When an overflow occurs, the function returns the value HUGE_VAL,

Linux man-pages 6.13 2024-05-02 3460

math_error(7) Miscellaneous Information Manual math_error(7)

HUGE_VALF, or HUGE_VALL, depending on whether the function result type is
double, float, or long double. errno is set to ERANGE, and an "overflow"
(FE_OVERFLOW) floating-point exception is raised.

A floating result underflows if the result is too small to be represented in the result
type. If an underflow occurs, a mathematical function typically returns 0.0 (C99 says
a function shall return "an implementation-defined value whose magnitude is no
greater than the smallest normalized positive number in the specified type"). errno
may be set to ERANGE, and an "underflow" (FE_UNDERFLOW) floating-point ex-
ception may be raised.

Some functions deliver a range error if the supplied argument value, or the correct
function result, would be subnormal. A subnormal value is one that is nonzero, but
with a magnitude that is so small that it can’t be presented in normalized form (i.e.,
with a 1 in the most significant bit of the significand). The representation of a subnor-
mal number will contain one or more leading zeros in the significand.

NOTES
The math_errhandling identifier specified by C99 and POSIX.1 is not supported by
glibc. This identifier is supposed to indicate which of the two error-notification mech-
anisms (errno, exceptions retrievable via fetestexcept(3)) is in use. The standards re-
quire that at least one be in use, but permit both to be available. The current (glibc
2.8) situation under glibc is messy. Most (but not all) functions raise exceptions on
errors. Some also set errno. A few functions set errno, but don’t raise an exception.
A very few functions do neither. See the individual manual pages for details.

To avoid the complexities of using errno and fetestexcept(3) for error checking, it is
often advised that one should instead check for bad argument values before each call.
For example, the following code ensures that log(3)’s argument is not a NaN and is
not zero (a pole error) or less than zero (a domain error):

double x, r;

if (isnan(x) || islessequal(x, 0)) {
/* Deal with NaN / pole error / domain error */

}

r = log(x);

The discussion on this page does not apply to the complex mathematical functions
(i.e., those declared by <complex.h>), which in general are not required to return er-
rors by C99 and POSIX.1.

The gcc(1) -fno-math-errno option causes the executable to employ implementa-
tions of some mathematical functions that are faster than the standard implementa-
tions, but do not set errno on error. (The gcc(1) -ffast-math option also enables
-fno-math-errno.) An error can still be tested for using fetestexcept(3).

SEE ALSO
gcc(1), errno(3), fenv(3), fpclassify(3), INFINITY(3), isgreater(3), matherr(3), nan(3)

info libc

Linux man-pages 6.13 2024-05-02 3461

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

NAME
mount_namespaces - overview of Linux mount namespaces

DESCRIPTION
For an overview of namespaces, see namespaces(7).

Mount namespaces provide isolation of the list of mounts seen by the processes in
each namespace instance. Thus, the processes in each of the mount namespace in-
stances will see distinct single-directory hierarchies.

The views provided by the /proc/ pid /mounts, /proc/ pid /mountinfo, and
/proc/ pid /mountstats files (all described in proc(5)) correspond to the mount name-
space in which the process with the PID pid resides. (All of the processes that reside
in the same mount namespace will see the same view in these files.)

A new mount namespace is created using either clone(2) or unshare(2) with the
CLONE_NEWNS flag. When a new mount namespace is created, its mount list is
initialized as follows:

• If the namespace is created using clone(2), the mount list of the child’s namespace
is a copy of the mount list in the parent process’s mount namespace.

• If the namespace is created using unshare(2), the mount list of the new namespace
is a copy of the mount list in the caller’s previous mount namespace.

Subsequent modifications to the mount list (mount(2) and umount(2)) in either mount
namespace will not (by default) affect the mount list seen in the other namespace (but
see the following discussion of shared subtrees).

SHARED SUBTREES
After the implementation of mount namespaces was completed, experience showed
that the isolation that they provided was, in some cases, too great. For example, in or-
der to make a newly loaded optical disk available in all mount namespaces, a mount
operation was required in each namespace. For this use case, and others, the shared
subtree feature was introduced in Linux 2.6.15. This feature allows for automatic,
controlled propagation of mount(2) and umount(2) events between namespaces (or,
more precisely, between the mounts that are members of a peer group that are propa-
gating events to one another).

Each mount is marked (via mount(2)) as having one of the following propagation
types:

MS_SHARED
This mount shares events with members of a peer group. mount(2) and
umount(2) events immediately under this mount will propagate to the other
mounts that are members of the peer group. Propagation here means that the
same mount(2) or umount(2) will automatically occur under all of the other
mounts in the peer group. Conversely, mount(2) and umount(2) events that
take place under peer mounts will propagate to this mount.

MS_PRIVATE
This mount is private; it does not have a peer group. mount(2) and umount(2)
events do not propagate into or out of this mount.

Linux man-pages 6.13 2025-02-16 3462

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

MS_SLAVE
mount(2) and umount(2) events propagate into this mount from a (master)
shared peer group. mount(2) and umount(2) events under this mount do not
propagate to any peer.

Note that a mount can be the slave of another peer group while at the same
time sharing mount(2) and umount(2) events with a peer group of which it is a
member. (More precisely, one peer group can be the slave of another peer
group.)

MS_UNBINDABLE
This is like a private mount, and in addition this mount can’t be bind mounted.
Attempts to bind mount this mount (mount(2) with the MS_BIND flag) will
fail.

When a recursive bind mount (mount(2) with the MS_BIND and MS_REC
flags) is performed on a directory subtree, any bind mounts within the subtree
are automatically pruned (i.e., not replicated) when replicating that subtree to
produce the target subtree.

For a discussion of the propagation type assigned to a new mount, see NOTES.

The propagation type is a per-mount-point setting; some mounts may be marked as
shared (with each shared mount being a member of a distinct peer group), while oth-
ers are private (or slaved or unbindable).

Note that a mount’s propagation type determines whether mount(2) and umount(2) of
mounts immediately under the mount are propagated. Thus, the propagation type
does not affect propagation of events for grandchildren and further removed descen-
dant mounts. What happens if the mount itself is unmounted is determined by the
propagation type that is in effect for the parent of the mount.

Members are added to a peer group when a mount is marked as shared and either:

(a) the mount is replicated during the creation of a new mount namespace; or

(b) a new bind mount is created from the mount.

In both of these cases, the new mount joins the peer group of which the existing
mount is a member.

A new peer group is also created when a child mount is created under an existing
mount that is marked as shared. In this case, the new child mount is also marked as
shared and the resulting peer group consists of all the mounts that are replicated under
the peers of parent mounts.

A mount ceases to be a member of a peer group when either the mount is explicitly
unmounted, or when the mount is implicitly unmounted because a mount namespace
is removed (because it has no more member processes).

The propagation type of the mounts in a mount namespace can be discovered via the
"optional fields" exposed in /proc/ pid /mountinfo. (See proc(5) for details of this file.)
The following tags can appear in the optional fields for a record in that file:

shared:X
This mount is shared in peer group X . Each peer group has a unique ID that is
automatically generated by the kernel, and all mounts in the same peer group

Linux man-pages 6.13 2025-02-16 3463

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

will show the same ID. (These IDs are assigned starting from the value 1, and
may be recycled when a peer group ceases to have any members.)

master:X
This mount is a slave to shared peer group X .

propagate_from:X (since Linux 2.6.26)
This mount is a slave and receives propagation from shared peer group X .
This tag will always appear in conjunction with a master:X tag. Here, X is the
closest dominant peer group under the process’s root directory. If X is the im-
mediate master of the mount, or if there is no dominant peer group under the
same root, then only the master:X field is present and not the propa-
gate_from:X field. For further details, see below.

unbindable
This is an unbindable mount.

If none of the above tags is present, then this is a private mount.

MS_SHARED and MS_PRIVATE example
Suppose that on a terminal in the initial mount namespace, we mark one mount as
shared and another as private, and then view the mounts in /proc/self/mountinfo:

sh1# mount --make-shared /mntS
sh1# mount --make-private /mntP
sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
77 61 8:17 / /mntS rw,relatime shared:1
83 61 8:15 / /mntP rw,relatime

From the /proc/self/mountinfo output, we see that /mntS is a shared mount in peer
group 1, and that /mntP has no optional tags, indicating that it is a private mount. The
first two fields in each record in this file are the unique ID for this mount, and the
mount ID of the parent mount. We can further inspect this file to see that the parent
mount of /mntS and /mntP is the root directory, / , which is mounted as private:

sh1# cat /proc/self/mountinfo | awk '$1 == 61' | sed 's/ - .*//'
61 0 8:2 / / rw,relatime

On a second terminal, we create a new mount namespace where we run a second shell
and inspect the mounts:

$ PS1='sh2# ' sudo unshare -m --propagation unchanged sh
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
222 145 8:17 / /mntS rw,relatime shared:1
225 145 8:15 / /mntP rw,relatime

The new mount namespace received a copy of the initial mount namespace’s mounts.
These new mounts maintain the same propagation types, but have unique mount IDs.
(The --propagation unchanged option prevents unshare(1) from marking all mounts
as private when creating a new mount namespace, which it does by default.)

In the second terminal, we then create submounts under each of /mntS and /mntP and
inspect the set-up:

sh2# mkdir /mntS/a
sh2# mount /dev/sdb6 /mntS/a

Linux man-pages 6.13 2025-02-16 3464

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

sh2# mkdir /mntP/b
sh2# mount /dev/sdb7 /mntP/b
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
222 145 8:17 / /mntS rw,relatime shared:1
225 145 8:15 / /mntP rw,relatime
178 222 8:22 / /mntS/a rw,relatime shared:2
230 225 8:23 / /mntP/b rw,relatime

From the above, it can be seen that /mntS/a was created as shared (inheriting this set-
ting from its parent mount) and /mntP/b was created as a private mount.

Returning to the first terminal and inspecting the set-up, we see that the new mount
created under the shared mount /mntS propagated to its peer mount (in the initial
mount namespace), but the new mount created under the private mount /mntP did not
propagate:

sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
77 61 8:17 / /mntS rw,relatime shared:1
83 61 8:15 / /mntP rw,relatime
179 77 8:22 / /mntS/a rw,relatime shared:2

MS_SLAVE example
Making a mount a slave allows it to receive propagated mount(2) and umount(2)
events from a master shared peer group, while preventing it from propagating events
to that master. This is useful if we want to (say) receive a mount event when an opti-
cal disk is mounted in the master shared peer group (in another mount namespace),
but want to prevent mount(2) and umount(2) events under the slave mount from hav-
ing side effects in other namespaces.

We can demonstrate the effect of slaving by first marking two mounts as shared in the
initial mount namespace:

sh1# mount --make-shared /mntX
sh1# mount --make-shared /mntY
sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
132 83 8:23 / /mntX rw,relatime shared:1
133 83 8:22 / /mntY rw,relatime shared:2

On a second terminal, we create a new mount namespace and inspect the mounts:

sh2# unshare -m --propagation unchanged sh
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime shared:2

In the new mount namespace, we then mark one of the mounts as a slave:

sh2# mount --make-slave /mntY
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime master:2

From the above output, we see that /mntY is now a slave mount that is receiving prop-
agation events from the shared peer group with the ID 2.

Continuing in the new namespace, we create submounts under each of /mntX and

Linux man-pages 6.13 2025-02-16 3465

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

/mntY :

sh2# mkdir /mntX/a
sh2# mount /dev/sda3 /mntX/a
sh2# mkdir /mntY/b
sh2# mount /dev/sda5 /mntY/b

When we inspect the state of the mounts in the new mount namespace, we see that
/mntX/a was created as a new shared mount (inheriting the "shared" setting from its
parent mount) and /mntY/b was created as a private mount:

sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime master:2
173 168 8:3 / /mntX/a rw,relatime shared:3
175 169 8:5 / /mntY/b rw,relatime

Returning to the first terminal (in the initial mount namespace), we see that the mount
/mntX/a propagated to the peer (the shared /mntX), but the mount /mntY/b was not
propagated:

sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
132 83 8:23 / /mntX rw,relatime shared:1
133 83 8:22 / /mntY rw,relatime shared:2
174 132 8:3 / /mntX/a rw,relatime shared:3

Now we create a new mount under /mntY in the first shell:

sh1# mkdir /mntY/c
sh1# mount /dev/sda1 /mntY/c
sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
132 83 8:23 / /mntX rw,relatime shared:1
133 83 8:22 / /mntY rw,relatime shared:2
174 132 8:3 / /mntX/a rw,relatime shared:3
178 133 8:1 / /mntY/c rw,relatime shared:4

When we examine the mounts in the second mount namespace, we see that in this
case the new mount has been propagated to the slave mount, and that the new mount
is itself a slave mount (to peer group 4):

sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime master:2
173 168 8:3 / /mntX/a rw,relatime shared:3
175 169 8:5 / /mntY/b rw,relatime
179 169 8:1 / /mntY/c rw,relatime master:4

MS_UNBINDABLE example
One of the primary purposes of unbindable mounts is to avoid the "mount explosion"
problem when repeatedly performing bind mounts of a higher-level subtree at a lower-
level mount. The problem is illustrated by the following shell session.

Suppose we have a system with the following mounts:

mount | awk '{print $1, $2, $3}'
/dev/sda1 on /

Linux man-pages 6.13 2025-02-16 3466

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

/dev/sdb6 on /mntX
/dev/sdb7 on /mntY

Suppose furthermore that we wish to recursively bind mount the root directory under
several users’ home directories. We do this for the first user, and inspect the mounts:

mount --rbind / /home/cecilia/
mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY

When we repeat this operation for the second user, we start to see the explosion prob-
lem:

mount --rbind / /home/henry
mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY
/dev/sda1 on /home/henry
/dev/sdb6 on /home/henry/mntX
/dev/sdb7 on /home/henry/mntY
/dev/sda1 on /home/henry/home/cecilia
/dev/sdb6 on /home/henry/home/cecilia/mntX
/dev/sdb7 on /home/henry/home/cecilia/mntY

Under /home/henry, we have not only recursively added the /mntX and /mntY
mounts, but also the recursive mounts of those directories under /home/cecilia that
were created in the previous step. Upon repeating the step for a third user, it becomes
obvious that the explosion is exponential in nature:

mount --rbind / /home/otto
mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY
/dev/sda1 on /home/henry
/dev/sdb6 on /home/henry/mntX
/dev/sdb7 on /home/henry/mntY
/dev/sda1 on /home/henry/home/cecilia
/dev/sdb6 on /home/henry/home/cecilia/mntX
/dev/sdb7 on /home/henry/home/cecilia/mntY

Linux man-pages 6.13 2025-02-16 3467

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

/dev/sda1 on /home/otto
/dev/sdb6 on /home/otto/mntX
/dev/sdb7 on /home/otto/mntY
/dev/sda1 on /home/otto/home/cecilia
/dev/sdb6 on /home/otto/home/cecilia/mntX
/dev/sdb7 on /home/otto/home/cecilia/mntY
/dev/sda1 on /home/otto/home/henry
/dev/sdb6 on /home/otto/home/henry/mntX
/dev/sdb7 on /home/otto/home/henry/mntY
/dev/sda1 on /home/otto/home/henry/home/cecilia
/dev/sdb6 on /home/otto/home/henry/home/cecilia/mntX
/dev/sdb7 on /home/otto/home/henry/home/cecilia/mntY

The mount explosion problem in the above scenario can be avoided by making each
of the new mounts unbindable. The effect of doing this is that recursive mounts of the
root directory will not replicate the unbindable mounts. We make such a mount for
the first user:

mount --rbind --make-unbindable / /home/cecilia

Before going further, we show that unbindable mounts are indeed unbindable:

mkdir /mntZ
mount --bind /home/cecilia /mntZ
mount: wrong fs type, bad option, bad superblock on /home/cecilia,

missing codepage or helper program, or other error

In some cases useful info is found in syslog - try
dmesg | tail or so.

Now we create unbindable recursive bind mounts for the other two users:

mount --rbind --make-unbindable / /home/henry
mount --rbind --make-unbindable / /home/otto

Upon examining the list of mounts, we see there has been no explosion of mounts, be-
cause the unbindable mounts were not replicated under each user’s directory:

mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY
/dev/sda1 on /home/henry
/dev/sdb6 on /home/henry/mntX
/dev/sdb7 on /home/henry/mntY
/dev/sda1 on /home/otto
/dev/sdb6 on /home/otto/mntX
/dev/sdb7 on /home/otto/mntY

Linux man-pages 6.13 2025-02-16 3468

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

Propagation type transitions
The following table shows the effect that applying a new propagation type (i.e.,
mount --make-xxxx) has on the existing propagation type of a mount. The rows corre-
spond to existing propagation types, and the columns are the new propagation set-
tings. For reasons of space, "private" is abbreviated as "priv" and "unbindable" as
"unbind".

make-shared make-slave make-priv make-unbind
shared shared slave/priv [1] priv unbind
slave slave+shared slave [2] priv unbind
slave+shared slave+shared slave priv unbind
private shared priv [2] priv unbind
unbindable shared unbind [2] priv unbind

Note the following details to the table:

[1] If a shared mount is the only mount in its peer group, making it a slave automat-
ically makes it private.

[2] Slaving a nonshared mount has no effect on the mount.

Bind (MS_BIND) semantics
Suppose that the following command is performed:

mount --bind A/a B/b

Here, A is the source mount, B is the destination mount, a is a subdirectory path un-
der the mount point A, and b is a subdirectory path under the mount point B. The
propagation type of the resulting mount, B/b, depends on the propagation types of the
mounts A and B, and is summarized in the following table.

source(A)
shared private slave unbind

dest(B) shared shared shared slave+shared invalid
nonshared shared private slave invalid

Note that a recursive bind of a subtree follows the same semantics as for a bind opera-
tion on each mount in the subtree. (Unbindable mounts are automatically pruned at
the target mount point.)

For further details, see Documentation/filesystems/sharedsubtree.rst in the kernel
source tree.

Move (MS_MOVE) semantics
Suppose that the following command is performed:

mount --move A B/b

Here, A is the source mount, B is the destination mount, and b is a subdirectory path
under the mount point B. The propagation type of the resulting mount, B/b, depends
on the propagation types of the mounts A and B, and is summarized in the following
table.

source(A)
shared private slave unbind

dest(B) shared shared shared slave+shared invalid

Linux man-pages 6.13 2025-02-16 3469

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

nonshared shared private slave unbindable

Note: moving a mount that resides under a shared mount is invalid.

For further details, see Documentation/filesystems/sharedsubtree.rst in the kernel
source tree.

Mount semantics
Suppose that we use the following command to create a mount:

mount device B/b

Here, B is the destination mount, and b is a subdirectory path under the mount point
B. The propagation type of the resulting mount, B/b, follows the same rules as for a
bind mount, where the propagation type of the source mount is considered always to
be private.

Unmount semantics
Suppose that we use the following command to tear down a mount:

umount A

Here, A is a mount on B/b, where B is the parent mount and b is a subdirectory path
under the mount point B. If B is shared, then all most-recently-mounted mounts at b
on mounts that receive propagation from mount B and do not have submounts under
them are unmounted.

The /proc/ pid /mountinfo propagate_from tag
The propagate_from:X tag is shown in the optional fields of a /proc/ pid /mountinfo
record in cases where a process can’t see a slave’s immediate master (i.e., the path-
name of the master is not reachable from the filesystem root directory) and so cannot
determine the chain of propagation between the mounts it can see.

In the following example, we first create a two-link master-slave chain between the
mounts /mnt, /tmp/etc, and /mnt/tmp/etc. Then the chroot(1) command is used to
make the /tmp/etc mount point unreachable from the root directory, creating a situa-
tion where the master of /mnt/tmp/etc is not reachable from the (new) root directory
of the process.

First, we bind mount the root directory onto /mnt and then bind mount /proc at
/mnt/proc so that after the later chroot(1) the proc(5) filesystem remains visible at the
correct location in the chroot-ed environment.

mkdir -p /mnt/proc
mount --bind / /mnt
mount --bind /proc /mnt/proc

Next, we ensure that the /mnt mount is a shared mount in a new peer group (with no
peers):

mount --make-private /mnt # Isolate from any previous peer group
mount --make-shared /mnt
cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5

Next, we bind mount /mnt/etc onto /tmp/etc:

Linux man-pages 6.13 2025-02-16 3470

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

mkdir -p /tmp/etc
mount --bind /mnt/etc /tmp/etc
cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ - .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5
267 40 8:2 /etc /tmp/etc ... shared:102

Initially, these two mounts are in the same peer group, but we then make the /tmp/etc
a slave of /mnt/etc, and then make /tmp/etc shared as well, so that it can propagate
events to the next slave in the chain:

mount --make-slave /tmp/etc
mount --make-shared /tmp/etc
cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ - .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5
267 40 8:2 /etc /tmp/etc ... shared:105 master:102

Then we bind mount /tmp/etc onto /mnt/tmp/etc. Again, the two mounts are initially
in the same peer group, but we then make /mnt/tmp/etc a slave of /tmp/etc:

mkdir -p /mnt/tmp/etc
mount --bind /tmp/etc /mnt/tmp/etc
mount --make-slave /mnt/tmp/etc
cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ - .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5
267 40 8:2 /etc /tmp/etc ... shared:105 master:102
273 239 8:2 /etc /mnt/tmp/etc ... master:105

From the above, we see that /mnt is the master of the slave /tmp/etc, which in turn is
the master of the slave /mnt/tmp/etc.

We then chroot(1) to the /mnt directory, which renders the mount with ID 267 un-
reachable from the (new) root directory:

chroot /mnt

When we examine the state of the mounts inside the chroot-ed environment, we see
the following:

cat /proc/self/mountinfo | sed 's/ - .*//'
239 61 8:2 / / ... shared:102
248 239 0:4 / /proc ... shared:5
273 239 8:2 /etc /tmp/etc ... master:105 propagate_from:102

Above, we see that the mount with ID 273 is a slave whose master is the peer group
105. The mount point for that master is unreachable, and so a propagate_from tag is
displayed, indicating that the closest dominant peer group (i.e., the nearest reachable
mount in the slave chain) is the peer group with the ID 102 (corresponding to the /mnt
mount point before the chroot(1) was performed).

STANDARDS
Linux.

Linux man-pages 6.13 2025-02-16 3471

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

HISTORY
Linux 2.4.19.

NOTES
The propagation type assigned to a new mount depends on the propagation type of the
parent mount. If the mount has a parent (i.e., it is a non-root mount) and the propaga-
tion type of the parent is MS_SHARED, then the propagation type of the new mount
is also MS_SHARED. Otherwise, the propagation type of the new mount is
MS_PRIVATE.

Notwithstanding the fact that the default propagation type for new mount is in many
cases MS_PRIVATE, MS_SHARED is typically more useful. For this reason, sys-
temd(1) automatically remounts all mounts as MS_SHARED on system startup.
Thus, on most modern systems, the default propagation type is in practice
MS_SHARED.

Since, when one uses unshare(1) to create a mount namespace, the goal is commonly
to provide full isolation of the mounts in the new namespace, unshare(1) (since
util-linux 2.27) in turn reverses the step performed by systemd(1), by making all
mounts private in the new namespace. That is, unshare(1) performs the equivalent of
the following in the new mount namespace:

mount --make-rprivate /

To prevent this, one can use the --propagation unchanged option to unshare(1)

An application that creates a new mount namespace directly using clone(2) or un-
share(2) may desire to prevent propagation of mount events to other mount name-
spaces (as is done by unshare(1)). This can be done by changing the propagation type
of mounts in the new namespace to either MS_SLAVE or MS_PRIVATE, using a
call such as the following:

mount(NULL, "/", MS_SLAVE | MS_REC, NULL);

For a discussion of propagation types when moving mounts (MS_MOVE) and creat-
ing bind mounts (MS_BIND), see Documentation/filesystems/sharedsubtree.rst.

Restrictions on mount namespaces
Note the following points with respect to mount namespaces:

[1] Each mount namespace has an owner user namespace. As explained above,
when a new mount namespace is created, its mount list is initialized as a copy
of the mount list of another mount namespace. If the new namespace and the
namespace from which the mount list was copied are owned by different user
namespaces, then the new mount namespace is considered less privileged .

[2] When creating a less privileged mount namespace, shared mounts are reduced
to slave mounts. This ensures that mappings performed in less privileged
mount namespaces will not propagate to more privileged mount namespaces.

[3] Mounts that come as a single unit from a more privileged mount namespace are
locked together and may not be separated in a less privileged mount namespace.
(The unshare(2) CLONE_NEWNS operation brings across all of the mounts
from the original mount namespace as a single unit, and recursive mounts that
propagate between mount namespaces propagate as a single unit.)

Linux man-pages 6.13 2025-02-16 3472

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

In this context, "may not be separated" means that the mounts are locked so that
they may not be individually unmounted. Consider the following example:

$ sudo sh
mount --bind /dev/null /etc/shadow
cat /etc/shadow # Produces no output

The above steps, performed in a more privileged mount namespace, have cre-
ated a bind mount that obscures the contents of the shadow password file,
/etc/shadow. For security reasons, it should not be possible to umount(2) that
mount in a less privileged mount namespace, since that would reveal the con-
tents of /etc/shadow.

Suppose we now create a new mount namespace owned by a new user name-
space. The new mount namespace will inherit copies of all of the mounts from
the previous mount namespace. However, those mounts will be locked because
the new mount namespace is less privileged. Consequently, an attempt to
umount(2) the mount fails as show in the following step:

unshare --user --map-root-user --mount \
strace -o /tmp/log \
umount /etc/shadow

umount: /etc/shadow: not mounted.
grep '^umount' /tmp/log
umount2("/etc/shadow", 0) = -1 EINVAL (Invalid argument)

The error message from mount(8) is a little confusing, but the strace(1) output
reveals that the underlying umount2(2) system call failed with the error EIN-
VAL, which is the error that the kernel returns to indicate that the mount is
locked.

Note, however, that it is possible to stack (and unstack) a mount on top of one
of the inherited locked mounts in a less privileged mount namespace:

echo 'aaaaa' > /tmp/a # File to mount onto /etc/shadow
unshare --user --map-root-user --mount \

sh -c 'mount --bind /tmp/a /etc/shadow; cat /etc/shadow'
aaaaa
umount /etc/shadow

The final umount(8) command above, which is performed in the initial mount
namespace, makes the original /etc/shadow file once more visible in that name-
space.

[4] Following on from point [3], note that it is possible to umount(2) an entire sub-
tree of mounts that propagated as a unit into a less privileged mount namespace,
as illustrated in the following example.

First, we create new user and mount namespaces using unshare(1)In the new
mount namespace, the propagation type of all mounts is set to private. We then
create a shared bind mount at /mnt, and a small hierarchy of mounts underneath
that mount.

$ PS1='ns1# ' sudo unshare --user --map-root-user \
--mount --propagation private bash

Linux man-pages 6.13 2025-02-16 3473

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

ns1# echo $$ # We need the PID of this shell later
778501
ns1# mount --make-shared --bind /mnt /mnt
ns1# mkdir /mnt/x
ns1# mount --make-private -t tmpfs none /mnt/x
ns1# mkdir /mnt/x/y
ns1# mount --make-private -t tmpfs none /mnt/x/y
ns1# grep /mnt /proc/self/mountinfo | sed 's/ - .*//'
986 83 8:5 /mnt /mnt rw,relatime shared:344
989 986 0:56 / /mnt/x rw,relatime
990 989 0:57 / /mnt/x/y rw,relatime

Continuing in the same shell session, we then create a second shell in a new
user namespace and a new (less privileged) mount namespace and check the
state of the propagated mounts rooted at /mnt.

ns1# PS1='ns2# ' unshare --user --map-root-user \
--mount --propagation unchanged bash

ns2# grep /mnt /proc/self/mountinfo | sed 's/ - .*//'
1239 1204 8:5 /mnt /mnt rw,relatime master:344
1240 1239 0:56 / /mnt/x rw,relatime
1241 1240 0:57 / /mnt/x/y rw,relatime

Of note in the above output is that the propagation type of the mount /mnt has
been reduced to slave, as explained in point [2]. This means that submount
events will propagate from the master /mnt in "ns1", but propagation will not
occur in the opposite direction.

From a separate terminal window, we then use nsenter(1) to enter the mount
and user namespaces corresponding to "ns1". In that terminal window, we then
recursively bind mount /mnt/x at the location /mnt/ppp.

$ PS1='ns3# ' sudo nsenter -t 778501 --user --mount
ns3# mount --rbind --make-private /mnt/x /mnt/ppp
ns3# grep /mnt /proc/self/mountinfo | sed 's/ - .*//'
986 83 8:5 /mnt /mnt rw,relatime shared:344
989 986 0:56 / /mnt/x rw,relatime
990 989 0:57 / /mnt/x/y rw,relatime
1242 986 0:56 / /mnt/ppp rw,relatime
1243 1242 0:57 / /mnt/ppp/y rw,relatime shared:518

Because the propagation type of the parent mount, /mnt, was shared, the recur-
sive bind mount propagated a small subtree of mounts under the slave mount
/mnt into "ns2", as can be verified by executing the following command in that
shell session:

ns2# grep /mnt /proc/self/mountinfo | sed 's/ - .*//'
1239 1204 8:5 /mnt /mnt rw,relatime master:344
1240 1239 0:56 / /mnt/x rw,relatime
1241 1240 0:57 / /mnt/x/y rw,relatime
1244 1239 0:56 / /mnt/ppp rw,relatime
1245 1244 0:57 / /mnt/ppp/y rw,relatime master:518

Linux man-pages 6.13 2025-02-16 3474

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

While it is not possible to umount(2) a part of the propagated subtree
(/mnt/ppp/y) in "ns2", it is possible to umount(2) the entire subtree, as shown by
the following commands:

ns2# umount /mnt/ppp/y
umount: /mnt/ppp/y: not mounted.
ns2# umount -l /mnt/ppp | sed 's/ - .*//' # Succeeds...
ns2# grep /mnt /proc/self/mountinfo
1239 1204 8:5 /mnt /mnt rw,relatime master:344
1240 1239 0:56 / /mnt/x rw,relatime
1241 1240 0:57 / /mnt/x/y rw,relatime

[5] The mount(2) flags MS_RDONLY, MS_NOSUID, MS_NOEXEC, and the
"atime" flags (MS_NOATIME, MS_NODIRATIME, MS_RELATIME) set-
tings become locked when propagated from a more privileged to a less privi-
leged mount namespace, and may not be changed in the less privileged mount
namespace.

This point is illustrated in the following example where, in a more privileged
mount namespace, we create a bind mount that is marked as read-only. For se-
curity reasons, it should not be possible to make the mount writable in a less
privileged mount namespace, and indeed the kernel prevents this:

$ sudo mkdir /mnt/dir
$ sudo mount --bind -o ro /some/path /mnt/dir
$ sudo unshare --user --map-root-user --mount \

mount -o remount,rw /mnt/dir
mount: /mnt/dir: permission denied.

[6] A file or directory that is a mount point in one namespace that is not a mount
point in another namespace, may be renamed, unlinked, or removed (rmdir(2))
in the mount namespace in which it is not a mount point (subject to the usual
permission checks). Consequently, the mount point is removed in the mount
namespace where it was a mount point.

Previously (before Linux 3.18), attempting to unlink, rename, or remove a file
or directory that was a mount point in another mount namespace would result in
the error EBUSY. That behavior had technical problems of enforcement (e.g.,
for NFS) and permitted denial-of-service attacks against more privileged users
(i.e., preventing individual files from being updated by bind mounting on top of
them).

EXAMPLES
See pivot_root(2).

SEE ALSO
unshare(1), clone(2), mount(2), mount_setattr(2), pivot_root(2), setns(2), umount(2),
unshare(2), proc(5), namespaces(7), user_namespaces(7), findmnt(8), mount(8),
pam_namespace(8), pivot_root(8), umount(8)

Documentation/filesystems/sharedsubtree.rst in the kernel source tree.

Linux man-pages 6.13 2025-02-16 3475

mq_overview(7) Miscellaneous Information Manual mq_overview(7)

NAME
mq_overview - overview of POSIX message queues

DESCRIPTION
POSIX message queues allow processes to exchange data in the form of messages.
This API is distinct from that provided by System V message queues (msgget(2), ms-
gsnd(2), msgrcv(2), etc.), but provides similar functionality.

Message queues are created and opened using mq_open(3); this function returns a
message queue descriptor (mqd_t), which is used to refer to the open message queue
in later calls. Each message queue is identified by a name of the form /somename;
that is, a null-terminated string of up to NAME_MAX (i.e., 255) characters consisting
of an initial slash, followed by one or more characters, none of which are slashes.
Two processes can operate on the same queue by passing the same name to
mq_open(3).

Messages are transferred to and from a queue using mq_send(3) and mq_receive(3).
When a process has finished using the queue, it closes it using mq_close(3), and when
the queue is no longer required, it can be deleted using mq_unlink(3). Queue attrib-
utes can be retrieved and (in some cases) modified using mq_getattr(3) and mq_se-
tattr(3). A process can request asynchronous notification of the arrival of a message
on a previously empty queue using mq_notify(3).

A message queue descriptor is a reference to an open message queue description (see
open(2)). After a fork(2), a child inherits copies of its parent’s message queue de-
scriptors, and these descriptors refer to the same open message queue descriptions as
the corresponding message queue descriptors in the parent. Corresponding message
queue descriptors in the two processes share the flags (mq_flags) that are associated
with the open message queue description.

Each message has an associated priority, and messages are always delivered to the re-
ceiving process highest priority first. Message priorities range from 0 (low) to
sysconf(_SC_MQ_PRIO_MAX) - 1 (high). On Linux,
sysconf(_SC_MQ_PRIO_MAX) returns 32768, but POSIX.1 requires only that an im-
plementation support at least priorities in the range 0 to 31; some implementations
provide only this range.

The remainder of this section describes some specific details of the Linux implemen-
tation of POSIX message queues.

Library interfaces and system calls
In most cases the mq_*() library interfaces listed above are implemented on top of
underlying system calls of the same name. Deviations from this scheme are indicated
in the following table:

Library interface System call
mq_close(3) close(2)
mq_getattr(3) mq_getsetattr(2)
mq_notify(3) mq_notify(2)
mq_open(3) mq_open(2)
mq_receive(3) mq_timedreceive(2)
mq_send(3) mq_timedsend(2)
mq_setattr(3) mq_getsetattr(2)

Linux man-pages 6.13 2024-05-02 3476

mq_overview(7) Miscellaneous Information Manual mq_overview(7)

mq_timedreceive(3) mq_timedreceive(2)
mq_timedsend(3) mq_timedsend(2)
mq_unlink(3) mq_unlink(2)

Versions
POSIX message queues have been supported since Linux 2.6.6. glibc support has
been provided since glibc 2.3.4.

Kernel configuration
Support for POSIX message queues is configurable via the CON-
FIG_POSIX_MQUEUE kernel configuration option. This option is enabled by de-
fault.

Persistence
POSIX message queues have kernel persistence: if not removed by mq_unlink(3), a
message queue will exist until the system is shut down.

Linking
Programs using the POSIX message queue API must be compiled with cc -lrt to link
against the real-time library, librt.

/proc interfaces
The following interfaces can be used to limit the amount of kernel memory consumed
by POSIX message queues and to set the default attributes for new message queues:

/proc/sys/fs/mqueue/msg_default (since Linux 3.5)
This file defines the value used for a new queue’s mq_maxmsg setting when
the queue is created with a call to mq_open(3) where attr is specified as
NULL. The default value for this file is 10. The minimum and maximum are
as for /proc/sys/fs/mqueue/msg_max. A new queue’s default mq_maxmsg
value will be the smaller of msg_default and msg_max. Before Linux 2.6.28,
the default mq_maxmsg was 10; from Linux 2.6.28 to Linux 3.4, the default
was the value defined for the msg_max limit.

/proc/sys/fs/mqueue/msg_max
This file can be used to view and change the ceiling value for the maximum
number of messages in a queue. This value acts as a ceiling on the
attr->mq_maxmsg argument given to mq_open(3). The default value for
msg_max is 10. The minimum value is 1 (10 before Linux 2.6.28). The upper
limit is HARD_MSGMAX. The msg_max limit is ignored for privileged
processes (CAP_SYS_RESOURCE), but the HARD_MSGMAX ceiling is
nevertheless imposed.

The definition of HARD_MSGMAX has changed across kernel versions:

• Up to Linux 2.6.32: 131072 / sizeof(void *)

• Linux 2.6.33 to Linux 3.4: (32768 * sizeof(void *) / 4)

• Since Linux 3.5: 65,536

/proc/sys/fs/mqueue/msgsize_default (since Linux 3.5)
This file defines the value used for a new queue’s mq_msgsize setting when the
queue is created with a call to mq_open(3) where attr is specified as NULL.
The default value for this file is 8192 (bytes). The minimum and maximum
are as for /proc/sys/fs/mqueue/msgsize_max. If msgsize_default exceeds

Linux man-pages 6.13 2024-05-02 3477

mq_overview(7) Miscellaneous Information Manual mq_overview(7)

msgsize_max, a new queue’s default mq_msgsize value is capped to the msg-
size_max limit. Before Linux 2.6.28, the default mq_msgsize was 8192; from
Linux 2.6.28 to Linux 3.4, the default was the value defined for the msg-
size_max limit.

/proc/sys/fs/mqueue/msgsize_max
This file can be used to view and change the ceiling on the maximum message
size. This value acts as a ceiling on the attr->mq_msgsize argument given to
mq_open(3). The default value for msgsize_max is 8192 bytes. The minimum
value is 128 (8192 before Linux 2.6.28). The upper limit for msgsize_max has
varied across kernel versions:

• Before Linux 2.6.28, the upper limit is INT_MAX.

• From Linux 2.6.28 to Linux 3.4, the limit is 1,048,576.

• Since Linux 3.5, the limit is 16,777,216 (HARD_MSGSIZEMAX).

The msgsize_max limit is ignored for privileged process (CAP_SYS_RE-
SOURCE), but, since Linux 3.5, the HARD_MSGSIZEMAX ceiling is en-
forced for privileged processes.

/proc/sys/fs/mqueue/queues_max
This file can be used to view and change the system-wide limit on the number
of message queues that can be created. The default value for queues_max is
256. No ceiling is imposed on the queues_max limit; privileged processes
(CAP_SYS_RESOURCE) can exceed the limit (but see BUGS).

Resource limit
The RLIMIT_MSGQUEUE resource limit, which places a limit on the amount of
space that can be consumed by all of the message queues belonging to a process’s real
user ID, is described in getrlimit(2).

Mounting the message queue filesystem
On Linux, message queues are created in a virtual filesystem. (Other implementations
may also provide such a feature, but the details are likely to differ.) This filesystem
can be mounted (by the superuser) using the following commands:

mkdir /dev/mqueue
mount -t mqueue none /dev/mqueue

The sticky bit is automatically enabled on the mount directory.

After the filesystem has been mounted, the message queues on the system can be
viewed and manipulated using the commands usually used for files (e.g., ls(1) and
rm(1)).

The contents of each file in the directory consist of a single line containing informa-
tion about the queue:

$ cat /dev/mqueue/mymq
QSIZE:129 NOTIFY:2 SIGNO:0 NOTIFY_PID:8260

These fields are as follows:

QSIZE
Number of bytes of data in all messages in the queue (but see BUGS).

Linux man-pages 6.13 2024-05-02 3478

mq_overview(7) Miscellaneous Information Manual mq_overview(7)

NOTIFY_PID
If this is nonzero, then the process with this PID has used mq_notify(3) to reg-
ister for asynchronous message notification, and the remaining fields describe
how notification occurs.

NOTIFY
Notification method: 0 is SIGEV_SIGNAL; 1 is SIGEV_NONE; and 2 is
SIGEV_THREAD.

SIGNO
Signal number to be used for SIGEV_SIGNAL.

Linux implementation of message queue descriptors
On Linux, a message queue descriptor is actually a file descriptor. (POSIX does not
require such an implementation.) This means that a message queue descriptor can be
monitored using select(2), poll(2), or epoll(7). This is not portable.

The close-on-exec flag (see open(2)) is automatically set on the file descriptor re-
turned by mq_open(2).

IPC namespaces
For a discussion of the interaction of POSIX message queue objects and IPC name-
spaces, see ipc_namespaces(7).

NOTES
System V message queues (msgget(2), msgsnd(2), msgrcv(2), etc.) are an older API
for exchanging messages between processes. POSIX message queues provide a better
designed interface than System V message queues; on the other hand POSIX message
queues are less widely available (especially on older systems) than System V message
queues.

Linux does not currently (Linux 2.6.26) support the use of access control lists (ACLs)
for POSIX message queues.

BUGS
Since Linux 3.5 to Linux 3.14, the kernel imposed a ceiling of 1024
(HARD_QUEUESMAX) on the value to which the queues_max limit could be
raised, and the ceiling was enforced even for privileged processes. This ceiling value
was removed in Linux 3.14, and patches to stable Linux 3.5.x to Linux 3.13.x also re-
moved the ceiling.

As originally implemented (and documented), the QSIZE field displayed the total
number of (user-supplied) bytes in all messages in the message queue. Some changes
in Linux 3.5 inadvertently changed the behavior, so that this field also included a
count of kernel overhead bytes used to store the messages in the queue. This behav-
ioral regression was rectified in Linux 4.2 (and earlier stable kernel series), so that the
count once more included just the bytes of user data in messages in the queue.

EXAMPLES
An example of the use of various message queue functions is shown in mq_notify(3).

SEE ALSO
getrlimit(2), mq_getsetattr(2), poll(2), select(2), mq_close(3), mq_getattr(3), mq_no-
tify(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3), epoll(7), name-
spaces(7)

Linux man-pages 6.13 2024-05-02 3479

namespaces(7) Miscellaneous Information Manual namespaces(7)

NAME
namespaces - overview of Linux namespaces

DESCRIPTION
A namespace wraps a global system resource in an abstraction that makes it appear to
the processes within the namespace that they have their own isolated instance of the
global resource. Changes to the global resource are visible to other processes that are
members of the namespace, but are invisible to other processes. One use of name-
spaces is to implement containers.

This page provides pointers to information on the various namespace types, describes
the associated /proc files, and summarizes the APIs for working with namespaces.

Namespace types
The following table shows the namespace types available on Linux. The second col-
umn of the table shows the flag value that is used to specify the namespace type in
various APIs. The third column identifies the manual page that provides details on the
namespace type. The last column is a summary of the resources that are isolated by
the namespace type.

Namespace Flag Page Isolates
Cgroup CLONE_NEWCGROUP cgroup_namespaces(7) Cgroup root

directory
IPC CLONE_NEWIPC ipc_namespaces(7) System V

IPC, POSIX
message
queues

Network CLONE_NEWNET network_namespaces(7) Network
devices,
stacks, ports,
etc.

Mount CLONE_NEWNS Mount pointsmount_namespaces(7)
PID CLONE_NEWPID Process IDspid_namespaces(7)
Time CLONE_NEWTIME time_namespaces(7) Boot and

monotonic
clocks

User CLONE_NEWUSER user_namespaces(7) User and
group IDs

UTS CLONE_NEWUTS uts_namespaces(7) Hostname
and NIS
domain
name

The namespaces API
As well as various /proc files described below, the namespaces API includes the fol-
lowing system calls:

clone(2)
The clone(2) system call creates a new process. If the flags argument of the
call specifies one or more of the CLONE_NEW* flags listed above, then new
namespaces are created for each flag, and the child process is made a member
of those namespaces. (This system call also implements a number of features

Linux man-pages 6.13 2024-09-01 3480

namespaces(7) Miscellaneous Information Manual namespaces(7)

unrelated to namespaces.)

setns(2)
The setns(2) system call allows the calling process to join an existing name-
space. The namespace to join is specified via a file descriptor that refers to
one of the /proc/ pid /ns files described below.

unshare(2)
The unshare(2) system call moves the calling process to a new namespace. If
the flags argument of the call specifies one or more of the CLONE_NEW*
flags listed above, then new namespaces are created for each flag, and the call-
ing process is made a member of those namespaces. (This system call also
implements a number of features unrelated to namespaces.)

ioctl(2)
Various ioctl(2) operations can be used to discover information about name-
spaces. These operations are described in ioctl_nsfs(2).

Creation of new namespaces using clone(2) and unshare(2) in most cases requires the
CAP_SYS_ADMIN capability, since, in the new namespace, the creator will have the
power to change global resources that are visible to other processes that are subse-
quently created in, or join the namespace. User namespaces are the exception: since
Linux 3.8, no privilege is required to create a user namespace.

The /proc/pid/ns/ directory
Each process has a /proc/ pid /ns/ subdirectory containing one entry for each name-
space that supports being manipulated by setns(2):

$ ls -l /proc/$$/ns | awk '{print $1, $9, $10, $11}'
total 0
lrwxrwxrwx. cgroup -> cgroup:[4026531835]
lrwxrwxrwx. ipc -> ipc:[4026531839]
lrwxrwxrwx. mnt -> mnt:[4026531840]
lrwxrwxrwx. net -> net:[4026531969]
lrwxrwxrwx. pid -> pid:[4026531836]
lrwxrwxrwx. pid_for_children -> pid:[4026531834]
lrwxrwxrwx. time -> time:[4026531834]
lrwxrwxrwx. time_for_children -> time:[4026531834]
lrwxrwxrwx. user -> user:[4026531837]
lrwxrwxrwx. uts -> uts:[4026531838]

Bind mounting (see mount(2)) one of the files in this directory to somewhere else in
the filesystem keeps the corresponding namespace of the process specified by pid
alive even if all processes currently in the namespace terminate.

Opening one of the files in this directory (or a file that is bind mounted to one of these
files) returns a file handle for the corresponding namespace of the process specified by
pid . As long as this file descriptor remains open, the namespace will remain alive,
even if all processes in the namespace terminate. The file descriptor can be passed to
setns(2).

In Linux 3.7 and earlier, these files were visible as hard links. Since Linux 3.8, they
appear as symbolic links. If two processes are in the same namespace, then the device
IDs and inode numbers of their /proc/ pid /ns/ xxx symbolic links will be the same; an

Linux man-pages 6.13 2024-09-01 3481

namespaces(7) Miscellaneous Information Manual namespaces(7)

application can check this using the stat.st_dev and stat.st_ino fields returned by
stat(2). The content of this symbolic link is a string containing the namespace type
and inode number as in the following example:

$ readlink /proc/$$/ns/uts
uts:[4026531838]

The symbolic links in this subdirectory are as follows:

/proc/ pid /ns/cgroup (since Linux 4.6)
This file is a handle for the cgroup namespace of the process.

/proc/ pid /ns/ipc (since Linux 3.0)
This file is a handle for the IPC namespace of the process.

/proc/ pid /ns/mnt (since Linux 3.8)
This file is a handle for the mount namespace of the process.

/proc/ pid /ns/net (since Linux 3.0)
This file is a handle for the network namespace of the process.

/proc/ pid /ns/pid (since Linux 3.8)
This file is a handle for the PID namespace of the process. This handle is per-
manent for the lifetime of the process (i.e., a process’s PID namespace mem-
bership never changes).

/proc/ pid /ns/pid_for_children (since Linux 4.12)
This file is a handle for the PID namespace of child processes created by this
process. This can change as a consequence of calls to unshare(2) and setns(2)
(see pid_namespaces(7)), so the file may differ from /proc/ pid /ns/pid . The
symbolic link gains a value only after the first child process is created in the
namespace. (Beforehand, readlink(2) of the symbolic link will return an
empty buffer.)

/proc/ pid /ns/time (since Linux 5.6)
This file is a handle for the time namespace of the process.

/proc/ pid /ns/time_for_children (since Linux 5.6)
This file is a handle for the time namespace of child processes created by this
process. This can change as a consequence of calls to unshare(2) and setns(2)
(see time_namespaces(7)), so the file may differ from /proc/ pid /ns/time.

/proc/ pid /ns/user (since Linux 3.8)
This file is a handle for the user namespace of the process.

/proc/ pid /ns/uts (since Linux 3.0)
This file is a handle for the UTS namespace of the process.

Permission to dereference or read (readlink(2)) these symbolic links is governed by a
ptrace access mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

The /proc/sys/user directory
The files in the /proc/sys/user directory (which is present since Linux 4.9) expose
limits on the number of namespaces of various types that can be created. The files are
as follows:

Linux man-pages 6.13 2024-09-01 3482

namespaces(7) Miscellaneous Information Manual namespaces(7)

max_cgroup_namespaces
The value in this file defines a per-user limit on the number of cgroup name-
spaces that may be created in the user namespace.

max_ipc_namespaces
The value in this file defines a per-user limit on the number of ipc namespaces
that may be created in the user namespace.

max_mnt_namespaces
The value in this file defines a per-user limit on the number of mount name-
spaces that may be created in the user namespace.

max_net_namespaces
The value in this file defines a per-user limit on the number of network name-
spaces that may be created in the user namespace.

max_pid_namespaces
The value in this file defines a per-user limit on the number of PID name-
spaces that may be created in the user namespace.

max_time_namespaces (since Linux 5.7)
The value in this file defines a per-user limit on the number of time name-
spaces that may be created in the user namespace.

max_user_namespaces
The value in this file defines a per-user limit on the number of user name-
spaces that may be created in the user namespace.

max_uts_namespaces
The value in this file defines a per-user limit on the number of uts namespaces
that may be created in the user namespace.

Note the following details about these files:

• The values in these files are modifiable by privileged processes.

• The values exposed by these files are the limits for the user namespace in which
the opening process resides.

• The limits are per-user. Each user in the same user namespace can create name-
spaces up to the defined limit.

• The limits apply to all users, including UID 0.

• These limits apply in addition to any other per-namespace limits (such as those for
PID and user namespaces) that may be enforced.

• Upon encountering these limits, clone(2) and unshare(2) fail with the error
ENOSPC.

• For the initial user namespace, the default value in each of these files is half the
limit on the number of threads that may be created (/proc/sys/ker-
nel/threads-max). In all descendant user namespaces, the default value in each
file is MAXINT.

• When a namespace is created, the object is also accounted against ancestor name-
spaces. More precisely:

Linux man-pages 6.13 2024-09-01 3483

namespaces(7) Miscellaneous Information Manual namespaces(7)

• Each user namespace has a creator UID.

• When a namespace is created, it is accounted against the creator UIDs in each
of the ancestor user namespaces, and the kernel ensures that the corresponding
namespace limit for the creator UID in the ancestor namespace is not ex-
ceeded.

• The aforementioned point ensures that creating a new user namespace cannot
be used as a means to escape the limits in force in the current user namespace.

Namespace lifetime
Absent any other factors, a namespace is automatically torn down when the last
process in the namespace terminates or leaves the namespace. However, there are a
number of other factors that may pin a namespace into existence even though it has no
member processes. These factors include the following:

• An open file descriptor or a bind mount exists for the corresponding
/proc/ pid /ns/* file.

• The namespace is hierarchical (i.e., a PID or user namespace), and has a child
namespace.

• It is a user namespace that owns one or more nonuser namespaces.

• It is a PID namespace, and there is a process that refers to the namespace via a
/proc/ pid /ns/pid_for_children symbolic link.

• It is a time namespace, and there is a process that refers to the namespace via a
/proc/ pid /ns/time_for_children symbolic link.

• It is an IPC namespace, and a corresponding mount of an mqueue filesystem (see
mq_overview(7)) refers to this namespace.

• It is a PID namespace, and a corresponding mount of a proc(5) filesystem refers to
this namespace.

EXAMPLES
See clone(2) and user_namespaces(7).

SEE ALSO
nsenter(1), readlink(1), unshare(1), clone(2), ioctl_nsfs(2), setns(2), unshare(2),
proc(5), capabilities(7), cgroup_namespaces(7), cgroups(7), credentials(7),
ipc_namespaces(7), network_namespaces(7), pid_namespaces(7), user_name-
spaces(7), uts_namespaces(7), lsns(8), switch_root(8)

Linux man-pages 6.13 2024-09-01 3484

netdevice(7) Miscellaneous Information Manual netdevice(7)

NAME
netdevice - low-level access to Linux network devices

SYNOPSIS
#include <sys/ioctl.h>
#include <net/if.h>

DESCRIPTION
This man page describes the sockets interface which is used to configure network de-
vices.

Linux supports some standard ioctls to configure network devices. They can be used
on any socket’s file descriptor regardless of the family or type. Most of them pass an
ifreq structure:

struct ifreq {
char ifr_name[IFNAMSIZ]; /* Interface name */
union {

struct sockaddr ifr_addr;
struct sockaddr ifr_dstaddr;
struct sockaddr ifr_broadaddr;
struct sockaddr ifr_netmask;
struct sockaddr ifr_hwaddr;
short ifr_flags;
int ifr_ifindex;
int ifr_metric;
int ifr_mtu;
struct ifmap ifr_map;
char ifr_slave[IFNAMSIZ];
char ifr_newname[IFNAMSIZ];
char *ifr_data;

};
};

AF_INET6 is an exception. It passes an in6_ifreq structure:

struct in6_ifreq {
struct in6_addr ifr6_addr;
u32 ifr6_prefixlen;
int ifr6_ifindex; /* Interface index */

};

Normally, the user specifies which device to affect by setting ifr_name to the name of
the interface or ifr6_ifindex to the index of the interface. All other members of the
structure may share memory.

Ioctls
If an ioctl is marked as privileged, then using it requires an effective user ID of 0 or
the CAP_NET_ADMIN capability. If this is not the case, EPERM will be returned.

SIOCGIFNAME
Given the ifr_ifindex, return the name of the interface in ifr_name. This is the
only ioctl which returns its result in ifr_name.

Linux man-pages 6.13 2024-05-02 3485

netdevice(7) Miscellaneous Information Manual netdevice(7)

SIOCGIFINDEX
Retrieve the interface index of the interface into ifr_ifindex.

SIOCGIFFLAGS
SIOCSIFFLAGS

Get or set the active flag word of the device. ifr_flags contains a bit mask of
the following values:

Device flags
IFF_UP Interface is running.
IFF_BROADCAST Valid broadcast address set.
IFF_DEBUG Internal debugging flag.
IFF_LOOPBACK Interface is a loopback interface.
IFF_POINTOPOINT Interface is a point-to-point link.
IFF_RUNNING Resources allocated.
IFF_NOARP No arp protocol, L2 destination address not

set.
IFF_PROMISC Interface is in promiscuous mode.
IFF_NOTRAILERS Avoid use of trailers.
IFF_ALLMULTI Receive all multicast packets.
IFF_MASTER Master of a load balancing bundle.
IFF_SLAVE Slave of a load balancing bundle.
IFF_MULTICAST Supports multicast
IFF_PORTSEL Is able to select media type via ifmap.
IFF_AUTOMEDIA Auto media selection active.
IFF_DYNAMIC The addresses are lost when the interface

goes down.
IFF_LOWER_UP Driver signals L1 up (since Linux 2.6.17)
IFF_DORMANT Driver signals dormant (since Linux 2.6.17)
IFF_ECHO Echo sent packets (since Linux 2.6.25)

Setting the active flag word is a privileged operation, but any process may read it.

SIOCGIFPFLAGS
SIOCSIFPFLAGS

Get or set extended (private) flags for the device. ifr_flags contains a bit mask
of the following values:

Private flags
IFF_802_1Q_VLAN Interface is 802.1Q VLAN device.
IFF_EBRIDGE Interface is Ethernet bridging device.
IFF_SLAVE_INACTIVE Interface is inactive bonding slave.
IFF_MASTER_8023AD Interface is 802.3ad bonding master.
IFF_MASTER_ALB Interface is balanced-alb bonding master.
IFF_BONDING Interface is a bonding master or slave.
IFF_SLAVE_NEEDARP Interface needs ARPs for validation.
IFF_ISATAP Interface is RFC4214 ISATAP interface.

Setting the extended (private) interface flags is a privileged operation.

SIOCGIFADDR
SIOCSIFADDR

Linux man-pages 6.13 2024-05-02 3486

netdevice(7) Miscellaneous Information Manual netdevice(7)

SIOCDIFADDR
Get, set, or delete the address of the device using ifr_addr, or ifr6_addr with
ifr6_prefixlen. Setting or deleting the interface address is a privileged opera-
tion. For compatibility, SIOCGIFADDR returns only AF_INET addresses,
SIOCSIFADDR accepts AF_INET and AF_INET6 addresses, and SIOCDI-
FADDR deletes only AF_INET6 addresses. A AF_INET address can be
deleted by setting it to zero via SIOCSIFADDR.

SIOCGIFDSTADDR
SIOCSIFDSTADDR

Get or set the destination address of a point-to-point device using ifr_dstaddr.
For compatibility, only AF_INET addresses are accepted or returned. Setting
the destination address is a privileged operation.

SIOCGIFBRDADDR
SIOCSIFBRDADDR

Get or set the broadcast address for a device using ifr_brdaddr. For compati-
bility, only AF_INET addresses are accepted or returned. Setting the broad-
cast address is a privileged operation.

SIOCGIFNETMASK
SIOCSIFNETMASK

Get or set the network mask for a device using ifr_netmask. For compatibility,
only AF_INET addresses are accepted or returned. Setting the network mask
is a privileged operation.

SIOCGIFMETRIC
SIOCSIFMETRIC

Get or set the metric of the device using ifr_metric. This is currently not im-
plemented; it sets ifr_metric to 0 if you attempt to read it and returns EOP-
NOTSUPP if you attempt to set it.

SIOCGIFMTU
SIOCSIFMTU

Get or set the MTU (Maximum Transfer Unit) of a device using ifr_mtu. Set-
ting the MTU is a privileged operation. Setting the MTU to too small values
may cause kernel crashes.

SIOCGIFHWADDR
SIOCSIFHWADDR

Get or set the hardware address of a device using ifr_hwaddr. The hardware
address is specified in a struct sockaddr. sa_family contains the ARPHRD_*
device type, sa_data the L2 hardware address starting from byte 0. Setting the
hardware address is a privileged operation.

SIOCSIFHWBROADCAST
Set the hardware broadcast address of a device from ifr_hwaddr. This is a
privileged operation.

SIOCGIFMAP
SIOCSIFMAP

Get or set the interface’s hardware parameters using ifr_map. Setting the para-
meters is a privileged operation.

Linux man-pages 6.13 2024-05-02 3487

netdevice(7) Miscellaneous Information Manual netdevice(7)

struct ifmap {
unsigned long mem_start;
unsigned long mem_end;
unsigned short base_addr;
unsigned char irq;
unsigned char dma;
unsigned char port;

};

The interpretation of the ifmap structure depends on the device driver and the
architecture.

SIOCADDMULTI
SIOCDELMULTI

Add an address to or delete an address from the device’s link layer multicast
filters using ifr_hwaddr. These are privileged operations. See also packet(7)
for an alternative.

SIOCGIFTXQLEN
SIOCSIFTXQLEN

Get or set the transmit queue length of a device using ifr_qlen. Setting the
transmit queue length is a privileged operation.

SIOCSIFNAME
Changes the name of the interface specified in ifr_name to ifr_newname. This
is a privileged operation. It is allowed only when the interface is not up.

SIOCGIFCONF
Return a list of interface (network layer) addresses. This currently means only
addresses of the AF_INET (IPv4) family for compatibility. Unlike the others,
this ioctl passes an ifconf structure:

struct ifconf {
int ifc_len; /* size of buffer */
union {

char *ifc_buf; /* buffer address */
struct ifreq *ifc_req; /* array of structures */

};
};

If ifc_req is NULL, SIOCGIFCONF returns the necessary buffer size in
bytes for receiving all available addresses in ifc_len. Otherwise, ifc_req con-
tains a pointer to an array of ifreq structures to be filled with all currently ac-
tive L3 interface addresses. ifc_len contains the size of the array in bytes.
Within each ifreq structure, ifr_name will receive the interface name, and
ifr_addr the address. The actual number of bytes transferred is returned in
ifc_len.

If the size specified by ifc_len is insufficient to store all the addresses, the ker-
nel will skip the exceeding ones and return success. There is no reliable way
of detecting this condition once it has occurred. It is therefore recommended
to either determine the necessary buffer size beforehand by calling SIOCGIF-
CONF with ifc_req set to NULL, or to retry the call with a bigger buffer

Linux man-pages 6.13 2024-05-02 3488

netdevice(7) Miscellaneous Information Manual netdevice(7)

whenever ifc_len upon return differs by less than sizeof(struct ifreq) from its
original value.

If an error occurs accessing the ifconf or ifreq structures, EFAULT will be re-
turned.

Most protocols support their own ioctls to configure protocol-specific interface op-
tions. See the protocol man pages for a description. For configuring IP addresses, see
ip(7).

In addition, some devices support private ioctls. These are not described here.

NOTES
SIOCGIFCONF and the other ioctls that accept or return only AF_INET socket ad-
dresses are IP-specific and perhaps should rather be documented in ip(7).

The names of interfaces with no addresses or that don’t have the IFF_RUNNING flag
set can be found via /proc/net/dev.

AF_INET6 IPv6 addresses can be read from /proc/net/if_inet6 or via rtnetlink(7).
Adding a new IPv6 address and deleting an existing IPv6 address can be done via
SIOCSIFADDR and SIOCDIFADDR or via rtnetlink(7). Retrieving or changing
destination IPv6 addresses of a point-to-point interface is possible only via rt-
netlink(7).

BUGS
glibc 2.1 is missing the ifr_newname macro in <net/if.h>. Add the following to your
program as a workaround:

#ifndef ifr_newname
#define ifr_newname ifr_ifru.ifru_slave
#endif

SEE ALSO
proc(5), capabilities(7), ip(7), rtnetlink(7)

Linux man-pages 6.13 2024-05-02 3489

netlink(7) Miscellaneous Information Manual netlink(7)

NAME
netlink - communication between kernel and user space (AF_NETLINK)

SYNOPSIS
#include <asm/types.h>
#include <sys/socket.h>
#include <linux/netlink.h>

netlink_socket = socket(AF_NETLINK, socket_type, netlink_family);

DESCRIPTION
Netlink is used to transfer information between the kernel and user-space processes.
It consists of a standard sockets-based interface for user space processes and an inter-
nal kernel API for kernel modules. The internal kernel interface is not documented in
this manual page. There is also an obsolete netlink interface via netlink character de-
vices; this interface is not documented here and is provided only for backward com-
patibility.

Netlink is a datagram-oriented service. Both SOCK_RAW and SOCK_DGRAM are
valid values for socket_type. However, the netlink protocol does not distinguish be-
tween datagram and raw sockets.

netlink_family selects the kernel module or netlink group to communicate with. The
currently assigned netlink families are:

NETLINK_ROUTE
Receives routing and link updates and may be used to modify the routing ta-
bles (both IPv4 and IPv6), IP addresses, link parameters, neighbor setups,
queueing disciplines, traffic classes, and packet classifiers (see rtnetlink(7)).

NETLINK_W1 (Linux 2.6.13 to Linux 2.16.17)
Messages from 1-wire subsystem.

NETLINK_USERSOCK
Reserved for user-mode socket protocols.

NETLINK_FIREWALL (up to and including Linux 3.4)
Transport IPv4 packets from netfilter to user space. Used by ip_queue kernel
module. After a long period of being declared obsolete (in favor of the more
advanced nfnetlink_queue feature), NETLINK_FIREWALL was removed in
Linux 3.5.

NETLINK_SOCK_DIAG (since Linux 3.3)
Query information about sockets of various protocol families from the kernel
(see sock_diag(7)).

NETLINK_INET_DIAG (since Linux 2.6.14)
An obsolete synonym for NETLINK_SOCK_DIAG.

NETLINK_NFLOG (up to and including Linux 3.16)
Netfilter/iptables ULOG.

NETLINK_XFRM
IPsec.

Linux man-pages 6.13 2024-11-17 3490

netlink(7) Miscellaneous Information Manual netlink(7)

NETLINK_SELINUX (since Linux 2.6.4)
SELinux event notifications.

NETLINK_ISCSI (since Linux 2.6.15)
Open-iSCSI.

NETLINK_AUDIT (since Linux 2.6.6)
Auditing.

NETLINK_FIB_LOOKUP (since Linux 2.6.13)
Access to FIB lookup from user space.

NETLINK_CONNECTOR (since Linux 2.6.14)
Kernel connector. See Documentation/driver-api/connector.rst (or /Docu-
mentation/connector/connector.* in Linux 5.2 and earlier) in the Linux kernel
source tree for further information.

NETLINK_NETFILTER (since Linux 2.6.14)
Netfilter subsystem.

NETLINK_SCSITRANSPORT (since Linux 2.6.19)
SCSI Transports.

NETLINK_RDMA (since Linux 3.0)
Infiniband RDMA.

NETLINK_IP6_FW (up to and including Linux 3.4)
Transport IPv6 packets from netfilter to user space. Used by ip6_queue kernel
module.

NETLINK_DNRTMSG
DECnet routing messages.

NETLINK_KOBJECT_UEVENT (since Linux 2.6.10)
Kernel messages to user space.

NETLINK_GENERIC (since Linux 2.6.15)
Generic netlink family for simplified netlink usage.

NETLINK_CRYPTO (since Linux 3.2)
Netlink interface to request information about ciphers registered with the ker-
nel crypto API as well as allow configuration of the kernel crypto API.

Netlink messages consist of a byte stream with one or multiple nlmsghdr headers and
associated payload. The byte stream should be accessed only with the standard
NLMSG_* macros. See netlink(3) for further information.

In multipart messages (multiple nlmsghdr headers with associated payload in one
byte stream) the first and all following headers have the NLM_F_MULTI flag set, ex-
cept for the last header which has the type NLMSG_DONE.

After each nlmsghdr the payload follows.

struct nlmsghdr {
__u32 nlmsg_len; /* Size of message including header */
__u16 nlmsg_type; /* Type of message content */
__u16 nlmsg_flags; /* Additional flags */
__u32 nlmsg_seq; /* Sequence number */

Linux man-pages 6.13 2024-11-17 3491

netlink(7) Miscellaneous Information Manual netlink(7)

__u32 nlmsg_pid; /* Sender port ID */
};

nlmsg_type can be one of the standard message types: NLMSG_NOOP message is to
be ignored, NLMSG_ERROR message signals an error and the payload contains an
nlmsgerr structure, NLMSG_DONE message terminates a multipart message. Error
messages get the original request appended, unless the user requests to cap the error
message, and get extra error data if requested.

struct nlmsgerr {
int error; /* Negative errno or 0 for acknowledgements */
struct nlmsghdr msg; /* Message header that caused the error */
/*

* followed by the message contents
* unless NETLINK_CAP_ACK was set
* or the ACK indicates success (error == 0).
* For example Generic Netlink message with attributes.
* message size is aligned with NLMSG_ALIGN()
*/

/*
* followed by TLVs defined in enum nlmsgerr_attrs
* if NETLINK_EXT_ACK was set
*/

};

A netlink family usually specifies more message types, see the appropriate manual
pages for that, for example, rtnetlink(7) for NETLINK_ROUTE.
Standard flag bits in nlmsg_flags
NLM_F_REQUEST Must be set on all request messages.
NLM_F_MULTI The message is part of a multipart message terminated

by NLMSG_DONE.
NLM_F_ACK Request for an acknowledgement on success.
NLM_F_ECHO Echo this request.
Additional flag bits for GET requests
NLM_F_ROOT Return the complete table instead of a single entry.
NLM_F_MATCH Return all entries matching criteria passed in message

content. Not implemented yet.
NLM_F_ATOMIC Return an atomic snapshot of the table.
NLM_F_DUMP Convenience macro; equivalent to

(NLM_F_ROOT|NLM_F_MATCH).

Note that NLM_F_ATOMIC requires the CAP_NET_ADMIN capability or an ef-
fective UID of 0.
Additional flag bits for NEW requests
NLM_F_REPLACE Replace existing matching object.
NLM_F_EXCL Don’t replace if the object already exists.
NLM_F_CREATE Create object if it doesn’t already exist.
NLM_F_APPEND Add to the end of the object list.

nlmsg_seq and nlmsg_pid are used to track messages. nlmsg_pid shows the origin of
the message. Note that there isn’t a 1:1 relationship between nlmsg_pid and the PID

Linux man-pages 6.13 2024-11-17 3492

netlink(7) Miscellaneous Information Manual netlink(7)

of the process if the message originated from a netlink socket. See the ADDRESS
FORMATS section for further information.

Both nlmsg_seq and nlmsg_pid are opaque to netlink core.

Netlink is not a reliable protocol. It tries its best to deliver a message to its destina-
tion(s), but may drop messages when an out-of-memory condition or other error oc-
curs. For reliable transfer the sender can request an acknowledgement from the re-
ceiver by setting the NLM_F_ACK flag. An acknowledgement is an NLMSG_ER-
ROR packet with the error field set to 0. The application must generate acknowledge-
ments for received messages itself. The kernel tries to send an NLMSG_ERROR
message for every failed packet. A user process should follow this convention too.

However, reliable transmissions from kernel to user are impossible in any case. The
kernel can’t send a netlink message if the socket buffer is full: the message will be
dropped and the kernel and the user-space process will no longer have the same view
of kernel state. It is up to the application to detect when this happens (via the
ENOBUFS error returned by recvmsg(2)) and resynchronize.

Address formats
The sockaddr_nl structure describes a netlink client in user space or in the kernel. A
sockaddr_nl can be either unicast (only sent to one peer) or sent to netlink multicast
groups (nl_groups not equal 0).

struct sockaddr_nl {
sa_family_t nl_family; /* AF_NETLINK */
unsigned short nl_pad; /* Zero */
pid_t nl_pid; /* Port ID */
__u32 nl_groups; /* Multicast groups mask */

};

nl_pid is the unicast address of netlink socket. It’s always 0 if the destination is in the
kernel. For a user-space process, nl_pid is usually the PID of the process owning the
destination socket. However, nl_pid identifies a netlink socket, not a process. If a
process owns several netlink sockets, then nl_pid can be equal to the process ID only
for at most one socket. There are two ways to assign nl_pid to a netlink socket. If the
application sets nl_pid before calling bind(2), then it is up to the application to make
sure that nl_pid is unique. If the application sets it to 0, the kernel takes care of as-
signing it. The kernel assigns the process ID to the first netlink socket the process
opens and assigns a unique nl_pid to every netlink socket that the process subse-
quently creates.

nl_groups is a bit mask with every bit representing a netlink group number. Each
netlink family has a set of 32 multicast groups. When bind(2) is called on the socket,
the nl_groups field in the sockaddr_nl should be set to a bit mask of the groups which
it wishes to listen to. The default value for this field is zero which means that no mul-
ticasts will be received. A socket may multicast messages to any of the multicast
groups by setting nl_groups to a bit mask of the groups it wishes to send to when it
calls sendmsg(2) or does a connect(2). Only processes with an effective UID of 0 or
the CAP_NET_ADMIN capability may send or listen to a netlink multicast group.
Since Linux 2.6.13, messages can’t be broadcast to multiple groups. Any replies to a
message received for a multicast group should be sent back to the sending PID and the
multicast group. Some Linux kernel subsystems may additionally allow other users to

Linux man-pages 6.13 2024-11-17 3493

netlink(7) Miscellaneous Information Manual netlink(7)

send and/or receive messages. As at Linux 3.0, the NETLINK_KOB-
JECT_UEVENT, NETLINK_GENERIC, NETLINK_ROUTE, and
NETLINK_SELINUX groups allow other users to receive messages. No groups al-
low other users to send messages.

Socket options
To set or get a netlink socket option, call getsockopt(2) to read or setsockopt(2) to
write the option with the option level argument set to SOL_NETLINK. Unless oth-
erwise noted, optval is a pointer to an int.

NETLINK_PKTINFO (since Linux 2.6.14)
Enable nl_pktinfo control messages for received packets to get the extended
destination group number.

NETLINK_ADD_MEMBERSHIP
NETLINK_DROP_MEMBERSHIP (since Linux 2.6.14)

Join/leave a group specified by optval.

NETLINK_LIST_MEMBERSHIPS (since Linux 4.2)
Retrieve all groups a socket is a member of. optval is a pointer to __u32 and
optlen is the size of the array. The array is filled with the full membership set
of the socket, and the required array size is returned in optlen.

NETLINK_BROADCAST_ERROR (since Linux 2.6.30)
When not set, netlink_broadcast() only reports ESRCH errors and silently
ignore ENOBUFS errors.

NETLINK_NO_ENOBUFS (since Linux 2.6.30)
This flag can be used by unicast and broadcast listeners to avoid receiving
ENOBUFS errors.

NETLINK_LISTEN_ALL_NSID (since Linux 4.2)
When set, this socket will receive netlink notifications from all network name-
spaces that have an nsid assigned into the network namespace where the
socket has been opened. The nsid is sent to user space via an ancillary data.

NETLINK_CAP_ACK (since Linux 4.3)
The kernel may fail to allocate the necessary room for the acknowledgement
message back to user space. This option trims off the payload of the original
netlink message. The netlink message header is still included, so the user can
guess from the sequence number which message triggered the acknowledge-
ment.

VERSIONS
The socket interface to netlink first appeared Linux 2.2.

Linux 2.0 supported a more primitive device-based netlink interface (which is still
available as a compatibility option). This obsolete interface is not described here.

NOTES
It is often better to use netlink via libnetlink or libnl than via the low-level kernel in-
terface.

BUGS
This manual page is not complete.

Linux man-pages 6.13 2024-11-17 3494

netlink(7) Miscellaneous Information Manual netlink(7)

EXAMPLES
The following example creates a NETLINK_ROUTE netlink socket which will lis-
ten to the RTMGRP_LINK (network interface create/delete/up/down events) and
RTMGRP_IPV4_IFADDR (IPv4 addresses add/delete events) multicast groups.

struct sockaddr_nl sa;

memset(&sa, 0, sizeof(sa));
sa.nl_family = AF_NETLINK;
sa.nl_groups = RTMGRP_LINK | RTMGRP_IPV4_IFADDR;

fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
bind(fd, (struct sockaddr *) &sa, sizeof(sa));

The next example demonstrates how to send a netlink message to the kernel (pid 0).
Note that the application must take care of message sequence numbers in order to reli-
ably track acknowledgements.

struct nlmsghdr *nh; /* The nlmsghdr with payload to send */
struct sockaddr_nl sa;
struct iovec iov = { nh, nh->nlmsg_len };
struct msghdr msg;

msg = { &sa, sizeof(sa), &iov, 1, NULL, 0, 0 };
memset(&sa, 0, sizeof(sa));
sa.nl_family = AF_NETLINK;
nh->nlmsg_pid = 0;
nh->nlmsg_seq = ++sequence_number;
/* Request an ack from kernel by setting NLM_F_ACK */
nh->nlmsg_flags |= NLM_F_ACK;

sendmsg(fd, &msg, 0);

And the last example is about reading netlink message.

int size;
/* 8192 to avoid message truncation on platforms with

page size > 4096 */
struct nlmsghdr buf[8192/sizeof(struct nlmsghdr)];
struct iovec iov = { buf, sizeof(buf) };
struct sockaddr_nl sa;
struct msghdr msg;
struct nlmsghdr *nh;

msg = { &sa, sizeof(sa), &iov, 1, NULL, 0, 0 };
size = recvmsg(fd, &msg, 0);

for (nh = (struct nlmsghdr *) buf; NLMSG_OK (nh, size);
nh = NLMSG_NEXT (nh, size)) {

/* The end of multipart message */
if (nh->nlmsg_type == NLMSG_DONE)

return;

Linux man-pages 6.13 2024-11-17 3495

netlink(7) Miscellaneous Information Manual netlink(7)

if (nh->nlmsg_type == NLMSG_ERROR)
/* Do some error handling */

...

/* Continue with parsing payload */
...

}

SEE ALSO
cmsg(3), netlink(3), capabilities(7), rtnetlink(7), sock_diag(7)

information about libnetlink 〈ftp://ftp.inr.ac.ru/ip-routing/iproute2*〉

information about libnl 〈http://www.infradead.org/~tgr/libnl/〉

RFC 3549 "Linux Netlink as an IP Services Protocol"

Linux man-pages 6.13 2024-11-17 3496

network_namespaces(7) Miscellaneous Information Manual network_namespaces(7)

NAME
network_namespaces - overview of Linux network namespaces

DESCRIPTION
Network namespaces provide isolation of the system resources associated with net-
working: network devices, IPv4 and IPv6 protocol stacks, IP routing tables, firewall
rules, the /proc/net directory (which is a symbolic link to /proc/ pid /net), the
/sys/class/net directory, various files under /proc/sys/net, port numbers (sockets), and
so on. In addition, network namespaces isolate the UNIX domain abstract socket
namespace (see unix(7)).

A physical network device can live in exactly one network namespace. When a net-
work namespace is freed (i.e., when the last process in the namespace terminates), its
physical network devices are moved back to the initial network namespace (not to the
namespace of the parent of the process).

A virtual network (veth(4)) device pair provides a pipe-like abstraction that can be
used to create tunnels between network namespaces, and can be used to create a
bridge to a physical network device in another namespace. When a namespace is
freed, the veth(4) devices that it contains are destroyed.

Use of network namespaces requires a kernel that is configured with the CON-
FIG_NET_NS option.

SEE ALSO
nsenter(1), unshare(1), clone(2), veth(4), proc(5), sysfs(5), namespaces(7),
user_namespaces(7), brctl(8), ip(8), ip-address(8), ip-link(8), ip-netns(8), iptables(8),
ovs-vsctl(8)

Linux man-pages 6.13 2024-05-02 3497

nptl(7) Miscellaneous Information Manual nptl(7)

NAME
nptl - Native POSIX Threads Library

DESCRIPTION
NPTL (Native POSIX Threads Library) is the GNU C library POSIX threads imple-
mentation that is used on modern Linux systems.

NPTL and signals
NPTL makes internal use of the first two real-time signals (signal numbers 32 and
33). One of these signals is used to support thread cancelation and POSIX timers (see
timer_create(2)); the other is used as part of a mechanism that ensures all threads in a
process always have the same UIDs and GIDs, as required by POSIX. These signals
cannot be used in applications.

To prevent accidental use of these signals in applications, which might interfere with
the operation of the NPTL implementation, various glibc library functions and system
call wrapper functions attempt to hide these signals from applications, as follows:

• SIGRTMIN is defined with the value 34 (rather than 32).

• The sigwaitinfo(2), sigtimedwait(2), and sigwait(3) interfaces silently ignore re-
quests to wait for these two signals if they are specified in the signal set argument
of these calls.

• The sigprocmask(2) and pthread_sigmask(3) interfaces silently ignore attempts to
block these two signals.

• The sigaction(2), pthread_kill(3), and pthread_sigqueue(3) interfaces fail with the
error EINVAL (indicating an invalid signal number) if these signals are specified.

• sigfillset(3) does not include these two signals when it creates a full signal set.

NPTL and process credential changes
At the Linux kernel level, credentials (user and group IDs) are a per-thread attribute.
However, POSIX requires that all of the POSIX threads in a process have the same
credentials. To accommodate this requirement, the NPTL implementation wraps all
of the system calls that change process credentials with functions that, in addition to
invoking the underlying system call, arrange for all other threads in the process to also
change their credentials.

The implementation of each of these system calls involves the use of a real-time sig-
nal that is sent (using tgkill(2)) to each of the other threads that must change its cre-
dentials. Before sending these signals, the thread that is changing credentials saves
the new credential(s) and records the system call being employed in a global buffer.
A signal handler in the receiving thread(s) fetches this information and then uses the
same system call to change its credentials.

Wrapper functions employing this technique are provided for setgid(2), setuid(2),
setegid(2), seteuid(2), setregid(2), setreuid(2), setresgid(2), setresuid(2), and set-
groups(2).

STANDARDS
For details of the conformance of NPTL to the POSIX standard, see pthreads(7).

Linux man-pages 6.13 2024-05-02 3498

nptl(7) Miscellaneous Information Manual nptl(7)

NOTES
POSIX says that any thread in any process with access to the memory containing a
process-shared (PTHREAD_PROCESS_SHARED) mutex can operate on that mu-
tex. However, on 64-bit x86 systems, the mutex definition for x86-64 is incompatible
with the mutex definition for i386, meaning that 32-bit and 64-bit binaries can’t share
mutexes on x86-64 systems.

SEE ALSO
credentials(7), pthreads(7), signal(7), standards(7)

Linux man-pages 6.13 2024-05-02 3499

numa(7) Miscellaneous Information Manual numa(7)

NAME
numa - overview of Non-Uniform Memory Architecture

DESCRIPTION
Non-Uniform Memory Access (NUMA) refers to multiprocessor systems whose
memory is divided into multiple memory nodes. The access time of a memory node
depends on the relative locations of the accessing CPU and the accessed node. (This
contrasts with a symmetric multiprocessor system, where the access time for all of the
memory is the same for all CPUs.) Normally, each CPU on a NUMA system has a lo-
cal memory node whose contents can be accessed faster than the memory in the node
local to another CPU or the memory on a bus shared by all CPUs.

NUMA system calls
The Linux kernel implements the following NUMA-related system calls: get_mem-
policy(2), mbind(2), migrate_pages(2), move_pages(2), and set_mempolicy(2). How-
ever, applications should normally use the interface provided by libnuma; see "Li-
brary Support" below.

/proc/pid/numa_maps (since Linux 2.6.14)
This file displays information about a process’s NUMA memory policy and alloca-
tion.

Each line contains information about a memory range used by the process, display-
ing—among other information—the effective memory policy for that memory range
and on which nodes the pages have been allocated.

numa_maps is a read-only file. When /proc/ pid /numa_maps is read, the kernel will
scan the virtual address space of the process and report how memory is used. One
line is displayed for each unique memory range of the process.

The first field of each line shows the starting address of the memory range. This field
allows a correlation with the contents of the /proc/ pid /maps file, which contains the
end address of the range and other information, such as the access permissions and
sharing.

The second field shows the memory policy currently in effect for the memory range.
Note that the effective policy is not necessarily the policy installed by the process for
that memory range. Specifically, if the process installed a "default" policy for that
range, the effective policy for that range will be the process policy, which may or may
not be "default".

The rest of the line contains information about the pages allocated in the memory
range, as follows:

N<node>=<nr_pages>
The number of pages allocated on <node>. <nr_pages> includes only pages
currently mapped by the process. Page migration and memory reclaim may
have temporarily unmapped pages associated with this memory range. These
pages may show up again only after the process has attempted to reference
them. If the memory range represents a shared memory area or file mapping,
other processes may currently have additional pages mapped in a correspond-
ing memory range.

Linux man-pages 6.13 2024-05-02 3500

numa(7) Miscellaneous Information Manual numa(7)

file=<filename>
The file backing the memory range. If the file is mapped as private, write ac-
cesses may have generated COW (Copy-On-Write) pages in this memory
range. These pages are displayed as anonymous pages.

heap Memory range is used for the heap.

stack Memory range is used for the stack.

huge Huge memory range. The page counts shown are huge pages and not regular
sized pages.

anon=<pages>
The number of anonymous page in the range.

dirty=<pages>
Number of dirty pages.

mapped=<pages>
Total number of mapped pages, if different from dirty and anon pages.

mapmax=<count>
Maximum mapcount (number of processes mapping a single page) encoun-
tered during the scan. This may be used as an indicator of the degree of shar-
ing occurring in a given memory range.

swapcache=<count>
Number of pages that have an associated entry on a swap device.

active=<pages>
The number of pages on the active list. This field is shown only if different
from the number of pages in this range. This means that some inactive pages
exist in the memory range that may be removed from memory by the swapper
soon.

writeback=<pages>
Number of pages that are currently being written out to disk.

STANDARDS
None.

NOTES
The Linux NUMA system calls and /proc interface are available only if the kernel
was configured and built with the CONFIG_NUMA option.

Library support
Link with -lnuma to get the system call definitions. libnuma and the required <nu-
maif.h> header are available in the numactl package.

However, applications should not use these system calls directly. Instead, the higher
level interface provided by the numa(3) functions in the numactl package is recom-
mended. The numactl package is available at 〈ftp://oss.sgi.com/www/projects
/libnuma/download/〉. The package is also included in some Linux distributions.
Some distributions include the development library and header in the separate nu-
mactl-devel package.

Linux man-pages 6.13 2024-05-02 3501

numa(7) Miscellaneous Information Manual numa(7)

SEE ALSO
get_mempolicy(2), mbind(2), move_pages(2), set_mempolicy(2), numa(3), cpuset(7),
numactl(8)

Linux man-pages 6.13 2024-05-02 3502

operator(7) Miscellaneous Information Manual operator(7)

NAME
operator - C operator precedence and order of evaluation

DESCRIPTION
This manual page lists C operators and their precedence in evaluation.

Operator Associativity Notes
[] () . -> ++ -- left to right [1]
++ -- & * + - ~ ! sizeof right to left [2]
(type) right to left
* / % left to right
+ - left to right
<< >> left to right
< > <= >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= *= /= %= += -= <<= >>= &= ^= |= right to left
, left to right

The following notes provide further information to the above table:

[1] The ++ and -- operators at this precedence level are the postfix flavors of the
operators.

[2] The ++ and -- operators at this precedence level are the prefix flavors of the
operators.

Linux man-pages 6.13 2024-05-02 3503

packet(7) Miscellaneous Information Manual packet(7)

NAME
packet - packet interface on device level

SYNOPSIS
#include <sys/socket.h>
#include <linux/if_packet.h>
#include <net/ethernet.h> /* the L2 protocols */

packet_socket = socket(AF_PACKET, int socket_type, int protocol);

DESCRIPTION
Packet sockets are used to receive or send raw packets at the device driver (OSI Layer
2) level. They allow the user to implement protocol modules in user space on top of
the physical layer.

The socket_type is either SOCK_RAW for raw packets including the link-level
header or SOCK_DGRAM for cooked packets with the link-level header removed.
The link-level header information is available in a common format in a sockaddr_ll
structure. protocol is the IEEE 802.3 protocol number in network byte order. See the
<linux/if_ether.h> include file for a list of allowed protocols. When protocol is set to
htons(ETH_P_ALL), then all protocols are received. All incoming packets of that
protocol type will be passed to the packet socket before they are passed to the proto-
cols implemented in the kernel. If protocol is set to zero, no packets are received.
bind(2) can optionally be called with a nonzero sll_protocol to start receiving packets
for the protocols specified.

In order to create a packet socket, a process must have the CAP_NET_RAW capabil-
ity in the user namespace that governs its network namespace.

SOCK_RAW packets are passed to and from the device driver without any changes in
the packet data. When receiving a packet, the address is still parsed and passed in a
standard sockaddr_ll address structure. When transmitting a packet, the user-supplied
buffer should contain the physical-layer header. That packet is then queued unmodi-
fied to the network driver of the interface defined by the destination address. Some
device drivers always add other headers. SOCK_RAW is similar to but not compati-
ble with the obsolete AF_INET/SOCK_PACKET of Linux 2.0.

SOCK_DGRAM operates on a slightly higher level. The physical header is removed
before the packet is passed to the user. Packets sent through a SOCK_DGRAM
packet socket get a suitable physical-layer header based on the information in the
sockaddr_ll destination address before they are queued.

By default, all packets of the specified protocol type are passed to a packet socket. To
get packets only from a specific interface use bind(2) specifying an address in a struct
sockaddr_ll to bind the packet socket to an interface. Fields used for binding are
sll_family (should be AF_PACKET), sll_protocol, and sll_ifindex.

The connect(2) operation is not supported on packet sockets.

When the MSG_TRUNC flag is passed to recvmsg(2), recv(2), or recvfrom(2), the
real size of the packet on the wire is always returned, even when it is longer than the
buffer.

Linux man-pages 6.13 2024-11-17 3504

packet(7) Miscellaneous Information Manual packet(7)

Address types
The sockaddr_ll structure is a device-independent physical-layer address.

struct sockaddr_ll {
unsigned short sll_family; /* Always AF_PACKET */
unsigned short sll_protocol; /* Physical-layer protocol */
int sll_ifindex; /* Interface number */
unsigned short sll_hatype; /* ARP hardware type */
unsigned char sll_pkttype; /* Packet type */
unsigned char sll_halen; /* Size of address */
unsigned char sll_addr[8]; /* Physical-layer address */

};

The fields of this structure are as follows:

sll_protocol
is the standard ethernet protocol type in network byte order as defined in the
<linux/if_ether.h> include file. It defaults to the socket’s protocol.

sll_ifindex
is the interface index of the interface (see netdevice(7)); 0 matches any inter-
face (only permitted for binding). sll_hatype is an ARP type as defined in the
<linux/if_arp.h> include file.

sll_pkttype
contains the packet type. Valid types are PACKET_HOST for a packet ad-
dressed to the local host, PACKET_BROADCAST for a physical-layer
broadcast packet, PACKET_MULTICAST for a packet sent to a physical-
layer multicast address, PACKET_OTHERHOST for a packet to some other
host that has been caught by a device driver in promiscuous mode, and
PACKET_OUTGOING for a packet originating from the local host that is
looped back to a packet socket. These types make sense only for receiving.

sll_addr
sll_halen

contain the physical-layer (e.g., IEEE 802.3) address and its size. The exact
interpretation depends on the device.

When you send packets, it is enough to specify sll_family, sll_addr, sll_halen,
sll_ifindex, and sll_protocol. The other fields should be 0. sll_hatype and sll_pkttype
are set on received packets for your information.

Socket options
Packet socket options are configured by calling setsockopt(2) with level
SOL_PACKET.

PACKET_ADD_MEMBERSHIP
PACKET_DROP_MEMBERSHIP

Packet sockets can be used to configure physical-layer multicasting and
promiscuous mode. PACKET_ADD_MEMBERSHIP adds a binding and
PACKET_DROP_MEMBERSHIP drops it. They both expect a
packet_mreq structure as argument:

struct packet_mreq {
int mr_ifindex; /* interface index */

Linux man-pages 6.13 2024-11-17 3505

packet(7) Miscellaneous Information Manual packet(7)

unsigned short mr_type; /* action */
unsigned short mr_alen; /* address size */
unsigned char mr_address[8]; /* physical-layer address */

};

mr_ifindex contains the interface index for the interface whose status should
be changed. The mr_type field specifies which action to perform.
PACKET_MR_PROMISC enables receiving all packets on a shared medium
(often known as "promiscuous mode"), PACKET_MR_MULTICAST binds
the socket to the physical-layer multicast group specified in mr_address and
mr_alen, and PACKET_MR_ALLMULTI sets the socket up to receive all
multicast packets arriving at the interface.

In addition, the traditional ioctls SIOCSIFFLAGS, SIOCADDMULTI,
SIOCDELMULTI can be used for the same purpose.

PACKET_AUXDATA (since Linux 2.6.21)
If this binary option is enabled, the packet socket passes a metadata structure
along with each packet in the recvmsg(2) control field. The structure can be
read with cmsg(3). It is defined as

struct tpacket_auxdata {
__u32 tp_status;
__u32 tp_len; /* packet size */
__u32 tp_snaplen; /* captured size */
__u16 tp_mac;
__u16 tp_net;
__u16 tp_vlan_tci;
__u16 tp_vlan_tpid; /* Since Linux 3.14; earlier, these

were unused padding bytes */
};

PACKET_FANOUT (since Linux 3.1)
To scale processing across threads, packet sockets can form a fanout group. In
this mode, each matching packet is enqueued onto only one socket in the
group. A socket joins a fanout group by calling setsockopt(2) with level
SOL_PACKET and option PACKET_FANOUT. Each network namespace
can have up to 65536 independent groups. A socket selects a group by encod-
ing the ID in the first 16 bits of the integer option value. The first packet
socket to join a group implicitly creates it. To successfully join an existing
group, subsequent packet sockets must have the same protocol, device set-
tings, fanout mode, and flags (see below). Packet sockets can leave a fanout
group only by closing the socket. The group is deleted when the last socket is
closed.

Fanout supports multiple algorithms to spread traffic between sockets, as fol-
lows:

• The default mode, PACKET_FANOUT_HASH, sends packets from the
same flow to the same socket to maintain per-flow ordering. For each
packet, it chooses a socket by taking the packet flow hash modulo the
number of sockets in the group, where a flow hash is a hash over network-
layer address and optional transport-layer port fields.

Linux man-pages 6.13 2024-11-17 3506

packet(7) Miscellaneous Information Manual packet(7)

• The load-balance mode PACKET_FANOUT_LB implements a round-
robin algorithm.

• PACKET_FANOUT_CPU selects the socket based on the CPU that the
packet arrived on.

• PACKET_FANOUT_ROLLOVER processes all data on a single socket,
moving to the next when one becomes backlogged.

• PACKET_FANOUT_RND selects the socket using a pseudo-random
number generator.

• PACKET_FANOUT_QM (available since Linux 3.14) selects the socket
using the recorded queue_mapping of the received skb.

Fanout modes can take additional options. IP fragmentation causes packets
from the same flow to have different flow hashes. The flag
PACKET_FANOUT_FLAG_DEFRAG, if set, causes packets to be defrag-
mented before fanout is applied, to preserve order even in this case. Fanout
mode and options are communicated in the second 16 bits of the integer option
value. The flag PACKET_FANOUT_FLAG_ROLLOVER enables the roll
over mechanism as a backup strategy: if the original fanout algorithm selects a
backlogged socket, the packet rolls over to the next available one.

PACKET_LOSS (with PACKET_TX_RING)
When a malformed packet is encountered on a transmit ring, the default is to
reset its tp_status to TP_STATUS_WRONG_FORMAT and abort the trans-
mission immediately. The malformed packet blocks itself and subsequently
enqueued packets from being sent. The format error must be fixed, the associ-
ated tp_status reset to TP_STATUS_SEND_REQUEST, and the transmis-
sion process restarted via send(2). However, if PACKET_LOSS is set, any
malformed packet will be skipped, its tp_status reset to TP_STA-
TUS_AVAILABLE, and the transmission process continued.

PACKET_RESERVE (with PACKET_RX_RING)
By default, a packet receive ring writes packets immediately following the
metadata structure and alignment padding. This integer option reserves addi-
tional headroom.

PACKET_RX_RING
Create a memory-mapped ring buffer for asynchronous packet reception. The
packet socket reserves a contiguous region of application address space, lays it
out into an array of packet slots and copies packets (up to tp_snaplen) into
subsequent slots. Each packet is preceded by a metadata structure similar to
tpacket_auxdata. The protocol fields encode the offset to the data from the
start of the metadata header. tp_net stores the offset to the network layer. If
the packet socket is of type SOCK_DGRAM, then tp_mac is the same. If it is
of type SOCK_RAW, then that field stores the offset to the link-layer frame.
Packet socket and application communicate the head and tail of the ring
through the tp_status field. The packet socket owns all slots with tp_status
equal to TP_STATUS_KERNEL. After filling a slot, it changes the status of
the slot to transfer ownership to the application. During normal operation, the
new tp_status value has at least the TP_STATUS_USER bit set to signal that

Linux man-pages 6.13 2024-11-17 3507

packet(7) Miscellaneous Information Manual packet(7)

a received packet has been stored. When the application has finished process-
ing a packet, it transfers ownership of the slot back to the socket by setting
tp_status equal to TP_STATUS_KERNEL.

Packet sockets implement multiple variants of the packet ring. The implemen-
tation details are described in Documentation/networking/packet_mmap.rst in
the Linux kernel source tree.

PACKET_STATISTICS
Retrieve packet socket statistics in the form of a structure

struct tpacket_stats {
unsigned int tp_packets; /* Total packet count */
unsigned int tp_drops; /* Dropped packet count */

};

Receiving statistics resets the internal counters. The statistics structure differs
when using a ring of variant TPACKET_V3.

PACKET_TIMESTAMP (with PACKET_RX_RING; since Linux 2.6.36)
The packet receive ring always stores a timestamp in the metadata header. By
default, this is a software generated timestamp generated when the packet is
copied into the ring. This integer option selects the type of timestamp. Be-
sides the default, it support the two hardware formats described in Documen-
tation/networking/timestamping.rst in the Linux kernel source tree.

PACKET_TX_RING (since Linux 2.6.31)
Create a memory-mapped ring buffer for packet transmission. This option is
similar to PACKET_RX_RING and takes the same arguments. The applica-
tion writes packets into slots with tp_status equal to TP_STATUS_AVAIL-
ABLE and schedules them for transmission by changing tp_status to
TP_STATUS_SEND_REQUEST. When packets are ready to be transmitted,
the application calls send(2) or a variant thereof. The buf and len fields of this
call are ignored. If an address is passed using sendto(2) or sendmsg(2), then
that overrides the socket default. On successful transmission, the socket resets
tp_status to TP_STATUS_AVAILABLE. It immediately aborts the transmis-
sion on error unless PACKET_LOSS is set.

PACKET_VERSION (with PACKET_RX_RING; since Linux 2.6.27)
By default, PACKET_RX_RING creates a packet receive ring of variant
TPACKET_V1. To create another variant, configure the desired variant by
setting this integer option before creating the ring.

PACKET_QDISC_BYPASS (since Linux 3.14)
By default, packets sent through packet sockets pass through the kernel’s qdisc
(traffic control) layer, which is fine for the vast majority of use cases. For traf-
fic generator appliances using packet sockets that intend to brute-force flood
the network—for example, to test devices under load in a similar fashion to
pktgen—this layer can be bypassed by setting this integer option to 1. A side
effect is that packet buffering in the qdisc layer is avoided, which will lead to
increased drops when network device transmit queues are busy; therefore, use
at your own risk.

Linux man-pages 6.13 2024-11-17 3508

packet(7) Miscellaneous Information Manual packet(7)

Ioctls
SIOCGSTAMP can be used to receive the timestamp of the last received packet. Ar-
gument is a struct timeval variable.

In addition, all standard ioctls defined in netdevice(7) and socket(7) are valid on
packet sockets.

Error handling
Packet sockets do no error handling other than errors occurred while passing the
packet to the device driver. They don’t have the concept of a pending error.

ERRORS
EADDRNOTAVAIL

Unknown multicast group address passed.

EFAULT
User passed invalid memory address.

EINVAL
Invalid argument.

EMSGSIZE
Packet is bigger than interface MTU.

ENETDOWN
Interface is not up.

ENOBUFS
Not enough memory to allocate the packet.

ENODEV
Unknown device name or interface index specified in interface address.

ENOENT
No packet received.

ENOTCONN
No interface address passed.

ENXIO
Interface address contained an invalid interface index.

EPERM
User has insufficient privileges to carry out this operation.

In addition, other errors may be generated by the low-level driver.

VERSIONS
AF_PACKET is a new feature in Linux 2.2. Earlier Linux versions supported only
SOCK_PACKET.

NOTES
For portable programs it is suggested to use AF_PACKET via pcap(3); although this
covers only a subset of the AF_PACKET features.

The SOCK_DGRAM packet sockets make no attempt to create or parse the IEEE
802.2 LLC header for a IEEE 802.3 frame. When ETH_P_802_3 is specified as pro-
tocol for sending the kernel creates the 802.3 frame and fills out the size field; the user
has to supply the LLC header to get a fully conforming packet. Incoming 802.3

Linux man-pages 6.13 2024-11-17 3509

packet(7) Miscellaneous Information Manual packet(7)

packets are not multiplexed on the DSAP/SSAP protocol fields; instead they are sup-
plied to the user as protocol ETH_P_802_2 with the LLC header prefixed. It is thus
not possible to bind to ETH_P_802_3; bind to ETH_P_802_2 instead and do the pro-
tocol multiplex yourself. The default for sending is the standard Ethernet DIX encap-
sulation with the protocol filled in.

Packet sockets are not subject to the input or output firewall chains.

Compatibility
In Linux 2.0, the only way to get a packet socket was with the call:

socket(AF_INET, SOCK_PACKET, protocol)

This is still supported, but deprecated and strongly discouraged. The main difference
between the two methods is that SOCK_PACKET uses the old struct sockaddr_pkt
to specify an interface, which doesn’t provide physical-layer independence.

struct sockaddr_pkt {
unsigned short spkt_family;
unsigned char spkt_device[14];
unsigned short spkt_protocol;

};

spkt_family contains the device type, spkt_protocol is the IEEE 802.3 protocol type as
defined in <sys/if_ether.h> and spkt_device is the device name as a null-terminated
string, for example, eth0.

This structure is obsolete and should not be used in new code.

BUGS
LLC header handling

The IEEE 802.2/803.3 LLC handling could be considered as a bug.

MSG_TRUNC issues
The MSG_TRUNC recvmsg(2) extension is an ugly hack and should be replaced by a
control message. There is currently no way to get the original destination address of
packets via SOCK_DGRAM.

spkt_device device name truncation
The spkt_device field of sockaddr_pkt has a size of 14 bytes, which is less than the
constant IFNAMSIZ defined in <net/if.h> which is 16 bytes and describes the system
limit for a network interface name. This means the names of network devices longer
than 14 bytes will be truncated to fit into spkt_device. All these sizes include the ter-
minating null byte ('\0')).

Issues from this with old code typically show up with very long interface names used
by the Predictable Network Interface Names feature enabled by default in many
modern Linux distributions.

The preferred solution is to rewrite code to avoid SOCK_PACKET. Possible user
solutions are to disable Predictable Network Interface Names or to rename the in-
terface to a name of at most 13 bytes, for example using the ip(8) tool.

Documentation issues
Socket filters are not documented.

Linux man-pages 6.13 2024-11-17 3510

packet(7) Miscellaneous Information Manual packet(7)

SEE ALSO
socket(2), pcap(3), capabilities(7), ip(7), raw(7), socket(7), ip(8),

RFC 894 for the standard IP Ethernet encapsulation. RFC 1700 for the IEEE 802.3 IP
encapsulation.

The <linux/if_ether.h> include file for physical-layer protocols.

The Linux kernel source tree. Documentation/networking/filter.rst describes how to
apply Berkeley Packet Filters to packet sockets. tools/testing/self-
tests/net/psock_tpacket.c contains example source code for all available versions of
PACKET_RX_RING and PACKET_TX_RING.

Linux man-pages 6.13 2024-11-17 3511

path_resolution(7) Miscellaneous Information Manual path_resolution(7)

NAME
path_resolution - how a pathname is resolved to a file

DESCRIPTION
Some UNIX/Linux system calls have as parameter one or more filenames. A filename
(or pathname) is resolved as follows.

Step 1: start of the resolution process
If the pathname starts with the '/' character, the starting lookup directory is the root di-
rectory of the calling process. A process inherits its root directory from its parent.
Usually this will be the root directory of the file hierarchy. A process may get a dif-
ferent root directory by use of the chroot(2) system call, or may temporarily use a dif-
ferent root directory by using openat2(2) with the RESOLVE_IN_ROOT flag set.

A process may get an entirely private mount namespace in case it—or one of its an-
cestors—was started by an invocation of the clone(2) system call that had the
CLONE_NEWNS flag set. This handles the '/' part of the pathname.

If the pathname does not start with the '/' character, the starting lookup directory of the
resolution process is the current working directory of the process — or in the case of
openat(2)-style system calls, the dfd argument (or the current working directory if
AT_FDCWD is passed as the dfd argument). The current working directory is inher-
ited from the parent, and can be changed by use of the chdir(2) system call.

Pathnames starting with a '/' character are called absolute pathnames. Pathnames not
starting with a '/' are called relative pathnames.

Step 2: walk along the path
Set the current lookup directory to the starting lookup directory. Now, for each nonfi-
nal component of the pathname, where a component is a substring delimited by '/'
characters, this component is looked up in the current lookup directory.

If the process does not have search permission on the current lookup directory, an
EACCES error is returned ("Permission denied").

If the component is not found, an ENOENT error is returned ("No such file or direc-
tory").

If the component is found, but is neither a directory nor a symbolic link, an ENOT-
DIR error is returned ("Not a directory").

If the component is found and is a directory, we set the current lookup directory to
that directory, and go to the next component.

If the component is found and is a symbolic link, we first resolve this symbolic link
(with the current lookup directory as starting lookup directory). Upon error, that error
is returned. If the result is not a directory, an ENOTDIR error is returned. If the res-
olution of the symbolic link is successful and returns a directory, we set the current
lookup directory to that directory, and go to the next component. Note that the resolu-
tion process here can involve recursion if the prefix (’dirname’) component of a path-
name contains a filename that is a symbolic link that resolves to a directory (where the
prefix component of that directory may contain a symbolic link, and so on). In order
to protect the kernel against stack overflow, and also to protect against denial of ser-
vice, there are limits on the maximum recursion depth, and on the maximum number
of symbolic links followed. An ELOOP error is returned when the maximum is

Linux man-pages 6.13 2024-05-02 3512

path_resolution(7) Miscellaneous Information Manual path_resolution(7)

exceeded ("Too many levels of symbolic links").

As currently implemented on Linux, the maximum number of symbolic links that will
be followed while resolving a pathname is 40. Before Linux 2.6.18, the limit on the
recursion depth was 5. Starting with Linux 2.6.18, this limit was raised to 8. In Linux
4.2, the kernel’s pathname-resolution code was reworked to eliminate the use of recur-
sion, so that the only limit that remains is the maximum of 40 resolutions for the en-
tire pathname.

The resolution of symbolic links during this stage can be blocked by using
openat2(2), with the RESOLVE_NO_SYMLINKS flag set.

Step 3: find the final entry
The lookup of the final component of the pathname goes just like that of all other
components, as described in the previous step, with two differences: (i) the final com-
ponent need not be a directory (at least as far as the path resolution process is con-
cerned—it may have to be a directory, or a nondirectory, because of the requirements
of the specific system call), and (ii) it is not necessarily an error if the component is
not found—maybe we are just creating it. The details on the treatment of the final en-
try are described in the manual pages of the specific system calls.

. and ..
By convention, every directory has the entries "." and "..", which refer to the directory
itself and to its parent directory, respectively.

The path resolution process will assume that these entries have their conventional
meanings, regardless of whether they are actually present in the physical filesystem.

One cannot walk up past the root: "/.." is the same as "/".

Mount points
After a mount dev path command, the pathname "path" refers to the root of the
filesystem hierarchy on the device "dev", and no longer to whatever it referred to ear-
lier.

One can walk out of a mounted filesystem: "path/.." refers to the parent directory of
"path", outside of the filesystem hierarchy on "dev".

Traversal of mount points can be blocked by using openat2(2), with the RE-
SOLVE_NO_XDEV flag set (though note that this also restricts bind mount traver-
sal).

Trailing slashes
If a pathname ends in a '/', that forces resolution of the preceding component as in
Step 2: the component preceding the slash either exists and resolves to a directory or it
names a directory that is to be created immediately after the pathname is resolved.
Otherwise, a trailing '/' is ignored.

Final symbolic link
If the last component of a pathname is a symbolic link, then it depends on the system
call whether the file referred to will be the symbolic link or the result of path resolu-
tion on its contents. For example, the system call lstat(2) will operate on the symbolic
link, while stat(2) operates on the file pointed to by the symbolic link.

Linux man-pages 6.13 2024-05-02 3513

path_resolution(7) Miscellaneous Information Manual path_resolution(7)

Length limit
There is a maximum length for pathnames. If the pathname (or some intermediate
pathname obtained while resolving symbolic links) is too long, an ENAMETOO-
LONG error is returned ("Filename too long").

Empty pathname
In the original UNIX, the empty pathname referred to the current directory. Nowa-
days POSIX decrees that an empty pathname must not be resolved successfully.
Linux returns ENOENT in this case.

Permissions
The permission bits of a file consist of three groups of three bits; see chmod(1) and
stat(2). The first group of three is used when the effective user ID of the calling
process equals the owner ID of the file. The second group of three is used when the
group ID of the file either equals the effective group ID of the calling process, or is
one of the supplementary group IDs of the calling process (as set by setgroups(2)).
When neither holds, the third group is used.

Of the three bits used, the first bit determines read permission, the second write per-
mission, and the last execute permission in case of ordinary files, or search permission
in case of directories.

Linux uses the fsuid instead of the effective user ID in permission checks. Ordinarily
the fsuid will equal the effective user ID, but the fsuid can be changed by the system
call setfsuid(2).

(Here "fsuid" stands for something like "filesystem user ID". The concept was re-
quired for the implementation of a user space NFS server at a time when processes
could send a signal to a process with the same effective user ID. It is obsolete now.
Nobody should use setfsuid(2).)

Similarly, Linux uses the fsgid ("filesystem group ID") instead of the effective group
ID. See setfsgid(2).

Bypassing permission checks: superuser and capabilities
On a traditional UNIX system, the superuser (root, user ID 0) is all-powerful, and by-
passes all permissions restrictions when accessing files.

On Linux, superuser privileges are divided into capabilities (see capabilities(7)). Two
capabilities are relevant for file permissions checks: CAP_DAC_OVERRIDE and
CAP_DAC_READ_SEARCH. (A process has these capabilities if its fsuid is 0.)

The CAP_DAC_OVERRIDE capability overrides all permission checking, but
grants execute permission only when at least one of the file’s three execute permission
bits is set.

The CAP_DAC_READ_SEARCH capability grants read and search permission on
directories, and read permission on ordinary files.

SEE ALSO
readlink(2), capabilities(7), credentials(7), symlink(7)

Linux man-pages 6.13 2024-05-02 3514

pathname(7) Miscellaneous Information Manual pathname(7)

NAME
pathname, filename - how pathnames are encoded and interpreted

DESCRIPTION
Some system calls allow you to pass a pathname as a parameter. When writing code
that deals with pathnames, there are kernel-space requirements that you must comply
with, and user-space requirements that you should comply with.

The kernel stores pathnames as C strings, that is, sequences of non-null bytes termi-
nated by a null byte. There are a few general rules that apply to all pathnames:

• The last byte in the sequence needs to be a null byte.

• Any other bytes in the sequence need to be non-null bytes.

• A 0x2F byte ('/') is always interpreted as a directory separator, and cannot be part
of a filename.

• A pathname can be at most PATH_MAX bytes long (see limits.h(0p)). A path-
name that’s longer than PATH_MAX bytes can be split into multiple smaller
pathnames and opened piecewise using openat(2).

• A filename can be at most a certain number of bytes long. The number is filesys-
tem-specific (see _PC_NAME_MAX in fpathconf(3)). For maximum portability,
programs should be able to handle filenames that are as long as the relevant
filesystems will allow. For maximum portability, programs and users should limit
the length of their own pathnames to NAME_MAX bytes (see limits.h(0p)).

Some filesystems or APIs may apply further restrictions, such as requiring shorter
filenames, or restricting the allowed bytes in a filename.

For maximum interoperability, programs and users should also limit the characters
that they use for their own pathnames to characters in the POSIX Portable Filename
Character Set 〈https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/
V1_chap03.html#tag_03_265〉.

SEE ALSO
limits.h(0p), open(2), fpathconf(3), path_resolution(7), mount(8)

Linux man-pages 6.13 2025-01-28 3515

persistent-keyring(7) Miscellaneous Information Manual persistent-keyring(7)

NAME
persistent-keyring - per-user persistent keyring

DESCRIPTION
The persistent keyring is a keyring used to anchor keys on behalf of a user. Each UID
the kernel deals with has its own persistent keyring that is shared between all threads
owned by that UID. The persistent keyring has a name (description) of the form _per-
sistent.<UID> where <UID> is the user ID of the corresponding user.

The persistent keyring may not be accessed directly, even by processes with the ap-
propriate UID. Instead, it must first be linked to one of a process’s keyrings, before
that keyring can access the persistent keyring by virtue of its possessor permits. This
linking is done with the keyctl_get_persistent(3) function.

If a persistent keyring does not exist when it is accessed by the keyctl_get_persis-
tent(3) operation, it will be automatically created.

Each time the keyctl_get_persistent(3) operation is performed, the persistent keyring’s
expiration timer is reset to the value in:

/proc/sys/kernel/keys/persistent_keyring_expiry

Should the timeout be reached, the persistent keyring will be removed and everything
it pins can then be garbage collected. The keyring will then be re-created on a subse-
quent call to keyctl_get_persistent(3)

The persistent keyring is not directly searched by request_key(2); it is searched only if
it is linked into one of the keyrings that is searched by request_key(2).

The persistent keyring is independent of clone(2), fork(2), vfork(2), execve(2), and
_exit(2). It persists until its expiration timer triggers, at which point it is garbage col-
lected. This allows the persistent keyring to carry keys beyond the life of the kernel’s
record of the corresponding UID (the destruction of which results in the destruction of
the user-keyring(7) and the user-session-keyring(7)). The persistent keyring can thus
be used to hold authentication tokens for processes that run without user interaction,
such as programs started by cron(8)

The persistent keyring is used to store UID-specific objects that themselves have lim-
ited lifetimes (e.g., kerberos tokens). If those tokens cease to be used (i.e., the persis-
tent keyring is not accessed), then the timeout of the persistent keyring ensures that
the corresponding objects are automatically discarded.

Special operations
The keyutils library provides the keyctl_get_persistent(3) function for manipulating
persistent keyrings. (This function is an interface to the keyctl(2)
KEYCTL_GET_PERSISTENT operation.) This operation allows the calling thread
to get the persistent keyring corresponding to its own UID or, if the thread has the
CAP_SETUID capability, the persistent keyring corresponding to some other UID in
the same user namespace.

NOTES
Each user namespace owns a keyring called .persistent_register that contains links to
all of the persistent keys in that namespace. (The .persistent_register keyring can be
seen when reading the contents of the /proc/keys file for the UID 0 in the namespace.)
The keyctl_get_persistent(3) operation looks for a key with a name of the form

Linux man-pages 6.13 2024-05-02 3516

persistent-keyring(7) Miscellaneous Information Manual persistent-keyring(7)

_persistent.UID in that keyring, creates the key if it does not exist, and links it into the
keyring.

SEE ALSO
keyctl(1), keyctl(3), keyctl_get_persistent(3), keyrings(7), process-keyring(7), session-
keyring(7), thread-keyring(7), user-keyring(7), user-session-keyring(7)

Linux man-pages 6.13 2024-05-02 3517

pid_namespaces(7) Miscellaneous Information Manual pid_namespaces(7)

NAME
pid_namespaces - overview of Linux PID namespaces

DESCRIPTION
For an overview of namespaces, see namespaces(7).

PID namespaces isolate the process ID number space, meaning that processes in dif-
ferent PID namespaces can have the same PID. PID namespaces allow containers to
provide functionality such as suspending/resuming the set of processes in the con-
tainer and migrating the container to a new host while the processes inside the con-
tainer maintain the same PIDs.

PIDs in a new PID namespace start at 1, somewhat like a standalone system, and calls
to fork(2), vfork(2), or clone(2) will produce processes with PIDs that are unique
within the namespace.

Use of PID namespaces requires a kernel that is configured with the CON-
FIG_PID_NS option.

The namespace init process
The first process created in a new namespace (i.e., the process created using clone(2)
with the CLONE_NEWPID flag, or the first child created by a process after a call to
unshare(2) using the CLONE_NEWPID flag) has the PID 1, and is the "init" process
for the namespace (see init(1)). This process becomes the parent of any child
processes that are orphaned because a process that resides in this PID namespace ter-
minated (see below for further details).

If the "init" process of a PID namespace terminates, the kernel terminates all of the
processes in the namespace via a SIGKILL signal. This behavior reflects the fact that
the "init" process is essential for the correct operation of a PID namespace. In this
case, a subsequent fork(2) into this PID namespace fail with the error ENOMEM; it
is not possible to create a new process in a PID namespace whose "init" process has
terminated. Such scenarios can occur when, for example, a process uses an open file
descriptor for a /proc/ pid /ns/pid file corresponding to a process that was in a name-
space to setns(2) into that namespace after the "init" process has terminated. Another
possible scenario can occur after a call to unshare(2): if the first child subsequently
created by a fork(2) terminates, then subsequent calls to fork(2) fail with ENOMEM.

Only signals for which the "init" process has established a signal handler can be sent
to the "init" process by other members of the PID namespace. This restriction applies
even to privileged processes, and prevents other members of the PID namespace from
accidentally killing the "init" process.

Likewise, a process in an ancestor namespace can—subject to the usual permission
checks described in kill(2)—send signals to the "init" process of a child PID name-
space only if the "init" process has established a handler for that signal. (Within the
handler, the siginfo_t si_pid field described in sigaction(2) will be zero.) SIGKILL
or SIGSTOP are treated exceptionally: these signals are forcibly delivered when sent
from an ancestor PID namespace. Neither of these signals can be caught by the "init"
process, and so will result in the usual actions associated with those signals (respec-
tively, terminating and stopping the process).

Starting with Linux 3.4, the reboot(2) system call causes a signal to be sent to the
namespace "init" process. See reboot(2) for more details.

Linux man-pages 6.13 2024-06-13 3518

pid_namespaces(7) Miscellaneous Information Manual pid_namespaces(7)

Nesting PID namespaces
PID namespaces can be nested: each PID namespace has a parent, except for the ini-
tial ("root") PID namespace. The parent of a PID namespace is the PID namespace of
the process that created the namespace using clone(2) or unshare(2). PID namespaces
thus form a tree, with all namespaces ultimately tracing their ancestry to the root
namespace. Since Linux 3.7, the kernel limits the maximum nesting depth for PID
namespaces to 32.

A process is visible to other processes in its PID namespace, and to the processes in
each direct ancestor PID namespace going back to the root PID namespace. In this
context, "visible" means that one process can be the target of operations by another
process using system calls that specify a process ID. Conversely, the processes in a
child PID namespace can’t see processes in the parent and further removed ancestor
namespaces. More succinctly: a process can see (e.g., send signals with kill(2), set
nice values with setpriority(2), etc.) only processes contained in its own PID name-
space and in descendants of that namespace.

A process has one process ID in each of the layers of the PID namespace hierarchy in
which is visible, and walking back though each direct ancestor namespace through to
the root PID namespace. System calls that operate on process IDs always operate us-
ing the process ID that is visible in the PID namespace of the caller. A call to get-
pid(2) always returns the PID associated with the namespace in which the process was
created.

Some processes in a PID namespace may have parents that are outside of the name-
space. For example, the parent of the initial process in the namespace (i.e., the init(1)
process with PID 1) is necessarily in another namespace. Likewise, the direct chil-
dren of a process that uses setns(2) to cause its children to join a PID namespace are
in a different PID namespace from the caller of setns(2). Calls to getppid(2) for such
processes return 0.

While processes may freely descend into child PID namespaces (e.g., using setns(2)
with a PID namespace file descriptor), they may not move in the other direction. That
is to say, processes may not enter any ancestor namespaces (parent, grandparent, etc.).
Changing PID namespaces is a one-way operation.

The NS_GET_PARENT ioctl(2) operation can be used to discover the parental rela-
tionship between PID namespaces; see ioctl_nsfs(2).

setns(2) and unshare(2) semantics
Calls to setns(2) that specify a PID namespace file descriptor and calls to unshare(2)
with the CLONE_NEWPID flag cause children subsequently created by the caller to
be placed in a different PID namespace from the caller. (Since Linux 4.12, that PID
namespace is shown via the /proc/ pid /ns/pid_for_children file, as described in name-
spaces(7).) These calls do not, however, change the PID namespace of the calling
process, because doing so would change the caller’s idea of its own PID (as reported
by getpid()), which would break many applications and libraries.

To put things another way: a process’s PID namespace membership is determined
when the process is created and cannot be changed thereafter. Among other things,
this means that the parental relationship between processes mirrors the parental rela-
tionship between PID namespaces: the parent of a process is either in the same name-
space or resides in the immediate parent PID namespace.

Linux man-pages 6.13 2024-06-13 3519

pid_namespaces(7) Miscellaneous Information Manual pid_namespaces(7)

A process may call unshare(2) with the CLONE_NEWPID flag only once. After it
has performed this operation, its /proc/ pid /ns/pid_for_children symbolic link will be
empty until the first child is created in the namespace.

Adoption of orphaned children
When a child process becomes orphaned, it is reparented to the "init" process in the
PID namespace of its parent (unless one of the nearer ancestors of the parent em-
ployed the prctl(2) PR_SET_CHILD_SUBREAPER command to mark itself as the
reaper of orphaned descendant processes). Note that because of the setns(2) and un-
share(2) semantics described above, this may be the "init" process in the PID name-
space that is the parent of the child’s PID namespace, rather than the "init" process in
the child’s own PID namespace.

Compatibility of CLONE_NEWPID with other CLONE_* flags
In current versions of Linux, CLONE_NEWPID can’t be combined with
CLONE_THREAD. Threads are required to be in the same PID namespace such
that the threads in a process can send signals to each other. Similarly, it must be pos-
sible to see all of the threads of a process in the proc(5) filesystem. Additionally, if
two threads were in different PID namespaces, the process ID of the process sending a
signal could not be meaningfully encoded when a signal is sent (see the description of
the siginfo_t type in sigaction(2)). Since this is computed when a signal is enqueued,
a signal queue shared by processes in multiple PID namespaces would defeat that.

In earlier versions of Linux, CLONE_NEWPID was additionally disallowed (failing
with the error EINVAL) in combination with CLONE_SIGHAND (before Linux
4.3) as well as CLONE_VM (before Linux 3.12). The changes that lifted these re-
strictions have also been ported to earlier stable kernels.

/proc and PID namespaces
A /proc filesystem shows (in the /proc/ pid directories) only processes visible in the
PID namespace of the process that performed the mount, even if the /proc filesystem
is viewed from processes in other namespaces.

After creating a new PID namespace, it is useful for the child to change its root direc-
tory and mount a new procfs instance at /proc so that tools such as ps(1) work cor-
rectly. If a new mount namespace is simultaneously created by including
CLONE_NEWNS in the flags argument of clone(2) or unshare(2), then it isn’t nec-
essary to change the root directory: a new procfs instance can be mounted directly
over /proc.

From a shell, the command to mount /proc is:

$ mount -t proc proc /proc

Calling readlink(2) on the path /proc/self yields the process ID of the caller in the
PID namespace of the procfs mount (i.e., the PID namespace of the process that
mounted the procfs). This can be useful for introspection purposes, when a process
wants to discover its PID in other namespaces.

/proc files
/proc/sys/kernel/ns_last_pid (since Linux 3.3)

This file (which is virtualized per PID namespace) displays the last PID that
was allocated in this PID namespace. When the next PID is allocated, the ker-
nel will search for the lowest unallocated PID that is greater than this value,

Linux man-pages 6.13 2024-06-13 3520

pid_namespaces(7) Miscellaneous Information Manual pid_namespaces(7)

and when this file is subsequently read it will show that PID.

This file is writable by a process that has the CAP_SYS_ADMIN or (since
Linux 5.9) CAP_CHECKPOINT_RESTORE capability inside the user
namespace that owns the PID namespace. This makes it possible to determine
the PID that is allocated to the next process that is created inside this PID
namespace.

Miscellaneous
When a process ID is passed over a UNIX domain socket to a process in a different
PID namespace (see the description of SCM_CREDENTIALS in unix(7)), it is trans-
lated into the corresponding PID value in the receiving process’s PID namespace.

STANDARDS
Linux.

EXAMPLES
See user_namespaces(7).

SEE ALSO
clone(2), reboot(2), setns(2), unshare(2), proc(5), capabilities(7), credentials(7),
mount_namespaces(7), namespaces(7), user_namespaces(7), switch_root(8)

Linux man-pages 6.13 2024-06-13 3521

pipe(7) Miscellaneous Information Manual pipe(7)

NAME
pipe - overview of pipes and FIFOs

DESCRIPTION
Pipes and FIFOs (also known as named pipes) provide a unidirectional interprocess
communication channel. A pipe has a read end and a write end . Data written to the
write end of a pipe can be read from the read end of the pipe.

A pipe is created using pipe(2), which creates a new pipe and returns two file descrip-
tors, one referring to the read end of the pipe, the other referring to the write end.
Pipes can be used to create a communication channel between related processes; see
pipe(2) for an example.

A FIFO (short for First In First Out) has a name within the filesystem (created using
mkfifo(3)), and is opened using open(2). Any process may open a FIFO, assuming the
file permissions allow it. The read end is opened using the O_RDONLY flag; the
write end is opened using the O_WRONLY flag. See fifo(7) for further details. Note:
although FIFOs have a pathname in the filesystem, I/O on FIFOs does not involve op-
erations on the underlying device (if there is one).

I/O on pipes and FIFOs
The only difference between pipes and FIFOs is the manner in which they are created
and opened. Once these tasks have been accomplished, I/O on pipes and FIFOs has
exactly the same semantics.

If a process attempts to read from an empty pipe, then read(2) will block until data is
available. If a process attempts to write to a full pipe (see below), then write(2)
blocks until sufficient data has been read from the pipe to allow the write to complete.

Nonblocking I/O is possible by using the fcntl(2) F_SETFL operation to enable the
O_NONBLOCK open file status flag or by opening a fifo(7) with O_NONBLOCK.
If any process has the pipe open for writing, reads fail with EAGAIN; otherwise—
with no potential writers—reads succeed and return empty.

The communication channel provided by a pipe is a byte stream: there is no concept
of message boundaries.

If all file descriptors referring to the write end of a pipe have been closed, then an at-
tempt to read(2) from the pipe will see end-of-file (read(2) will return 0). If all file
descriptors referring to the read end of a pipe have been closed, then a write(2) will
cause a SIGPIPE signal to be generated for the calling process. If the calling process
is ignoring this signal, then write(2) fails with the error EPIPE. An application that
uses pipe(2) and fork(2) should use suitable close(2) calls to close unnecessary dupli-
cate file descriptors; this ensures that end-of-file and SIGPIPE/EPIPE are delivered
when appropriate.

It is not possible to apply lseek(2) to a pipe.

Pipe capacity
A pipe has a limited capacity. If the pipe is full, then a write(2) will block or fail, de-
pending on whether the O_NONBLOCK flag is set (see below). Different imple-
mentations have different limits for the pipe capacity. Applications should not rely on
a particular capacity: an application should be designed so that a reading process con-
sumes data as soon as it is available, so that a writing process does not remain
blocked.

Linux man-pages 6.13 2024-08-29 3522

pipe(7) Miscellaneous Information Manual pipe(7)

Before Linux 2.6.11, the capacity of a pipe was the same as the system page size (e.g.,
4096 bytes on i386). Since Linux 2.6.11, the pipe capacity is 16 pages (i.e., 65,536
bytes in a system with a page size of 4096 bytes). Since Linux 2.6.35, the default
pipe capacity is 16 pages, but the capacity can be queried and set using the fcntl(2)
F_GETPIPE_SZ and F_SETPIPE_SZ operations. See fcntl(2) for more informa-
tion. Since Linux 4.5, the default pipe capacity is lower than 16 pages when the
pipe-user-pages-soft limit is exceeded.

The following ioctl(2) operation, which can be applied to a file descriptor that refers
to either end of a pipe, places a count of the number of unread bytes in the pipe in the
int buffer pointed to by the final argument of the call:

ioctl(fd, FIONREAD, &nbytes);

The FIONREAD operation is not specified in any standard, but is provided on many
implementations.

/proc files
On Linux, the following files control how much memory can be used for pipes:

/proc/sys/fs/pipe-max-pages (only in Linux 2.6.34)
An upper limit, in pages, on the capacity that an unprivileged user (one with-
out the CAP_SYS_RESOURCE capability) can set for a pipe.

The default value for this limit is 16 times the default pipe capacity (see
above); the lower limit is two pages.

This interface was removed in Linux 2.6.35, in favor of /proc/sys/fs/pipe-max-
size.

/proc/sys/fs/pipe-max-size (since Linux 2.6.35)
The maximum size (in bytes) of individual pipes that can be set by users with-
out the CAP_SYS_RESOURCE capability. The value assigned to this file
may be rounded upward, to reflect the value actually employed for a conve-
nient implementation. To determine the rounded-up value, display the con-
tents of this file after assigning a value to it.

The default value for this file is 1048576 (1 MiB). The minimum value that
can be assigned to this file is the system page size. Attempts to set a limit less
than the page size cause write(2) to fail with the error EINVAL.

Since Linux 4.9, the value on this file also acts as a ceiling on the default ca-
pacity of a new pipe or newly opened FIFO.

/proc/sys/fs/pipe-user-pages-hard (since Linux 4.5)
The hard limit on the total size (in pages) of all pipes created or set by a single
unprivileged user (i.e., one with neither the CAP_SYS_RESOURCE nor the
CAP_SYS_ADMIN capability). So long as the total number of pages allo-
cated to pipe buffers for this user is at this limit, attempts to create new pipes
will be denied, and attempts to increase a pipe’s capacity will be denied.

When the value of this limit is zero (which is the default), no hard limit is ap-
plied.

Linux man-pages 6.13 2024-08-29 3523

pipe(7) Miscellaneous Information Manual pipe(7)

/proc/sys/fs/pipe-user-pages-soft (since Linux 4.5)
The soft limit on the total size (in pages) of all pipes created or set by a single
unprivileged user (i.e., one with neither the CAP_SYS_RESOURCE nor the
CAP_SYS_ADMIN capability). So long as the total number of pages allo-
cated to pipe buffers for this user is at this limit, individual pipes created by a
user will be limited to two pages (one page before Linux 5.14), and attempts to
increase a pipe’s capacity will be denied.

When the value of this limit is zero, no soft limit is applied. The default value
for this file is 16384, which permits creating up to 1024 pipes with the default
capacity.

Before Linux 4.9, some bugs affected the handling of the pipe-user-pages-soft and
pipe-user-pages-hard limits; see BUGS.

PIPE_BUF
POSIX.1 says that writes of less than PIPE_BUF bytes must be atomic: the output
data is written to the pipe as a contiguous sequence. Writes of more than PIPE_BUF
bytes may be nonatomic: the kernel may interleave the data with data written by other
processes. POSIX.1 requires PIPE_BUF to be at least 512 bytes. (On Linux,
PIPE_BUF is 4096 bytes.) The precise semantics depend on whether the file descrip-
tor is nonblocking (O_NONBLOCK), whether there are multiple writers to the pipe,
and on n, the number of bytes to be written:

O_NONBLOCK disabled, n <= PIPE_BUF
All n bytes are written atomically; write(2) may block if there is not room for
n bytes to be written immediately

O_NONBLOCK enabled, n <= PIPE_BUF
If there is room to write n bytes to the pipe, then write(2) succeeds immedi-
ately, writing all n bytes; otherwise write(2) fails, with errno set to EAGAIN.

O_NONBLOCK disabled, n > PIPE_BUF
The write is nonatomic: the data given to write(2) may be interleaved with
write(2)s by other process; the write(2) blocks until n bytes have been written.

O_NONBLOCK enabled, n > PIPE_BUF
If the pipe is full, then write(2) fails, with errno set to EAGAIN. Otherwise,
from 1 to n bytes may be written (i.e., a "partial write" may occur; the caller
should check the return value from write(2) to see how many bytes were actu-
ally written), and these bytes may be interleaved with writes by other
processes.

Open file status flags
The only open file status flags that can be meaningfully applied to a pipe or FIFO are
O_NONBLOCK and O_ASYNC.

Setting the O_ASYNC flag for the read end of a pipe causes a signal (SIGIO by de-
fault) to be generated when new input becomes available on the pipe. The target for
delivery of signals must be set using the fcntl(2) F_SETOWN command. On Linux,
O_ASYNC is supported for pipes and FIFOs only since Linux 2.6.

Portability notes
On some systems (but not Linux), pipes are bidirectional: data can be transmitted in
both directions between the pipe ends. POSIX.1 requires only unidirectional pipes.

Linux man-pages 6.13 2024-08-29 3524

pipe(7) Miscellaneous Information Manual pipe(7)

Portable applications should avoid reliance on bidirectional pipe semantics.

BUGS
Before Linux 4.9, some bugs affected the handling of the pipe-user-pages-soft and
pipe-user-pages-hard limits when using the fcntl(2) F_SETPIPE_SZ operation to
change a pipe’s capacity:

(a) When increasing the pipe capacity, the checks against the soft and hard limits
were made against existing consumption, and excluded the memory required for
the increased pipe capacity. The new increase in pipe capacity could then push
the total memory used by the user for pipes (possibly far) over a limit. (This
could also trigger the problem described next.)

Starting with Linux 4.9, the limit checking includes the memory required for
the new pipe capacity.

(b) The limit checks were performed even when the new pipe capacity was less
than the existing pipe capacity. This could lead to problems if a user set a large
pipe capacity, and then the limits were lowered, with the result that the user
could no longer decrease the pipe capacity.

Starting with Linux 4.9, checks against the limits are performed only when in-
creasing a pipe’s capacity; an unprivileged user can always decrease a pipe’s ca-
pacity.

(c) The accounting and checking against the limits were done as follows:

(1) Test whether the user has exceeded the limit.
(2) Make the new pipe buffer allocation.
(3) Account new allocation against the limits.

This was racey. Multiple processes could pass point (1) simultaneously, and
then allocate pipe buffers that were accounted for only in step (3), with the re-
sult that the user’s pipe buffer allocation could be pushed over the limit.

Starting with Linux 4.9, the accounting step is performed before doing the allo-
cation, and the operation fails if the limit would be exceeded.

Before Linux 4.9, bugs similar to points (a) and (c) could also occur when the kernel
allocated memory for a new pipe buffer; that is, when calling pipe(2) and when open-
ing a previously unopened FIFO.

SEE ALSO
mkfifo(1), dup(2), fcntl(2), open(2), pipe(2), poll(2), select(2), socketpair(2), splice(2),
stat(2), tee(2), vmsplice(2), mkfifo(3), epoll(7), fifo(7)

Linux man-pages 6.13 2024-08-29 3525

pkeys(7) Miscellaneous Information Manual pkeys(7)

NAME
pkeys - overview of Memory Protection Keys

DESCRIPTION
Memory Protection Keys (pkeys) are an extension to existing page-based memory
permissions. Normal page permissions using page tables require expensive system
calls and TLB invalidations when changing permissions. Memory Protection Keys
provide a mechanism for changing protections without requiring modification of the
page tables on every permission change.

To use pkeys, software must first "tag" a page in the page tables with a pkey. After
this tag is in place, an application only has to change the contents of a register in order
to remove write access, or all access to a tagged page.

Protection keys work in conjunction with the existing PROT_READ,
PROT_WRITE, and PROT_EXEC permissions passed to system calls such as
mprotect(2) and mmap(2), but always act to further restrict these traditional permis-
sion mechanisms.

If a process performs an access that violates pkey restrictions, it receives a SIGSEGV
signal. See sigaction(2) for details of the information available with that signal.

To use the pkeys feature, the processor must support it, and the kernel must contain
support for the feature on a given processor. As of early 2016 only future Intel x86
processors are supported, and this hardware supports 16 protection keys in each
process. However, pkey 0 is used as the default key, so a maximum of 15 are avail-
able for actual application use. The default key is assigned to any memory region for
which a pkey has not been explicitly assigned via pkey_mprotect(2).

Protection keys have the potential to add a layer of security and reliability to applica-
tions. But they have not been primarily designed as a security feature. For instance,
WRPKRU is a completely unprivileged instruction, so pkeys are useless in any case
that an attacker controls the PKRU register or can execute arbitrary instructions.

Applications should be very careful to ensure that they do not "leak" protection keys.
For instance, before calling pkey_free(2), the application should be sure that no mem-
ory has that pkey assigned. If the application left the freed pkey assigned, a future
user of that pkey might inadvertently change the permissions of an unrelated data
structure, which could impact security or stability. The kernel currently allows in-use
pkeys to have pkey_free(2) called on them because it would have processor or mem-
ory performance implications to perform the additional checks needed to disallow it.
Implementation of the necessary checks is left up to applications. Applications may
implement these checks by searching the /proc/ pid /smaps file for memory regions
with the pkey assigned. Further details can be found in proc(5).

Any application wanting to use protection keys needs to be able to function without
them. They might be unavailable because the hardware that the application runs on
does not support them, the kernel code does not contain support, the kernel support
has been disabled, or because the keys have all been allocated, perhaps by a library
the application is using. It is recommended that applications wanting to use protec-
tion keys should simply call pkey_alloc(2) and test whether the call succeeds, instead
of attempting to detect support for the feature in any other way.

Although unnecessary, hardware support for protection keys may be enumerated with

Linux man-pages 6.13 2024-06-15 3526

pkeys(7) Miscellaneous Information Manual pkeys(7)

the cpuid instruction. Details of how to do this can be found in the Intel Software De-
velopers Manual. The kernel performs this enumeration and exposes the information
in /proc/cpuinfo under the "flags" field. The string "pku" in this field indicates hard-
ware support for protection keys and the string "ospke" indicates that the kernel con-
tains and has enabled protection keys support.

Applications using threads and protection keys should be especially careful. Threads
inherit the protection key rights of the parent at the time of the clone(2), system call.
Applications should either ensure that their own permissions are appropriate for child
threads at the time when clone(2) is called, or ensure that each child thread can per-
form its own initialization of protection key rights.

Signal Handler Behavior
Each time a signal handler is invoked (including nested signals), the thread is tem-
porarily given a new, default set of protection key rights that override the rights from
the interrupted context. This means that applications must re-establish their desired
protection key rights upon entering a signal handler if the desired rights differ from
the defaults. The rights of any interrupted context are restored when the signal han-
dler returns.

This signal behavior is unusual and is due to the fact that the x86 PKRU register
(which stores protection key access rights) is managed with the same hardware mech-
anism (XSAVE) that manages floating-point registers. The signal behavior is the
same as that of floating-point registers.

Protection Keys system calls
The Linux kernel implements the following pkey-related system calls: pkey_mpro-
tect(2), pkey_alloc(2), and pkey_free(2).

The Linux pkey system calls are available only if the kernel was configured and built
with the CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS option.

EXAMPLES
The program below allocates a page of memory with read and write permissions. It
then writes some data to the memory and successfully reads it back. After that, it at-
tempts to allocate a protection key and disallows access to the page by using the
WRPKRU instruction. It then tries to access the page, which we now expect to cause
a fatal signal to the application.

$./a.out
buffer contains: 73
about to read buffer again...
Segmentation fault (core dumped)

Program source

#define _GNU_SOURCE
#include <err.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>

Linux man-pages 6.13 2024-06-15 3527

pkeys(7) Miscellaneous Information Manual pkeys(7)

int
main(void)
{

int status;
int pkey;
int *buffer;

/*
* Allocate one page of memory.
*/

buffer = mmap(NULL, getpagesize(), PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);

if (buffer == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

/*
* Put some random data into the page (still OK to touch).
*/

*buffer = __LINE__;
printf("buffer contains: %d\n", *buffer);

/*
* Allocate a protection key:
*/

pkey = pkey_alloc(0, 0);
if (pkey == -1)

err(EXIT_FAILURE, "pkey_alloc");

/*
* Disable access to any memory with "pkey" set,
* even though there is none right now.
*/

status = pkey_set(pkey, PKEY_DISABLE_ACCESS);
if (status)

err(EXIT_FAILURE, "pkey_set");

/*
* Set the protection key on "buffer".
* Note that it is still read/write as far as mprotect() is
* concerned and the previous pkey_set() overrides it.
*/

status = pkey_mprotect(buffer, getpagesize(),
PROT_READ | PROT_WRITE, pkey);

if (status == -1)
err(EXIT_FAILURE, "pkey_mprotect");

printf("about to read buffer again...\n");

/*

Linux man-pages 6.13 2024-06-15 3528

pkeys(7) Miscellaneous Information Manual pkeys(7)

* This will crash, because we have disallowed access.
*/

printf("buffer contains: %d\n", *buffer);

status = pkey_free(pkey);
if (status == -1)

err(EXIT_FAILURE, "pkey_free");

exit(EXIT_SUCCESS);
}

SEE ALSO
pkey_alloc(2), pkey_free(2), pkey_mprotect(2), sigaction(2)

Linux man-pages 6.13 2024-06-15 3529

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

NAME
posixoptions - optional parts of the POSIX standard

DESCRIPTION
The POSIX standard (the information below is from POSIX.1-2001) describes a set of
behaviors and interfaces for a compliant system. However, many interfaces are op-
tional and there are feature test macros to test the availability of interfaces at compile
time, and functions sysconf(3), fpathconf(3), pathconf(3), confstr(3) to do this at run
time. From shell scripts one can use getconf (1)For more detail, see sysconf(3).

We give the name of the POSIX abbreviation, the option, the name of the sysconf(3)
parameter used to inquire about the option, and possibly a very short description.
Much more precise detail can be found in the POSIX standard itself, versions of
which can nowadays be accessed freely on the web.

ADV - _POSIX_ADVISORY_INFO - _SC_ADVISORY_INFO
The following advisory functions are present:

posix_fadvise()
posix_fallocate()
posix_memalign()
posix_madvise()

AIO - _POSIX_ASYNCHRONOUS_IO - _SC_ASYNCHRONOUS_IO
The header <aio.h> is present. The following functions are present:

aio_cancel()
aio_error()
aio_fsync()
aio_read()
aio_return()
aio_suspend()
aio_write()
lio_listio()

BAR - _POSIX_BARRIERS - _SC_BARRIERS
This option implies the _POSIX_THREADS and
_POSIX_THREAD_SAFE_FUNCTIONS options. The following functions are
present:

pthread_barrier_destroy()
pthread_barrier_init()
pthread_barrier_wait()
pthread_barrierattr_destroy()
pthread_barrierattr_init()

--- - POSIX_CHOWN_RESTRICTED
If this option is in effect (as it always is under POSIX.1-2001), then only root may
change the owner of a file, and nonroot can set the group of a file only to one of the
groups it belongs to. This affects the following functions:

chown()
fchown()

Linux man-pages 6.13 2024-05-02 3530

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

CS - _POSIX_CLOCK_SELECTION - _SC_CLOCK_SELECTION
This option implies the _POSIX_TIMERS option. The following functions are
present:

pthread_condattr_getclock()
pthread_condattr_setclock()
clock_nanosleep()

If CLOCK_REALTIME is changed by the function clock_settime(), then this affects
all timers set for an absolute time.

CPT - _POSIX_CPUTIME - _SC_CPUTIME
The CLOCK_PROCESS_CPUTIME_ID clock ID is supported. The initial value of
this clock is 0 for each process. This option implies the _POSIX_TIMERS option.
The function clock_getcpuclockid() is present.

--- - _POSIX_FILE_LOCKING - _SC_FILE_LOCKING
This option has been deleted. Not in final XPG6.

FSC - _POSIX_FSYNC - _SC_FSYNC
The function fsync() is present.

IP6 - _POSIX_IPV6 - _SC_IPV6
Internet Protocol Version 6 is supported.

--- - _POSIX_JOB_CONTROL - _SC_JOB_CONTROL
If this option is in effect (as it always is under POSIX.1-2001), then the system imple-
ments POSIX-style job control, and the following functions are present:

setpgid()
tcdrain()
tcflush()
tcgetpgrp()
tcsendbreak()
tcsetattr()
tcsetpgrp()

MF - _POSIX_MAPPED_FILES - _SC_MAPPED_FILES
Shared memory is supported. The include file <sys/mman.h> is present. The follow-
ing functions are present:

mmap()
msync()
munmap()

ML - _POSIX_MEMLOCK - _SC_MEMLOCK
Shared memory can be locked into core. The following functions are present:

mlockall()
munlockall()

MR/MLR - _POSIX_MEMLOCK_RANGE - _SC_MEMLOCK_RANGE
More precisely, ranges can be locked into core. The following functions are present:

mlock()
munlock()

Linux man-pages 6.13 2024-05-02 3531

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

MPR - _POSIX_MEMORY_PROTECTION - _SC_MEMORY_PROTECTION
The function mprotect() is present.

MSG - _POSIX_MESSAGE_PASSING - _SC_MESSAGE_PASSING
The include file <mqueue.h> is present. The following functions are present:

mq_close()
mq_getattr()
mq_notify()
mq_open()
mq_receive()
mq_send()
mq_setattr()
mq_unlink()

MON - _POSIX_MONOTONIC_CLOCK - _SC_MONOTONIC_CLOCK
CLOCK_MONOTONIC is supported. This option implies the _POSIX_TIMERS
option. The following functions are affected:

aio_suspend()
clock_getres()
clock_gettime()
clock_settime()
timer_create()

--- - _POSIX_MULTI_PROCESS - _SC_MULTI_PROCESS
This option has been deleted. Not in final XPG6.

--- - _POSIX_NO_TRUNC
If this option is in effect (as it always is under POSIX.1-2001), then pathname compo-
nents longer than NAME_MAX are not truncated, but give an error. This property
may be dependent on the path prefix of the component.

PIO - _POSIX_PRIORITIZED_IO - _SC_PRIORITIZED_IO
This option says that one can specify priorities for asynchronous I/O. This affects the
functions

aio_read()
aio_write()

PS - _POSIX_PRIORITY_SCHEDULING - _SC_PRIORITY_SCHEDULING
The include file <sched.h> is present. The following functions are present:

sched_get_priority_max()
sched_get_priority_min()
sched_getparam()
sched_getscheduler()
sched_rr_get_interval()
sched_setparam()
sched_setscheduler()
sched_yield()

If also _POSIX_SPAWN is in effect, then the following functions are present:

posix_spawnattr_getschedparam()
posix_spawnattr_getschedpolicy()

Linux man-pages 6.13 2024-05-02 3532

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

posix_spawnattr_setschedparam()
posix_spawnattr_setschedpolicy()

RS - _POSIX_RAW_SOCKETS
Raw sockets are supported. The following functions are affected:

getsockopt()
setsockopt()

--- - _POSIX_READER_WRITER_LOCKS - _SC_READER_WRITER_LOCKS
This option implies the _POSIX_THREADS option. Conversely, under
POSIX.1-2001 the _POSIX_THREADS option implies this option.

The following functions are present:

pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_init()

RTS - _POSIX_REALTIME_SIGNALS - _SC_REALTIME_SIGNALS
Realtime signals are supported. The following functions are present:

sigqueue()
sigtimedwait()
sigwaitinfo()

--- - _POSIX_REGEXP - _SC_REGEXP
If this option is in effect (as it always is under POSIX.1-2001), then POSIX regular
expressions are supported and the following functions are present:

regcomp()
regerror()
regexec()
regfree()

--- - _POSIX_SAVED_IDS - _SC_SAVED_IDS
If this option is in effect (as it always is under POSIX.1-2001), then a process has a
saved set-user-ID and a saved set-group-ID. The following functions are affected:

exec()
kill()
seteuid()
setegid()
setgid()
setuid()

SEM - _POSIX_SEMAPHORES - _SC_SEMAPHORES
The include file <semaphore.h> is present. The following functions are present:

sem_close()

Linux man-pages 6.13 2024-05-02 3533

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

sem_destroy()
sem_getvalue()
sem_init()
sem_open()
sem_post()
sem_trywait()
sem_unlink()
sem_wait()

SHM - _POSIX_SHARED_MEMORY_OBJECTS - _SC_SHARED_MEM-
ORY_OBJECTS
The following functions are present:

mmap()
munmap()
shm_open()
shm_unlink()

--- - _POSIX_SHELL - _SC_SHELL
If this option is in effect (as it always is under POSIX.1-2001), the function system()
is present.

SPN - _POSIX_SPAWN - _SC_SPAWN
This option describes support for process creation in a context where it is difficult or
impossible to use fork(), for example, because no MMU is present.

If _POSIX_SPAWN is in effect, then the include file <spawn.h> and the following
functions are present:

posix_spawn()
posix_spawn_file_actions_addclose()
posix_spawn_file_actions_adddup2()
posix_spawn_file_actions_addopen()
posix_spawn_file_actions_destroy()
posix_spawn_file_actions_init()
posix_spawnattr_destroy()
posix_spawnattr_getsigdefault()
posix_spawnattr_getflags()
posix_spawnattr_getpgroup()
posix_spawnattr_getsigmask()
posix_spawnattr_init()
posix_spawnattr_setsigdefault()
posix_spawnattr_setflags()
posix_spawnattr_setpgroup()
posix_spawnattr_setsigmask()
posix_spawnp()

If also _POSIX_PRIORITY_SCHEDULING is in effect, then the following func-
tions are present:

posix_spawnattr_getschedparam()
posix_spawnattr_getschedpolicy()
posix_spawnattr_setschedparam()

Linux man-pages 6.13 2024-05-02 3534

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

posix_spawnattr_setschedpolicy()

SPI - _POSIX_SPIN_LOCKS - _SC_SPIN_LOCKS
This option implies the _POSIX_THREADS and
_POSIX_THREAD_SAFE_FUNCTIONS options. The following functions are
present:

pthread_spin_destroy()
pthread_spin_init()
pthread_spin_lock()
pthread_spin_trylock()
pthread_spin_unlock()

SS - _POSIX_SPORADIC_SERVER - _SC_SPORADIC_SERVER
The scheduling policy SCHED_SPORADIC is supported. This option implies the
_POSIX_PRIORITY_SCHEDULING option. The following functions are af-
fected:

sched_setparam()
sched_setscheduler()

SIO - _POSIX_SYNCHRONIZED_IO - _SC_SYNCHRONIZED_IO
The following functions are affected:

open()
msync()
fsync()
fdatasync()

TSA - _POSIX_THREAD_ATTR_STACKADDR - _SC_THREAD_ATTR_STACK-
ADDR
The following functions are affected:

pthread_attr_getstack()
pthread_attr_getstackaddr()
pthread_attr_setstack()
pthread_attr_setstackaddr()

TSS - _POSIX_THREAD_ATTR_STACKSIZE - _SC_THREAD_ATTR_STACK-
SIZE
The following functions are affected:

pthread_attr_getstack()
pthread_attr_getstacksize()
pthread_attr_setstack()
pthread_attr_setstacksize()

TCT - _POSIX_THREAD_CPUTIME - _SC_THREAD_CPUTIME
The clockID CLOCK_THREAD_CPUTIME_ID is supported. This option implies
the _POSIX_TIMERS option. The following functions are affected:

pthread_getcpuclockid()
clock_getres()
clock_gettime()
clock_settime()
timer_create()

Linux man-pages 6.13 2024-05-02 3535

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

TPI - _POSIX_THREAD_PRIO_INHERIT - _SC_THREAD_PRIO_INHERIT
The following functions are affected:

pthread_mutexattr_getprotocol()
pthread_mutexattr_setprotocol()

TPP - _POSIX_THREAD_PRIO_PROTECT - _SC_THREAD_PRIO_PROTECT
The following functions are affected:

pthread_mutex_getprioceiling()
pthread_mutex_setprioceiling()
pthread_mutexattr_getprioceiling()
pthread_mutexattr_getprotocol()
pthread_mutexattr_setprioceiling()
pthread_mutexattr_setprotocol()

TPS - _POSIX_THREAD_PRIORITY_SCHEDULING - _SC_THREAD_PRIOR-
ITY_SCHEDULING
If this option is in effect, the different threads inside a process can run with different
priorities and/or different schedulers. The following functions are affected:

pthread_attr_getinheritsched()
pthread_attr_getschedpolicy()
pthread_attr_getscope()
pthread_attr_setinheritsched()
pthread_attr_setschedpolicy()
pthread_attr_setscope()
pthread_getschedparam()
pthread_setschedparam()
pthread_setschedprio()

TSH - _POSIX_THREAD_PROCESS_SHARED -
_SC_THREAD_PROCESS_SHARED
The following functions are affected:

pthread_barrierattr_getpshared()
pthread_barrierattr_setpshared()
pthread_condattr_getpshared()
pthread_condattr_setpshared()
pthread_mutexattr_getpshared()
pthread_mutexattr_setpshared()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_setpshared()

TSF - _POSIX_THREAD_SAFE_FUNCTIONS - _SC_THREAD_SAFE_FUNC-
TIONS
The following functions are affected:

readdir_r()
getgrgid_r()
getgrnam_r()
getpwnam_r()
getpwuid_r()
flockfile()

Linux man-pages 6.13 2024-05-02 3536

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

ftrylockfile()
funlockfile()
getc_unlocked()
getchar_unlocked()
putc_unlocked()
putchar_unlocked()
rand_r()
strerror_r()
strtok_r()
asctime_r()
ctime_r()
gmtime_r()
localtime_r()

TSP - _POSIX_THREAD_SPORADIC_SERVER - _SC_THREAD_SPO-
RADIC_SERVER
This option implies the _POSIX_THREAD_PRIORITY_SCHEDULING option.
The following functions are affected:

sched_getparam()
sched_setparam()
sched_setscheduler()

THR - _POSIX_THREADS - _SC_THREADS
Basic support for POSIX threads is available. The following functions are present:

pthread_atfork()
pthread_attr_destroy()
pthread_attr_getdetachstate()
pthread_attr_getschedparam()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setschedparam()
pthread_cancel()
pthread_cleanup_push()
pthread_cleanup_pop()
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_condattr_destroy()
pthread_condattr_init()
pthread_create()
pthread_detach()
pthread_equal()
pthread_exit()
pthread_getspecific()
pthread_join()
pthread_key_create()

Linux man-pages 6.13 2024-05-02 3537

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

pthread_key_delete()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutexattr_destroy()
pthread_mutexattr_init()
pthread_once()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_init()
pthread_self ()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setspecific()
pthread_testcancel()

TMO - _POSIX_TIMEOUTS - _SC_TIMEOUTS
The following functions are present:

mq_timedreceive()
mq_timedsend()
pthread_mutex_timedlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
sem_timedwait()
posix_trace_timedgetnext_event()

TMR - _POSIX_TIMERS - _SC_TIMERS
The following functions are present:

clock_getres()
clock_gettime()
clock_settime()
nanosleep()
timer_create()
timer_delete()
timer_gettime()
timer_getoverrun()
timer_settime()

TRC - _POSIX_TRACE - _SC_TRACE
POSIX tracing is available. The following functions are present:

posix_trace_attr_destroy()

Linux man-pages 6.13 2024-05-02 3538

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

posix_trace_attr_getclockres()
posix_trace_attr_getcreatetime()
posix_trace_attr_getgenversion()
posix_trace_attr_getmaxdatasize()
posix_trace_attr_getmaxsystemeventsize()
posix_trace_attr_getmaxusereventsize()
posix_trace_attr_getname()
posix_trace_attr_getstreamfullpolicy()
posix_trace_attr_getstreamsize()
posix_trace_attr_init()
posix_trace_attr_setmaxdatasize()
posix_trace_attr_setname()
posix_trace_attr_setstreamsize()
posix_trace_attr_setstreamfullpolicy()
posix_trace_clear()
posix_trace_create()
posix_trace_event()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventid_open()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_shutdown()
posix_trace_start()
posix_trace_stop()
posix_trace_trygetnext_event()

TEF - _POSIX_TRACE_EVENT_FILTER - _SC_TRACE_EVENT_FILTER
This option implies the _POSIX_TRACE option. The following functions are
present:

posix_trace_eventset_add()
posix_trace_eventset_del()
posix_trace_eventset_empty()
posix_trace_eventset_fill()
posix_trace_eventset_ismember()
posix_trace_get_filter()
posix_trace_set_filter()
posix_trace_trid_eventid_open()

TRI - _POSIX_TRACE_INHERIT - _SC_TRACE_INHERIT
Tracing children of the traced process is supported. This option implies the
_POSIX_TRACE option. The following functions are present:

posix_trace_attr_getinherited()
posix_trace_attr_setinherited()

Linux man-pages 6.13 2024-05-02 3539

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

TRL - _POSIX_TRACE_LOG - _SC_TRACE_LOG
This option implies the _POSIX_TRACE option. The following functions are
present:

posix_trace_attr_getlogfullpolicy()
posix_trace_attr_getlogsize()
posix_trace_attr_setlogfullpolicy()
posix_trace_attr_setlogsize()
posix_trace_close()
posix_trace_create_withlog()
posix_trace_open()
posix_trace_rewind()

TYM - _POSIX_TYPED_MEMORY_OBJECTS - _SC_TYPED_MEMORY_OB-
JECT
The following functions are present:

posix_mem_offset()
posix_typed_mem_get_info()
posix_typed_mem_open()

--- - _POSIX_VDISABLE
Always present (probably 0). Value to set a changeable special control character to
indicate that it is disabled.

X/OPEN SYSTEM INTERFACE EXTENSIONS
XSI - _XOPEN_CRYPT - _SC_XOPEN_CRYPT

The following functions are present:

crypt()
encrypt()
setkey()

XSI - _XOPEN_REALTIME - _SC_XOPEN_REALTIME
This option implies the following options:

_POSIX_ASYNCHRONOUS_IO==200112L
_POSIX_FSYNC
_POSIX_MAPPED_FILES
_POSIX_MEMLOCK==200112L
_POSIX_MEMLOCK_RANGE==200112L
_POSIX_MEMORY_PROTECTION
_POSIX_MESSAGE_PASSING==200112L
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING==200112L
_POSIX_REALTIME_SIGNALS==200112L
_POSIX_SEMAPHORES==200112L
_POSIX_SHARED_MEMORY_OBJECTS==200112L
_POSIX_SYNCHRONIZED_IO==200112L
_POSIX_TIMERS==200112L

ADV - --- - ---
The Advanced Realtime option group implies that the following options are all de-
fined to 200112L:

Linux man-pages 6.13 2024-05-02 3540

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

_POSIX_ADVISORY_INFO
_POSIX_CLOCK_SELECTION

(implies _POSIX_TIMERS)
_POSIX_CPUTIME

(implies _POSIX_TIMERS)
_POSIX_MONOTONIC_CLOCK

(implies _POSIX_TIMERS)
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER

(implies _POSIX_PRIORITY_SCHEDULING)
_POSIX_TIMEOUTS
_POSIX_TYPED_MEMORY_OBJECTS

XSI - _XOPEN_REALTIME_THREADS - _SC_XOPEN_REALTIME_THREADS
This option implies that the following options are all defined to 200112L:

_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING

ADVANCED REALTIME THREADS - --- - ---
This option implies that the following options are all defined to 200112L:

_POSIX_BARRIERS
(implies _POSIX_THREADS, _POSIX_THREAD_SAFE_FUNCTIONS)

_POSIX_SPIN_LOCKS
(implies _POSIX_THREADS, _POSIX_THREAD_SAFE_FUNCTIONS)

_POSIX_THREAD_CPUTIME
(implies _POSIX_TIMERS)

_POSIX_THREAD_SPORADIC_SERVER
(implies _POSIX_THREAD_PRIORITY_SCHEDULING)

TRACING - --- - ---
This option implies that the following options are all defined to 200112L:

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG
_POSIX_TRACE_INHERIT

STREAMS - _XOPEN_STREAMS - _SC_XOPEN_STREAMS
The following functions are present:

fattach()
fdetach()
getmsg()
getpmsg()
ioctl()
isastream()
putmsg()
putpmsg()

Linux man-pages 6.13 2024-05-02 3541

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

XSI - _XOPEN_LEGACY - _SC_XOPEN_LEGACY
Functions included in the legacy option group were previously mandatory, but are
now optional in this version. The following functions are present:

bcmp()
bcopy()
bzero()
ecvt()
fcvt()
ftime()
gcvt()
getwd()
index()
mktemp()
rindex()
utimes()
wcswcs()

XSI - _XOPEN_UNIX - _SC_XOPEN_UNIX
The following functions are present:

mmap()
munmap()
msync()

This option implies the following options:

_POSIX_FSYNC
_POSIX_MAPPED_FILES
_POSIX_MEMORY_PROTECTION
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_PROCESS_SHARED
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS

This option may imply the following options from the XSI option groups:

Encryption (_XOPEN_CRYPT)
Realtime (_XOPEN_REALTIME)
Advanced Realtime (ADB)
Realtime Threads (_XOPEN_REALTIME_THREADS)
Advanced Realtime Threads (ADVANCED REALTIME THREADS)
Tracing (TRACING)
XSI Streams (STREAMS)
Legacy (_XOPEN_LEGACY)

SEE ALSO
sysconf(3), standards(7)

Linux man-pages 6.13 2024-05-02 3542

process-keyring(7) Miscellaneous Information Manual process-keyring(7)

NAME
process-keyring - per-process shared keyring

DESCRIPTION
The process keyring is a keyring used to anchor keys on behalf of a process. It is cre-
ated only when a process requests it. The process keyring has the name (description)
_pid .

A special serial number value, KEY_SPEC_PROCESS_KEYRING, is defined that
can be used in lieu of the actual serial number of the calling process’s process keyring.

From the keyctl(1) utility, ’@p’ can be used instead of a numeric key ID in much the
same way, but since keyctl(1) is a program run after forking, this is of no utility.

A thread created using the clone(2) CLONE_THREAD flag has the same process
keyring as the caller of clone(2). When a new process is created using fork() it ini-
tially has no process keyring. A process’s process keyring is cleared on execve(2).
The process keyring is destroyed when the last thread that refers to it terminates.

If a process doesn’t have a process keyring when it is accessed, then the process
keyring will be created if the keyring is to be modified; otherwise, the error
ENOKEY results.

SEE ALSO
keyctl(1), keyctl(3), keyrings(7), persistent-keyring(7), session-keyring(7), thread-
keyring(7), user-keyring(7), user-session-keyring(7)

Linux man-pages 6.13 2024-05-02 3543

pthreads(7) Miscellaneous Information Manual pthreads(7)

NAME
pthreads - POSIX threads

DESCRIPTION
POSIX.1 specifies a set of interfaces (functions, header files) for threaded program-
ming commonly known as POSIX threads, or Pthreads. A single process can contain
multiple threads, all of which are executing the same program. These threads share
the same global memory (data and heap segments), but each thread has its own stack
(automatic variables).

POSIX.1 also requires that threads share a range of other attributes (i.e., these attrib-
utes are process-wide rather than per-thread):

• process ID

• parent process ID

• process group ID and session ID

• controlling terminal

• user and group IDs

• open file descriptors

• record locks (see fcntl(2))

• signal dispositions

• file mode creation mask (umask(2))

• current directory (chdir(2)) and root directory (chroot(2))

• interval timers (setitimer(2)) and POSIX timers (timer_create(2))

• nice value (setpriority(2))

• resource limits (setrlimit(2))

• measurements of the consumption of CPU time (times(2)) and resources
(getrusage(2))

As well as the stack, POSIX.1 specifies that various other attributes are distinct for
each thread, including:

• thread ID (the pthread_t data type)

• signal mask (pthread_sigmask(3))

• the errno variable

• alternate signal stack (sigaltstack(2))

• real-time scheduling policy and priority (sched(7))

The following Linux-specific features are also per-thread:

• capabilities (see capabilities(7))

• CPU affinity (sched_setaffinity(2))

Pthreads function return values
Most pthreads functions return 0 on success, and an error number on failure. The er-
ror numbers that can be returned have the same meaning as the error numbers

Linux man-pages 6.13 2024-06-15 3544

pthreads(7) Miscellaneous Information Manual pthreads(7)

returned in errno by conventional system calls and C library functions. Note that the
pthreads functions do not set errno. For each of the pthreads functions that can return
an error, POSIX.1-2001 specifies that the function can never fail with the error
EINTR.

Thread IDs
Each of the threads in a process has a unique thread identifier (stored in the type
pthread_t). This identifier is returned to the caller of pthread_create(3), and a thread
can obtain its own thread identifier using pthread_self(3).

Thread IDs are guaranteed to be unique only within a process. (In all pthreads func-
tions that accept a thread ID as an argument, that ID by definition refers to a thread in
the same process as the caller.)

The system may reuse a thread ID after a terminated thread has been joined, or a de-
tached thread has terminated. POSIX says: "If an application attempts to use a thread
ID whose lifetime has ended, the behavior is undefined."

Thread-safe functions
A thread-safe function is one that can be safely (i.e., it will deliver the same results re-
gardless of whether it is) called from multiple threads at the same time.

POSIX.1-2001 and POSIX.1-2008 require that all functions specified in the standard
shall be thread-safe, except for the following functions:

asctime()
basename()
catgets()
crypt()
ctermid() if passed a non-NULL argument
ctime()
dbm_clearerr()
dbm_close()
dbm_delete()
dbm_error()
dbm_fetch()
dbm_firstkey()
dbm_nextkey()
dbm_open()
dbm_store()
dirname()
dlerror()
drand48()
ecvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
encrypt()
endgrent()
endpwent()
endutxent()
fcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
ftw()
gcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
getc_unlocked()

Linux man-pages 6.13 2024-06-15 3545

pthreads(7) Miscellaneous Information Manual pthreads(7)

getchar_unlocked()
getdate()
getenv()
getgrent()
getgrgid()
getgrnam()
gethostbyaddr() [POSIX.1-2001 only (function removed in

POSIX.1-2008)]
gethostbyname() [POSIX.1-2001 only (function removed in

POSIX.1-2008)]
gethostent()
getlogin()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwuid()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
gmtime()
hcreate()
hdestroy()
hsearch()
inet_ntoa()
l64a()
lgamma()
lgammaf()
lgammal()
localeconv()
localtime()
lrand48()
mrand48()
nftw()
nl_langinfo()
ptsname()
putc_unlocked()
putchar_unlocked()
putenv()
pututxline()
rand()

Linux man-pages 6.13 2024-06-15 3546

pthreads(7) Miscellaneous Information Manual pthreads(7)

readdir()
setenv()
setgrent()
setkey()
setpwent()
setutxent()
strerror()
strsignal() [Added in POSIX.1-2008]
strtok()
system() [Added in POSIX.1-2008]
tmpnam() if passed a non-NULL argument
ttyname()
unsetenv()
wcrtomb() if its final argument is NULL
wcsrtombs() if its final argument is NULL
wcstombs()
wctomb()

Async-cancel-safe functions
An async-cancel-safe function is one that can be safely called in an application where
asynchronous cancelability is enabled (see pthread_setcancelstate(3)).

Only the following functions are required to be async-cancel-safe by POSIX.1-2001
and POSIX.1-2008:

pthread_cancel()
pthread_setcancelstate()
pthread_setcanceltype()

Cancelation points
POSIX.1 specifies that certain functions must, and certain other functions may, be
cancelation points. If a thread is cancelable, its cancelability type is deferred, and a
cancelation request is pending for the thread, then the thread is canceled when it calls
a function that is a cancelation point.

The following functions are required to be cancelation points by POSIX.1-2001
and/or POSIX.1-2008:

accept()
aio_suspend()
clock_nanosleep()
close()
connect()
creat()
fcntl() F_SETLKW
fdatasync()
fsync()
getmsg()
getpmsg()
lockf() F_LOCK
mq_receive()
mq_send()

Linux man-pages 6.13 2024-06-15 3547

pthreads(7) Miscellaneous Information Manual pthreads(7)

mq_timedreceive()
mq_timedsend()
msgrcv()
msgsnd()
msync()
nanosleep()
open()
openat() [Added in POSIX.1-2008]
pause()
poll()
pread()
pselect()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_join()
pthread_testcancel()
putmsg()
putpmsg()
pwrite()
read()
readv()
recv()
recvfrom()
recvmsg()
select()
sem_timedwait()
sem_wait()
send()
sendmsg()
sendto()
sigpause() [POSIX.1-2001 only (moves to "may" list in POSIX.1-2008)]
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
system()
tcdrain()
usleep() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
wait()
waitid()
waitpid()
write()
writev()

The following functions may be cancelation points according to POSIX.1-2001 and/or
POSIX.1-2008:

access()
asctime()

Linux man-pages 6.13 2024-06-15 3548

pthreads(7) Miscellaneous Information Manual pthreads(7)

asctime_r()
catclose()
catgets()
catopen()
chmod() [Added in POSIX.1-2008]
chown() [Added in POSIX.1-2008]
closedir()
closelog()
ctermid()
ctime()
ctime_r()
dbm_close()
dbm_delete()
dbm_fetch()
dbm_nextkey()
dbm_open()
dbm_store()
dlclose()
dlopen()
dprintf() [Added in POSIX.1-2008]
endgrent()
endhostent()
endnetent()
endprotoent()
endpwent()
endservent()
endutxent()
faccessat() [Added in POSIX.1-2008]
fchmod() [Added in POSIX.1-2008]
fchmodat() [Added in POSIX.1-2008]
fchown() [Added in POSIX.1-2008]
fchownat() [Added in POSIX.1-2008]
fclose()
fcntl() (for any value of cmd argument)
fflush()
fgetc()
fgetpos()
fgets()
fgetwc()
fgetws()
fmtmsg()
fopen()
fpathconf()
fprintf()
fputc()
fputs()
fputwc()
fputws()
fread()

Linux man-pages 6.13 2024-06-15 3549

pthreads(7) Miscellaneous Information Manual pthreads(7)

freopen()
fscanf()
fseek()
fseeko()
fsetpos()
fstat()
fstatat() [Added in POSIX.1-2008]
ftell()
ftello()
ftw()
futimens() [Added in POSIX.1-2008]
fwprintf()
fwrite()
fwscanf()
getaddrinfo()
getc()
getc_unlocked()
getchar()
getchar_unlocked()
getcwd()
getdate()
getdelim() [Added in POSIX.1-2008]
getgrent()
getgrgid()
getgrgid_r()
getgrnam()
getgrnam_r()
gethostbyaddr() [POSIX.1-2001 only (function removed in

POSIX.1-2008)]
gethostbyname() [POSIX.1-2001 only (function removed in

POSIX.1-2008)]
gethostent()
gethostid()
gethostname()
getline() [Added in POSIX.1-2008]
getlogin()
getlogin_r()
getnameinfo()
getnetbyaddr()
getnetbyname()
getnetent()
getopt() (if opterr is nonzero)
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwnam_r()
getpwuid()

Linux man-pages 6.13 2024-06-15 3550

pthreads(7) Miscellaneous Information Manual pthreads(7)

getpwuid_r()
gets()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
getwc()
getwchar()
getwd() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
glob()
iconv_close()
iconv_open()
ioctl()
link()
linkat() [Added in POSIX.1-2008]
lio_listio() [Added in POSIX.1-2008]
localtime()
localtime_r()
lockf() [Added in POSIX.1-2008]
lseek()
lstat()
mkdir() [Added in POSIX.1-2008]
mkdirat() [Added in POSIX.1-2008]
mkdtemp() [Added in POSIX.1-2008]
mkfifo() [Added in POSIX.1-2008]
mkfifoat() [Added in POSIX.1-2008]
mknod() [Added in POSIX.1-2008]
mknodat() [Added in POSIX.1-2008]
mkstemp()
mktime()
nftw()
opendir()
openlog()
pathconf()
pclose()
perror()
popen()
posix_fadvise()
posix_fallocate()
posix_madvise()
posix_openpt()
posix_spawn()
posix_spawnp()
posix_trace_clear()
posix_trace_close()
posix_trace_create()
posix_trace_create_withlog()

Linux man-pages 6.13 2024-06-15 3551

pthreads(7) Miscellaneous Information Manual pthreads(7)

posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()
posix_trace_get_filter()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_open()
posix_trace_rewind()
posix_trace_set_filter()
posix_trace_shutdown()
posix_trace_timedgetnext_event()
posix_typed_mem_open()
printf()
psiginfo() [Added in POSIX.1-2008]
psignal() [Added in POSIX.1-2008]
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_wrlock()
putc()
putc_unlocked()
putchar()
putchar_unlocked()
puts()
pututxline()
putwc()
putwchar()
readdir()
readdir_r()
readlink() [Added in POSIX.1-2008]
readlinkat() [Added in POSIX.1-2008]
remove()
rename()
renameat() [Added in POSIX.1-2008]
rewind()
rewinddir()
scandir() [Added in POSIX.1-2008]
scanf()
seekdir()
semop()
setgrent()
sethostent()
setnetent()
setprotoent()
setpwent()
setservent()
setutxent()
sigpause() [Added in POSIX.1-2008]

Linux man-pages 6.13 2024-06-15 3552

pthreads(7) Miscellaneous Information Manual pthreads(7)

stat()
strerror()
strerror_r()
strftime()
symlink()
symlinkat() [Added in POSIX.1-2008]
sync()
syslog()
tmpfile()
tmpnam()
ttyname()
ttyname_r()
tzset()
ungetc()
ungetwc()
unlink()
unlinkat() [Added in POSIX.1-2008]
utime() [Added in POSIX.1-2008]
utimensat() [Added in POSIX.1-2008]
utimes() [Added in POSIX.1-2008]
vdprintf() [Added in POSIX.1-2008]
vfprintf()
vfwprintf()
vprintf()
vwprintf()
wcsftime()
wordexp()
wprintf()
wscanf()

An implementation may also mark other functions not specified in the standard as
cancelation points. In particular, an implementation is likely to mark any nonstandard
function that may block as a cancelation point. (This includes most functions that can
touch files.)

It should be noted that even if an application is not using asynchronous cancelation,
that calling a function from the above list from an asynchronous signal handler may
cause the equivalent of asynchronous cancelation. The underlying user code may not
expect asynchronous cancelation and the state of the user data may become inconsis-
tent. Therefore signals should be used with caution when entering a region of de-
ferred cancelation.

Compiling on Linux
On Linux, programs that use the Pthreads API should be compiled using cc -pthread .

Linux implementations of POSIX threads
Over time, two threading implementations have been provided by the GNU C library
on Linux:

LinuxThreads
This is the original Pthreads implementation. Since glibc 2.4, this implemen-
tation is no longer supported.

Linux man-pages 6.13 2024-06-15 3553

pthreads(7) Miscellaneous Information Manual pthreads(7)

NPTL (Native POSIX Threads Library)
This is the modern Pthreads implementation. By comparison with Linux-
Threads, NPTL provides closer conformance to the requirements of the
POSIX.1 specification and better performance when creating large numbers of
threads. NPTL is available since glibc 2.3.2, and requires features that are
present in the Linux 2.6 kernel.

Both of these are so-called 1:1 implementations, meaning that each thread maps to a
kernel scheduling entity. Both threading implementations employ the Linux clone(2)
system call. In NPTL, thread synchronization primitives (mutexes, thread joining,
and so on) are implemented using the Linux futex(2) system call.

LinuxThreads
The notable features of this implementation are the following:

• In addition to the main (initial) thread, and the threads that the program creates us-
ing pthread_create(3), the implementation creates a "manager" thread. This
thread handles thread creation and termination. (Problems can result if this thread
is inadvertently killed.)

• Signals are used internally by the implementation. On Linux 2.2 and later, the
first three real-time signals are used (see also signal(7)). On older Linux kernels,
SIGUSR1 and SIGUSR2 are used. Applications must avoid the use of whichever
set of signals is employed by the implementation.

• Threads do not share process IDs. (In effect, LinuxThreads threads are imple-
mented as processes which share more information than usual, but which do not
share a common process ID.) LinuxThreads threads (including the manager
thread) are visible as separate processes using ps(1)

The LinuxThreads implementation deviates from the POSIX.1 specification in a num-
ber of ways, including the following:

• Calls to getpid(2) return a different value in each thread.

• Calls to getppid(2) in threads other than the main thread return the process ID of
the manager thread; instead getppid(2) in these threads should return the same
value as getppid(2) in the main thread.

• When one thread creates a new child process using fork(2), any thread should be
able to wait(2) on the child. However, the implementation allows only the thread
that created the child to wait(2) on it.

• When a thread calls execve(2), all other threads are terminated (as required by
POSIX.1). However, the resulting process has the same PID as the thread that
called execve(2): it should have the same PID as the main thread.

• Threads do not share user and group IDs. This can cause complications with set-
user-ID programs and can cause failures in Pthreads functions if an application
changes its credentials using seteuid(2) or similar.

• Threads do not share a common session ID and process group ID.

• Threads do not share record locks created using fcntl(2).

Linux man-pages 6.13 2024-06-15 3554

pthreads(7) Miscellaneous Information Manual pthreads(7)

• The information returned by times(2) and getrusage(2) is per-thread rather than
process-wide.

• Threads do not share semaphore undo values (see semop(2)).

• Threads do not share interval timers.

• Threads do not share a common nice value.

• POSIX.1 distinguishes the notions of signals that are directed to the process as a
whole and signals that are directed to individual threads. According to POSIX.1,
a process-directed signal (sent using kill(2), for example) should be handled by a
single, arbitrarily selected thread within the process. LinuxThreads does not sup-
port the notion of process-directed signals: signals may be sent only to specific
threads.

• Threads have distinct alternate signal stack settings. However, a new thread’s al-
ternate signal stack settings are copied from the thread that created it, so that the
threads initially share an alternate signal stack. (A new thread should start with no
alternate signal stack defined. If two threads handle signals on their shared alter-
nate signal stack at the same time, unpredictable program failures are likely to oc-
cur.)

NPTL
With NPTL, all of the threads in a process are placed in the same thread group; all
members of a thread group share the same PID. NPTL does not employ a manager
thread.

NPTL makes internal use of the first two real-time signals; these signals cannot be
used in applications. See nptl(7) for further details.

NPTL still has at least one nonconformance with POSIX.1:

• Threads do not share a common nice value.

Some NPTL nonconformances occur only with older kernels:

• The information returned by times(2) and getrusage(2) is per-thread rather than
process-wide (fixed in Linux 2.6.9).

• Threads do not share resource limits (fixed in Linux 2.6.10).

• Threads do not share interval timers (fixed in Linux 2.6.12).

• Only the main thread is permitted to start a new session using setsid(2) (fixed in
Linux 2.6.16).

• Only the main thread is permitted to make the process into a process group leader
using setpgid(2) (fixed in Linux 2.6.16).

• Threads have distinct alternate signal stack settings. However, a new thread’s al-
ternate signal stack settings are copied from the thread that created it, so that the
threads initially share an alternate signal stack (fixed in Linux 2.6.16).

Note the following further points about the NPTL implementation:

• If the stack size soft resource limit (see the description of RLIMIT_STACK in
setrlimit(2)) is set to a value other than unlimited , then this value defines the de-
fault stack size for new threads. To be effective, this limit must be set before the

Linux man-pages 6.13 2024-06-15 3555

pthreads(7) Miscellaneous Information Manual pthreads(7)

program is executed, perhaps using the ulimit -s shell built-in command (limit
stacksize in the C shell).

Determining the threading implementation
Since glibc 2.3.2, the getconf (1) command can be used to determine the system’s
threading implementation, for example:

bash$ getconf GNU_LIBPTHREAD_VERSION
NPTL 2.3.4

With older glibc versions, a command such as the following should be sufficient to de-
termine the default threading implementation:

bash$ $(ldd /bin/ls | grep libc.so | awk '{print $3}') | \
egrep -i 'threads|nptl'

Native POSIX Threads Library by Ulrich Drepper et al

Selecting the threading implementation: LD_ASSUME_KERNEL
On systems with a glibc that supports both LinuxThreads and NPTL (i.e., glibc 2.3.x),
the LD_ASSUME_KERNEL environment variable can be used to override the dy-
namic linker’s default choice of threading implementation. This variable tells the dy-
namic linker to assume that it is running on top of a particular kernel version. By
specifying a kernel version that does not provide the support required by NPTL, we
can force the use of LinuxThreads. (The most likely reason for doing this is to run a
(broken) application that depends on some nonconformant behavior in LinuxThreads.)
For example:

bash$ $(LD_ASSUME_KERNEL=2.2.5 ldd /bin/ls | grep libc.so | \
awk '{print $3}') | egrep -i 'threads|nptl'

linuxthreads-0.10 by Xavier Leroy

SEE ALSO
clone(2), fork(2), futex(2), gettid(2), proc(5), attributes(7), futex(7), nptl(7),
sigevent(3type), signal(7)

Various Pthreads manual pages, for example: pthread_atfork(3), pthread_attr_init(3),
pthread_cancel(3), pthread_cleanup_push(3), pthread_cond_signal(3),
pthread_cond_wait(3), pthread_create(3), pthread_detach(3), pthread_equal(3),
pthread_exit(3), pthread_key_create(3), pthread_kill(3), pthread_mutex_lock(3),
pthread_mutex_unlock(3), pthread_mutexattr_destroy(3), pthread_mutexattr_init(3),
pthread_once(3), pthread_spin_init(3), pthread_spin_lock(3),
pthread_rwlockattr_setkind_np(3), pthread_setcancelstate(3),
pthread_setcanceltype(3), pthread_setspecific(3), pthread_sigmask(3),
pthread_sigqueue(3), and pthread_testcancel(3)

Linux man-pages 6.13 2024-06-15 3556

pty(7) Miscellaneous Information Manual pty(7)

NAME
pty - pseudoterminal interfaces

DESCRIPTION
A pseudoterminal (sometimes abbreviated "pty") is a pair of virtual character devices
that provide a bidirectional communication channel. One end of the channel is called
the master; the other end is called the slave.

The slave end of the pseudoterminal provides an interface that behaves exactly like a
classical terminal. A process that expects to be connected to a terminal, can open the
slave end of a pseudoterminal and then be driven by a program that has opened the
master end. Anything that is written on the master end is provided to the process on
the slave end as though it was input typed on a terminal. For example, writing the in-
terrupt character (usually control-C) to the master device would cause an interrupt sig-
nal (SIGINT) to be generated for the foreground process group that is connected to
the slave. Conversely, anything that is written to the slave end of the pseudoterminal
can be read by the process that is connected to the master end.

Data flow between master and slave is handled asynchronously, much like data flow
with a physical terminal. Data written to the slave will be available at the master
promptly, but may not be available immediately. Similarly, there may be a small pro-
cessing delay between a write to the master, and the effect being visible at the slave.

Historically, two pseudoterminal APIs have evolved: BSD and System V. SUSv1
standardized a pseudoterminal API based on the System V API, and this API should
be employed in all new programs that use pseudoterminals.

Linux provides both BSD-style and (standardized) System V-style pseudoterminals.
System V-style terminals are commonly called UNIX 98 pseudoterminals on Linux
systems.

Since Linux 2.6.4, BSD-style pseudoterminals are considered deprecated: support can
be disabled when building the kernel by disabling the CONFIG_LEGACY_PTYS
option. (Starting with Linux 2.6.30, that option is disabled by default in the mainline
kernel.) UNIX 98 pseudoterminals should be used in new applications.

UNIX 98 pseudoterminals
An unused UNIX 98 pseudoterminal master is opened by calling posix_openpt(3).
(This function opens the master clone device, /dev/ptmx; see pts(4).) After perform-
ing any program-specific initializations, changing the ownership and permissions of
the slave device using grantpt(3), and unlocking the slave using unlockpt(3)), the cor-
responding slave device can be opened by passing the name returned by ptsname(3) in
a call to open(2).

The Linux kernel imposes a limit on the number of available UNIX 98 pseudotermi-
nals. Up to and including Linux 2.6.3, this limit is configured at kernel compilation
time (CONFIG_UNIX98_PTYS), and the permitted number of pseudoterminals can
be up to 2048, with a default setting of 256. Since Linux 2.6.4, the limit is dynami-
cally adjustable via /proc/sys/kernel/pty/max, and a corresponding file, /proc/sys/ker-
nel/pty/nr, indicates how many pseudoterminals are currently in use. For further de-
tails on these two files, see proc(5).

Linux man-pages 6.13 2024-05-02 3557

pty(7) Miscellaneous Information Manual pty(7)

BSD pseudoterminals
BSD-style pseudoterminals are provided as precreated pairs, with names of the form
/dev/ptyXY (master) and /dev/ttyXY (slave), where X is a letter from the 16-character
set [p-za-e], and Y is a letter from the 16-character set [0-9a-f]. (The precise range
of letters in these two sets varies across UNIX implementations.) For example,
/dev/ptyp1 and /dev/ttyp1 constitute a BSD pseudoterminal pair. A process finds an
unused pseudoterminal pair by trying to open(2) each pseudoterminal master until an
open succeeds. The corresponding pseudoterminal slave (substitute "tty" for "pty" in
the name of the master) can then be opened.

FILES
/dev/ptmx

UNIX 98 master clone device

/dev/pts/*
UNIX 98 slave devices

/dev/pty[p-za-e][0-9a-f]
BSD master devices

/dev/tty[p-za-e][0-9a-f]
BSD slave devices

NOTES
Pseudoterminals are used by applications such as network login services (ssh(1),
rlogin(1), telnet(1)), terminal emulators such as xterm(1), script(1), screen(1),
tmux(1), unbuffer(1), and expect(1)

A description of the TIOCPKT ioctl(2), which controls packet mode operation, can
be found in ioctl_tty(2).

The BSD ioctl(2) operations TIOCSTOP, TIOCSTART, TIOCUCNTL, and TI-
OCREMOTE have not been implemented under Linux.

SEE ALSO
ioctl_tty(2), select(2), setsid(2), forkpty(3), openpty(3), termios(3), pts(4), tty(4)

Linux man-pages 6.13 2024-05-02 3558

queue(7) Miscellaneous Information Manual queue(7)

NAME
queue - implementations of linked lists and queues

DESCRIPTION
The <sys/queue.h> header file provides a set of macros that define and operate on the
following data structures:

SLIST
singly linked lists

LIST doubly linked lists

STAILQ
singly linked tail queues

TAILQ
doubly linked tail queues

CIRCLEQ
doubly linked circular queues

All structures support the following functionality:

• Insertion of a new entry at the head of the list.

• Insertion of a new entry after any element in the list.

• O(1) removal of an entry from the head of the list.

• Forward traversal through the list.

Code size and execution time depend on the complexity of the data structure being
used, so programmers should take care to choose the appropriate one.

Singly linked lists (SLIST)
Singly linked lists are the simplest and support only the above functionality. Singly
linked lists are ideal for applications with large datasets and few or no removals, or for
implementing a LIFO queue. Singly linked lists add the following functionality:

• O(n) removal of any entry in the list.

Singly linked tail queues (STAILQ)
Singly linked tail queues add the following functionality:

• Entries can be added at the end of a list.

• O(n) removal of any entry in the list.

• They may be concatenated.

However:

• All list insertions must specify the head of the list.

• Each head entry requires two pointers rather than one.

Singly linked tail queues are ideal for applications with large datasets and few or no
removals, or for implementing a FIFO queue.

Doubly linked data structures
All doubly linked types of data structures (lists and tail queues) additionally allow:

Linux man-pages 6.13 2024-05-02 3559

queue(7) Miscellaneous Information Manual queue(7)

• Insertion of a new entry before any element in the list.

• O(1) removal of any entry in the list.

However:

• Each element requires two pointers rather than one.

Doubly linked lists (LIST)
Linked lists are the simplest of the doubly linked data structures. They add the fol-
lowing functionality over the above:

• They may be traversed backwards.

However:

• To traverse backwards, an entry to begin the traversal and the list in which it is
contained must be specified.

Doubly linked tail queues (TAILQ)
Tail queues add the following functionality:

• Entries can be added at the end of a list.

• They may be traversed backwards, from tail to head.

• They may be concatenated.

However:

• All list insertions and removals must specify the head of the list.

• Each head entry requires two pointers rather than one.

Doubly linked circular queues (CIRCLEQ)
Circular queues add the following functionality over the above:

• The first and last entries are connected.

However:

• The termination condition for traversal is more complex.

STANDARDS
BSD.

HISTORY
<sys/queue.h> macros first appeared in 4.4BSD.

NOTES
Some BSDs provide SIMPLEQ instead of STAILQ. They are identical, but for histor-
ical reasons they were named differently on different BSDs. STAILQ originated on
FreeBSD, and SIMPLEQ originated on NetBSD. For compatibility reasons, some
systems provide both sets of macros. glibc provides both STAILQ and SIMPLEQ,
which are identical except for a missing SIMPLEQ equivalent to STAILQ_CON-
CAT().

SEE ALSO
circleq(3), insque(3), list(3), slist(3), stailq(3), tailq(3)

Linux man-pages 6.13 2024-05-02 3560

random(7) Miscellaneous Information Manual random(7)

NAME
random - overview of interfaces for obtaining randomness

DESCRIPTION
The kernel random-number generator relies on entropy gathered from device drivers
and other sources of environmental noise to seed a cryptographically secure pseudo-
random number generator (CSPRNG). It is designed for security, rather than speed.

The following interfaces provide access to output from the kernel CSPRNG:

• The /dev/urandom and /dev/random devices, both described in random(4). These
devices have been present on Linux since early times, and are also available on
many other systems.

• The Linux-specific getrandom(2) system call, available since Linux 3.17. This
system call provides access either to the same source as /dev/urandom (called the
urandom source in this page) or to the same source as /dev/random (called the
random source in this page). The default is the urandom source; the random
source is selected by specifying the GRND_RANDOM flag to the system call.
(The getentropy(3) function provides a slightly more portable interface on top of
getrandom(2).)

Initialization of the entropy pool
The kernel collects bits of entropy from the environment. When a sufficient number
of random bits has been collected, the entropy pool is considered to be initialized.

Choice of random source
Unless you are doing long-term key generation (and most likely not even then), you
probably shouldn’t be reading from the /dev/random device or employing getran-
dom(2) with the GRND_RANDOM flag. Instead, either read from the /dev/urandom
device or employ getrandom(2) without the GRND_RANDOM flag. The crypto-
graphic algorithms used for the urandom source are quite conservative, and so should
be sufficient for all purposes.

The disadvantage of GRND_RANDOM and reads from /dev/random is that the oper-
ation can block for an indefinite period of time. Furthermore, dealing with the par-
tially fulfilled requests that can occur when using GRND_RANDOM or when read-
ing from /dev/random increases code complexity.

Monte Carlo and other probabilistic sampling applications
Using these interfaces to provide large quantities of data for Monte Carlo simulations
or other programs/algorithms which are doing probabilistic sampling will be slow.
Furthermore, it is unnecessary, because such applications do not need cryptographi-
cally secure random numbers. Instead, use the interfaces described in this page to ob-
tain a small amount of data to seed a user-space pseudorandom number generator for
use by such applications.

Comparison between getrandom, /dev/urandom, and /dev/random
The following table summarizes the behavior of the various interfaces that can be
used to obtain randomness. GRND_NONBLOCK is a flag that can be used to con-
trol the blocking behavior of getrandom(2). The final column of the table considers
the case that can occur in early boot time when the entropy pool is not yet initialized.

Linux man-pages 6.13 2024-05-02 3561

random(7) Miscellaneous Information Manual random(7)

Interface Pool Blocking
behavior

Behavior when pool
is not yet ready

/dev/random Blocking pool If entropy too
low, blocks until
there is enough
entropy again

Blocks until enough
entropy gathered

/dev/urandom CSPRNG out-
put

Never blocks Returns output from
uninitialized
CSPRNG (may be
low entropy and un-
suitable for cryptogra-
phy)

getrandom() Same as
/dev/urandom

Does not block
once is pool
ready

Blocks until pool
ready

getrandom()
GRND_RAN-
DOM

Same as
/dev/random

If entropy too
low, blocks until
there is enough
entropy again

Blocks until pool
ready

getrandom()
GRND_NON-
BLOCK

Same as
/dev/urandom

Does not block
once is pool
ready

EAGAIN

getrandom()
GRND_RAN-
DOM +
GRND_NON-
BLOCK

Same as
/dev/random

EAGAIN if not
enough entropy
available

EAGAIN

Generating cryptographic keys
The amount of seed material required to generate a cryptographic key equals the ef-
fective key size of the key. For example, a 3072-bit RSA or Diffie-Hellman private
key has an effective key size of 128 bits (it requires about 2^128 operations to break)
so a key generator needs only 128 bits (16 bytes) of seed material from /dev/random.

While some safety margin above that minimum is reasonable, as a guard against flaws
in the CSPRNG algorithm, no cryptographic primitive available today can hope to
promise more than 256 bits of security, so if any program reads more than 256 bits
(32 bytes) from the kernel random pool per invocation, or per reasonable reseed inter-
val (not less than one minute), that should be taken as a sign that its cryptography is
not skillfully implemented.

SEE ALSO
getrandom(2), getauxval(3), getentropy(3), random(4), urandom(4), signal(7)

Linux man-pages 6.13 2024-05-02 3562

raw(7) Miscellaneous Information Manual raw(7)

NAME
raw - Linux IPv4 raw sockets

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
raw_socket = socket(AF_INET, SOCK_RAW, int protocol);

DESCRIPTION
Raw sockets allow new IPv4 protocols to be implemented in user space. A raw socket
receives or sends the raw datagram not including link level headers.

The IPv4 layer generates an IP header when sending a packet unless the
IP_HDRINCL socket option is enabled on the socket. When it is enabled, the packet
must contain an IP header. For receiving, the IP header is always included in the
packet.

In order to create a raw socket, a process must have the CAP_NET_RAW capability
in the user namespace that governs its network namespace.

All packets or errors matching the protocol number specified for the raw socket are
passed to this socket. For a list of the allowed protocols, see the IANA list of assigned
protocol numbers at 〈http://www.iana.org/assignments/protocol-numbers/〉 and get-
protobyname(3).

A protocol of IPPROTO_RAW implies enabled IP_HDRINCL and is able to send
any IP protocol that is specified in the passed header. Receiving of all IP protocols via
IPPROTO_RAW is not possible using raw sockets.

IP Header fields modified on sending by IP_HDRINCL
IP Checksum Always filled in
Source Address Filled in when zero
Packet ID Filled in when zero
Total Length Always filled in

If IP_HDRINCL is specified and the IP header has a nonzero destination address,
then the destination address of the socket is used to route the packet. When
MSG_DONTROUTE is specified, the destination address should refer to a local in-
terface, otherwise a routing table lookup is done anyway but gatewayed routes are ig-
nored.

If IP_HDRINCL isn’t set, then IP header options can be set on raw sockets with set-
sockopt(2); see ip(7) for more information.

Starting with Linux 2.2, all IP header fields and options can be set using IP socket op-
tions. This means raw sockets are usually needed only for new protocols or protocols
with no user interface (like ICMP).

When a packet is received, it is passed to any raw sockets which have been bound to
its protocol before it is passed to other protocol handlers (e.g., kernel protocol mod-
ules).

Address format
For sending and receiving datagrams (sendto(2), recvfrom(2), and similar), raw sock-
ets use the standard sockaddr_in address structure defined in ip(7). The sin_port field
could be used to specify the IP protocol number, but it is ignored for sending in Linux

Linux man-pages 6.13 2024-05-02 3563

raw(7) Miscellaneous Information Manual raw(7)

2.2 and later, and should be always set to 0 (see BUGS). For incoming packets,
sin_port is set to zero.

Socket options
Raw socket options can be set with setsockopt(2) and read with getsockopt(2) by pass-
ing the IPPROTO_RAW family flag.

ICMP_FILTER
Enable a special filter for raw sockets bound to the IPPROTO_ICMP proto-
col. The value has a bit set for each ICMP message type which should be fil-
tered out. The default is to filter no ICMP messages.

In addition, all ip(7) IPPROTO_IP socket options valid for datagram sockets are sup-
ported.

Error handling
Errors originating from the network are passed to the user only when the socket is
connected or the IP_RECVERR flag is enabled. For connected sockets, only EMS-
GSIZE and EPROTO are passed for compatibility. With IP_RECVERR, all net-
work errors are saved in the error queue.

ERRORS
EACCES

User tried to send to a broadcast address without having the broadcast flag set
on the socket.

EFAULT
An invalid memory address was supplied.

EINVAL
Invalid argument.

EMSGSIZE
Packet too big. Either Path MTU Discovery is enabled (the IP_MTU_DIS-
COVER socket flag) or the packet size exceeds the maximum allowed IPv4
packet size of 64 kB.

EOPNOTSUPP
Invalid flag has been passed to a socket call (like MSG_OOB).

EPERM
The user doesn’t have permission to open raw sockets. Only processes with an
effective user ID of 0 or the CAP_NET_RAW attribute may do that.

EPROTO
An ICMP error has arrived reporting a parameter problem.

VERSIONS
IP_RECVERR and ICMP_FILTER are new in Linux 2.2. They are Linux exten-
sions and should not be used in portable programs.

Linux 2.0 enabled some bug-to-bug compatibility with BSD in the raw socket code
when the SO_BSDCOMPAT socket option was set; since Linux 2.2, this option no
longer has that effect.

Linux man-pages 6.13 2024-05-02 3564

raw(7) Miscellaneous Information Manual raw(7)

NOTES
By default, raw sockets do path MTU (Maximum Transmission Unit) discovery. This
means the kernel will keep track of the MTU to a specific target IP address and return
EMSGSIZE when a raw packet write exceeds it. When this happens, the application
should decrease the packet size. Path MTU discovery can be also turned off using the
IP_MTU_DISCOVER socket option or the /proc/sys/net/ipv4/ip_no_pmtu_disc file,
see ip(7) for details. When turned off, raw sockets will fragment outgoing packets
that exceed the interface MTU. However, disabling it is not recommended for perfor-
mance and reliability reasons.

A raw socket can be bound to a specific local address using the bind(2) call. If it isn’t
bound, all packets with the specified IP protocol are received. In addition, a raw
socket can be bound to a specific network device using SO_BINDTODEVICE; see
socket(7).

An IPPROTO_RAW socket is send only. If you really want to receive all IP packets,
use a packet(7) socket with the ETH_P_IP protocol. Note that packet sockets don’t
reassemble IP fragments, unlike raw sockets.

If you want to receive all ICMP packets for a datagram socket, it is often better to use
IP_RECVERR on that particular socket; see ip(7).

Raw sockets may tap all IP protocols in Linux, even protocols like ICMP or TCP
which have a protocol module in the kernel. In this case, the packets are passed to
both the kernel module and the raw socket(s). This should not be relied upon in
portable programs, many other BSD socket implementation have limitations here.

Linux never changes headers passed from the user (except for filling in some zeroed
fields as described for IP_HDRINCL). This differs from many other implementa-
tions of raw sockets.

Raw sockets are generally rather unportable and should be avoided in programs in-
tended to be portable.

Sending on raw sockets should take the IP protocol from sin_port; this ability was
lost in Linux 2.2. The workaround is to use IP_HDRINCL.

BUGS
Transparent proxy extensions are not described.

When the IP_HDRINCL option is set, datagrams will not be fragmented and are lim-
ited to the interface MTU.

Setting the IP protocol for sending in sin_port got lost in Linux 2.2. The protocol that
the socket was bound to or that was specified in the initial socket(2) call is always
used.

SEE ALSO
recvmsg(2), sendmsg(2), capabilities(7), ip(7), socket(7)

RFC 1191 for path MTU discovery. RFC 791 and the <linux/ip.h> header file for
the IP protocol.

Linux man-pages 6.13 2024-05-02 3565

regex(7) Miscellaneous Information Manual regex(7)

NAME
regex - POSIX.2 regular expressions

DESCRIPTION
Regular expressions ("RE"s), as defined in POSIX.2, come in two forms: modern REs
(roughly those of egrep(1); POSIX.2 calls these "extended" REs) and obsolete REs
(roughly those of ed(1); POSIX.2 "basic" REs). Obsolete REs mostly exist for back-
ward compatibility in some old programs; they will be discussed at the end. POSIX.2
leaves some aspects of RE syntax and semantics open; "†" marks decisions on these
aspects that may not be fully portable to other POSIX.2 implementations.

A (modern) RE is one† or more nonempty† branches, separated by '|'. It matches any-
thing that matches one of the branches.

A branch is one† or more pieces, concatenated. It matches a match for the first, fol-
lowed by a match for the second, and so on.

A piece is an atom possibly followed by a single† '*', '+', '?', or bound. An atom fol-
lowed by '*' matches a sequence of 0 or more matches of the atom. An atom followed
by '+' matches a sequence of 1 or more matches of the atom. An atom followed by '?'
matches a sequence of 0 or 1 matches of the atom.

A bound is '{' followed by an unsigned decimal integer, possibly followed by ',' possi-
bly followed by another unsigned decimal integer, always followed by '}'. The inte-
gers must lie between 0 and RE_DUP_MAX (255†) inclusive, and if there are two of
them, the first may not exceed the second. An atom followed by a bound containing
one integer i and no comma matches a sequence of exactly i matches of the atom. An
atom followed by a bound containing one integer i and a comma matches a sequence
of i or more matches of the atom. An atom followed by a bound containing two inte-
gers i and j matches a sequence of i through j (inclusive) matches of the atom.

An atom is a regular expression enclosed in "()" (matching a match for the regular ex-
pression), an empty set of "()" (matching the null string)†, a bracket expression (see
below), '.' (matching any single character), '^' (matching the null string at the begin-
ning of a line), '$' (matching the null string at the end of a line), a '\' followed by one
of the characters "^.[$()|*+?{\" (matching that character taken as an ordinary charac-
ter), a '\' followed by any other character† (matching that character taken as an ordi-
nary character, as if the '\' had not been present†), or a single character with no other
significance (matching that character). A '{' followed by a character other than a digit
is an ordinary character, not the beginning of a bound†. It is illegal to end an RE with
'\'.

A bracket expression is a list of characters enclosed in "[]". It normally matches any
single character from the list (but see below). If the list begins with '^', it matches any
single character (but see below) not from the rest of the list. If two characters in the
list are separated by '-', this is shorthand for the full range of characters between
those two (inclusive) in the collating sequence, for example, "[0-9]" in ASCII
matches any decimal digit. It is illegal† for two ranges to share an endpoint, for ex-
ample, "a-c-e". Ranges are very collating-sequence-dependent, and portable pro-
grams should avoid relying on them.

To include a literal ']' in the list, make it the first character (following a possible '^').
To include a literal '-', make it the first or last character, or the second endpoint of a

Linux man-pages 6.13 2024-06-15 3566

regex(7) Miscellaneous Information Manual regex(7)

range. To use a literal '-' as the first endpoint of a range, enclose it in "[." and ".]" to
make it a collating element (see below). With the exception of these and some combi-
nations using '[' (see next paragraphs), all other special characters, including '\', lose
their special significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multicharacter se-
quence that collates as if it were a single character, or a collating-sequence name for
either) enclosed in "[." and ".]" stands for the sequence of characters of that collating
element. The sequence is a single element of the bracket expression’s list. A bracket
expression containing a multicharacter collating element can thus match more than
one character, for example, if the collating sequence includes a "ch" collating element,
then the RE "[[.ch.]]*c" matches the first five characters of "chchcc".

Within a bracket expression, a collating element enclosed in "[=" and "=]" is an
equivalence class, standing for the sequences of characters of all collating elements
equivalent to that one, including itself. (If there are no other equivalent collating ele-
ments, the treatment is as if the enclosing delimiters were "[." and ".]".) For example,
if o and ô are the members of an equivalence class, then "[[=o=]]", "[[=ô=]]", and
"[oô]" are all synonymous. An equivalence class may not† be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in "[:" and ":]"
stands for the list of all characters belonging to that class. Standard character class
names are:

alnum digit punct
alpha graph space
blank lower upper
cntrl print xdigit

These stand for the character classes defined in wctype(3). A locale may provide oth-
ers. A character class may not be used as an endpoint of a range.

In the event that an RE could match more than one substring of a given string, the RE
matches the one starting earliest in the string. If the RE could match more than one
substring starting at that point, it matches the longest. Subexpressions also match the
longest possible substrings, subject to the constraint that the whole match be as long
as possible, with subexpressions starting earlier in the RE taking priority over ones
starting later. Note that higher-level subexpressions thus take priority over their
lower-level component subexpressions.

Match lengths are measured in characters, not collating elements. A null string is
considered longer than no match at all. For example, "bb*" matches the three middle
characters of "abbbc", "(wee|week)(knights|nights)" matches all ten characters of
"weeknights", when "(.*).*" is matched against "abc" the parenthesized subexpression
matches all three characters, and when "(a*)*" is matched against "bc" both the whole
RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions
had vanished from the alphabet. When an alphabetic that exists in multiple cases ap-
pears as an ordinary character outside a bracket expression, it is effectively trans-
formed into a bracket expression containing both cases, for example, 'x' becomes
"[xX]". When it appears inside a bracket expression, all case counterparts of it are
added to the bracket expression, so that, for example, "[x]" becomes "[xX]" and "[^x]"

Linux man-pages 6.13 2024-06-15 3567

regex(7) Miscellaneous Information Manual regex(7)

becomes "[^xX]".

No particular limit is imposed on the length of REs†. Programs intended to be
portable should not employ REs longer than 256 bytes, as an implementation can
refuse to accept such REs and remain POSIX-compliant.

Obsolete ("basic") regular expressions differ in several respects. '|', '+', and '?' are or-
dinary characters and there is no equivalent for their functionality. The delimiters for
bounds are "\{" and "\}", with '{' and '}' by themselves ordinary characters. The
parentheses for nested subexpressions are "\(" and "\)", with '(' and ')' by themselves
ordinary characters. '^' is an ordinary character except at the beginning of the RE or†
the beginning of a parenthesized subexpression, '$' is an ordinary character except at
the end of the RE or† the end of a parenthesized subexpression, and '*' is an ordinary
character if it appears at the beginning of the RE or the beginning of a parenthesized
subexpression (after a possible leading '^').

Finally, there is one new type of atom, a back reference: '\' followed by a nonzero dec-
imal digit d matches the same sequence of characters matched by the dth parenthe-
sized subexpression (numbering subexpressions by the positions of their opening
parentheses, left to right), so that, for example, "\([bc]\)\1" matches "bb" or "cc" but
not "bc".

BUGS
Having two kinds of REs is a botch.

The current POSIX.2 spec says that ')' is an ordinary character in the absence of an
unmatched '('; this was an unintentional result of a wording error, and change is likely.
Avoid relying on it.

Back references are a dreadful botch, posing major problems for efficient implementa-
tions. They are also somewhat vaguely defined (does "a\(\(b\)*\2\)*d" match
"abbbd"?). Avoid using them.

POSIX.2’s specification of case-independent matching is vague. The "one case im-
plies all cases" definition given above is current consensus among implementors as to
the right interpretation.

AUTHOR
This page was taken from Henry Spencer’s regex package.

SEE ALSO
grep(1), regex(3)

POSIX.2, section 2.8 (Regular Expression Notation).

Linux man-pages 6.13 2024-06-15 3568

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

NAME
rtld-audit - auditing API for the dynamic linker

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <link.h>

DESCRIPTION
The GNU dynamic linker (run-time linker) provides an auditing API that allows an
application to be notified when various dynamic linking events occur. This API is
very similar to the auditing interface provided by the Solaris run-time linker. The nec-
essary constants and prototypes are defined by including <link.h>.

To use this interface, the programmer creates a shared library that implements a stan-
dard set of function names. Not all of the functions need to be implemented: in most
cases, if the programmer is not interested in a particular class of auditing event, then
no implementation needs to be provided for the corresponding auditing function.

To employ the auditing interface, the environment variable LD_AUDIT must be de-
fined to contain a colon-separated list of shared libraries, each of which can imple-
ment (parts of) the auditing API. When an auditable event occurs, the corresponding
function is invoked in each library, in the order that the libraries are listed.

la_version()

unsigned int la_version(unsigned int version);

This is the only function that must be defined by an auditing library: it performs the
initial handshake between the dynamic linker and the auditing library. When invoking
this function, the dynamic linker passes, in version, the highest version of the auditing
interface that the linker supports.

A typical implementation of this function simply returns the constant LAV_CUR-
RENT, which indicates the version of <link.h> that was used to build the audit mod-
ule. If the dynamic linker does not support this version of the audit interface, it will
refuse to activate this audit module. If the function returns zero, the dynamic linker
also does not activate this audit module.

In order to enable backwards compatibility with older dynamic linkers, an audit mod-
ule can examine the version argument and return an earlier version than LAV_CUR-
RENT, assuming the module can adjust its implementation to match the requirements
of the previous version of the audit interface. The la_version function should not re-
turn the value of version without further checks because it could correspond to an in-
terface that does not match the <link.h> definitions used to build the audit module.

la_objsearch()

char *la_objsearch(const char *name, uintptr_t *cookie,
unsigned int flag);

The dynamic linker invokes this function to inform the auditing library that it is about
to search for a shared object. The name argument is the filename or pathname that is
to be searched for. cookie identifies the shared object that initiated the search. flag is
set to one of the following values:

Linux man-pages 6.13 2024-06-15 3569

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

LA_SER_ORIG This is the original name that is being searched for. Typically,
this name comes from an ELF DT_NEEDED entry, or is the
filename argument given to dlopen(3).

LA_SER_LIBPATH
name was created using a directory specified in LD_LI-
BRARY_PATH.

LA_SER_RUNPATH
name was created using a directory specified in an ELF
DT_RPATH or DT_RUNPATH list.

LA_SER_CONFIG
name was found via the ldconfig(8) cache (/etc/ld.so.cache).

LA_SER_DEFAULT
name was found via a search of one of the default directories.

LA_SER_SECURE
name is specific to a secure object (unused on Linux).

As its function result, la_objsearch() returns the pathname that the dynamic linker
should use for further processing. If NULL is returned, then this pathname is ignored
for further processing. If this audit library simply intends to monitor search paths,
then name should be returned.

la_activity()

void la_activity(uintptr_t *cookie, unsigned int flag);

The dynamic linker calls this function to inform the auditing library that link-map ac-
tivity is occurring. cookie identifies the object at the head of the link map. When the
dynamic linker invokes this function, flag is set to one of the following values:

LA_ACT_ADD New objects are being added to the link map.

LA_ACT_DELETE Objects are being removed from the link map.

LA_ACT_CONSISTENT
Link-map activity has been completed: the map is once again
consistent.

la_objopen()

unsigned int la_objopen(struct link_map *map, Lmid_t lmid ,
uintptr_t *cookie);

The dynamic linker calls this function when a new shared object is loaded. The map
argument is a pointer to a link-map structure that describes the object. The lmid field
has one of the following values

LM_ID_BASE Link map is part of the initial namespace.

LM_ID_NEWLM Link map is part of a new namespace requested via dlmopen(3).

cookie is a pointer to an identifier for this object. The identifier is provided to later
calls to functions in the auditing library in order to identify this object. This identifier
is initialized to point to object’s link map, but the audit library can change the

Linux man-pages 6.13 2024-06-15 3570

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

identifier to some other value that it may prefer to use to identify the object.

As its return value, la_objopen() returns a bit mask created by ORing zero or more of
the following constants, which allow the auditing library to select the objects to be
monitored by la_symbind*():

LA_FLG_BINDTO
Audit symbol bindings to this object.

LA_FLG_BINDFROM
Audit symbol bindings from this object.

A return value of 0 from la_objopen() indicates that no symbol bindings should be
audited for this object.

la_objclose()

unsigned int la_objclose(uintptr_t *cookie);

The dynamic linker invokes this function after any finalization code for the object has
been executed, before the object is unloaded. The cookie argument is the identifier
obtained from a previous invocation of la_objopen().

In the current implementation, the value returned by la_objclose() is ignored.

la_preinit()

void la_preinit(uintptr_t *cookie);

The dynamic linker invokes this function after all shared objects have been loaded, be-
fore control is passed to the application (i.e., before calling main())Note that main()
may still later dynamically load objects using dlopen(3).

la_symbind*()

uintptr_t la_symbind32(Elf32_Sym *sym, unsigned int ndx,
uintptr_t *refcook, uintptr_t *defcook,
unsigned int * flags, const char *symname);

uintptr_t la_symbind64(Elf64_Sym *sym, unsigned int ndx,
uintptr_t *refcook, uintptr_t *defcook,
unsigned int * flags, const char *symname);

The dynamic linker invokes one of these functions when a symbol binding occurs be-
tween two shared objects that have been marked for auditing notification by la_ob-
jopen(). The la_symbind32() function is employed on 32-bit platforms; the la_sym-
bind64() function is employed on 64-bit platforms.

The sym argument is a pointer to a structure that provides information about the sym-
bol being bound. The structure definition is shown in <elf.h>. Among the fields of
this structure, st_value indicates the address to which the symbol is bound.

The ndx argument gives the index of the symbol in the symbol table of the bound
shared object.

The refcook argument identifies the shared object that is making the symbol refer-
ence; this is the same identifier that is provided to the la_objopen() function that re-
turned LA_FLG_BINDFROM. The defcook argument identifies the shared object

Linux man-pages 6.13 2024-06-15 3571

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

that defines the referenced symbol; this is the same identifier that is provided to the
la_objopen() function that returned LA_FLG_BINDTO.

The symname argument points a string containing the name of the symbol.

The flags argument is a bit mask that both provides information about the symbol and
can be used to modify further auditing of this PLT (Procedure Linkage Table) entry.
The dynamic linker may supply the following bit values in this argument:

LA_SYMB_DLSYM The binding resulted from a call to dlsym(3).

LA_SYMB_ALTVALUE
A previous la_symbind*() call returned an alternate value
for this symbol.

By default, if the auditing library implements la_pltenter() and la_pltexit() functions
(see below), then these functions are invoked, after la_symbind(), for PLT entries,
each time the symbol is referenced. The following flags can be ORed into *flags to
change this default behavior:

LA_SYMB_NOPLTENTER
Don’t call la_pltenter() for this symbol.

LA_SYMB_NOPLTEXIT
Don’t call la_pltexit() for this symbol.

The return value of la_symbind32() and la_symbind64() is the address to which con-
trol should be passed after the function returns. If the auditing library is simply moni-
toring symbol bindings, then it should return sym->st_value. A different value may
be returned if the library wishes to direct control to an alternate location.

la_pltenter()
The precise name and argument types for this function depend on the hardware plat-
form. (The appropriate definition is supplied by <link.h>.) Here is the definition for
x86-32:

Elf32_Addr la_i86_gnu_pltenter(Elf32_Sym *sym, unsigned int ndx,
uintptr_t *refcook, uintptr_t *defcook,
La_i86_regs *regs, unsigned int * flags,
const char *symname, long * framesizep);

This function is invoked just before a PLT entry is called, between two shared objects
that have been marked for binding notification.

The sym, ndx, refcook, defcook, and symname are as for la_symbind*().

The regs argument points to a structure (defined in <link.h>) containing the values of
registers to be used for the call to this PLT entry.

The flags argument points to a bit mask that conveys information about, and can be
used to modify subsequent auditing of, this PLT entry, as for la_symbind*().

The framesizep argument points to a long int buffer that can be used to explicitly set
the frame size used for the call to this PLT entry. If different la_pltenter() invoca-
tions for this symbol return different values, then the maximum returned value is used.
The la_pltexit() function is called only if this buffer is explicitly set to a suitable
value.

Linux man-pages 6.13 2024-06-15 3572

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

The return value of la_pltenter() is as for la_symbind*().

la_pltexit()
The precise name and argument types for this function depend on the hardware plat-
form. (The appropriate definition is supplied by <link.h>.) Here is the definition for
x86-32:

unsigned int la_i86_gnu_pltexit(Elf32_Sym *sym, unsigned int ndx,
uintptr_t *refcook, uintptr_t *defcook,
const La_i86_regs *inregs, La_i86_retval *outregs,
const char *symname);

This function is called when a PLT entry, made between two shared objects that have
been marked for binding notification, returns. The function is called just before con-
trol returns to the caller of the PLT entry.

The sym, ndx, refcook, defcook, and symname are as for la_symbind*().

The inregs argument points to a structure (defined in <link.h>) containing the values
of registers used for the call to this PLT entry. The outregs argument points to a struc-
ture (defined in <link.h>) containing return values for the call to this PLT entry.
These values can be modified by the caller, and the changes will be visible to the
caller of the PLT entry.

In the current GNU implementation, the return value of la_pltexit() is ignored.

VERSIONS
This API is very similar to the Solaris API described in the Solaris Linker and Li-
braries Guide, in the chapter Runtime Linker Auditing Interface.

STANDARDS
None.

NOTES
Note the following differences from the Solaris dynamic linker auditing API:

• The Solaris la_objfilter() interface is not supported by the GNU implementation.

• The Solaris la_symbind32() and la_pltexit() functions do not provide a symname
argument.

• The Solaris la_pltexit() function does not provide inregs and outregs arguments
(but does provide a retval argument with the function return value).

BUGS
In glibc versions up to and include 2.9, specifying more than one audit library in
LD_AUDIT results in a run-time crash. This is reportedly fixed in glibc 2.10.

EXAMPLES
#include <link.h>
#include <stdio.h>

unsigned int
la_version(unsigned int version)
{

printf("la_version(): version = %u; LAV_CURRENT = %u\n",
version, LAV_CURRENT);

Linux man-pages 6.13 2024-06-15 3573

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

return LAV_CURRENT;
}

char *
la_objsearch(const char *name, uintptr_t *cookie, unsigned int flag)
{

printf("la_objsearch(): name = %s; cookie = %p", name, cookie);
printf("; flag = %s\n",

(flag == LA_SER_ORIG) ? "LA_SER_ORIG" :
(flag == LA_SER_LIBPATH) ? "LA_SER_LIBPATH" :
(flag == LA_SER_RUNPATH) ? "LA_SER_RUNPATH" :
(flag == LA_SER_DEFAULT) ? "LA_SER_DEFAULT" :
(flag == LA_SER_CONFIG) ? "LA_SER_CONFIG" :
(flag == LA_SER_SECURE) ? "LA_SER_SECURE" :
"???");

return name;
}

void
la_activity (uintptr_t *cookie, unsigned int flag)
{

printf("la_activity(): cookie = %p; flag = %s\n", cookie,
(flag == LA_ACT_CONSISTENT) ? "LA_ACT_CONSISTENT" :
(flag == LA_ACT_ADD) ? "LA_ACT_ADD" :
(flag == LA_ACT_DELETE) ? "LA_ACT_DELETE" :
"???");

}

unsigned int
la_objopen(struct link_map *map, Lmid_t lmid, uintptr_t *cookie)
{

printf("la_objopen(): loading \"%s\"; lmid = %s; cookie=%p\n",
map->l_name,
(lmid == LM_ID_BASE) ? "LM_ID_BASE" :
(lmid == LM_ID_NEWLM) ? "LM_ID_NEWLM" :
"???",
cookie);

return LA_FLG_BINDTO | LA_FLG_BINDFROM;
}

unsigned int
la_objclose (uintptr_t *cookie)
{

printf("la_objclose(): %p\n", cookie);

return 0;

Linux man-pages 6.13 2024-06-15 3574

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

}

void
la_preinit(uintptr_t *cookie)
{

printf("la_preinit(): %p\n", cookie);
}

uintptr_t
la_symbind32(Elf32_Sym *sym, unsigned int ndx, uintptr_t *refcook,

uintptr_t *defcook, unsigned int *flags, const char *symname)
{

printf("la_symbind32(): symname = %s; sym->st_value = %p\n",
symname, sym->st_value);

printf(" ndx = %u; flags = %#x", ndx, *flags);
printf("; refcook = %p; defcook = %p\n", refcook, defcook);

return sym->st_value;
}

uintptr_t
la_symbind64(Elf64_Sym *sym, unsigned int ndx, uintptr_t *refcook,

uintptr_t *defcook, unsigned int *flags, const char *symname)
{

printf("la_symbind64(): symname = %s; sym->st_value = %p\n",
symname, sym->st_value);

printf(" ndx = %u; flags = %#x", ndx, *flags);
printf("; refcook = %p; defcook = %p\n", refcook, defcook);

return sym->st_value;
}

Elf32_Addr
la_i86_gnu_pltenter(Elf32_Sym *sym, unsigned int ndx,

uintptr_t *refcook, uintptr_t *defcook, La_i86_regs *regs,
unsigned int *flags, const char *symname, long *framesizep)

{
printf("la_i86_gnu_pltenter(): %s (%p)\n", symname, sym->st_value);

return sym->st_value;
}

SEE ALSO
ldd(1), dlopen(3), ld.so(8), ldconfig(8)

Linux man-pages 6.13 2024-06-15 3575

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

NAME
rtnetlink - Linux routing socket

SYNOPSIS
#include <asm/types.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <sys/socket.h>

rtnetlink_socket = socket(AF_NETLINK, int socket_type, NETLINK_ROUTE);

DESCRIPTION
Rtnetlink allows the kernel’s routing tables to be read and altered. It is used within
the kernel to communicate between various subsystems, though this usage is not doc-
umented here, and for communication with user-space programs. Network routes, IP
addresses, link parameters, neighbor setups, queueing disciplines, traffic classes and
packet classifiers may all be controlled through NETLINK_ROUTE sockets. It is
based on netlink messages; see netlink(7) for more information.

Routing attributes
Some rtnetlink messages have optional attributes after the initial header:

struct rtattr {
unsigned short rta_len; /* Length of option */
unsigned short rta_type; /* Type of option */
/* Data follows */

};

These attributes should be manipulated using only the RTA_* macros or libnetlink,
see rtnetlink(3).

Messages
Rtnetlink consists of these message types (in addition to standard netlink messages):

RTM_NEWLINK
RTM_DELLINK
RTM_GETLINK

Create, remove, or get information about a specific network interface. These
messages contain an ifinfomsg structure followed by a series of rtattr struc-
tures.

struct ifinfomsg {
unsigned char ifi_family; /* AF_UNSPEC */
unsigned short ifi_type; /* Device type */
int ifi_index; /* Interface index */
unsigned int ifi_flags; /* Device flags */
unsigned int ifi_change; /* change mask */

};

ifi_flags contains the device flags, see netdevice(7); ifi_index is the unique in-
terface index (since Linux 3.7, it is possible to feed a nonzero value with the
RTM_NEWLINK message, thus creating a link with the given ifindex);
ifi_change is reserved for future use and should be always set to 0xFFFFFFFF.

Routing attributes

Linux man-pages 6.13 2024-11-13 3576

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

rta_type Value type Description
IFLA_UNSPEC - unspecified
IFLA_ADDRESS hardware address interface L2 address
IFLA_BROADCAST hardware address L2 broadcast address
IFLA_IFNAME asciiz string Device name
IFLA_MTU unsigned int MTU of the device
IFLA_LINK int Link type
IFLA_QDISC asciiz string Queueing discipline
IFLA_STATS Interface Statisticssee below
IFLA_PERM_ADDRESS hardware address hardware address pro-

vided by device (since
Linux 5.5)

The value type for IFLA_STATS is struct rtnl_link_stats (struct net_de-
vice_stats in Linux 2.4 and earlier).

RTM_NEWADDR
RTM_DELADDR
RTM_GETADDR

Add, remove, or receive information about an IP address associated with an in-
terface. In Linux 2.2, an interface can carry multiple IP addresses, this re-
places the alias device concept in Linux 2.0. In Linux 2.2, these messages
support IPv4 and IPv6 addresses. They contain an ifaddrmsg structure, op-
tionally followed by rtattr routing attributes.

struct ifaddrmsg {
unsigned char ifa_family; /* Address type */
unsigned char ifa_prefixlen; /* Prefixlength of address */
unsigned char ifa_flags; /* Address flags */
unsigned char ifa_scope; /* Address scope */
unsigned int ifa_index; /* Interface index */

};

ifa_family is the address family type (currently AF_INET or AF_INET6),
ifa_prefixlen is the length of the address mask of the address if defined for the
family (like for IPv4), ifa_scope is the address scope, ifa_index is the interface
index of the interface the address is associated with. ifa_flags is a flag word of
IFA_F_SECONDARY for secondary address (old alias interface),
IFA_F_PERMANENT for a permanent address set by the user and other un-
documented flags.

Attributes
rta_type Value type Description
IFA_UNSPEC - unspecified
IFA_ADDRESS raw protocol address interface address
IFA_LOCAL raw protocol address local address
IFA_LABEL asciiz string name of the interface
IFA_BROADCAST raw protocol address broadcast address
IFA_ANYCAST raw protocol address anycast address
IFA_CACHEINFO struct ifa_cacheinfo Address information

Linux man-pages 6.13 2024-11-13 3577

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

struct ifa_cacheinfo {
__u32 ifa_prefered; // Preferred lifetime remaining, in seconds
__u32 ifa_valid; // Valid lifetime remaining, in seconds
__u32 cstamp; // Creation timestamp, in centiseconds
__u32 tstamp; // Update timestamp, in centiseconds

};

ifa_valid cannot be zero, and ifa_prefered cannot be greater than ifa_valid . A
value of UINT32_MAX represents an infinite lifetime.

RTM_NEWROUTE
RTM_DELROUTE
RTM_GETROUTE

Create, remove, or receive information about a network route. These mes-
sages contain an rtmsg structure with an optional sequence of rtattr structures
following. For RTM_GETROUTE, setting rtm_dst_len and rtm_src_len to 0
means you get all entries for the specified routing table. For the other fields,
except rtm_table and rtm_protocol, 0 is the wildcard.

struct rtmsg {
unsigned char rtm_family; /* Address family of route */
unsigned char rtm_dst_len; /* Length of destination */
unsigned char rtm_src_len; /* Length of source */
unsigned char rtm_tos; /* TOS filter */
unsigned char rtm_table; /* Routing table ID;

see RTA_TABLE below */
unsigned char rtm_protocol; /* Routing protocol; see below */
unsigned char rtm_scope; /* See below */
unsigned char rtm_type; /* See below */

unsigned int rtm_flags;
};
rtm_type Route type
RTN_UNSPEC unknown route
RTN_UNICAST a gateway or direct route
RTN_LOCAL a local interface route
RTN_BROADCAST a local broadcast route (sent as a broad-

cast)
RTN_ANYCAST a local broadcast route (sent as a uni-

cast)
RTN_MULTICAST a multicast route
RTN_BLACKHOLE a packet dropping route
RTN_UNREACHABLE an unreachable destination
RTN_PROHIBIT a packet rejection route
RTN_THROW continue routing lookup in another table
RTN_NAT a network address translation rule
RTN_XRESOLVE refer to an external resolver (not imple-

mented)
rtm_protocol Route origin

Linux man-pages 6.13 2024-11-13 3578

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

RTPROT_UNSPEC unknown
RTPROT_REDIRECT by an ICMP redirect (currently

unused)
RTPROT_KERNEL by the kernel
RTPROT_BOOT during boot
RTPROT_STATIC by the administrator

Values larger than RTPROT_STATIC are not interpreted by the kernel, they
are just for user information. They may be used to tag the source of a routing
information or to distinguish between multiple routing daemons. See
<linux/rtnetlink.h> for the routing daemon identifiers which are already as-
signed.

rtm_scope is the distance to the destination:
RT_SCOPE_UNIVERSE global route
RT_SCOPE_SITE interior route in the local au-

tonomous system
RT_SCOPE_LINK route on this link
RT_SCOPE_HOST route on the local host
RT_SCOPE_NOWHERE destination doesn’t exist

The values between RT_SCOPE_UNIVERSE and RT_SCOPE_SITE are
available to the user.

The rtm_flags have the following meanings:
RTM_F_NOTIFY if the route changes, notify the user via rt-

netlink
RTM_F_CLONED route is cloned from another route
RTM_F_EQUALIZE a multipath equalizer (not yet implemented)

rtm_table specifies the routing table
RT_TABLE_UNSPEC an unspecified routing table
RT_TABLE_DEFAULT the default table
RT_TABLE_MAIN the main table
RT_TABLE_LOCAL the local table

The user may assign arbitrary values between RT_TABLE_UNSPEC and
RT_TABLE_DEFAULT.

Linux man-pages 6.13 2024-11-13 3579

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

Attributes
rta_type Value type Description
RTA_UNSPEC - ignored
RTA_DST protocol address Route destination address
RTA_SRC protocol address Route source address
RTA_IIF int Input interface index
RTA_OIF int Output interface index
RTA_GATEWAY protocol address The gateway of the route
RTA_PRIORITY int Priority of route
RTA_PREFSRC protocol address Preferred source address
RTA_METRICS int Route metric
RTA_MULTIPATH Multipath nexthop data br (see

below).
RTA_PROTOINFO No longer used
RTA_FLOW int Route realm
RTA_CACHEINFO struct rta_cacheinfo (see linux/rtnetlink.h)
RTA_SESSION No longer used
RTA_MP_ALGO No longer used
RTA_TABLE int Routing table ID; if set,

rtm_table is ignored
RTA_MARK int
RTA_MFC_STATS struct rta_mfc_stats (see linux/rtnetlink.h)
RTA_VIA struct rtvia Gateway in different AF (see be-

low)
RTA_NEWDST protocol address Change packet destination ad-

dress
RTA_PREF char RFC4191 IPv6 router preference

(see below)
RTA_ENCAP_TYPE short Encapsulation type for

lwtunnels (see below)
RTA_ENCAP Defined by RTA_ENCAP_TYPE
RTA_EXPIRES int Expire time for IPv6 routes (in

seconds)

RTA_MULTIPATH contains several packed instances of struct rtnexthop to-
gether with nested RTAs (RTA_GATEWAY):

struct rtnexthop {
unsigned short rtnh_len; /* Length of struct + length

of RTAs */
unsigned char rtnh_flags; /* Flags (see

linux/rtnetlink.h) */
unsigned char rtnh_hops; /* Nexthop priority */
int rtnh_ifindex; /* Interface index for this

nexthop */
}

There exist a bunch of RTNH_* macros similar to RTA_* and NLHDR_*
macros useful to handle these structures.

Linux man-pages 6.13 2024-11-13 3580

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

struct rtvia {
unsigned short rtvia_family;
unsigned char rtvia_addr[0];

};

rtvia_addr is the address, rtvia_family is its family type.

RTA_PREF may contain values ICMPV6_ROUTER_PREF_LOW,
ICMPV6_ROUTER_PREF_MEDIUM, and
ICMPV6_ROUTER_PREF_HIGH defined incw <linux/icmpv6.h>.

RTA_ENCAP_TYPE may contain values LWTUNNEL_ENCAP_MPLS,
LWTUNNEL_ENCAP_IP, LWTUNNEL_ENCAP_ILA, or LWTUN-
NEL_ENCAP_IP6 defined in <linux/lwtunnel.h>.

Fill these values in!

RTM_NEWNEIGH
RTM_DELNEIGH
RTM_GETNEIGH

Add, remove, or receive information about a neighbor table entry (e.g., an
ARP entry). The message contains an ndmsg structure.

struct ndmsg {
unsigned char ndm_family;
int ndm_ifindex; /* Interface index */
__u16 ndm_state; /* State */
__u8 ndm_flags; /* Flags */
__u8 ndm_type;

};

struct nda_cacheinfo {
__u32 ndm_confirmed;
__u32 ndm_used;
__u32 ndm_updated;
__u32 ndm_refcnt;

};

ndm_state is a bit mask of the following states:
NUD_INCOMPLETE a currently resolving cache entry
NUD_REACHABLE a confirmed working cache entry
NUD_STALE an expired cache entry
NUD_DELAY an entry waiting for a timer
NUD_PROBE a cache entry that is currently reprobed
NUD_FAILED an invalid cache entry
NUD_NOARP a device with no destination cache
NUD_PERMANENT a static entry

Valid ndm_flags are:
NTF_PROXY a proxy arp entry
NTF_ROUTER an IPv6 router

The rtattr struct has the following meanings for the rta_type field:

Linux man-pages 6.13 2024-11-13 3581

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

NDA_UNSPEC unknown type
NDA_DST a neighbor cache n/w layer destination address
NDA_LLADDR a neighbor cache link layer address
NDA_CACHEINFO cache statistics

If the rta_type field is NDA_CACHEINFO, then a struct nda_cacheinfo
header follows.

RTM_NEWRULE
RTM_DELRULE
RTM_GETRULE

Add, delete, or retrieve a routing rule. Carries a struct rtmsg

RTM_NEWQDISC
RTM_DELQDISC
RTM_GETQDISC

Add, remove, or get a queueing discipline. The message contains a struct
tcmsg and may be followed by a series of attributes.

struct tcmsg {
unsigned char tcm_family;
int tcm_ifindex; /* interface index */
__u32 tcm_handle; /* Qdisc handle */
__u32 tcm_parent; /* Parent qdisc */
__u32 tcm_info;

};
Attributes

rta_type Value type Description
TCA_UNSPEC - unspecified
TCA_KIND asciiz string Name of queueing discipline
TCA_OPTIONS byte sequence Qdisc-specific options follow
TCA_STATS struct tc_stats Qdisc statistics
TCA_XSTATS qdisc-specific Module-specific statistics
TCA_RATE struct tc_estimator Rate limit

In addition, various other qdisc-module-specific attributes are allowed. For
more information see the appropriate include files.

RTM_NEWTCLASS
RTM_DELTCLASS
RTM_GETTCLASS

Add, remove, or get a traffic class. These messages contain a struct tcmsg as
described above.

RTM_NEWTFILTER
RTM_DELTFILTER
RTM_GETTFILTER

Add, remove, or receive information about a traffic filter. These messages
contain a struct tcmsg as described above.

VERSIONS
rtnetlink is a new feature of Linux 2.2.

Linux man-pages 6.13 2024-11-13 3582

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

BUGS
This manual page is incomplete.

SEE ALSO
cmsg(3), rtnetlink(3), ip(7), netlink(7)

Linux man-pages 6.13 2024-11-13 3583

sched(7) Miscellaneous Information Manual sched(7)

NAME
sched - overview of CPU scheduling

DESCRIPTION
Since Linux 2.6.23, the default scheduler is CFS, the "Completely Fair Scheduler".
The CFS scheduler replaced the earlier "O(1)" scheduler.

API summary
Linux provides the following system calls for controlling the CPU scheduling behav-
ior, policy, and priority of processes (or, more precisely, threads).

nice(2)
Set a new nice value for the calling thread, and return the new nice value.

getpriority(2)
Return the nice value of a thread, a process group, or the set of threads owned
by a specified user.

setpriority(2)
Set the nice value of a thread, a process group, or the set of threads owned by a
specified user.

sched_setscheduler(2)
Set the scheduling policy and parameters of a specified thread.

sched_getscheduler(2)
Return the scheduling policy of a specified thread.

sched_setparam(2)
Set the scheduling parameters of a specified thread.

sched_getparam(2)
Fetch the scheduling parameters of a specified thread.

sched_get_priority_max(2)
Return the maximum priority available in a specified scheduling policy.

sched_get_priority_min(2)
Return the minimum priority available in a specified scheduling policy.

sched_rr_get_interval(2)
Fetch the quantum used for threads that are scheduled under the "round-robin"
scheduling policy.

sched_yield(2)
Cause the caller to relinquish the CPU, so that some other thread be executed.

sched_setaffinity(2)
(Linux-specific) Set the CPU affinity of a specified thread.

sched_getaffinity(2)
(Linux-specific) Get the CPU affinity of a specified thread.

sched_setattr(2)
Set the scheduling policy and parameters of a specified thread. This (Linux-
specific) system call provides a superset of the functionality of
sched_setscheduler(2) and sched_setparam(2).

Linux man-pages 6.13 2025-02-02 3584

sched(7) Miscellaneous Information Manual sched(7)

sched_getattr(2)
Fetch the scheduling policy and parameters of a specified thread. This (Linux-
specific) system call provides a superset of the functionality of
sched_getscheduler(2) and sched_getparam(2).

Scheduling policies
The scheduler is the kernel component that decides which runnable thread will be exe-
cuted by the CPU next. Each thread has an associated scheduling policy and a static
scheduling priority, sched_priority. The scheduler makes its decisions based on
knowledge of the scheduling policy and static priority of all threads on the system.

For threads scheduled under one of the normal scheduling policies
(SCHED_OTHER, SCHED_IDLE, SCHED_BATCH), sched_priority is not used
in scheduling decisions (it must be specified as 0).

Processes scheduled under one of the real-time policies (SCHED_FIFO,
SCHED_RR) have a sched_priority value in the range 1 (low) to 99 (high). (As the
numbers imply, real-time threads always have higher priority than normal threads.)
Note well: POSIX.1 requires an implementation to support only a minimum 32 dis-
tinct priority levels for the real-time policies, and some systems supply just this mini-
mum. Portable programs should use sched_get_priority_min(2) and sched_get_prior-
ity_max(2) to find the range of priorities supported for a particular policy.

Conceptually, the scheduler maintains a list of runnable threads for each possible
sched_priority value. In order to determine which thread runs next, the scheduler
looks for the nonempty list with the highest static priority and selects the thread at the
head of this list.

A thread’s scheduling policy determines where it will be inserted into the list of
threads with equal static priority and how it will move inside this list.

All scheduling is preemptive: if a thread with a higher static priority becomes ready to
run, the currently running thread will be preempted and returned to the wait list for its
static priority level. The scheduling policy determines the ordering only within the
list of runnable threads with equal static priority.

SCHED_FIFO: First in-first out scheduling
SCHED_FIFO can be used only with static priorities higher than 0, which means that
when a SCHED_FIFO thread becomes runnable, it will always immediately preempt
any currently running SCHED_OTHER, SCHED_BATCH, or SCHED_IDLE
thread. SCHED_FIFO is a simple scheduling algorithm without time slicing. For
threads scheduled under the SCHED_FIFO policy, the following rules apply:

• A running SCHED_FIFO thread that has been preempted by another thread of
higher priority will stay at the head of the list for its priority and will resume exe-
cution as soon as all threads of higher priority are blocked again.

• When a blocked SCHED_FIFO thread becomes runnable, it will be inserted at
the end of the list for its priority.

• If a call to sched_setscheduler(2), sched_setparam(2), sched_setattr(2),
pthread_setschedparam(3), or pthread_setschedprio(3) changes the priority of the
running or runnable SCHED_FIFO thread identified by pid the effect on the
thread’s position in the list depends on the direction of the change to the thread’s
priority:

Linux man-pages 6.13 2025-02-02 3585

sched(7) Miscellaneous Information Manual sched(7)

(a) If the thread’s priority is raised, it is placed at the end of the list for its new
priority. As a consequence, it may preempt a currently running thread with
the same priority.

(b) If the thread’s priority is unchanged, its position in the run list is unchanged.

(c) If the thread’s priority is lowered, it is placed at the front of the list for its
new priority.

According to POSIX.1-2008, changes to a thread’s priority (or policy) using any
mechanism other than pthread_setschedprio(3) should result in the thread being
placed at the end of the list for its priority.

• A thread calling sched_yield(2) will be put at the end of the list.

No other events will move a thread scheduled under the SCHED_FIFO policy in the
wait list of runnable threads with equal static priority.

A SCHED_FIFO thread runs until either it is blocked by an I/O request, it is pre-
empted by a higher priority thread, or it calls sched_yield(2).

SCHED_RR: Round-robin scheduling
SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described
above for SCHED_FIFO also applies to SCHED_RR, except that each thread is al-
lowed to run only for a maximum time quantum. If a SCHED_RR thread has been
running for a time period equal to or longer than the time quantum, it will be put at
the end of the list for its priority. A SCHED_RR thread that has been preempted by a
higher priority thread and subsequently resumes execution as a running thread will
complete the unexpired portion of its round-robin time quantum. The length of the
time quantum can be retrieved using sched_rr_get_interval(2).

SCHED_DEADLINE: Sporadic task model deadline scheduling
Since Linux 3.14, Linux provides a deadline scheduling policy (SCHED_DEAD-
LINE). This policy is currently implemented using GEDF (Global Earliest Deadline
First) in conjunction with CBS (Constant Bandwidth Server). To set and fetch this
policy and associated attributes, one must use the Linux-specific sched_setattr(2) and
sched_getattr(2) system calls.

A sporadic task is one that has a sequence of jobs, where each job is activated at most
once per period. Each job also has a relative deadline, before which it should finish
execution, and a computation time, which is the CPU time necessary for executing the
job. The moment when a task wakes up because a new job has to be executed is
called the arrival time (also referred to as the request time or release time). The start
time is the time at which a task starts its execution. The absolute deadline is thus ob-
tained by adding the relative deadline to the arrival time.

The following diagram clarifies these terms:

arrival/wakeup absolute deadline
| start time |
| | |
v v v

-----x--------xooooooooooooooooo--------x--------x---
|<- comp. time ->|

|<------- relative deadline ------>|

Linux man-pages 6.13 2025-02-02 3586

sched(7) Miscellaneous Information Manual sched(7)

|<-------------- period ------------------->|

When setting a SCHED_DEADLINE policy for a thread using sched_setattr(2), one
can specify three parameters: Runtime, Deadline, and Period . These parameters do
not necessarily correspond to the aforementioned terms: usual practice is to set Run-
time to something bigger than the average computation time (or worst-case execution
time for hard real-time tasks), Deadline to the relative deadline, and Period to the pe-
riod of the task. Thus, for SCHED_DEADLINE scheduling, we have:

arrival/wakeup absolute deadline
| start time |
| | |
v v v

-----x--------xooooooooooooooooo--------x--------x---
|<-- Runtime ------->|

|<----------- Deadline ----------->|
|<-------------- Period ------------------->|

The three deadline-scheduling parameters correspond to the sched_runtime,
sched_deadline, and sched_period fields of the sched_attr structure; see sched_se-
tattr(2). These fields express values in nanoseconds. If sched_period is specified as
0, then it is made the same as sched_deadline.

The kernel requires that:

sched_runtime <= sched_deadline <= sched_period

In addition, under the current implementation, all of the parameter values must be at
least 1024 (i.e., just over one microsecond, which is the resolution of the implementa-
tion), and less than 2^63. If any of these checks fails, sched_setattr(2) fails with the
error EINVAL.

The CBS guarantees non-interference between tasks, by throttling threads that attempt
to over-run their specified Runtime.

To ensure deadline scheduling guarantees, the kernel must prevent situations where
the set of SCHED_DEADLINE threads is not feasible (schedulable) within the given
constraints. The kernel thus performs an admittance test when setting or changing
SCHED_DEADLINE policy and attributes. This admission test calculates whether
the change is feasible; if it is not, sched_setattr(2) fails with the error EBUSY.

For example, it is required (but not necessarily sufficient) for the total utilization to be
less than or equal to the total number of CPUs available, where, since each thread can
maximally run for Runtime per Period, that thread’s utilization is its Runtime divided
by its Period.

In order to fulfill the guarantees that are made when a thread is admitted to the
SCHED_DEADLINE policy, SCHED_DEADLINE threads are the highest priority
(user controllable) threads in the system; if any SCHED_DEADLINE thread is
runnable, it will preempt any thread scheduled under one of the other policies.

A call to fork(2) by a thread scheduled under the SCHED_DEADLINE policy fails
with the error EAGAIN, unless the thread has its reset-on-fork flag set (see below).

A SCHED_DEADLINE thread that calls sched_yield(2) will yield the current job
and wait for a new period to begin.

Linux man-pages 6.13 2025-02-02 3587

sched(7) Miscellaneous Information Manual sched(7)

SCHED_OTHER: Default Linux time-sharing scheduling
SCHED_OTHER can be used at only static priority 0 (i.e., threads under real-time
policies always have priority over SCHED_OTHER processes). SCHED_OTHER
is the standard Linux time-sharing scheduler that is intended for all threads that do not
require the special real-time mechanisms.

The thread to run is chosen from the static priority 0 list based on a dynamic priority
that is determined only inside this list. The dynamic priority is based on the nice
value (see below) and is increased for each time quantum the thread is ready to run,
but denied to run by the scheduler. This ensures fair progress among all
SCHED_OTHER threads.

In the Linux kernel source code, the SCHED_OTHER policy is actually named
SCHED_NORMAL.

The nice value
The nice value is an attribute that can be used to influence the CPU scheduler to favor
or disfavor a process in scheduling decisions. It affects the scheduling of
SCHED_OTHER and SCHED_BATCH (see below) processes. The nice value can
be modified using nice(2), setpriority(2), or sched_setattr(2).

According to POSIX.1, the nice value is a per-process attribute; that is, the threads in
a process should share a nice value. However, on Linux, the nice value is a per-thread
attribute: different threads in the same process may have different nice values.

The range of the nice value varies across UNIX systems. On modern Linux, the range
is -20 (high priority) to +19 (low priority). On some other systems, the range is
-20..20. Very early Linux kernels (before Linux 2.0) had the range -infinity..15.

The degree to which the nice value affects the relative scheduling of
SCHED_OTHER processes likewise varies across UNIX systems and across Linux
kernel versions.

With the advent of the CFS scheduler in Linux 2.6.23, Linux adopted an algorithm
that causes relative differences in nice values to have a much stronger effect. In the
current implementation, each unit of difference in the nice values of two processes re-
sults in a factor of 1.25 in the degree to which the scheduler favors the higher priority
process. This causes very low nice values (+19) to truly provide little CPU to a
process whenever there is any other higher priority load on the system, and makes
high nice values (-20) deliver most of the CPU to applications that require it (e.g.,
some audio applications).

On Linux, the RLIMIT_NICE resource limit can be used to define a limit to which
an unprivileged process’s nice value can be raised; see setrlimit(2) for details.

For further details on the nice value, see the subsections on the autogroup feature and
group scheduling, below.

SCHED_BATCH: Scheduling batch processes
(Since Linux 2.6.16.) SCHED_BATCH can be used only at static priority 0. This
policy is similar to SCHED_OTHER in that it schedules the thread according to its
dynamic priority (based on the nice value). The difference is that this policy will
cause the scheduler to always assume that the thread is CPU-intensive. Consequently,
the scheduler will apply a small scheduling penalty with respect to wakeup behavior,
so that this thread is mildly disfavored in scheduling decisions.

Linux man-pages 6.13 2025-02-02 3588

sched(7) Miscellaneous Information Manual sched(7)

This policy is useful for workloads that are noninteractive, but do not want to lower
their nice value, and for workloads that want a deterministic scheduling policy with-
out interactivity causing extra preemptions (between the workload’s tasks).

SCHED_IDLE: Scheduling very low priority jobs
(Since Linux 2.6.23.) SCHED_IDLE can be used only at static priority 0; the
process nice value has no influence for this policy.

This policy is intended for running jobs at extremely low priority (lower even than a
+19 nice value with the SCHED_OTHER or SCHED_BATCH policies).

Resetting scheduling policy for child processes
Each thread has a reset-on-fork scheduling flag. When this flag is set, children created
by fork(2) do not inherit privileged scheduling policies. The reset-on-fork flag can be
set by either:

• ORing the SCHED_RESET_ON_FORK flag into the policy argument when
calling sched_setscheduler(2) (since Linux 2.6.32); or

• specifying the SCHED_FLAG_RESET_ON_FORK flag in attr.sched_flags
when calling sched_setattr(2).

Note that the constants used with these two APIs have different names. The state of
the reset-on-fork flag can analogously be retrieved using sched_getscheduler(2) and
sched_getattr(2).

The reset-on-fork feature is intended for media-playback applications, and can be
used to prevent applications evading the RLIMIT_RTTIME resource limit (see getr-
limit(2)) by creating multiple child processes.

More precisely, if the reset-on-fork flag is set, the following rules apply for subse-
quently created children:

• If the calling thread has a scheduling policy of SCHED_FIFO or SCHED_RR,
the policy is reset to SCHED_OTHER in child processes.

• If the calling process has a negative nice value, the nice value is reset to zero in
child processes.

After the reset-on-fork flag has been enabled, it can be reset only if the thread has the
CAP_SYS_NICE capability. This flag is disabled in child processes created by
fork(2).

Privileges and resource limits
Before Linux 2.6.12, only privileged (CAP_SYS_NICE) threads can set a nonzero
static priority (i.e., set a real-time scheduling policy). The only change that an unpriv-
ileged thread can make is to set the SCHED_OTHER policy, and this can be done
only if the effective user ID of the caller matches the real or effective user ID of the
target thread (i.e., the thread specified by pid) whose policy is being changed.

A thread must be privileged (CAP_SYS_NICE) in order to set or modify a
SCHED_DEADLINE policy.

Since Linux 2.6.12, the RLIMIT_RTPRIO resource limit defines a ceiling on an un-
privileged thread’s static priority for the SCHED_RR and SCHED_FIFO policies.
The rules for changing scheduling policy and priority are as follows:

Linux man-pages 6.13 2025-02-02 3589

sched(7) Miscellaneous Information Manual sched(7)

• If an unprivileged thread has a nonzero RLIMIT_RTPRIO soft limit, then it can
change its scheduling policy and priority, subject to the restriction that the priority
cannot be set to a value higher than the maximum of its current priority and its
RLIMIT_RTPRIO soft limit.

• If the RLIMIT_RTPRIO soft limit is 0, then the only permitted changes are to
lower the priority, or to switch to a non-real-time policy.

• Subject to the same rules, another unprivileged thread can also make these
changes, as long as the effective user ID of the thread making the change matches
the real or effective user ID of the target thread.

• Special rules apply for the SCHED_IDLE policy. Before Linux 2.6.39, an un-
privileged thread operating under this policy cannot change its policy, regardless
of the value of its RLIMIT_RTPRIO resource limit. Since Linux 2.6.39, an un-
privileged thread can switch to either the SCHED_BATCH or the
SCHED_OTHER policy so long as its nice value falls within the range permitted
by its RLIMIT_NICE resource limit (see getrlimit(2)).

Privileged (CAP_SYS_NICE) threads ignore the RLIMIT_RTPRIO limit; as with
older kernels, they can make arbitrary changes to scheduling policy and priority. See
getrlimit(2) for further information on RLIMIT_RTPRIO.

Limiting the CPU usage of real-time and deadline processes
A nonblocking infinite loop in a thread scheduled under the SCHED_FIFO,
SCHED_RR, or SCHED_DEADLINE policy can potentially block all other threads
from accessing the CPU forever. Before Linux 2.6.25, the only way of preventing a
runaway real-time process from freezing the system was to run (at the console) a shell
scheduled under a higher static priority than the tested application. This allows an
emergency kill of tested real-time applications that do not block or terminate as ex-
pected.

Since Linux 2.6.25, there are other techniques for dealing with runaway real-time and
deadline processes. One of these is to use the RLIMIT_RTTIME resource limit to
set a ceiling on the CPU time that a real-time process may consume. See getrlimit(2)
for details.

Since Linux 2.6.25, Linux also provides two /proc files that can be used to reserve a
certain amount of CPU time to be used by non-real-time processes. Reserving CPU
time in this fashion allows some CPU time to be allocated to (say) a root shell that can
be used to kill a runaway process. Both of these files specify time values in microsec-
onds:

/proc/sys/kernel/sched_rt_period_us
This file specifies a scheduling period that is equivalent to 100% CPU band-
width. The value in this file can range from 1 to INT_MAX, giving an operat-
ing range of 1 microsecond to around 35 minutes. The default value in this
file is 1,000,000 (1 second).

/proc/sys/kernel/sched_rt_runtime_us
The value in this file specifies how much of the "period" time can be used by
all real-time and deadline scheduled processes on the system. The value in
this file can range from -1 to INT_MAX-1. Specifying -1 makes the run
time the same as the period; that is, no CPU time is set aside for non-real-time

Linux man-pages 6.13 2025-02-02 3590

sched(7) Miscellaneous Information Manual sched(7)

processes (which was the behavior before Linux 2.6.25). The default value in
this file is 950,000 (0.95 seconds), meaning that 5% of the CPU time is re-
served for processes that don’t run under a real-time or deadline scheduling
policy.

Response time
A blocked high priority thread waiting for I/O has a certain response time before it is
scheduled again. The device driver writer can greatly reduce this response time by us-
ing a "slow interrupt" interrupt handler.

Miscellaneous
Child processes inherit the scheduling policy and parameters across a fork(2). The
scheduling policy and parameters are preserved across execve(2).

Memory locking is usually needed for real-time processes to avoid paging delays; this
can be done with mlock(2) or mlockall(2).

The autogroup feature
Since Linux 2.6.38, the kernel provides a feature known as autogrouping to improve
interactive desktop performance in the face of multiprocess, CPU-intensive workloads
such as building the Linux kernel with large numbers of parallel build processes (i.e.,
the make(1) -j flag).

This feature operates in conjunction with the CFS scheduler and requires a kernel that
is configured with CONFIG_SCHED_AUTOGROUP. On a running system, this
feature is enabled or disabled via the file /proc/sys/kernel/sched_autogroup_enabled;
a value of 0 disables the feature, while a value of 1 enables it. The default value in
this file is 1, unless the kernel was booted with the noautogroup parameter.

A new autogroup is created when a new session is created via setsid(2); this happens,
for example, when a new terminal window is started. A new process created by
fork(2) inherits its parent’s autogroup membership. Thus, all of the processes in a ses-
sion are members of the same autogroup. An autogroup is automatically destroyed
when the last process in the group terminates.

When autogrouping is enabled, all of the members of an autogroup are placed in the
same kernel scheduler "task group". When disabled, the group creation happens as
above, and autogroup membership is still visible in /proc, but the autogroups are not
used. The CFS scheduler employs an algorithm that equalizes the distribution of CPU
cycles across task groups. The benefits of this for interactive desktop performance
can be described via the following example.

Suppose that there are two autogroups competing for the same CPU (i.e., presume ei-
ther a single CPU system or the use of taskset(1) to confine all the processes to the
same CPU on an SMP system). The first group contains ten CPU-bound processes
from a kernel build started with make -j10. The other contains a single CPU-bound
process: a video player. The effect of autogrouping is that the two groups will each
receive half of the CPU cycles. That is, the video player will receive 50% of the CPU
cycles, rather than just 9% of the cycles, which would likely lead to degraded video
playback. The situation on an SMP system is more complex, but the general effect is
the same: the scheduler distributes CPU cycles across task groups such that an auto-
group that contains a large number of CPU-bound processes does not end up hogging
CPU cycles at the expense of the other jobs on the system.

Linux man-pages 6.13 2025-02-02 3591

sched(7) Miscellaneous Information Manual sched(7)

A process’s autogroup (task group) membership can be viewed via the file
/proc/ pid /autogroup:

$ cat /proc/1/autogroup
/autogroup-1 nice 0

This file can also be used to modify the CPU bandwidth allocated to an autogroup.
This is done by writing a number in the "nice" range to the file to set the autogroup’s
nice value. The allowed range is from +19 (low priority) to -20 (high priority).
(Writing values outside of this range causes write(2) to fail with the error EINVAL.)

The autogroup nice setting has the same meaning as the process nice value, but ap-
plies to distribution of CPU cycles to the autogroup as a whole, based on the relative
nice values of other autogroups. For a process inside an autogroup, the CPU cycles
that it receives will be a product of the autogroup’s nice value (compared to other au-
togroups) and the process’s nice value (compared to other processes in the same auto-
group.

The use of the cgroups(7) CPU controller to place processes in cgroups other than the
root CPU cgroup overrides the effect of autogrouping.

The autogroup feature groups only processes scheduled under non-real-time policies
(SCHED_OTHER, SCHED_BATCH, and SCHED_IDLE). It does not group
processes scheduled under real-time and deadline policies. Those processes are
scheduled according to the rules described earlier.

The nice value and group scheduling
When scheduling non-real-time processes (i.e., those scheduled under the
SCHED_OTHER, SCHED_BATCH, and SCHED_IDLE policies), the CFS sched-
uler employs a technique known as "group scheduling", if the kernel was configured
with the CONFIG_FAIR_GROUP_SCHED option (which is typical).

Under group scheduling, threads are scheduled in "task groups". Task groups have a
hierarchical relationship, rooted under the initial task group on the system, known as
the "root task group". Task groups are formed in the following circumstances:

• All of the threads in a CPU cgroup form a task group. The parent of this task
group is the task group of the corresponding parent cgroup.

• If autogrouping is enabled, then all of the threads that are (implicitly) placed in an
autogroup (i.e., the same session, as created by setsid(2)) form a task group. Each
new autogroup is thus a separate task group. The root task group is the parent of
all such autogroups.

• If autogrouping is enabled, then the root task group consists of all processes in the
root CPU cgroup that were not otherwise implicitly placed into a new autogroup.

• If autogrouping is disabled, then the root task group consists of all processes in the
root CPU cgroup.

• If group scheduling was disabled (i.e., the kernel was configured without CON-
FIG_FAIR_GROUP_SCHED), then all of the processes on the system are no-
tionally placed in a single task group.

Under group scheduling, a thread’s nice value has an effect for scheduling decisions
only relative to other threads in the same task group. This has some surprising

Linux man-pages 6.13 2025-02-02 3592

sched(7) Miscellaneous Information Manual sched(7)

consequences in terms of the traditional semantics of the nice value on UNIX sys-
tems. In particular, if autogrouping is enabled (which is the default in various distrib-
utions), then employing setpriority(2) or nice(1) on a process has an effect only for
scheduling relative to other processes executed in the same session (typically: the
same terminal window).

Conversely, for two processes that are (for example) the sole CPU-bound processes in
different sessions (e.g., different terminal windows, each of whose jobs are tied to dif-
ferent autogroups), modifying the nice value of the process in one of the sessions has
no effect in terms of the scheduler’s decisions relative to the process in the other ses-
sion. A possibly useful workaround here is to use a command such as the following
to modify the autogroup nice value for all of the processes in a terminal session:

$ echo 10 > /proc/self/autogroup

Real-time features in the mainline Linux kernel
Since Linux 2.6.18, Linux is gradually becoming equipped with real-time capabilities,
most of which are derived from the former realtime-preempt patch set. Until the
patches have been completely merged into the mainline kernel, they must be installed
to achieve the best real-time performance. These patches are named:

patch-kernelversion-rtpatchversion

and can be downloaded from 〈http://www.kernel.org/pub/linux/kernel/projects/rt/〉.

Without the patches and prior to their full inclusion into the mainline kernel, the ker-
nel configuration offers only the three preemption classes CONFIG_PRE-
EMPT_NONE, CONFIG_PREEMPT_VOLUNTARY, and CONFIG_PRE-
EMPT_DESKTOP which respectively provide no, some, and considerable reduction
of the worst-case scheduling latency.

With the patches applied or after their full inclusion into the mainline kernel, the addi-
tional configuration item CONFIG_PREEMPT_RT becomes available. If this is se-
lected, Linux is transformed into a regular real-time operating system. The FIFO and
RR scheduling policies are then used to run a thread with true real-time priority and a
minimum worst-case scheduling latency.

NOTES
The cgroups(7) CPU controller can be used to limit the CPU consumption of groups
of processes.

Originally, Standard Linux was intended as a general-purpose operating system being
able to handle background processes, interactive applications, and less demanding
real-time applications (applications that need to usually meet timing deadlines). Al-
though the Linux 2.6 allowed for kernel preemption and the newly introduced O(1)
scheduler ensures that the time needed to schedule is fixed and deterministic irrespec-
tive of the number of active tasks, true real-time computing was not possible up to
Linux 2.6.17.

SEE ALSO
chcpu(1), chrt(1), lscpu(1), ps(1), taskset(1), top(1), getpriority(2), mlock(2),
mlockall(2), munlock(2), munlockall(2), nice(2), sched_get_priority_max(2),
sched_get_priority_min(2), sched_getaffinity(2), sched_getparam(2),
sched_getscheduler(2), sched_rr_get_interval(2), sched_setaffinity(2),
sched_setparam(2), sched_setscheduler(2), sched_yield(2), setpriority(2),

Linux man-pages 6.13 2025-02-02 3593

sched(7) Miscellaneous Information Manual sched(7)

pthread_getaffinity_np(3), pthread_getschedparam(3), pthread_setaffinity_np(3),
sched_getcpu(3), capabilities(7), cpuset(7)

Programming for the real world - POSIX.4 by Bill O. Gallmeister, O’Reilly &
Associates, Inc., ISBN 1-56592-074-0.

The Linux kernel source files Documentation/scheduler/sched-deadline.txt,
Documentation/scheduler/sched-rt-group.txt, Documentation/scheduler/
sched-design-CFS.txt, and Documentation/scheduler/sched-nice-design.txt

Linux man-pages 6.13 2025-02-02 3594

sem_overview(7) Miscellaneous Information Manual sem_overview(7)

NAME
sem_overview - overview of POSIX semaphores

DESCRIPTION
POSIX semaphores allow processes and threads to synchronize their actions.

A semaphore is an integer whose value is never allowed to fall below zero. Two oper-
ations can be performed on semaphores: increment the semaphore value by one
(sem_post(3)); and decrement the semaphore value by one (sem_wait(3)). If the
value of a semaphore is currently zero, then a sem_wait(3) operation will block until
the value becomes greater than zero.

POSIX semaphores come in two forms: named semaphores and unnamed sema-
phores.

Named semaphores
A named semaphore is identified by a name of the form /somename; that is, a
null-terminated string of up to NAME_MAX-4 (i.e., 251) characters consist-
ing of an initial slash, followed by one or more characters, none of which are
slashes. Two processes can operate on the same named semaphore by passing
the same name to sem_open(3).

The sem_open(3) function creates a new named semaphore or opens an exist-
ing named semaphore. After the semaphore has been opened, it can be oper-
ated on using sem_post(3) and sem_wait(3). When a process has finished us-
ing the semaphore, it can use sem_close(3) to close the semaphore. When all
processes have finished using the semaphore, it can be removed from the sys-
tem using sem_unlink(3).

Unnamed semaphores (memory-based semaphores)
An unnamed semaphore does not have a name. Instead the semaphore is
placed in a region of memory that is shared between multiple threads (a
thread-shared semaphore) or processes (a process-shared semaphore). A
thread-shared semaphore is placed in an area of memory shared between the
threads of a process, for example, a global variable. A process-shared sema-
phore must be placed in a shared memory region (e.g., a System V shared
memory segment created using shmget(2), or a POSIX shared memory object
built created using shm_open(3)).

Before being used, an unnamed semaphore must be initialized using
sem_init(3). It can then be operated on using sem_post(3) and sem_wait(3).
When the semaphore is no longer required, and before the memory in which it
is located is deallocated, the semaphore should be destroyed using sem_de-
stroy(3).

The remainder of this section describes some specific details of the Linux implemen-
tation of POSIX semaphores.

Versions
Before Linux 2.6, Linux supported only unnamed, thread-shared semaphores. On a
system with Linux 2.6 and a glibc that provides the NPTL threading implementation,
a complete implementation of POSIX semaphores is provided.

Linux man-pages 6.13 2024-05-02 3595

sem_overview(7) Miscellaneous Information Manual sem_overview(7)

Persistence
POSIX named semaphores have kernel persistence: if not removed by sem_unlink(3),
a semaphore will exist until the system is shut down.

Linking
Programs using the POSIX semaphores API must be compiled with cc -pthread to
link against the real-time library, librt.

Accessing named semaphores via the filesystem
On Linux, named semaphores are created in a virtual filesystem, normally mounted
under /dev/shm, with names of the form sem.somename. (This is the reason that sem-
aphore names are limited to NAME_MAX-4 rather than NAME_MAX characters.)

Since Linux 2.6.19, ACLs can be placed on files under this directory, to control object
permissions on a per-user and per-group basis.

NOTES
System V semaphores (semget(2), semop(2), etc.) are an older semaphore API.
POSIX semaphores provide a simpler, and better designed interface than System V
semaphores; on the other hand POSIX semaphores are less widely available (espe-
cially on older systems) than System V semaphores.

EXAMPLES
An example of the use of various POSIX semaphore functions is shown in
sem_wait(3).

SEE ALSO
sem_close(3), sem_destroy(3), sem_getvalue(3), sem_init(3), sem_open(3),
sem_post(3), sem_unlink(3), sem_wait(3), pthreads(7), shm_overview(7)

Linux man-pages 6.13 2024-05-02 3596

session-keyring(7) Miscellaneous Information Manual session-keyring(7)

NAME
session-keyring - session shared process keyring

DESCRIPTION
The session keyring is a keyring used to anchor keys on behalf of a process. It is typi-
cally created by pam_keyinit(8) when a user logs in and a link will be added that
refers to the user-keyring(7). Optionally, PAM(7) may revoke the session keyring on
logout. (In typical configurations, PAM does do this revocation.) The session keyring
has the name (description) _ses.

A special serial number value, KEY_SPEC_SESSION_KEYRING, is defined that
can be used in lieu of the actual serial number of the calling process’s session keyring.

From the keyctl(1) utility, ’@s’ can be used instead of a numeric key ID in much the
same way.

A process’s session keyring is inherited across clone(2), fork(2), and vfork(2). The
session keyring is preserved across execve(2), even when the executable is set-user-ID
or set-group-ID or has capabilities. The session keyring is destroyed when the last
process that refers to it exits.

If a process doesn’t have a session keyring when it is accessed, then, under certain cir-
cumstances, the user-session-keyring(7) will be attached as the session keyring and
under others a new session keyring will be created. (See user-session-keyring(7) for
further details.)

Special operations
The keyutils library provides the following special operations for manipulating session
keyrings:

keyctl_join_session_keyring(3)
This operation allows the caller to change the session keyring that it subscribes
to. The caller can join an existing keyring with a specified name (description),
create a new keyring with a given name, or ask the kernel to create a new
"anonymous" session keyring with the name "_ses". (This function is an inter-
face to the keyctl(2) KEYCTL_JOIN_SESSION_KEYRING operation.)

keyctl_session_to_parent(3)
This operation allows the caller to make the parent process’s session keyring to
the same as its own. For this to succeed, the parent process must have identi-
cal security attributes and must be single threaded. (This function is an inter-
face to the keyctl(2) KEYCTL_SESSION_TO_PARENT operation.)

These operations are also exposed through the keyctl(1) utility as:

keyctl session
keyctl session - [<prog> <arg1> <arg2> ...]
keyctl session <name> [<prog> <arg1> <arg2> ...]

and:

keyctl new_session

SEE ALSO
keyctl(1), keyctl(3), keyctl_join_session_keyring(3), keyctl_session_to_parent(3),
keyrings(7), PAM(7), persistent-keyring(7), process-keyring(7), thread-keyring(7),

Linux man-pages 6.13 2024-05-02 3597

session-keyring(7) Miscellaneous Information Manual session-keyring(7)

user-keyring(7), user-session-keyring(7), pam_keyinit(8)

Linux man-pages 6.13 2024-05-02 3598

shm_overview(7) Miscellaneous Information Manual shm_overview(7)

NAME
shm_overview - overview of POSIX shared memory

DESCRIPTION
The POSIX shared memory API allows processes to communicate information by
sharing a region of memory.

The interfaces employed in the API are:

shm_open(3) Create and open a new object, or open an existing object. This is
analogous to open(2). The call returns a file descriptor for use by
the other interfaces listed below.

ftruncate(2) Set the size of the shared memory object. (A newly created shared
memory object has a length of zero.)

mmap(2) Map the shared memory object into the virtual address space of the
calling process.

munmap(2) Unmap the shared memory object from the virtual address space of
the calling process.

shm_unlink(3) Remove a shared memory object name.

close(2) Close the file descriptor allocated by shm_open(3) when it is no
longer needed.

fstat(2) Obtain a stat structure that describes the shared memory object.
Among the information returned by this call are the object’s size
(st_size), permissions (st_mode), owner (st_uid), and group
(st_gid).

fchown(2) To change the ownership of a shared memory object.

fchmod(2) To change the permissions of a shared memory object.

Versions
POSIX shared memory is supported since Linux 2.4 and glibc 2.2.

Persistence
POSIX shared memory objects have kernel persistence: a shared memory object will
exist until the system is shut down, or until all processes have unmapped the object
and it has been deleted with shm_unlink(3)

Linking
Programs using the POSIX shared memory API must be compiled with cc -lrt to link
against the real-time library, librt.

Accessing shared memory objects via the filesystem
On Linux, shared memory objects are created in a (tmpfs(5)) virtual filesystem, nor-
mally mounted under /dev/shm. Since Linux 2.6.19, Linux supports the use of access
control lists (ACLs) to control the permissions of objects in the virtual filesystem.

NOTES
Typically, processes must synchronize their access to a shared memory object, using,
for example, POSIX semaphores.

System V shared memory (shmget(2), shmop(2), etc.) is an older shared memory
API. POSIX shared memory provides a simpler, and better designed interface; on the

Linux man-pages 6.13 2024-05-02 3599

shm_overview(7) Miscellaneous Information Manual shm_overview(7)

other hand POSIX shared memory is somewhat less widely available (especially on
older systems) than System V shared memory.

SEE ALSO
fchmod(2), fchown(2), fstat(2), ftruncate(2), memfd_create(2), mmap(2), mprotect(2),
munmap(2), shmget(2), shmop(2), shm_open(3), shm_unlink(3), sem_overview(7)

Linux man-pages 6.13 2024-05-02 3600

signal(7) Miscellaneous Information Manual signal(7)

NAME
signal - overview of signals

DESCRIPTION
Linux supports both POSIX reliable signals (hereinafter "standard signals") and
POSIX real-time signals.

Signal dispositions
Each signal has a current disposition, which determines how the process behaves
when it is delivered the signal.

The entries in the "Action" column of the table below specify the default disposition
for each signal, as follows:

Term Default action is to terminate the process.

Ign Default action is to ignore the signal.

Core Default action is to terminate the process and dump core (see core(5)).

Stop Default action is to stop the process.

Cont Default action is to continue the process if it is currently stopped.

A process can change the disposition of a signal using sigaction(2) or signal(2). (The
latter is less portable when establishing a signal handler; see signal(2) for details.)
Using these system calls, a process can elect one of the following behaviors to occur
on delivery of the signal: perform the default action; ignore the signal; or catch the
signal with a signal handler, a programmer-defined function that is automatically in-
voked when the signal is delivered.

By default, a signal handler is invoked on the normal process stack. It is possible to
arrange that the signal handler uses an alternate stack; see sigaltstack(2) for a discus-
sion of how to do this and when it might be useful.

The signal disposition is a per-process attribute: in a multithreaded application, the
disposition of a particular signal is the same for all threads.

A child created via fork(2) inherits a copy of its parent’s signal dispositions. During
an execve(2), the dispositions of handled signals are reset to the default; the disposi-
tions of ignored signals are left unchanged.

Sending a signal
The following system calls and library functions allow the caller to send a signal:

raise(3)
Sends a signal to the calling thread.

kill(2) Sends a signal to a specified process, to all members of a specified process
group, or to all processes on the system.

pidfd_send_signal(2)
Sends a signal to a process identified by a PID file descriptor.

killpg(3)
Sends a signal to all of the members of a specified process group.

Linux man-pages 6.13 2025-02-02 3601

signal(7) Miscellaneous Information Manual signal(7)

pthread_kill(3)
Sends a signal to a specified POSIX thread in the same process as the caller.

tgkill(2)
Sends a signal to a specified thread within a specific process. (This is the sys-
tem call used to implement pthread_kill(3).)

sigqueue(3)
Sends a real-time signal with accompanying data to a specified process.

Waiting for a signal to be caught
The following system calls suspend execution of the calling thread until a signal is
caught (or an unhandled signal terminates the process):

pause(2)
Suspends execution until any signal is caught.

sigsuspend(2)
Temporarily changes the signal mask (see below) and suspends execution until
one of the unmasked signals is caught.

Synchronously accepting a signal
Rather than asynchronously catching a signal via a signal handler, it is possible to
synchronously accept the signal, that is, to block execution until the signal is deliv-
ered, at which point the kernel returns information about the signal to the caller.
There are two general ways to do this:

• sigwaitinfo(2), sigtimedwait(2), and sigwait(3) suspend execution until one of the
signals in a specified set is delivered. Each of these calls returns information
about the delivered signal.

• signalfd(2) returns a file descriptor that can be used to read information about sig-
nals that are delivered to the caller. Each read(2) from this file descriptor blocks
until one of the signals in the set specified in the signalfd(2) call is delivered to the
caller. The buffer returned by read(2) contains a structure describing the signal.

Signal mask and pending signals
A signal may be blocked , which means that it will not be delivered until it is later un-
blocked. Between the time when it is generated and when it is delivered a signal is
said to be pending.

Each thread in a process has an independent signal mask, which indicates the set of
signals that the thread is currently blocking. A thread can manipulate its signal mask
using pthread_sigmask(3). In a traditional single-threaded application, sigproc-
mask(2) can be used to manipulate the signal mask.

A child created via fork(2) inherits a copy of its parent’s signal mask; the signal mask
is preserved across execve(2).

A signal may be process-directed or thread-directed. A process-directed signal is one
that is targeted at (and thus pending for) the process as a whole. A signal may be
process-directed because it was generated by the kernel for reasons other than a hard-
ware exception, or because it was sent using kill(2) or sigqueue(3). A thread-directed
signal is one that is targeted at a specific thread. A signal may be thread-directed be-
cause it was generated as a consequence of executing a specific machine-language in-
struction that triggered a hardware exception (e.g., SIGSEGV for an invalid memory

Linux man-pages 6.13 2025-02-02 3602

signal(7) Miscellaneous Information Manual signal(7)

access, or SIGFPE for a math error), or because it was targeted at a specific thread
using interfaces such as tgkill(2) or pthread_kill(3).

A process-directed signal may be delivered to any one of the threads that does not cur-
rently have the signal blocked. If more than one of the threads has the signal un-
blocked, then the kernel chooses an arbitrary thread to which to deliver the signal.

A thread can obtain the set of signals that it currently has pending using
sigpending(2). This set will consist of the union of the set of pending process-di-
rected signals and the set of signals pending for the calling thread.

A child created via fork(2) initially has an empty pending signal set; the pending sig-
nal set is preserved across an execve(2).

Execution of signal handlers
Whenever there is a transition from kernel-mode to user-mode execution (e.g., on re-
turn from a system call or scheduling of a thread onto the CPU), the kernel checks
whether there is a pending unblocked signal for which the process has established a
signal handler. If there is such a pending signal, the following steps occur:

(1) The kernel performs the necessary preparatory steps for execution of the signal
handler:

(1.1) The signal is removed from the set of pending signals.

(1.2) If the signal handler was installed by a call to sigaction(2) that speci-
fied the SA_ONSTACK flag and the thread has defined an alternate
signal stack (using sigaltstack(2)), then that stack is installed.

(1.3) Various pieces of signal-related context are saved into a special frame
that is created on the stack. The saved information includes:

• the program counter register (i.e., the address of the next instruc-
tion in the main program that should be executed when the signal
handler returns);

• architecture-specific register state required for resuming the inter-
rupted program;

• the thread’s current signal mask;

• the thread’s alternate signal stack settings.

If the signal handler was installed using the sigaction(2) SA_SIG-
INFO flag, then the above information is accessible via the ucontext_t
object that is pointed to by the third argument of the signal handler.
This object reflects the state at which the signal is delivered, rather than
in the handler; for example, the mask of blocked signals stored in this
object will not contain the mask of new signals blocked through sigac-
tion(2).

(1.4) Any signals specified in act->sa_mask when registering the handler
with sigaction(2) are added to the thread’s signal mask. The signal be-
ing delivered is also added to the signal mask, unless SA_NODEFER
was specified when registering the handler. These signals are thus
blocked while the handler executes.

Linux man-pages 6.13 2025-02-02 3603

signal(7) Miscellaneous Information Manual signal(7)

(2) The kernel constructs a frame for the signal handler on the stack. The kernel
sets the program counter for the thread to point to the first instruction of the sig-
nal handler function, and configures the return address for that function to point
to a piece of user-space code known as the signal trampoline (described in si-
greturn(2)).

(3) The kernel passes control back to user-space, where execution commences at
the start of the signal handler function.

(4) When the signal handler returns, control passes to the signal trampoline code.

(5) The signal trampoline calls sigreturn(2), a system call that uses the information
in the stack frame created in step 1 to restore the thread to its state before the
signal handler was called. The thread’s signal mask and alternate signal stack
settings are restored as part of this procedure. Upon completion of the call to
sigreturn(2), the kernel transfers control back to user space, and the thread
recommences execution at the point where it was interrupted by the signal han-
dler.

Note that if the signal handler does not return (e.g., control is transferred out of the
handler using siglongjmp(3), or the handler executes a new program with execve(2)),
then the final step is not performed. In particular, in such scenarios it is the program-
mer’s responsibility to restore the state of the signal mask (using sigprocmask(2)), if it
is desired to unblock the signals that were blocked on entry to the signal handler.
(Note that siglongjmp(3) may or may not restore the signal mask, depending on the
savesigs value that was specified in the corresponding call to sigsetjmp(3).)

From the kernel’s point of view, execution of the signal handler code is exactly the
same as the execution of any other user-space code. That is to say, the kernel does not
record any special state information indicating that the thread is currently executing
inside a signal handler. All necessary state information is maintained in user-space
registers and the user-space stack. The depth to which nested signal handlers may be
invoked is thus limited only by the user-space stack (and sensible software design!).

Standard signals
Linux supports the standard signals listed below. The second column of the table in-
dicates which standard (if any) specified the signal: "P1990" indicates that the signal
is described in the original POSIX.1-1990 standard; "P2001" indicates that the signal
was added or its definition changed in SUSv2 and POSIX.1-2001.
Signal Standard Action Comment
SIGABRT P1990 Core Abort signal from abort(3)
SIGALRM P1990 Term Timer signal from alarm(2)
SIGBUS P2001 Core Bus error (bad memory access)
SIGCHLD P2001 Ign Child stopped, terminated, or continued
SIGCLD - Ign A synonym for SIGCHLD
SIGCONT P1990 Cont Continue if stopped
SIGEMT - Term Emulator trap
SIGFPE P1990 Core Erroneous arithmetic operation
SIGHUP P1990 Term Hangup detected on controlling terminal

or death of controlling process
SIGILL P1990 Core Illegal Instruction

Linux man-pages 6.13 2025-02-02 3604

signal(7) Miscellaneous Information Manual signal(7)

SIGINFO - A synonym for SIGPWR
SIGINT P1990 Term Interrupt from keyboard
SIGIO - Term I/O now possible (4.2BSD)
SIGIOT - Core IOT trap. A synonym for SIGABRT
SIGKILL P1990 Term Kill signal
SIGLOST - Term File lock lost (unused)
SIGPIPE P1990 Term Broken pipe: write to pipe with no

readers; see pipe(7)
SIGPOLL P2001 Term Pollable event (Sys V);

synonym for SIGIO
SIGPROF P2001 Term Profiling timer expired
SIGPWR - Term Power failure (System V)
SIGQUIT P1990 Core Quit from keyboard
SIGSEGV P1990 Core Invalid memory reference
SIGSTKFLT - Term Stack fault on coprocessor (unused)
SIGSTOP P1990 Stop Stop process
SIGTSTP P1990 Stop Stop typed at terminal
SIGSYS P2001 Core Bad system call (SVr4);

see also seccomp(2)
SIGTERM P1990 Term Termination signal
SIGTRAP P2001 Core Trace/breakpoint trap
SIGTTIN P1990 Stop Terminal input for background process
SIGTTOU P1990 Stop Terminal output for background process
SIGUNUSED - Core Synonymous with SIGSYS
SIGURG P2001 Ign Urgent condition on socket (4.2BSD)
SIGUSR1 P1990 Term User-defined signal 1
SIGUSR2 P1990 Term User-defined signal 2
SIGVTALRM P2001 Term Virtual alarm clock (4.2BSD)
SIGXCPU P2001 Core CPU time limit exceeded (4.2BSD);

see setrlimit(2)
SIGXFSZ P2001 Core File size limit exceeded (4.2BSD);

see setrlimit(2)
SIGWINCH - Ign Window resize signal (4.3BSD, Sun)

The signals SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.

Up to and including Linux 2.2, the default behavior for SIGSYS, SIGXCPU,
SIGXFSZ, and (on architectures other than SPARC and MIPS) SIGBUS was to ter-
minate the process (without a core dump). (On some other UNIX systems the default
action for SIGXCPU and SIGXFSZ is to terminate the process without a core
dump.) Linux 2.4 conforms to the POSIX.1-2001 requirements for these signals, ter-
minating the process with a core dump.

SIGEMT is not specified in POSIX.1-2001, but nevertheless appears on most other
UNIX systems, where its default action is typically to terminate the process with a
core dump.

SIGPWR (which is not specified in POSIX.1-2001) is typically ignored by default on
those other UNIX systems where it appears.

SIGIO (which is not specified in POSIX.1-2001) is ignored by default on several
other UNIX systems.

Linux man-pages 6.13 2025-02-02 3605

signal(7) Miscellaneous Information Manual signal(7)

Queueing and delivery semantics for standard signals
If multiple standard signals are pending for a process, the order in which the signals
are delivered is unspecified.

Standard signals do not queue. If multiple instances of a standard signal are generated
while that signal is blocked, then only one instance of the signal is marked as pending
(and the signal will be delivered just once when it is unblocked). In the case where a
standard signal is already pending, the siginfo_t structure (see sigaction(2)) associated
with that signal is not overwritten on arrival of subsequent instances of the same sig-
nal. Thus, the process will receive the information associated with the first instance of
the signal.

Signal numbering for standard signals
The numeric value for each signal is given in the table below. As shown in the table,
many signals have different numeric values on different architectures. The first nu-
meric value in each table row shows the signal number on x86, ARM, and most other
architectures; the second value is for Alpha and SPARC; the third is for MIPS; and the
last is for PARISC. A dash (-) denotes that a signal is absent on the corresponding ar-
chitecture.
Signal x86/ARM Alpha/ MIPS PARISC Notes

most others SPARC
SIGHUP 1 1 1 1
SIGINT 2 2 2 2
SIGQUIT 3 3 3 3
SIGILL 4 4 4 4
SIGTRAP 5 5 5 5
SIGABRT 6 6 6 6
SIGIOT 6 6 6 6
SIGBUS 7 10 10 10
SIGEMT - 7 7 -
SIGFPE 8 8 8 8
SIGKILL 9 9 9 9
SIGUSR1 10 30 16 16
SIGSEGV 11 11 11 11
SIGUSR2 12 31 17 17
SIGPIPE 13 13 13 13
SIGALRM 14 14 14 14
SIGTERM 15 15 15 15
SIGSTKFLT 16 - - 7
SIGCHLD 17 20 18 18
SIGCLD - - 18 -
SIGCONT 18 19 25 26
SIGSTOP 19 17 23 24
SIGTSTP 20 18 24 25
SIGTTIN 21 21 26 27
SIGTTOU 22 22 27 28
SIGURG 23 16 21 29
SIGXCPU 24 24 30 12
SIGXFSZ 25 25 31 30

Linux man-pages 6.13 2025-02-02 3606

signal(7) Miscellaneous Information Manual signal(7)

SIGVTALRM 26 26 28 20
SIGPROF 27 27 29 21
SIGWINCH 28 28 20 23
SIGIO 29 23 22 22
SIGPOLL Same as SIGIO
SIGPWR 30 29/- 19 19
SIGINFO - 29/- - -
SIGLOST - -/29 - -
SIGSYS 31 12 12 31
SIGUNUSED 31 - - 31

Note the following:

• Where defined, SIGUNUSED is synonymous with SIGSYS. Since glibc 2.26,
SIGUNUSED is no longer defined on any architecture.

• Signal 29 is SIGINFO/SIGPWR (synonyms for the same value) on Alpha but
SIGLOST on SPARC.

Real-time signals
Starting with Linux 2.2, Linux supports real-time signals as originally defined in the
POSIX.1b real-time extensions (and now included in POSIX.1-2001). The range of
supported real-time signals is defined by the macros SIGRTMIN and SIGRTMAX.
POSIX.1-2001 requires that an implementation support at least _POSIX_RT-
SIG_MAX (8) real-time signals.

The Linux kernel supports a range of 33 different real-time signals, numbered 32 to
64. However, the glibc POSIX threads implementation internally uses two (for
NPTL) or three (for LinuxThreads) real-time signals (see pthreads(7)), and adjusts the
value of SIGRTMIN suitably (to 34 or 35). Because the range of available real-time
signals varies according to the glibc threading implementation (and this variation can
occur at run time according to the available kernel and glibc), and indeed the range of
real-time signals varies across UNIX systems, programs should never refer to real-
time signals using hard-coded numbers, but instead should always refer to real-time
signals using the notation SIGRTMIN+n, and include suitable (run-time) checks that
SIGRTMIN+n does not exceed SIGRTMAX.

Unlike standard signals, real-time signals have no predefined meanings: the entire set
of real-time signals can be used for application-defined purposes.

The default action for an unhandled real-time signal is to terminate the receiving
process.

Real-time signals are distinguished by the following:

• Multiple instances of real-time signals can be queued. By contrast, if multiple in-
stances of a standard signal are delivered while that signal is currently blocked,
then only one instance is queued.

• If the signal is sent using sigqueue(3), an accompanying value (either an integer or
a pointer) can be sent with the signal. If the receiving process establishes a han-
dler for this signal using the SA_SIGINFO flag to sigaction(2), then it can obtain
this data via the si_value field of the siginfo_t structure passed as the second argu-
ment to the handler. Furthermore, the si_pid and si_uid fields of this structure can
be used to obtain the PID and real user ID of the process sending the signal.

Linux man-pages 6.13 2025-02-02 3607

signal(7) Miscellaneous Information Manual signal(7)

• Real-time signals are delivered in a guaranteed order. Multiple real-time signals
of the same type are delivered in the order they were sent. If different real-time
signals are sent to a process, they are delivered starting with the lowest-numbered
signal. (I.e., low-numbered signals have highest priority.) By contrast, if multiple
standard signals are pending for a process, the order in which they are delivered is
unspecified.

If both standard and real-time signals are pending for a process, POSIX leaves it un-
specified which is delivered first. Linux, like many other implementations, gives pri-
ority to standard signals in this case.

According to POSIX, an implementation should permit at least
_POSIX_SIGQUEUE_MAX (32) real-time signals to be queued to a process. How-
ever, Linux does things differently. Up to and including Linux 2.6.7, Linux imposes a
system-wide limit on the number of queued real-time signals for all processes. This
limit can be viewed and (with privilege) changed via the /proc/sys/kernel/rtsig-max
file. A related file, /proc/sys/kernel/rtsig-nr, can be used to find out how many real-
time signals are currently queued. In Linux 2.6.8, these /proc interfaces were re-
placed by the RLIMIT_SIGPENDING resource limit, which specifies a per-user
limit for queued signals; see setrlimit(2) for further details.

The addition of real-time signals required the widening of the signal set structure
(sigset_t) from 32 to 64 bits. Consequently, various system calls were superseded by
new system calls that supported the larger signal sets. The old and new system calls
are as follows:
Linux 2.0 and earlier Linux 2.2 and later
sigaction(2) rt_sigaction(2)
sigpending(2) rt_sigpending(2)
sigprocmask(2) rt_sigprocmask(2)
sigreturn(2) rt_sigreturn(2)
sigsuspend(2) rt_sigsuspend(2)
sigtimedwait(2) rt_sigtimedwait(2)

Interruption of system calls and library functions by signal handlers
If a signal handler is invoked while a system call or library function call is blocked,
then either:

• the call is automatically restarted after the signal handler returns; or

• the call fails with the error EINTR.

Which of these two behaviors occurs depends on the interface and whether or not the
signal handler was established using the SA_RESTART flag (see sigaction(2)). The
details vary across UNIX systems; below, the details for Linux.

If a blocked call to one of the following interfaces is interrupted by a signal handler,
then the call is automatically restarted after the signal handler returns if the
SA_RESTART flag was used; otherwise the call fails with the error EINTR:

• read(2), readv(2), write(2), writev(2), and ioctl(2) calls on "slow" devices. A
"slow" device is one where the I/O call may block for an indefinite time, for exam-
ple, a terminal, pipe, or socket. If an I/O call on a slow device has already trans-
ferred some data by the time it is interrupted by a signal handler, then the call will
return a success status (normally, the number of bytes transferred). Note that a

Linux man-pages 6.13 2025-02-02 3608

signal(7) Miscellaneous Information Manual signal(7)

(local) disk is not a slow device according to this definition; I/O operations on disk
devices are not interrupted by signals.

• open(2), if it can block (e.g., when opening a FIFO; see fifo(7)).

• wait(2), wait3(2), wait4(2), waitid(2), and waitpid(2).

• Socket interfaces: accept(2), connect(2), recv(2), recvfrom(2), recvmmsg(2),
recvmsg(2), send(2), sendto(2), and sendmsg(2), unless a timeout has been set on
the socket (see below).

• File locking interfaces: flock(2) and the F_SETLKW and F_OFD_SETLKW op-
erations of fcntl(2)

• POSIX message queue interfaces: mq_receive(3), mq_timedreceive(3),
mq_send(3), and mq_timedsend(3).

• futex(2) FUTEX_WAIT (since Linux 2.6.22; beforehand, always failed with
EINTR).

• getrandom(2).

• futex(2) FUTEX_WAIT_BITSET.

• POSIX semaphore interfaces: sem_wait(3) and sem_timedwait(3) (since Linux
2.6.22; beforehand, always failed with EINTR).

• read(2) from an inotify(7) file descriptor (since Linux 3.8; beforehand, always
failed with EINTR).

The following interfaces are never restarted after being interrupted by a signal han-
dler, regardless of the use of SA_RESTART; they always fail with the error EINTR
when interrupted by a signal handler:

• "Input" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on the
socket using setsockopt(2): accept(2), recv(2), recvfrom(2), recvmmsg(2) (also
with a non-NULL timeout argument), and recvmsg(2).

• "Output" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on
the socket using setsockopt(2): connect(2), send(2), sendto(2), and sendmsg(2).

• Interfaces used to wait for signals: pause(2), sigsuspend(2), sigtimedwait(2), and
sigwaitinfo(2).

• File descriptor multiplexing interfaces: epoll_wait(2), epoll_pwait(2), poll(2),
ppoll(2), select(2), and pselect(2).

• System V IPC interfaces: msgrcv(2), msgsnd(2), semop(2), and semtimedop(2).

• Sleep interfaces: clock_nanosleep(2), nanosleep(2), and usleep(3).

• io_getevents(2).

The sleep(3) function is also never restarted if interrupted by a handler, but gives a
success return: the number of seconds remaining to sleep.

In certain circumstances, the seccomp(2) user-space notification feature can lead to
restarting of system calls that would otherwise never be restarted by SA_RESTART;
for details, see seccomp_unotify(2).

Linux man-pages 6.13 2025-02-02 3609

signal(7) Miscellaneous Information Manual signal(7)

Interruption of system calls and library functions by stop signals
On Linux, even in the absence of signal handlers, certain blocking interfaces can fail
with the error EINTR after the process is stopped by one of the stop signals and then
resumed via SIGCONT. This behavior is not sanctioned by POSIX.1, and doesn’t
occur on other systems.

The Linux interfaces that display this behavior are:

• "Input" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on the
socket using setsockopt(2): accept(2), recv(2), recvfrom(2), recvmmsg(2) (also
with a non-NULL timeout argument), and recvmsg(2).

• "Output" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on
the socket using setsockopt(2): connect(2), send(2), sendto(2), and sendmsg(2), if
a send timeout (SO_SNDTIMEO) has been set.

• epoll_wait(2), epoll_pwait(2).

• semop(2), semtimedop(2).

• sigtimedwait(2), sigwaitinfo(2).

• Linux 3.7 and earlier: read(2) from an inotify(7) file descriptor

• Linux 2.6.21 and earlier: futex(2) FUTEX_WAIT, sem_timedwait(3),
sem_wait(3).

• Linux 2.6.8 and earlier: msgrcv(2), msgsnd(2).

• Linux 2.4 and earlier: nanosleep(2).

STANDARDS
POSIX.1, except as noted.

NOTES
For a discussion of async-signal-safe functions, see signal-safety(7).

The /proc/ pid /task/ tid /status file contains various fields that show the signals that a
thread is blocking (SigBlk), catching (SigCgt), or ignoring (SigIgn). (The set of sig-
nals that are caught or ignored will be the same across all threads in a process.) Other
fields show the set of pending signals that are directed to the thread (SigPnd) as well
as the set of pending signals that are directed to the process as a whole (ShdPnd). The
corresponding fields in /proc/ pid /status show the information for the main thread.
See proc(5) for further details.

BUGS
There are six signals that can be delivered as a consequence of a hardware exception:
SIGBUS, SIGEMT, SIGFPE, SIGILL, SIGSEGV, and SIGTRAP. Which of these
signals is delivered, for any given hardware exception, is not documented and does
not always make sense.

For example, an invalid memory access that causes delivery of SIGSEGV on one
CPU architecture may cause delivery of SIGBUS on another architecture, or vice
versa.

For another example, using the x86 int instruction with a forbidden argument (any
number other than 3 or 128) causes delivery of SIGSEGV, even though SIGILL
would make more sense, because of how the CPU reports the forbidden operation to

Linux man-pages 6.13 2025-02-02 3610

signal(7) Miscellaneous Information Manual signal(7)

the kernel.

SEE ALSO
kill(1), clone(2), getrlimit(2), kill(2), pidfd_send_signal(2), restart_syscall(2),
rt_sigqueueinfo(2), setitimer(2), setrlimit(2), sgetmask(2), sigaction(2), sigaltstack(2),
signal(2), signalfd(2), sigpending(2), sigprocmask(2), sigreturn(2), sigsuspend(2), sig-
waitinfo(2), abort(3), bsd_signal(3), killpg(3), longjmp(3), pthread_sigqueue(3),
raise(3), sigqueue(3), sigset(3), sigsetops(3), sigvec(3), sigwait(3), strsignal(3), swap-
context(3), sysv_signal(3), core(5), proc(5), nptl(7), pthreads(7), sigevent(3type)

Linux man-pages 6.13 2025-02-02 3611

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

NAME
signal-safety - async-signal-safe functions

DESCRIPTION
An async-signal-safe function is one that can be safely called from within a signal
handler. Many functions are not async-signal-safe. In particular, nonreentrant func-
tions are generally unsafe to call from a signal handler.

The kinds of issues that render a function unsafe can be quickly understood when one
considers the implementation of the stdio library, all of whose functions are not
async-signal-safe.

When performing buffered I/O on a file, the stdio functions must maintain a statically
allocated data buffer along with associated counters and indexes (or pointers) that
record the amount of data and the current position in the buffer. Suppose that the
main program is in the middle of a call to a stdio function such as printf(3) where the
buffer and associated variables have been partially updated. If, at that moment, the
program is interrupted by a signal handler that also calls printf(3), then the second call
to printf(3) will operate on inconsistent data, with unpredictable results.

To avoid problems with unsafe functions, there are two possible choices:

(a) Ensure that (1) the signal handler calls only async-signal-safe functions, and (2)
the signal handler itself is reentrant with respect to global variables in the main
program.

(b) Block signal delivery in the main program when calling functions that are un-
safe or operating on global data that is also accessed by the signal handler.

Generally, the second choice is difficult in programs of any complexity, so the first
choice is taken.

POSIX.1 specifies a set of functions that an implementation must make async-signal-
safe. (An implementation may provide safe implementations of additional functions,
but this is not required by the standard and other implementations may not provide the
same guarantees.)

In general, a function is async-signal-safe either because it is reentrant or because it is
atomic with respect to signals (i.e., its execution can’t be interrupted by a signal han-
dler).

The set of functions required to be async-signal-safe by POSIX.1 is shown in the fol-
lowing table. The functions not otherwise noted were required to be async-signal-safe
in POSIX.1-2001; the table details changes in the subsequent standards.

Function Notes
Added in POSIX.1-2001 TC1abort(3)

accept(2)
access(2)
aio_error(3)
aio_return(3)

See notes belowaio_suspend(3)
alarm(2)
bind(2)

Linux man-pages 6.13 2024-08-31 3612

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

cfgetispeed(3)
cfgetospeed(3)
cfsetispeed(3)
cfsetospeed(3)
chdir(2)
chmod(2)
chown(2)
clock_gettime(2)
close(2)
connect(2)
creat(2)
dup(2)
dup2(2)
execl(3) Added in POSIX.1-2008; see

notes below
See notes belowexecle(3)
Added in POSIX.1-2008execv(3)

execve(2)
_exit(2)
_Exit(2)

Added in POSIX.1-2008faccessat(2)
Added in POSIX.1-2008 TC1fchdir(2)

fchmod(2)
Added in POSIX.1-2008fchmodat(2)

fchown(2)
Added in POSIX.1-2008fchownat(2)

fcntl(2)
fdatasync(2)

Added in POSIX.1-2008fexecve(3)
Added in POSIX.1-2008 TC2ffs(3)
See notes belowfork(2)

fstat(2)
Added in POSIX.1-2008fstatat(2)

fsync(2)
ftruncate(2)

Added in POSIX.1-2008futimens(3)
getegid(2)
geteuid(2)
getgid(2)
getgroups(2)
getpeername(2)
getpgrp(2)
getpid(2)
getppid(2)
getsockname(2)
getsockopt(2)
getuid(2)

Added in POSIX.1-2008 TC2htonl(3)

Linux man-pages 6.13 2024-08-31 3613

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

Added in POSIX.1-2008 TC2htons(3)
kill(2)
link(2)

Added in POSIX.1-2008linkat(2)
listen(2)
longjmp(3) Added in POSIX.1-2008 TC2;

see notes below
lseek(2)
lstat(2)

Added in POSIX.1-2008 TC2memccpy(3)
Added in POSIX.1-2008 TC2memchr(3)
Added in POSIX.1-2008 TC2memcmp(3)
Added in POSIX.1-2008 TC2memcpy(3)
Added in POSIX.1-2008 TC2memmove(3)
Added in POSIX.1-2008 TC2memset(3)

mkdir(2)
Added in POSIX.1-2008mkdirat(2)

mkfifo(3)
Added in POSIX.1-2008mkfifoat(3)
Added in POSIX.1-2008mknod(2)
Added in POSIX.1-2008mknodat(2)
Added in POSIX.1-2008 TC2ntohl(3)
Added in POSIX.1-2008 TC2ntohs(3)

open(2)
Added in POSIX.1-2008openat(2)

pause(2)
pipe(2)
poll(2)
posix_trace_event(3)
pselect(2)

Added in POSIX.1-2008 TC1pthread_kill(3)
Added in POSIX.1-2008 TC1pthread_self(3)
Added in POSIX.1-2008 TC1pthread_sigmask(3)

raise(3)
read(2)
readlink(2)

Added in POSIX.1-2008readlinkat(2)
recv(2)
recvfrom(2)
recvmsg(2)
rename(2)

Added in POSIX.1-2008renameat(2)
rmdir(2)
select(2)
sem_post(3)
send(2)
sendmsg(2)
sendto(2)

Linux man-pages 6.13 2024-08-31 3614

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

setgid(2)
setpgid(2)
setsid(2)
setsockopt(2)
setuid(2)
shutdown(2)
sigaction(2)
sigaddset(3)
sigdelset(3)
sigemptyset(3)
sigfillset(3)
sigismember(3)
siglongjmp(3) Added in POSIX.1-2008 TC2;

see notes below
signal(2)
sigpause(3)
sigpending(2)
sigprocmask(2)
sigqueue(2)
sigset(3)
sigsuspend(2)
sleep(3)

Added in POSIX.1-2001 TC2sockatmark(3)
socket(2)
socketpair(2)
stat(2)

Added in POSIX.1-2008 TC2stpcpy(3)
Added in POSIX.1-2008 TC2stpncpy(3)
Added in POSIX.1-2008 TC2strcat(3)
Added in POSIX.1-2008 TC2strchr(3)
Added in POSIX.1-2008 TC2strcmp(3)
Added in POSIX.1-2008 TC2strcpy(3)
Added in POSIX.1-2008 TC2strcspn(3)
Added in POSIX.1-2008 TC2strlen(3)
Added in POSIX.1-2008 TC2strncat(3)
Added in POSIX.1-2008 TC2strncmp(3)
Added in POSIX.1-2008 TC2strncpy(3)
Added in POSIX.1-2008 TC2strnlen(3)
Added in POSIX.1-2008 TC2strpbrk(3)
Added in POSIX.1-2008 TC2strrchr(3)
Added in POSIX.1-2008 TC2strspn(3)
Added in POSIX.1-2008 TC2strstr(3)
Added in POSIX.1-2008 TC2strtok_r(3)

symlink(2)
Added in POSIX.1-2008symlinkat(2)

tcdrain(3)
tcflow(3)
tcflush(3)

Linux man-pages 6.13 2024-08-31 3615

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

tcgetattr(3)
tcgetpgrp(3)
tcsendbreak(3)
tcsetattr(3)
tcsetpgrp(3)
time(2)
timer_getoverrun(2)
timer_gettime(2)
timer_settime(2)
times(2)
umask(2)
uname(2)
unlink(2)

Added in POSIX.1-2008unlinkat(2)
utime(2)

Added in POSIX.1-2008utimensat(2)
Added in POSIX.1-2008utimes(2)

wait(2)
waitpid(2)

Added in POSIX.1-2008 TC2wcpcpy(3)
Added in POSIX.1-2008 TC2wcpncpy(3)
Added in POSIX.1-2008 TC2wcscat(3)
Added in POSIX.1-2008 TC2wcschr(3)
Added in POSIX.1-2008 TC2wcscmp(3)
Added in POSIX.1-2008 TC2wcscpy(3)
Added in POSIX.1-2008 TC2wcscspn(3)
Added in POSIX.1-2008 TC2wcslen(3)
Added in POSIX.1-2008 TC2wcsncat(3)
Added in POSIX.1-2008 TC2wcsncmp(3)
Added in POSIX.1-2008 TC2wcsncpy(3)
Added in POSIX.1-2008 TC2wcsnlen(3)
Added in POSIX.1-2008 TC2wcspbrk(3)
Added in POSIX.1-2008 TC2wcsrchr(3)
Added in POSIX.1-2008 TC2wcsspn(3)
Added in POSIX.1-2008 TC2wcsstr(3)
Added in POSIX.1-2008 TC2wcstok(3)
Added in POSIX.1-2008 TC2wmemchr(3)
Added in POSIX.1-2008 TC2wmemcmp(3)
Added in POSIX.1-2008 TC2wmemcpy(3)
Added in POSIX.1-2008 TC2wmemmove(3)
Added in POSIX.1-2008 TC2wmemset(3)

write(2)

Notes:

• POSIX.1-2001 and POSIX.1-2001 TC2 required the functions fpathconf(3), path-
conf(3), and sysconf(3) to be async-signal-safe, but this requirement was removed
in POSIX.1-2008.

Linux man-pages 6.13 2024-08-31 3616

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

• If a signal handler interrupts the execution of an unsafe function, and the handler
terminates via a call to longjmp(3) or siglongjmp(3) and the program subsequently
calls an unsafe function, then the behavior of the program is undefined.

• POSIX.1-2001 TC1 clarified that if an application calls fork(2) from a signal han-
dler and any of the fork handlers registered by pthread_atfork(3) calls a function
that is not async-signal-safe, the behavior is undefined. A future revision of the
standard is likely to remove fork(2) from the list of async-signal-safe functions.

• Asynchronous signal handlers that call functions which are cancelation points and
nest over regions of deferred cancelation may trigger cancelation whose behavior
is as if asynchronous cancelation had occurred and may cause application state to
become inconsistent.

errno
Fetching and setting the value of errno is async-signal-safe provided that the signal
handler saves errno on entry and restores its value before returning.

Deviations in the GNU C library
The following known deviations from the standard occur in the GNU C library:

• Before glibc 2.24, execl(3) and execle(3) employed realloc(3) internally and were
consequently not async-signal-safe. This was fixed in glibc 2.24.

• The glibc implementation of aio_suspend(3) is not async-signal-safe because it
uses pthread_mutex_lock(3) internally.

SEE ALSO
sigaction(2), signal(7), standards(7)

Linux man-pages 6.13 2024-08-31 3617

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

NAME
sock_diag - obtaining information about sockets

SYNOPSIS
#include <sys/socket.h>
#include <linux/sock_diag.h>
#include <linux/unix_diag.h> /* for UNIX domain sockets */
#include <linux/inet_diag.h> /* for IPv4 and IPv6 sockets */

diag_socket = socket(AF_NETLINK, socket_type, NETLINK_SOCK_DIAG);

DESCRIPTION
The sock_diag netlink subsystem provides a mechanism for obtaining information
about sockets of various address families from the kernel. This subsystem can be
used to obtain information about individual sockets or request a list of sockets.

In the request, the caller can specify additional information it would like to obtain
about the socket, for example, memory information or information specific to the ad-
dress family.

When requesting a list of sockets, the caller can specify filters that would be applied
by the kernel to select a subset of sockets to report. For now, there is only the ability
to filter sockets by state (connected, listening, and so on.)

Note that sock_diag reports only those sockets that have a name; that is, either sockets
bound explicitly with bind(2) or sockets that were automatically bound to an address
(e.g., by connect(2)). This is the same set of sockets that is available via
/proc/net/unix, /proc/net/tcp, /proc/net/udp, and so on.

Request
The request starts with a struct nlmsghdr header described in netlink(7) with
nlmsg_type field set to SOCK_DIAG_BY_FAMILY. It is followed by a header spe-
cific to the address family that starts with a common part shared by all address fami-
lies:

struct sock_diag_req {
__u8 sdiag_family;
__u8 sdiag_protocol;

};

The fields of this structure are as follows:

sdiag_family
An address family. It should be set to the appropriate AF_* constant.

sdiag_protocol
Depends on sdiag_family. It should be set to the appropriate IPPROTO_*
constant for AF_INET and AF_INET6, and to 0 otherwise.

If the nlmsg_flags field of the struct nlmsghdr header has the NLM_F_DUMP flag
set, it means that a list of sockets is being requested; otherwise it is a query about an
individual socket.

Response
The response starts with a struct nlmsghdr header and is followed by an array of ob-
jects specific to the address family. The array is to be accessed with the standard

Linux man-pages 6.13 2024-11-17 3618

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

NLMSG_* macros from the netlink(3) API.

Each object is the NLA (netlink attributes) list that is to be accessed with the RTA_*
macros from rtnetlink(3) API.

UNIX domain sockets
For UNIX domain sockets the request is represented in the following structure:

struct unix_diag_req {
__u8 sdiag_family;
__u8 sdiag_protocol;
__u16 pad;
__u32 udiag_states;
__u32 udiag_ino;
__u32 udiag_show;
__u32 udiag_cookie[2];

};

The fields of this structure are as follows:

sdiag_family
The address family; it should be set to AF_UNIX.

sdiag_protocol
pad These fields should be set to 0.

udiag_states
This is a bit mask that defines a filter of sockets states. Only those sockets
whose states are in this mask will be reported. Ignored when querying for an
individual socket. Supported values are:

1 << TCP_ESTABLISHED

1 << TCP_LISTEN

udiag_ino
This is an inode number when querying for an individual socket. Ignored
when querying for a list of sockets.

udiag_show
This is a set of flags defining what kind of information to report. Each re-
quested kind of information is reported back as a netlink attribute as described
below:

UDIAG_SHOW_NAME
The attribute reported in answer to this request is
UNIX_DIAG_NAME. The payload associated with this attribute is
the pathname to which the socket was bound (a sequence of bytes up to
UNIX_PATH_MAX size).

UDIAG_SHOW_VFS
The attribute reported in answer to this request is UNIX_DIAG_VFS.
The payload associated with this attribute is represented in the follow-
ing structure:

struct unix_diag_vfs {
__u32 udiag_vfs_dev;

Linux man-pages 6.13 2024-11-17 3619

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

__u32 udiag_vfs_ino;
};

The fields of this structure are as follows:

udiag_vfs_dev
The device number of the corresponding on-disk socket inode.

udiag_vfs_ino
The inode number of the corresponding on-disk socket inode.

UDIAG_SHOW_PEER
The attribute reported in answer to this request is
UNIX_DIAG_PEER. The payload associated with this attribute is a
__u32 value which is the peer’s inode number. This attribute is re-
ported for connected sockets only.

UDIAG_SHOW_ICONS
The attribute reported in answer to this request is
UNIX_DIAG_ICONS. The payload associated with this attribute is
an array of __u32 values which are inode numbers of sockets that has
passed the connect(2) call, but hasn’t been processed with accept(2)
yet. This attribute is reported for listening sockets only.

UDIAG_SHOW_RQLEN
The attribute reported in answer to this request is
UNIX_DIAG_RQLEN. The payload associated with this attribute is
represented in the following structure:

struct unix_diag_rqlen {
__u32 udiag_rqueue;
__u32 udiag_wqueue;

};

The fields of this structure are as follows:

udiag_rqueue
For listening sockets: the number of pending connections. The
size of the array associated with the UNIX_DIAG_ICONS re-
sponse attribute is equal to this value.

For established sockets: the amount of data in incoming queue.

udiag_wqueue
For listening sockets: the backlog size which equals to the
value passed as the second argument to listen(2).

For established sockets: the amount of memory available for
sending.

UDIAG_SHOW_MEMINFO
The attribute reported in answer to this request is
UNIX_DIAG_MEMINFO. The payload associated with this attribute
is an array of __u32 values described below in the subsection "Socket
memory information".

The following attributes are reported back without any specific request:

Linux man-pages 6.13 2024-11-17 3620

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

UNIX_DIAG_SHUTDOWN
The payload associated with this attribute is __u8 value which repre-
sents bits of shutdown(2) state.

udiag_cookie
This is an array of opaque identifiers that could be used along with udiag_ino
to specify an individual socket. It is ignored when querying for a list of sock-
ets, as well as when all its elements are set to -1.

The response to a query for UNIX domain sockets is represented as an array of

struct unix_diag_msg {
__u8 udiag_family;
__u8 udiag_type;
__u8 udiag_state;
__u8 pad;
__u32 udiag_ino;
__u32 udiag_cookie[2];

};

followed by netlink attributes.

The fields of this structure are as follows:

udiag_family
This field has the same meaning as in struct unix_diag_req.

udiag_type
This is set to one of SOCK_PACKET, SOCK_STREAM, or SOCK_SEQ-
PACKET.

udiag_state
This is set to one of TCP_LISTEN or TCP_ESTABLISHED.

pad This field is set to 0.

udiag_ino
This is the socket inode number.

udiag_cookie
This is an array of opaque identifiers that could be used in subsequent queries.

IPv4 and IPv6 sockets
For IPv4 and IPv6 sockets, the request is represented in the following structure:

struct inet_diag_req_v2 {
__u8 sdiag_family;
__u8 sdiag_protocol;
__u8 idiag_ext;
__u8 pad;
__u32 idiag_states;
struct inet_diag_sockid id;

};

where struct inet_diag_sockid is defined as follows:

struct inet_diag_sockid {
__be16 idiag_sport;

Linux man-pages 6.13 2024-11-17 3621

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

__be16 idiag_dport;
__be32 idiag_src[4];
__be32 idiag_dst[4];
__u32 idiag_if;
__u32 idiag_cookie[2];

};

The fields of struct inet_diag_req_v2 are as follows:

sdiag_family
This should be set to either AF_INET or AF_INET6 for IPv4 or IPv6 sockets
respectively.

sdiag_protocol
This should be set to one of IPPROTO_TCP, IPPROTO_UDP, or IP-
PROTO_UDPLITE.

idiag_ext
This is a set of flags defining what kind of extended information to report.
Each requested kind of information is reported back as a netlink attribute as
described below:

INET_DIAG_TOS
The payload associated with this attribute is a __u8 value which is the
TOS of the socket.

INET_DIAG_TCLASS
The payload associated with this attribute is a __u8 value which is the
TClass of the socket. IPv6 sockets only. For LISTEN and CLOSE
sockets, this is followed by INET_DIAG_SKV6ONLY attribute with
associated __u8 payload value meaning whether the socket is
IPv6-only or not.

INET_DIAG_MEMINFO
The payload associated with this attribute is represented in the follow-
ing structure:

struct inet_diag_meminfo {
__u32 idiag_rmem;
__u32 idiag_wmem;
__u32 idiag_fmem;
__u32 idiag_tmem;

};

The fields of this structure are as follows:

idiag_rmem The amount of data in the receive queue.

idiag_wmem The amount of data that is queued by TCP but not yet
sent.

idiag_fmem The amount of memory scheduled for future use (TCP
only).

Linux man-pages 6.13 2024-11-17 3622

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

idiag_tmem The amount of data in send queue.

INET_DIAG_SKMEMINFO
The payload associated with this attribute is an array of __u32 values
described below in the subsection "Socket memory information".

INET_DIAG_INFO
The payload associated with this attribute is specific to the address
family. For TCP sockets, it is an object of type struct tcp_info.

INET_DIAG_CONG
The payload associated with this attribute is a string that describes the
congestion control algorithm used. For TCP sockets only.

pad This should be set to 0.

idiag_states
This is a bit mask that defines a filter of socket states. Only those sockets
whose states are in this mask will be reported. Ignored when querying for an
individual socket.

id This is a socket ID object that is used in dump requests, in queries about indi-
vidual sockets, and is reported back in each response. Unlike UNIX domain
sockets, IPv4 and IPv6 sockets are identified using addresses and ports. All
values are in network byte order.

The fields of struct inet_diag_sockid are as follows:

idiag_sport
The source port.

idiag_dport
The destination port.

idiag_src
The source address.

idiag_dst
The destination address.

idiag_if
The interface number the socket is bound to.

idiag_cookie
This is an array of opaque identifiers that could be used along with other fields
of this structure to specify an individual socket. It is ignored when querying
for a list of sockets, as well as when all its elements are set to -1.

The response to a query for IPv4 or IPv6 sockets is represented as an array of

struct inet_diag_msg {
__u8 idiag_family;
__u8 idiag_state;
__u8 idiag_timer;
__u8 idiag_retrans;

struct inet_diag_sockid id;

Linux man-pages 6.13 2024-11-17 3623

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

__u32 idiag_expires;
__u32 idiag_rqueue;
__u32 idiag_wqueue;
__u32 idiag_uid;
__u32 idiag_inode;

};

followed by netlink attributes.

The fields of this structure are as follows:

idiag_family
This is the same field as in struct inet_diag_req_v2.

idiag_state
This denotes socket state as in struct inet_diag_req_v2.

idiag_timer
For TCP sockets, this field describes the type of timer that is currently active
for the socket. It is set to one of the following constants:

0 no timer is active
1 a retransmit timer
2 a keep-alive timer
3 a TIME_WAIT timer
4 a zero window probe timer

For non-TCP sockets, this field is set to 0.

idiag_retrans
For idiag_timer values 1, 2, and 4, this field contains the number of retrans-
mits. For other idiag_timer values, this field is set to 0.

idiag_expires
For TCP sockets that have an active timer, this field describes its expiration
time in milliseconds. For other sockets, this field is set to 0.

idiag_rqueue
For listening sockets: the number of pending connections.

For other sockets: the amount of data in the incoming queue.

idiag_wqueue
For listening sockets: the backlog size.

For other sockets: the amount of memory available for sending.

idiag_uid
This is the socket owner UID.

idiag_inode
This is the socket inode number.

Socket memory information
The payload associated with UNIX_DIAG_MEMINFO and
INET_DIAG_SKMEMINFO netlink attributes is an array of the following __u32
values:

Linux man-pages 6.13 2024-11-17 3624

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

SK_MEMINFO_RMEM_ALLOC
The amount of data in receive queue.

SK_MEMINFO_RCVBUF
The receive socket buffer as set by SO_RCVBUF.

SK_MEMINFO_WMEM_ALLOC
The amount of data in send queue.

SK_MEMINFO_SNDBUF
The send socket buffer as set by SO_SNDBUF.

SK_MEMINFO_FWD_ALLOC
The amount of memory scheduled for future use (TCP only).

SK_MEMINFO_WMEM_QUEUED
The amount of data queued by TCP, but not yet sent.

SK_MEMINFO_OPTMEM
The amount of memory allocated for the socket’s service needs (e.g., socket
filter).

SK_MEMINFO_BACKLOG
The amount of packets in the backlog (not yet processed).

VERSIONS
NETLINK_INET_DIAG was introduced in Linux 2.6.14 and supported AF_INET
and AF_INET6 sockets only. In Linux 3.3, it was renamed to
NETLINK_SOCK_DIAG and extended to support AF_UNIX sockets.

UNIX_DIAG_MEMINFO and INET_DIAG_SKMEMINFO were introduced in
Linux 3.6.

STANDARDS
Linux.

EXAMPLES
The following example program prints inode number, peer’s inode number, and name
of all UNIX domain sockets in the current namespace.

#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <linux/sock_diag.h>
#include <linux/unix_diag.h>

static int
send_query(int fd)
{

struct sockaddr_nl nladdr = {
.nl_family = AF_NETLINK

Linux man-pages 6.13 2024-11-17 3625

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

};
struct
{

struct nlmsghdr nlh;
struct unix_diag_req udr;

} req = {
.nlh = {

.nlmsg_len = sizeof(req),

.nlmsg_type = SOCK_DIAG_BY_FAMILY,

.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP
},
.udr = {

.sdiag_family = AF_UNIX,

.udiag_states = -1,

.udiag_show = UDIAG_SHOW_NAME | UDIAG_SHOW_PEER
}

};
struct iovec iov = {

.iov_base = &req,

.iov_len = sizeof(req)
};
struct msghdr msg = {

.msg_name = &nladdr,

.msg_namelen = sizeof(nladdr),

.msg_iov = &iov,

.msg_iovlen = 1
};

for (;;) {
if (sendmsg(fd, &msg, 0) < 0) {

if (errno == EINTR)
continue;

perror("sendmsg");
return -1;

}

return 0;
}

}

static int
print_diag(const struct unix_diag_msg *diag, unsigned int size)
{

if (size < NLMSG_LENGTH(sizeof(*diag))) {
fputs("short response\n", stderr);
return -1;

}
if (diag->udiag_family != AF_UNIX) {

Linux man-pages 6.13 2024-11-17 3626

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

fprintf(stderr, "unexpected family %u\n", diag->udiag_family);
return -1;

}

unsigned int rta_len = size - NLMSG_LENGTH(sizeof(*diag));
unsigned int peer = 0;
size_t path_len = 0;
char path[sizeof(((struct sockaddr_un *) 0)->sun_path) + 1];

for (struct rtattr *attr = (struct rtattr *) (diag + 1);
RTA_OK(attr, rta_len); attr = RTA_NEXT(attr, rta_len)) {

switch (attr->rta_type) {
case UNIX_DIAG_NAME:

if (!path_len) {
path_len = RTA_PAYLOAD(attr);
if (path_len > sizeof(path) - 1)

path_len = sizeof(path) - 1;
memcpy(path, RTA_DATA(attr), path_len);
path[path_len] = '\0';

}
break;

case UNIX_DIAG_PEER:
if (RTA_PAYLOAD(attr) >= sizeof(peer))

peer = *(unsigned int *) RTA_DATA(attr);
break;

}
}

printf("inode=%u", diag->udiag_ino);

if (peer)
printf(", peer=%u", peer);

if (path_len)
printf(", name=%s%s", *path ? "" : "@",

*path ? path : path + 1);

putchar('\n');
return 0;

}

static int
receive_responses(int fd)
{

long buf[8192 / sizeof(long)];
struct sockaddr_nl nladdr;
struct iovec iov = {

.iov_base = buf,

Linux man-pages 6.13 2024-11-17 3627

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

.iov_len = sizeof(buf)
};
int flags = 0;

for (;;) {
struct msghdr msg = {

.msg_name = &nladdr,

.msg_namelen = sizeof(nladdr),

.msg_iov = &iov,

.msg_iovlen = 1
};

ssize_t ret = recvmsg(fd, &msg, flags);

if (ret < 0) {
if (errno == EINTR)

continue;

perror("recvmsg");
return -1;

}
if (ret == 0)

return 0;

if (nladdr.nl_family != AF_NETLINK) {
fputs("!AF_NETLINK\n", stderr);
return -1;

}

const struct nlmsghdr *h = (struct nlmsghdr *) buf;

if (!NLMSG_OK(h, ret)) {
fputs("!NLMSG_OK\n", stderr);
return -1;

}

for (; NLMSG_OK(h, ret); h = NLMSG_NEXT(h, ret)) {
if (h->nlmsg_type == NLMSG_DONE)

return 0;

if (h->nlmsg_type == NLMSG_ERROR) {
const struct nlmsgerr *err = NLMSG_DATA(h);

if (h->nlmsg_len < NLMSG_LENGTH(sizeof(*err))) {
fputs("NLMSG_ERROR\n", stderr);

} else {
errno = -err->error;
perror("NLMSG_ERROR");

}

Linux man-pages 6.13 2024-11-17 3628

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

return -1;
}

if (h->nlmsg_type != SOCK_DIAG_BY_FAMILY) {
fprintf(stderr, "unexpected nlmsg_type %u\n",

(unsigned) h->nlmsg_type);
return -1;

}

if (print_diag(NLMSG_DATA(h), h->nlmsg_len))
return -1;

}
}

}

int
main(void)
{

int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_SOCK_DIAG);

if (fd < 0) {
perror("socket");
return 1;

}

int ret = send_query(fd) || receive_responses(fd);

close(fd);
return ret;

}

SEE ALSO
netlink(3), rtnetlink(3), netlink(7), tcp(7)

Linux man-pages 6.13 2024-11-17 3629

socket(7) Miscellaneous Information Manual socket(7)

NAME
socket - Linux socket interface

SYNOPSIS
#include <sys/socket.h>

sockfd = socket(int socket_family, int socket_type, int protocol);

DESCRIPTION
This manual page describes the Linux networking socket layer user interface. The
BSD compatible sockets are the uniform interface between the user process and the
network protocol stacks in the kernel. The protocol modules are grouped into proto-
col families such as AF_INET, AF_IPX, and AF_PACKET, and socket types such
as SOCK_STREAM or SOCK_DGRAM. See socket(2) for more information on
families and types.

Socket-layer functions
These functions are used by the user process to send or receive packets and to do
other socket operations. For more information, see their respective manual pages.

socket(2) creates a socket, connect(2) connects a socket to a remote socket address,
the bind(2) function binds a socket to a local socket address, listen(2) tells the socket
that new connections shall be accepted, and accept(2) is used to get a new socket with
a new incoming connection. socketpair(2) returns two connected anonymous sockets
(implemented only for a few local families like AF_UNIX)

send(2), sendto(2), and sendmsg(2) send data over a socket, and recv(2), recvfrom(2),
recvmsg(2) receive data from a socket. poll(2) and select(2) wait for arriving data or a
readiness to send data. In addition, the standard I/O operations like write(2),
writev(2), sendfile(2), read(2), and readv(2) can be used to read and write data.

getsockname(2) returns the local socket address and getpeername(2) returns the re-
mote socket address. getsockopt(2) and setsockopt(2) are used to set or get socket
layer or protocol options. ioctl(2) can be used to set or read some other options.

close(2) is used to close a socket. shutdown(2) closes parts of a full-duplex socket
connection.

Seeking, or calling pread(2) or pwrite(2) with a nonzero position is not supported on
sockets.

It is possible to do nonblocking I/O on sockets by setting the O_NONBLOCK flag on
a socket file descriptor using fcntl(2). Then all operations that would block will (usu-
ally) return with EAGAIN (operation should be retried later); connect(2) will return
EINPROGRESS error. The user can then wait for various events via poll(2) or se-
lect(2).

Linux man-pages 6.13 2024-11-17 3630

socket(7) Miscellaneous Information Manual socket(7)

I/O events
Event Poll flag Occurrence
Read POLLIN New data arrived.
Read POLLIN A connection setup has been completed (for connec-

tion-oriented sockets)
Read POLLHUP A disconnection request has been initiated by the

other end.
Read POLLHUP A connection is broken (only for connection-oriented

protocols). When the socket is written SIGPIPE is
also sent.

Write POLLOUT Socket has enough send buffer space for writing new
data.

Read/Write POLLIN |
POLLOUT

An outgoing connect(2) finished.

Read/Write POLLERR An asynchronous error occurred.
Read/Write POLLHUP The other end has shut down one direction.
Exception POLLPRI Urgent data arrived. SIGURG is sent then.

An alternative to poll(2) and select(2) is to let the kernel inform the application about
events via a SIGIO signal. For that the O_ASYNC flag must be set on a socket file
descriptor via fcntl(2) and a valid signal handler for SIGIO must be installed via
sigaction(2). See the Signals discussion below.

Socket address structures
Each socket domain has its own format for socket addresses, with a domain-specific
address structure. Each of these structures begins with an integer "family" field (typed
as sa_family_t) that indicates the type of the address structure. This allows the vari-
ous system calls (e.g., connect(2), bind(2), accept(2), getsockname(2), getpeer-
name(2)), which are generic to all socket domains, to determine the domain of a par-
ticular socket address.

To allow any type of socket address to be passed to interfaces in the sockets API, the
type struct sockaddr is defined. The purpose of this type is purely to allow casting of
domain-specific socket address types to a "generic" type, so as to avoid compiler
warnings about type mismatches in calls to the sockets API.

In addition, the sockets API provides the data type struct sockaddr_storage. This
type is suitable to accommodate all supported domain-specific socket address struc-
tures; it is large enough and is aligned properly. (In particular, it is large enough to
hold IPv6 socket addresses.) The structure includes the following field, which can be
used to identify the type of socket address actually stored in the structure:

sa_family_t ss_family;

The sockaddr_storage structure is useful in programs that must handle socket ad-
dresses in a generic way (e.g., programs that must deal with both IPv4 and IPv6
socket addresses).

Socket options
The socket options listed below can be set by using setsockopt(2) and read with get-
sockopt(2) with the socket level set to SOL_SOCKET for all sockets. Unless

Linux man-pages 6.13 2024-11-17 3631

socket(7) Miscellaneous Information Manual socket(7)

otherwise noted, optval is a pointer to an int.

SO_ACCEPTCONN
Returns a value indicating whether or not this socket has been marked to ac-
cept connections with listen(2). The value 0 indicates that this is not a listen-
ing socket, the value 1 indicates that this is a listening socket. This socket op-
tion is read-only.

SO_ATTACH_FILTER (since Linux 2.2)
SO_ATTACH_BPF (since Linux 3.19)

Attach a classic BPF (SO_ATTACH_FILTER) or an extended BPF (SO_AT-
TACH_BPF) program to the socket for use as a filter of incoming packets. A
packet will be dropped if the filter program returns zero. If the filter program
returns a nonzero value which is less than the packet’s data size, the packet
will be truncated to the size returned. If the value returned by the filter is
greater than or equal to the packet’s data size, the packet is allowed to proceed
unmodified.

The argument for SO_ATTACH_FILTER is a sock_fprog structure, defined
in <linux/filter.h>:

struct sock_fprog {
unsigned short len;
struct sock_filter *filter;

};

The argument for SO_ATTACH_BPF is a file descriptor returned by the
bpf(2) system call and must refer to a program of type
BPF_PROG_TYPE_SOCKET_FILTER.

These options may be set multiple times for a given socket, each time replac-
ing the previous filter program. The classic and extended versions may be
called on the same socket, but the previous filter will always be replaced such
that a socket never has more than one filter defined.

Both classic and extended BPF are explained in the kernel source file Docu-
mentation/networking/filter.txt

SO_ATTACH_REUSEPORT_CBPF
SO_ATTACH_REUSEPORT_EBPF

For use with the SO_REUSEPORT option, these options allow the user to set
a classic BPF (SO_ATTACH_REUSEPORT_CBPF) or an extended BPF
(SO_ATTACH_REUSEPORT_EBPF) program which defines how packets
are assigned to the sockets in the reuseport group (that is, all sockets which
have SO_REUSEPORT set and are using the same local address to receive
packets).

The BPF program must return an index between 0 and N-1 representing the
socket which should receive the packet (where N is the number of sockets in
the group). If the BPF program returns an invalid index, socket selection will
fall back to the plain SO_REUSEPORT mechanism.

Sockets are numbered in the order in which they are added to the group (that
is, the order of bind(2) calls for UDP sockets or the order of listen(2) calls for
TCP sockets). New sockets added to a reuseport group will inherit the BPF

Linux man-pages 6.13 2024-11-17 3632

socket(7) Miscellaneous Information Manual socket(7)

program. When a socket is removed from a reuseport group (via close(2)), the
last socket in the group will be moved into the closed socket’s position.

These options may be set repeatedly at any time on any socket in the group to
replace the current BPF program used by all sockets in the group.

SO_ATTACH_REUSEPORT_CBPF takes the same argument type as
SO_ATTACH_FILTER and SO_ATTACH_REUSEPORT_EBPF takes the
same argument type as SO_ATTACH_BPF.

UDP support for this feature is available since Linux 4.5; TCP support is avail-
able since Linux 4.6.

SO_BINDTODEVICE
Bind this socket to a particular device like “eth0”, as specified in the passed in-
terface name. If the name is an empty string or the option size is zero, the
socket device binding is removed. The passed option is a variable-size null-
terminated interface name string with the maximum size of IFNAMSIZ. If a
socket is bound to an interface, only packets received from that particular in-
terface are processed by the socket. Note that this works only for some socket
types, particularly AF_INET sockets. It is not supported for packet sockets
(use normal bind(2) there).

Before Linux 3.8, this socket option could be set, but could not retrieved with
getsockopt(2). Since Linux 3.8, it is readable. The optlen argument should
contain the buffer size available to receive the device name and is recom-
mended to be IFNAMSIZ bytes. The real device name length is reported
back in the optlen argument.

SO_BROADCAST
Set or get the broadcast flag. When enabled, datagram sockets are allowed to
send packets to a broadcast address. This option has no effect on stream-ori-
ented sockets.

SO_BSDCOMPAT
Enable BSD bug-to-bug compatibility. This is used by the UDP protocol mod-
ule in Linux 2.0 and 2.2. If enabled, ICMP errors received for a UDP socket
will not be passed to the user program. In later kernel versions, support for
this option has been phased out: Linux 2.4 silently ignores it, and Linux 2.6
generates a kernel warning (printk()) if a program uses this option. Linux 2.0
also enabled BSD bug-to-bug compatibility options (random header changing,
skipping of the broadcast flag) for raw sockets with this option, but that was
removed in Linux 2.2.

SO_DEBUG
Enable socket debugging. Allowed only for processes with the
CAP_NET_ADMIN capability or an effective user ID of 0.

SO_DETACH_FILTER (since Linux 2.2)
SO_DETACH_BPF (since Linux 3.19)

These two options, which are synonyms, may be used to remove the classic or
extended BPF program attached to a socket with either SO_ATTACH_FIL-
TER or SO_ATTACH_BPF. The option value is ignored.

Linux man-pages 6.13 2024-11-17 3633

socket(7) Miscellaneous Information Manual socket(7)

SO_DOMAIN (since Linux 2.6.32)
Retrieves the socket domain as an integer, returning a value such as
AF_INET6. See socket(2) for details. This socket option is read-only.

SO_ERROR
Get and clear the pending socket error. This socket option is read-only. Ex-
pects an integer.

SO_DONTROUTE
Don’t send via a gateway, send only to directly connected hosts. The same ef-
fect can be achieved by setting the MSG_DONTROUTE flag on a socket
send(2) operation. Expects an integer boolean flag.

SO_INCOMING_CPU (gettable since Linux 3.19, settable since Linux 4.4)
Sets or gets the CPU affinity of a socket. Expects an integer flag.

int cpu = 1;
setsockopt(fd, SOL_SOCKET, SO_INCOMING_CPU, &cpu,

sizeof(cpu));

Because all of the packets for a single stream (i.e., all packets for the same
4-tuple) arrive on the single RX queue that is associated with a particular
CPU, the typical use case is to employ one listening process per RX queue,
with the incoming flow being handled by a listener on the same CPU that is
handling the RX queue. This provides optimal NUMA behavior and keeps
CPU caches hot.

SO_INCOMING_NAPI_ID (gettable since Linux 4.12)
Returns a system-level unique ID called NAPI ID that is associated with a RX
queue on which the last packet associated with that socket is received.

This can be used by an application to split the incoming flows among worker
threads based on the RX queue on which the packets associated with the flows
are received. It allows each worker thread to be associated with a NIC HW re-
ceive queue and service all the connection requests received on that RX queue.
This mapping between an app thread and a HW NIC queue streamlines the
flow of data from the NIC to the application.

SO_KEEPALIVE
Enable sending of keep-alive messages on connection-oriented sockets. Ex-
pects an integer boolean flag.

SO_LINGER
Sets or gets the SO_LINGER option. The argument is a linger structure.

struct linger {
int l_onoff; /* linger active */
int l_linger; /* how many seconds to linger for */

};

When enabled, a close(2) or shutdown(2) will not return until all queued mes-
sages for the socket have been successfully sent or the linger timeout has been
reached. Otherwise, the call returns immediately and the closing is done in the
background. When the socket is closed as part of exit(2), it always lingers in
the background.

Linux man-pages 6.13 2024-11-17 3634

socket(7) Miscellaneous Information Manual socket(7)

SO_LOCK_FILTER
When set, this option will prevent changing the filters associated with the
socket. These filters include any set using the socket options SO_AT-
TACH_FILTER, SO_ATTACH_BPF, SO_ATTACH_REUSE-
PORT_CBPF, and SO_ATTACH_REUSEPORT_EBPF.

The typical use case is for a privileged process to set up a raw socket (an oper-
ation that requires the CAP_NET_RAW capability), apply a restrictive filter,
set the SO_LOCK_FILTER option, and then either drop its privileges or pass
the socket file descriptor to an unprivileged process via a UNIX domain
socket.

Once the SO_LOCK_FILTER option has been enabled, attempts to change
or remove the filter attached to a socket, or to disable the SO_LOCK_FIL-
TER option will fail with the error EPERM.

SO_MARK (since Linux 2.6.25)
Set the mark for each packet sent through this socket (similar to the netfilter
MARK target but socket-based). Changing the mark can be used for mark-
based routing without netfilter or for packet filtering. Setting this option re-
quires the CAP_NET_ADMIN or CAP_NET_RAW (since Linux 5.17) capa-
bility.

SO_OOBINLINE
If this option is enabled, out-of-band data is directly placed into the receive
data stream. Otherwise, out-of-band data is passed only when the MSG_OOB
flag is set during receiving.

SO_PASSCRED
Enable or disable the receiving of the SCM_CREDENTIALS control mes-
sage. For more information, see unix(7).

SO_PASSSEC
Enable or disable the receiving of the SCM_SECURITY control message.
For more information, see unix(7).

SO_PEEK_OFF (since Linux 3.4)
This option, which is currently supported only for unix(7) sockets, sets the
value of the "peek offset" for the recv(2) system call when used with
MSG_PEEK flag.

When this option is set to a negative value (it is set to -1 for all new sockets),
traditional behavior is provided: recv(2) with the MSG_PEEK flag will peek
data from the front of the queue.

When the option is set to a value greater than or equal to zero, then the next
peek at data queued in the socket will occur at the byte offset specified by the
option value. At the same time, the "peek offset" will be incremented by the
number of bytes that were peeked from the queue, so that a subsequent peek
will return the next data in the queue.

If data is removed from the front of the queue via a call to recv(2) (or similar)
without the MSG_PEEK flag, the "peek offset" will be decreased by the num-
ber of bytes removed. In other words, receiving data without the
MSG_PEEK flag will cause the "peek offset" to be adjusted to maintain the

Linux man-pages 6.13 2024-11-17 3635

socket(7) Miscellaneous Information Manual socket(7)

correct relative position in the queued data, so that a subsequent peek will re-
trieve the data that would have been retrieved had the data not been removed.

For datagram sockets, if the "peek offset" points to the middle of a packet, the
data returned will be marked with the MSG_TRUNC flag.

The following example serves to illustrate the use of SO_PEEK_OFF. Sup-
pose a stream socket has the following queued input data:

aabbccddeeff

The following sequence of recv(2) calls would have the effect noted in the
comments:

int ov = 4; // Set peek offset to 4
setsockopt(fd, SOL_SOCKET, SO_PEEK_OFF, &ov, sizeof(ov));

recv(fd, buf, 2, MSG_PEEK); // Peeks "cc"; offset set to 6
recv(fd, buf, 2, MSG_PEEK); // Peeks "dd"; offset set to 8
recv(fd, buf, 2, 0); // Reads "aa"; offset set to 6
recv(fd, buf, 2, MSG_PEEK); // Peeks "ee"; offset set to 8

SO_PEERCRED
Return the credentials of the peer process connected to this socket. For further
details, see unix(7).

SO_PEERSEC (since Linux 2.6.2)
Return the security context of the peer socket connected to this socket. For
further details, see unix(7) and ip(7).

SO_PRIORITY
Set the protocol-defined priority for all packets to be sent on this socket.
Linux uses this value to order the networking queues: packets with a higher
priority may be processed first depending on the selected device queueing dis-
cipline. Setting a priority outside the range 0 to 6 requires the
CAP_NET_ADMIN capability.

SO_PROTOCOL (since Linux 2.6.32)
Retrieves the socket protocol as an integer, returning a value such as IP-
PROTO_SCTP. See socket(2) for details. This socket option is read-only.

SO_RCVBUF
Sets or gets the maximum socket receive buffer in bytes. The kernel doubles
this value (to allow space for bookkeeping overhead) when it is set using set-
sockopt(2), and this doubled value is returned by getsockopt(2). The default
value is set by the /proc/sys/net/core/rmem_default file, and the maximum al-
lowed value is set by the /proc/sys/net/core/rmem_max file. The minimum
(doubled) value for this option is 256.

SO_RCVBUFFORCE (since Linux 2.6.14)
Using this socket option, a privileged (CAP_NET_ADMIN) process can per-
form the same task as SO_RCVBUF, but the rmem_max limit can be overrid-
den.

Linux man-pages 6.13 2024-11-17 3636

socket(7) Miscellaneous Information Manual socket(7)

SO_RCVLOWAT
SO_SNDLOWAT

Specify the minimum number of bytes in the buffer until the socket layer will
pass the data to the protocol (SO_SNDLOWAT) or the user on receiving
(SO_RCVLOWAT). These two values are initialized to 1. SO_SNDLOWAT
is not changeable on Linux (setsockopt(2) fails with the error ENOPRO-
TOOPT). SO_RCVLOWAT is changeable only since Linux 2.4.

Before Linux 2.6.28 select(2), poll(2), and epoll(7) did not respect the
SO_RCVLOWAT setting on Linux, and indicated a socket as readable when
even a single byte of data was available. A subsequent read from the socket
would then block until SO_RCVLOWAT bytes are available. Since Linux
2.6.28, select(2), poll(2), and epoll(7) indicate a socket as readable only if at
least SO_RCVLOWAT bytes are available.

SO_RCVTIMEO
SO_SNDTIMEO

Specify the receiving or sending timeouts until reporting an error. The argu-
ment is a struct timeval. If an input or output function blocks for this period
of time, and data has been sent or received, the return value of that function
will be the amount of data transferred; if no data has been transferred and the
timeout has been reached, then -1 is returned with errno set to EAGAIN or
EWOULDBLOCK, or EINPROGRESS (for connect(2)) just as if the socket
was specified to be nonblocking. If the timeout is set to zero (the default),
then the operation will never timeout. Timeouts only have effect for system
calls that perform socket I/O (e.g., accept(2), connect(2), read(2), recvmsg(2),
send(2), sendmsg(2)); timeouts have no effect for select(2), poll(2),
epoll_wait(2), and so on.

SO_REUSEADDR
Indicates that the rules used in validating addresses supplied in a bind(2) call
should allow reuse of local addresses. For AF_INET sockets this means that
a socket may bind, except when there is an active listening socket bound to the
address. When the listening socket is bound to INADDR_ANY with a spe-
cific port then it is not possible to bind to this port for any local address. Ar-
gument is an integer boolean flag.

SO_REUSEPORT (since Linux 3.9)
Permits multiple AF_INET or AF_INET6 sockets to be bound to an identical
socket address. This option must be set on each socket (including the first
socket) prior to calling bind(2) on the socket. To prevent port hijacking, all of
the processes binding to the same address must have the same effective UID.
This option can be employed with both TCP and UDP sockets.

For TCP sockets, this option allows accept(2) load distribution in a multi-
threaded server to be improved by using a distinct listener socket for each
thread. This provides improved load distribution as compared to traditional
techniques such using a single accept(2)ing thread that distributes connections,
or having multiple threads that compete to accept(2) from the same socket.

For UDP sockets, the use of this option can provide better distribution of in-
coming datagrams to multiple processes (or threads) as compared to the

Linux man-pages 6.13 2024-11-17 3637

socket(7) Miscellaneous Information Manual socket(7)

traditional technique of having multiple processes compete to receive data-
grams on the same socket.

SO_RXQ_OVFL (since Linux 2.6.33)
Indicates that an unsigned 32-bit value ancillary message (cmsg) should be at-
tached to received skbs indicating the number of packets dropped by the
socket since its creation.

SO_SELECT_ERR_QUEUE (since Linux 3.10)
When this option is set on a socket, an error condition on a socket causes noti-
fication not only via the exceptfds set of select(2). Similarly, poll(2) also re-
turns a POLLPRI whenever an POLLERR event is returned.

Background: this option was added when waking up on an error condition oc-
curred only via the readfds and writefds sets of select(2). The option was
added to allow monitoring for error conditions via the exceptfds argument
without simultaneously having to receive notifications (via readfds) for regular
data that can be read from the socket. After changes in Linux 4.16, the use of
this flag to achieve the desired notifications is no longer necessary. This op-
tion is nevertheless retained for backwards compatibility.

SO_SNDBUF
Sets or gets the maximum socket send buffer in bytes. The kernel doubles this
value (to allow space for bookkeeping overhead) when it is set using setsock-
opt(2), and this doubled value is returned by getsockopt(2). The default value
is set by the /proc/sys/net/core/wmem_default file and the maximum allowed
value is set by the /proc/sys/net/core/wmem_max file. The minimum (dou-
bled) value for this option is 2048.

SO_SNDBUFFORCE (since Linux 2.6.14)
Using this socket option, a privileged (CAP_NET_ADMIN) process can per-
form the same task as SO_SNDBUF, but the wmem_max limit can be overrid-
den.

SO_TIMESTAMP
Enable or disable the receiving of the SO_TIMESTAMP control message.
The timestamp control message is sent with level SOL_SOCKET and a
cmsg_type of SCM_TIMESTAMP. The cmsg_data field is a struct timeval
indicating the reception time of the last packet passed to the user in this call.
See cmsg(3) for details on control messages.

SO_TIMESTAMPNS (since Linux 2.6.22)
Enable or disable the receiving of the SO_TIMESTAMPNS control message.
The timestamp control message is sent with level SOL_SOCKET and a
cmsg_type of SCM_TIMESTAMPNS. The cmsg_data field is a struct time-
spec indicating the reception time of the last packet passed to the user in this
call. The clock used for the timestamp is CLOCK_REALTIME. See
cmsg(3) for details on control messages.

A socket cannot mix SO_TIMESTAMP and SO_TIMESTAMPNS: the two
modes are mutually exclusive.

Linux man-pages 6.13 2024-11-17 3638

socket(7) Miscellaneous Information Manual socket(7)

SO_TYPE
Gets the socket type as an integer (e.g., SOCK_STREAM). This socket op-
tion is read-only.

SO_BUSY_POLL (since Linux 3.11)
Sets the approximate time in microseconds to busy poll on a blocking receive
when there is no data. Increasing this value requires CAP_NET_ADMIN.
The default for this option is controlled by the /proc/sys/net/core/busy_read
file.

The value in the /proc/sys/net/core/busy_poll file determines how long se-
lect(2) and poll(2) will busy poll when they operate on sockets with
SO_BUSY_POLL set and no events to report are found.

In both cases, busy polling will only be done when the socket last received
data from a network device that supports this option.

While busy polling may improve latency of some applications, care must be
taken when using it since this will increase both CPU utilization and power us-
age.

Signals
When writing onto a connection-oriented socket that has been shut down (by the local
or the remote end) SIGPIPE is sent to the writing process and EPIPE is returned.
The signal is not sent when the write call specified the MSG_NOSIGNAL flag.

When requested with the FIOSETOWN fcntl(2) or SIOCSPGRP ioctl(2), SIGIO is
sent when an I/O event occurs. It is possible to use poll(2) or select(2) in the signal
handler to find out which socket the event occurred on. An alternative (in Linux 2.2)
is to set a real-time signal using the F_SETSIG fcntl(2); the handler of the real time
signal will be called with the file descriptor in the si_fd field of its siginfo_t. See fc-
ntl(2) for more information.

Under some circumstances (e.g., multiple processes accessing a single socket), the
condition that caused the SIGIO may have already disappeared when the process re-
acts to the signal. If this happens, the process should wait again because Linux will
resend the signal later.

/proc interfaces
The core socket networking parameters can be accessed via files in the directory
/proc/sys/net/core/ .

rmem_default
contains the default setting in bytes of the socket receive buffer.

rmem_max
contains the maximum socket receive buffer size in bytes which a user may set
by using the SO_RCVBUF socket option.

wmem_default
contains the default setting in bytes of the socket send buffer.

wmem_max
contains the maximum socket send buffer size in bytes which a user may set
by using the SO_SNDBUF socket option.

Linux man-pages 6.13 2024-11-17 3639

socket(7) Miscellaneous Information Manual socket(7)

message_cost
message_burst

configure the token bucket filter used to load limit warning messages caused
by external network events.

netdev_max_backlog
Maximum number of packets in the global input queue.

optmem_max
Maximum size of ancillary data and user control data like the iovecs per
socket.

Ioctls
These operations can be accessed using ioctl(2):

error = ioctl(ip_socket, ioctl_type, &value_result);

SIOCGSTAMP
Return a struct timeval with the receive timestamp of the last packet passed to
the user. This is useful for accurate round trip time measurements. See
setitimer(2) for a description of struct timeval. This ioctl should be used only
if the socket options SO_TIMESTAMP and SO_TIMESTAMPNS are not
set on the socket. Otherwise, it returns the timestamp of the last packet that
was received while SO_TIMESTAMP and SO_TIMESTAMPNS were not
set, or it fails if no such packet has been received, (i.e., ioctl(2) returns -1 with
errno set to ENOENT).

SIOCSPGRP
Set the process or process group that is to receive SIGIO or SIGURG signals
when I/O becomes possible or urgent data is available. The argument is a
pointer to a pid_t. For further details, see the description of F_SETOWN in
fcntl(2).

FIOASYNC
Change the O_ASYNC flag to enable or disable asynchronous I/O mode of
the socket. Asynchronous I/O mode means that the SIGIO signal or the signal
set with F_SETSIG is raised when a new I/O event occurs.

Argument is an integer boolean flag. (This operation is synonymous with the
use of fcntl(2) to set the O_ASYNC flag.)

SIOCGPGRP
Get the current process or process group that receives SIGIO or SIGURG sig-
nals, or 0 when none is set.

Valid fcntl(2) operations:

FIOGETOWN
The same as the SIOCGPGRP ioctl(2).

FIOSETOWN
The same as the SIOCSPGRP ioctl(2).

VERSIONS
SO_BINDTODEVICE was introduced in Linux 2.0.30. SO_PASSCRED is new in
Linux 2.2. The /proc interfaces were introduced in Linux 2.2. SO_RCVTIMEO and

Linux man-pages 6.13 2024-11-17 3640

socket(7) Miscellaneous Information Manual socket(7)

SO_SNDTIMEO are supported since Linux 2.3.41. Earlier, timeouts were fixed to a
protocol-specific setting, and could not be read or written.

NOTES
Linux assumes that half of the send/receive buffer is used for internal kernel struc-
tures; thus the values in the corresponding /proc files are twice what can be observed
on the wire.

Linux will allow port reuse only with the SO_REUSEADDR option when this option
was set both in the previous program that performed a bind(2) to the port and in the
program that wants to reuse the port. This differs from some implementations (e.g.,
FreeBSD) where only the later program needs to set the SO_REUSEADDR option.
Typically this difference is invisible, since, for example, a server program is designed
to always set this option.

SEE ALSO
wireshark(1), bpf(2), connect(2), getsockopt(2), setsockopt(2), socket(2), pcap(3), ad-
dress_families(7), capabilities(7), ddp(7), ip(7), ipv6(7), packet(7), tcp(7), udp(7),
unix(7), tcpdump(8)

Linux man-pages 6.13 2024-11-17 3641

spufs(7) Miscellaneous Information Manual spufs(7)

NAME
spufs - SPU filesystem

DESCRIPTION
The SPU filesystem is used on PowerPC machines that implement the Cell Broadband
Engine Architecture in order to access Synergistic Processor Units (SPUs).

The filesystem provides a name space similar to POSIX shared memory or message
queues. Users that have write permissions on the filesystem can use spu_create(2) to
establish SPU contexts under the spufs root directory.

Every SPU context is represented by a directory containing a predefined set of files.
These files can be used for manipulating the state of the logical SPU. Users can
change permissions on the files, but can’t add or remove files.

Mount options
uid=<uid>

Set the user owning the mount point; the default is 0 (root).

gid=<gid>
Set the group owning the mount point; the default is 0 (root).

mode=<mode>
Set the mode of the top-level directory in spufs, as an octal mode string. The
default is 0775.

Files
The files in spufs mostly follow the standard behavior for regular system calls like
read(2) or write(2), but often support only a subset of the operations supported on reg-
ular filesystems. This list details the supported operations and the deviations from the
standard behavior described in the respective man pages.

All files that support the read(2) operation also support readv(2) and all files that sup-
port the write(2) operation also support writev(2). All files support the access(2) and
stat(2) family of operations, but for the latter call, the only fields of the returned stat
structure that contain reliable information are st_mode, st_nlink, st_uid , and st_gid .

All files support the chmod(2)/fchmod(2) and chown(2)/fchown(2) operations, but will
not be able to grant permissions that contradict the possible operations (e.g., read ac-
cess on the wbox file).

The current set of files is:

/capabilities
Contains a comma-delimited string representing the capabilities of this SPU
context. Possible capabilities are:

sched This context may be scheduled.

step This context can be run in single-step mode, for debugging.

New capabilities flags may be added in the future.

/mem the contents of the local storage memory of the SPU. This can be accessed
like a regular shared memory file and contains both code and data in the ad-
dress space of the SPU. The possible operations on an open mem file are:

Linux man-pages 6.13 2024-05-02 3642

spufs(7) Miscellaneous Information Manual spufs(7)

read(2)
pread(2)
write(2)
pwrite(2)
lseek(2)

These operate as usual, with the exception that lseek(2), write(2), and
pwrite(2) are not supported beyond the end of the file. The file size is
the size of the local storage of the SPU, which is normally 256 kilo-
bytes.

mmap(2)
Mapping mem into the process address space provides access to the
SPU local storage within the process address space. Only
MAP_SHARED mappings are allowed.

/regs Contains the saved general-purpose registers of the SPU context. This file
contains the 128-bit values of each register, from register 0 to register 127, in
order. This allows the general-purpose registers to be inspected for debugging.

Reading to or writing from this file requires that the context is scheduled out,
so use of this file is not recommended in normal program operation.

The regs file is not present on contexts that have been created with the
SPU_CREATE_NOSCHED flag.

/mbox
The first SPU-to-CPU communication mailbox. This file is read-only and can
be read in units of 4 bytes. The file can be used only in nonblocking mode -
even poll(2) cannot be used to block on this file. The only possible operation
on an open mbox file is:

read(2)
If count is smaller than four, read(2) returns -1 and sets errno to EIN-
VAL. If there is no data available in the mailbox (i.e., the SPU has not
sent a mailbox message), the return value is set to -1 and errno is set
to EAGAIN. When data has been read successfully, four bytes are
placed in the data buffer and the value four is returned.

/ibox The second SPU-to-CPU communication mailbox. This file is similar to the
first mailbox file, but can be read in blocking I/O mode, thus calling read(2)
on an open ibox file will block until the SPU has written data to its interrupt
mailbox channel (unless the file has been opened with O_NONBLOCK, see
below). Also, poll(2) and similar system calls can be used to monitor for the
presence of mailbox data.

The possible operations on an open ibox file are:

read(2)
If count is smaller than four, read(2) returns -1 and sets errno to EIN-
VAL. If there is no data available in the mailbox and the file descriptor
has been opened with O_NONBLOCK, the return value is set to -1
and errno is set to EAGAIN.

If there is no data available in the mailbox and the file descriptor has
been opened without O_NONBLOCK, the call will block until the

Linux man-pages 6.13 2024-05-02 3643

spufs(7) Miscellaneous Information Manual spufs(7)

SPU writes to its interrupt mailbox channel. When data has been read
successfully, four bytes are placed in the data buffer and the value four
is returned.

poll(2)
Poll on the ibox file returns (POLLIN | POLLRDNORM) whenever
data is available for reading.

/wbox
The CPU-to-SPU communication mailbox. It is write-only and can be written
in units of four bytes. If the mailbox is full, write(2) will block, and poll(2)
can be used to block until the mailbox is available for writing again. The pos-
sible operations on an open wbox file are:

write(2)
If count is smaller than four, write(2) returns -1 and sets errno to EIN-
VAL. If there is no space available in the mailbox and the file descrip-
tor has been opened with O_NONBLOCK, the return value is set to
-1 and errno is set to EAGAIN.

If there is no space available in the mailbox and the file descriptor has
been opened without O_NONBLOCK, the call will block until the
SPU reads from its PPE (PowerPC Processing Element) mailbox chan-
nel. When data has been written successfully, the system call returns
four as its function result.

poll(2)
A poll on the wbox file returns (POLLOUT | POLLWRNORM) when-
ever space is available for writing.

/mbox_stat
/ibox_stat
/wbox_stat

These are read-only files that contain the length of the current queue of each
mailbox—that is, how many words can be read from mbox or ibox or how
many words can be written to wbox without blocking. The files can be read
only in four-byte units and return a big-endian binary integer number. The
only possible operation on an open *box_stat file is:

read(2)
If count is smaller than four, read(2) returns -1 and sets errno to EIN-
VAL. Otherwise, a four-byte value is placed in the data buffer. This
value is the number of elements that can be read from (for mbox_stat
and ibox_stat) or written to (for wbox_stat) the respective mailbox
without blocking or returning an EAGAIN error.

/npc
/decr
/decr_status
/spu_tag_mask
/event_mask

Linux man-pages 6.13 2024-05-02 3644

spufs(7) Miscellaneous Information Manual spufs(7)

/event_status
/srr0
/lslr Internal registers of the SPU. These files contain an ASCII string representing

the hex value of the specified register. Reads and writes on these files (except
for npc, see below) require that the SPU context be scheduled out, so frequent
access to these files is not recommended for normal program operation.

The contents of these files are:

npc Next Program Counter - valid only when the SPU is in a
stopped state.

decr SPU Decrementer

decr_status Decrementer Status

spu_tag_mask MFC tag mask for SPU DMA

event_mask Event mask for SPU interrupts

event_status Number of SPU events pending (read-only)

srr0 Interrupt Return address register

lslr Local Store Limit Register

The possible operations on these files are:

read(2)
Reads the current register value. If the register value is larger than the
buffer passed to the read(2) system call, subsequent reads will continue
reading from the same buffer, until the end of the buffer is reached.

When a complete string has been read, all subsequent read operations
will return zero bytes and a new file descriptor needs to be opened to
read a new value.

write(2)
A write(2) operation on the file sets the register to the value given in
the string. The string is parsed from the beginning until the first non-
numeric character or the end of the buffer. Subsequent writes to the
same file descriptor overwrite the previous setting.

Except for the npc file, these files are not present on contexts that have
been created with the SPU_CREATE_NOSCHED flag.

/fpcr This file provides access to the Floating Point Status and Control Register
(fcpr) as a binary, four-byte file. The operations on the fpcr file are:

read(2)
If count is smaller than four, read(2) returns -1 and sets errno to EIN-
VAL. Otherwise, a four-byte value is placed in the data buffer; this is
the current value of the fpcr register.

write(2)
If count is smaller than four, write(2) returns -1 and sets errno to EIN-
VAL. Otherwise, a four-byte value is copied from the data buffer, up-
dating the value of the fpcr register.

Linux man-pages 6.13 2024-05-02 3645

spufs(7) Miscellaneous Information Manual spufs(7)

/signal1
/signal2

The files provide access to the two signal notification channels of an SPU.
These are read-write files that operate on four-byte words. Writing to one of
these files triggers an interrupt on the SPU. The value written to the signal
files can be read from the SPU through a channel read or from host user space
through the file. After the value has been read by the SPU, it is reset to zero.
The possible operations on an open signal1 or signal2 file are:

read(2)
If count is smaller than four, read(2) returns -1 and sets errno to EIN-
VAL. Otherwise, a four-byte value is placed in the data buffer; this is
the current value of the specified signal notification register.

write(2)
If count is smaller than four, write(2) returns -1 and sets errno to EIN-
VAL. Otherwise, a four-byte value is copied from the data buffer, up-
dating the value of the specified signal notification register. The signal
notification register will either be replaced with the input data or will
be updated to the bitwise OR operation of the old value and the input
data, depending on the contents of the signal1_type or signal2_type
files respectively.

/signal1_type
/signal2_type

These two files change the behavior of the signal1 and signal2 notification
files. They contain a numeric ASCII string which is read as either "1" or "0".
In mode 0 (overwrite), the hardware replaces the contents of the signal channel
with the data that is written to it. In mode 1 (logical OR), the hardware accu-
mulates the bits that are subsequently written to it. The possible operations on
an open signal1_type or signal2_type file are:

read(2)
When the count supplied to the read(2) call is shorter than the required
length for the digit (plus a newline character), subsequent reads from
the same file descriptor will complete the string. When a complete
string has been read, all subsequent read operations will return zero
bytes and a new file descriptor needs to be opened to read the value
again.

write(2)
A write(2) operation on the file sets the register to the value given in
the string. The string is parsed from the beginning until the first non-
numeric character or the end of the buffer. Subsequent writes to the
same file descriptor overwrite the previous setting.

/mbox_info
/ibox_info
/wbox_info
/dma_into

Linux man-pages 6.13 2024-05-02 3646

spufs(7) Miscellaneous Information Manual spufs(7)

/proxydma_info
Read-only files that contain the saved state of the SPU mailboxes and DMA
queues. This allows the SPU status to be inspected, mainly for debugging.
The mbox_info and ibox_info files each contain the four-byte mailbox message
that has been written by the SPU. If no message has been written to these
mailboxes, then contents of these files is undefined. The mbox_stat, ibox_stat,
and wbox_stat files contain the available message count.

The wbox_info file contains an array of four-byte mailbox messages, which
have been sent to the SPU. With current CBEA machines, the array is four
items in length, so up to 4 * 4 = 16 bytes can be read from this file. If any
mailbox queue entry is empty, then the bytes read at the corresponding loca-
tion are undefined.

The dma_info file contains the contents of the SPU MFC DMA queue, repre-
sented as the following structure:

struct spu_dma_info {
uint64_t dma_info_type;
uint64_t dma_info_mask;
uint64_t dma_info_status;
uint64_t dma_info_stall_and_notify;
uint64_t dma_info_atomic_command_status;
struct mfc_cq_sr dma_info_command_data[16];

};

The last member of this data structure is the actual DMA queue, containing 16
entries. The mfc_cq_sr structure is defined as:

struct mfc_cq_sr {
uint64_t mfc_cq_data0_RW;
uint64_t mfc_cq_data1_RW;
uint64_t mfc_cq_data2_RW;
uint64_t mfc_cq_data3_RW;

};

The proxydma_info file contains similar information, but describes the proxy
DMA queue (i.e., DMAs initiated by entities outside the SPU) instead. The
file is in the following format:

struct spu_proxydma_info {
uint64_t proxydma_info_type;
uint64_t proxydma_info_mask;
uint64_t proxydma_info_status;
struct mfc_cq_sr proxydma_info_command_data[8];

};

Accessing these files requires that the SPU context is scheduled out - frequent
use can be inefficient. These files should not be used for normal program op-
eration.

These files are not present on contexts that have been created with the
SPU_CREATE_NOSCHED flag.

Linux man-pages 6.13 2024-05-02 3647

spufs(7) Miscellaneous Information Manual spufs(7)

/cntl This file provides access to the SPU Run Control and SPU status registers, as
an ASCII string. The following operations are supported:

read(2)
Reads from the cntl file will return an ASCII string with the hex value
of the SPU Status register.

write(2)
Writes to the cntl file will set the context’s SPU Run Control register.

/mfc Provides access to the Memory Flow Controller of the SPU. Reading from the
file returns the contents of the SPU’s MFC Tag Status register, and writing to
the file initiates a DMA from the MFC. The following operations are sup-
ported:

write(2)
Writes to this file need to be in the format of a MFC DMA command,
defined as follows:

struct mfc_dma_command {
int32_t pad; /* reserved */
uint32_t lsa; /* local storage address */
uint64_t ea; /* effective address */
uint16_t size; /* transfer size */
uint16_t tag; /* command tag */
uint16_t class; /* class ID */
uint16_t cmd; /* command opcode */

};

Writes are required to be exactly sizeof(struct mfc_dma_command)
bytes in size. The command will be sent to the SPU’s MFC proxy
queue, and the tag stored in the kernel (see below).

read(2)
Reads the contents of the tag status register. If the file is opened in
blocking mode (i.e., without O_NONBLOCK), then the read will
block until a DMA tag (as performed by a previous write) is complete.
In nonblocking mode, the MFC tag status register will be returned
without waiting.

poll(2)
Calling poll(2) on the mfc file will block until a new DMA can be
started (by checking for POLLOUT) or until a previously started
DMA (by checking for POLLIN) has been completed.

/mss Provides access to the MFC MultiSource Synchronization (MSS)
facility. By mmap(2)-ing this file, processes can access the MSS area
of the SPU.

The following operations are supported:

mmap(2)
Mapping mss into the process address space gives access to the SPU
MSS area within the process address space. Only MAP_SHARED
mappings are allowed.

Linux man-pages 6.13 2024-05-02 3648

spufs(7) Miscellaneous Information Manual spufs(7)

/psmap
Provides access to the whole problem-state mapping of the SPU. Applications
can use this area to interface to the SPU, rather than writing to individual reg-
ister files in spufs.

The following operations are supported:

mmap(2)
Mapping psmap gives a process a direct map of the SPU problem state
area. Only MAP_SHARED mappings are supported.

/phys-id
Read-only file containing the physical SPU number that the SPU context is
running on. When the context is not running, this file contains the string "-1".

The physical SPU number is given by an ASCII hex string.

/object-id
Allows applications to store (or retrieve) a single 64-bit ID into the context.
This ID is later used by profiling tools to uniquely identify the context.

write(2)
By writing an ASCII hex value into this file, applications can set the
object ID of the SPU context. Any previous value of the object ID is
overwritten.

read(2)
Reading this file gives an ASCII hex string representing the object ID
for this SPU context.

EXAMPLES
To automatically mount(8) the SPU filesystem when booting, at the location /spu cho-
sen by the user, put this line into the fstab(5) configuration file:
none /spu spufs gid=spu 0 0

SEE ALSO
close(2), spu_create(2), spu_run(2), capabilities(7)

The Cell Broadband Engine Architecture (CBEA) specification

Linux man-pages 6.13 2024-05-02 3649

standards(7) Miscellaneous Information Manual standards(7)

NAME
standards - C and UNIX Standards

DESCRIPTION
The STANDARDS section that appears in many manual pages identifies various stan-
dards to which the documented interface conforms. The following list briefly de-
scribes these standards.

V7 Version 7 (also known as Seventh Edition) UNIX, released by AT&T/Bell
Labs in 1979. After this point, UNIX systems diverged into two main dialects:
BSD and System V.

4.2BSD
This is an implementation standard defined by the 4.2 release of the Berkeley
Software Distribution, released by the University of California at Berkeley.
This was the first Berkeley release that contained a TCP/IP stack and the sock-
ets API. 4.2BSD was released in 1983.

Earlier major BSD releases included 3BSD (1980), 4BSD (1980), and 4.1BSD
(1981).

4.3BSD
The successor to 4.2BSD, released in 1986.

4.4BSD
The successor to 4.3BSD, released in 1993. This was the last major Berkeley
release.

System V
This is an implementation standard defined by AT&T’s milestone 1983 release
of its commercial System V (five) release. The previous major AT&T release
was System III , released in 1981.

System V release 2 (SVr2)
This was the next System V release, made in 1985. The SVr2 was formally
described in the System V Interface Definition version 1 (SVID 1) published in
1985.

System V release 3 (SVr3)
This was the successor to SVr2, released in 1986. This release was formally
described in the System V Interface Definition version 2 (SVID 2).

System V release 4 (SVr4)
This was the successor to SVr3, released in 1989. This version of System V is
described in the "Programmer’s Reference Manual: Operating System API (In-
tel processors)" (Prentice-Hall 1992, ISBN 0-13-951294-2) This release was
formally described in the System V Interface Definition version 3 (SVID 3),
and is considered the definitive System V release.

SVID 4
System V Interface Definition version 4, issued in 1995. Available online at
〈http://www.sco.com/developers/devspecs/〉.

C89 This was the first C language standard, ratified by ANSI (American National
Standards Institute) in 1989 (X3.159-1989). Sometimes this is known as
ANSI C, but since C99 is also an ANSI standard, this term is ambiguous. This

Linux man-pages 6.13 2024-05-02 3650

standards(7) Miscellaneous Information Manual standards(7)

standard was also ratified by ISO (International Standards Organization) in
1990 (ISO/IEC 9899:1990), and is thus occasionally referred to as ISO C90.

C99 This revision of the C language standard was ratified by ISO in 1999 (ISO/IEC
9899:1999). Available online at 〈http://www.open-std.org/jtc1/sc22/wg14
/www/standards〉.

C11 This revision of the C language standard was ratified by ISO in 2011 (ISO/IEC
9899:2011).

LFS The Large File Summit specification, completed in 1996. This specification
defined mechanisms that allowed 32-bit systems to support the use of large
files (i.e., 64-bit file offsets). See 〈https://www.opengroup.org/platform
/lfs.html〉.

POSIX.1-1988
This was the first POSIX standard, ratified by IEEE as IEEE Std 1003.1-1988,
and subsequently adopted (with minor revisions) as an ISO standard in 1990.
The term "POSIX" was coined by Richard Stallman.

POSIX.1-1990
"Portable Operating System Interface for Computing Environments". IEEE
1003.1-1990 part 1, ratified by ISO in 1990 (ISO/IEC 9945-1:1990).

POSIX.2
IEEE Std 1003.2-1992, describing commands and utilities, ratified by ISO in
1993 (ISO/IEC 9945-2:1993).

POSIX.1b (formerly known as POSIX.4)
IEEE Std 1003.1b-1993, describing real-time facilities for portable operating
systems, ratified by ISO in 1996 (ISO/IEC 9945-1:1996).

POSIX.1c (formerly known as POSIX.4a)
IEEE Std 1003.1c-1995, which describes the POSIX threads interfaces.

POSIX.1d
IEEE Std 1003.1d-1999, which describes additional real-time extensions.

POSIX.1g
IEEE Std 1003.1g-2000, which describes networking APIs (including sock-
ets).

POSIX.1j
IEEE Std 1003.1j-2000, which describes advanced real-time extensions.

POSIX.1-1996
A 1996 revision of POSIX.1 which incorporated POSIX.1b and POSIX.1c.

XPG3
Released in 1989, this was the first release of the X/Open Portability Guide to
be based on a POSIX standard (POSIX.1-1988). This multivolume guide was
developed by the X/Open Group, a multivendor consortium.

XPG4
A revision of the X/Open Portability Guide, released in 1992. This revision
incorporated POSIX.2.

Linux man-pages 6.13 2024-05-02 3651

standards(7) Miscellaneous Information Manual standards(7)

XPG4v2
A 1994 revision of XPG4. This is also referred to as Spec 1170, where 1170
referred to the number of interfaces defined by this standard.

SUS (SUSv1)
Single UNIX Specification. This was a repackaging of XPG4v2 and other
X/Open standards (X/Open Curses Issue 4 version 2, X/Open Networking Ser-
vice (XNS) Issue 4). Systems conforming to this standard can be branded
UNIX 95.

SUSv2
Single UNIX Specification version 2. Sometimes also referred to (incorrectly)
as XPG5. This standard appeared in 1997. Systems conforming to this stan-
dard can be branded UNIX 98. See also 〈http://www.unix.org/version2/〉.)

POSIX.1-2001
SUSv3

This was a 2001 revision and consolidation of the POSIX.1, POSIX.2, and
SUS standards into a single document, conducted under the auspices of the
Austin Group 〈http://www.opengroup.org/austin/〉. The standard is available
online at 〈http://www.unix.org/version3/〉.

The standard defines two levels of conformance: POSIX conformance, which
is a baseline set of interfaces required of a conforming system; and XSI Con-
formance, which additionally mandates a set of interfaces (the "XSI exten-
sion") which are only optional for POSIX conformance. XSI-conformant sys-
tems can be branded UNIX 03.

The POSIX.1-2001 document is broken into four parts:

XBD: Definitions, terms, and concepts, header file specifications.

XSH: Specifications of functions (i.e., system calls and library functions in ac-
tual implementations).

XCU: Specifications of commands and utilities (i.e., the area formerly de-
scribed by POSIX.2).

XRAT: Informative text on the other parts of the standard.

POSIX.1-2001 is aligned with C99, so that all of the library functions stan-
dardized in C99 are also standardized in POSIX.1-2001.

The Single UNIX Specification version 3 (SUSv3) comprises the Base Specifi-
cations containing XBD, XSH, XCU, and XRAT as above, plus X/Open
Curses Issue 4 version 2 as an extra volume that is not in POSIX.1-2001.

Two Technical Corrigenda (minor fixes and improvements) of the original
2001 standard have occurred: TC1 in 2003 and TC2 in 2004.

POSIX.1-2008
SUSv4

Work on the next revision of POSIX.1/SUS was completed and ratified in
2008. The standard is available online at 〈http://www.unix.org/version4/〉.

The changes in this revision are not as large as those that occurred for
POSIX.1-2001/SUSv3, but a number of new interfaces are added and various

Linux man-pages 6.13 2024-05-02 3652

standards(7) Miscellaneous Information Manual standards(7)

details of existing specifications are modified. Many of the interfaces that
were optional in POSIX.1-2001 become mandatory in the 2008 revision of the
standard. A few interfaces that are present in POSIX.1-2001 are marked as
obsolete in POSIX.1-2008, or removed from the standard altogether.

The revised standard is structured in the same way as its predecessor. The Sin-
gle UNIX Specification version 4 (SUSv4) comprises the Base Specifications
containing XBD, XSH, XCU, and XRAT, plus X/Open Curses Issue 7 as an
extra volume that is not in POSIX.1-2008.

Again there are two levels of conformance: the baseline POSIX Conformance,
and XSI Conformance, which mandates an additional set of interfaces beyond
those in the base specification.

In general, where the STANDARDS section of a manual page lists
POSIX.1-2001, it can be assumed that the interface also conforms to
POSIX.1-2008, unless otherwise noted.

Technical Corrigendum 1 (minor fixes and improvements) of this standard was
released in 2013.

Technical Corrigendum 2 of this standard was released in 2016.

Further information can be found on the Austin Group web site,
〈http://www.opengroup.org/austin/〉.

SUSv4 2016 edition
This is equivalent to POSIX.1-2008, with the addition of Technical Corrigenda
1 and 2 and the XCurses specification.

POSIX.1-2017
This revision of POSIX is technically identical to POSIX.1-2008 with Techni-
cal Corrigenda 1 and 2 applied.

SUSv4 2018 edition
This is equivalent to POSIX.1-2017, with the addition of the XCurses specifi-
cation.

The interfaces documented in POSIX.1/SUS are available as manual pages under sec-
tions 0p (header files), 1p (commands), and 3p (functions); thus one can write "man
3p open".

SEE ALSO
getconf (1), confstr(3), pathconf(3), sysconf(3), attributes(7), feature_test_macros(7),
libc(7), posixoptions(7), system_data_types(7)

Linux man-pages 6.13 2024-05-02 3653

string_copying(7) Miscellaneous Information Manual string_copying(7)

NAME
stpcpy, strcpy, strcat, stpecpy, strtcpy, strlcpy, strlcat, stpncpy, strncpy, strncat - copy-
ing strings and character sequences

SYNOPSIS
Strings

// Chain-copy a string.
char *stpcpy(char *restrict dst, const char *restrict src);

// Copy/catenate a string.
char *strcpy(char *restrict dst, const char *restrict src);
char *strcat(char *restrict dst, const char *restrict src);

// Chain-copy a string with truncation.
char *stpecpy(char *dst, char end[0], const char *restrict src);

// Copy/catenate a string with truncation.
ssize_t strtcpy(char dst[restrict .dsize], const char *restrict src,

size_t dsize);
size_t strlcpy(char dst[restrict .dsize], const char *restrict src,

size_t dsize);
size_t strlcat(char dst[restrict .dsize], const char *restrict src,

size_t dsize);

Null-padded character sequences
// Fill a fixed-size buffer with characters from a string
// and pad with null bytes.
char *strncpy(char dst[restrict .dsize], const char *restrict src,

size_t dsize);
char *stpncpy(char dst[restrict .dsize], const char *restrict src,

size_t dsize);

// Chain-copy a null-padded character sequence into a character sequence.
mempcpy(dst, src, strnlen(src, NITEMS(src)));

// Chain-copy a null-padded character sequence into a string.
stpcpy(mempcpy(dst, src, strnlen(src, NITEMS(src))), "");

// Catenate a null-padded character sequence into a string.
char *strncat(char *restrict dst, const char src[restrict .ssize],

size_t ssize);

// Duplicate a null-padded character sequence into a string.
char *strndup(const char src[.ssize], size_t ssize);

Length-bounded character sequences
// Chain-copy a length-bounded character sequence.
void *mempcpy(void dst[restrict .len], const void src[restrict .len],

size_t len);

// Chain-copy a length-bounded character sequence into a string.
stpcpy(mempcpy(dst, src, len), "");

DESCRIPTION

Linux man-pages 6.13 2024-06-26 3654

string_copying(7) Miscellaneous Information Manual string_copying(7)

Terms (and abbreviations)
string (str)

is a sequence of zero or more non-null characters followed by a null character.

character sequence
is a sequence of zero or more non-null characters. A program should never
use a character sequence where a string is required. However, with appropri-
ate care, a string can be used in the place of a character sequence.

null-padded character sequence
Character sequences can be contained in fixed-size buffers, which con-
tain padding null bytes after the character sequence, to fill the rest of
the buffer without affecting the character sequence; however, those
padding null bytes are not part of the character sequence. Don’t con-
fuse null-padded with null-terminated: null-padded means 0 or more
padding null bytes, while null-terminated means exactly 1 terminating
null character.

length-bounded character sequence
Character sequence delimited by its length. It may be a slice of a
larger character sequence, or even of a string.

length (len)
is the number of non-null characters in a string or character sequence. It is the
return value of strlen(str) and of strnlen(buf, size).

size refers to the entire buffer where the string or character sequence is contained.

end is the name of a pointer to one past the last element of a buffer. It is equivalent
to &str[size]. It is used as a sentinel value, to be able to truncate strings or
character sequences instead of overrunning the containing buffer.

copy This term is used when the writing starts at the first element pointed to by dst.

catenate
This term is used when a function first finds the terminating null character in
dst, and then starts writing at that position.

chain This term is used when it’s the programmer who provides a pointer to the ter-
minating null character in the string dst (or one after the last character in a
character sequence), and the function starts writing at that location. The func-
tion returns a pointer to the new location of the terminating null character (or
one after the last character in a character sequence) after the call, so that the
programmer can use it to chain such calls.

duplicate
Allocate a new buffer where a copy is placed.

Copy, catenate, and chain-copy
Originally, there was a distinction between functions that copy and those that catenate.
However, newer functions that copy while allowing chaining cover both use cases
with a single API. They are also algorithmically faster, since they don’t need to
search for the terminating null character of the existing string. However, functions
that catenate have a much simpler use, so if performance is not important, it can make
sense to use them for improving readability.

Linux man-pages 6.13 2024-06-26 3655

string_copying(7) Miscellaneous Information Manual string_copying(7)

The pointer returned by functions that allow chaining is a byproduct of the copy oper-
ation, so it has no performance costs. Functions that return such a pointer, and thus
can be chained, have names of the form *stp*(), since it’s common to name the
pointer just p.

Chain-copying functions that truncate should accept a pointer to the end of the desti-
nation buffer, and have names of the form *stpe*(). This allows not having to recal-
culate the remaining size after each call.

Truncate or not?
The first thing to note is that programmers should be careful with buffers, so they al-
ways have the correct size, and truncation is not necessary.

In most cases, truncation is not desired, and it is simpler to just do the copy. Simpler
code is safer code. Programming against programming mistakes by adding more code
just adds more points where mistakes can be made.

Nowadays, compilers can detect most programmer errors with features like compiler
warnings, static analyzers, and _FORTIFY_SOURCE (see ftm(7)). Keeping the
code simple helps these overflow-detection features be more precise.

When validating user input, code should normally not truncate, but instead fail and
prevent the copy at all.

In some cases, however, it makes sense to truncate.

Functions that truncate:

• stpecpy()

• strtcpy()

• strlcpy(3bsd) and strlcat(3bsd) are similar, but have important performance prob-
lems; see BUGS.

• stpncpy(3) and strncpy(3) also truncate, but they don’t write strings, but rather
null-padded character sequences.

Null-padded character sequences
For historic reasons, some standard APIs and file formats, such as utmpx(5) and
tar(1), use null-padded character sequences in fixed-size buffers. To interface with
them, specialized functions need to be used.

To copy bytes from strings into these buffers, use strncpy(3) or stpncpy(3).

To read a null-padded character sequence, use strnlen(src, NITEMS(src)), and then
you can treat it as a length-bounded character sequence; or use strncat(3) or
strndup(3) directly.

Length-bounded character sequences
The simplest character sequence copying function is mempcpy(3). It requires always
knowing the length of your character sequences, for which structures can be used. It
makes the code much faster, since you always know the length of your character se-
quences, and can do the minimal copies and length measurements. mempcpy(3)
copies character sequences, so you need to explicitly set the terminating null character
if you need a string.

In programs that make considerable use of strings or character sequences, and need

Linux man-pages 6.13 2024-06-26 3656

string_copying(7) Miscellaneous Information Manual string_copying(7)

the best performance, using overlapping character sequences can make a big differ-
ence. It allows holding subsequences of a larger character sequence, while not dupli-
cating memory nor using time to do a copy.

However, this is delicate, since it requires using character sequences. C library APIs
use strings, so programs that use character sequences will have to take care of differ-
entiating strings from character sequences.

To copy a length-bounded character sequence, use mempcpy(3).

To copy a length-bounded character sequence into a string, use
stpcpy(mempcpy(dst, src, len), "").

A string is also accepted as input, because mempcpy(3) asks for the length, and a
string is composed of a character sequence of the same length plus a terminating null
character.

String vs character sequence
Some functions only operate on strings. Those require that the input src is a string,
and guarantee an output string (even when truncation occurs). Functions that catenate
also require that dst holds a string before the call. List of functions:

• stpcpy(3)
• strcpy(3), strcat(3)
• stpecpy()
• strtcpy()
• strlcpy(3bsd), strlcat(3bsd)

Other functions require an input string, but create a character sequence as output.
These functions have confusing names, and have a long history of misuse. List of
functions:

• stpncpy(3)
• strncpy(3)

Other functions operate on an input character sequence, and create an output string.
Functions that catenate also require that dst holds a string before the call. strncat(3)
has an even more misleading name than the functions above. List of functions:

• strncat(3)
• strndup(3)

Other functions operate on an input character sequence to create an output character
sequence. List of functions:

• mempcpy(3)

Functions
stpcpy(3)

Copy the input string into a destination string. The programmer is responsible
for allocating a buffer large enough. It returns a pointer suitable for chaining.

strcpy(3)
strcat(3)

Copy and catenate the input string into a destination string. The programmer
is responsible for allocating a buffer large enough. The return value is useless.

Linux man-pages 6.13 2024-06-26 3657

string_copying(7) Miscellaneous Information Manual string_copying(7)

stpcpy(3) is a faster alternative to these functions.

stpecpy()
Chain-copy the input string into a destination string. If the destination buffer,
limited by a pointer to its end, isn’t large enough to hold the copy, the resulting
string is truncated (but it is guaranteed to be null-terminated). It returns a
pointer suitable for chaining. Truncation needs to be detected only once after
the last chained call.

This function is not provided by any library; see EXAMPLES for a reference
implementation.

strtcpy()
Copy the input string into a destination string. If the destination buffer isn’t
large enough to hold the copy, the resulting string is truncated (but it is guaran-
teed to be null-terminated). It returns the length of the string, or -1 if it trun-
cated.

This function is not provided by any library; see EXAMPLES for a reference
implementation.

strlcpy(3bsd)
strlcat(3bsd)

Copy and catenate the input string into a destination string. If the destination
buffer, limited by its size, isn’t large enough to hold the copy, the resulting
string is truncated (but it is guaranteed to be null-terminated). They return the
length of the total string they tried to create.

Check BUGS before using these functions.

strtcpy() and stpecpy() are better alternatives to these functions.

stpncpy(3)
Copy the input string into a destination null-padded character sequence in a
fixed-size buffer. If the destination buffer, limited by its size, isn’t large
enough to hold the copy, the resulting character sequence is truncated. Since it
creates a character sequence, it doesn’t need to write a terminating null charac-
ter. It’s impossible to distinguish truncation by the result of the call, from a
character sequence that just fits the destination buffer; truncation should be de-
tected by comparing the length of the input string with the size of the destina-
tion buffer.

strncpy(3)
This function is identical to stpncpy(3) except for the useless return value.

stpncpy(3) is a more useful alternative to this function.

strncat(3)
Catenate the input character sequence, contained in a null-padded fixed-size
buffer, into a destination string. The programmer is responsible for allocating
a buffer large enough. The return value is useless.

Do not confuse this function with strncpy(3); they are not related at all.

stpcpy(mempcpy(dst, src, strnlen(src, NITEMS(src))), "") is a faster alternative
to this function.

Linux man-pages 6.13 2024-06-26 3658

string_copying(7) Miscellaneous Information Manual string_copying(7)

strndup(3)
Duplicate the input character sequence, contained in a null-padded fixed-size
buffer, into a newly allocated destination string.

The string must be freed with free(3).

mempcpy(3)
Copy the input character sequence, limited by its length, into a destination
character sequence. The programmer is responsible for allocating a buffer
large enough. It returns a pointer suitable for chaining.

RETURN VALUE
stpcpy(3)

A pointer to the terminating null character in the destination string.

stpecpy()
A pointer to the terminating null character in the destination string, on success.
On error, NULL is returned, and errno is set to indicate the error.

mempcpy(3)
stpncpy(3)

A pointer to one after the last character in the destination character sequence.

strtcpy()
The length of the string, on success. On error, -1 is returned, and errno is set
to indicate the error.

strlcpy(3bsd)
strlcat(3bsd)

The length of the total string that they tried to create (as if truncation didn’t oc-
cur).

strcpy(3)
strcat(3)
strncpy(3)
strncat(3)

The dst pointer, which is useless.

strndup(3)
The newly allocated string.

ERRORS
Most of these functions don’t set errno.

stpecpy()
strtcpy()

ENOBUFS
dsize was 0.

E2BIG
The string has been truncated.

strndup(3)

ENOMEM
Insufficient memory available to allocate duplicate string.

Linux man-pages 6.13 2024-06-26 3659

string_copying(7) Miscellaneous Information Manual string_copying(7)

NOTES
The Linux kernel has an internal function for copying strings, strscpy(9), which is
identical to strtcpy(), except that it returns -E2BIG instead of -1 and it doesn’t set
errno.

CAVEATS
Don’t mix chain calls to truncating and non-truncating functions. It is conceptually
wrong unless you know that the first part of a copy will always fit. Anyway, the per-
formance difference will probably be negligible, so it will probably be more clear if
you use consistent semantics: either truncating or non-truncating. Calling a non-trun-
cating function after a truncating one is necessarily wrong.

BUGS
All catenation functions share the same performance problem: Shlemiel the painter
〈https://www.joelonsoftware.com/2001/12/11/back-to-basics/〉. As a mitigation,
compilers are able to transform some calls to catenation functions into normal copy
functions, since strlen(dst) is usually a byproduct of the previous copy.

strlcpy(3) and strlcat(3) need to read the entire src string, even if the destination
buffer is small. This makes them vulnerable to Denial of Service (DoS) attacks if an
attacker can control the length of the src string. And if not, they’re still unnecessarily
slow.

EXAMPLES
The following are examples of correct use of each of these functions.

stpcpy(3)
p = buf;
p = stpcpy(p, "Hello ");
p = stpcpy(p, "world");
p = stpcpy(p, "!");
len = p - buf;
puts(buf);

strcpy(3)
strcat(3)

strcpy(buf, "Hello ");
strcat(buf, "world");
strcat(buf, "!");
len = strlen(buf);
puts(buf);

stpecpy()
end = buf + NITEMS(buf);
p = buf;
p = stpecpy(p, end, "Hello ");
p = stpecpy(p, end, "world");
p = stpecpy(p, end, "!");
if (p == NULL) {

len = NITEMS(buf) - 1;
goto toolong;

}
len = p - buf;

Linux man-pages 6.13 2024-06-26 3660

string_copying(7) Miscellaneous Information Manual string_copying(7)

puts(buf);

strtcpy()
len = strtcpy(buf, "Hello world!", NITEMS(buf));
if (len == -1)

goto toolong;
puts(buf);

strlcpy(3bsd)
strlcat(3bsd)

if (strlcpy(buf, "Hello ", NITEMS(buf)) >= NITEMS(buf))
goto toolong;

if (strlcat(buf, "world", NITEMS(buf)) >= NITEMS(buf))
goto toolong;

len = strlcat(buf, "!", NITEMS(buf));
if (len >= NITEMS(buf))

goto toolong;
puts(buf);

stpncpy(3)
p = stpncpy(u->ut_user, "alx", NITEMS(u->ut_user));
if (NITEMS(u->ut_user) < strlen("alx"))

goto toolong;
len = p - u->ut_user;
fwrite(u->ut_user, 1, len, stdout);

strncpy(3)
strncpy(u->ut_user, "alx", NITEMS(u->ut_user));
if (NITEMS(u->ut_user) < strlen("alx"))

goto toolong;
len = strnlen(u->ut_user, NITEMS(u->ut_user));
fwrite(u->ut_user, 1, len, stdout);

mempcpy(dst, src, strnlen(src, NITEMS(src)))
char buf[NITEMS(u->ut_user)];
p = buf;
p = mempcpy(p, u->ut_user, strnlen(u->ut_user, NITEMS(u->ut_user)));
len = p - buf;
fwrite(buf, 1, len, stdout);

stpcpy(mempcpy(dst, src, strnlen(src, NITEMS(src))), "")
char buf[NITEMS(u->ut_user) + 1];
p = buf;
p = mempcpy(p, u->ut_user, strnlen(u->ut_user, NITEMS(u->ut_user)));
p = stpcpy(p, "");
len = p - buf;
puts(buf);

strncat(3)
char buf[NITEMS(u->ut_user) + 1];
strcpy(buf, "");
strncat(buf, u->ut_user, NITEMS(u->ut_user));
len = strlen(buf);

Linux man-pages 6.13 2024-06-26 3661

string_copying(7) Miscellaneous Information Manual string_copying(7)

puts(buf);

strndup(3)
buf = strndup(u->ut_user, NITEMS(u->ut_user));
len = strlen(buf);
puts(buf);
free(buf);

mempcpy(3)
p = buf;
p = mempcpy(p, "Hello ", 6);
p = mempcpy(p, "world", 5);
p = mempcpy(p, "!", 1);
len = p - buf;
fwrite(buf, 1, len, stdout);

stpcpy(mempcpy(dst, src, len), "")
p = buf;
p = mempcpy(p, "Hello ", 6);
p = mempcpy(p, "world", 5);
p = mempcpy(p, "!", 1);
p = stpcpy(p, "");
len = p - buf;
puts(buf);

Implementations
Here are reference implementations for functions not provided by libc.

/* This code is in the public domain. */

char *
stpecpy(char *dst, char end[0], const char *restrict src)
{

size_t dlen;

if (dst == NULL)
return NULL;

dlen = strtcpy(dst, src, end - dst);
return (dlen == -1) ? NULL : dst + dlen;

}

ssize_t
strtcpy(char *restrict dst, const char *restrict src, size_t dsize)
{

bool trunc;
size_t dlen, slen;

if (dsize == 0) {
errno = ENOBUFS;
return -1;

}

Linux man-pages 6.13 2024-06-26 3662

string_copying(7) Miscellaneous Information Manual string_copying(7)

slen = strnlen(src, dsize);
trunc = (slen == dsize);
dlen = slen - trunc;

stpcpy(mempcpy(dst, src, dlen), "");
if (trunc)

errno = E2BIG;
return trunc ? -1 : slen;

}

SEE ALSO
bzero(3), memcpy(3), memccpy(3), mempcpy(3), stpcpy(3), strlcpy(3bsd), strncat(3),
stpncpy(3), string(3)

Linux man-pages 6.13 2024-06-26 3663

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

NAME
suffixes - list of file suffixes

DESCRIPTION
It is customary to indicate the contents of a file with the file suffix, which (typically)
consists of a period, followed by one or more letters. Many standard utilities, such as
compilers, use this to recognize the type of file they are dealing with. The make(1)
utility is driven by rules based on file suffix.

Following is a list of suffixes which are likely to be found on a Linux system.

Suffix File type
,v files for RCS (Revision Control System)
- backup file
.C C++ source code, equivalent to .cc
.F Fortran source withcpp(1) directives

or file compressed using freeze
.S assembler source withcpp(1) directives
.Y file compressed using yabba
.Z file compressed usingcompress(1)
.[0-9]+gf TeX generic font files
.[0-9]+pk TeX packed font files
.[1-9] manual page for the corresponding section
.[1-9][a-z] manual page for section plus subsection
.a static object code library
.ad X application default resource file
.ada Ada source (may be body, spec, or combination)
.adb Ada body source
.ads Ada spec source
.afm PostScript font metrics
.al Perl autoload file
.am automake(1) input file
.arc arc(1) archive
.arj arj(1) archive
.asc PGP ASCII-armored data
.asm (GNU) assembler source file
.au Audio sound file
.aux LaTeX auxiliary file
.avi (msvideo) movie
.awk AWK language program
.b LILO boot loader image
.bak backup file
.bash bash(1) shell script
.bb basic block list data produced by

gcc -ftest-coverage
.bbg basic block graph data produced by

gcc -ftest-coverage
.bbl BibTeX output
.bdf X font file

Linux man-pages 6.13 2024-09-01 3664

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

.bib TeX bibliographic database, BibTeX input

.bm bitmap source

.bmp bitmap

.bz2 file compressed usingbzip2(1)

.c C source

.cat message catalog files

.cc C++ source

.cf configuration file

.cfg configuration file

.cgi WWW content generating script or program

.cls LaTeX Class definition

.class Java compiled byte-code

.conf configuration file

.config configuration file

.cpp equivalent to .cc

.csh csh(1) shell script

.cxx equivalent to .cc

.dat data file

.deb Debian software package

.def Modula-2 source for definition modules

.def other definition files

.desc initial part of mail message unpacked with
munpack(1)

.diff file differences (diff (1) command output)

.dir dbm data base directory file

.doc documentation file

.dsc Debian Source Control (source package)

.dtx LaTeX package source file

.dvi TeX’s device independent output

.el Emacs-Lisp source

.elc compiled Emacs-Lisp source

.eps encapsulated PostScript

.exp Expect source code

.f Fortran source

.f77 Fortran 77 source

.f90 Fortran 90 source

.fas precompiled Common-Lisp

.fi Fortran include files

.fig FIG image file (used by xfig(1))

.fmt TeX format file

.gif Compuserve Graphics Image File format

.gmo GNU format message catalog

.gsf Ghostscript fonts

.gz file compressed usinggzip(1)

.h C or C++ header files

.help help file

.hf equivalent to .help

.hlp equivalent to .help

Linux man-pages 6.13 2024-09-01 3665

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

.htm poor man’s .html

.html HTML document used with the World Wide Web

.hqx 7-bit encoded Macintosh file

.i C source after preprocessing

.icon bitmap source

.idx reference or datum-index file for hypertext
or database system

.image bitmap source

.in configuration template, especially for GNU Autoconf

.info files for the Emacs info browser

.info-[0-9]+ split info files

.ins LaTeX package install file for docstrip

.itcl itcl source code;
itcl ([incr Tcl]) is an OO extension of tcl

.java a Java source file

.jpeg Joint Photographic Experts Group format

.jpg poor man’s .jpeg

.js JavaScript source code

.jsx JSX (JavaScript XML-like extension) source code

.kmap lyx(1) keymap

.l equivalent to .lex or .lisp

.lex lex(1) orflex(1) files

.lha lharc archive

.lib Common-Lisp library

.lisp Lisp source

.ln files for use withlint(1)

.log log file, in particular produced by TeX

.lsm Linux Software Map entry

.lsp Common-Lisp source

.lzh lharc archive

.m Objective-C source code

.m4 m4(1) source

.mac macro files for various programs

.man manual page (usually source rather than formatted)

.map map files for various programs

.me Nroff source using the me macro package

.mf Metafont (font generator for TeX) source

.mgp MagicPoint file

.mm sources forgroff(1) in mm - format

.mo Message catalog binary file

.mod Modula-2 source for implementation modules

.mov (quicktime) movie

.mp Metapost source

.mp2 MPEG Layer 2 (audio) file

.mp3 MPEG Layer 3 (audio) file

.mpeg movie file

.o object file

.old old or backup file

Linux man-pages 6.13 2024-09-01 3666

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

.orig backup (original) version of a file, frompatch(1)

.out output file, often executable program (a.out)

.p Pascal source

.pag dbm data base data file

.patch file differences forpatch(1)

.pbm portable bitmap format

.pcf X11 font files

.pdf Adobe Portable Data Format
(use Acrobat/acroread or xpdf)

.perl Perl source (see .ph, .pl, and .pm)

.pfa PostScript font definition files, ASCII format

.pfb PostScript font definition files, binary format

.pgm portable greymap format

.pgp PGP binary data

.ph Perl header file

.php PHP program file

.php3 PHP3 program file

.pid File to store daemon PID (e.g., crond.pid)

.pl TeX property list file or Perl library file

.pm Perl module

.png Portable Network Graphics file

.po Message catalog source

.pod perldoc(1) file

.ppm portable pixmap format

.pr bitmap source

.ps PostScript file

.py Python source

.pyc compiled python

.qt quicktime movie

.r RATFOR source (obsolete)

.rej patches thatpatch(1) couldn’t apply

.rpm RPM software package

.rtf Rich Text Format file

.rules rules for something

.s assembler source

.sa stub libraries for a.out shared libraries

.sc sc(1) spreadsheet commands

.scm Scheme source code

.sed sed source file

.sgml SGML source file

.sh sh(1) scripts

.shar archive created by theshar(1) utility

.shtml HTML using Server Side Includes

.so Shared library or dynamically loadable object

.sql SQL source

.sqml SQML schema or query program

.sty LaTeX style files

.sym Modula-2 compiled definition modules

Linux man-pages 6.13 2024-09-01 3667

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

.tar archive created by thetar(1) utility

.tar.Z tar(1) archive compressed withcompress(1)

.tar.bz2 tar(1) archive compressed withbzip2(1)

.tar.gz tar(1) archive compressed withgzip(1)

.taz tar(1) archive compressed withcompress(1)

.tcl tcl source code

.tex TeX or LaTeX source

.texi equivalent to .texinfo

.texinfo Texinfo documentation source

.text text file

.tfm TeX font metric file

.tgz tar archive compressed withgzip(1)

.tif poor man’s .tiff

.tiff Tagged Image File Format

.tk tcl/tk script

.tmp temporary file

.tmpl template files

.ts TypeScript source code

.tsx TypeScript with JSX source code (.ts + .jsx)

.txt equivalent to .text

.uu equivalent to .uue

.uue binary file encoded withuuencode(1)

.vf TeX virtual font file

.vpl TeX virtual property list file

.w Silvio Levi’s CWEB

.wav wave sound file

.web Donald Knuth’s WEB

.wml Source file for Web Meta Language

.xbm X11 bitmap source

.xcf GIMP graphic

.xml eXtended Markup Language file

.xpm X11 pixmap source

.xs Perl xsub file produced by h2xs

.xsl XSL stylesheet

.y yacc(1) orbison(1) (parser generator) files

.z File compressed using pack(1) (or an old gzip(1))

.zip zip(1) archive

.zoo zoo(1) archive
~ Emacs orpatch(1) backup file
rc startup (‘run control’) file, e.g., .newsrc

STANDARDS
General UNIX conventions.

BUGS
This list is not exhaustive.

SEE ALSO
file(1), make(1)

Linux man-pages 6.13 2024-09-01 3668

symlink(7) Miscellaneous Information Manual symlink(7)

NAME
symlink - symbolic link handling

DESCRIPTION
Symbolic links are files that act as pointers to other files. To understand their behav-
ior, you must first understand how hard links work.

A hard link to a file is indistinguishable from the original file because it is a reference
to the object underlying the original filename. (To be precise: each of the hard links
to a file is a reference to the same inode number, where an inode number is an index
into the inode table, which contains metadata about all files on a filesystem. See
stat(2).) Changes to a file are independent of the name used to reference the file.
Hard links may not refer to directories (to prevent the possibility of loops within the
filesystem tree, which would confuse many programs) and may not refer to files on
different filesystems (because inode numbers are not unique across filesystems).

A symbolic link is a special type of file whose contents are a string that is the path-
name of another file, the file to which the link refers. (The contents of a symbolic link
can be read using readlink(2).) In other words, a symbolic link is a pointer to another
name, and not to an underlying object. For this reason, symbolic links may refer to
directories and may cross filesystem boundaries.

There is no requirement that the pathname referred to by a symbolic link should exist.
A symbolic link that refers to a pathname that does not exist is said to be a dangling
link.

Because a symbolic link and its referenced object coexist in the filesystem name
space, confusion can arise in distinguishing between the link itself and the referenced
object. On historical systems, commands and system calls adopted their own link-fol-
lowing conventions in a somewhat ad-hoc fashion. Rules for a more uniform ap-
proach, as they are implemented on Linux and other systems, are outlined here. It is
important that site-local applications also conform to these rules, so that the user inter-
face can be as consistent as possible.

Magic links
There is a special class of symbolic-link-like objects known as "magic links", which
can be found in certain pseudofilesystems such as proc(5) (examples include
/proc/ pid /exe and /proc/ pid /fd/ *). Unlike normal symbolic links, magic links are
not resolved through pathname-expansion, but instead act as direct references to the
kernel’s own representation of a file handle. As such, these magic links allow users to
access files which cannot be referenced with normal paths (such as unlinked files still
referenced by a running program).

Because they can bypass ordinary mount_namespaces(7)-based restrictions, magic
links have been used as attack vectors in various exploits.

Symbolic link ownership, permissions, and timestamps
The owner and group of an existing symbolic link can be changed using lchown(2).
The ownership of a symbolic link matters when the link is being removed or renamed
in a directory that has the sticky bit set (see inode(7)), and when the fs.protected_sym-
links sysctl is set (see proc(5)).

The last access and last modification timestamps of a symbolic link can be changed
using utimensat(2) or lutimes(3).

Linux man-pages 6.13 2024-05-02 3669

symlink(7) Miscellaneous Information Manual symlink(7)

On Linux, the permissions of an ordinary symbolic link are not used in any opera-
tions; the permissions are always 0777 (read, write, and execute for all user cate-
gories), and can’t be changed.

However, magic links do not follow this rule. They can have a non-0777 mode,
though this mode is not currently used in any permission checks.

Obtaining a file descriptor that refers to a symbolic link
Using the combination of the O_PATH and O_NOFOLLOW flags to open(2) yields
a file descriptor that can be passed as the dirfd argument in system calls such as fs-
tatat(2), fchownat(2), fchmodat(2), linkat(2), and readlinkat(2), in order to operate on
the symbolic link itself (rather than the file to which it refers).

By default (i.e., if the AT_SYMLINK_FOLLOW flag is not specified), if
name_to_handle_at(2) is applied to a symbolic link, it yields a handle for the sym-
bolic link (rather than the file to which it refers). One can then obtain a file descriptor
for the symbolic link (rather than the file to which it refers) by specifying the
O_PATH flag in a subsequent call to open_by_handle_at(2). Again, that file descrip-
tor can be used in the aforementioned system calls to operate on the symbolic link it-
self.

Handling of symbolic links by system calls and commands
Symbolic links are handled either by operating on the link itself, or by operating on
the object referred to by the link. In the latter case, an application or system call is
said to follow the link. Symbolic links may refer to other symbolic links, in which
case the links are dereferenced until an object that is not a symbolic link is found, a
symbolic link that refers to a file which does not exist is found, or a loop is detected.
(Loop detection is done by placing an upper limit on the number of links that may be
followed, and an error results if this limit is exceeded.)

There are three separate areas that need to be discussed. They are as follows:

• Symbolic links used as filename arguments for system calls.

• Symbolic links specified as command-line arguments to utilities that are not tra-
versing a file tree.

• Symbolic links encountered by utilities that are traversing a file tree (either speci-
fied on the command line or encountered as part of the file hierarchy walk).

Before describing the treatment of symbolic links by system calls and commands, we
require some terminology. Given a pathname of the form a/b/c, the part preceding the
final slash (i.e., a/b) is called the dirname component, and the part following the final
slash (i.e., c) is called the basename component.

Treatment of symbolic links in system calls
The first area is symbolic links used as filename arguments for system calls.

The treatment of symbolic links within a pathname passed to a system call is as fol-
lows:

(1) Within the dirname component of a pathname, symbolic links are always fol-
lowed in nearly every system call. (This is also true for commands.) The one
exception is openat2(2), which provides flags that can be used to explicitly pre-
vent following of symbolic links in the dirname component.

Linux man-pages 6.13 2024-05-02 3670

symlink(7) Miscellaneous Information Manual symlink(7)

(2) Except as noted below, all system calls follow symbolic links in the basename
component of a pathname. For example, if there were a symbolic link slink
which pointed to a file named afile, the system call open("slink" ...) would re-
turn a file descriptor referring to the file afile.

Various system calls do not follow links in the basename component of a pathname,
and operate on the symbolic link itself. They are: lchown(2), lgetxattr(2), llistxattr(2),
lremovexattr(2), lsetxattr(2), lstat(2), readlink(2), rename(2), rmdir(2), and unlink(2).

Certain other system calls optionally follow symbolic links in the basename compo-
nent of a pathname. They are: faccessat(2), fchownat(2), fstatat(2), linkat(2),
name_to_handle_at(2), open(2), openat(2), open_by_handle_at(2), and utimensat(2);
see their manual pages for details. Because remove(3) is an alias for unlink(2), that li-
brary function also does not follow symbolic links. When rmdir(2) is applied to a
symbolic link, it fails with the error ENOTDIR.

link(2) warrants special discussion. POSIX.1-2001 specifies that link(2) should deref-
erence oldpath if it is a symbolic link. However, Linux does not do this. (By default,
Solaris is the same, but the POSIX.1-2001 specified behavior can be obtained with
suitable compiler options.) POSIX.1-2008 changed the specification to allow either
behavior in an implementation.

Commands not traversing a file tree
The second area is symbolic links, specified as command-line filename arguments, to
commands which are not traversing a file tree.

Except as noted below, commands follow symbolic links named as command-line ar-
guments. For example, if there were a symbolic link slink which pointed to a file
named afile, the command cat slink would display the contents of the file afile.

It is important to realize that this rule includes commands which may optionally tra-
verse file trees; for example, the command chown file is included in this rule, while
the command chown -R file, which performs a tree traversal, is not. (The latter is de-
scribed in the third area, below.)

If it is explicitly intended that the command operate on the symbolic link instead of
following the symbolic link—for example, it is desired that chown slink change the
ownership of the file that slink is, whether it is a symbolic link or not—then the -h
option should be used. In the above example, chown root slink would change the
ownership of the file referred to by slink, while chown -h root slink would change the
ownership of slink itself.

There are some exceptions to this rule:

• The mv(1) and rm(1) commands do not follow symbolic links named as argu-
ments, but respectively attempt to rename and delete them. (Note, if the symbolic
link references a file via a relative path, moving it to another directory may very
well cause it to stop working, since the path may no longer be correct.)

• The ls(1) command is also an exception to this rule. For compatibility with his-
toric systems (when ls(1) is not doing a tree walk—that is, -R option is not speci-
fied), the ls(1) command follows symbolic links named as arguments if the -H or
-L option is specified, or if the -F , -d , or -l options are not specified. (The ls(1)
command is the only command where the -H and -L options affect its behavior
even though it is not doing a walk of a file tree.)

Linux man-pages 6.13 2024-05-02 3671

symlink(7) Miscellaneous Information Manual symlink(7)

• The file(1) command is also an exception to this rule. The file(1) command does
not follow symbolic links named as argument by default. The file(1) command
does follow symbolic links named as argument if the -L option is specified.

Commands traversing a file tree
The following commands either optionally or always traverse file trees: chgrp(1),
chmod(1), chown(1), cp(1), du(1), find(1), ls(1), pax(1), rm(1), and tar(1)

It is important to realize that the following rules apply equally to symbolic links en-
countered during the file tree traversal and symbolic links listed as command-line ar-
guments.

The first rule applies to symbolic links that reference files other than directories. Op-
erations that apply to symbolic links are performed on the links themselves, but other-
wise the links are ignored.

The command rm -r slink directory will remove slink, as well as any symbolic links
encountered in the tree traversal of directory, because symbolic links may be re-
moved. In no case will rm(1) affect the file referred to by slink.

The second rule applies to symbolic links that refer to directories. Symbolic links that
refer to directories are never followed by default. This is often referred to as a "physi-
cal" walk, as opposed to a "logical" walk (where symbolic links that refer to directo-
ries are followed).

Certain conventions are (should be) followed as consistently as possible by commands
that perform file tree walks:

• A command can be made to follow any symbolic links named on the command
line, regardless of the type of file they reference, by specifying the -H (for "half-
logical") flag. This flag is intended to make the command-line name space look
like the logical name space. (Note, for commands that do not always do file tree
traversals, the -H flag will be ignored if the -R flag is not also specified.)

For example, the command chown -HR user slink will traverse the file hierarchy
rooted in the file pointed to by slink. Note, the -H is not the same as the previ-
ously discussed -h flag. The -H flag causes symbolic links specified on the com-
mand line to be dereferenced for the purposes of both the action to be performed
and the tree walk, and it is as if the user had specified the name of the file to which
the symbolic link pointed.

• A command can be made to follow any symbolic links named on the command
line, as well as any symbolic links encountered during the traversal, regardless of
the type of file they reference, by specifying the -L (for "logical") flag. This flag
is intended to make the entire name space look like the logical name space. (Note,
for commands that do not always do file tree traversals, the -L flag will be ig-
nored if the -R flag is not also specified.)

For example, the command chown -LR user slink will change the owner of the
file referred to by slink. If slink refers to a directory, chown will traverse the file
hierarchy rooted in the directory that it references. In addition, if any symbolic
links are encountered in any file tree that chown traverses, they will be treated in
the same fashion as slink.

Linux man-pages 6.13 2024-05-02 3672

symlink(7) Miscellaneous Information Manual symlink(7)

• A command can be made to provide the default behavior by specifying the -P
(for "physical") flag. This flag is intended to make the entire name space look like
the physical name space.

For commands that do not by default do file tree traversals, the -H , -L, and -P flags
are ignored if the -R flag is not also specified. In addition, you may specify the -H ,
-L, and -P options more than once; the last one specified determines the command’s
behavior. This is intended to permit you to alias commands to behave one way or the
other, and then override that behavior on the command line.

The ls(1) and rm(1) commands have exceptions to these rules:

• The rm(1) command operates on the symbolic link, and not the file it references,
and therefore never follows a symbolic link. The rm(1) command does not sup-
port the -H , -L, or -P options.

• To maintain compatibility with historic systems, the ls(1) command acts a little
differently. If you do not specify the -F , -d , or -l options, ls(1) will follow sym-
bolic links specified on the command line. If the -L flag is specified, ls(1) fol-
lows all symbolic links, regardless of their type, whether specified on the com-
mand line or encountered in the tree walk.

SEE ALSO
chgrp(1), chmod(1), find(1), ln(1), ls(1), mv(1), namei(1), rm(1), lchown(2), link(2),
lstat(2), readlink(2), rename(2), symlink(2), unlink(2), utimensat(2), lutimes(3),
path_resolution(7)

Linux man-pages 6.13 2024-05-02 3673

system_data_types(7) Miscellaneous Information Manual system_data_types(7)

NAME
system_data_types - overview of system data types

DESCRIPTION
siginfo_t

Include: <signal.h>. Alternatively, <sys/wait.h>.

typedef struct {
int si_signo; /* Signal number */
int si_code; /* Signal code */
pid_t si_pid; /* Sending process ID */
uid_t si_uid; /* Real user ID of sending process */
void *si_addr; /* Memory location which caused fault */
int si_status; /* Exit value or signal */
union sigval si_value; /* Signal value */

} siginfo_t;

Information associated with a signal. For further details on this structure (in-
cluding additional, Linux-specific fields), see sigaction(2).

Conforming to: POSIX.1-2001 and later.

See also: pidfd_send_signal(2), rt_sigqueueinfo(2), sigaction(2), sigwait-
info(2), psiginfo(3)

sigset_t
Include: <signal.h>. Alternatively, <spawn.h>, or <sys/select.h>.

This is a type that represents a set of signals. According to POSIX, this shall
be an integer or structure type.

Conforming to: POSIX.1-2001 and later.

See also: epoll_pwait(2), ppoll(2), pselect(2), sigaction(2), signalfd(2), sig-
pending(2), sigprocmask(2), sigsuspend(2), sigwaitinfo(2), signal(7)

NOTES
The structures described in this manual page shall contain, at least, the members
shown in their definition, in no particular order.

Most of the integer types described in this page don’t have a corresponding length
modifier for the printf(3) and the scanf(3) families of functions. To print a value of an
integer type that doesn’t have a length modifier, it should be converted to intmax_t or
uintmax_t by an explicit cast. To scan into a variable of an integer type that doesn’t
have a length modifier, an intermediate temporary variable of type intmax_t or uint-
max_t should be used. When copying from the temporary variable to the destination
variable, the value could overflow. If the type has upper and lower limits, the user
should check that the value is within those limits, before actually copying the value.
The example below shows how these conversions should be done.

Conventions used in this page
In "Conforming to" we only concern ourselves with C99 and later and POSIX.1-2001
and later. Some types may be specified in earlier versions of one of these standards,
but in the interests of simplicity we omit details from earlier standards.

In "Include", we first note the "primary" header(s) that define the type according to

Linux man-pages 6.13 2024-06-15 3674

system_data_types(7) Miscellaneous Information Manual system_data_types(7)

either the C or POSIX.1 standards. Under "Alternatively", we note additional headers
that the standards specify shall define the type.

EXAMPLES
The program shown below scans from a string and prints a value stored in a variable
of an integer type that doesn’t have a length modifier. The appropriate conversions
from and to intmax_t, and the appropriate range checks, are used as explained in the
notes section above.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>

int
main (void)
{

static const char *const str = "500000 us in half a second";
suseconds_t us;
intmax_t tmp;

/* Scan the number from the string into the temporary variable. */

sscanf(str, "%jd", &tmp);

/* Check that the value is within the valid range of suseconds_t. */

if (tmp < -1 || tmp > 1000000) {
fprintf(stderr, "Scanned value outside valid range!\n");
exit(EXIT_FAILURE);

}

/* Copy the value to the suseconds_t variable 'us'. */

us = tmp;

/* Even though suseconds_t can hold the value -1, this isn't
a sensible number of microseconds. */

if (us < 0) {
fprintf(stderr, "Scanned value shouldn't be negative!\n");
exit(EXIT_FAILURE);

}

/* Print the value. */

printf("There are %jd microseconds in half a second.\n",
(intmax_t) us);

exit(EXIT_SUCCESS);

Linux man-pages 6.13 2024-06-15 3675

system_data_types(7) Miscellaneous Information Manual system_data_types(7)

}

SEE ALSO
feature_test_macros(7), standards(7)

Linux man-pages 6.13 2024-06-15 3676

sysvipc(7) Miscellaneous Information Manual sysvipc(7)

NAME
sysvipc - System V interprocess communication mechanisms

DESCRIPTION
System V IPC is the name given to three interprocess communication mechanisms
that are widely available on UNIX systems: message queues, semaphore, and shared
memory.

Message queues
System V message queues allow data to be exchanged in units called messages. Each
message can have an associated priority. POSIX message queues provide an alterna-
tive API for achieving the same result; see mq_overview(7).

The System V message queue API consists of the following system calls:

msgget(2)
Create a new message queue or obtain the ID of an existing message queue.
This call returns an identifier that is used in the remaining APIs.

msgsnd(2)
Add a message to a queue.

msgrcv(2)
Remove a message from a queue.

msgctl(2)
Perform various control operations on a queue, including deletion.

Semaphore sets
System V semaphores allow processes to synchronize their actions. System V sema-
phores are allocated in groups called sets; each semaphore in a set is a counting sema-
phore. POSIX semaphores provide an alternative API for achieving the same result;
see sem_overview(7).

The System V semaphore API consists of the following system calls:

semget(2)
Create a new set or obtain the ID of an existing set. This call returns an identi-
fier that is used in the remaining APIs.

semop(2)
Perform operations on the semaphores in a set.

semctl(2)
Perform various control operations on a set, including deletion.

Shared memory segments
System V shared memory allows processes to share a region a memory (a "segment").
POSIX shared memory is an alternative API for achieving the same result; see
shm_overview(7).

The System V shared memory API consists of the following system calls:

shmget(2)
Create a new segment or obtain the ID of an existing segment. This call re-
turns an identifier that is used in the remaining APIs.

Linux man-pages 6.13 2024-05-02 3677

sysvipc(7) Miscellaneous Information Manual sysvipc(7)

shmat(2)
Attach an existing shared memory object into the calling process’s address
space.

shmdt(2)
Detach a segment from the calling process’s address space.

shmctl(2)
Perform various control operations on a segment, including deletion.

IPC namespaces
For a discussion of the interaction of System V IPC objects and IPC namespaces, see
ipc_namespaces(7).

SEE ALSO
ipcmk(1), ipcrm(1), ipcs(1), lsipc(1), ipc(2), msgctl(2), msgget(2), msgrcv(2), ms-
gsnd(2), semctl(2), semget(2), semop(2), shmat(2), shmctl(2), shmdt(2), shmget(2),
ftok(3), ipc_namespaces(7)

Linux man-pages 6.13 2024-05-02 3678

tcp(7) Miscellaneous Information Manual tcp(7)

NAME
tcp - TCP protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>

tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

DESCRIPTION
This is an implementation of the TCP protocol defined in RFC 793, RFC 1122 and
RFC 2001 with the NewReno and SACK extensions. It provides a reliable, stream-
oriented, full-duplex connection between two sockets on top of ip(7), for both v4 and
v6 versions. TCP guarantees that the data arrives in order and retransmits lost pack-
ets. It generates and checks a per-packet checksum to catch transmission errors. TCP
does not preserve record boundaries.

A newly created TCP socket has no remote or local address and is not fully specified.
To create an outgoing TCP connection use connect(2) to establish a connection to an-
other TCP socket. To receive new incoming connections, first bind(2) the socket to a
local address and port and then call listen(2) to put the socket into the listening state.
After that a new socket for each incoming connection can be accepted using
accept(2). A socket which has had accept(2) or connect(2) successfully called on it is
fully specified and may transmit data. Data cannot be transmitted on listening or not
yet connected sockets.

Linux supports RFC 1323 TCP high performance extensions. These include Protec-
tion Against Wrapped Sequence Numbers (PAWS), Window Scaling and Timestamps.
Window scaling allows the use of large (> 64 kB) TCP windows in order to support
links with high latency or bandwidth. To make use of them, the send and receive
buffer sizes must be increased. They can be set globally with the
/proc/sys/net/ipv4/tcp_wmem and /proc/sys/net/ipv4/tcp_rmem files, or on individual
sockets by using the SO_SNDBUF and SO_RCVBUF socket options with the set-
sockopt(2) call.

The maximum sizes for socket buffers declared via the SO_SNDBUF and
SO_RCVBUF mechanisms are limited by the values in the
/proc/sys/net/core/rmem_max and /proc/sys/net/core/wmem_max files. Note that
TCP actually allocates twice the size of the buffer requested in the setsockopt(2) call,
and so a succeeding getsockopt(2) call will not return the same size of buffer as re-
quested in the setsockopt(2) call. TCP uses the extra space for administrative pur-
poses and internal kernel structures, and the /proc file values reflect the larger sizes
compared to the actual TCP windows. On individual connections, the socket buffer
size must be set prior to the listen(2) or connect(2) calls in order to have it take effect.
See socket(7) for more information.

TCP supports urgent data. Urgent data is used to signal the receiver that some impor-
tant message is part of the data stream and that it should be processed as soon as pos-
sible. To send urgent data specify the MSG_OOB option to send(2). When urgent
data is received, the kernel sends a SIGURG signal to the process or process group
that has been set as the socket "owner" using the SIOCSPGRP or FIOSETOWN
ioctls (or the POSIX.1-specified fcntl(2) F_SETOWN operation). When the

Linux man-pages 6.13 2024-05-02 3679

tcp(7) Miscellaneous Information Manual tcp(7)

SO_OOBINLINE socket option is enabled, urgent data is put into the normal data
stream (a program can test for its location using the SIOCATMARK ioctl described
below), otherwise it can be received only when the MSG_OOB flag is set for recv(2)
or recvmsg(2).

When out-of-band data is present, select(2) indicates the file descriptor as having an
exceptional condition and poll (2) indicates a POLLPRI event.

Linux 2.4 introduced a number of changes for improved throughput and scaling, as
well as enhanced functionality. Some of these features include support for zero-copy
sendfile(2), Explicit Congestion Notification, new management of TIME_WAIT sock-
ets, keep-alive socket options and support for Duplicate SACK extensions.

Address formats
TCP is built on top of IP (see ip(7)). The address formats defined by ip(7) apply to
TCP. TCP supports point-to-point communication only; broadcasting and multicast-
ing are not supported.

/proc interfaces
System-wide TCP parameter settings can be accessed by files in the directory
/proc/sys/net/ipv4/ . In addition, most IP /proc interfaces also apply to TCP; see ip(7).
Variables described as Boolean take an integer value, with a nonzero value ("true")
meaning that the corresponding option is enabled, and a zero value ("false") meaning
that the option is disabled.

tcp_abc (Integer; default: 0; Linux 2.6.15 to Linux 3.8)
Control the Appropriate Byte Count (ABC), defined in RFC 3465. ABC is a
way of increasing the congestion window (cwnd) more slowly in response to
partial acknowledgements. Possible values are:

0 increase cwnd once per acknowledgement (no ABC)

1 increase cwnd once per acknowledgement of full sized segment

2 allow increase cwnd by two if acknowledgement is of two segments to
compensate for delayed acknowledgements.

tcp_abort_on_overflow (Boolean; default: disabled; since Linux 2.4)
Enable resetting connections if the listening service is too slow and unable to
keep up and accept them. It means that if overflow occurred due to a burst, the
connection will recover. Enable this option only if you are really sure that the
listening daemon cannot be tuned to accept connections faster. Enabling this
option can harm the clients of your server.

tcp_adv_win_scale (integer; default: 2; since Linux 2.4)
Count buffering overhead as bytes/2^tcp_adv_win_scale, if
tcp_adv_win_scale is greater than 0; or bytes-bytes/2^(-tcp_adv_win_scale), if
tcp_adv_win_scale is less than or equal to zero.

The socket receive buffer space is shared between the application and kernel.
TCP maintains part of the buffer as the TCP window, this is the size of the re-
ceive window advertised to the other end. The rest of the space is used as the
"application" buffer, used to isolate the network from scheduling and applica-
tion latencies. The tcp_adv_win_scale default value of 2 implies that the
space used for the application buffer is one fourth that of the total.

Linux man-pages 6.13 2024-05-02 3680

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_allowed_congestion_control (String; default: see text; since Linux 2.4.20)
Show/set the congestion control algorithm choices available to unprivileged
processes (see the description of the TCP_CONGESTION socket option).
The items in the list are separated by white space and terminated by a newline
character. The list is a subset of those listed in tcp_available_congestion_con-
trol. The default value for this list is "reno" plus the default setting of
tcp_congestion_control.

tcp_autocorking (Boolean; default: enabled; since Linux 3.14)
If this option is enabled, the kernel tries to coalesce small writes (from consec-
utive write(2) and sendmsg(2) calls) as much as possible, in order to decrease
the total number of sent packets. Coalescing is done if at least one prior
packet for the flow is waiting in Qdisc queues or device transmit queue. Ap-
plications can still use the TCP_CORK socket option to obtain optimal be-
havior when they know how/when to uncork their sockets.

tcp_available_congestion_control (String; read-only; since Linux 2.4.20)
Show a list of the congestion-control algorithms that are registered. The items
in the list are separated by white space and terminated by a newline character.
This list is a limiting set for the list in tcp_allowed_congestion_control. More
congestion-control algorithms may be available as modules, but not loaded.

tcp_app_win (integer; default: 31; since Linux 2.4)
This variable defines how many bytes of the TCP window are reserved for
buffering overhead.

A maximum of (window/2^tcp_app_win, mss) bytes in the window are re-
served for the application buffer. A value of 0 implies that no amount is re-
served.

tcp_base_mss (Integer; default: 512; since Linux 2.6.17)
The initial value of search_low to be used by the packetization layer Path
MTU discovery (MTU probing). If MTU probing is enabled, this is the initial
MSS used by the connection.

tcp_bic (Boolean; default: disabled; Linux 2.4.27/2.6.6 to Linux 2.6.13)
Enable BIC TCP congestion control algorithm. BIC-TCP is a sender-side-
only change that ensures a linear RTT fairness under large windows while of-
fering both scalability and bounded TCP-friendliness. The protocol combines
two schemes called additive increase and binary search increase. When the
congestion window is large, additive increase with a large increment ensures
linear RTT fairness as well as good scalability. Under small congestion win-
dows, binary search increase provides TCP friendliness.

tcp_bic_low_window (integer; default: 14; Linux 2.4.27/2.6.6 to Linux 2.6.13)
Set the threshold window (in packets) where BIC TCP starts to adjust the con-
gestion window. Below this threshold BIC TCP behaves the same as the de-
fault TCP Reno.

tcp_bic_fast_convergence (Boolean; default: enabled; Linux 2.4.27/2.6.6 to Linux
2.6.13)

Force BIC TCP to more quickly respond to changes in congestion window.
Allows two flows sharing the same connection to converge more rapidly.

Linux man-pages 6.13 2024-05-02 3681

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_congestion_control (String; default: see text; since Linux 2.4.13)
Set the default congestion-control algorithm to be used for new connections.
The algorithm "reno" is always available, but additional choices may be avail-
able depending on kernel configuration. The default value for this file is set as
part of kernel configuration.

tcp_dma_copybreak (integer; default: 4096; since Linux 2.6.24)
Lower limit, in bytes, of the size of socket reads that will be offloaded to a
DMA copy engine, if one is present in the system and the kernel was config-
ured with the CONFIG_NET_DMA option.

tcp_dsack (Boolean; default: enabled; since Linux 2.4)
Enable RFC 2883 TCP Duplicate SACK support.

tcp_fastopen (Bitmask; default: 0x1; since Linux 3.7)
Enables RFC 7413 Fast Open support. The flag is used as a bitmap with the
following values:

0x1 Enables client side Fast Open support

0x2 Enables server side Fast Open support

0x4 Allows client side to transmit data in SYN without Fast Open option

0x200 Allows server side to accept SYN data without Fast Open option

0x400 Enables Fast Open on all listeners without TCP_FASTOPEN socket
option

tcp_fastopen_key (since Linux 3.7)
Set server side RFC 7413 Fast Open key to generate Fast Open cookie when
server side Fast Open support is enabled.

tcp_ecn (Integer; default: see below; since Linux 2.4)
Enable RFC 3168 Explicit Congestion Notification.

This file can have one of the following values:

0 Disable ECN. Neither initiate nor accept ECN. This was the default
up to and including Linux 2.6.30.

1 Enable ECN when requested by incoming connections and also request
ECN on outgoing connection attempts.

2 Enable ECN when requested by incoming connections, but do not re-
quest ECN on outgoing connections. This value is supported, and is
the default, since Linux 2.6.31.

When enabled, connectivity to some destinations could be affected due to
older, misbehaving middle boxes along the path, causing connections to be
dropped. However, to facilitate and encourage deployment with option 1, and
to work around such buggy equipment, the tcp_ecn_fallback option has been
introduced.

tcp_ecn_fallback (Boolean; default: enabled; since Linux 4.1)
Enable RFC 3168, Section 6.1.1.1. fallback. When enabled, outgoing ECN-
setup SYNs that time out within the normal SYN retransmission timeout will
be resent with CWR and ECE cleared.

Linux man-pages 6.13 2024-05-02 3682

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_fack (Boolean; default: enabled; since Linux 2.2)
Enable TCP Forward Acknowledgement support.

tcp_fin_timeout (integer; default: 60; since Linux 2.2)
This specifies how many seconds to wait for a final FIN packet before the
socket is forcibly closed. This is strictly a violation of the TCP specification,
but required to prevent denial-of-service attacks. In Linux 2.2, the default
value was 180.

tcp_frto (integer; default: see below; since Linux 2.4.21/2.6)
Enable F-RTO, an enhanced recovery algorithm for TCP retransmission time-
outs (RTOs). It is particularly beneficial in wireless environments where
packet loss is typically due to random radio interference rather than intermedi-
ate router congestion. See RFC 4138 for more details.

This file can have one of the following values:

0 Disabled. This was the default up to and including Linux 2.6.23.

1 The basic version F-RTO algorithm is enabled.

2 Enable SACK-enhanced F-RTO if flow uses SACK. The basic version
can be used also when SACK is in use though in that case scenario(s)
exists where F-RTO interacts badly with the packet counting of the
SACK-enabled TCP flow. This value is the default since Linux 2.6.24.

Before Linux 2.6.22, this parameter was a Boolean value, supporting just val-
ues 0 and 1 above.

tcp_frto_response (integer; default: 0; since Linux 2.6.22)
When F-RTO has detected that a TCP retransmission timeout was spurious
(i.e., the timeout would have been avoided had TCP set a longer retransmis-
sion timeout), TCP has several options concerning what to do next. Possible
values are:

0 Rate halving based; a smooth and conservative response, results in
halved congestion window (cwnd) and slow-start threshold (ssthresh)
after one RTT.

1 Very conservative response; not recommended because even though
being valid, it interacts poorly with the rest of Linux TCP; halves cwnd
and ssthresh immediately.

2 Aggressive response; undoes congestion-control measures that are now
known to be unnecessary (ignoring the possibility of a lost retransmis-
sion that would require TCP to be more cautious); cwnd and ssthresh
are restored to the values prior to timeout.

tcp_keepalive_intvl (integer; default: 75; since Linux 2.4)
The number of seconds between TCP keep-alive probes.

tcp_keepalive_probes (integer; default: 9; since Linux 2.2)
The maximum number of TCP keep-alive probes to send before giving up and
killing the connection if no response is obtained from the other end.

Linux man-pages 6.13 2024-05-02 3683

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_keepalive_time (integer; default: 7200; since Linux 2.2)
The number of seconds a connection needs to be idle before TCP begins send-
ing out keep-alive probes. Keep-alives are sent only when the
SO_KEEPALIVE socket option is enabled. The default value is 7200 sec-
onds (2 hours). An idle connection is terminated after approximately an addi-
tional 11 minutes (9 probes an interval of 75 seconds apart) when keep-alive is
enabled.

Note that underlying connection tracking mechanisms and application time-
outs may be much shorter.

tcp_low_latency (Boolean; default: disabled; since Linux 2.4.21/2.6; obsolete since
Linux 4.14)

If enabled, the TCP stack makes decisions that prefer lower latency as opposed
to higher throughput. It this option is disabled, then higher throughput is pre-
ferred. An example of an application where this default should be changed
would be a Beowulf compute cluster. Since Linux 4.14, this file still exists,
but its value is ignored.

tcp_max_orphans (integer; default: see below; since Linux 2.4)
The maximum number of orphaned (not attached to any user file handle) TCP
sockets allowed in the system. When this number is exceeded, the orphaned
connection is reset and a warning is printed. This limit exists only to prevent
simple denial-of-service attacks. Lowering this limit is not recommended.
Network conditions might require you to increase the number of orphans al-
lowed, but note that each orphan can eat up to ~64 kB of unswappable mem-
ory. The default initial value is set equal to the kernel parameter NR_FILE.
This initial default is adjusted depending on the memory in the system.

tcp_max_syn_backlog (integer; default: see below; since Linux 2.2)
The maximum number of queued connection requests which have still not re-
ceived an acknowledgement from the connecting client. If this number is ex-
ceeded, the kernel will begin dropping requests. The default value of 256 is
increased to 1024 when the memory present in the system is adequate or
greater (>= 128 MB), and reduced to 128 for those systems with very low
memory (<= 32 MB).

Before Linux 2.6.20, it was recommended that if this needed to be increased
above 1024, the size of the SYNACK hash table (TCP_SYNQ_HSIZE) in in-
clude/net/tcp.h should be modified to keep

TCP_SYNQ_HSIZE * 16 <= tcp_max_syn_backlog

and the kernel should be recompiled. In Linux 2.6.20, the fixed sized
TCP_SYNQ_HSIZE was removed in favor of dynamic sizing.

tcp_max_tw_buckets (integer; default: see below; since Linux 2.4)
The maximum number of sockets in TIME_WAIT state allowed in the system.
This limit exists only to prevent simple denial-of-service attacks. The default
value of NR_FILE*2 is adjusted depending on the memory in the system. If
this number is exceeded, the socket is closed and a warning is printed.

Linux man-pages 6.13 2024-05-02 3684

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_moderate_rcvbuf (Boolean; default: enabled; since Linux 2.4.17/2.6.7)
If enabled, TCP performs receive buffer auto-tuning, attempting to automati-
cally size the buffer (no greater than tcp_rmem[2]) to match the size required
by the path for full throughput.

tcp_mem (since Linux 2.4)
This is a vector of 3 integers: [low, pressure, high]. These bounds, measured
in units of the system page size, are used by TCP to track its memory usage.
The defaults are calculated at boot time from the amount of available memory.
(TCP can only use low memory for this, which is limited to around 900
megabytes on 32-bit systems. 64-bit systems do not suffer this limitation.)

low TCP doesn’t regulate its memory allocation when the number of pages
it has allocated globally is below this number.

pressure
When the amount of memory allocated by TCP exceeds this number of
pages, TCP moderates its memory consumption. This memory pres-
sure state is exited once the number of pages allocated falls below the
low mark.

high The maximum number of pages, globally, that TCP will allocate. This
value overrides any other limits imposed by the kernel.

tcp_mtu_probing (integer; default: 0; since Linux 2.6.17)
This parameter controls TCP Packetization-Layer Path MTU Discovery. The
following values may be assigned to the file:

0 Disabled

1 Disabled by default, enabled when an ICMP black hole detected

2 Always enabled, use initial MSS of tcp_base_mss.

tcp_no_metrics_save (Boolean; default: disabled; since Linux 2.6.6)
By default, TCP saves various connection metrics in the route cache when the
connection closes, so that connections established in the near future can use
these to set initial conditions. Usually, this increases overall performance, but
it may sometimes cause performance degradation. If tcp_no_metrics_save is
enabled, TCP will not cache metrics on closing connections.

tcp_orphan_retries (integer; default: 8; since Linux 2.4)
The maximum number of attempts made to probe the other end of a connec-
tion which has been closed by our end.

tcp_reordering (integer; default: 3; since Linux 2.4)
The maximum a packet can be reordered in a TCP packet stream without TCP
assuming packet loss and going into slow start. It is not advisable to change
this number. This is a packet reordering detection metric designed to mini-
mize unnecessary back off and retransmits provoked by reordering of packets
on a connection.

tcp_retrans_collapse (Boolean; default: enabled; since Linux 2.2)
Try to send full-sized packets during retransmit.

Linux man-pages 6.13 2024-05-02 3685

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_retries1 (integer; default: 3; since Linux 2.2)
The number of times TCP will attempt to retransmit a packet on an established
connection normally, without the extra effort of getting the network layers in-
volved. Once we exceed this number of retransmits, we first have the network
layer update the route if possible before each new retransmit. The default is
the RFC specified minimum of 3.

tcp_retries2 (integer; default: 15; since Linux 2.2)
The maximum number of times a TCP packet is retransmitted in established
state before giving up. The default value is 15, which corresponds to a dura-
tion of approximately between 13 to 30 minutes, depending on the retransmis-
sion timeout. The RFC 1122 specified minimum limit of 100 seconds is typi-
cally deemed too short.

tcp_rfc1337 (Boolean; default: disabled; since Linux 2.2)
Enable TCP behavior conformant with RFC 1337. When disabled, if a RST is
received in TIME_WAIT state, we close the socket immediately without wait-
ing for the end of the TIME_WAIT period.

tcp_rmem (since Linux 2.4)
This is a vector of 3 integers: [min, default, max]. These parameters are used
by TCP to regulate receive buffer sizes. TCP dynamically adjusts the size of
the receive buffer from the defaults listed below, in the range of these values,
depending on memory available in the system.

min minimum size of the receive buffer used by each TCP socket. The de-
fault value is the system page size. (On Linux 2.4, the default value is
4 kB, lowered to PAGE_SIZE bytes in low-memory systems.) This
value is used to ensure that in memory pressure mode, allocations be-
low this size will still succeed. This is not used to bound the size of
the receive buffer declared using SO_RCVBUF on a socket.

default
the default size of the receive buffer for a TCP socket. This value over-
writes the initial default buffer size from the generic global
net.core.rmem_default defined for all protocols. The default value is
87380 bytes. (On Linux 2.4, this will be lowered to 43689 in low-
memory systems.) If larger receive buffer sizes are desired, this value
should be increased (to affect all sockets). To employ large TCP win-
dows, the net.ipv4.tcp_window_scaling must be enabled (default).

max the maximum size of the receive buffer used by each TCP socket. This
value does not override the global net.core.rmem_max. This is not
used to limit the size of the receive buffer declared using
SO_RCVBUF on a socket. The default value is calculated using the
formula

max(87380, min(4 MB, tcp_mem[1]*PAGE_SIZE/128))

(On Linux 2.4, the default is 87380*2 bytes, lowered to 87380 in low-
memory systems).

Linux man-pages 6.13 2024-05-02 3686

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_sack (Boolean; default: enabled; since Linux 2.2)
Enable RFC 2018 TCP Selective Acknowledgements.

tcp_slow_start_after_idle (Boolean; default: enabled; since Linux 2.6.18)
If enabled, provide RFC 2861 behavior and time out the congestion window
after an idle period. An idle period is defined as the current RTO (retransmis-
sion timeout). If disabled, the congestion window will not be timed out after
an idle period.

tcp_stdurg (Boolean; default: disabled; since Linux 2.2)
If this option is enabled, then use the RFC 1122 interpretation of the TCP ur-
gent-pointer field. According to this interpretation, the urgent pointer points to
the last byte of urgent data. If this option is disabled, then use the BSD-com-
patible interpretation of the urgent pointer: the urgent pointer points to the first
byte after the urgent data. Enabling this option may lead to interoperability
problems.

tcp_syn_retries (integer; default: 6; since Linux 2.2)
The maximum number of times initial SYNs for an active TCP connection at-
tempt will be retransmitted. This value should not be higher than 255. The
default value is 6, which corresponds to retrying for up to approximately 127
seconds. Before Linux 3.7, the default value was 5, which (in conjunction
with calculation based on other kernel parameters) corresponded to approxi-
mately 180 seconds.

tcp_synack_retries (integer; default: 5; since Linux 2.2)
The maximum number of times a SYN/ACK segment for a passive TCP con-
nection will be retransmitted. This number should not be higher than 255.

tcp_syncookies (integer; default: 1; since Linux 2.2)
Enable TCP syncookies. The kernel must be compiled with CON-
FIG_SYN_COOKIES. The syncookies feature attempts to protect a socket
from a SYN flood attack. This should be used as a last resort, if at all. This is
a violation of the TCP protocol, and conflicts with other areas of TCP such as
TCP extensions. It can cause problems for clients and relays. It is not recom-
mended as a tuning mechanism for heavily loaded servers to help with over-
loaded or misconfigured conditions. For recommended alternatives see
tcp_max_syn_backlog, tcp_synack_retries, and tcp_abort_on_overflow. Set to
one of the following values:

0 Disable TCP syncookies.

1 Send out syncookies when the syn backlog queue of a socket over-
flows.

2 (since Linux 3.12) Send out syncookies unconditionally. This can be
useful for network testing.

tcp_timestamps (integer; default: 1; since Linux 2.2)
Set to one of the following values to enable or disable RFC 1323 TCP time-
stamps:

0 Disable timestamps.

Linux man-pages 6.13 2024-05-02 3687

tcp(7) Miscellaneous Information Manual tcp(7)

1 Enable timestamps as defined in RFC1323 and use random offset for
each connection rather than only using the current time.

2 As for the value 1, but without random offsets. Setting tcp_timestamps
to this value is meaningful since Linux 4.10.

tcp_tso_win_divisor (integer; default: 3; since Linux 2.6.9)
This parameter controls what percentage of the congestion window can be
consumed by a single TCP Segmentation Offload (TSO) frame. The setting of
this parameter is a tradeoff between burstiness and building larger TSO
frames.

tcp_tw_recycle (Boolean; default: disabled; Linux 2.4 to Linux 4.11)
Enable fast recycling of TIME_WAIT sockets. Enabling this option is not rec-
ommended as the remote IP may not use monotonically increasing timestamps
(devices behind NAT, devices with per-connection timestamp offsets). See
RFC 1323 (PAWS) and RFC 6191.

tcp_tw_reuse (Boolean; default: disabled; since Linux 2.4.19/2.6)
Allow to reuse TIME_WAIT sockets for new connections when it is safe from
protocol viewpoint. It should not be changed without advice/request of techni-
cal experts.

tcp_vegas_cong_avoid (Boolean; default: disabled; Linux 2.2 to Linux 2.6.13)
Enable TCP Vegas congestion avoidance algorithm. TCP Vegas is a sender-
side-only change to TCP that anticipates the onset of congestion by estimating
the bandwidth. TCP Vegas adjusts the sending rate by modifying the conges-
tion window. TCP Vegas should provide less packet loss, but it is not as ag-
gressive as TCP Reno.

tcp_westwood (Boolean; default: disabled; Linux 2.4.26/2.6.3 to Linux 2.6.13)
Enable TCP Westwood+ congestion control algorithm. TCP Westwood+ is a
sender-side-only modification of the TCP Reno protocol stack that optimizes
the performance of TCP congestion control. It is based on end-to-end band-
width estimation to set congestion window and slow start threshold after a
congestion episode. Using this estimation, TCP Westwood+ adaptively sets a
slow start threshold and a congestion window which takes into account the
bandwidth used at the time congestion is experienced. TCP Westwood+ sig-
nificantly increases fairness with respect to TCP Reno in wired networks and
throughput over wireless links.

tcp_window_scaling (Boolean; default: enabled; since Linux 2.2)
Enable RFC 1323 TCP window scaling. This feature allows the use of a large
window (> 64 kB) on a TCP connection, should the other end support it. Nor-
mally, the 16 bit window length field in the TCP header limits the window size
to less than 64 kB. If larger windows are desired, applications can increase the
size of their socket buffers and the window scaling option will be employed.
If tcp_window_scaling is disabled, TCP will not negotiate the use of window
scaling with the other end during connection setup.

tcp_wmem (since Linux 2.4)
This is a vector of 3 integers: [min, default, max]. These parameters are used
by TCP to regulate send buffer sizes. TCP dynamically adjusts the size of the

Linux man-pages 6.13 2024-05-02 3688

tcp(7) Miscellaneous Information Manual tcp(7)

send buffer from the default values listed below, in the range of these values,
depending on memory available.

min Minimum size of the send buffer used by each TCP socket. The de-
fault value is the system page size. (On Linux 2.4, the default value is
4 kB.) This value is used to ensure that in memory pressure mode, al-
locations below this size will still succeed. This is not used to bound
the size of the send buffer declared using SO_SNDBUF on a socket.

default
The default size of the send buffer for a TCP socket. This value over-
writes the initial default buffer size from the generic global
/proc/sys/net/core/wmem_default defined for all protocols. The default
value is 16 kB. If larger send buffer sizes are desired, this value should
be increased (to affect all sockets). To employ large TCP windows, the
/proc/sys/net/ipv4/tcp_window_scaling must be set to a nonzero value
(default).

max The maximum size of the send buffer used by each TCP socket. This
value does not override the value in /proc/sys/net/core/wmem_max.
This is not used to limit the size of the send buffer declared using
SO_SNDBUF on a socket. The default value is calculated using the
formula

max(65536, min(4 MB, tcp_mem[1]*PAGE_SIZE/128))

(On Linux 2.4, the default value is 128 kB, lowered 64 kB depending
on low-memory systems.)

tcp_workaround_signed_windows (Boolean; default: disabled; since Linux 2.6.26)
If enabled, assume that no receipt of a window-scaling option means that the
remote TCP is broken and treats the window as a signed quantity. If disabled,
assume that the remote TCP is not broken even if we do not receive a window
scaling option from it.

Socket options
To set or get a TCP socket option, call getsockopt(2) to read or setsockopt(2) to write
the option with the option level argument set to IPPROTO_TCP. Unless otherwise
noted, optval is a pointer to an int. In addition, most IPPROTO_IP socket options
are valid on TCP sockets. For more information see ip(7).

Following is a list of TCP-specific socket options. For details of some other socket
options that are also applicable for TCP sockets, see socket(7).

TCP_CONGESTION (since Linux 2.6.13)
The argument for this option is a string. This option allows the caller to set the
TCP congestion control algorithm to be used, on a per-socket basis. Unprivi-
leged processes are restricted to choosing one of the algorithms in tcp_al-
lowed_congestion_control (described above). Privileged processes
(CAP_NET_ADMIN) can choose from any of the available congestion-con-
trol algorithms (see the description of tcp_available_congestion_control
above).

Linux man-pages 6.13 2024-05-02 3689

tcp(7) Miscellaneous Information Manual tcp(7)

TCP_CORK (since Linux 2.2)
If set, don’t send out partial frames. All queued partial frames are sent when
the option is cleared again. This is useful for prepending headers before call-
ing sendfile(2), or for throughput optimization. As currently implemented,
there is a 200 millisecond ceiling on the time for which output is corked by
TCP_CORK. If this ceiling is reached, then queued data is automatically
transmitted. This option can be combined with TCP_NODELAY only since
Linux 2.5.71. This option should not be used in code intended to be portable.

TCP_DEFER_ACCEPT (since Linux 2.4)
Allow a listener to be awakened only when data arrives on the socket. Takes
an integer value (seconds), this can bound the maximum number of attempts
TCP will make to complete the connection. This option should not be used in
code intended to be portable.

TCP_INFO (since Linux 2.4)
Used to collect information about this socket. The kernel returns a struct
tcp_info as defined in the file /usr/include/linux/tcp.h. This option should not
be used in code intended to be portable.

TCP_KEEPCNT (since Linux 2.4)
The maximum number of keepalive probes TCP should send before dropping
the connection. This option should not be used in code intended to be
portable.

TCP_KEEPIDLE (since Linux 2.4)
The time (in seconds) the connection needs to remain idle before TCP starts
sending keepalive probes, if the socket option SO_KEEPALIVE has been set
on this socket. This option should not be used in code intended to be portable.

TCP_KEEPINTVL (since Linux 2.4)
The time (in seconds) between individual keepalive probes. This option
should not be used in code intended to be portable.

TCP_LINGER2 (since Linux 2.4)
The lifetime of orphaned FIN_WAIT2 state sockets. This option can be used
to override the system-wide setting in the file /proc/sys/net/ipv4/tcp_fin_time-
out for this socket. This is not to be confused with the socket(7) level option
SO_LINGER. This option should not be used in code intended to be
portable.

TCP_MAXSEG
The maximum segment size for outgoing TCP packets. In Linux 2.2 and ear-
lier, and in Linux 2.6.28 and later, if this option is set before connection estab-
lishment, it also changes the MSS value announced to the other end in the ini-
tial packet. Values greater than the (eventual) interface MTU have no effect.
TCP will also impose its minimum and maximum bounds over the value pro-
vided.

TCP_NODELAY
If set, disable the Nagle algorithm. This means that segments are always sent
as soon as possible, even if there is only a small amount of data. When not
set, data is buffered until there is a sufficient amount to send out, thereby

Linux man-pages 6.13 2024-05-02 3690

tcp(7) Miscellaneous Information Manual tcp(7)

avoiding the frequent sending of small packets, which results in poor utiliza-
tion of the network. This option is overridden by TCP_CORK; however, set-
ting this option forces an explicit flush of pending output, even if
TCP_CORK is currently set.

TCP_QUICKACK (since Linux 2.4.4)
Enable quickack mode if set or disable quickack mode if cleared. In quickack
mode, acks are sent immediately, rather than delayed if needed in accordance
to normal TCP operation. This flag is not permanent, it only enables a switch
to or from quickack mode. Subsequent operation of the TCP protocol will
once again enter/leave quickack mode depending on internal protocol process-
ing and factors such as delayed ack timeouts occurring and data transfer. This
option should not be used in code intended to be portable.

TCP_SYNCNT (since Linux 2.4)
Set the number of SYN retransmits that TCP should send before aborting the
attempt to connect. It cannot exceed 255. This option should not be used in
code intended to be portable.

TCP_USER_TIMEOUT (since Linux 2.6.37)
This option takes an unsigned int as an argument. When the value is greater
than 0, it specifies the maximum amount of time in milliseconds that transmit-
ted data may remain unacknowledged, or buffered data may remain untrans-
mitted (due to zero window size) before TCP will forcibly close the corre-
sponding connection and return ETIMEDOUT to the application. If the op-
tion value is specified as 0, TCP will use the system default.

Increasing user timeouts allows a TCP connection to survive extended periods
without end-to-end connectivity. Decreasing user timeouts allows applications
to "fail fast", if so desired. Otherwise, failure may take up to 20 minutes with
the current system defaults in a normal WAN environment.

This option can be set during any state of a TCP connection, but is effective
only during the synchronized states of a connection (ESTABLISHED, FIN-
WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, and LAST-ACK). More-
over, when used with the TCP keepalive (SO_KEEPALIVE) option,
TCP_USER_TIMEOUT will override keepalive to determine when to close
a connection due to keepalive failure.

The option has no effect on when TCP retransmits a packet, nor when a
keepalive probe is sent.

This option, like many others, will be inherited by the socket returned by ac-
cept(2), if it was set on the listening socket.

Further details on the user timeout feature can be found in RFC 793 and
RFC 5482 ("TCP User Timeout Option").

TCP_WINDOW_CLAMP (since Linux 2.4)
Bound the size of the advertised window to this value. The kernel imposes a
minimum size of SOCK_MIN_RCVBUF/2. This option should not be used in
code intended to be portable.

Linux man-pages 6.13 2024-05-02 3691

tcp(7) Miscellaneous Information Manual tcp(7)

TCP_FASTOPEN (since Linux 3.6)
This option enables Fast Open (RFC 7413) on the listener socket. The value
specifies the maximum length of pending SYNs (similar to the backlog argu-
ment in listen(2)). Once enabled, the listener socket grants the TCP Fast Open
cookie on incoming SYN with TCP Fast Open option.

More importantly it accepts the data in SYN with a valid Fast Open cookie
and responds SYN-ACK acknowledging both the data and the SYN sequence.
accept(2) returns a socket that is available for read and write when the hand-
shake has not completed yet. Thus the data exchange can commence before
the handshake completes. This option requires enabling the server-side sup-
port on sysctl net.ipv4.tcp_fastopen (see above). For TCP Fast Open client-
side support, see send(2) MSG_FASTOPEN or TCP_FASTOPEN_CON-
NECT below.

TCP_FASTOPEN_CONNECT (since Linux 4.11)
This option enables an alternative way to perform Fast Open on the active side
(client). When this option is enabled, connect(2) would behave differently de-
pending on if a Fast Open cookie is available for the destination.

If a cookie is not available (i.e. first contact to the destination), connect(2) be-
haves as usual by sending a SYN immediately, except the SYN would include
an empty Fast Open cookie option to solicit a cookie.

If a cookie is available, connect(2) would return 0 immediately but the SYN
transmission is deferred. A subsequent write(2) or sendmsg(2) would trigger a
SYN with data plus cookie in the Fast Open option. In other words, the actual
connect operation is deferred until data is supplied.

Note: While this option is designed for convenience, enabling it does change
the behaviors and certain system calls might set different errno values. With
cookie present, write(2) or sendmsg(2) must be called right after connect(2) in
order to send out SYN+data to complete 3WHS and establish connection.
Calling read(2) right after connect(2) without write(2) will cause the blocking
socket to be blocked forever.

The application should either set TCP_FASTOPEN_CONNECT socket op-
tion before write(2) or sendmsg(2), or call write(2) or sendmsg(2) with
MSG_FASTOPEN flag directly, instead of both on the same connection.

Here is the typical call flow with this new option:

s = socket();
setsockopt(s, IPPROTO_TCP, TCP_FASTOPEN_CONNECT, 1, ...);
connect(s);
write(s); /* write() should always follow connect()

* in order to trigger SYN to go out. */
read(s)/write(s);
/* ... */
close(s);

Sockets API
TCP provides limited support for out-of-band data, in the form of (a single byte of)
urgent data. In Linux this means if the other end sends newer out-of-band data the

Linux man-pages 6.13 2024-05-02 3692

tcp(7) Miscellaneous Information Manual tcp(7)

older urgent data is inserted as normal data into the stream (even when SO_OOBIN-
LINE is not set). This differs from BSD-based stacks.

Linux uses the BSD compatible interpretation of the urgent pointer field by default.
This violates RFC 1122, but is required for interoperability with other stacks. It can
be changed via /proc/sys/net/ipv4/tcp_stdurg.

It is possible to peek at out-of-band data using the recv(2) MSG_PEEK flag.

Since Linux 2.4, Linux supports the use of MSG_TRUNC in the flags argument of
recv(2) (and recvmsg(2)). This flag causes the received bytes of data to be discarded,
rather than passed back in a caller-supplied buffer. Since Linux 2.4.4, MSG_TRUNC
also has this effect when used in conjunction with MSG_OOB to receive out-of-band
data.

Ioctls
The following ioctl(2) calls return information in value. The correct syntax is:

int value;
error = ioctl(tcp_socket, ioctl_type, &value);

ioctl_type is one of the following:

SIOCINQ
Returns the amount of queued unread data in the receive buffer. The socket
must not be in LISTEN state, otherwise an error (EINVAL) is returned.
SIOCINQ is defined in <linux/sockios.h>. Alternatively, you can use the syn-
onymous FIONREAD, defined in <sys/ioctl.h>.

SIOCATMARK
Returns true (i.e., value is nonzero) if the inbound data stream is at the urgent
mark.

If the SO_OOBINLINE socket option is set, and SIOCATMARK returns
true, then the next read from the socket will return the urgent data. If the
SO_OOBINLINE socket option is not set, and SIOCATMARK returns true,
then the next read from the socket will return the bytes following the urgent
data (to actually read the urgent data requires the recv(MSG_OOB) flag).

Note that a read never reads across the urgent mark. If an application is in-
formed of the presence of urgent data via select(2) (using the exceptfds argu-
ment) or through delivery of a SIGURG signal, then it can advance up to the
mark using a loop which repeatedly tests SIOCATMARK and performs a
read (requesting any number of bytes) as long as SIOCATMARK returns
false.

SIOCOUTQ
Returns the amount of unsent data in the socket send queue. The socket must
not be in LISTEN state, otherwise an error (EINVAL) is returned. SIO-
COUTQ is defined in <linux/sockios.h>. Alternatively, you can use the syn-
onymous TIOCOUTQ, defined in <sys/ioctl.h>.

Error handling
When a network error occurs, TCP tries to resend the packet. If it doesn’t succeed af-
ter some time, either ETIMEDOUT or the last received error on this connection is re-
ported.

Linux man-pages 6.13 2024-05-02 3693

tcp(7) Miscellaneous Information Manual tcp(7)

Some applications require a quicker error notification. This can be enabled with the
IPPROTO_IP level IP_RECVERR socket option. When this option is enabled, all
incoming errors are immediately passed to the user program. Use this option with
care — it makes TCP less tolerant to routing changes and other normal network con-
ditions.

ERRORS
EAFNOTSUPPORT

Passed socket address type in sin_family was not AF_INET.

EPIPE
The other end closed the socket unexpectedly or a read is executed on a shut
down socket.

ETIMEDOUT
The other end didn’t acknowledge retransmitted data after some time.

Any errors defined for ip(7) or the generic socket layer may also be returned for TCP.

VERSIONS
Support for Explicit Congestion Notification, zero-copy sendfile(2), reordering sup-
port and some SACK extensions (DSACK) were introduced in Linux 2.4. Support for
forward acknowledgement (FACK), TIME_WAIT recycling, and per-connection
keepalive socket options were introduced in Linux 2.3.

BUGS
Not all errors are documented.

IPv6 is not described.

SEE ALSO
accept(2), bind(2), connect(2), getsockopt(2), listen(2), recvmsg(2), sendfile(2),
sendmsg(2), socket(2), ip(7), socket(7)

The kernel source file Documentation/networking/ip-sysctl.txt.

RFC 793 for the TCP specification.
RFC 1122 for the TCP requirements and a description of the Nagle algorithm.
RFC 1323 for TCP timestamp and window scaling options.
RFC 1337 for a description of TIME_WAIT assassination hazards.
RFC 3168 for a description of Explicit Congestion Notification.
RFC 2581 for TCP congestion control algorithms.
RFC 2018 and RFC 2883 for SACK and extensions to SACK.

Linux man-pages 6.13 2024-05-02 3694

termio(7) Miscellaneous Information Manual termio(7)

NAME
termio - System V terminal driver interface

DESCRIPTION
termio is the name of the old System V terminal driver interface. This interface de-
fined a termio structure used to store terminal settings, and a range of ioctl(2) opera-
tions to get and set terminal attributes.

The termio interface is now obsolete: POSIX.1-1990 standardized a modified version
of this interface, under the name termios. The POSIX.1 data structure differs slightly
from the System V version, and POSIX.1 defined a suite of functions to replace the
various ioctl(2) operations that existed in System V. (This was done because ioctl(2)
was unstandardized, and its variadic third argument does not allow argument type
checking.)

If you’re looking for a page called "termio", then you can probably find most of the
information that you seek in either termios(3) or ioctl_tty(2).

SEE ALSO
reset(1), setterm(1), stty(1), ioctl_tty(2), termios(3), tty(4)

Linux man-pages 6.13 2024-05-02 3695

thread-keyring(7) Miscellaneous Information Manual thread-keyring(7)

NAME
thread-keyring - per-thread keyring

DESCRIPTION
The thread keyring is a keyring used to anchor keys on behalf of a process. It is cre-
ated only when a thread requests it. The thread keyring has the name (description)
_tid .

A special serial number value, KEY_SPEC_THREAD_KEYRING, is defined that
can be used in lieu of the actual serial number of the calling thread’s thread keyring.

From the keyctl(1) utility, ’@t’ can be used instead of a numeric key ID in much the
same way, but as keyctl(1) is a program run after forking, this is of no utility.

Thread keyrings are not inherited across clone(2) and fork(2) and are cleared by ex-
ecve(2). A thread keyring is destroyed when the thread that refers to it terminates.

Initially, a thread does not have a thread keyring. If a thread doesn’t have a thread
keyring when it is accessed, then it will be created if it is to be modified; otherwise the
operation fails with the error ENOKEY.

SEE ALSO
keyctl(1), keyctl(3), keyrings(7), persistent-keyring(7), process-keyring(7), session-
keyring(7), user-keyring(7), user-session-keyring(7)

Linux man-pages 6.13 2024-05-02 3696

time(7) Miscellaneous Information Manual time(7)

NAME
time - overview of time and timers

DESCRIPTION
Real time and process time

Real time is defined as time measured from some fixed point, either from a standard
point in the past (see the description of the Epoch and calendar time below), or from
some point (e.g., the start) in the life of a process (elapsed time).

Process time is defined as the amount of CPU time used by a process. This is some-
times divided into user and system components. User CPU time is the time spent exe-
cuting code in user mode. System CPU time is the time spent by the kernel executing
in system mode on behalf of the process (e.g., executing system calls). The time(1)
command can be used to determine the amount of CPU time consumed during the ex-
ecution of a program. A program can determine the amount of CPU time it has con-
sumed using times(2), getrusage(2), or clock(3).

The hardware clock
Most computers have a (battery-powered) hardware clock which the kernel reads at
boot time in order to initialize the software clock. For further details, see rtc(4) and
hwclock(8)

The software clock, HZ, and jiffies
The accuracy of various system calls that set timeouts, (e.g., select(2),
sigtimedwait(2)) and measure CPU time (e.g., getrusage(2)) is limited by the resolu-
tion of the software clock, a clock maintained by the kernel which measures time in
jiffies. The size of a jiffy is determined by the value of the kernel constant HZ .

The value of HZ varies across kernel versions and hardware platforms. On i386 the
situation is as follows: on kernels up to and including Linux 2.4.x, HZ was 100, giv-
ing a jiffy value of 0.01 seconds; starting with Linux 2.6.0, HZ was raised to 1000,
giving a jiffy of 0.001 seconds. Since Linux 2.6.13, the HZ value is a kernel configu-
ration parameter and can be 100, 250 (the default) or 1000, yielding a jiffies value of,
respectively, 0.01, 0.004, or 0.001 seconds. Since Linux 2.6.20, a further frequency is
available: 300, a number that divides evenly for the common video frame rates (PAL,
25 Hz; NTSC, 30 Hz).

The times(2) system call is a special case. It reports times with a granularity defined
by the kernel constant USER_HZ . User-space applications can determine the value of
this constant using sysconf(_SC_CLK_TCK).

System and process clocks; time namespaces
The kernel supports a range of clocks that measure various kinds of elapsed and vir-
tual (i.e., consumed CPU) time. These clocks are described in clock_gettime(2). A
few of the clocks are settable using clock_settime(2). The values of certain clocks are
virtualized by time namespaces; see time_namespaces(7).

High-resolution timers
Before Linux 2.6.21, the accuracy of timer and sleep system calls (see below) was
also limited by the size of the jiffy.

Since Linux 2.6.21, Linux supports high-resolution timers (HRTs), optionally config-
urable via CONFIG_HIGH_RES_TIMERS. On a system that supports HRTs, the
accuracy of sleep and timer system calls is no longer constrained by the jiffy, but

Linux man-pages 6.13 2024-05-02 3697

time(7) Miscellaneous Information Manual time(7)

instead can be as accurate as the hardware allows (microsecond accuracy is typical of
modern hardware). You can determine whether high-resolution timers are supported
by checking the resolution returned by a call to clock_getres(2) or looking at the "res-
olution" entries in /proc/timer_list.

HRTs are not supported on all hardware architectures. (Support is provided on x86,
ARM, and PowerPC, among others.)

The Epoch
UNIX systems represent time in seconds since the Epoch, 1970-01-01 00:00:00
+0000 (UTC).

A program can determine the calendar time via the clock_gettime(2) CLOCK_RE-
ALTIME clock, which returns time (in seconds and nanoseconds) that have elapsed
since the Epoch; time(2) provides similar information, but only with accuracy to the
nearest second. The system time can be changed using clock_settime(2).

Broken-down time
Certain library functions use a structure of type tm to represent broken-down time,
which stores time value separated out into distinct components (year, month, day,
hour, minute, second, etc.). This structure is described in tm(3type), which also de-
scribes functions that convert between calendar time and broken-down time. Func-
tions for converting between broken-down time and printable string representations of
the time are described in ctime(3), strftime(3), and strptime(3).

Sleeping and setting timers
Various system calls and functions allow a program to sleep (suspend execution) for a
specified period of time; see nanosleep(2), clock_nanosleep(2), and sleep(3).

Various system calls allow a process to set a timer that expires at some point in the fu-
ture, and optionally at repeated intervals; see alarm(2), getitimer(2),
timerfd_create(2), and timer_create(2).

Timer slack
Since Linux 2.6.28, it is possible to control the "timer slack" value for a thread. The
timer slack is the length of time by which the kernel may delay the wake-up of certain
system calls that block with a timeout. Permitting this delay allows the kernel to coa-
lesce wake-up events, thus possibly reducing the number of system wake-ups and sav-
ing power. For more details, see the description of PR_SET_TIMERSLACK in
prctl(2).

SEE ALSO
date(1), time(1), timeout(1), adjtimex(2), alarm(2), clock_gettime(2),
clock_nanosleep(2), getitimer(2), getrlimit(2), getrusage(2), gettimeofday(2),
nanosleep(2), stat(2), time(2), timer_create(2), timerfd_create(2), times(2), utime(2),
adjtime(3), clock(3), clock_getcpuclockid(3), ctime(3), ntp_adjtime(3), ntp_gettime(3),
pthread_getcpuclockid(3), sleep(3), strftime(3), strptime(3), timeradd(3), usleep(3),
rtc(4), time_namespaces(7), hwclock(8)

Linux man-pages 6.13 2024-05-02 3698

time_namespaces(7) Miscellaneous Information Manual time_namespaces(7)

NAME
time_namespaces - overview of Linux time namespaces

DESCRIPTION
Time namespaces virtualize the values of two system clocks:

• CLOCK_MONOTONIC (and likewise CLOCK_MONOTONIC_COARSE
and CLOCK_MONOTONIC_RAW), a nonsettable clock that represents monot-
onic time since—as described by POSIX—"some unspecified point in the
past".

• CLOCK_BOOTTIME (and likewise CLOCK_BOOTTIME_ALARM), a non-
settable clock that is identical to CLOCK_MONOTONIC, except that it also in-
cludes any time that the system is suspended.

Thus, the processes in a time namespace share per-namespace values for these clocks.
This affects various APIs that measure against these clocks, including: clock_get-
time(2), clock_nanosleep(2), nanosleep(2), timer_settime(2), timerfd_settime(2), and
/proc/uptime.

Currently, the only way to create a time namespace is by calling unshare(2) with the
CLONE_NEWTIME flag. This call creates a new time namespace but does not
place the calling process in the new namespace. Instead, the calling process’s subse-
quently created children are placed in the new namespace. This allows clock offsets
(see below) for the new namespace to be set before the first process is placed in the
namespace. The /proc/ pid /ns/time_for_children symbolic link shows the time name-
space in which the children of a process will be created. (A process can use a file de-
scriptor opened on this symbolic link in a call to setns(2) in order to move into the
namespace.)

/proc/pid/timens_offsets
Associated with each time namespace are offsets, expressed with respect to the initial
time namespace, that define the values of the monotonic and boot-time clocks in that
namespace. These offsets are exposed via the file /proc/ pid /timens_offsets. Within
this file, the offsets are expressed as lines consisting of three space-delimited fields:

<clock-id> <offset-secs> <offset-nanosecs>

The clock-id is a string that identifies the clock whose offsets are being shown. This
field is either monotonic, for CLOCK_MONOTONIC, or boottime, for
CLOCK_BOOTTIME. The remaining fields express the offset (seconds plus
nanoseconds) for the clock in this time namespace. These offsets are expressed rela-
tive to the clock values in the initial time namespace. The offset-secs value can be
negative, subject to restrictions noted below; offset-nanosecs is an unsigned value.

In the initial time namespace, the contents of the timens_offsets file are as follows:

$ cat /proc/self/timens_offsets
monotonic 0 0
boottime 0 0

In a new time namespace that has had no member processes, the clock offsets can be
modified by writing newline-terminated records of the same form to the timens_off-
sets file. The file can be written to multiple times, but after the first process has been
created in or has entered the namespace, write(2)s on this file fail with the error

Linux man-pages 6.13 2024-05-02 3699

time_namespaces(7) Miscellaneous Information Manual time_namespaces(7)

EACCES. In order to write to the timens_offsets file, a process must have the
CAP_SYS_TIME capability in the user namespace that owns the time namespace.

Writes to the timens_offsets file can fail with the following errors:

EINVAL
An offset-nanosecs value is greater than 999,999,999.

EINVAL
A clock-id value is not valid.

EPERM
The caller does not have the CAP_SYS_TIME capability.

ERANGE
An offset-secs value is out of range. In particular;

• offset-secs can’t be set to a value which would make the current time on
the corresponding clock inside the namespace a negative value; and

• offset-secs can’t be set to a value such that the time on the corresponding
clock inside the namespace would exceed half of the value of the kernel
constant KTIME_SEC_MAX (this limits the clock value to a maximum
of approximately 146 years).

In a new time namespace created by unshare(2), the contents of the timens_offsets file
are inherited from the time namespace of the creating process.

NOTES
Use of time namespaces requires a kernel that is configured with the CON-
FIG_TIME_NS option.

Note that time namespaces do not virtualize the CLOCK_REALTIME clock. Virtu-
alization of this clock was avoided for reasons of complexity and overhead within the
kernel.

For compatibility with the initial implementation, when writing a clock-id to the
/proc/ pid /timens_offsets file, the numerical values of the IDs can be written instead of
the symbolic names show above; i.e., 1 instead of monotonic, and 7 instead of boot-
time. For readability, the use of the symbolic names over the numbers is preferred.

The motivation for adding time namespaces was to allow the monotonic and boot-
time clocks to maintain consistent values during container migration and check-
point/restore.

EXAMPLES
The following shell session demonstrates the operation of time namespaces. We be-
gin by displaying the inode number of the time namespace of a shell in the initial time
namespace:

$ readlink /proc/$$/ns/time
time:[4026531834]

Continuing in the initial time namespace, we display the system uptime using up-
time(1) and use the clock_times example program shown in clock_getres(2) to display
the values of various clocks:

$ uptime --pretty

Linux man-pages 6.13 2024-05-02 3700

time_namespaces(7) Miscellaneous Information Manual time_namespaces(7)

up 21 hours, 17 minutes
$./clock_times
CLOCK_REALTIME : 1585989401.971 (18356 days + 8h 36m 41s)
CLOCK_TAI : 1585989438.972 (18356 days + 8h 37m 18s)
CLOCK_MONOTONIC: 56338.247 (15h 38m 58s)
CLOCK_BOOTTIME : 76633.544 (21h 17m 13s)

We then use unshare(1) to create a time namespace and execute a bash(1) shell. From
the new shell, we use the built-in echo command to write records to the timens_offsets
file adjusting the offset for the CLOCK_MONOTONIC clock forward 2 days and
the offset for the CLOCK_BOOTTIME clock forward 7 days:

$ PS1="ns2# " sudo unshare -T -- bash --norc
ns2# echo "monotonic $((2*24*60*60)) 0" > /proc/$$/timens_offsets
ns2# echo "boottime $((7*24*60*60)) 0" > /proc/$$/timens_offsets

Above, we started the bash(1) shell with the --norc option so that no start-up scripts
were executed. This ensures that no child processes are created from the shell before
we have a chance to update the timens_offsets file.

We then use cat(1) to display the contents of the timens_offsets file. The execution of
cat(1) creates the first process in the new time namespace, after which further at-
tempts to update the timens_offsets file produce an error.

ns2# cat /proc/$$/timens_offsets
monotonic 172800 0
boottime 604800 0
ns2# echo "boottime $((9*24*60*60)) 0" > /proc/$$/timens_offsets
bash: echo: write error: Permission denied

Continuing in the new namespace, we execute uptime(1) and the clock_times example
program:

ns2# uptime --pretty
up 1 week, 21 hours, 18 minutes
ns2# ./clock_times
CLOCK_REALTIME : 1585989457.056 (18356 days + 8h 37m 37s)
CLOCK_TAI : 1585989494.057 (18356 days + 8h 38m 14s)
CLOCK_MONOTONIC: 229193.332 (2 days + 15h 39m 53s)
CLOCK_BOOTTIME : 681488.629 (7 days + 21h 18m 8s)

From the above output, we can see that the monotonic and boot-time clocks have dif-
ferent values in the new time namespace.

Examining the /proc/ pid /ns/time and /proc/ pid /ns/time_for_children symbolic links,
we see that the shell is a member of the initial time namespace, but its children are
created in the new namespace.

ns2# readlink /proc/$$/ns/time
time:[4026531834]
ns2# readlink /proc/$$/ns/time_for_children
time:[4026532900]
ns2# readlink /proc/self/ns/time # Creates a child process
time:[4026532900]

Linux man-pages 6.13 2024-05-02 3701

time_namespaces(7) Miscellaneous Information Manual time_namespaces(7)

Returning to the shell in the initial time namespace, we see that the monotonic and
boot-time clocks are unaffected by the timens_offsets changes that were made in the
other time namespace:

$ uptime --pretty
up 21 hours, 19 minutes
$./clock_times
CLOCK_REALTIME : 1585989401.971 (18356 days + 8h 38m 51s)
CLOCK_TAI : 1585989438.972 (18356 days + 8h 39m 28s)
CLOCK_MONOTONIC: 56338.247 (15h 41m 8s)
CLOCK_BOOTTIME : 76633.544 (21h 19m 23s)

SEE ALSO
nsenter(1), unshare(1), clock_settime(2), setns(2), unshare(2), namespaces(7), time(7)

Linux man-pages 6.13 2024-05-02 3702

udp(7) Miscellaneous Information Manual udp(7)

NAME
udp - User Datagram Protocol for IPv4

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/udp.h>

udp_socket = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION
This is an implementation of the User Datagram Protocol described in RFC 768. It
implements a connectionless, unreliable datagram packet service. Packets may be re-
ordered or duplicated before they arrive. UDP generates and checks checksums to
catch transmission errors.

When a UDP socket is created, its local and remote addresses are unspecified. Data-
grams can be sent immediately using sendto(2) or sendmsg(2) with a valid destination
address as an argument. When connect(2) is called on the socket, the default destina-
tion address is set and datagrams can now be sent using send(2) or write(2) without
specifying a destination address. It is still possible to send to other destinations by
passing an address to sendto(2) or sendmsg(2). In order to receive packets, the socket
can be bound to a local address first by using bind(2). Otherwise, the socket layer will
automatically assign a free local port out of the range defined by
/proc/sys/net/ipv4/ip_local_port_range and bind the socket to INADDR_ANY.

All receive operations return only one packet. When the packet is smaller than the
passed buffer, only that much data is returned; when it is bigger, the packet is trun-
cated and the MSG_TRUNC flag is set. MSG_WAITALL is not supported.

IP options may be sent or received using the socket options described in ip(7). They
are processed by the kernel only when the appropriate /proc parameter is enabled (but
still passed to the user even when it is turned off). See ip(7).

When the MSG_DONTROUTE flag is set on sending, the destination address must
refer to a local interface address and the packet is sent only to that interface.

By default, Linux UDP does path MTU (Maximum Transmission Unit) discovery.
This means the kernel will keep track of the MTU to a specific target IP address and
return EMSGSIZE when a UDP packet write exceeds it. When this happens, the ap-
plication should decrease the packet size. Path MTU discovery can be also turned off
using the IP_MTU_DISCOVER socket option or the
/proc/sys/net/ipv4/ip_no_pmtu_disc file; see ip(7) for details. When turned off, UDP
will fragment outgoing UDP packets that exceed the interface MTU. However, dis-
abling it is not recommended for performance and reliability reasons.

Address format
UDP uses the IPv4 sockaddr_in address format described in ip(7).

Error handling
All fatal errors will be passed to the user as an error return even when the socket is not
connected. This includes asynchronous errors received from the network. You may
get an error for an earlier packet that was sent on the same socket. This behavior dif-
fers from many other BSD socket implementations which don’t pass any errors unless
the socket is connected. Linux’s behavior is mandated by RFC 1122.

Linux man-pages 6.13 2024-05-02 3703

udp(7) Miscellaneous Information Manual udp(7)

For compatibility with legacy code, in Linux 2.0 and 2.2 it was possible to set the
SO_BSDCOMPAT SOL_SOCKET option to receive remote errors only when the
socket has been connected (except for EPROTO and EMSGSIZE). Locally gener-
ated errors are always passed. Support for this socket option was removed in later
kernels; see socket(7) for further information.

When the IP_RECVERR option is enabled, all errors are stored in the socket error
queue, and can be received by recvmsg(2) with the MSG_ERRQUEUE flag set.

/proc interfaces
System-wide UDP parameter settings can be accessed by files in the directory
/proc/sys/net/ipv4/ .

udp_mem (since Linux 2.6.25)
This is a vector of three integers governing the number of pages allowed for
queueing by all UDP sockets.

min Below this number of pages, UDP is not bothered about its memory
appetite. When the amount of memory allocated by UDP exceeds this
number, UDP starts to moderate memory usage.

pressure
This value was introduced to follow the format of tcp_mem (see
tcp(7)).

max Number of pages allowed for queueing by all UDP sockets.

Defaults values for these three items are calculated at boot time from the
amount of available memory.

udp_rmem_min (integer; default value: PAGE_SIZE; since Linux 2.6.25)
Minimal size, in bytes, of receive buffers used by UDP sockets in moderation.
Each UDP socket is able to use the size for receiving data, even if total pages
of UDP sockets exceed udp_mem pressure.

udp_wmem_min (integer; default value: PAGE_SIZE; since Linux 2.6.25)
Minimal size, in bytes, of send buffer used by UDP sockets in moderation.
Each UDP socket is able to use the size for sending data, even if total pages of
UDP sockets exceed udp_mem pressure.

Socket options
To set or get a UDP socket option, call getsockopt(2) to read or setsockopt(2) to write
the option with the option level argument set to IPPROTO_UDP. Unless otherwise
noted, optval is a pointer to an int.

Following is a list of UDP-specific socket options. For details of some other socket
options that are also applicable for UDP sockets, see socket(7).

UDP_CORK (since Linux 2.5.44)
If this option is enabled, then all data output on this socket is accumulated into
a single datagram that is transmitted when the option is disabled. This option
should not be used in code intended to be portable.

UDP_SEGMENT (since Linux 4.18)
Enables UDP segmentation offload. Segmentation offload reduces send(2)
cost by transferring multiple datagrams worth of data as a single large packet

Linux man-pages 6.13 2024-05-02 3704

udp(7) Miscellaneous Information Manual udp(7)

through the kernel transmit path, even when that exceeds MTU. As late as
possible, the large packet is split by segment size into a series of datagrams.
This segmentation offload step is deferred to hardware if supported, else per-
formed in software. This option takes a value in the range [0, USHRT_MAX]
that sets the segment size: the size of datagram payload, excluding the UDP
header. The segment size must be chosen such that at most 64 datagrams are
sent in a single call and that the datagrams after segmentation meet the same
MTU rules that apply to datagrams sent without this option. Segmentation of-
fload depends on checksum offload, as datagram checksums are computed af-
ter segmentation. The option may also be set for individual sendmsg(2) calls
by passing it as a cmsg(3). A value of zero disables the feature. This option
should not be used in code intended to be portable.

UDP_GRO (since Linux 5.0)
Enables UDP receive offload. If enabled, the socket may receive multiple
datagrams worth of data as a single large buffer, together with a cmsg(3) that
holds the segment size. This option is the inverse of segmentation offload. It
reduces receive cost by handling multiple datagrams worth of data as a single
large packet in the kernel receive path, even when that exceeds MTU. This
option should not be used in code intended to be portable.

Ioctls
These ioctls can be accessed using ioctl(2). The correct syntax is:

int value;
error = ioctl(udp_socket, ioctl_type, &value);

FIONREAD (SIOCINQ)
Gets a pointer to an integer as argument. Returns the size of the next pending
datagram in the integer in bytes, or 0 when no datagram is pending. Warning:
Using FIONREAD, it is impossible to distinguish the case where no datagram
is pending from the case where the next pending datagram contains zero bytes
of data. It is safer to use select(2), poll(2), or epoll(7) to distinguish these
cases.

TIOCOUTQ (SIOCOUTQ)
Returns the number of data bytes in the local send queue. Supported only with
Linux 2.4 and above.

In addition, all ioctls documented in ip(7) and socket(7) are supported.

ERRORS
All errors documented for socket(7) or ip(7) may be returned by a send or receive on a
UDP socket.

ECONNREFUSED
No receiver was associated with the destination address. This might be caused
by a previous packet sent over the socket.

VERSIONS
IP_RECVERR is a new feature in Linux 2.2.

SEE ALSO
ip(7), raw(7), socket(7), udplite(7)

Linux man-pages 6.13 2024-05-02 3705

udp(7) Miscellaneous Information Manual udp(7)

The kernel source file Documentation/networking/ip-sysctl.txt.

RFC 768 for the User Datagram Protocol.
RFC 1122 for the host requirements.
RFC 1191 for a description of path MTU discovery.

Linux man-pages 6.13 2024-05-02 3706

udplite(7) Miscellaneous Information Manual udplite(7)

NAME
udplite - Lightweight User Datagram Protocol

SYNOPSIS
#include <sys/socket.h>

sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDPLITE);

DESCRIPTION
This is an implementation of the Lightweight User Datagram Protocol (UDP-Lite), as
described in RFC 3828.

UDP-Lite is an extension of UDP (RFC 768) to support variable-length checksums.
This has advantages for some types of multimedia transport that may be able to make
use of slightly damaged datagrams, rather than having them discarded by lower-layer
protocols.

The variable-length checksum coverage is set via a setsockopt(2) option. If this op-
tion is not set, the only difference from UDP is in using a different IP protocol identi-
fier (IANA number 136).

The UDP-Lite implementation is a full extension of udp(7)—that is, it shares the same
API and API behavior, and in addition offers two socket options to control the check-
sum coverage.

Address format
UDP-Litev4 uses the sockaddr_in address format described in ip(7). UDP-Litev6
uses the sockaddr_in6 address format described in ipv6(7).

Socket options
To set or get a UDP-Lite socket option, call getsockopt(2) to read or setsockopt(2) to
write the option with the option level argument set to IPPROTO_UDPLITE. In ad-
dition, all IPPROTO_UDP socket options are valid on a UDP-Lite socket. See
udp(7) for more information.

The following two options are specific to UDP-Lite.

UDPLITE_SEND_CSCOV
This option sets the sender checksum coverage and takes an int as argument,
with a checksum coverage value in the range 0..2^16-1.

A value of 0 means that the entire datagram is always covered. Values from
1-7 are illegal (RFC 3828, 3.1) and are rounded up to the minimum coverage
of 8.

With regard to IPv6 jumbograms (RFC 2675), the UDP-Litev6 checksum cov-
erage is limited to the first 2^16-1 octets, as per RFC 3828, 3.5. Higher values
are therefore silently truncated to 2^16-1. If in doubt, the current coverage
value can always be queried using getsockopt(2).

UDPLITE_RECV_CSCOV
This is the receiver-side analogue and uses the same argument format and
value range as UDPLITE_SEND_CSCOV. This option is not required to en-
able traffic with partial checksum coverage. Its function is that of a traffic fil-
ter: when enabled, it instructs the kernel to drop all packets which have a cov-
erage less than the specified coverage value.

Linux man-pages 6.13 2024-05-02 3707

udplite(7) Miscellaneous Information Manual udplite(7)

When the value of UDPLITE_RECV_CSCOV exceeds the actual packet
coverage, incoming packets are silently dropped, but may generate a warning
message in the system log.

ERRORS
All errors documented for udp(7) may be returned. UDP-Lite does not add further er-
rors.

FILES
/proc/net/snmp

Basic UDP-Litev4 statistics counters.

/proc/net/snmp6
Basic UDP-Litev6 statistics counters.

VERSIONS
UDP-Litev4/v6 first appeared in Linux 2.6.20.

BUGS
Where glibc support is missing, the following definitions are needed:

#define IPPROTO_UDPLITE 136
#define UDPLITE_SEND_CSCOV 10
#define UDPLITE_RECV_CSCOV 11

SEE ALSO
ip(7), ipv6(7), socket(7), udp(7)

RFC 3828 for the Lightweight User Datagram Protocol (UDP-Lite).

Documentation/networking/udplite.txt in the Linux kernel source tree

Linux man-pages 6.13 2024-05-02 3708

unicode(7) Miscellaneous Information Manual unicode(7)

NAME
unicode - universal character set

DESCRIPTION
The international standard ISO/IEC 10646 defines the Universal Character Set (UCS).
UCS contains all characters of all other character set standards. It also guarantees
"round-trip compatibility"; in other words, conversion tables can be built such that no
information is lost when a string is converted from any other encoding to UCS and
back.

UCS contains the characters required to represent practically all known languages.
This includes not only the Latin, Greek, Cyrillic, Hebrew, Arabic, Armenian, and
Georgian scripts, but also Chinese, Japanese and Korean Han ideographs as well as
scripts such as Hiragana, Katakana, Hangul, Devanagari, Bengali, Gurmukhi, Gu-
jarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Thai, Lao, Khmer, Bopomofo, Ti-
betan, Runic, Ethiopic, Canadian Syllabics, Cherokee, Mongolian, Ogham, Myanmar,
Sinhala, Thaana, Yi, and others. For scripts not yet covered, research on how to best
encode them for computer usage is still going on and they will be added eventually.
This might eventually include not only Hieroglyphs and various historic Indo-Euro-
pean languages, but even some selected artistic scripts such as Tengwar, Cirth, and
Klingon. UCS also covers a large number of graphical, typographical, mathematical,
and scientific symbols, including those provided by TeX, Postscript, APL, MS-DOS,
MS-Windows, Macintosh, OCR fonts, as well as many word processing and publish-
ing systems, and more are being added.

The UCS standard (ISO/IEC 10646) describes a 31-bit character set architecture con-
sisting of 128 24-bit groups, each divided into 256 16-bit planes made up of 256 8-bit
rows with 256 column positions, one for each character. Part 1 of the standard
(ISO/IEC 10646-1) defines the first 65534 code positions (0x0000 to 0xfffd), which
form the Basic Multilingual Plane (BMP), that is plane 0 in group 0. Part 2 of the
standard (ISO/IEC 10646-2) adds characters to group 0 outside the BMP in several
supplementary planes in the range 0x10000 to 0x10ffff. There are no plans to add
characters beyond 0x10ffff to the standard, therefore of the entire code space, only a
small fraction of group 0 will ever be actually used in the foreseeable future. The
BMP contains all characters found in the commonly used other character sets. The
supplemental planes added by ISO/IEC 10646-2 cover only more exotic characters for
special scientific, dictionary printing, publishing industry, higher-level protocol and
enthusiast needs.

The representation of each UCS character as a 2-byte word is referred to as the UCS-2
form (only for BMP characters), whereas UCS-4 is the representation of each charac-
ter by a 4-byte word. In addition, there exist two encoding forms UTF-8 for backward
compatibility with ASCII processing software and UTF-16 for the backward-compati-
ble handling of non-BMP characters up to 0x10ffff by UCS-2 software.

The UCS characters 0x0000 to 0x007f are identical to those of the classic US-ASCII
character set and the characters in the range 0x0000 to 0x00ff are identical to those in
ISO/IEC 8859-1 (Latin-1).

Combining characters
Some code points in UCS have been assigned to combining characters. These are
similar to the nonspacing accent keys on a typewriter. A combining character just

Linux man-pages 6.13 2025-01-22 3709

unicode(7) Miscellaneous Information Manual unicode(7)

adds an accent to the previous character. The most important accented characters
have codes of their own in UCS; however, the combining character mechanism allows
us to add accents and other diacritical marks to any character. The combining charac-
ters always follow the character which they modify. For example, the German charac-
ter Umlaut-A ("Latin capital letter A with diaeresis") can either be represented by the
precomposed UCS code 0x00c4, or alternatively as the combination of a normal
"Latin capital letter A" followed by a "combining diaeresis": 0x0041 0x0308.

Combining characters are essential for instance for encoding the Thai script or for
mathematical typesetting and users of the International Phonetic Alphabet.

Implementation levels
As not all systems are expected to support advanced mechanisms like combining char-
acters, ISO/IEC 10646-1 specifies the following three implementation levels of UCS:

Level 1 Combining characters and Hangul Jamo (a variant encoding of the Ko-
rean script, where a Hangul syllable glyph is coded as a triplet or pair of
vowel/consonant codes) are not supported.

Level 2 In addition to level 1, combining characters are now allowed for some
languages where they are essential (e.g., Thai, Lao, Hebrew, Arabic, De-
vanagari, Malayalam).

Level 3 All UCS characters are supported.

The Unicode 3.0 Standard published by the Unicode Consortium contains exactly the
UCS Basic Multilingual Plane at implementation level 3, as described in ISO/IEC
10646-1:2000. Unicode 3.1 added the supplemental planes of ISO/IEC 10646-2. The
Unicode standard and technical reports published by the Unicode Consortium provide
much additional information on the semantics and recommended usages of various
characters. They provide guidelines and algorithms for editing, sorting, comparing,
normalizing, converting, and displaying Unicode strings.

Unicode under Linux
Under GNU/Linux, the C type wchar_t is a signed 32-bit integer type. Its values are
always interpreted by the C library as UCS code values (in all locales), a convention
that is signaled by the GNU C library to applications by defining the constant
__STDC_ISO_10646__ as specified in the ISO C99 standard.

UCS/Unicode can be used just like ASCII in input/output streams, terminal communi-
cation, plaintext files, filenames, and environment variables in the ASCII compatible
UTF-8 multibyte encoding. To signal the use of UTF-8 as the character encoding to
all applications, a suitable locale has to be selected via environment variables (e.g.,
"LANG=en_GB.UTF-8").

The nl_langinfo(CODESET) function returns the name of the selected encoding. Li-
brary functions such as wctomb(3) and mbsrtowcs(3) can be used to transform the in-
ternal wchar_t characters and strings into the system character encoding and back and
wcwidth(3) tells how many positions (0–2) the cursor is advanced by the output of a
character.

Private Use Areas (PUA)
In the Basic Multilingual Plane, the range 0xe000 to 0xf8ff will never be assigned to
any characters by the standard and is reserved for private usage. For the Linux com-
munity, this private area has been subdivided further into the range 0xe000 to 0xefff

Linux man-pages 6.13 2025-01-22 3710

unicode(7) Miscellaneous Information Manual unicode(7)

which can be used individually by any end-user and the Linux zone in the range
0xf000 to 0xf8ff where extensions are coordinated among all Linux users. The reg-
istry of the characters assigned to the Linux zone is maintained by LANANA and the
registry itself is Documentation/admin-guide/unicode.rst in the Linux kernel sources
(or Documentation/unicode.txt before Linux 4.10).

Two other planes are reserved for private usage, plane 15 (Supplementary Private Use
Area-A, range 0xf0000 to 0xffffd) and plane 16 (Supplementary Private Use Area-B,
range 0x100000 to 0x10fffd).

Literature
• Information technology — Universal Multiple-Octet Coded Character Set (UCS)

— Part 1: Architecture and Basic Multilingual Plane. International Standard
ISO/IEC 10646-1, International Organization for Standardization, Geneva, 2000.

This is the official specification of UCS. Available from 〈http://www.iso.ch/〉.

• The Unicode Standard, Version 3.0. The Unicode Consortium, Addison-Wesley,
Reading, MA, 2000, ISBN 0-201-61633-5.

• S. Harbison, G. Steele. C: A Reference Manual. Fourth edition, Prentice Hall, En-
glewood Cliffs, 1995, ISBN 0-13-326224-3.

A good reference book about the C programming language. The fourth edition
covers the 1994 Amendment 1 to the ISO C90 standard, which adds a large num-
ber of new C library functions for handling wide and multibyte character encod-
ings, but it does not yet cover ISO C99, which improved wide and multibyte char-
acter support even further.

• Unicode Technical Reports.
〈http://www.unicode.org/reports/〉

• Markus Kuhn: UTF-8 and Unicode FAQ for UNIX/Linux.
〈http://www.cl.cam.ac.uk/~mgk25/unicode.html〉

• Bruno Haible: Unicode HOWTO.
〈http://www.tldp.org/HOWTO/Unicode-HOWTO.html〉

SEE ALSO
locale(1), setlocale(3), charsets(7), utf-8(7)

Linux man-pages 6.13 2025-01-22 3711

units(7) Miscellaneous Information Manual units(7)

NAME
units - decimal and binary prefixes

DESCRIPTION
Decimal prefixes

The SI system of units uses prefixes that indicate powers of ten. A kilometer is 1000
meter, and a megawatt is 1000000 watt. Below the standard prefixes.

Prefix Name Value
q quecto 10^-30 = 0.000000000000000000000000000001
r ronto 10^-27 = 0.000000000000000000000000001
y yocto 10^-24 = 0.000000000000000000000001
z zepto 10^-21 = 0.000000000000000000001
a atto 10^-18 = 0.000000000000000001
f femto 10^-15 = 0.000000000000001
p pico 10^-12 = 0.000000000001
n nano 10^-9 = 0.000000001
µ micro 10^-6 = 0.000001
m milli 10^-3 = 0.001
c centi 10^-2 = 0.01
d deci 10^-1 = 0.1
da deka 10^ 1 = 10
h hecto 10^ 2 = 100
k kilo 10^ 3 = 1000
M mega 10^ 6 = 1000000
G giga 10^ 9 = 1000000000
T tera 10^12 = 1000000000000
P peta 10^15 = 1000000000000000
E exa 10^18 = 1000000000000000000
Z zetta 10^21 = 1000000000000000000000
Y yotta 10^24 = 1000000000000000000000000
R ronna 10^27 = 1000000000000000000000000000
Q quetta 10^30 = 1000000000000000000000000000000

The symbol for micro is the Greek letter mu, often written u in an ASCII context
where this Greek letter is not available.

Binary prefixes
The binary prefixes resemble the decimal ones, but have an additional 'i' (and "Ki"
starts with a capital 'K'). The names are formed by taking the first syllable of the
names of the decimal prefix with roughly the same size, followed by "bi" for "binary".

Prefix Name Value
Ki kibi 2^10 = 1024
Mi mebi 2^20 = 1048576
Gi gibi 2^30 = 1073741824
Ti tebi 2^40 = 1099511627776
Pi pebi 2^50 = 1125899906842624
Ei exbi 2^60 = 1152921504606846976
Zi zebi 2^70 = 1180591620717411303424
Yi yobi 2^80 = 1208925819614629174706176

Linux man-pages 6.13 2024-05-02 3712

units(7) Miscellaneous Information Manual units(7)

Discussion
Before these binary prefixes were introduced, it was fairly common to use k=1000 and
K=1024, just like b=bit, B=byte. Unfortunately, the M is capital already, and cannot
be capitalized to indicate binary-ness.

At first that didn’t matter too much, since memory modules and disks came in sizes
that were powers of two, so everyone knew that in such contexts "kilobyte" and
"megabyte" meant 1024 and 1048576 bytes, respectively. What originally was a
sloppy use of the prefixes "kilo" and "mega" started to become regarded as the "real
true meaning" when computers were involved. But then disk technology changed,
and disk sizes became arbitrary numbers. After a period of uncertainty all disk manu-
facturers settled on the standard, namely k=1000, M=1000 k, G=1000 M.

The situation was messy: in the 14k4 modems, k=1000; in the 1.44 MB diskettes,
M=1024000; and so on. In 1998 the IEC approved the standard that defines the bi-
nary prefixes given above, enabling people to be precise and unambiguous.

Thus, today, MB = 1000000 B and MiB = 1048576 B.

In the free software world programs are slowly being changed to conform. When the
Linux kernel boots and says

hda: 120064896 sectors (61473 MB) w/2048KiB Cache

the MB are megabytes and the KiB are kibibytes.

SEE ALSO
The International System of Units 〈https://www.bipm.org/documents/20126/
41483022/SI-Brochure-9.pdf〉.

Linux man-pages 6.13 2024-05-02 3713

UNIX(7) Miscellaneous Information Manual UNIX(7)

NAME
unix - sockets for local interprocess communication

SYNOPSIS
#include <sys/socket.h>
#include <sys/un.h>

unix_socket = socket(AF_UNIX, type, 0);
error = socketpair(AF_UNIX, type, 0, int *sv);

DESCRIPTION
The AF_UNIX (also known as AF_LOCAL) socket family is used to communicate
between processes on the same machine efficiently. Traditionally, UNIX domain
sockets can be either unnamed, or bound to a filesystem pathname (marked as being
of type socket). Linux also supports an abstract namespace which is independent of
the filesystem.

Valid socket types in the UNIX domain are: SOCK_STREAM, for a stream-oriented
socket; SOCK_DGRAM, for a datagram-oriented socket that preserves message
boundaries (as on most UNIX implementations, UNIX domain datagram sockets are
always reliable and don’t reorder datagrams); and (since Linux 2.6.4) SOCK_SEQ-
PACKET, for a sequenced-packet socket that is connection-oriented, preserves mes-
sage boundaries, and delivers messages in the order that they were sent.

UNIX domain sockets support passing file descriptors or process credentials to other
processes using ancillary data.

Address format
A UNIX domain socket address is represented in the following structure:

struct sockaddr_un {
sa_family_t sun_family; /* AF_UNIX */
char sun_path[108]; /* Pathname */

};

The sun_family field always contains AF_UNIX. On Linux, sun_path is 108 bytes in
size; see also BUGS, below.

Various system calls (for example, bind(2), connect(2), and sendto(2)) take a sock-
addr_un argument as input. Some other system calls (for example, getsockname(2),
getpeername(2), recvfrom(2), and accept(2)) return an argument of this type.

Three types of address are distinguished in the sockaddr_un structure:

pathname
a UNIX domain socket can be bound to a null-terminated filesystem pathname
using bind(2). When the address of a pathname socket is returned (by one of
the system calls noted above), its length is

offsetof(struct sockaddr_un, sun_path) + strlen(sun_path) + 1

and sun_path contains the null-terminated pathname. (On Linux, the above
offsetof() expression equates to the same value as sizeof(sa_family_t), but
some other implementations include other fields before sun_path, so the off-
setof() expression more portably describes the size of the address structure.)

Linux man-pages 6.13 2024-06-15 3714

UNIX(7) Miscellaneous Information Manual UNIX(7)

For further details of pathname sockets, see below.

unnamed
A stream socket that has not been bound to a pathname using bind(2) has no
name. Likewise, the two sockets created by socketpair(2) are unnamed.
When the address of an unnamed socket is returned, its length is
sizeof(sa_family_t), and sun_path should not be inspected.

abstract
an abstract socket address is distinguished (from a pathname socket) by the
fact that sun_path[0] is a null byte ('\0'). The socket’s address in this name-
space is given by the additional bytes in sun_path that are covered by the spec-
ified length of the address structure. (Null bytes in the name have no special
significance.) The name has no connection with filesystem pathnames. When
the address of an abstract socket is returned, the returned addrlen is greater
than sizeof(sa_family_t) (i.e., greater than 2), and the name of the socket is
contained in the first (addrlen - sizeof(sa_family_t)) bytes of sun_path.

Pathname sockets
When binding a socket to a pathname, a few rules should be observed for maximum
portability and ease of coding:

• The pathname in sun_path should be null-terminated.

• The length of the pathname, including the terminating null byte, should not exceed
the size of sun_path.

• The addrlen argument that describes the enclosing sockaddr_un structure should
have a value of at least:

offsetof(struct sockaddr_un, sun_path)+strlen(addr.sun_path)+1

or, more simply, addrlen can be specified as sizeof(struct sockaddr_un).

There is some variation in how implementations handle UNIX domain socket ad-
dresses that do not follow the above rules. For example, some (but not all) implemen-
tations append a null terminator if none is present in the supplied sun_path.

When coding portable applications, keep in mind that some implementations have
sun_path as short as 92 bytes.

Various system calls (accept(2), recvfrom(2), getsockname(2), getpeername(2)) return
socket address structures. When applied to UNIX domain sockets, the value-result
addrlen argument supplied to the call should be initialized as above. Upon return, the
argument is set to indicate the actual size of the address structure. The caller should
check the value returned in this argument: if the output value exceeds the input value,
then there is no guarantee that a null terminator is present in sun_path. (See BUGS.)

Pathname socket ownership and permissions
In the Linux implementation, pathname sockets honor the permissions of the directory
they are in. Creation of a new socket fails if the process does not have write and
search (execute) permission on the directory in which the socket is created.

On Linux, connecting to a stream socket object requires write permission on that
socket; sending a datagram to a datagram socket likewise requires write permission on
that socket. POSIX does not make any statement about the effect of the permissions

Linux man-pages 6.13 2024-06-15 3715

UNIX(7) Miscellaneous Information Manual UNIX(7)

on a socket file, and on some systems (e.g., older BSDs), the socket permissions are
ignored. Portable programs should not rely on this feature for security.

When creating a new socket, the owner and group of the socket file are set according
to the usual rules. The socket file has all permissions enabled, other than those that
are turned off by the process umask(2).

The owner, group, and permissions of a pathname socket can be changed (using
chown(2) and chmod(2)).

Abstract sockets
Socket permissions have no meaning for abstract sockets: the process umask(2) has no
effect when binding an abstract socket, and changing the ownership and permissions
of the object (via fchown(2) and fchmod(2)) has no effect on the accessibility of the
socket.

Abstract sockets automatically disappear when all open references to the socket are
closed.

The abstract socket namespace is a nonportable Linux extension.

Socket options
For historical reasons, these socket options are specified with a SOL_SOCKET type
even though they are AF_UNIX specific. They can be set with setsockopt(2) and read
with getsockopt(2) by specifying SOL_SOCKET as the socket family.

SO_PASSCRED
Enabling this socket option causes receipt of the credentials of the sending
process in an SCM_CREDENTIALS ancillary message in each subse-
quently received message. The returned credentials are those specified by the
sender using SCM_CREDENTIALS, or a default that includes the sender’s
PID, real user ID, and real group ID, if the sender did not specify SCM_CRE-
DENTIALS ancillary data.

When this option is set and the socket is not yet connected, a unique name in
the abstract namespace will be generated automatically.

The value given as an argument to setsockopt(2) and returned as the result of
getsockopt(2) is an integer boolean flag.

SO_PASSSEC
Enables receiving of the SELinux security label of the peer socket in an ancil-
lary message of type SCM_SECURITY (see below).

The value given as an argument to setsockopt(2) and returned as the result of
getsockopt(2) is an integer boolean flag.

The SO_PASSSEC option is supported for UNIX domain datagram sockets
since Linux 2.6.18; support for UNIX domain stream sockets was added in
Linux 4.2.

SO_PEEK_OFF
See socket(7).

SO_PEERCRED
This read-only socket option returns the credentials of the peer process con-
nected to this socket. The returned credentials are those that were in effect at

Linux man-pages 6.13 2024-06-15 3716

UNIX(7) Miscellaneous Information Manual UNIX(7)

the time of the call to connect(2), listen(2), or socketpair(2).

The argument to getsockopt(2) is a pointer to a ucred structure; define the
_GNU_SOURCE feature test macro to obtain the definition of that structure
from <sys/socket.h>.

The use of this option is possible only for connected AF_UNIX stream sock-
ets and for AF_UNIX stream and datagram socket pairs created using socket-
pair(2).

SO_PEERSEC
This read-only socket option returns the security context of the peer socket
connected to this socket. By default, this will be the same as the security con-
text of the process that created the peer socket unless overridden by the policy
or by a process with the required permissions.

The argument to getsockopt(2) is a pointer to a buffer of the specified length in
bytes into which the security context string will be copied. If the buffer length
is less than the length of the security context string, then getsockopt(2) returns
-1, sets errno to ERANGE, and returns the required length via optlen. The
caller should allocate at least NAME_MAX bytes for the buffer initially, al-
though this is not guaranteed to be sufficient. Resizing the buffer to the re-
turned length and retrying may be necessary.

The security context string may include a terminating null character in the re-
turned length, but is not guaranteed to do so: a security context "foo" might be
represented as either {’f’,’o’,’o’} of length 3 or {’f’,’o’,’o’,’\0’} of length 4,
which are considered to be interchangeable. The string is printable, does not
contain non-terminating null characters, and is in an unspecified encoding (in
particular, it is not guaranteed to be ASCII or UTF-8).

The use of this option for sockets in the AF_UNIX address family is sup-
ported since Linux 2.6.2 for connected stream sockets, and since Linux 4.18
also for stream and datagram socket pairs created using socketpair(2).

Autobind feature
If a bind(2) call specifies addrlen as sizeof(sa_family_t), or the SO_PASSCRED
socket option was specified for a socket that was not explicitly bound to an address,
then the socket is autobound to an abstract address. The address consists of a null
byte followed by 5 bytes in the character set [0-9a-f]. Thus, there is a limit of 2^20
autobind addresses. (From Linux 2.1.15, when the autobind feature was added, 8
bytes were used, and the limit was thus 2^32 autobind addresses. The change to 5
bytes came in Linux 2.3.15.)

Sockets API
The following paragraphs describe domain-specific details and unsupported features
of the sockets API for UNIX domain sockets on Linux.

UNIX domain sockets do not support the transmission of out-of-band data (the
MSG_OOB flag for send(2) and recv(2)).

The send(2) MSG_MORE flag is not supported by UNIX domain sockets.

Before Linux 3.4, the use of MSG_TRUNC in the flags argument of recv(2) was not
supported by UNIX domain sockets.

Linux man-pages 6.13 2024-06-15 3717

UNIX(7) Miscellaneous Information Manual UNIX(7)

The SO_SNDBUF socket option does have an effect for UNIX domain sockets, but
the SO_RCVBUF option does not. For datagram sockets, the SO_SNDBUF value
imposes an upper limit on the size of outgoing datagrams. This limit is calculated as
the doubled (see socket(7)) option value less 32 bytes used for overhead.

Ancillary messages
Ancillary data is sent and received using sendmsg(2) and recvmsg(2). For historical
reasons, the ancillary message types listed below are specified with a SOL_SOCKET
type even though they are AF_UNIX specific. To send them, set the cmsg_level field
of the struct cmsghdr to SOL_SOCKET and the cmsg_type field to the type. For
more information, see cmsg(3).

SCM_RIGHTS
Send or receive a set of open file descriptors from another process. The data
portion contains an integer array of the file descriptors.

Commonly, this operation is referred to as "passing a file descriptor" to an-
other process. However, more accurately, what is being passed is a reference
to an open file description (see open(2)), and in the receiving process it is
likely that a different file descriptor number will be used. Semantically, this
operation is equivalent to duplicating (dup(2)) a file descriptor into the file de-
scriptor table of another process.

If the buffer used to receive the ancillary data containing file descriptors is too
small (or is absent), then the ancillary data is truncated (or discarded) and the
excess file descriptors are automatically closed in the receiving process.

If the number of file descriptors received in the ancillary data would cause the
process to exceed its RLIMIT_NOFILE resource limit (see getrlimit(2)), the
excess file descriptors are automatically closed in the receiving process.

The kernel constant SCM_MAX_FD defines a limit on the number of file de-
scriptors in the array. Attempting to send an array larger than this limit causes
sendmsg(2) to fail with the error EINVAL. SCM_MAX_FD has the value
253 (or 255 before Linux 2.6.38).

SCM_CREDENTIALS
Send or receive UNIX credentials. This can be used for authentication. The
credentials are passed as a struct ucred ancillary message. This structure is
defined in <sys/socket.h> as follows:

struct ucred {
pid_t pid; /* Process ID of the sending process */
uid_t uid; /* User ID of the sending process */
gid_t gid; /* Group ID of the sending process */

};

Since glibc 2.8, the _GNU_SOURCE feature test macro must be defined (be-
fore including any header files) in order to obtain the definition of this struc-
ture.

The credentials which the sender specifies are checked by the kernel. A privi-
leged process is allowed to specify values that do not match its own. The
sender must specify its own process ID (unless it has the capability
CAP_SYS_ADMIN, in which case the PID of any existing process may be

Linux man-pages 6.13 2024-06-15 3718

UNIX(7) Miscellaneous Information Manual UNIX(7)

specified), its real user ID, effective user ID, or saved set-user-ID (unless it has
CAP_SETUID), and its real group ID, effective group ID, or saved set-group-
ID (unless it has CAP_SETGID).

To receive a struct ucred message, the SO_PASSCRED option must be en-
abled on the socket.

SCM_SECURITY
Receive the SELinux security context (the security label) of the peer socket.
The received ancillary data is a null-terminated string containing the security
context. The receiver should allocate at least NAME_MAX bytes in the data
portion of the ancillary message for this data.

To receive the security context, the SO_PASSSEC option must be enabled on
the socket (see above).

When sending ancillary data with sendmsg(2), only one item of each of the above
types may be included in the sent message.

At least one byte of real data should be sent when sending ancillary data. On Linux,
this is required to successfully send ancillary data over a UNIX domain stream socket.
When sending ancillary data over a UNIX domain datagram socket, it is not necessary
on Linux to send any accompanying real data. However, portable applications should
also include at least one byte of real data when sending ancillary data over a datagram
socket.

When receiving from a stream socket, ancillary data forms a kind of barrier for the re-
ceived data. For example, suppose that the sender transmits as follows:

(1) sendmsg(2) of four bytes, with no ancillary data.
(2) sendmsg(2) of one byte, with ancillary data.
(3) sendmsg(2) of four bytes, with no ancillary data.

Suppose that the receiver now performs recvmsg(2) calls each with a buffer size of 20
bytes. The first call will receive five bytes of data, along with the ancillary data sent
by the second sendmsg(2) call. The next call will receive the remaining four bytes of
data.

If the space allocated for receiving incoming ancillary data is too small then the ancil-
lary data is truncated to the number of headers that will fit in the supplied buffer (or,
in the case of an SCM_RIGHTS file descriptor list, the list of file descriptors may be
truncated). If no buffer is provided for incoming ancillary data (i.e., the msg_control
field of the msghdr structure supplied to recvmsg(2) is NULL), then the incoming an-
cillary data is discarded. In both of these cases, the MSG_CTRUNC flag will be set
in the msg.msg_flags value returned by recvmsg(2).

Ioctls
The following ioctl(2) calls return information in value. The correct syntax is:

int value;
error = ioctl(unix_socket, ioctl_type, &value);

ioctl_type can be:

Linux man-pages 6.13 2024-06-15 3719

UNIX(7) Miscellaneous Information Manual UNIX(7)

SIOCINQ
For SOCK_STREAM sockets, this call returns the number of unread bytes in
the receive buffer. The socket must not be in LISTEN state, otherwise an error
(EINVAL) is returned. SIOCINQ is defined in <linux/sockios.h>. Alterna-
tively, you can use the synonymous FIONREAD, defined in <sys/ioctl.h>.
For SOCK_DGRAM sockets, the returned value is the same as for Internet
domain datagram sockets; see udp(7).

ERRORS
EADDRINUSE

The specified local address is already in use or the filesystem socket object al-
ready exists.

EBADF
This error can occur for sendmsg(2) when sending a file descriptor as ancillary
data over a UNIX domain socket (see the description of SCM_RIGHTS,
above), and indicates that the file descriptor number that is being sent is not
valid (e.g., it is not an open file descriptor).

ECONNREFUSED
The remote address specified by connect(2) was not a listening socket. This
error can also occur if the target pathname is not a socket.

ECONNRESET
Remote socket was unexpectedly closed.

EFAULT
User memory address was not valid.

EINVAL
Invalid argument passed. A common cause is that the value AF_UNIX was
not specified in the sun_type field of passed addresses, or the socket was in an
invalid state for the applied operation.

EISCONN
connect(2) called on an already connected socket or a target address was spec-
ified on a connected socket.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The pathname in the remote address specified to connect(2) did not exist.

ENOMEM
Out of memory.

ENOTCONN
Socket operation needs a target address, but the socket is not connected.

EOPNOTSUPP
Stream operation called on non-stream oriented socket or tried to use the out-
of-band data option.

Linux man-pages 6.13 2024-06-15 3720

UNIX(7) Miscellaneous Information Manual UNIX(7)

EPERM
The sender passed invalid credentials in the struct ucred .

EPIPE
Remote socket was closed on a stream socket. If enabled, a SIGPIPE is sent
as well. This can be avoided by passing the MSG_NOSIGNAL flag to
send(2) or sendmsg(2).

EPROTONOSUPPORT
Passed protocol is not AF_UNIX.

EPROTOTYPE
Remote socket does not match the local socket type (SOCK_DGRAM versus
SOCK_STREAM).

ESOCKTNOSUPPORT
Unknown socket type.

ESRCH
While sending an ancillary message containing credentials (SCM_CREDEN-
TIALS), the caller specified a PID that does not match any existing process.

ETOOMANYREFS
This error can occur for sendmsg(2) when sending a file descriptor as ancillary
data over a UNIX domain socket (see the description of SCM_RIGHTS,
above). It occurs if the number of "in-flight" file descriptors exceeds the
RLIMIT_NOFILE resource limit and the caller does not have the
CAP_SYS_RESOURCE capability. An in-flight file descriptor is one that
has been sent using sendmsg(2) but has not yet been accepted in the recipient
process using recvmsg(2).

This error is diagnosed since mainline Linux 4.5 (and in some earlier kernel
versions where the fix has been backported). In earlier kernel versions, it was
possible to place an unlimited number of file descriptors in flight, by sending
each file descriptor with sendmsg(2) and then closing the file descriptor so that
it was not accounted against the RLIMIT_NOFILE resource limit.

Other errors can be generated by the generic socket layer or by the filesystem while
generating a filesystem socket object. See the appropriate manual pages for more in-
formation.

VERSIONS
SCM_CREDENTIALS and the abstract namespace were introduced with Linux 2.2
and should not be used in portable programs. (Some BSD-derived systems also sup-
port credential passing, but the implementation details differ.)

NOTES
Binding to a socket with a filename creates a socket in the filesystem that must be
deleted by the caller when it is no longer needed (using unlink(2)). The usual UNIX
close-behind semantics apply; the socket can be unlinked at any time and will be fi-
nally removed from the filesystem when the last reference to it is closed.

To pass file descriptors or credentials over a SOCK_STREAM socket, you must send
or receive at least one byte of nonancillary data in the same sendmsg(2) or recvmsg(2)
call.

Linux man-pages 6.13 2024-06-15 3721

UNIX(7) Miscellaneous Information Manual UNIX(7)

UNIX domain stream sockets do not support the notion of out-of-band data.

BUGS
When binding a socket to an address, Linux is one of the implementations that append
a null terminator if none is supplied in sun_path. In most cases this is unproblematic:
when the socket address is retrieved, it will be one byte longer than that supplied
when the socket was bound. However, there is one case where confusing behavior
can result: if 108 non-null bytes are supplied when a socket is bound, then the addi-
tion of the null terminator takes the length of the pathname beyond sizeof(sun_path).
Consequently, when retrieving the socket address (for example, via accept(2)), if the
input addrlen argument for the retrieving call is specified as sizeof(struct sock-
addr_un), then the returned address structure won’t have a null terminator in
sun_path.

In addition, some implementations don’t require a null terminator when binding a
socket (the addrlen argument is used to determine the length of sun_path) and when
the socket address is retrieved on these implementations, there is no null terminator in
sun_path.

Applications that retrieve socket addresses can (portably) code to handle the possibil-
ity that there is no null terminator in sun_path by respecting the fact that the number
of valid bytes in the pathname is:

strnlen(addr.sun_path, addrlen - offsetof(sockaddr_un, sun_path))

Alternatively, an application can retrieve the socket address by allocating a buffer of
size sizeof(struct sockaddr_un)+1 that is zeroed out before the retrieval. The retriev-
ing call can specify addrlen as sizeof(struct sockaddr_un), and the extra zero byte en-
sures that there will be a null terminator for the string returned in sun_path:

void *addrp;

addrlen = sizeof(struct sockaddr_un);
addrp = malloc(addrlen + 1);
if (addrp == NULL)

/* Handle error */ ;
memset(addrp, 0, addrlen + 1);

if (getsockname(sfd, (struct sockaddr *) addrp, &addrlen)) == -1)
/* handle error */ ;

printf("sun_path = %s\n", ((struct sockaddr_un *) addrp)->sun_path);

This sort of messiness can be avoided if it is guaranteed that the applications that cre-
ate pathname sockets follow the rules outlined above under Pathname sockets.

EXAMPLES
The following code demonstrates the use of sequenced-packet sockets for local inter-
process communication. It consists of two programs. The server program waits for a
connection from the client program. The client sends each of its command-line argu-
ments in separate messages. The server treats the incoming messages as integers and
adds them up. The client sends the command string "END". The server sends back a
message containing the sum of the client’s integers. The client prints the sum and

Linux man-pages 6.13 2024-06-15 3722

UNIX(7) Miscellaneous Information Manual UNIX(7)

exits. The server waits for the next client to connect. To stop the server, the client is
called with the command-line argument "DOWN".

The following output was recorded while running the server in the background and re-
peatedly executing the client. Execution of the server program ends when it receives
the "DOWN" command.

Example output
$./server &
[1] 25887
$./client 3 4
Result = 7
$./client 11 -5
Result = 6
$./client DOWN
Result = 0
[1]+ Done ./server
$

Program source

/*
* File connection.h
*/

#ifndef CONNECTION_H
#define CONNECTION_H

#define SOCKET_NAME "/tmp/9Lq7BNBnBycd6nxy.socket"
#define BUFFER_SIZE 12

#endif // include guard

/*
* File server.c
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>

#include "connection.h"

int
main(void)
{

int down_flag = 0;
int ret;

Linux man-pages 6.13 2024-06-15 3723

UNIX(7) Miscellaneous Information Manual UNIX(7)

int connection_socket;
int data_socket;
int result;
ssize_t r, w;
struct sockaddr_un name;
char buffer[BUFFER_SIZE];

/* Create local socket. */

connection_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);
if (connection_socket == -1) {

perror("socket");
exit(EXIT_FAILURE);

}

/*
* For portability clear the whole structure, since some
* implementations have additional (nonstandard) fields in
* the structure.
*/

memset(&name, 0, sizeof(name));

/* Bind socket to socket name. */

name.sun_family = AF_UNIX;
strncpy(name.sun_path, SOCKET_NAME, sizeof(name.sun_path) - 1);

ret = bind(connection_socket, (const struct sockaddr *) &name,
sizeof(name));

if (ret == -1) {
perror("bind");
exit(EXIT_FAILURE);

}

/*
* Prepare for accepting connections. The backlog size is set
* to 20. So while one request is being processed other requests
* can be waiting.
*/

ret = listen(connection_socket, 20);
if (ret == -1) {

perror("listen");
exit(EXIT_FAILURE);

}

/* This is the main loop for handling connections. */

Linux man-pages 6.13 2024-06-15 3724

UNIX(7) Miscellaneous Information Manual UNIX(7)

for (;;) {

/* Wait for incoming connection. */

data_socket = accept(connection_socket, NULL, NULL);
if (data_socket == -1) {

perror("accept");
exit(EXIT_FAILURE);

}

result = 0;
for (;;) {

/* Wait for next data packet. */

r = read(data_socket, buffer, sizeof(buffer));
if (r == -1) {

perror("read");
exit(EXIT_FAILURE);

}

/* Ensure buffer is 0-terminated. */

buffer[sizeof(buffer) - 1] = 0;

/* Handle commands. */

if (!strncmp(buffer, "DOWN", sizeof(buffer))) {
down_flag = 1;
continue;

}

if (!strncmp(buffer, "END", sizeof(buffer))) {
break;

}

if (down_flag) {
continue;

}

/* Add received summand. */

result += atoi(buffer);
}

/* Send result. */

sprintf(buffer, "%d", result);
w = write(data_socket, buffer, sizeof(buffer));

Linux man-pages 6.13 2024-06-15 3725

UNIX(7) Miscellaneous Information Manual UNIX(7)

if (w == -1) {
perror("write");
exit(EXIT_FAILURE);

}

/* Close socket. */

close(data_socket);

/* Quit on DOWN command. */

if (down_flag) {
break;

}
}

close(connection_socket);

/* Unlink the socket. */

unlink(SOCKET_NAME);

exit(EXIT_SUCCESS);
}

/*
* File client.c
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>

#include "connection.h"

int
main(int argc, char *argv[])
{

int ret;
int data_socket;
ssize_t r, w;
struct sockaddr_un addr;
char buffer[BUFFER_SIZE];

/* Create local socket. */

Linux man-pages 6.13 2024-06-15 3726

UNIX(7) Miscellaneous Information Manual UNIX(7)

data_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);
if (data_socket == -1) {

perror("socket");
exit(EXIT_FAILURE);

}

/*
* For portability clear the whole structure, since some
* implementations have additional (nonstandard) fields in
* the structure.
*/

memset(&addr, 0, sizeof(addr));

/* Connect socket to socket address. */

addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, SOCKET_NAME, sizeof(addr.sun_path) - 1);

ret = connect(data_socket, (const struct sockaddr *) &addr,
sizeof(addr));

if (ret == -1) {
fprintf(stderr, "The server is down.\n");
exit(EXIT_FAILURE);

}

/* Send arguments. */

for (int i = 1; i < argc; ++i) {
w = write(data_socket, argv[i], strlen(argv[i]) + 1);
if (w == -1) {

perror("write");
break;

}
}

/* Request result. */

strcpy(buffer, "END");
w = write(data_socket, buffer, strlen(buffer) + 1);
if (w == -1) {

perror("write");
exit(EXIT_FAILURE);

}

/* Receive result. */

r = read(data_socket, buffer, sizeof(buffer));

Linux man-pages 6.13 2024-06-15 3727

UNIX(7) Miscellaneous Information Manual UNIX(7)

if (r == -1) {
perror("read");
exit(EXIT_FAILURE);

}

/* Ensure buffer is 0-terminated. */

buffer[sizeof(buffer) - 1] = 0;

printf("Result = %s\n", buffer);

/* Close socket. */

close(data_socket);

exit(EXIT_SUCCESS);
}

For examples of the use of SCM_RIGHTS, see cmsg(3) and seccomp_unotify(2).

SEE ALSO
recvmsg(2), sendmsg(2), socket(2), socketpair(2), cmsg(3), capabilities(7), creden-
tials(7), socket(7), udp(7)

Linux man-pages 6.13 2024-06-15 3728

uri(7) Miscellaneous Information Manual uri(7)

NAME
uri, url, urn - uniform resource identifier (URI), including a URL or URN

SYNOPSIS
URI = [absoluteURI | relativeURI] ["#" fragment]

absoluteURI = scheme ":" (hierarchical_part | opaque_part)

relativeURI = (net_path | absolute_path | relative_path) ["?" query]

scheme = "http" | "ftp" | "gopher" | "mailto" | "news" | "telnet" | "file" | "ftp" | "man"
| "info" | "whatis" | "ldap" | "wais" | ...

hierarchical_part = (net_path | absolute_path) ["?" query]

net_path = "//" authority [absolute_path]

absolute_path = "/" path_segments

relative_path = relative_segment [absolute_path]

DESCRIPTION
A Uniform Resource Identifier (URI) is a short string of characters identifying an ab-
stract or physical resource (for example, a web page). A Uniform Resource Locator
(URL) is a URI that identifies a resource through its primary access mechanism (e.g.,
its network "location"), rather than by name or some other attribute of that resource.
A Uniform Resource Name (URN) is a URI that must remain globally unique and
persistent even when the resource ceases to exist or becomes unavailable.

URIs are the standard way to name hypertext link destinations for tools such as web
browsers. The string "http://www.kernel.org" is a URL (and thus it is also a URI).
Many people use the term URL loosely as a synonym for URI (though technically
URLs are a subset of URIs).

URIs can be absolute or relative. An absolute identifier refers to a resource indepen-
dent of context, while a relative identifier refers to a resource by describing the differ-
ence from the current context. Within a relative path reference, the complete path seg-
ments "." and ".." have special meanings: "the current hierarchy level" and "the level
above this hierarchy level", respectively, just like they do in UNIX-like systems. A
path segment which contains a colon character can’t be used as the first segment of a
relative URI path (e.g., "this:that"), because it would be mistaken for a scheme name;
precede such segments with ./ (e.g., "./this:that"). Note that descendants of MS-DOS
(e.g., Microsoft Windows) replace devicename colons with the vertical bar ("|") in
URIs, so "C:" becomes "C|".

A fragment identifier, if included, refers to a particular named portion (fragment) of a
resource; text after a '#' identifies the fragment. A URI beginning with '#' refers to
that fragment in the current resource.

Usage
There are many different URI schemes, each with specific additional rules and mean-
ings, but they are intentionally made to be as similar as possible. For example, many
URL schemes permit the authority to be the following format, called here an
ip_server (square brackets show what’s optional):

ip_server = [user [: password] @] host [: port]

This format allows you to optionally insert a username, a user plus password, and/or a

Linux man-pages 6.13 2024-05-02 3729

uri(7) Miscellaneous Information Manual uri(7)

port number. The host is the name of the host computer, either its name as deter-
mined by DNS or an IP address (numbers separated by periods). Thus the URI
<http://fred:fredpassword@example.com:8080/> logs into a web server on host exam-
ple.com as fred (using fredpassword) using port 8080. Avoid including a password in
a URI if possible because of the many security risks of having a password written
down. If the URL supplies a username but no password, and the remote server re-
quests a password, the program interpreting the URL should request one from the
user.

Here are some of the most common schemes in use on UNIX-like systems that are un-
derstood by many tools. Note that many tools using URIs also have internal schemes
or specialized schemes; see those tools’ documentation for information on those
schemes.

http - Web (HTTP) server

http://ip_server/path
http://ip_server/path?query

This is a URL accessing a web (HTTP) server. The default port is 80. If the path
refers to a directory, the web server will choose what to return; usually if there is a file
named "index.html" or "index.htm" its content is returned, otherwise, a list of the files
in the current directory (with appropriate links) is generated and returned. An exam-
ple is <http://lwn.net>.

A query can be given in the archaic "isindex" format, consisting of a word or phrase
and not including an equal sign (=). A query can also be in the longer "GET" format,
which has one or more query entries of the form key=value separated by the amper-
sand character (&). Note that key can be repeated more than once, though it’s up to
the web server and its application programs to determine if there’s any meaning to
that. There is an unfortunate interaction with HTML/XML/SGML and the GET
query format; when such URIs with more than one key are embedded in SGML/XML
documents (including HTML), the ampersand (&) has to be rewritten as &. Note
that not all queries use this format; larger forms may be too long to store as a URI, so
they use a different interaction mechanism (called POST) which does not include the
data in the URI. See the Common Gateway Interface specification at
〈http://www.w3.org/CGI〉 for more information.

ftp - File Transfer Protocol (FTP)

ftp://ip_server/path

This is a URL accessing a file through the file transfer protocol (FTP). The default
port (for control) is 21. If no username is included, the username "anonymous" is
supplied, and in that case many clients provide as the password the requestor’s Inter-
net email address. An example is <ftp://ftp.is.co.za/rfc/rfc1808.txt>.

gopher - Gopher server

gopher://ip_server/gophertype selector
gopher://ip_server/gophertype selector%09search
gopher://ip_server/gophertype selector%09search%09gopher+_string

The default gopher port is 70. gophertype is a single-character field to denote the Go-
pher type of the resource to which the URL refers. The entire path may also be

Linux man-pages 6.13 2024-05-02 3730

uri(7) Miscellaneous Information Manual uri(7)

empty, in which case the delimiting "/" is also optional and the gophertype defaults to
"1".

selector is the Gopher selector string. In the Gopher protocol, Gopher selector strings
are a sequence of octets which may contain any octets except 09 hexadecimal (US-
ASCII HT or tab), 0A hexadecimal (US-ASCII character LF), and 0D (US-ASCII
character CR).

mailto - Email address

mailto:email-address

This is an email address, usually of the form name@hostname. See mailaddr(7) for
more information on the correct format of an email address. Note that any % charac-
ter must be rewritten as %25. An example is <mailto:dwheeler@dwheeler.com>.

news - Newsgroup or News message

news:newsgroup-name
news:message-id

A newsgroup-name is a period-delimited hierarchical name, such as "comp.infosys-
tems.www.misc". If <newsgroup-name> is "*" (as in <news:*>), it is used to refer to
"all available news groups". An example is <news:comp.lang.ada>.

A message-id corresponds to the Message-ID of IETF RFC 1036, 〈http://www.ietf.org
/rfc/rfc1036.txt〉 without the enclosing "<" and ">"; it takes the form unique@ full_do-
main_name. A message identifier may be distinguished from a news group name by
the presence of the "@" character.

telnet - Telnet login

telnet://ip_server/

The Telnet URL scheme is used to designate interactive text services that may be ac-
cessed by the Telnet protocol. The final "/" character may be omitted. The default
port is 23. An example is <telnet://melvyl.ucop.edu/>.

file - Normal file

file://ip_server/path_segments
file:path_segments

This represents a file or directory accessible locally. As a special case, ip_server can
be the string "localhost" or the empty string; this is interpreted as "the machine from
which the URL is being interpreted". If the path is to a directory, the viewer should
display the directory’s contents with links to each containee; not all viewers currently
do this. KDE supports generated files through the URL <file:/cgi-bin>. If the given
file isn’t found, browser writers may want to try to expand the filename via filename
globbing (see glob(7) and glob(3)).

The second format (e.g., <file:/etc/passwd>) is a correct format for referring to a local
file. However, older standards did not permit this format, and some programs don’t
recognize this as a URI. A more portable syntax is to use an empty string as the
server name, for example, <file:///etc/passwd>; this form does the same thing and is
easily recognized by pattern matchers and older programs as a URI. Note that if you
really mean to say "start from the current location", don’t specify the scheme at all;
use a relative address like <../test.txt>, which has the side-effect of being scheme-

Linux man-pages 6.13 2024-05-02 3731

uri(7) Miscellaneous Information Manual uri(7)

independent. An example of this scheme is <file:///etc/passwd>.

man - Man page documentation

man:command-name
man:command-name(section)

This refers to local online manual (man) reference pages. The command name can
optionally be followed by a parenthesis and section number; see man(7) for more in-
formation on the meaning of the section numbers. This URI scheme is unique to
UNIX-like systems (such as Linux) and is not currently registered by the IETF. An
example is <man:ls(1)>.

info - Info page documentation

info:virtual-filename
info:virtual-filename#nodename
info:(virtual-filename)
info:(virtual-filename)nodename

This scheme refers to online info reference pages (generated from texinfo files), a
documentation format used by programs such as the GNU tools. This URI scheme is
unique to UNIX-like systems (such as Linux) and is not currently registered by the
IETF. As of this writing, GNOME and KDE differ in their URI syntax and do not ac-
cept the other’s syntax. The first two formats are the GNOME format; in nodenames
all spaces are written as underscores. The second two formats are the KDE format;
spaces in nodenames must be written as spaces, even though this is forbidden by the
URI standards. It’s hoped that in the future most tools will understand all of these for-
mats and will always accept underscores for spaces in nodenames. In both GNOME
and KDE, if the form without the nodename is used the nodename is assumed to be
"Top". Examples of the GNOME format are <info:gcc> and
<info:gcc#G++_and_GCC>. Examples of the KDE format are <info:(gcc)> and
<info:(gcc)G++ and GCC>.

whatis - Documentation search

whatis:string

This scheme searches the database of short (one-line) descriptions of commands and
returns a list of descriptions containing that string. Only complete word matches are
returned. See whatis(1)This URI scheme is unique to UNIX-like systems (such as
Linux) and is not currently registered by the IETF.

ghelp - GNOME help documentation

ghelp:name-of-application

This loads GNOME help for the given application. Note that not much documenta-
tion currently exists in this format.

ldap - Lightweight Directory Access Protocol

ldap://hostport
ldap://hostport/
ldap://hostport/dn
ldap://hostport/dn?attributes
ldap://hostport/dn?attributes?scope

Linux man-pages 6.13 2024-05-02 3732

uri(7) Miscellaneous Information Manual uri(7)

ldap://hostport/dn?attributes?scope? filter
ldap://hostport/dn?attributes?scope? filter?extensions

This scheme supports queries to the Lightweight Directory Access Protocol (LDAP),
a protocol for querying a set of servers for hierarchically organized information (such
as people and computing resources). See RFC 2255 〈http://www.ietf.org/rfc
/rfc2255.txt〉 for more information on the LDAP URL scheme. The components of
this URL are:

hostport
the LDAP server to query, written as a hostname optionally followed by a
colon and the port number. The default LDAP port is TCP port 389. If empty,
the client determines which the LDAP server to use.

dn the LDAP Distinguished Name, which identifies the base object of the LDAP
search (see RFC 2253 〈http://www.ietf.org/rfc/rfc2253.txt〉 section 3).

attributes
a comma-separated list of attributes to be returned; see RFC 2251 section
4.1.5. If omitted, all attributes should be returned.

scope specifies the scope of the search, which can be one of "base" (for a base object
search), "one" (for a one-level search), or "sub" (for a subtree search). If
scope is omitted, "base" is assumed.

filter specifies the search filter (subset of entries to return). If omitted, all entries
should be returned. See RFC 2254 〈http://www.ietf.org/rfc/rfc2254.txt〉 sec-
tion 4.

extensions
a comma-separated list of type=value pairs, where the =value portion may be
omitted for options not requiring it. An extension prefixed with a '!' is critical
(must be supported to be valid), otherwise it is noncritical (optional).

LDAP queries are easiest to explain by example. Here’s a query that asks
ldap.itd.umich.edu for information about the University of Michigan in the U.S.:

ldap://ldap.itd.umich.edu/o=University%20of%20Michigan,c=US

To just get its postal address attribute, request:

ldap://ldap.itd.umich.edu/o=University%20of%20Michigan,c=US?postalAddress

To ask a host.com at port 6666 for information about the person with common name
(cn) "Babs Jensen" at University of Michigan, request:

ldap://host.com:6666/o=University%20of%20Michigan,c=US??sub?(cn=Babs%20Jensen)

wais - Wide Area Information Servers

wais://hostport/database
wais://hostport/database?search
wais://hostport/database/wtype/wpath

This scheme designates a WAIS database, search, or document (see IETF RFC 1625
〈http://www.ietf.org/rfc/rfc1625.txt〉 for more information on WAIS). Hostport is the
hostname, optionally followed by a colon and port number (the default port number is
210).

Linux man-pages 6.13 2024-05-02 3733

uri(7) Miscellaneous Information Manual uri(7)

The first form designates a WAIS database for searching. The second form designates
a particular search of the WAIS database database. The third form designates a par-
ticular document within a WAIS database to be retrieved. wtype is the WAIS designa-
tion of the type of the object and wpath is the WAIS document-id.

other schemes

There are many other URI schemes. Most tools that accept URIs support a set of in-
ternal URIs (e.g., Mozilla has the about: scheme for internal information, and the
GNOME help browser has the toc: scheme for various starting locations). There are
many schemes that have been defined but are not as widely used at the current time
(e.g., prospero). The nntp: scheme is deprecated in favor of the news: scheme. URNs
are to be supported by the urn: scheme, with a hierarchical name space (e.g.,
urn:ietf:... would identify IETF documents); at this time URNs are not widely imple-
mented. Not all tools support all schemes.

Character encoding
URIs use a limited number of characters so that they can be typed in and used in a va-
riety of situations.

The following characters are reserved, that is, they may appear in a URI but their use
is limited to their reserved purpose (conflicting data must be escaped before forming
the URI):

; / ? : @ & = + $,

Unreserved characters may be included in a URI. Unreserved characters include up-
percase and lowercase Latin letters, decimal digits, and the following limited set of
punctuation marks and symbols:

- _ . ! ~ * ’ ()

All other characters must be escaped. An escaped octet is encoded as a character
triplet, consisting of the percent character "%" followed by the two hexadecimal digits
representing the octet code (you can use uppercase or lowercase letters for the hexa-
decimal digits). For example, a blank space must be escaped as "%20", a tab charac-
ter as "%09", and the "&" as "%26". Because the percent "%" character always has
the reserved purpose of being the escape indicator, it must be escaped as "%25". It is
common practice to escape space characters as the plus symbol (+) in query text; this
practice isn’t uniformly defined in the relevant RFCs (which recommend %20 instead)
but any tool accepting URIs with query text should be prepared for them. A URI is
always shown in its "escaped" form.

Unreserved characters can be escaped without changing the semantics of the URI, but
this should not be done unless the URI is being used in a context that does not allow
the unescaped character to appear. For example, "%7e" is sometimes used instead of
"~" in an HTTP URL path, but the two are equivalent for an HTTP URL.

For URIs which must handle characters outside the US ASCII character set, the
HTML 4.01 specification (section B.2) and IETF RFC 3986 (last paragraph of section
2.5) recommend the following approach:

(1) translate the character sequences into UTF-8 (IETF RFC 3629)—see
utf-8(7)—and then

Linux man-pages 6.13 2024-05-02 3734

uri(7) Miscellaneous Information Manual uri(7)

(2) use the URI escaping mechanism, that is, use the %HH encoding for unsafe
octets.

Writing a URI
When written, URIs should be placed inside double quotes (e.g., "http://www.ker-
nel.org"), enclosed in angle brackets (e.g., <http://lwn.net>), or placed on a line by
themselves. A warning for those who use double-quotes: never move extraneous
punctuation (such as the period ending a sentence or the comma in a list) inside a
URI, since this will change the value of the URI. Instead, use angle brackets instead,
or switch to a quoting system that never includes extraneous characters inside quota-
tion marks. This latter system, called the ’new’ or ’logical’ quoting system by "Hart’s
Rules" and the "Oxford Dictionary for Writers and Editors", is preferred practice in
Great Britain and in various European languages. Older documents suggested insert-
ing the prefix "URL:" just before the URI, but this form has never caught on.

The URI syntax was designed to be unambiguous. However, as URIs have become
commonplace, traditional media (television, radio, newspapers, billboards, etc.) have
increasingly used abbreviated URI references consisting of only the authority and
path portions of the identified resource (e.g., <www.w3.org/Addressing>). Such ref-
erences are primarily intended for human interpretation rather than machine, with the
assumption that context-based heuristics are sufficient to complete the URI (e.g., host-
names beginning with "www" are likely to have a URI prefix of "http://" and host-
names beginning with "ftp" likely to have a prefix of "ftp://"). Many client implemen-
tations heuristically resolve these references. Such heuristics may change over time,
particularly when new schemes are introduced. Since an abbreviated URI has the
same syntax as a relative URL path, abbreviated URI references cannot be used where
relative URIs are permitted, and can be used only when there is no defined base (such
as in dialog boxes). Don’t use abbreviated URIs as hypertext links inside a document;
use the standard format as described here.

STANDARDS
(IETF RFC 2396) 〈http://www.ietf.org/rfc/rfc2396.txt〉, (HTML 4.0)
〈http://www.w3.org/TR/REC-html40〉.

NOTES
Any tool accepting URIs (e.g., a web browser) on a Linux system should be able to
handle (directly or indirectly) all of the schemes described here, including the man:
and info: schemes. Handling them by invoking some other program is fine and in fact
encouraged.

Technically the fragment isn’t part of the URI.

For information on how to embed URIs (including URLs) in a data format, see docu-
mentation on that format. HTML uses the format text . Tex-
info files use the format @uref{uri}. Man and mdoc have the recently added UR
macro, or just include the URI in the text (viewers should be able to detect :// as part
of a URI).

The GNOME and KDE desktop environments currently vary in the URIs they accept,
in particular in their respective help browsers. To list man pages, GNOME uses
<toc:man> while KDE uses <man:(index)>, and to list info pages, GNOME uses
<toc:info> while KDE uses <info:(dir)> (the author of this man page prefers the KDE
approach here, though a more regular format would be even better). In general, KDE

Linux man-pages 6.13 2024-05-02 3735

uri(7) Miscellaneous Information Manual uri(7)

uses <file:/cgi-bin/> as a prefix to a set of generated files. KDE prefers documenta-
tion in HTML, accessed via the <file:/cgi-bin/helpindex>. GNOME prefers the ghelp
scheme to store and find documentation. Neither browser handles file: references to
directories at the time of this writing, making it difficult to refer to an entire directory
with a browsable URI. As noted above, these environments differ in how they handle
the info: scheme, probably the most important variation. It is expected that GNOME
and KDE will converge to common URI formats, and a future version of this man
page will describe the converged result. Efforts to aid this convergence are encour-
aged.

Security
A URI does not in itself pose a security threat. There is no general guarantee that a
URL, which at one time located a given resource, will continue to do so. Nor is there
any guarantee that a URL will not locate a different resource at some later point in
time; such a guarantee can be obtained only from the person(s) controlling that name-
space and the resource in question.

It is sometimes possible to construct a URL such that an attempt to perform a seem-
ingly harmless operation, such as the retrieval of an entity associated with the re-
source, will in fact cause a possibly damaging remote operation to occur. The unsafe
URL is typically constructed by specifying a port number other than that reserved for
the network protocol in question. The client unwittingly contacts a site that is in fact
running a different protocol. The content of the URL contains instructions that, when
interpreted according to this other protocol, cause an unexpected operation. An exam-
ple has been the use of a gopher URL to cause an unintended or impersonating mes-
sage to be sent via a SMTP server.

Caution should be used when using any URL that specifies a port number other than
the default for the protocol, especially when it is a number within the reserved space.

Care should be taken when a URI contains escaped delimiters for a given protocol
(for example, CR and LF characters for telnet protocols) that these are not unescaped
before transmission. This might violate the protocol, but avoids the potential for such
characters to be used to simulate an extra operation or parameter in that protocol,
which might lead to an unexpected and possibly harmful remote operation to be per-
formed.

It is clearly unwise to use a URI that contains a password which is intended to be se-
cret. In particular, the use of a password within the "userinfo" component of a URI is
strongly recommended against except in those rare cases where the "password" para-
meter is intended to be public.

BUGS
Documentation may be placed in a variety of locations, so there currently isn’t a good
URI scheme for general online documentation in arbitrary formats. References of the
form <file:///usr/doc/ZZZ> don’t work because different distributions and local instal-
lation requirements may place the files in different directories (it may be in /usr/doc,
or /usr/local/doc, or /usr/share, or somewhere else). Also, the directory ZZZ usually
changes when a version changes (though filename globbing could partially overcome
this). Finally, using the file: scheme doesn’t easily support people who dynamically
load documentation from the Internet (instead of loading the files onto a local filesys-
tem). A future URI scheme may be added (e.g., "userdoc:") to permit programs to

Linux man-pages 6.13 2024-05-02 3736

uri(7) Miscellaneous Information Manual uri(7)

include cross-references to more detailed documentation without having to know the
exact location of that documentation. Alternatively, a future version of the filesystem
specification may specify file locations sufficiently so that the file: scheme will be
able to locate documentation.

Many programs and file formats don’t include a way to incorporate or implement
links using URIs.

Many programs can’t handle all of these different URI formats; there should be a stan-
dard mechanism to load an arbitrary URI that automatically detects the users’ envi-
ronment (e.g., text or graphics, desktop environment, local user preferences, and cur-
rently executing tools) and invokes the right tool for any URI.

SEE ALSO
lynx(1), man2html(1), mailaddr(7), utf-8(7)

IETF RFC 2255 〈http://www.ietf.org/rfc/rfc2255.txt〉

Linux man-pages 6.13 2024-05-02 3737

user-keyring(7) Miscellaneous Information Manual user-keyring(7)

NAME
user-keyring - per-user keyring

DESCRIPTION
The user keyring is a keyring used to anchor keys on behalf of a user. Each UID the
kernel deals with has its own user keyring that is shared by all processes with that
UID. The user keyring has a name (description) of the form _uid.<UID> where
<UID> is the user ID of the corresponding user.

The user keyring is associated with the record that the kernel maintains for the UID.
It comes into existence upon the first attempt to access either the user keyring, the
user-session-keyring(7), or the session-keyring(7). The keyring remains pinned in ex-
istence so long as there are processes running with that real UID or files opened by
those processes remain open. (The keyring can also be pinned indefinitely by linking
it into another keyring.)

Typically, the user keyring is created by pam_keyinit(8) when a user logs in.

The user keyring is not searched by default by request_key(2). When pam_keyinit(8)
creates a session keyring, it adds to it a link to the user keyring so that the user
keyring will be searched when the session keyring is.

A special serial number value, KEY_SPEC_USER_KEYRING, is defined that can
be used in lieu of the actual serial number of the calling process’s user keyring.

From the keyctl(1) utility, ’@u’ can be used instead of a numeric key ID in much the
same way.

User keyrings are independent of clone(2), fork(2), vfork(2), execve(2), and _exit(2)
excepting that the keyring is destroyed when the UID record is destroyed when the
last process pinning it exits.

If it is necessary for a key associated with a user to exist beyond the UID record being
garbage collected—for example, for use by a cron(8) script—then the persistent-
keyring(7) should be used instead.

If a user keyring does not exist when it is accessed, it will be created.

SEE ALSO
keyctl(1), keyctl(3), keyrings(7), persistent-keyring(7), process-keyring(7), session-
keyring(7), thread-keyring(7), user-session-keyring(7), pam_keyinit(8)

Linux man-pages 6.13 2024-05-02 3738

user-session-keyring(7) Miscellaneous Information Manual user-session-keyring(7)

NAME
user-session-keyring - per-user default session keyring

DESCRIPTION
The user session keyring is a keyring used to anchor keys on behalf of a user. Each
UID the kernel deals with has its own user session keyring that is shared by all
processes with that UID. The user session keyring has a name (description) of the
form _uid_ses.<UID> where <UID> is the user ID of the corresponding user.

The user session keyring is associated with the record that the kernel maintains for the
UID. It comes into existence upon the first attempt to access either the user session
keyring, the user-keyring(7), or the session-keyring(7). The keyring remains pinned in
existence so long as there are processes running with that real UID or files opened by
those processes remain open. (The keyring can also be pinned indefinitely by linking
it into another keyring.)

The user session keyring is created on demand when a thread requests it or when a
thread asks for its session-keyring(7) and that keyring doesn’t exist. In the latter case,
a user session keyring will be created and, if the session keyring wasn’t to be created,
the user session keyring will be set as the process’s actual session keyring.

The user session keyring is searched by request_key(2) if the actual session keyring
does not exist and is ignored otherwise.

A special serial number value, KEY_SPEC_USER_SESSION_KEYRING, is de-
fined that can be used in lieu of the actual serial number of the calling process’s user
session keyring.

From the keyctl(1) utility, ’@us’ can be used instead of a numeric key ID in much the
same way.

User session keyrings are independent of clone(2), fork(2), vfork(2), execve(2), and
_exit(2) excepting that the keyring is destroyed when the UID record is destroyed
when the last process pinning it exits.

If a user session keyring does not exist when it is accessed, it will be created.

Rather than relying on the user session keyring, it is strongly recommended—espe-
cially if the process is running as root—that a session-keyring(7) be set explicitly, for
example by pam_keyinit(8)

NOTES
The user session keyring was added to support situations where a process doesn’t have
a session keyring, perhaps because it was created via a pathway that didn’t involve
PAM (e.g., perhaps it was a daemon started by inetd(8)). In such a scenario, the user
session keyring acts as a substitute for the session-keyring(7).

SEE ALSO
keyctl(1), keyctl(3), keyrings(7), persistent-keyring(7), process-keyring(7), session-
keyring(7), thread-keyring(7), user-keyring(7)

Linux man-pages 6.13 2024-05-02 3739

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

NAME
user_namespaces - overview of Linux user namespaces

DESCRIPTION
For an overview of namespaces, see namespaces(7).

User namespaces isolate security-related identifiers and attributes, in particular, user
IDs and group IDs (see credentials(7)), the root directory, keys (see keyrings(7)), and
capabilities (see capabilities(7)). A process’s user and group IDs can be different in-
side and outside a user namespace. In particular, a process can have a normal unprivi-
leged user ID outside a user namespace while at the same time having a user ID of 0
inside the namespace; in other words, the process has full privileges for operations in-
side the user namespace, but is unprivileged for operations outside the namespace.

Nested namespaces, namespace membership
User namespaces can be nested; that is, each user namespace—except the initial
("root") namespace—has a parent user namespace, and can have zero or more child
user namespaces. The parent user namespace is the user namespace of the process
that creates the user namespace via a call to unshare(2) or clone(2) with the
CLONE_NEWUSER flag.

The kernel imposes (since Linux 3.11) a limit of 32 nested levels of user namespaces.
Calls to unshare(2) or clone(2) that would cause this limit to be exceeded fail with the
error EUSERS.

Each process is a member of exactly one user namespace. A process created via
fork(2) or clone(2) without the CLONE_NEWUSER flag is a member of the same
user namespace as its parent. A single-threaded process can join another user name-
space with setns(2) if it has the CAP_SYS_ADMIN in that namespace; upon doing
so, it gains a full set of capabilities in that namespace.

A call to clone(2) or unshare(2) with the CLONE_NEWUSER flag makes the new
child process (for clone(2)) or the caller (for unshare(2)) a member of the new user
namespace created by the call.

The NS_GET_PARENT ioctl(2) operation can be used to discover the parental rela-
tionship between user namespaces; see ioctl_nsfs(2).

A task that changes one of its effective IDs will have its dumpability reset to the value
in /proc/sys/fs/suid_dumpable. This may affect the ownership of proc files of child
processes and may thus cause the parent to lack the permissions to write to mapping
files of child processes running in a new user namespace. In such cases making the
parent process dumpable, using PR_SET_DUMPABLE in a call to prctl(2), before
creating a child process in a new user namespace may rectify this problem. See
prctl(2) and proc(5) for details on how ownership is affected.

Capabilities
The child process created by clone(2) with the CLONE_NEWUSER flag starts out
with a complete set of capabilities in the new user namespace. Likewise, a process
that creates a new user namespace using unshare(2) or joins an existing user name-
space using setns(2) gains a full set of capabilities in that namespace. On the other
hand, that process has no capabilities in the parent (in the case of clone(2)) or previ-
ous (in the case of unshare(2) and setns(2)) user namespace, even if the new name-
space is created or joined by the root user (i.e., a process with user ID 0 in the root

Linux man-pages 6.13 2025-01-11 3740

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

namespace).

Note that a call to execve(2) will cause a process’s capabilities to be recalculated in
the usual way (see capabilities(7)). Consequently, unless the process has a user ID of
0 within the namespace, or the executable file has a nonempty inheritable capabilities
mask, the process will lose all capabilities. See the discussion of user and group ID
mappings, below.

A call to clone(2) or unshare(2) using the CLONE_NEWUSER flag or a call to
setns(2) that moves the caller into another user namespace sets the "securebits" flags
(see capabilities(7)) to their default values (all flags disabled) in the child (for
clone(2)) or caller (for unshare(2) or setns(2)). Note that because the caller no longer
has capabilities in its original user namespace after a call to setns(2), it is not possible
for a process to reset its "securebits" flags while retaining its user namespace member-
ship by using a pair of setns(2) calls to move to another user namespace and then re-
turn to its original user namespace.

The rules for determining whether or not a process has a capability in a particular user
namespace are as follows:

• A process has a capability inside a user namespace if it is a member of that name-
space and it has the capability in its effective capability set. A process can gain
capabilities in its effective capability set in various ways. For example, it may ex-
ecute a set-user-ID program or an executable with associated file capabilities. In
addition, a process may gain capabilities via the effect of clone(2), unshare(2), or
setns(2), as already described.

• If a process has a capability in a user namespace, then it has that capability in all
child (and further removed descendant) namespaces as well.

• When a user namespace is created, the kernel records the effective user ID of the
creating process as being the "owner" of the namespace. A process that resides in
the parent of the user namespace and whose effective user ID matches the owner
of the namespace has all capabilities in the namespace. By virtue of the previous
rule, this means that the process has all capabilities in all further removed descen-
dant user namespaces as well. The NS_GET_OWNER_UID ioctl(2) operation
can be used to discover the user ID of the owner of the namespace; see
ioctl_nsfs(2).

Effect of capabilities within a user namespace
Having a capability inside a user namespace permits a process to perform operations
(that require privilege) only on resources governed by that namespace. In other
words, having a capability in a user namespace permits a process to perform privi-
leged operations on resources that are governed by (nonuser) namespaces owned by
(associated with) the user namespace (see the next subsection).

On the other hand, there are many privileged operations that affect resources that are
not associated with any namespace type, for example, changing the system (i.e., cal-
endar) time (governed by CAP_SYS_TIME), loading a kernel module (governed by
CAP_SYS_MODULE), and creating a device (governed by CAP_MKNOD). Only
a process with privileges in the initial user namespace can perform such operations.

Holding CAP_SYS_ADMIN within the user namespace that owns a process’s mount
namespace allows that process to create bind mounts and mount the following types

Linux man-pages 6.13 2025-01-11 3741

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

of filesystems:

• /proc (since Linux 3.8)
• /sys (since Linux 3.8)
• devpts (since Linux 3.9)
• tmpfs(5) (since Linux 3.9)
• ramfs (since Linux 3.9)
• mqueue (since Linux 3.9)
• bpf (since Linux 4.4)
• overlayfs (since Linux 5.11)

Holding CAP_SYS_ADMIN within the user namespace that owns a process’s cgroup
namespace allows (since Linux 4.6) that process to mount the cgroup version 2
filesystem and cgroup version 1 named hierarchies (i.e., cgroup filesystems mounted
with the "none,name=" option).

Holding CAP_SYS_ADMIN within the user namespace that owns a process’s PID
namespace allows (since Linux 3.8) that process to mount /proc filesystems.

Note, however, that mounting block-based filesystems can be done only by a process
that holds CAP_SYS_ADMIN in the initial user namespace.

Interaction of user namespaces and other types of namespaces
Since Linux 3.8, unprivileged processes can create user namespaces, and the other
types of namespaces can be created with just the CAP_SYS_ADMIN capability in
the caller’s user namespace.

When a nonuser namespace is created, it is owned by the user namespace in which the
creating process was a member at the time of the creation of the namespace. Privi-
leged operations on resources governed by the nonuser namespace require that the
process has the necessary capabilities in the user namespace that owns the nonuser
namespace.

If CLONE_NEWUSER is specified along with other CLONE_NEW* flags in a sin-
gle clone(2) or unshare(2) call, the user namespace is guaranteed to be created first,
giving the child (clone(2)) or caller (unshare(2)) privileges over the remaining name-
spaces created by the call. Thus, it is possible for an unprivileged caller to specify
this combination of flags.

When a new namespace (other than a user namespace) is created via clone(2) or un-
share(2), the kernel records the user namespace of the creating process as the owner
of the new namespace. (This association can’t be changed.) When a process in the
new namespace subsequently performs privileged operations that operate on global re-
sources isolated by the namespace, the permission checks are performed according to
the process’s capabilities in the user namespace that the kernel associated with the
new namespace. For example, suppose that a process attempts to change the host-
name (sethostname(2)), a resource governed by the UTS namespace. In this case, the
kernel will determine which user namespace owns the process’s UTS namespace, and
check whether the process has the required capability (CAP_SYS_ADMIN) in that
user namespace.

The NS_GET_USERNS ioctl(2) operation can be used to discover the user name-
space that owns a nonuser namespace; see ioctl_nsfs(2).

Linux man-pages 6.13 2025-01-11 3742

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

User and group ID mappings: uid_map and gid_map
When a user namespace is created, it starts out without a mapping of user IDs (group
IDs) to the parent user namespace. The /proc/ pid /uid_map and /proc/ pid /gid_map
files (available since Linux 3.5) expose the mappings for user and group IDs inside
the user namespace for the process pid . These files can be read to view the mappings
in a user namespace and written to (once) to define the mappings.

The description in the following paragraphs explains the details for uid_map;
gid_map is exactly the same, but each instance of "user ID" is replaced by "group
ID".

The uid_map file exposes the mapping of user IDs from the user namespace of the
process pid to the user namespace of the process that opened uid_map (but see a
qualification to this point below). In other words, processes that are in different user
namespaces will potentially see different values when reading from a particular
uid_map file, depending on the user ID mappings for the user namespaces of the read-
ing processes.

Each line in the uid_map file specifies a 1-to-1 mapping of a range of contiguous user
IDs between two user namespaces. (When a user namespace is first created, this file
is empty.) The specification in each line takes the form of three numbers delimited by
white space. The first two numbers specify the starting user ID in each of the two
user namespaces. The third number specifies the size of the mapped range. In detail,
the fields are interpreted as follows:

(1) The start of the range of user IDs in the user namespace of the process pid .

(2) The start of the range of user IDs to which the user IDs specified by field one
map. How field two is interpreted depends on whether the process that opened
uid_map and the process pid are in the same user namespace, as follows:

(a) If the two processes are in different user namespaces: field two is the start
of a range of user IDs in the user namespace of the process that opened
uid_map.

(b) If the two processes are in the same user namespace: field two is the start
of the range of user IDs in the parent user namespace of the process pid .
This case enables the opener of uid_map (the common case here is open-
ing /proc/self/uid_map) to see the mapping of user IDs into the user
namespace of the process that created this user namespace.

(3) The size of the range of user IDs that is mapped between the two user name-
spaces.

System calls that return user IDs (group IDs)—for example, getuid(2), getgid(2), and
the credential fields in the structure returned by stat(2)—return the user ID (group ID)
mapped into the caller’s user namespace.

When a process accesses a file, its user and group IDs are mapped into the initial user
namespace for the purpose of permission checking and assigning IDs when creating a
file. When a process retrieves file user and group IDs via stat(2), the IDs are mapped
in the opposite direction, to produce values relative to the process user and group ID
mappings.

The initial user namespace has no parent namespace, but, for consistency, the kernel

Linux man-pages 6.13 2025-01-11 3743

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

provides dummy user and group ID mapping files for this namespace. Looking at the
uid_map file (gid_map is the same) from a shell in the initial namespace shows:

$ cat /proc/$$/uid_map
0 0 4294967295

This mapping tells us that the range starting at user ID 0 in this namespace maps to a
range starting at 0 in the (nonexistent) parent namespace, and the size of the range is
the largest 32-bit unsigned integer. This leaves 4294967295 (the 32-bit signed -1
value) unmapped. This is deliberate: (uid_t) -1 is used in several interfaces (e.g., se-
treuid(2)) as a way to specify "no user ID". Leaving (uid_t) -1 unmapped and unus-
able guarantees that there will be no confusion when using these interfaces.

Defining user and group ID mappings: writing to uid_map and gid_map
After the creation of a new user namespace, the uid_map file of one of the processes
in the namespace may be written to once to define the mapping of user IDs in the new
user namespace. An attempt to write more than once to a uid_map file in a user
namespace fails with the error EPERM. Similar rules apply for gid_map files.

The lines written to uid_map (gid_map) must conform to the following validity rules:

• The three fields must be valid numbers, and the last field must be greater than 0.

• Lines are terminated by newline characters.

• There is a limit on the number of lines in the file. In Linux 4.14 and earlier, this
limit was (arbitrarily) set at 5 lines. Since Linux 4.15, the limit is 340 lines. In
addition, the number of bytes written to the file must be less than the system page
size, and the write must be performed at the start of the file (i.e., lseek(2) and
pwrite(2) can’t be used to write to nonzero offsets in the file).

• The range of user IDs (group IDs) specified in each line cannot overlap with the
ranges in any other lines. In the initial implementation (Linux 3.8), this require-
ment was satisfied by a simplistic implementation that imposed the further re-
quirement that the values in both field 1 and field 2 of successive lines must be in
ascending numerical order, which prevented some otherwise valid maps from be-
ing created. Linux 3.9 and later fix this limitation, allowing any valid set of
nonoverlapping maps.

• At least one line must be written to the file.

Writes that violate the above rules fail with the error EINVAL.

In order for a process to write to the /proc/ pid /uid_map (/proc/ pid /gid_map) file, all
of the following permission requirements must be met:

• The writing process must have the CAP_SETUID (CAP_SETGID) capability in
the user namespace of the process pid .

• The writing process must either be in the user namespace of the process pid or be
in the parent user namespace of the process pid .

• The mapped user IDs (group IDs) must in turn have a mapping in the parent user
namespace.

• If updating /proc/ pid /uid_map to create a mapping that maps UID 0 in the parent
namespace, then one of the following must be true:

Linux man-pages 6.13 2025-01-11 3744

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

(a) if writing process is in the parent user namespace, then it must have the
CAP_SETFCAP capability in that user namespace; or

(b) if the writing process is in the child user namespace, then the process that
created the user namespace must have had the CAP_SETFCAP capability
when the namespace was created.

This rule has been in place since Linux 5.12. It eliminates an earlier security bug
whereby a UID 0 process that lacks the CAP_SETFCAP capability, which is
needed to create a binary with namespaced file capabilities (as described in capa-
bilities(7)), could nevertheless create such a binary, by the following steps:

(1) Create a new user namespace with the identity mapping (i.e., UID 0 in the
new user namespace maps to UID 0 in the parent namespace), so that UID 0
in both namespaces is equivalent to the same root user ID.

(2) Since the child process has the CAP_SETFCAP capability, it could create a
binary with namespaced file capabilities that would then be effective in the
parent user namespace (because the root user IDs are the same in the two
namespaces).

• One of the following two cases applies:

(a) Either the writing process has the CAP_SETUID (CAP_SETGID) capa-
bility in the parent user namespace.

• No further restrictions apply: the process can make mappings to arbi-
trary user IDs (group IDs) in the parent user namespace.

(b) Or otherwise all of the following restrictions apply:

• The data written to uid_map (gid_map) must consist of a single line that
maps the writing process’s effective user ID (group ID) in the parent
user namespace to a user ID (group ID) in the user namespace.

• The writing process must have the same effective user ID as the process
that created the user namespace.

• In the case of gid_map, use of the setgroups(2) system call must first be
denied by writing "deny" to the /proc/ pid /setgroups file (see below) be-
fore writing to gid_map.

Writes that violate the above rules fail with the error EPERM.

Project ID mappings: projid_map
Similarly to user and group ID mappings, it is possible to create project ID mappings
for a user namespace. (Project IDs are used for disk quotas; see setquota(8) and quo-
tactl(2).)

Project ID mappings are defined by writing to the /proc/ pid /projid_map file (present
since Linux 3.7).

The validity rules for writing to the /proc/ pid /projid_map file are as for writing to the
uid_map file; violation of these rules causes write(2) to fail with the error EINVAL.

The permission rules for writing to the /proc/ pid /projid_map file are as follows:

Linux man-pages 6.13 2025-01-11 3745

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

• The writing process must either be in the user namespace of the process pid or be
in the parent user namespace of the process pid .

• The mapped project IDs must in turn have a mapping in the parent user name-
space.

Violation of these rules causes write(2) to fail with the error EPERM.

Interaction with system calls that change process UIDs or GIDs
In a user namespace where the uid_map file has not been written, the system calls that
change user IDs will fail. Similarly, if the gid_map file has not been written, the sys-
tem calls that change group IDs will fail. After the uid_map and gid_map files have
been written, only the mapped values may be used in system calls that change user
and group IDs.

For user IDs, the relevant system calls include setuid(2), setfsuid(2), setreuid(2), and
setresuid(2). For group IDs, the relevant system calls include setgid(2), setfsgid(2),
setregid(2), setresgid(2), and setgroups(2).

Writing "deny" to the /proc/ pid /setgroups file before writing to /proc/ pid /gid_map
will permanently disable setgroups(2) in a user namespace and allow writing to
/proc/ pid /gid_map without having the CAP_SETGID capability in the parent user
namespace.

The /proc/pid/setgroups file
The /proc/ pid /setgroups file displays the string "allow" if processes in the user name-
space that contains the process pid are permitted to employ the setgroups(2) system
call; it displays "deny" if setgroups(2) is not permitted in that user namespace. Note
that regardless of the value in the /proc/ pid /setgroups file (and regardless of the
process’s capabilities), calls to setgroups(2) are also not permitted if
/proc/ pid /gid_map has not yet been set.

A privileged process (one with the CAP_SYS_ADMIN capability in the namespace)
may write either of the strings "allow" or "deny" to this file before writing a group ID
mapping for this user namespace to the file /proc/ pid /gid_map. Writing the string
"deny" prevents any process in the user namespace from employing setgroups(2).

The essence of the restrictions described in the preceding paragraph is that it is per-
mitted to write to /proc/ pid /setgroups only so long as calling setgroups(2) is disal-
lowed because /proc/ pid /gid_map has not been set. This ensures that a process can-
not transition from a state where setgroups(2) is allowed to a state where setgroups(2)
is denied; a process can transition only from setgroups(2) being disallowed to set-
groups(2) being allowed.

The default value of this file in the initial user namespace is "allow".

Once /proc/ pid /gid_map has been written to (which has the effect of enabling set-
groups(2) in the user namespace), it is no longer possible to disallow setgroups(2) by
writing "deny" to /proc/ pid /setgroups (the write fails with the error EPERM).

A child user namespace inherits the /proc/ pid /setgroups setting from its parent.

If the setgroups file has the value "deny", then the setgroups(2) system call can’t sub-
sequently be reenabled (by writing "allow" to the file) in this user namespace. (At-
tempts to do so fail with the error EPERM.) This restriction also propagates down to
all child user namespaces of this user namespace.

Linux man-pages 6.13 2025-01-11 3746

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

The /proc/ pid /setgroups file was added in Linux 3.19, but was backported to many
earlier stable kernel series, because it addresses a security issue. The issue concerned
files with permissions such as "rwx---rwx". Such files give fewer permissions to
"group" than they do to "other". This means that dropping groups using setgroups(2)
might allow a process file access that it did not formerly have. Before the existence of
user namespaces this was not a concern, since only a privileged process (one with the
CAP_SETGID capability) could call setgroups(2). However, with the introduction of
user namespaces, it became possible for an unprivileged process to create a new
namespace in which the user had all privileges. This then allowed formerly unprivi-
leged users to drop groups and thus gain file access that they did not previously have.
The /proc/ pid /setgroups file was added to address this security issue, by denying any
pathway for an unprivileged process to drop groups with setgroups(2).

Unmapped user and group IDs
There are various places where an unmapped user ID (group ID) may be exposed to
user space. For example, the first process in a new user namespace may call getuid(2)
before a user ID mapping has been defined for the namespace. In most such cases, an
unmapped user ID is converted to the overflow user ID (group ID); the default value
for the overflow user ID (group ID) is 65534. See the descriptions of /proc/sys/ker-
nel/overflowuid and /proc/sys/kernel/overflowgid in proc(5).

The cases where unmapped IDs are mapped in this fashion include system calls that
return user IDs (getuid(2), getgid(2), and similar), credentials passed over a UNIX
domain socket, credentials returned by stat(2), waitid(2), and the System V IPC "ctl"
IPC_STAT operations, credentials exposed by /proc/ pid /status and the files in
/proc/sysvipc/*, credentials returned via the si_uid field in the siginfo_t received with
a signal (see sigaction(2)), credentials written to the process accounting file (see
acct(5)), and credentials returned with POSIX message queue notifications (see
mq_notify(3)).

There is one notable case where unmapped user and group IDs are not converted to
the corresponding overflow ID value. When viewing a uid_map or gid_map file in
which there is no mapping for the second field, that field is displayed as 4294967295
(-1 as an unsigned integer).

Accessing files
In order to determine permissions when an unprivileged process accesses a file, the
process credentials (UID, GID) and the file credentials are in effect mapped back to
what they would be in the initial user namespace and then compared to determine the
permissions that the process has on the file. The same is also true of other objects that
employ the credentials plus permissions mask accessibility model, such as System V
IPC objects.

Operation of file-related capabilities
Certain capabilities allow a process to bypass various kernel-enforced restrictions
when performing operations on files owned by other users or groups. These capabili-
ties are: CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_DAC_READ_SEARCH,
CAP_FOWNER, and CAP_FSETID.

Within a user namespace, these capabilities allow a process to bypass the rules if the
process has the relevant capability over the file, meaning that:

Linux man-pages 6.13 2025-01-11 3747

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

• the process has the relevant effective capability in its user namespace; and

• the file’s user ID and group ID both have valid mappings in the user namespace.

The CAP_FOWNER capability is treated somewhat exceptionally: it allows a
process to bypass the corresponding rules so long as at least the file’s user ID has a
mapping in the user namespace (i.e., the file’s group ID does not need to have a valid
mapping).

Set-user-ID and set-group-ID programs
When a process inside a user namespace executes a set-user-ID (set-group-ID) pro-
gram, the process’s effective user (group) ID inside the namespace is changed to
whatever value is mapped for the user (group) ID of the file. However, if either the
user or the group ID of the file has no mapping inside the namespace, the set-user-ID
(set-group-ID) bit is silently ignored: the new program is executed, but the process’s
effective user (group) ID is left unchanged. (This mirrors the semantics of executing a
set-user-ID or set-group-ID program that resides on a filesystem that was mounted
with the MS_NOSUID flag, as described in mount(2).)

Miscellaneous
When a process’s user and group IDs are passed over a UNIX domain socket to a
process in a different user namespace (see the description of SCM_CREDENTIALS
in unix(7)), they are translated into the corresponding values as per the receiving
process’s user and group ID mappings.

STANDARDS
Linux.

NOTES
Over the years, there have been a lot of features that have been added to the Linux
kernel that have been made available only to privileged users because of their poten-
tial to confuse set-user-ID-root applications. In general, it becomes safe to allow the
root user in a user namespace to use those features because it is impossible, while in a
user namespace, to gain more privilege than the root user of a user namespace has.

Global root
The term "global root" is sometimes used as a shorthand for user ID 0 in the initial
user namespace.

Availability
Use of user namespaces requires a kernel that is configured with the CON-
FIG_USER_NS option. User namespaces require support in a range of subsystems
across the kernel. When an unsupported subsystem is configured into the kernel, it is
not possible to configure user namespaces support.

As at Linux 3.8, most relevant subsystems supported user namespaces, but a number
of filesystems did not have the infrastructure needed to map user and group IDs be-
tween user namespaces. Linux 3.9 added the required infrastructure support for many
of the remaining unsupported filesystems (Plan 9 (9P), Andrew File System (AFS),
Ceph, CIFS, CODA, NFS, and OCFS2). Linux 3.12 added support for the last of the
unsupported major filesystems, XFS.

EXAMPLES
The program below is designed to allow experimenting with user namespaces, as well
as other types of namespaces. It creates namespaces as specified by command-line

Linux man-pages 6.13 2025-01-11 3748

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

options and then executes a command inside those namespaces. The comments and
usage() function inside the program provide a full explanation of the program. The
following shell session demonstrates its use.

First, we look at the run-time environment:

$ uname -rs # Need Linux 3.8 or later
Linux 3.8.0
$ id -u # Running as unprivileged user
1000
$ id -g
1000

Now start a new shell in new user (-U), mount (-m), and PID (-p) namespaces, with
user ID (-M) and group ID (-G) 1000 mapped to 0 inside the user namespace:

$./userns_child_exec -p -m -U -M '0 1000 1' -G '0 1000 1' bash

The shell has PID 1, because it is the first process in the new PID namespace:

bash$ echo $$
1

Mounting a new /proc filesystem and listing all of the processes visible in the new
PID namespace shows that the shell can’t see any processes outside the PID name-
space:

bash$ mount -t proc proc /proc
bash$ ps ax

PID TTY STAT TIME COMMAND
1 pts/3 S 0:00 bash

22 pts/3 R+ 0:00 ps ax

Inside the user namespace, the shell has user and group ID 0, and a full set of permit-
ted and effective capabilities:

bash$ cat /proc/$$/status | egrep '^[UG]id'
Uid: 0 0 0 0
Gid: 0 0 0 0
bash$ cat /proc/$$/status | egrep '^Cap(Prm|Inh|Eff)'
CapInh: 0000000000000000
CapPrm: 0000001fffffffff
CapEff: 0000001fffffffff

Program source

/* userns_child_exec.c

Licensed under GNU General Public License v2 or later

Create a child process that executes a shell command in new
namespace(s); allow UID and GID mappings to be specified when
creating a user namespace.

*/
#define _GNU_SOURCE

Linux man-pages 6.13 2025-01-11 3749

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

#include <err.h>
#include <sched.h>
#include <unistd.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <signal.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <errno.h>

struct child_args {
char **argv; /* Command to be executed by child, with args */
int pipe_fd[2]; /* Pipe used to synchronize parent and child */

};

static int verbose;

static void
usage(char *pname)
{

fprintf(stderr, "Usage: %s [options] cmd [arg...]\n\n", pname);
fprintf(stderr, "Create a child process that executes a shell "

"command in a new user namespace,\n"
"and possibly also other new namespace(s).\n\n");

fprintf(stderr, "Options can be:\n\n");
#define fpe(str) fprintf(stderr, " %s", str);

fpe("-i New IPC namespace\n");
fpe("-m New mount namespace\n");
fpe("-n New network namespace\n");
fpe("-p New PID namespace\n");
fpe("-u New UTS namespace\n");
fpe("-U New user namespace\n");
fpe("-M uid_map Specify UID map for user namespace\n");
fpe("-G gid_map Specify GID map for user namespace\n");
fpe("-z Map user's UID and GID to 0 in user namespace\n");
fpe(" (equivalent to: -M '0 <uid> 1' -G '0 <gid> 1')\n");
fpe("-v Display verbose messages\n");
fpe("\n");
fpe("If -z, -M, or -G is specified, -U is required.\n");
fpe("It is not permitted to specify both -z and either -M or -G.\n");
fpe("\n");
fpe("Map strings for -M and -G consist of records of the form:\n");
fpe("\n");
fpe(" ID-inside-ns ID-outside-ns size\n");
fpe("\n");
fpe("A map string can contain multiple records, separated"

Linux man-pages 6.13 2025-01-11 3750

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

" by commas;\n");
fpe("the commas are replaced by newlines before writing"

" to map files.\n");

exit(EXIT_FAILURE);
}

/* Update the mapping file 'map_file', with the value provided in
'mapping', a string that defines a UID or GID mapping. A UID or
GID mapping consists of one or more newline-delimited records
of the form:

ID_inside-ns ID-outside-ns size

Requiring the user to supply a string that contains newlines is
of course inconvenient for command-line use. Thus, we permit the
use of commas to delimit records in this string, and replace them
with newlines before writing the string to the file. */

static void
update_map(char *mapping, char *map_file)
{

int fd;
size_t map_len; /* Length of 'mapping' */

/* Replace commas in mapping string with newlines. */

map_len = strlen(mapping);
for (size_t j = 0; j < map_len; j++)

if (mapping[j] == ',')
mapping[j] = '\n';

fd = open(map_file, O_RDWR);
if (fd == -1) {

fprintf(stderr, "ERROR: open %s: %s\n", map_file,
strerror(errno));

exit(EXIT_FAILURE);
}

if (write(fd, mapping, map_len) != map_len) {
fprintf(stderr, "ERROR: write %s: %s\n", map_file,

strerror(errno));
exit(EXIT_FAILURE);

}

close(fd);
}

/* Linux 3.19 made a change in the handling of setgroups(2) and

Linux man-pages 6.13 2025-01-11 3751

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

the 'gid_map' file to address a security issue. The issue
allowed *unprivileged* users to employ user namespaces in
order to drop groups. The upshot of the 3.19 changes is that
in order to update the 'gid_maps' file, use of the setgroups()
system call in this user namespace must first be disabled by
writing "deny" to one of the /proc/PID/setgroups files for
this namespace. That is the purpose of the following function. */

static void
proc_setgroups_write(pid_t child_pid, char *str)
{

char setgroups_path[PATH_MAX];
int fd;

snprintf(setgroups_path, PATH_MAX, "/proc/%jd/setgroups",
(intmax_t) child_pid);

fd = open(setgroups_path, O_RDWR);
if (fd == -1) {

/* We may be on a system that doesn't support
/proc/PID/setgroups. In that case, the file won't exist,
and the system won't impose the restrictions that Linux 3.19
added. That's fine: we don't need to do anything in order
to permit 'gid_map' to be updated.

However, if the error from open() was something other than
the ENOENT error that is expected for that case, let the
user know. */

if (errno != ENOENT)
fprintf(stderr, "ERROR: open %s: %s\n", setgroups_path,

strerror(errno));
return;

}

if (write(fd, str, strlen(str)) == -1)
fprintf(stderr, "ERROR: write %s: %s\n", setgroups_path,

strerror(errno));

close(fd);
}

static int /* Start function for cloned child */
childFunc(void *arg)
{

struct child_args *args = arg;
char ch;

Linux man-pages 6.13 2025-01-11 3752

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

/* Wait until the parent has updated the UID and GID mappings.
See the comment in main(). We wait for end of file on a
pipe that will be closed by the parent process once it has
updated the mappings. */

close(args->pipe_fd[1]); /* Close our descriptor for the write
end of the pipe so that we see EOF
when parent closes its descriptor. */

if (read(args->pipe_fd[0], &ch, 1) != 0) {
fprintf(stderr,

"Failure in child: read from pipe returned != 0\n");
exit(EXIT_FAILURE);

}

close(args->pipe_fd[0]);

/* Execute a shell command. */

printf("About to exec %s\n", args->argv[0]);
execvp(args->argv[0], args->argv);
err(EXIT_FAILURE, "execvp");

}

#define STACK_SIZE (1024 * 1024)

static char child_stack[STACK_SIZE]; /* Space for child's stack */

int
main(int argc, char *argv[])
{

int flags, opt, map_zero;
pid_t child_pid;
struct child_args args;
char *uid_map, *gid_map;
const int MAP_BUF_SIZE = 100;
char map_buf[MAP_BUF_SIZE];
char map_path[PATH_MAX];

/* Parse command-line options. The initial '+' character in
the final getopt() argument prevents GNU-style permutation
of command-line options. That's useful, since sometimes
the 'command' to be executed by this program itself
has command-line options. We don't want getopt() to treat
those as options to this program. */

flags = 0;
verbose = 0;
gid_map = NULL;
uid_map = NULL;

Linux man-pages 6.13 2025-01-11 3753

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

map_zero = 0;
while ((opt = getopt(argc, argv, "+imnpuUM:G:zv")) != -1) {

switch (opt) {
case 'i': flags |= CLONE_NEWIPC; break;
case 'm': flags |= CLONE_NEWNS; break;
case 'n': flags |= CLONE_NEWNET; break;
case 'p': flags |= CLONE_NEWPID; break;
case 'u': flags |= CLONE_NEWUTS; break;
case 'v': verbose = 1; break;
case 'z': map_zero = 1; break;
case 'M': uid_map = optarg; break;
case 'G': gid_map = optarg; break;
case 'U': flags |= CLONE_NEWUSER; break;
default: usage(argv[0]);
}

}

/* -M or -G without -U is nonsensical */

if (((uid_map != NULL || gid_map != NULL || map_zero) &&
!(flags & CLONE_NEWUSER)) ||

(map_zero && (uid_map != NULL || gid_map != NULL)))
usage(argv[0]);

args.argv = &argv[optind];

/* We use a pipe to synchronize the parent and child, in order to
ensure that the parent sets the UID and GID maps before the child
calls execve(). This ensures that the child maintains its
capabilities during the execve() in the common case where we
want to map the child's effective user ID to 0 in the new user
namespace. Without this synchronization, the child would lose
its capabilities if it performed an execve() with nonzero
user IDs (see the capabilities(7) man page for details of the
transformation of a process's capabilities during execve()). */

if (pipe(args.pipe_fd) == -1)
err(EXIT_FAILURE, "pipe");

/* Create the child in new namespace(s). */

child_pid = clone(childFunc, child_stack + STACK_SIZE,
flags | SIGCHLD, &args);

if (child_pid == -1)
err(EXIT_FAILURE, "clone");

/* Parent falls through to here. */

if (verbose)

Linux man-pages 6.13 2025-01-11 3754

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

printf("%s: PID of child created by clone() is %jd\n",
argv[0], (intmax_t) child_pid);

/* Update the UID and GID maps in the child. */

if (uid_map != NULL || map_zero) {
snprintf(map_path, PATH_MAX, "/proc/%jd/uid_map",

(intmax_t) child_pid);
if (map_zero) {

snprintf(map_buf, MAP_BUF_SIZE, "0 %jd 1",
(intmax_t) getuid());

uid_map = map_buf;
}
update_map(uid_map, map_path);

}

if (gid_map != NULL || map_zero) {
proc_setgroups_write(child_pid, "deny");

snprintf(map_path, PATH_MAX, "/proc/%jd/gid_map",
(intmax_t) child_pid);

if (map_zero) {
snprintf(map_buf, MAP_BUF_SIZE, "0 %ld 1",

(intmax_t) getgid());
gid_map = map_buf;

}
update_map(gid_map, map_path);

}

/* Close the write end of the pipe, to signal to the child that we
have updated the UID and GID maps. */

close(args.pipe_fd[1]);

if (waitpid(child_pid, NULL, 0) == -1) /* Wait for child */
err(EXIT_FAILURE, "waitpid");

if (verbose)
printf("%s: terminating\n", argv[0]);

exit(EXIT_SUCCESS);
}

SEE ALSO
newgidmap(1), newuidmap(1), clone(2), ptrace(2), setns(2), unshare(2), proc(5), sub-
gid(5), subuid(5), capabilities(7), cgroup_namespaces(7), credentials(7), name-
spaces(7), pid_namespaces(7)

The kernel source file Documentation/admin-guide/namespaces/resource-control.rst.

Linux man-pages 6.13 2025-01-11 3755

UTF-8(7) Miscellaneous Information Manual UTF-8(7)

NAME
UTF-8 - an ASCII compatible multibyte Unicode encoding

DESCRIPTION
The Unicode 3.0 character set occupies a 16-bit code space. The most obvious Uni-
code encoding (known as UCS-2) consists of a sequence of 16-bit words. Such
strings can contain—as part of many 16-bit characters—bytes such as '\0' or '/', which
have a special meaning in filenames and other C library function arguments. In addi-
tion, the majority of UNIX tools expect ASCII files and can’t read 16-bit words as
characters without major modifications. For these reasons, UCS-2 is not a suitable ex-
ternal encoding of Unicode in filenames, text files, environment variables, and so on.
The ISO/IEC 10646 Universal Character Set (UCS), a superset of Unicode, occupies
an even larger code space—31 bits—and the obvious UCS-4 encoding for it (a se-
quence of 32-bit words) has the same problems.

The UTF-8 encoding of Unicode and UCS does not have these problems and is the
common way in which Unicode is used on UNIX-style operating systems.

Properties
The UTF-8 encoding has the following nice properties:

• UCS characters 0x00000000 to 0x0000007f (the classic US-ASCII characters) are
encoded simply as bytes 0x00 to 0x7f (ASCII compatibility). This means that
files and strings which contain only 7-bit ASCII characters have the same encod-
ing under both ASCII and UTF-8.

• All UCS characters greater than 0x7f are encoded as a multibyte sequence consist-
ing only of bytes in the range 0x80 to 0xfd, so no ASCII byte can appear as part of
another character and there are no problems with, for example, '\0' or '/'.

• The lexicographic sorting order of UCS-4 strings is preserved.

• All possible 2^31 UCS codes can be encoded using UTF-8.

• The bytes 0xc0, 0xc1, 0xfe, and 0xff are never used in the UTF-8 encoding.

• The first byte of a multibyte sequence which represents a single non-ASCII UCS
character is always in the range 0xc2 to 0xfd and indicates how long this multi-
byte sequence is. All further bytes in a multibyte sequence are in the range 0x80
to 0xbf. This allows easy resynchronization and makes the encoding stateless and
robust against missing bytes.

• UTF-8 encoded UCS characters may be up to six bytes long, however the Unicode
standard specifies no characters above 0x10ffff, so Unicode characters can be only
up to four bytes long in UTF-8.

Encoding
The following byte sequences are used to represent a character. The sequence to be
used depends on the UCS code number of the character:

0x00000000 - 0x0000007F:
0xxxxxxx

0x00000080 - 0x000007FF:
110xxxxx 10xxxxxx

Linux man-pages 6.13 2024-06-15 3756

UTF-8(7) Miscellaneous Information Manual UTF-8(7)

0x00000800 - 0x0000FFFF:
1110xxxx 10xxxxxx 10xxxxxx

0x00010000 - 0x001FFFFF:
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

0x00200000 - 0x03FFFFFF:
111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

0x04000000 - 0x7FFFFFFF:
1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

The xxx bit positions are filled with the bits of the character code number in binary
representation, most significant bit first (big-endian). Only the shortest possible
multibyte sequence which can represent the code number of the character can be used.

The UCS code values 0xd800–0xdfff (UTF-16 surrogates) as well as 0xfffe and 0xffff
(UCS noncharacters) should not appear in conforming UTF-8 streams. According to
RFC 3629 no point above U+10FFFF should be used, which limits characters to four
bytes.

Example
The Unicode character 0xa9 = 1010 1001 (the copyright sign) is encoded in UTF-8 as

11000010 10101001 = 0xc2 0xa9

and character 0x2260 = 0010 0010 0110 0000 (the "not equal" symbol) is encoded as:

11100010 10001001 10100000 = 0xe2 0x89 0xa0

Application notes
Users have to select a UTF-8 locale, for example with

export LANG=en_GB.UTF-8

in order to activate the UTF-8 support in applications.

Application software that has to be aware of the used character encoding should al-
ways set the locale with for example

setlocale(LC_CTYPE, "")

and programmers can then test the expression

strcmp(nl_langinfo(CODESET), "UTF-8") == 0

to determine whether a UTF-8 locale has been selected and whether therefore all
plaintext standard input and output, terminal communication, plaintext file content,
filenames, and environment variables are encoded in UTF-8.

Programmers accustomed to single-byte encodings such as US-ASCII or
ISO/IEC 8859 have to be aware that two assumptions made so far are no longer valid
in UTF-8 locales. Firstly, a single byte does not necessarily correspond any more to a
single character. Secondly, since modern terminal emulators in UTF-8 mode also sup-
port Chinese, Japanese, and Korean double-width characters as well as nonspacing
combining characters, outputting a single character does not necessarily advance the
cursor by one position as it did in ASCII. Library functions such as mbsrtowcs(3) and
wcswidth(3) should be used today to count characters and cursor positions.

The official ESC sequence to switch from an ISO/IEC 2022 encoding scheme (as used

Linux man-pages 6.13 2024-06-15 3757

UTF-8(7) Miscellaneous Information Manual UTF-8(7)

for instance by VT100 terminals) to UTF-8 is ESC % G ("\x1b%G"). The corre-
sponding return sequence from UTF-8 to ISO/IEC 2022 is ESC % @ ("\x1b%@").
Other ISO/IEC 2022 sequences (such as for switching the G0 and G1 sets) are not ap-
plicable in UTF-8 mode.

Security
The Unicode and UCS standards require that producers of UTF-8 shall use the short-
est form possible, for example, producing a two-byte sequence with first byte 0xc0 is
nonconforming. Unicode 3.1 has added the requirement that conforming programs
must not accept non-shortest forms in their input. This is for security reasons: if user
input is checked for possible security violations, a program might check only for the
ASCII version of "/../" or ";" or NUL and overlook that there are many non-ASCII
ways to represent these things in a non-shortest UTF-8 encoding.

Standards
ISO/IEC 10646-1:2000, Unicode 3.1, RFC 3629, Plan 9.

SEE ALSO
locale(1), nl_langinfo(3), setlocale(3), charsets(7), unicode(7)

Linux man-pages 6.13 2024-06-15 3758

uts_namespaces(7) Miscellaneous Information Manual uts_namespaces(7)

NAME
uts_namespaces - overview of Linux UTS namespaces

DESCRIPTION
UTS namespaces provide isolation of two system identifiers: the hostname and the
NIS domain name. These identifiers are set using sethostname(2) and setdomain-
name(2), and can be retrieved using uname(2), gethostname(2), and getdomain-
name(2). Changes made to these identifiers are visible to all other processes in the
same UTS namespace, but are not visible to processes in other UTS namespaces.

When a process creates a new UTS namespace using clone(2) or unshare(2) with the
CLONE_NEWUTS flag, the hostname and domain name of the new UTS namespace
are copied from the corresponding values in the caller’s UTS namespace.

Use of UTS namespaces requires a kernel that is configured with the CON-
FIG_UTS_NS option.

SEE ALSO
nsenter(1), unshare(1), clone(2), getdomainname(2), gethostname(2), setns(2), un-
ame(2), unshare(2), namespaces(7)

Linux man-pages 6.13 2024-05-02 3759

vDSO(7) Miscellaneous Information Manual vDSO(7)

NAME
vdso - overview of the virtual ELF dynamic shared object

SYNOPSIS
#include <sys/auxv.h>

void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);

DESCRIPTION
The "vDSO" (virtual dynamic shared object) is a small shared library that the kernel
automatically maps into the address space of all user-space applications. Applications
usually do not need to concern themselves with these details as the vDSO is most
commonly called by the C library. This way you can code in the normal way using
standard functions and the C library will take care of using any functionality that is
available via the vDSO.

Why does the vDSO exist at all? There are some system calls the kernel provides that
user-space code ends up using frequently, to the point that such calls can dominate
overall performance. This is due both to the frequency of the call as well as the con-
text-switch overhead that results from exiting user space and entering the kernel.

The rest of this documentation is geared toward the curious and/or C library writers
rather than general developers. If you’re trying to call the vDSO in your own applica-
tion rather than using the C library, you’re most likely doing it wrong.

Example background
Making system calls can be slow. In x86 32-bit systems, you can trigger a software
interrupt (int $0x80) to tell the kernel you wish to make a system call. However, this
instruction is expensive: it goes through the full interrupt-handling paths in the
processor’s microcode as well as in the kernel. Newer processors have faster (but
backward incompatible) instructions to initiate system calls. Rather than require the
C library to figure out if this functionality is available at run time, the C library can
use functions provided by the kernel in the vDSO.

Note that the terminology can be confusing. On x86 systems, the vDSO function
used to determine the preferred method of making a system call is named "__ker-
nel_vsyscall", but on x86-64, the term "vsyscall" also refers to an obsolete way to ask
the kernel what time it is or what CPU the caller is on.

One frequently used system call is gettimeofday(2). This system call is called both di-
rectly by user-space applications as well as indirectly by the C library. Think time-
stamps or timing loops or polling—all of these frequently need to know what time it
is right now. This information is also not secret—any application in any privilege
mode (root or any unprivileged user) will get the same answer. Thus the kernel
arranges for the information required to answer this question to be placed in memory
the process can access. Now a call to gettimeofday(2) changes from a system call to a
normal function call and a few memory accesses.

Finding the vDSO
The base address of the vDSO (if one exists) is passed by the kernel to each program
in the initial auxiliary vector (see getauxval(3)), via the AT_SYSINFO_EHDR tag.

You must not assume the vDSO is mapped at any particular location in the user’s
memory map. The base address will usually be randomized at run time every time a
new process image is created (at execve(2) time). This is done for security reasons, to

Linux man-pages 6.13 2024-05-02 3760

vDSO(7) Miscellaneous Information Manual vDSO(7)

prevent "return-to-libc" attacks.

For some architectures, there is also an AT_SYSINFO tag. This is used only for lo-
cating the vsyscall entry point and is frequently omitted or set to 0 (meaning it’s not
available). This tag is a throwback to the initial vDSO work (see History below) and
its use should be avoided.

File format
Since the vDSO is a fully formed ELF image, you can do symbol lookups on it. This
allows new symbols to be added with newer kernel releases, and allows the C library
to detect available functionality at run time when running under different kernel ver-
sions. Oftentimes the C library will do detection with the first call and then cache the
result for subsequent calls.

All symbols are also versioned (using the GNU version format). This allows the ker-
nel to update the function signature without breaking backward compatibility. This
means changing the arguments that the function accepts as well as the return value.
Thus, when looking up a symbol in the vDSO, you must always include the version to
match the ABI you expect.

Typically the vDSO follows the naming convention of prefixing all symbols with
"__vdso_" or "__kernel_" so as to distinguish them from other standard symbols. For
example, the "gettimeofday" function is named "__vdso_gettimeofday".

You use the standard C calling conventions when calling any of these functions. No
need to worry about weird register or stack behavior.

NOTES
Source

When you compile the kernel, it will automatically compile and link the vDSO code
for you. You will frequently find it under the architecture-specific directory:

find arch/$ARCH/ -name '*vdso*.so*' -o -name '*gate*.so*'

vDSO names
The name of the vDSO varies across architectures. It will often show up in things like
glibc’s ldd(1) output. The exact name should not matter to any code, so do not hard-
code it.
user ABI vDSO name

aarch64 linux-vdso.so.1
arm linux-vdso.so.1
ia64 linux-gate.so.1
mips linux-vdso.so.1
ppc/32 linux-vdso32.so.1
ppc/64 linux-vdso64.so.1
riscv linux-vdso.so.1
s390 linux-vdso32.so.1
s390x linux-vdso64.so.1
sh linux-gate.so.1
i386 linux-gate.so.1
x86-64 linux-vdso.so.1
x86/x32 linux-vdso.so.1

Linux man-pages 6.13 2024-05-02 3761

vDSO(7) Miscellaneous Information Manual vDSO(7)

strace(1), seccomp(2), and the vDSO
When tracing system calls with strace(1), symbols (system calls) that are exported by
the vDSO will not appear in the trace output. Those system calls will likewise not be
visible to seccomp(2) filters.

ARCHITECTURE-SPECIFIC NOTES
The subsections below provide architecture-specific notes on the vDSO.

Note that the vDSO that is used is based on the ABI of your user-space code and not
the ABI of the kernel. Thus, for example, when you run an i386 32-bit ELF binary,
you’ll get the same vDSO regardless of whether you run it under an i386 32-bit kernel
or under an x86-64 64-bit kernel. Therefore, the name of the user-space ABI should
be used to determine which of the sections below is relevant.

ARM functions
The table below lists the symbols exported by the vDSO.
symbol version

__vdso_gettimeofday LINUX_2.6 (exported since Linux 4.1)
__vdso_clock_gettime LINUX_2.6 (exported since Linux 4.1)

Additionally, the ARM port has a code page full of utility functions. Since it’s just a
raw page of code, there is no ELF information for doing symbol lookups or version-
ing. It does provide support for different versions though.

For information on this code page, it’s best to refer to the kernel documentation as it’s
extremely detailed and covers everything you need to know: Documentation/arm/ker-
nel_user_helpers.rst.

aarch64 functions
The table below lists the symbols exported by the vDSO.
symbol version

__kernel_rt_sigreturn LINUX_2.6.39
__kernel_gettimeofday LINUX_2.6.39
__kernel_clock_gettime LINUX_2.6.39
__kernel_clock_getres LINUX_2.6.39

bfin (Blackfin) functions (port removed in Linux 4.17)
As this CPU lacks a memory management unit (MMU), it doesn’t set up a vDSO in
the normal sense. Instead, it maps at boot time a few raw functions into a fixed loca-
tion in memory. User-space applications then call directly into that region. There is
no provision for backward compatibility beyond sniffing raw opcodes, but as this is an
embedded CPU, it can get away with things—some of the object formats it runs aren’t
even ELF based (they’re bFLT/FLAT).

For information on this code page, it’s best to refer to the public documentation:
http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:fixed-code

mips functions
The table below lists the symbols exported by the vDSO.
symbol version

__kernel_gettimeofday LINUX_2.6 (exported since Linux 4.4)

Linux man-pages 6.13 2024-05-02 3762

vDSO(7) Miscellaneous Information Manual vDSO(7)

__kernel_clock_gettime LINUX_2.6 (exported since Linux 4.4)

ia64 (Itanium) functions
The table below lists the symbols exported by the vDSO.
symbol version

__kernel_sigtramp LINUX_2.5
__kernel_syscall_via_break LINUX_2.5
__kernel_syscall_via_epc LINUX_2.5

The Itanium port is somewhat tricky. In addition to the vDSO above, it also has
"light-weight system calls" (also known as "fast syscalls" or "fsys"). You can invoke
these via the __kernel_syscall_via_epc vDSO helper. The system calls listed here
have the same semantics as if you called them directly via syscall(2), so refer to the
relevant documentation for each. The table below lists the functions available via this
mechanism.
function

clock_gettime
getcpu
getpid
getppid
gettimeofday
set_tid_address

parisc (hppa) functions
The parisc port has a code page with utility functions called a gateway page. Rather
than use the normal ELF auxiliary vector approach, it passes the address of the page
to the process via the SR2 register. The permissions on the page are such that merely
executing those addresses automatically executes with kernel privileges and not in
user space. This is done to match the way HP-UX works.

Since it’s just a raw page of code, there is no ELF information for doing symbol
lookups or versioning. Simply call into the appropriate offset via the branch instruc-
tion, for example:

ble <offset>(%sr2, %r0)

offset function

00b0 lws_entry (CAS operations)
00e0 set_thread_pointer (used by glibc)
0100 linux_gateway_entry (syscall)

ppc/32 functions
The table below lists the symbols exported by the vDSO. The functions marked with
a * are available only when the kernel is a PowerPC64 (64-bit) kernel.
symbol version

__kernel_clock_getres LINUX_2.6.15
__kernel_clock_gettime LINUX_2.6.15

Linux man-pages 6.13 2024-05-02 3763

vDSO(7) Miscellaneous Information Manual vDSO(7)

__kernel_clock_gettime64 LINUX_5.11
__kernel_datapage_offset LINUX_2.6.15
__kernel_get_syscall_map LINUX_2.6.15
__kernel_get_tbfreq LINUX_2.6.15
__kernel_getcpu * LINUX_2.6.15
__kernel_gettimeofday LINUX_2.6.15
__kernel_sigtramp_rt32 LINUX_2.6.15
__kernel_sigtramp32 LINUX_2.6.15
__kernel_sync_dicache LINUX_2.6.15
__kernel_sync_dicache_p5 LINUX_2.6.15

Before Linux 5.6, the CLOCK_REALTIME_COARSE and CLOCK_MONOTO-
NIC_COARSE clocks are not supported by the __kernel_clock_getres and __ker-
nel_clock_gettime interfaces; the kernel falls back to the real system call.

ppc/64 functions
The table below lists the symbols exported by the vDSO.
symbol version

__kernel_clock_getres LINUX_2.6.15
__kernel_clock_gettime LINUX_2.6.15
__kernel_datapage_offset LINUX_2.6.15
__kernel_get_syscall_map LINUX_2.6.15
__kernel_get_tbfreq LINUX_2.6.15
__kernel_getcpu LINUX_2.6.15
__kernel_gettimeofday LINUX_2.6.15
__kernel_sigtramp_rt64 LINUX_2.6.15
__kernel_sync_dicache LINUX_2.6.15
__kernel_sync_dicache_p5 LINUX_2.6.15

Before Linux 4.16, the CLOCK_REALTIME_COARSE and CLOCK_MONOTO-
NIC_COARSE clocks are not supported by the __kernel_clock_getres and __ker-
nel_clock_gettime interfaces; the kernel falls back to the real system call.

riscv functions
The table below lists the symbols exported by the vDSO.
symbol version

__vdso_rt_sigreturn LINUX_4.15
__vdso_gettimeofday LINUX_4.15
__vdso_clock_gettime LINUX_4.15
__vdso_clock_getres LINUX_4.15
__vdso_getcpu LINUX_4.15
__vdso_flush_icache LINUX_4.15

s390 functions
The table below lists the symbols exported by the vDSO.
symbol version

__kernel_clock_getres LINUX_2.6.29

Linux man-pages 6.13 2024-05-02 3764

vDSO(7) Miscellaneous Information Manual vDSO(7)

__kernel_clock_gettime LINUX_2.6.29
__kernel_gettimeofday LINUX_2.6.29

s390x functions
The table below lists the symbols exported by the vDSO.
symbol version

__kernel_clock_getres LINUX_2.6.29
__kernel_clock_gettime LINUX_2.6.29
__kernel_gettimeofday LINUX_2.6.29

sh (SuperH) functions
The table below lists the symbols exported by the vDSO.
symbol version

__kernel_rt_sigreturn LINUX_2.6
__kernel_sigreturn LINUX_2.6
__kernel_vsyscall LINUX_2.6

i386 functions
The table below lists the symbols exported by the vDSO.
symbol version

__kernel_sigreturn LINUX_2.5
__kernel_rt_sigreturn LINUX_2.5
__kernel_vsyscall LINUX_2.5
__vdso_clock_gettime LINUX_2.6 (exported since Linux 3.15)
__vdso_gettimeofday LINUX_2.6 (exported since Linux 3.15)
__vdso_time LINUX_2.6 (exported since Linux 3.15)

x86-64 functions
The table below lists the symbols exported by the vDSO. All of these symbols are
also available without the "__vdso_" prefix, but you should ignore those and stick to
the names below.
symbol version

__vdso_clock_gettime LINUX_2.6
__vdso_getcpu LINUX_2.6
__vdso_gettimeofday LINUX_2.6
__vdso_time LINUX_2.6

x86/x32 functions
The table below lists the symbols exported by the vDSO.
symbol version

__vdso_clock_gettime LINUX_2.6
__vdso_getcpu LINUX_2.6
__vdso_gettimeofday LINUX_2.6
__vdso_time LINUX_2.6

Linux man-pages 6.13 2024-05-02 3765

vDSO(7) Miscellaneous Information Manual vDSO(7)

History
The vDSO was originally just a single function—the vsyscall. In older kernels, you
might see that name in a process’s memory map rather than "vdso". Over time, peo-
ple realized that this mechanism was a great way to pass more functionality to user
space, so it was reconceived as a vDSO in the current format.

SEE ALSO
syscalls(2), getauxval(3), proc(5)

The documents, examples, and source code in the Linux source code tree:

Documentation/ABI/stable/vdso
Documentation/ia64/fsys.rst
Documentation/vDSO/* (includes examples of using the vDSO)

find arch/ -iname '*vdso*' -o -iname '*gate*'

Linux man-pages 6.13 2024-05-02 3766

vsock(7) Miscellaneous Information Manual vsock(7)

NAME
vsock - Linux VSOCK address family

SYNOPSIS
#include <sys/socket.h>
#include <linux/vm_sockets.h>

stream_socket = socket(AF_VSOCK, SOCK_STREAM, 0);
datagram_socket = socket(AF_VSOCK, SOCK_DGRAM, 0);

DESCRIPTION
The VSOCK address family facilitates communication between virtual machines and
the host they are running on. This address family is used by guest agents and hypervi-
sor services that need a communications channel that is independent of virtual ma-
chine network configuration.

Valid socket types are SOCK_STREAM and SOCK_DGRAM. SOCK_STREAM
provides connection-oriented byte streams with guaranteed, in-order delivery.
SOCK_DGRAM provides a connectionless datagram packet service with best-effort
delivery and best-effort ordering. Availability of these socket types is dependent on
the underlying hypervisor.

A new socket is created with

socket(AF_VSOCK, socket_type, 0);

When a process wants to establish a connection, it calls connect(2) with a given desti-
nation socket address. The socket is automatically bound to a free port if unbound.

A process can listen for incoming connections by first binding to a socket address us-
ing bind(2) and then calling listen(2).

Data is transmitted using the send(2) or write(2) families of system calls and data is
received using the recv(2) or read(2) families of system calls.

Address format
A socket address is defined as a combination of a 32-bit Context Identifier (CID) and
a 32-bit port number. The CID identifies the source or destination, which is either a
virtual machine or the host. The port number differentiates between multiple services
running on a single machine.

struct sockaddr_vm {
sa_family_t svm_family; /* Address family: AF_VSOCK */
unsigned short svm_reserved1;
unsigned int svm_port; /* Port # in host byte order */
unsigned int svm_cid; /* Address in host byte order */
unsigned char svm_zero[sizeof(struct sockaddr) -

sizeof(sa_family_t) -
sizeof(unsigned short) -
sizeof(unsigned int) -
sizeof(unsigned int)];

};

svm_family is always set to AF_VSOCK. svm_reserved1 is always set to 0.
svm_port contains the port number in host byte order. The port numbers below 1024
are called privileged ports. Only a process with the CAP_NET_BIND_SERVICE

Linux man-pages 6.13 2024-05-02 3767

vsock(7) Miscellaneous Information Manual vsock(7)

capability may bind(2) to these port numbers. svm_zero must be zero-filled.

There are several special addresses: VMADDR_CID_ANY (-1U) means any address
for binding; VMADDR_CID_HYPERVISOR (0) is reserved for services built into
the hypervisor; VMADDR_CID_LOCAL (1) is the well-known address for local
communication (loopback); VMADDR_CID_HOST (2) is the well-known address
of the host.

The special constant VMADDR_PORT_ANY (-1U) means any port number for
binding.

Live migration
Sockets are affected by live migration of virtual machines. Connected
SOCK_STREAM sockets become disconnected when the virtual machine migrates
to a new host. Applications must reconnect when this happens.

The local CID may change across live migration if the old CID is not available on the
new host. Bound sockets are automatically updated to the new CID.

Ioctls
The following ioctls are available on the /dev/vsock device.

IOCTL_VM_SOCKETS_GET_LOCAL_CID
Get the CID of the local machine. The argument is a pointer to an unsigned
int.

ioctl(fd, IOCTL_VM_SOCKETS_GET_LOCAL_CID, &cid);

Consider using VMADDR_CID_ANY when binding instead of getting the lo-
cal CID with IOCTL_VM_SOCKETS_GET_LOCAL_CID.

Local communication
VMADDR_CID_LOCAL (1) directs packets to the same host that generated them.
This is useful for testing applications on a single host and for debugging.

The local CID obtained with IOCTL_VM_SOCKETS_GET_LOCAL_CID can be
used for the same purpose, but it is preferable to use VMADDR_CID_LOCAL.

ERRORS
EACCES

Unable to bind to a privileged port without the CAP_NET_BIND_SERVICE
capability.

EADDRINUSE
Unable to bind to a port that is already in use.

EADDRNOTAVAIL
Unable to find a free port for binding or unable to bind to a nonlocal CID.

EINVAL
Invalid parameters. This includes: attempting to bind a socket that is already
bound, providing an invalid struct sockaddr_vm, and other input validation er-
rors.

ENOPROTOOPT
Invalid socket option in setsockopt(2) or getsockopt(2).

Linux man-pages 6.13 2024-05-02 3768

vsock(7) Miscellaneous Information Manual vsock(7)

ENOTCONN
Unable to perform operation on an unconnected socket.

EOPNOTSUPP
Operation not supported. This includes: the MSG_OOB flag that is not im-
plemented for the send(2) family of syscalls and MSG_PEEK for the recv(2)
family of syscalls.

EPROTONOSUPPORT
Invalid socket protocol number. The protocol should always be 0.

ESOCKTNOSUPPORT
Unsupported socket type in socket(2). Only SOCK_STREAM and
SOCK_DGRAM are valid.

VERSIONS
Support for VMware (VMCI) has been available since Linux 3.9. KVM (virtio) is
supported since Linux 4.8. Hyper-V is supported since Linux 4.14.

VMADDR_CID_LOCAL is supported since Linux 5.6. Local communication in the
guest and on the host is available since Linux 5.6. Previous versions supported only
local communication within a guest (not on the host), and with only some transports
(VMCI and virtio).

SEE ALSO
bind(2), connect(2), listen(2), recv(2), send(2), socket(2), capabilities(7)

Linux man-pages 6.13 2024-05-02 3769

x25(7) Miscellaneous Information Manual x25(7)

NAME
x25 - ITU-T X.25 / ISO/IEC 8208 protocol interface

SYNOPSIS
#include <sys/socket.h>
#include <linux/x25.h>

x25_socket = socket(AF_X25, SOCK_SEQPACKET, 0);

DESCRIPTION
X25 sockets provide an interface to the X.25 packet layer protocol. This allows appli-
cations to communicate over a public X.25 data network as standardized by Interna-
tional Telecommunication Union’s recommendation X.25 (X.25 DTE-DCE mode).
X25 sockets can also be used for communication without an intermediate X.25 net-
work (X.25 DTE-DTE mode) as described in ISO/IEC 8208.

Message boundaries are preserved — a read(2) from a socket will retrieve the same
chunk of data as output with the corresponding write(2) to the peer socket. When
necessary, the kernel takes care of segmenting and reassembling long messages by
means of the X.25 M-bit. There is no hard-coded upper limit for the message size.
However, reassembling of a long message might fail if there is a temporary lack of
system resources or when other constraints (such as socket memory or buffer size lim-
its) become effective. If that occurs, the X.25 connection will be reset.

Socket addresses
The AF_X25 socket address family uses the struct sockaddr_x25 for representing net-
work addresses as defined in ITU-T recommendation X.121.

struct sockaddr_x25 {
sa_family_t sx25_family; /* must be AF_X25 */
x25_address sx25_addr; /* X.121 Address */

};

sx25_addr contains a char array x25_addr[] to be interpreted as a null-terminated
string. sx25_addr.x25_addr[] consists of up to 15 (not counting the terminating null
byte) ASCII characters forming the X.121 address. Only the decimal digit characters
from '0' to '9' are allowed.

Socket options
The following X.25-specific socket options can be set by using setsockopt(2) and read
with getsockopt(2) with the level argument set to SOL_X25.

X25_QBITINCL
Controls whether the X.25 Q-bit (Qualified Data Bit) is accessible by the user.
It expects an integer argument. If set to 0 (default), the Q-bit is never set for
outgoing packets and the Q-bit of incoming packets is ignored. If set to 1, an
additional first byte is prepended to each message read from or written to the
socket. For data read from the socket, a 0 first byte indicates that the Q-bits of
the corresponding incoming data packets were not set. A first byte with value
1 indicates that the Q-bit of the corresponding incoming data packets was set.
If the first byte of the data written to the socket is 1, the Q-bit of the corre-
sponding outgoing data packets will be set. If the first byte is 0, the Q-bit will
not be set.

Linux man-pages 6.13 2024-05-02 3770

x25(7) Miscellaneous Information Manual x25(7)

VERSIONS
The AF_X25 protocol family is a new feature of Linux 2.2.

BUGS
Plenty, as the X.25 PLP implementation is CONFIG_EXPERIMENTAL.

This man page is incomplete.

There is no dedicated application programmer’s header file yet; you need to include
the kernel header file <linux/x25.h>. CONFIG_EXPERIMENTAL might also im-
ply that future versions of the interface are not binary compatible.

X.25 N-Reset events are not propagated to the user process yet. Thus, if a reset oc-
curred, data might be lost without notice.

SEE ALSO
socket(2), socket(7)

Jonathan Simon Naylor: “The Re-Analysis and Re-Implementation of X.25.” The
URL is 〈ftp://ftp.pspt.fi/pub/ham/linux/ax25/x25doc.tgz〉.

Linux man-pages 6.13 2024-05-02 3771

xattr(7) Miscellaneous Information Manual xattr(7)

NAME
xattr - Extended attributes

DESCRIPTION
Extended attributes are name:value pairs associated permanently with files and direc-
tories, similar to the environment strings associated with a process. An attribute may
be defined or undefined. If it is defined, its value may be empty or non-empty.

Extended attributes are extensions to the normal attributes which are associated with
all inodes in the system (i.e., the stat(2) data). They are often used to provide addi-
tional functionality to a filesystem—for example, additional security features such as
Access Control Lists (ACLs) may be implemented using extended attributes.

Users with search access to a file or directory may use listxattr(2) to retrieve a list of
attribute names defined for that file or directory.

Extended attributes are accessed as atomic objects. Reading (getxattr(2)) retrieves
the whole value of an attribute and stores it in a buffer. Writing (setxattr(2)) replaces
any previous value with the new value.

Space consumed for extended attributes may be counted towards the disk quotas of
the file owner and file group.

Extended attribute namespaces
Attribute names are null-terminated strings. The attribute name is always specified in
the fully qualified namespace.attribute form, for example, user.mime_type,
trusted.md5sum, system.posix_acl_access, or security.selinux.

The namespace mechanism is used to define different classes of extended attributes.
These different classes exist for several reasons; for example, the permissions and ca-
pabilities required for manipulating extended attributes of one namespace may differ
to another.

Currently, the security, system, trusted , and user extended attribute classes are de-
fined as described below. Additional classes may be added in the future.

Extended security attributes
The security attribute namespace is used by kernel security modules, such as Security
Enhanced Linux, and also to implement file capabilities (see capabilities(7)). Read
and write access permissions to security attributes depend on the policy implemented
for each security attribute by the security module. When no security module is
loaded, all processes have read access to extended security attributes, and write access
is limited to processes that have the CAP_SYS_ADMIN capability.

System extended attributes
System extended attributes are used by the kernel to store system objects such as Ac-
cess Control Lists. Read and write access permissions to system attributes depend on
the policy implemented for each system attribute implemented by filesystems in the
kernel.

Trusted extended attributes
Trusted extended attributes are visible and accessible only to processes that have the
CAP_SYS_ADMIN capability. Attributes in this class are used to implement mecha-
nisms in user space (i.e., outside the kernel) which keep information in extended at-
tributes to which ordinary processes should not have access.

Linux man-pages 6.13 2024-06-13 3772

xattr(7) Miscellaneous Information Manual xattr(7)

User extended attributes
User extended attributes may be assigned to files and directories for storing arbitrary
additional information such as the mime type, character set or encoding of a file. The
access permissions for user attributes are defined by the file permission bits: read per-
mission is required to retrieve the attribute value, and writer permission is required to
change it.

The file permission bits of regular files and directories are interpreted differently from
the file permission bits of special files and symbolic links. For regular files and direc-
tories the file permission bits define access to the file’s contents, while for device spe-
cial files they define access to the device described by the special file. The file per-
missions of symbolic links are not used in access checks. These differences would al-
low users to consume filesystem resources in a way not controllable by disk quotas for
group or world writable special files and directories.

For this reason, user extended attributes are allowed only for regular files and directo-
ries, and access to user extended attributes is restricted to the owner and to users with
appropriate capabilities for directories with the sticky bit set (see the chmod(1) man-
ual page for an explanation of the sticky bit).

Filesystem differences
The kernel and the filesystem may place limits on the maximum number and size of
extended attributes that can be associated with a file. The VFS-imposed limits on at-
tribute names and values are 255 bytes and 64 kB, respectively. The list of attribute
names that can be returned is also limited to 64 kB (see BUGS in listxattr(2)).

Some filesystems, such as Reiserfs (and, historically, ext2 and ext3), require the
filesystem to be mounted with the user_xattr mount option in order for user extended
attributes to be used.

In the current ext2, ext3, and ext4 filesystem implementations, the total bytes used by
the names and values of all of a file’s extended attributes must fit in a single filesystem
block (1024, 2048 or 4096 bytes, depending on the block size specified when the
filesystem was created).

In the Btrfs, XFS, and Reiserfs filesystem implementations, there is no practical limit
on the number of extended attributes associated with a file, and the algorithms used to
store extended attribute information on disk are scalable.

In the JFS, XFS, and Reiserfs filesystem implementations, the limit on bytes used in
an EA value is the ceiling imposed by the VFS.

In the Btrfs filesystem implementation, the total bytes used for the name, value, and
implementation overhead bytes is limited to the filesystem nodesize value (16 kB by
default).

STANDARDS
Extended attributes are not specified in POSIX.1, but some other systems (e.g., the
BSDs and Solaris) provide a similar feature.

NOTES
Since the filesystems on which extended attributes are stored might also be used on
architectures with a different byte order and machine word size, care should be taken
to store attribute values in an architecture-independent format.

Linux man-pages 6.13 2024-06-13 3773

xattr(7) Miscellaneous Information Manual xattr(7)

This page was formerly named attr(5)

SEE ALSO
attr(1), getfattr(1), setfattr(1), getxattr(2), FS_IOC_GETFLAGS(2const),
FS_IOC_SETFLAGS(2const), listxattr(2), removexattr(2), setxattr(2), acl(5), capabil-
ities(7), selinux(8)

Linux man-pages 6.13 2024-06-13 3774

intro(8) System Manager’s Manual intro(8)

NAME
intro - introduction to administration and privileged commands

DESCRIPTION
Section 8 of the manual describes commands which either can be or are used only by
the superuser, like system-administration commands, daemons, and hardware-related
commands.

As with the commands described in Section 1, the commands described in this section
terminate with an exit status that indicates whether the command succeeded or failed.
See intro(1) for more information.

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright condi-
tions. Note that these can be different from page to page!

Linux man-pages 6.13 2024-05-02 3775

iconvconfig(8) System Manager’s Manual iconvconfig(8)

NAME
iconvconfig - create iconv module configuration cache

SYNOPSIS
iconvconfig [options] [directory]...

DESCRIPTION
The iconv(3) function internally uses gconv modules to convert to and from a charac-
ter set. A configuration file is used to determine the needed modules for a conversion.
Loading and parsing such a configuration file would slow down programs that use
iconv(3), so a caching mechanism is employed.

The iconvconfig program reads iconv module configuration files and writes a fast-
loading gconv module configuration cache file.

In addition to the system provided gconv modules, the user can specify custom gconv
module directories with the environment variable GCONV_PATH. However, iconv
module configuration caching is used only when the environment variable
GCONV_PATH is not set.

OPTIONS
--nostdlib

Do not search the system default gconv directory, only the directories provided
on the command line.

--output=outputfile
-o outputfile

Use outputfile for output instead of the system default cache location.

--prefix=pathname
Set the prefix to be prepended to the system pathnames. See FILES, below.
By default, the prefix is empty. Setting the prefix to foo, the gconv module
configuration would be read from foo/usr/lib/gconv/gconv-modules and the
cache would be written to foo/usr/lib/gconv/gconv-modules.cache.

--help
-? Print a usage summary and exit.

--usage
Print a short usage summary and exit.

--version
-V Print the version number, license, and disclaimer of warranty for iconv.

EXIT STATUS
Zero on success, nonzero on errors.

FILES
/usr/lib/gconv

Usual default gconv module path.

/usr/lib/gconv/gconv-modules
Usual system default gconv module configuration file.

/usr/lib/gconv/gconv-modules.cache
Usual system gconv module configuration cache.

Depending on the architecture, the above files may instead be located at directories

Linux man-pages 6.13 2024-05-02 3776

iconvconfig(8) System Manager’s Manual iconvconfig(8)

with the path prefix /usr/lib64.

SEE ALSO
iconv(1), iconv(3)

Linux man-pages 6.13 2024-05-02 3777

ld.so(8) System Manager’s Manual ld.so(8)

NAME
ld.so, ld-linux.so - dynamic linker/loader

SYNOPSIS
The dynamic linker can be run either indirectly by running some dynamically linked
program or shared object (in which case no command-line options to the dynamic
linker can be passed and, in the ELF case, the dynamic linker which is stored in the
.interp section of the program is executed) or directly by running:

/lib/ld-linux.so.* [OPTIONS] [PROGRAM [ARGUMENTS]]

DESCRIPTION
The programs ld.so and ld-linux.so* find and load the shared objects (shared li-
braries) needed by a program, prepare the program to run, and then run it.

Linux binaries require dynamic linking (linking at run time) unless the -static option
was given to ld(1) during compilation.

The program ld.so handles a.out binaries, a binary format used long ago. The pro-
gram ld-linux.so* (/lib/ld-linux.so.1 for libc5, /lib/ld-linux.so.2 for glibc2) handles
binaries that are in the more modern ELF format. Both programs have the same be-
havior, and use the same support files and programs (ldd(1), ldconfig(8), and
/etc/ld.so.conf).

When resolving shared object dependencies, the dynamic linker first inspects each de-
pendency string to see if it contains a slash (this can occur if a shared object pathname
containing slashes was specified at link time). If a slash is found, then the depen-
dency string is interpreted as a (relative or absolute) pathname, and the shared object
is loaded using that pathname.

If a shared object dependency does not contain a slash, then it is searched for in the
following order:

(1) Using the directories specified in the DT_RPATH dynamic section attribute of
the binary if present and DT_RUNPATH attribute does not exist.

(2) Using the environment variable LD_LIBRARY_PATH, unless the executable
is being run in secure-execution mode (see below), in which case this variable is
ignored.

(3) Using the directories specified in the DT_RUNPATH dynamic section attribute
of the binary if present. Such directories are searched only to find those objects
required by DT_NEEDED (direct dependencies) entries and do not apply to
those objects’ children, which must themselves have their own DT_RUNPATH
entries. This is unlike DT_RPATH, which is applied to searches for all children
in the dependency tree.

(4) From the cache file /etc/ld.so.cache, which contains a compiled list of candi-
date shared objects previously found in the augmented library path. If, how-
ever, the binary was linked with the -z nodefaultlib linker option, shared ob-
jects in the default paths are skipped. Shared objects installed in hardware ca-
pability directories (see below) are preferred to other shared objects.

(5) In the default path /lib, and then /usr/lib. (On some 64-bit architectures, the
default paths for 64-bit shared objects are /lib64, and then /usr/lib64.) If the
binary was linked with the -z nodefaultlib linker option, this step is skipped.

Linux man-pages 6.13 2024-12-06 3778

ld.so(8) System Manager’s Manual ld.so(8)

Dynamic string tokens
In several places, the dynamic linker expands dynamic string tokens:

• In the environment variables LD_LIBRARY_PATH, LD_PRELOAD, and
LD_AUDIT,

• inside the values of the dynamic section tags DT_NEEDED, DT_RPATH,
DT_RUNPATH, DT_AUDIT, and DT_DEPAUDIT of ELF binaries,

• in the arguments to the ld.so command line options --audit, --library-path, and
--preload (see below), and

• in the filename arguments to the dlopen(3) and dlmopen(3) functions.

The substituted tokens are as follows:

$ORIGIN (or equivalently ${ORIGIN})
This expands to the directory containing the program or shared object. Thus,
an application located in somedir/app could be compiled with

gcc -Wl,-rpath,'$ORIGIN/../lib'

so that it finds an associated shared object in somedir/lib no matter where
somedir is located in the directory hierarchy. This facilitates the creation of
"turn-key" applications that do not need to be installed into special directories,
but can instead be unpacked into any directory and still find their own shared
objects.

$LIB (or equivalently ${LIB})
This expands to lib or lib64 depending on the architecture (e.g., on x86-64, it
expands to lib64 and on x86-32, it expands to lib).

$PLATFORM (or equivalently ${PLATFORM})
This expands to a string corresponding to the processor type of the host system
(e.g., "x86_64"). On some architectures, the Linux kernel doesn’t provide a
platform string to the dynamic linker. The value of this string is taken from
the AT_PLATFORM value in the auxiliary vector (see getauxval(3)).

Note that the dynamic string tokens have to be quoted properly when set from a shell,
to prevent their expansion as shell or environment variables.

OPTIONS
--argv0 string (since glibc 2.33)

Set argv[0] to the value string before running the program.

--audit list
Use objects named in list as auditors. The objects in list are delimited by
colons.

--glibc-hwcaps-mask list
only search built-in subdirectories if in list.

--glibc-hwcaps-prepend list
Search glibc-hwcaps subdirectories in list.

--inhibit-cache
Do not use /etc/ld.so.cache.

Linux man-pages 6.13 2024-12-06 3779

ld.so(8) System Manager’s Manual ld.so(8)

--library-path path
Use path instead of LD_LIBRARY_PATH environment variable setting (see
below). The names ORIGIN , LIB, and PLATFORM are interpreted as for the
LD_LIBRARY_PATH environment variable.

--inhibit-rpath list
Ignore RPATH and RUNPATH information in object names in list. This op-
tion is ignored when running in secure-execution mode (see below). The ob-
jects in list are delimited by colons or spaces.

--list List all dependencies and how they are resolved.

--list-diagnostics (since glibc 2.33)
Print system diagnostic information in a machine-readable format, such as
some internal loader variables, the auxiliary vector (see getauxval(3)), and the
environment variables. On some architectures, the command might print addi-
tional information (like the cpu features used in GNU indirect function selec-
tion on x86). --list-tunables (since glibc 2.33) Print the names and values of
all tunables, along with the minimum and maximum allowed values.

--preload list (since glibc 2.30)
Preload the objects specified in list. The objects in list are delimited by colons
or spaces. The objects are preloaded as explained in the description of the
LD_PRELOAD environment variable below.

By contrast with LD_PRELOAD, the --preload option provides a way to
perform preloading for a single executable without affecting preloading per-
formed in any child process that executes a new program.

--verify
Verify that program is dynamically linked and this dynamic linker can handle
it.

ENVIRONMENT
Various environment variables influence the operation of the dynamic linker.

Secure-execution mode
For security reasons, if the dynamic linker determines that a binary should be run in
secure-execution mode, the effects of some environment variables are voided or modi-
fied, and furthermore those environment variables are stripped from the environment,
so that the program does not even see the definitions. Some of these environment
variables affect the operation of the dynamic linker itself, and are described below.
Other environment variables treated in this way include: GCONV_PATH, GET-
CONF_DIR, HOSTALIASES, LOCALDOMAIN, LD_AUDIT, LD_DEBUG,
LD_DEBUG_OUTPUT, LD_DYNAMIC_WEAK, LD_HWCAP_MASK, LD_LI-
BRARY_PATH, LD_ORIGIN_PATH, LD_PRELOAD, LD_PROFILE,
LD_SHOW_AUXV, LOCALDOMAIN, LOCPATH, MALLOC_TRACE,
NIS_PATH, NLSPATH, RESOLV_HOST_CONF, RES_OPTIONS, TMPDIR,
and TZDIR.

A binary is executed in secure-execution mode if the AT_SECURE entry in the auxil-
iary vector (see getauxval(3)) has a nonzero value. This entry may have a nonzero
value for various reasons, including:

Linux man-pages 6.13 2024-12-06 3780

ld.so(8) System Manager’s Manual ld.so(8)

• The process’s real and effective user IDs differ, or the real and effective group IDs
differ. This typically occurs as a result of executing a set-user-ID or set-group-ID
program.

• A process with a non-root user ID executed a binary that conferred capabilities to
the process.

• A nonzero value may have been set by a Linux Security Module.

Environment variables
Among the more important environment variables are the following:

LD_ASSUME_KERNEL (from glibc 2.2.3 to glibc 2.36)
Each shared object can inform the dynamic linker of the minimum kernel ABI
version that it requires. (This requirement is encoded in an ELF note section
that is viewable via readelf -n as a section labeled NT_GNU_ABI_TAG.) At
run time, the dynamic linker determines the ABI version of the running kernel
and will reject loading shared objects that specify minimum ABI versions that
exceed that ABI version.

LD_ASSUME_KERNEL can be used to cause the dynamic linker to assume
that it is running on a system with a different kernel ABI version. For exam-
ple, the following command line causes the dynamic linker to assume it is run-
ning on Linux 2.2.5 when loading the shared objects required by myprog:

$ LD_ASSUME_KERNEL=2.2.5 ./myprog

On systems that provide multiple versions of a shared object (in different di-
rectories in the search path) that have different minimum kernel ABI version
requirements, LD_ASSUME_KERNEL can be used to select the version of
the object that is used (dependent on the directory search order).

Historically, the most common use of the LD_ASSUME_KERNEL feature
was to manually select the older LinuxThreads POSIX threads implementation
on systems that provided both LinuxThreads and NPTL (which latter was typi-
cally the default on such systems); see pthreads(7).

LD_BIND_NOW (since glibc 2.1.1)
If set to a nonempty string, causes the dynamic linker to resolve all symbols at
program startup instead of deferring function call resolution to the point when
they are first referenced. This is useful when using a debugger.

LD_LIBRARY_PATH
A list of directories in which to search for ELF libraries at execution time.
The items in the list are separated by either colons or semicolons, and there is
no support for escaping either separator. A zero-length directory name indi-
cates the current working directory.

This variable is ignored in secure-execution mode.

Within the pathnames specified in LD_LIBRARY_PATH, the dynamic linker
expands the tokens $ORIGIN , $LIB, and $PLATFORM (or the versions using
curly braces around the names) as described above in Dynamic string tokens.
Thus, for example, the following would cause a library to be searched for in
either the lib or lib64 subdirectory below the directory containing the program
to be executed:

Linux man-pages 6.13 2024-12-06 3781

ld.so(8) System Manager’s Manual ld.so(8)

$ LD_LIBRARY_PATH='$ORIGIN/$LIB' prog

(Note the use of single quotes, which prevent expansion of $ORIGIN and
$LIB as shell variables!)

LD_PRELOAD
A list of additional, user-specified, ELF shared objects to be loaded before all
others. This feature can be used to selectively override functions in other
shared objects.

The items of the list can be separated by spaces or colons, and there is no sup-
port for escaping either separator. The objects are searched for using the rules
given under DESCRIPTION. Objects are searched for and added to the link
map in the left-to-right order specified in the list.

In secure-execution mode, preload pathnames containing slashes are ignored.
Furthermore, shared objects are preloaded only from the standard search direc-
tories and only if they have set-user-ID mode bit enabled (which is not typi-
cal).

Within the names specified in the LD_PRELOAD list, the dynamic linker un-
derstands the tokens $ORIGIN , $LIB, and $PLATFORM (or the versions us-
ing curly braces around the names) as described above in Dynamic string to-
kens. (See also the discussion of quoting under the description of LD_LI-
BRARY_PATH.)

There are various methods of specifying libraries to be preloaded, and these
are handled in the following order:

(1) The LD_PRELOAD environment variable.

(2) The --preload command-line option when invoking the dynamic linker
directly.

(3) The /etc/ld.so.preload file (described below).

LD_TRACE_LOADED_OBJECTS
If set (to any value), causes the program to list its dynamic dependencies, as if
run by ldd(1), instead of running normally.

Then there are lots of more or less obscure variables, many obsolete or only for inter-
nal use.

LD_AUDIT (since glibc 2.4)
A list of user-specified, ELF shared objects to be loaded before all others in a
separate linker namespace (i.e., one that does not intrude upon the normal
symbol bindings that would occur in the process) These objects can be used to
audit the operation of the dynamic linker. The items in the list are colon-sepa-
rated, and there is no support for escaping the separator.

LD_AUDIT is ignored in secure-execution mode.

The dynamic linker will notify the audit shared objects at so-called auditing
checkpoints—for example, loading a new shared object, resolving a symbol,
or calling a symbol from another shared object—by calling an appropriate
function within the audit shared object. For details, see rtld-audit(7). The au-
diting interface is largely compatible with that provided on Solaris, as

Linux man-pages 6.13 2024-12-06 3782

ld.so(8) System Manager’s Manual ld.so(8)

described in its Linker and Libraries Guide, in the chapter Runtime Linker Au-
diting Interface.

Within the names specified in the LD_AUDIT list, the dynamic linker under-
stands the tokens $ORIGIN , $LIB, and $PLATFORM (or the versions using
curly braces around the names) as described above in Dynamic string tokens.
(See also the discussion of quoting under the description of LD_LI-
BRARY_PATH.)

Since glibc 2.13, in secure-execution mode, names in the audit list that contain
slashes are ignored, and only shared objects in the standard search directories
that have the set-user-ID mode bit enabled are loaded.

LD_BIND_NOT (since glibc 2.1.95)
If this environment variable is set to a nonempty string, do not update the GOT
(global offset table) and PLT (procedure linkage table) after resolving a func-
tion symbol. By combining the use of this variable with LD_DEBUG (with
the categories bindings and symbols), one can observe all run-time function
bindings.

LD_DEBUG (since glibc 2.1)
Output verbose debugging information about operation of the dynamic linker.
The content of this variable is one or more of the following categories, sepa-
rated by colons, commas, or (if the value is quoted) spaces:

help Specifying help in the value of this variable does not run the
specified program, and displays a help message about which
categories can be specified in this environment variable.

all Print all debugging information (except statistics and unused;
see below).

bindings Display information about which definition each symbol is
bound to.

files Display progress for input file.

libs Display library search paths.

reloc Display relocation processing.

scopes Display scope information.

statistics Display relocation statistics.

symbols Display search paths for each symbol look-up.

unused Determine unused DSOs.

versions Display version dependencies.

Since glibc 2.3.4, LD_DEBUG is ignored in secure-execution mode, unless
the file /etc/suid-debug exists (the content of the file is irrelevant).

LD_DEBUG_OUTPUT (since glibc 2.1)
By default, LD_DEBUG output is written to standard error. If LD_DE-
BUG_OUTPUT is defined, then output is written to the pathname specified
by its value, with the suffix "." (dot) followed by the process ID appended to
the pathname.

Linux man-pages 6.13 2024-12-06 3783

ld.so(8) System Manager’s Manual ld.so(8)

LD_DEBUG_OUTPUT is ignored in secure-execution mode.

LD_DYNAMIC_WEAK (since glibc 2.1.91)
By default, when searching shared libraries to resolve a symbol reference, the
dynamic linker will resolve to the first definition it finds.

Old glibc versions (before glibc 2.2), provided a different behavior: if the
linker found a symbol that was weak, it would remember that symbol and keep
searching in the remaining shared libraries. If it subsequently found a strong
definition of the same symbol, then it would instead use that definition. (If no
further symbol was found, then the dynamic linker would use the weak symbol
that it initially found.)

The old glibc behavior was nonstandard. (Standard practice is that the distinc-
tion between weak and strong symbols should have effect only at static link
time.) In glibc 2.2, the dynamic linker was modified to provide the current be-
havior (which was the behavior that was provided by most other implementa-
tions at that time).

Defining the LD_DYNAMIC_WEAK environment variable (with any value)
provides the old (nonstandard) glibc behavior, whereby a weak symbol in one
shared library may be overridden by a strong symbol subsequently discovered
in another shared library. (Note that even when this variable is set, a strong
symbol in a shared library will not override a weak definition of the same sym-
bol in the main program.)

Since glibc 2.3.4, LD_DYNAMIC_WEAK is ignored in secure-execution
mode.

LD_HWCAP_MASK (from glibc 2.1 to glibc 2.38)
Mask for hardware capabilities. Since glibc 2.26, the option might be ignored
if glibc does not support tunables.

LD_ORIGIN_PATH (since glibc 2.1)
Path where the binary is found.

Since glibc 2.4, LD_ORIGIN_PATH is ignored in secure-execution mode.

LD_POINTER_GUARD (from glibc 2.4 to glibc 2.22)
Set to 0 to disable pointer guarding. Any other value enables pointer guarding,
which is also the default. Pointer guarding is a security mechanism whereby
some pointers to code stored in writable program memory (return addresses
saved by setjmp(3) or function pointers used by various glibc internals) are
mangled semi-randomly to make it more difficult for an attacker to hijack the
pointers for use in the event of a buffer overrun or stack-smashing attack.
Since glibc 2.23, LD_POINTER_GUARD can no longer be used to disable
pointer guarding, which is now always enabled.

LD_PROFILE (since glibc 2.1)
The name of a (single) shared object to be profiled, specified either as a path-
name or a soname. Profiling output is appended to the file whose name is:
$LD_PROFILE_OUTPUT /$LD_PROFILE.profile.

Since glibc 2.2.5, LD_PROFILE uses a different default path in secure-exe-
cution mode.

Linux man-pages 6.13 2024-12-06 3784

ld.so(8) System Manager’s Manual ld.so(8)

LD_PROFILE_OUTPUT (since glibc 2.1)
Directory where LD_PROFILE output should be written. If this variable is
not defined, or is defined as an empty string, then the default is /var/tmp.

LD_PROFILE_OUTPUT is ignored in secure-execution mode; instead
/var/profile is always used.

LD_SHOW_AUXV (since glibc 2.1)
If this environment variable is defined (with any value), show the auxiliary ar-
ray passed up from the kernel (see also getauxval(3)).

Since glibc 2.3.4, LD_SHOW_AUXV is ignored in secure-execution mode.

LD_TRACE_PRELINKING (from glibc 2.4 to glibc 2.35)
If this environment variable is defined, trace prelinking of the object whose
name is assigned to this environment variable. (Use ldd(1) to get a list of the
objects that might be traced.) If the object name is not recognized, then all
prelinking activity is traced.

LD_USE_LOAD_BIAS (from glibc 2.3.3 to glibc 2.35)
By default (i.e., if this variable is not defined), executables and prelinked
shared objects will honor base addresses of their dependent shared objects and
(nonprelinked) position-independent executables (PIEs) and other shared ob-
jects will not honor them. If LD_USE_LOAD_BIAS is defined with the
value 1, both executables and PIEs will honor the base addresses. If
LD_USE_LOAD_BIAS is defined with the value 0, neither executables nor
PIEs will honor the base addresses.

Since glibc 2.3.3, this variable is ignored in secure-execution mode.

LD_VERBOSE (since glibc 2.1)
If set to a nonempty string, output symbol versioning information about the
program if the LD_TRACE_LOADED_OBJECTS environment variable has
been set.

LD_WARN (since glibc 2.1.3)
If set to a nonempty string, warn about unresolved symbols.

LD_PREFER_MAP_32BIT_EXEC (x86-64 only; since glibc 2.23)
According to the Intel Silvermont software optimization guide, for 64-bit ap-
plications, branch prediction performance can be negatively impacted when
the target of a branch is more than 4 GB away from the branch. If this envi-
ronment variable is set (to any value), the dynamic linker will first try to map
executable pages using the mmap(2) MAP_32BIT flag, and fall back to map-
ping without that flag if that attempt fails. NB: MAP_32BIT will map to the
low 2 GB (not 4 GB) of the address space.

Because MAP_32BIT reduces the address range available for address space
layout randomization (ASLR), LD_PREFER_MAP_32BIT_EXEC is always
disabled in secure-execution mode.

FILES
/lib/ld.so

a.out dynamic linker/loader

Linux man-pages 6.13 2024-12-06 3785

ld.so(8) System Manager’s Manual ld.so(8)

/lib/ld-linux.so.{1,2}
ELF dynamic linker/loader

/etc/ld.so.cache
File containing a compiled list of directories in which to search for shared ob-
jects and an ordered list of candidate shared objects. See ldconfig(8).

/etc/ld.so.preload
File containing a whitespace-separated list of ELF shared objects to be loaded
before the program. See the discussion of LD_PRELOAD above. If both
LD_PRELOAD and /etc/ld.so.preload are employed, the libraries specified
by LD_PRELOAD are preloaded first. /etc/ld.so.preload has a system-wide
effect, causing the specified libraries to be preloaded for all programs that are
executed on the system. (This is usually undesirable, and is typically em-
ployed only as an emergency remedy, for example, as a temporary workaround
to a library misconfiguration issue.)

lib*.so*
shared objects

NOTES
Legacy Hardware capabilities (from glibc 2.5 to glibc 2.37)

Some shared objects are compiled using hardware-specific instructions which do not
exist on every CPU. Such objects should be installed in directories whose names de-
fine the required hardware capabilities, such as /usr/lib/sse2/ . The dynamic linker
checks these directories against the hardware of the machine and selects the most suit-
able version of a given shared object. Hardware capability directories can be cas-
caded to combine CPU features. The list of supported hardware capability names de-
pends on the CPU. The following names are currently recognized:

Alpha
ev4, ev5, ev56, ev6, ev67

MIPS loongson2e, loongson2f, octeon, octeon2

PowerPC
4xxmac, altivec, arch_2_05, arch_2_06, booke, cellbe, dfp, efpdouble, efpsin-
gle, fpu, ic_snoop, mmu, notb, pa6t, power4, power5, power5+, power6x,
ppc32, ppc601, ppc64, smt, spe, ucache, vsx

SPARC
flush, muldiv, stbar, swap, ultra3, v9, v9v, v9v2

s390 dfp, eimm, esan3, etf3enh, g5, highgprs, hpage, ldisp, msa, stfle, z900, z990,
z9-109, z10, zarch

x86 (32-bit only)
acpi, apic, clflush, cmov, cx8, dts, fxsr, ht, i386, i486, i586, i686, mca, mmx,
mtrr, pat, pbe, pge, pn, pse36, sep, ss, sse, sse2, tm

The legacy hardware capabilities support has the drawback that each new feature
added grows the search path exponentially, because it has to be added to every combi-
nation of the other existing features.

For instance, on x86 32-bit, if the hardware supports i686 and sse2, the resulting
search path will be i686/sse2:i686:sse2:.. A new capability newcap will set the

Linux man-pages 6.13 2024-12-06 3786

ld.so(8) System Manager’s Manual ld.so(8)

search path to newcap/i686/sse2:newcap/i686:newcap/sse2:new-
cap:i686/sse2:i686:sse2:.

glibc Hardware capabilities (from glibc 2.33)
glibc 2.33 added a new hardware capability scheme,

where under each CPU architecture, certain levels can be defined, grouping
support for certain features or special instructions. Each architecture level has
a fixed set of paths that it adds to the dynamic linker search list, depending on
the hardware of the machine. Since each new architecture level is not com-
bined with previously existing ones, the new scheme does not have the draw-
back of growing the dynamic linker search list uncontrollably.

For instance, on x86 64-bit, if the hardware supports x86_64-v3 (for instance Intel
Haswell or AMD Excavator), the resulting search path will be glibc-hw-
caps/x86-64-v3:glibc-hwcaps/x86-64-v2:. The following paths are currently sup-
ported, in priority order.

PowerPC (64-bit little-endian only)
power10, power9

s390 (64-bit only)
z16, z15, z14, z13

x86 (64-bit only)
x86-64-v4, x86-64-v3, x86-64-v2

glibc 2.37 removed support for the legacy hardware capabilities.

SEE ALSO
ld(1), ldd(1), pldd(1), sprof(1), dlopen(3), getauxval(3), elf(5), capabilities(7), rtld-
audit(7), ldconfig(8), sln(8)

Linux man-pages 6.13 2024-12-06 3787

ldconfig(8) System Manager’s Manual ldconfig(8)

NAME
ldconfig - configure dynamic linker run-time bindings

SYNOPSIS
/sbin/ldconfig [-nNvVX] [-C cache] [-f conf] [-r root] directory . . .

/sbin/ldconfig -l [-v] library . . .

/sbin/ldconfig -p

DESCRIPTION
ldconfig creates the necessary links and cache to the most recent shared libraries
found in the directories specified on the command line, in the file /etc/ld.so.conf , and
in the trusted directories, /lib and /usr/lib. On some 64-bit architectures such as
x86-64, /lib and /usr/lib are the trusted directories for 32-bit libraries, while /lib64
and /usr/lib64 are used for 64-bit libraries.

The cache is used by the run-time linker, ld.so or ld-linux.so. ldconfig checks the
header and filenames of the libraries it encounters when determining which versions
should have their links updated. ldconfig should normally be run by the superuser as
it may require write permission on some root owned directories and files.

ldconfig will look only at files that are named lib*.so* (for regular shared objects) or
ld-*.so* (for the dynamic loader itself). Other files will be ignored. Also, ldconfig
expects a certain pattern to how the symbolic links are set up, like this example, where
the middle file (libfoo.so.1 here) is the SONAME for the library:

libfoo.so -> libfoo.so.1 -> libfoo.so.1.12

Failure to follow this pattern may result in compatibility issues after an upgrade.

OPTIONS
--format= fmt
-c fmt

(Since glibc 2.2) Use cache format fmt, which is one of old, new, or compat.
Since glibc 2.32, the default is new. Before that, it was compat.

-C cache
Use cache instead of /etc/ld.so.cache.

-f conf
Use conf instead of /etc/ld.so.conf .

--ignore-aux-cache
-i (Since glibc 2.7) Ignore auxiliary cache file.

-l (Since glibc 2.2) Interpret each operand as a library name and configure its
links. Intended for use only by experts.

-n Process only the directories specified on the command line; don’t process the
trusted directories, nor those specified in /etc/ld.so.conf . Implies -N.

-N Don’t rebuild the cache. Unless -X is also specified, links are still updated.

--print-cache
-p Print the lists of directories and candidate libraries stored in the current cache.

Linux man-pages 6.13 2024-05-02 3788

ldconfig(8) System Manager’s Manual ldconfig(8)

-r root
Change to and use root as the root directory.

--verbose
-v Verbose mode. Print current version number, the name of each directory as it

is scanned, and any links that are created. Overrides quiet mode.

--version
-V Print program version.

-X Don’t update links. Unless -N is also specified, the cache is still rebuilt.

FILES
/lib/ld.so

is the run-time linker/loader.
/etc/ld.so.conf

contains a list of directories, one per line, in which to search for libraries.
/etc/ld.so.cache

contains an ordered list of libraries found in the directories specified in
/etc/ld.so.conf , as well as those found in the trusted directories.

SEE ALSO
ldd(1), ld.so(8)

Linux man-pages 6.13 2024-05-02 3789

nscd(8) System Manager’s Manual nscd(8)

NAME
nscd - name service cache daemon

DESCRIPTION
nscd is a daemon that provides a cache for the most common name service requests.
The default configuration file, /etc/nscd.conf , determines the behavior of the cache
daemon. See nscd.conf(5).

nscd provides caching for accesses of the passwd(5), group(5), hosts(5) services(5)
and netgroup databases through standard libc interfaces, such as getpwnam(3), getp-
wuid(3), getgrnam(3), getgrgid(3), gethostbyname(3), and others.

There are two caches for each database: a positive one for items found, and a negative
one for items not found. Each cache has a separate TTL (time-to-live) period for its
data. Note that the shadow file is specifically not cached. getspnam(3) calls remain
uncached as a result.

OPTIONS
--help

will give you a list with all options and what they do.

NOTES
The daemon will try to watch for changes in configuration files appropriate for each
database (e.g., /etc/passwd for the passwd database or /etc/hosts and /etc/resolv.conf
for the hosts database), and flush the cache when these are changed. However, this
will happen only after a short delay (unless the inotify(7) mechanism is available and
glibc 2.9 or later is available), and this auto-detection does not cover configuration
files required by nonstandard NSS modules, if any are specified in /etc/nsswitch.conf .
In that case, you need to run the following command after changing the configuration
file of the database so that nscd invalidates its cache:

$ nscd -i <database>

SEE ALSO
nscd.conf(5), nsswitch.conf(5)

Linux man-pages 6.13 2024-05-02 3790

sln(8) System Manager’s Manual sln(8)

NAME
sln - create symbolic links

SYNOPSIS
sln source dest
sln filelist

DESCRIPTION
The sln program creates symbolic links. Unlike the ln(1) program, it is statically
linked. This means that if for some reason the dynamic linker is not working, sln can
be used to make symbolic links to dynamic libraries.

The command line has two forms. In the first form, it creates dest as a new symbolic
link to source.

In the second form, filelist is a list of space-separated pathname pairs, and the effect
is as if sln was executed once for each line of the file, with the two pathnames as the
arguments.

The sln program supports no command-line options.

SEE ALSO
ln(1), ld.so(8), ldconfig(8)

Linux man-pages 6.13 2024-05-02 3791

tzselect(8) System Manager’s Manual tzselect(8)

NAME
tzselect - select a timezone

SYNOPSIS
tzselect [-c coord] [-n limit] [--help] [--version]

DESCRIPTION
The tzselect program asks the user for information about the current location, and out-
puts the resulting timezone to standard output. The output is suitable as a value for
the TZ environment variable.

All interaction with the user is done via standard input and standard error.

OPTIONS
-c coord

Instead of asking for continent and then country and then city, ask for selection
from time zones whose largest cities are closest to the location with geographi-
cal coordinates coord. Use ISO 6709 notation for coord, that is, a latitude im-
mediately followed by a longitude. The latitude and longitude should be
signed integers followed by an optional decimal point and fraction: positive
numbers represent north and east, negative south and west. Latitudes with two
and longitudes with three integer digits are treated as degrees; latitudes with
four or six and longitudes with five or seven integer digits are treated as
DDMM, DDDMM, DDMMSS, or DDDMMSS representing DD or DDD de-
grees, MM minutes, and zero or SS seconds, with any trailing fractions repre-
sent fractional minutes or (if SS is present) seconds. The decimal point is that
of the current locale. For example, in the (default) C locale,
-c +40.689-074.045 specifies 40.689° N, 74.045° W, -c +4041.4-07402.7
specifies 40° 41.4 N, 74° 2.7 W, and -c +404121-0740240 specifies
40° 41 21 N, 74° 2 40 W . If coord is not one of the documented forms, the
resulting behavior is unspecified.

-n limit
When -c is used, display the closest limit locations (default 10).

--help
Output help information and exit.

--version
Output version information and exit.

ENVIRONMENT VARIABLES
AWK Name of a POSIX-compliant awk program (default: awk).

TZDIR
Name of the directory containing timezone data files (default:
/usr/share/zoneinfo).

FILES
TZDIR/iso3166.tab

Table of ISO 3166 2-letter country codes and country names.

TZDIR/zone1970.tab
Table of country codes, latitude and longitude, timezones, and descriptive
comments.

Time Zone Database 3792

tzselect(8) System Manager’s Manual tzselect(8)

TZDIR/TZ
Timezone data file for timezone TZ.

EXIT STATUS
The exit status is zero if a timezone was successfully obtained from the user, nonzero
otherwise.

SEE ALSO
newctime(3), tzfile(5), zdump(8), zic(8)

NOTES
Applications should not assume that tzselect’s output matches the user’s political
preferences.

Time Zone Database 3793

zdump(8) System Manager’s Manual zdump(8)

NAME
zdump - timezone dumper

SYNOPSIS
zdump [option ...] [timezone ...]

DESCRIPTION
The zdump program prints the current time in each timezone named on the command
line.

OPTIONS
--version

Output version information and exit.

--help
Output short usage message and exit.

-i Output a description of time intervals. For each timezone on the command
line, output an interval-format description of the timezone. See “INTERVAL
FORMAT” below.

-v Output a verbose description of time intervals. For each timezone on the com-
mand line, print the times at the two extreme time values, the times (if present)
at and just beyond the boundaries of years that localtime(3) and gmtime(3) can
represent, and the times both one second before and exactly at each detected
time discontinuity. Each line is followed by isdst=D where D is positive,
zero, or negative depending on whether the given time is daylight saving time,
standard time, or an unknown time type, respectively. Each line is also fol-
lowed by gmtoff=N if the given local time is known to be N seconds east of
Greenwich.

-V Like -v, except omit output concerning extreme time and year values. This
generates output that is easier to compare to that of implementations with dif-
ferent time representations.

-c [loyear,]hiyear
Cut off interval output at the given year(s). Cutoff times are computed using
the proleptic Gregorian calendar with year 0 and with Universal Time (UT) ig-
noring leap seconds. Cutoffs are at the start of each year, where the lower-
bound timestamp is inclusive and the upper is exclusive; for example, -c
1970,2070 selects transitions on or after 1970-01-01 00:00:00 UTC and before
2070-01-01 00:00:00 UTC. The default cutoff is -500,2500.

-t [lotime,]hitime
Cut off interval output at the given time(s), given in decimal seconds since
1970-01-01 00:00:00 Coordinated Universal Time (UTC). The timezone de-
termines whether the count includes leap seconds. As with -c, the cutoff’s
lower bound is inclusive and its upper bound is exclusive.

INTERVAL FORMAT
The interval format is a compact text representation that is intended to be both human-
and machine-readable. It consists of an empty line, then a line “TZ=string” where
string is a double-quoted string giving the timezone, a second line “- - interval” de-
scribing the time interval before the first transition if any, and zero or more following
lines “date time interval”, one line for each transition time and following interval.

Time Zone Database 3794

zdump(8) System Manager’s Manual zdump(8)

Fields are separated by single tabs.

Dates are in yyyy-mm-dd format and times are in 24-hour hh:mm:ss format where
hh<24. Times are in local time immediately after the transition. A time interval de-
scription consists of a UT offset in signed ±hhmmss format, a time zone abbreviation,
and an isdst flag. An abbreviation that equals the UT offset is omitted; other abbrevia-
tions are double-quoted strings unless they consist of one or more alphabetic charac-
ters. An isdst flag is omitted for standard time, and otherwise is a decimal integer that
is unsigned and positive (typically 1) for daylight saving time and negative for un-
known.

In times and in UT offsets with absolute value less than 100 hours, the seconds are
omitted if they are zero, and the minutes are also omitted if they are also zero. Posi-
tive UT offsets are east of Greenwich. The UT offset -00 denotes a UT placeholder
in areas where the actual offset is unspecified; by convention, this occurs when the UT
offset is zero and the time zone abbreviation begins with “-” or is “zzz”.

In double-quoted strings, escape sequences represent unusual characters. The escape
sequences are \s for space, and \", \\, \f, \n, \r, \t, and \v with their usual meaning in the
C programming language. E.g., the double-quoted string “"CET\s\"\\"” represents the
character sequence “CET "\”.

Here is an example of the output, with the leading empty line omitted. (This example
is shown with tab stops set far enough apart so that the tabbed columns line up.)

TZ="Pacific/Honolulu"
- - -103126 LMT
1896-01-13 12:01:26 -1030 HST
1933-04-30 03 -0930 HDT 1
1933-05-21 11 -1030 HST
1942-02-09 03 -0930 HWT 1
1945-08-14 13:30 -0930 HPT 1
1945-09-30 01 -1030 HST
1947-06-08 02:30 -10 HST

Here, local time begins 10 hours, 31 minutes and 26 seconds west of UT, and is a
standard time abbreviated LMT. Immediately after the first transition, the date is
1896-01-13 and the time is 12:01:26, and the following time interval is 10.5 hours
west of UT, a standard time abbreviated HST. Immediately after the second transi-
tion, the date is 1933-04-30 and the time is 03:00:00 and the following time interval is
9.5 hours west of UT, is abbreviated HDT, and is daylight saving time. Immediately
after the last transition the date is 1947-06-08 and the time is 02:30:00, and the fol-
lowing time interval is 10 hours west of UT, a standard time abbreviated HST.

Time Zone Database 3795

zdump(8) System Manager’s Manual zdump(8)

Here are excerpts from another example:

TZ="Europe/Astrakhan"
- - +031212 LMT
1924-04-30 23:47:48 +03
1930-06-21 01 +04
1981-04-01 01 +05 1
1981-09-30 23 +04
...
2014-10-26 01 +03
2016-03-27 03 +04

This time zone is east of UT, so its UT offsets are positive. Also, many of its time
zone abbreviations are omitted since they duplicate the text of the UT offset.

LIMITATIONS
Time discontinuities are found by sampling the results returned by localtime(3) at
twelve-hour intervals. This works in all real-world cases; one can construct artificial
time zones for which this fails.

In the -v and -V output, “UT” denotes the value returned by gmtime(3), which uses
UTC for modern timestamps and some other UT flavor for timestamps that predate
the introduction of UTC. No attempt is currently made to have the output use “UTC”
for newer and “UT” for older timestamps, partly because the exact date of the intro-
duction of UTC is problematic.

SEE ALSO
tzfile(5), zic(8)

Time Zone Database 3796

zic(8) System Manager’s Manual zic(8)

NAME
zic - timezone compiler

SYNOPSIS
zic [option ...] [filename ...]

DESCRIPTION
The zic program reads text from the file(s) named on the command line and creates
the timezone information format (TZif) files specified in this input. If a filename is
“-”, standard input is read.

OPTIONS
--version

Output version information and exit.

--help
Output short usage message and exit.

-b bloat
Output backward-compatibility data as specified by bloat. If bloat is fat, gen-
erate additional data entries that work around potential bugs or incompatibili-
ties in older software, such as software that mishandles the 64-bit generated
data. If bloat is slim, keep the output files small; this can help check for the
bugs and incompatibilities. The default is slim, as software that mishandles
64-bit data typically mishandles timestamps after the year 2038 anyway. Also
see the -r option for another way to alter output size.

-d directory
Create time conversion information files in the named directory rather than in
the standard directory named below.

-l timezone
Use timezone as local time. zic will act as if the input contained a link line of
the form

Link timezone localtime

If timezone is -, any already-existing link is removed.

-L leapsecondfilename
Read leap second information from the file with the given name. If this option
is not used, no leap second information appears in output files.

-p timezone
Use timezone’s rules when handling nonstandard TZ strings like
"EET-2EEST" that lack transition rules. zic will act as if the input contained
a link line of the form

Link timezone posixrules

If timezone is “-” (the default), any already-existing link is removed.

Unless timezone is “-”, this option is obsolete and poorly supported. Among
other things it should not be used for timestamps after the year 2037, and it

Time Zone Database 3797

zic(8) System Manager’s Manual zic(8)

should not be combined with -b slim if timezone’s transitions are at standard
time or Universal Time (UT) instead of local time.

-r [@lo][/@hi]
Limit the applicability of output files to timestamps in the range from lo (in-
clusive) to hi (exclusive), where lo and hi are possibly signed decimal counts
of seconds since the Epoch (1970-01-01 00:00:00 UTC). Omitted counts de-
fault to extreme values. The output files use UT offset 0 and abbreviation
“-00” in place of the omitted timestamp data. For example, “zic -r @0”
omits data intended for negative timestamps (i.e., before the Epoch), and “zic
-r @0/@2147483648” outputs data intended only for nonnegative timestamps
that fit into 31-bit signed integers. On platforms with GNU date, “zic -r
@$(date +%s)” omits data intended for past timestamps. Although this option
typically reduces the output file’s size, the size can increase due to the need to
represent the timestamp range boundaries, particularly if hi causes a TZif file
to contain explicit entries for pre-hi transitions rather than concisely represent-
ing them with an extended POSIX.1-2017 TZ string. Also see the -b slim op-
tion for another way to shrink output size.

-R @hi
Generate redundant trailing explicit transitions for timestamps that occur less
than hi seconds since the Epoch, even though the transitions could be more
concisely represented via the extended POSIX.1-2017 TZ string. This option
does not affect the represented timestamps. Although it accommodates non-
standard TZif readers that ignore the extended POSIX.1-2017 TZ string, it in-
creases the size of the altered output files.

-t file
When creating local time information, put the configuration link in the named
file rather than in the standard location.

-v Be more verbose, and complain about the following situations:

The input specifies a link to a link, something not supported by some older
parsers, including zic itself through release 2022e.

A year that appears in a data file is outside the range of representable years.

A time of 24:00 or more appears in the input. Pre-1998 versions of zic pro-
hibit 24:00, and pre-2007 versions prohibit times greater than 24:00.

A rule goes past the start or end of the month. Pre-2004 versions of zic pro-
hibit this.

A time zone abbreviation uses a %z format. Pre-2015 versions of zic do not
support this.

A timestamp contains fractional seconds. Pre-2018 versions of zic do not sup-
port this.

The input contains abbreviations that are mishandled by pre-2018 versions of
zic due to a longstanding coding bug. These abbreviations include “L” for
“Link”, “mi” for “min”, “Sa” for “Sat”, and “Su” for “Sun”.

The output file does not contain all the information about the long-term future
of a timezone, because the future cannot be summarized as an extended

Time Zone Database 3798

zic(8) System Manager’s Manual zic(8)

POSIX.1-2017 TZ string. For example, as of 2023 this problem occurs for
Morocco’s daylight-saving rules, as these rules are based on predictions for
when Ramadan will be observed, something that an extended POSIX.1-2017
TZ string cannot represent.

The output contains data that may not be handled properly by client code de-
signed for older zic output formats. These compatibility issues affect only
timestamps before 1970 or after the start of 2038.

The output contains a truncated leap second table, which can cause some older
TZif readers to misbehave. This can occur if the -L option is used, and either
an Expires line is present or the -r option is also used.

The output file contains more than 1200 transitions, which may be mishandled
by some clients. The current reference client supports at most 2000 transi-
tions; pre-2014 versions of the reference client support at most 1200 transi-
tions.

A time zone abbreviation has fewer than 3 or more than 6 characters. POSIX
requires at least 3, and requires implementations to support at least 6.

An output file name contains a byte that is not an ASCII letter, “-”, “/”, or
“_”; or it contains a file name component that contains more than 14 bytes or
that starts with “-”.

FILES
Input files use the format described in this section; output files use tzfile(5) format.

Input files should be text files, that is, they should be a series of zero or more lines,
each ending in a newline byte and containing at most 2048 bytes counting the new-
line, and without any NUL bytes. The input text’s encoding is typically UTF-8 or
ASCII; it should have a unibyte representation for the POSIX Portable Character Set
(PPCS) 〈https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap06
.html〉 and the encoding’s non-unibyte characters should consist entirely of non-PPCS
bytes. Non-PPCS characters typically occur only in comments: although output file
names and time zone abbreviations can contain nearly any character, other software
will work better if these are limited to the restricted syntax described under the -v op-
tion.

Input lines are made up of fields. Fields are separated from one another by one or
more white space characters. The white space characters are space, form feed, car-
riage return, newline, tab, and vertical tab. Leading and trailing white space on input
lines is ignored. An unquoted sharp character (#) in the input introduces a comment
which extends to the end of the line the sharp character appears on. White space char-
acters and sharp characters may be enclosed in double quotes (") if they’re to be used
as part of a field. Any line that is blank (after comment stripping) is ignored. Non-
blank lines are expected to be of one of three types: rule lines, zone lines, and link
lines.

Names must be in English and are case insensitive. They appear in several contexts,
and include month and weekday names and keywords such as maximum, only,
Rolling, and Zone. A name can be abbreviated by omitting all but an initial prefix;
any abbreviation must be unambiguous in context.

A rule line has the form

Time Zone Database 3799

zic(8) System Manager’s Manual zic(8)

Rule NAME FROM TO - IN ON AT SAVE LETTER/S

For example:

Rule US 1967 1973 - Apr lastSun 2:00w 1:00d D

The fields that make up a rule line are:

NAME
Gives the name of the rule set that contains this line. The name must start with
a character that is neither an ASCII digit nor “-” nor “+”. To allow for future
extensions, an unquoted name should not contain characters from the set
“!$%&'()*,/:;<=>?@[\]^`{|}~”. “!$%&’()*,/:;<=>?@[\]ˆ‘{|}˜”.

FROM
Gives the first year in which the rule applies. Any signed integer year can be
supplied; the proleptic Gregorian calendar is assumed, with year 0 preceding
year 1. Rules can describe times that are not representable as time values,
with the unrepresentable times ignored; this allows rules to be portable among
hosts with differing time value types.

TO Gives the final year in which the rule applies. The word maximum (or an ab-
breviation) means the indefinite future, and the word only (or an abbreviation)
may be used to repeat the value of the FROM field.

- Is a reserved field and should always contain “-” for compatibility with older
versions of zic. It was previously known as the TYPE field, which could con-
tain values to allow a separate script to further restrict in which “types” of
years the rule would apply.

IN Names the month in which the rule takes effect. Month names may be abbre-
viated.

ON Gives the day on which the rule takes effect. Recognized forms include:

5 the fifth of the month
lastSun the last Sunday in the month
lastMon the last Monday in the month
Sun>=8 first Sunday on or after the eighth
Sun<=25 last Sunday on or before the 25th

A weekday name (e.g., Sunday) or a weekday name preceded by “last” (e.g.,
lastSunday) may be abbreviated or spelled out in full. There must be no
white space characters within the ON field. The “<=” and “>=” constructs can
result in a day in the neighboring month; for example, the IN-ON combination
“Oct Sun>=31” stands for the first Sunday on or after October 31, even if that
Sunday occurs in November.

AT Gives the time of day at which the rule takes effect, relative to 00:00, the start
of a calendar day. Recognized forms include:

2 time in hours
2:00 time in hours and minutes

Time Zone Database 3800

zic(8) System Manager’s Manual zic(8)

01:28:14 time in hours, minutes, and seconds
00:19:32.13 time with fractional seconds
12:00 midday, 12 hours after 00:00
15:00 3 PM, 15 hours after 00:00
24:00 end of day, 24 hours after 00:00
260:00 260 hours after 00:00
-2:30 2.5 hours before 00:00
- equivalent to 0

Although zic rounds times to the nearest integer second (breaking ties to the
even integer), the fractions may be useful to other applications requiring
greater precision. The source format does not specify any maximum preci-
sion. Any of these forms may be followed by the letter w if the given time is
local or “wall clock” time, s if the given time is standard time without any ad-
justment for daylight saving, or u (or g or z) if the given time is universal time;
in the absence of an indicator, local (wall clock) time is assumed. These forms
ignore leap seconds; for example, if a leap second occurs at 00:59:60 local
time, “1:00” stands for 3601 seconds after local midnight instead of the usual
3600 seconds. The intent is that a rule line describes the instants when a
clock/calendar set to the type of time specified in the AT field would show the
specified date and time of day.

SAVE
Gives the amount of time to be added to local standard time when the rule is in
effect, and whether the resulting time is standard or daylight saving. This field
has the same format as the AT field except with a different set of suffix letters:
s for standard time and d for daylight saving time. The suffix letter is typically
omitted, and defaults to s if the offset is zero and to d otherwise. Negative off-
sets are allowed; in Ireland, for example, daylight saving time is observed in
winter and has a negative offset relative to Irish Standard Time. The offset is
merely added to standard time; for example, zic does not distinguish a 10:30
standard time plus an 0:30 SAVE from a 10:00 standard time plus a 1:00
SAVE.

LETTER/S
Gives the “variable part” (for example, the “S” or “D” in “EST” or “EDT”) of
time zone abbreviations to be used when this rule is in effect. If this field is
“-”, the variable part is null.

A zone line has the form

Zone NAME STDOFF RULES FORMAT [UNTIL]

For example:

Zone Asia/Amman 2:00 Jordan EE%sT 2017 Oct 27 01:00

The fields that make up a zone line are:

Time Zone Database 3801

zic(8) System Manager’s Manual zic(8)

NAME
The name of the timezone. This is the name used in creating the time conver-
sion information file for the timezone. It should not contain a file name com-
ponent “.” or “..”; a file name component is a maximal substring that does not
contain “/”.

STDOFF
The amount of time to add to UT to get standard time, without any adjustment
for daylight saving. This field has the same format as the AT and SAVE fields
of rule lines, except without suffix letters; begin the field with a minus sign if
time must be subtracted from UT.

RULES
The name of the rules that apply in the timezone or, alternatively, a field in the
same format as a rule-line SAVE column, giving the amount of time to be
added to local standard time and whether the resulting time is standard or day-
light saving. If this field is - then standard time always applies. When an
amount of time is given, only the sum of standard time and this amount mat-
ters.

FORMAT
The format for time zone abbreviations. The pair of characters %s is used to
show where the “variable part” of the time zone abbreviation goes. Alterna-
tively, a format can use the pair of characters %z to stand for the UT offset in
the form ±hh, ±hhmm, or ±hhmmss, using the shortest form that does not lose
information, where hh, mm, and ss are the hours, minutes, and seconds east
(+) or west (-) of UT. Alternatively, a slash (/) separates standard and daylight
abbreviations. To conform to POSIX, a time zone abbreviation should contain
only alphanumeric ASCII characters, “+” and “-”. By convention, the time
zone abbreviation “-00” is a placeholder that means local time is unspecified.

UNTIL
The time at which the UT offset or the rule(s) change for a location. It takes
the form of one to four fields YEAR [MONTH [DAY [TIME]]]. If this is
specified, the time zone information is generated from the given UT offset and
rule change until the time specified, which is interpreted using the rules in ef-
fect just before the transition. The month, day, and time of day have the same
format as the IN, ON, and AT fields of a rule; trailing fields can be omitted,
and default to the earliest possible value for the missing fields.

The next line must be a “continuation” line; this has the same form as a zone
line except that the string “Zone” and the name are omitted, as the continua-
tion line will place information starting at the time specified as the “until” in-
formation in the previous line in the file used by the previous line. Continua-
tion lines may contain “until” information, just as zone lines do, indicating
that the next line is a further continuation.

If a zone changes at the same instant that a rule would otherwise take effect in the ear-
lier zone or continuation line, the rule is ignored. A zone or continuation line L with
a named rule set starts with standard time by default: that is, any of L’s timestamps
preceding L’s earliest rule use the rule in effect after L’s first transition into standard
time. In a single zone it is an error if two rules take effect at the same instant, or if

Time Zone Database 3802

zic(8) System Manager’s Manual zic(8)

two zone changes take effect at the same instant.

If a continuation line subtracts N seconds from the UT offset after a transition that
would be interpreted to be later if using the continuation line’s UT offset and rules,
the “until” time of the previous zone or continuation line is interpreted according to
the continuation line’s UT offset and rules, and any rule that would otherwise take ef-
fect in the next N seconds is instead assumed to take effect simultaneously. For ex-
ample:

Rule NAME FROM TO - IN ON AT SAVE LETTER/S
Rule US 1967 2006 - Oct lastSun 2:00 0 S
Rule US 1967 1973 - Apr lastSun 2:00 1:00 D
Zone NAME STDOFF RULES FORMAT [UNTIL]
Zone America/Menominee -5:00 - EST 1973 Apr 29 2:00

-6:00 US C%sT

Here, an incorrect reading would be there were two clock changes on 1973-04-29, the
first from 02:00 EST (-05) to 01:00 CST (-06), and the second an hour later from
02:00 CST (-06) to 03:00 CDT (-05). However, zic interprets this more sensibly as a
single transition from 02:00 CST (-05) to 02:00 CDT (-05).

A link line has the form

Link TARGET LINK-NAME

For example:

Link Europe/Istanbul Asia/Istanbul

The TARGET field should appear as the NAME field in some zone line or as the
LINK-NAME field in some link line. The LINK-NAME field is used as an alterna-
tive name for that zone; it has the same syntax as a zone line’s NAME field. Links
can chain together, although the behavior is unspecified if a chain of one or more links
does not terminate in a Zone name. A link line can appear before the line that defines
the link target. For example:

Link Greenwich G_M_T
Link Etc/GMT Greenwich
Zone Etc/GMT 0 - GMT

The two links are chained together, and G_M_T, Greenwich, and Etc/GMT all name
the same zone.

Except for continuation lines, lines may appear in any order in the input. However,
the behavior is unspecified if multiple zone or link lines define the same name.

The file that describes leap seconds can have leap lines and an expiration line. Leap
lines have the following form:

Leap YEAR MONTH DAY HH:MM:SS CORR R/S

Time Zone Database 3803

zic(8) System Manager’s Manual zic(8)

For example:

Leap 2016 Dec 31 23:59:60 + S

The YEAR, MONTH, DAY, and HH:MM:SS fields tell when the leap second hap-
pened. The CORR field should be “+” if a second was added or “-” if a second was
skipped. The R/S field should be (an abbreviation of) “Stationary” if the leap second
time given by the other fields should be interpreted as UTC or (an abbreviation of)
“Rolling” if the leap second time given by the other fields should be interpreted as lo-
cal (wall clock) time.

Rolling leap seconds were implemented back when it was not clear whether common
practice was rolling or stationary, with concerns that one would see Times Square ball
drops where there’d be a “3... 2... 1... leap... Happy New Year” countdown, placing the
leap second at midnight New York time rather than midnight UTC. However, this
countdown style does not seem to have caught on, which means rolling leap seconds
are not used in practice; also, they are not supported if the -r option is used.

The expiration line, if present, has the form:

Expires YEAR MONTH DAY HH:MM:SS

For example:

Expires 2020 Dec 28 00:00:00

The YEAR, MONTH, DAY, and HH:MM:SS fields give the expiration timestamp in
UTC for the leap second table.

Time Zone Database 3804

zic(8) System Manager’s Manual zic(8)

EXTENDED EXAMPLE
Here is an extended example of zic input, intended to illustrate many of its features.

Rule NAME FROM TO - IN ON AT SAVE LETTER/S
Rule Swiss 1941 1942 - May Mon>=1 1:00 1:00 S
Rule Swiss 1941 1942 - Oct Mon>=1 2:00 0 -

Rule EU 1977 1980 - Apr Sun>=1 1:00u 1:00 S
Rule EU 1977 only - Sep lastSun 1:00u 0 -
Rule EU 1978 only - Oct 1 1:00u 0 -
Rule EU 1979 1995 - Sep lastSun 1:00u 0 -
Rule EU 1981 max - Mar lastSun 1:00u 1:00 S
Rule EU 1996 max - Oct lastSun 1:00u 0 -

Zone NAME STDOFF RULES FORMAT [UNTIL]
Zone Europe/Zurich 0:34:08 - LMT 1853 Jul 16

0:29:45.50 - BMT 1894 Jun
1:00 Swiss CE%sT 1981
1:00 EU CE%sT

Link Europe/Zurich Europe/Vaduz

In this example, the EU rules are for the European Union and for its predecessor orga-
nization, the European Communities. The timezone is named Europe/Zurich and it
has the alias Europe/Vaduz. This example says that Zurich was 34 minutes and 8 sec-
onds east of UT until 1853-07-16 at 00:00, when the legal offset was changed to
7° 26 22.50 , which works out to 0:29:45.50; zic treats this by rounding it to 0:29:46.
After 1894-06-01 at 00:00 the UT offset became one hour and Swiss daylight saving
rules (defined with lines beginning with “Rule Swiss”) apply. From 1981 to the
present, EU daylight saving rules have applied, and the UTC offset has remained at
one hour.

In 1941 and 1942, daylight saving time applied from the first Monday in May at 01:00
to the first Monday in October at 02:00. The pre-1981 EU daylight-saving rules have
no effect here, but are included for completeness. Since 1981, daylight saving has be-
gun on the last Sunday in March at 01:00 UTC. Until 1995 it ended the last Sunday
in September at 01:00 UTC, but this changed to the last Sunday in October starting in
1996.

For purposes of display, “LMT” and “BMT” were initially used, respectively. Since
Swiss rules and later EU rules were applied, the time zone abbreviation has been CET
for standard time and CEST for daylight saving time.

FILES
/etc/localtime

Default local timezone file.

/usr/share/zoneinfo
Default timezone information directory.

Time Zone Database 3805

zic(8) System Manager’s Manual zic(8)

NOTES
For areas with more than two types of local time, you may need to use local standard
time in the AT field of the earliest transition time’s rule to ensure that the earliest tran-
sition time recorded in the compiled file is correct.

If, for a particular timezone, a clock advance caused by the start of daylight saving co-
incides with and is equal to a clock retreat caused by a change in UT offset, zic pro-
duces a single transition to daylight saving at the new UT offset without any change in
local (wall clock) time. To get separate transitions use multiple zone continuation
lines specifying transition instants using universal time.

SEE ALSO
tzfile(5), zdump(8)

Time Zone Database 3806

	General Commands Manual
	intro(1)
	NAME
	DESCRIPTION
	NOTES
	Login
	The shell
	Pathnames and the current directory
	Directories
	Disks and filesystems
	Processes
	Getting information

	SEE ALSO

	diffmangit(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	EXAMPLES
	SEE ALSO

	getent(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	SEE ALSO

	iconv(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	ENVIRONMENT
	FILES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	ldd(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Security

	OPTIONS
	BUGS
	SEE ALSO

	locale(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	localedef(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	Operation-selection options
	Other options

	EXIT STATUS
	ENVIRONMENT
	FILES
	STANDARDS
	EXAMPLES
	SEE ALSO

	mansect(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	memusage(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Memory usage summary
	Histogram for block sizes

	OPTIONS
	EXIT STATUS
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	memusagestat(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	EXAMPLES
	SEE ALSO

	mtrace(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO

	pdfman(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	pldd(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	sortman(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	sprof(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	STANDARDS
	EXAMPLES
	SEE ALSO

	time(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	ENVIRONMENT
	GNU VERSION
	The format string
	GNU options
	GNU standard options

	BUGS
	SEE ALSO

	System Calls Manual
	intro(2)
	NAME
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	NOTES
	Calling directly
	Authors and copyright conditions

	SEE ALSO

	accept(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	Error handling

	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	The socklen_t type

	EXAMPLES
	SEE ALSO
	accept4(2)

	access(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	faccessat()
	faccessat2()

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences
	glibc notes

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	acct(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	add_key(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Key types

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	adjtimex(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	clock_adjtime ()
	ntp_adjtime ()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO
	afs_syscall(2)

	alarm(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	alloc_hugepages(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	NOTES

	arch_prctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	NOTES
	SEE ALSO
	arm_fadvise(2)
	arm_fadvise64_64(2)
	arm_sync_file_range(2)

	bdflush(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	bind(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	bpf(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	Extended BPF Design/Architecture
	Arguments
	eBPF maps
	eBPF map types
	eBPF programs
	eBPF program types
	Events

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	break(2)

	brk(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	C library/kernel differences

	SEE ALSO

	cacheflush(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	Architecture-specific variants
	GCC alternative

	STANDARDS
	BUGS

	capget(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Current details
	With VFS capabilities support
	Without VFS capabilities support

	RETURN VALUE
	ERRORS
	STANDARDS
	NOTES
	SEE ALSO
	capset(2)

	chdir(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	chmod(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fchmodat()

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences
	glibc notes

	STANDARDS
	HISTORY
	SEE ALSO

	chown(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fchownat()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	Ownership of new files
	glibc notes
	NFS
	Historical details

	EXAMPLES
	Program source

	SEE ALSO
	chown32(2)

	chroot(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	clock_adjtime(2)

	clock_getres(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Dynamic clocks

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	Historical note for SMP systems

	EXAMPLES
	Program source

	SEE ALSO
	clock_gettime(2)

	clock_nanosleep(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	clock_settime(2)

	clone(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The clone() wrapper function
	clone3()
	Equivalence between clone() and clone3() arguments
	The child termination signal
	The set_tid array
	The flags mask

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences
	blackfin, m68k, and sparc
	ia64

	STANDARDS
	HISTORY
	Linux 2.4 and earlier

	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	clone2(2)
	__clone2(2)
	clone3(2)

	close(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Multithreaded processes and close()
	Dealing with error returns from close()

	SEE ALSO

	close_range(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Closing all open file descriptors
	Closing file descriptors before exec
	Closing files on exec

	EXAMPLES
	Program source

	SEE ALSO

	connect(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	copy_file_range(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO
	creat(2)

	create_module(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	delete_module(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	Linux 2.4 and earlier

	NOTES
	SEE ALSO

	dup(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	dup2()
	dup3()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	dup2(2)
	dup3(2)

	epoll_create(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	epoll_create1()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	epoll_create1(2)

	epoll_ctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	epoll_pwait(2)
	epoll_pwait2(2)

	epoll_wait(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	epoll_pwait()
	epoll_pwait2()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	C library/kernel differences

	BUGS
	SEE ALSO

	eventfd(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences
	Additional glibc features

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	eventfd2(2)

	execve(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Effect on process attributes
	Interpreter scripts
	Limits on size of arguments and environment

	RETURN VALUE
	ERRORS
	VERSIONS
	Interpreter scripts

	STANDARDS
	HISTORY
	NOTES
	execve() and EAGAIN

	EXAMPLES
	SEE ALSO

	execveat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	_Exit(2)
	exit(2)

	_exit(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	C library/kernel differences

	SEE ALSO

	exit_group(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	faccessat(2)
	faccessat2(2)
	fadvise64(2)
	fadvise64_64(2)

	fallocate(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Allocating disk space
	Deallocating file space
	Collapsing file space
	Zeroing file space
	Increasing file space

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	fanotify_init(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	fanotify_mark(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	FAN_OPEN_EXEC and FAN_OPEN_EXEC_PERM

	BUGS
	SEE ALSO
	fattach(2)
	fchdir(2)
	fchmod(2)
	fchmodat(2)
	fchown(2)
	fchown32(2)
	fchownat(2)

	fcntl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Duplicating a file descriptor
	File descriptor flags
	File status flags
	Advisory record locking
	Open file description locks (non-POSIX)
	Mandatory locking
	Lost locks
	Managing signals
	Leases
	File and directory change notification (dnotify)
	Changing the capacity of a pipe
	File Sealing
	File read/write hints

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	File locking
	Record locks
	Record locking and NFS

	BUGS
	F_SETFL
	F_GETOWN
	F_SETOWN
	Deadlock detection
	Mandatory locking

	SEE ALSO
	fcntl64(2)
	fdatasync(2)
	fdetach(2)
	fgetxattr(2)
	finit_module(2)
	flistxattr(2)

	flock(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	CIFS details

	STANDARDS
	HISTORY
	NFS details

	NOTES
	SEE ALSO

	fork(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	free_hugepages(2)
	fremovexattr(2)
	fsetxattr(2)
	fstat(2)
	fstat64(2)
	fstatat(2)
	fstatat64(2)
	fstatfs(2)
	fstatfs64(2)

	fsync(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	ftruncate(2)
	ftruncate64(2)

	futex(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Arguments
	Futex operations
	Priority-inheritance futexes

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	futimesat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	glibc

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	get_kernel_syms(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	get_mempolicy(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	get_robust_list(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	NOTES
	SEE ALSO
	get_thread_area(2)

	getcpu(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	SEE ALSO
	getcwd(2)

	getdents(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	getdents()
	getdents64()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	getdents64(2)

	getdomainname(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	getegid(2)
	getegid32(2)
	geteuid(2)
	geteuid32(2)

	getgid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	getgid32(2)

	getgroups(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	getgroups32(2)

	gethostname(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	SEE ALSO

	getitimer(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	getitimer()
	setitimer()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	getmsg(2)

	getpagesize(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getpeername(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	getpgid(2)
	getpgrp(2)

	getpid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	SEE ALSO
	getpmsg(2)
	getppid(2)

	getpriority(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	C library/kernel differences

	BUGS
	SEE ALSO

	getrandom(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Maximum number of bytes returned
	Interruption by a signal handler

	BUGS
	SEE ALSO
	getresgid(2)
	getresgid32(2)

	getresuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	getresuid32(2)

	getrlimit(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	prlimit()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	C library/kernel ABI differences

	BUGS
	Representation of large resource limit values on 32-bit platforms

	EXAMPLES
	SEE ALSO

	getrusage(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getsid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getsockname(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	getsockopt(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	gettid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	gettimeofday(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	The tz_dsttime field

	NOTES
	SEE ALSO

	getuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	getuid32(2)

	getunwind(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	getxattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	gtty(2)

	idle(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	inb(2)
	inb_p(2)

	init_module(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	finit_module()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	Linux 2.4 and earlier

	NOTES
	SEE ALSO
	inl(2)
	inl_p(2)

	inotify_add_watch(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	inotify_init(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	inotify_init1(2)

	inotify_rm_watch(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	insb(2)
	insl(2)
	insw(2)
	inw(2)
	inw_p(2)

	io_cancel(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	io_destroy(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	io_getevents(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	io_setup(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	io_submit(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	ioctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	ioctl structure

	SEE ALSO

	ioctl_console(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	CAVEATS
	SEE ALSO

	ioctl_eventpoll(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The epoll_params structure

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	ioctl_fat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Reading and setting file attributes
	Reading the volume ID
	Reading short filenames of a directory

	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	ioctl_fs(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Share some of the data of one file with another file
	Operations for inode flags
	Get or set a filesystem label
	Get and/or clear page flags

	RETURN VALUE
	STANDARDS
	SEE ALSO

	ioctl_fsmap(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Fields of struct fsmap_head
	Keys
	Fields of struct fsmap
	Owner values

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	ioctl_kd(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	ioctl_nsfs(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	Discovering namespace relationships
	Discovering the namespace type
	Discovering the owner of a user namespace

	ERRORS
	STANDARDS
	SEE ALSO

	ioctl_pipe(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	ioctl_tty(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Get and set terminal attributes
	Locking the termios structure
	Get and set window size
	Sending a break
	Software flow control
	Buffer count and flushing
	Faking input
	Redirecting console output
	Controlling terminal
	Process group and session ID
	Exclusive mode
	Line discipline
	Pseudoterminal ioctls
	Modem control
	Marking a line as local
	Linux-specific
	Kernel debugging

	RETURN VALUE
	SEE ALSO

	ioctl_userfaultfd(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	EXAMPLES
	SEE ALSO

	ioctl_vt(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	ioperm(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iopl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	ioprio_get(2)

	ioprio_set(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Selecting an I/O scheduler
	The Completely Fair Queuing (CFQ) I/O scheduler
	Required permissions to set I/O priorities

	BUGS
	SEE ALSO

	ipc(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO
	isastream(2)

	kcmp(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	kexec_file_load(2)

	kexec_load(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	kexec_file_load()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	keyctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	kill(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	Linux notes

	NOTES
	BUGS
	SEE ALSO

	landlock_add_rule(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	landlock_create_ruleset(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	landlock_restrict_self(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	lchown(2)
	lchown32(2)
	lgetxattr(2)

	link(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	linkat()

	RETURN VALUE
	ERRORS
	VERSIONS
	glibc

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	linkat(2)

	listen(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	listmount(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The mnt_id_req structure

	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	listxattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Example

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Example output
	Program source (listxattr.c)

	SEE ALSO
	llistxattr(2)
	_llseek(2)

	_llseek(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	SEE ALSO
	lock(2)

	lookup_dcookie(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	lremovexattr(2)

	lseek(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Seeking file data and holes

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	lsetxattr(2)
	lstat(2)
	lstat64(2)

	madvise(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Conventional advice values
	Linux-specific advice values

	RETURN VALUE
	ERRORS
	VERSIONS
	Linux

	STANDARDS
	HISTORY
	SEE ALSO
	madvise1(2)

	mbind(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	membarrier(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES

	memfd_create(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	File sealing

	EXAMPLES
	Program source: t_memfd_create.c
	Program source: t_get_seals.c

	SEE ALSO

	memfd_secret(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	migrate_pages(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mincore(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	mkdir(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	mkdirat()

	RETURN VALUE
	ERRORS
	VERSIONS
	glibc notes

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	mkdirat(2)

	mknod(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	mknodat()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	mknodat(2)

	mlock(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	mlock(), mlock2(), and munlock()
	mlockall() and munlockall()

	RETURN VALUE
	ERRORS
	VERSIONS
	Linux

	STANDARDS
	HISTORY
	NOTES
	Limits and permissions

	BUGS
	SEE ALSO
	mlock2(2)
	mlockall(2)

	mmap(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The flags argument
	munmap()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	Using MAP_FIXED safely
	Timestamps changes for file-backed mappings
	Huge page (Huge TLB) mappings

	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	mmap2(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	modify_ldt(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	NOTES
	BUGS
	SEE ALSO

	mount(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Additional mount flags
	Remounting an existing mount
	Creating a bind mount
	Changing the propagation type of an existing mount
	Moving a mount
	Creating a new mount

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Mount namespaces
	Parental relationship between mounts
	/proc/pid/mounts and /proc/pid/mountinfo

	SEE ALSO

	mount_setattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	ID-mapped mounts
	Extensibility

	EXAMPLES
	SEE ALSO

	move_pages(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Page states in the status array

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mprotect(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	mpx(2)

	mq_getsetattr(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	NOTES
	SEE ALSO
	mq_notify(2)
	mq_open(2)
	mq_timedreceive(2)
	mq_timedsend(2)
	mq_unlink(2)

	mremap(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	MREMAP_DONTUNMAP use cases

	BUGS
	SEE ALSO

	msgctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	msgget(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	Linux

	NOTES
	BUGS
	SEE ALSO

	MSGOP(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	msgsnd()
	msgrcv()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	msgrcv(2)
	msgsnd(2)

	msync(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	munlock(2)
	munlockall(2)
	munmap(2)
	name_to_handle_at(2)

	nanosleep(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	newfstatat(2)
	_newselect(2)

	nfsservctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	nice(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	oldfstat(2)
	oldlstat(2)
	oldolduname(2)
	oldstat(2)
	olduname(2)

	open(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	creat()
	openat()
	openat2(2)

	RETURN VALUE
	ERRORS
	VERSIONS
	Synchronized I/O
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	Open file descriptions
	NFS
	FIFOs
	File access mode
	Rationale for openat() and other directory file descriptor APIs
	O_DIRECT

	BUGS
	SEE ALSO

	open_by_handle_at(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	name_to_handle_at()
	open_by_handle_at()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	Obtaining a persistent filesystem ID

	EXAMPLES
	Program source: t_name_to_handle_at.c
	Program source: t_open_by_handle_at.c

	SEE ALSO
	openat(2)

	openat2(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The open_how structure

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Extensibility

	SEE ALSO

	outb(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO
	outb_p(2)
	outl(2)
	outl_p(2)
	outsb(2)
	outsl(2)
	outsw(2)
	outw(2)
	outw_p(2)

	pause(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	pciconfig_iobase(2)

	pciconfig_read(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	pciconfig_write(2)

	perf_event_open(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Arguments
	Reading results
	MMAP layout
	Overflow handling
	rdpmc instruction
	perf_event ioctl calls
	Using prctl(2)
	perf_event related configuration files

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	perfmonctl(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	personality(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	phys(2)

	pidfd_getfd(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pidfd_open(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Use cases for PID file descriptors

	EXAMPLES
	Program source

	SEE ALSO

	pidfd_send_signal(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	PID file descriptors

	EXAMPLES
	SEE ALSO

	pipe(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	pipe2(2)

	pivot_root(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	pivot_root(., .)
	Historical notes

	EXAMPLES
	Program source

	SEE ALSO

	pkey_alloc(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	pkey_free(2)
	pkey_mprotect(2)

	poll(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ppoll()

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	posix_fadvise(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences
	Architecture-specific variants

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	ppoll(2)

	prctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	pread(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	BUGS
	SEE ALSO
	pread64(2)
	preadv(2)
	preadv2(2)
	prlimit(2)
	prlimit64(2)

	process_madvise(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	process_vm_readv(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	process_vm_writev(2)
	prof(2)
	pselect(2)
	pselect6(2)

	ptrace(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Death under ptrace
	Stopped states
	Signal-delivery-stop
	Signal injection and suppression
	Group-stop
	PTRACE_EVENT stops
	Syscall-stops
	PTRACE_EVENT_SECCOMP stops (Linux 3.5 to Linux 4.7)
	PTRACE_EVENT_SECCOMP stops (since Linux 4.8)
	PTRACE_SINGLESTEP stops
	Informational and restarting ptrace commands
	Attaching and detaching
	execve(2) under ptrace
	Real parent

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Ptrace access mode checking
	/proc/sys/kernel/yama/ptrace_scope
	C library/kernel differences

	BUGS
	SEE ALSO
	putmsg(2)
	putpmsg(2)
	pwrite(2)
	pwrite64(2)
	pwritev(2)
	pwritev2(2)

	query_module(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	VERSIONS
	SEE ALSO

	quotactl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	NOTES
	SEE ALSO

	read(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	readahead(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	readdir(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	SEE ALSO

	readlink(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	readlinkat()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	glibc

	NOTES
	EXAMPLES
	SEE ALSO
	readlinkat(2)

	readv(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	preadv() and pwritev()
	preadv2() and pwritev2()

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	Historical C library/kernel differences

	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	reboot(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Behavior inside PID namespaces

	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	recv(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The flags argument
	recvfrom()
	recv()
	recvmsg()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	recvfrom(2)

	recvmmsg(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	recvmsg(2)

	remap_file_pages(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	removexattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	rename(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	renameat()
	renameat2()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	glibc notes

	BUGS
	SEE ALSO
	renameat(2)
	renameat2(2)

	request_key(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Requesting user-space instantiation of a key

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	restart_syscall(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	riscv_flush_icache(2)

	rmdir(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	rt_sigaction(2)
	rt_sigpending(2)
	rt_sigprocmask(2)

	rt_sigqueueinfo(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	rt_sigreturn(2)
	rt_sigsuspend(2)
	rt_sigtimedwait(2)
	rt_tgsigqueueinfo(2)

	s390_guarded_storage(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	s390_pci_mmio_read(2)

	s390_pci_mmio_write(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	s390_runtime_instr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	s390_sthyi(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	sbrk(2)

	sched_get_priority_max(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	sched_get_priority_min(2)
	sched_getaffinity(2)
	sched_getattr(2)
	sched_getparam(2)
	sched_getscheduler(2)

	sched_rr_get_interval(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	Linux

	STANDARDS
	HISTORY
	Linux

	NOTES
	SEE ALSO

	sched_setaffinity(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	C library/kernel differences
	Handling systems with large CPU affinity masks

	EXAMPLES
	Program source

	SEE ALSO

	sched_setattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	sched_setattr()
	sched_getattr()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	sched_setparam(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	sched_setscheduler(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	sched_yield(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	seccomp(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Filters
	/proc interfaces
	Audit logging of seccomp actions

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Architecture support for seccomp BPF
	Caveats
	Seccomp-specific BPF details

	EXAMPLES
	Program source

	SEE ALSO

	seccomp_unotify(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Overview

	IOCTL OPERATIONS
	SECCOMP_IOCTL_NOTIF_RECV
	SECCOMP_IOCTL_NOTIF_ID_VALID
	SECCOMP_IOCTL_NOTIF_SEND
	SECCOMP_IOCTL_NOTIF_ADDFD

	NOTES
	select()/poll()/epoll semantics
	Design goals; use of SECCOMP_USER_NOTIF_FLAG_CONTINUE
	Caveats regarding the use of /proc/tid/mem
	Caveats regarding blocking system calls
	Interaction with SA_RESTART signal handlers

	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	security(2)

	select(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fd_set
	File descriptor sets
	Arguments
	pselect()
	The timeout

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	The self-pipe trick
	Emulating usleep(3)
	Correspondence between select() and poll() notifications
	Multithreaded applications
	C library/kernel differences
	Historical glibc details

	BUGS
	EXAMPLES
	SEE ALSO

	SELECT_TUT(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Combining signal and data events
	Practical
	Select law

	RETURN VALUE
	NOTES
	EXAMPLES
	SEE ALSO

	semctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	The sempid value

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	semget(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Semaphore initialization
	Semaphore limits

	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	semop(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	semtimedop()

	RETURN VALUE
	ERRORS
	STANDARDS
	VERSIONS
	NOTES
	Semaphore limits

	BUGS
	EXAMPLES
	SEE ALSO
	semtimedop(2)

	send(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The flags argument
	sendmsg()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	sendfile(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	sendfile64(2)

	sendmmsg(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO
	sendmsg(2)
	sendto(2)

	set_mempolicy(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	set_robust_list(2)

	set_thread_area(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	set_tid_address(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	setdomainname(2)
	setegid(2)

	seteuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	SEE ALSO

	setfsgid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	BUGS
	SEE ALSO
	setfsgid32(2)

	setfsuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	C library/kernel differences

	BUGS
	SEE ALSO
	setfsuid32(2)

	setgid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	SEE ALSO
	setgid32(2)
	setgroups(2)
	setgroups32(2)
	sethostname(2)
	setitimer(2)

	setns(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fd refers to a /proc/pid/ns/ link
	fd is a PID file descriptor
	Details for specific namespace types

	RETURN VALUE
	ERRORS
	STANDARDS
	VERSIONS
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	setpgid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	setpgrp(2)
	setpriority(2)
	setregid(2)
	setregid32(2)
	setresgid(2)
	setresgid32(2)

	setresuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	SEE ALSO
	setresuid32(2)

	setreuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	C library/kernel differences

	SEE ALSO
	setreuid32(2)
	setrlimit(2)

	setsid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	setsockopt(2)
	settimeofday(2)

	setuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	setuid32(2)

	setup(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	VERSIONS

	setxattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	sgetmask(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	shmat(2)

	shmctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	shmdt(2)

	shmget(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Shared memory limits
	Linux notes

	BUGS
	EXAMPLES
	SEE ALSO

	SHMOP(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	shmat()
	shmdt()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source: svshm_string.h
	Program source: svshm_string_read.c
	Program source: svshm_string_write.c

	SEE ALSO

	shutdown(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	sigaction(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The siginfo_t argument to a SA_SIGINFO handler
	The si_code field
	Dynamically probing for flag bit support

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	Undocumented

	BUGS
	EXAMPLES
	Probing for flag support

	SEE ALSO

	sigaltstack(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	History

	BUGS
	EXAMPLES
	SEE ALSO

	signal(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	Portability

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	signalfd(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The signalfd_siginfo structure
	fork(2) semantics
	Semantics of file descriptor passing
	execve(2) semantics
	Thread semantics
	epoll(7) semantics

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	Limitations

	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	signalfd4(2)

	sigpending(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	BUGS
	SEE ALSO

	sigprocmask(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sigreturn(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	NOTES
	C library/kernel differences

	SEE ALSO

	sigsuspend(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	SEE ALSO
	sigtimedwait(2)

	sigwaitinfo(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	socket(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	socketcall(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO

	socketpair(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	splice(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	spu_create(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	spu_run(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	ssetmask(2)

	stat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The stat structure
	fstatat()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	EXAMPLES
	SEE ALSO
	stat64(2)

	statfs(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	The f_fsid field

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	statfs64(2)

	statmount(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The mnt_id_req structure
	The returned information

	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	statx(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Invoking statx():
	The returned information
	File attributes

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	stime(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	stty(2)

	subpage_prot(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Rationale

	SEE ALSO
	swapoff(2)

	swapon(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Priority

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	symlink(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	symlinkat()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	glibc notes

	NOTES
	SEE ALSO
	symlinkat(2)

	sync(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	sync_file_range(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Warning
	Some details

	RETURN VALUE
	ERRORS
	VERSIONS
	sync_file_range2()

	STANDARDS
	HISTORY
	sync_file_range2()

	NOTES
	SEE ALSO
	sync_file_range2(2)
	syncfs(2)

	syscall(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	NOTES
	Architecture-specific requirements
	Architecture calling conventions

	EXAMPLES
	SEE ALSO

	_syscall(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Sample output

	SEE ALSO

	syscalls(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	System calls and library wrapper functions
	System call list
	System calls on removed ports

	NOTES
	Architecture-specific details: Alpha

	SEE ALSO

	sysctl(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO
	_sysctl(2)

	sysfs(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	sysinfo(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	syslog(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The kernel log buffer
	Commands
	/proc/sys/kernel/printk
	The log level

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	tee(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	tgkill(2)

	time(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	timer_create(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	timer_delete(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	timer_getoverrun(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO
	timer_gettime(2)

	timer_settime(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	timerfd_create(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	timerfd_create()
	timerfd_settime()
	timerfd_gettime()
	Operating on a timer file descriptor
	fork(2) semantics
	execve(2) semantics

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	timerfd_gettime(2)
	timerfd_settime(2)

	times(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	tkill(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	truncate(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	truncate64(2)
	tuxcall(2)
	ugetrlimit(2)

	umask(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	umount(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	umount() and shared mounts

	SEE ALSO
	umount2(2)

	uname(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	SEE ALSO

	UNIMPLEMENTED(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	NOTES
	SEE ALSO

	unlink(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	unlinkat()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	glibc

	BUGS
	SEE ALSO
	unlinkat(2)

	unshare(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	uretprobe(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS

	uselib(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	userfaultfd(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Usage
	Userfaultfd operation
	Userfaultfd write-protect mode (since Linux 5.7)
	Userfaultfd minor fault mode (since Linux 5.13)
	Reading from the userfaultfd structure

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	ustat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	HP-UX notes

	SEE ALSO

	utime(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	utimensat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Permissions requirements
	utimensat() specifics

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel ABI differences

	STANDARDS
	VERSIONS
	NOTES
	BUGS
	SEE ALSO
	utimes(2)

	vfork(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Standard description
	Linux description
	Historic description

	VERSIONS
	Linux notes

	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	vhangup(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	vm86(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	vm86old(2)

	vmsplice(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	vserver(2)

	wait(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	wait() and waitpid()
	waitid()

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	Linux notes

	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	wait3(2)

	wait4(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	SEE ALSO
	waitid(2)
	waitpid(2)

	write(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	writev(2)

	System Calls Manual (constants)
	EPIOCGPARAMS(2const)
	EPIOCSPARAMS(2const)
	FAT_IOCTL_GET_ATTRIBUTES(2const)

	FAT_IOCTL_GET_VOLUME_ID(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	EXAMPLES
	Program source (display_fat_volume_id.c)

	SEE ALSO

	FAT_IOCTL_SET_ATTRIBUTES(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	EXAMPLES
	Program source (toggle_fat_archive_flag.c)

	SEE ALSO

	FICLONE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO
	FICLONERANGE(2const)

	FIDEDUPERANGE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	FIONREAD(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO
	FS_IOC_GETFLAGS(2const)
	FS_IOC_GETFSLABEL(2const)
	FS_IOC_GETFSMAP(2const)

	FS_IOC_SETFLAGS(2const)
	NAME
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	NOTES
	SEE ALSO

	FS_IOC_SETFSLABEL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	GIO_CMAP(2const)
	GIO_FONT(2const)
	GIO_FONTX(2const)
	GIO_SCRNMAP(2const)
	GIO_UNIMAP(2const)
	GIO_UNISCRNMAP(2const)
	KDADDIO(2const)
	KDDELIO(2const)
	KDDISABIO(2const)
	KDENABIO(2const)
	KDGETKEYCODE(2const)
	KDGETLED(2const)
	KDGETMODE(2const)
	KDGKBDIACR(2const)
	KDGKBENT(2const)
	KDGKBLED(2const)
	KDGKBMETA(2const)
	KDGKBMODE(2const)
	KDGKBSENT(2const)
	KDGKBTYPE(2const)
	KDMKTONE(2const)
	KDSETKEYCODE(2const)
	KDSETLED(2const)
	KDSETMODE(2const)
	KDSIGACCEPT(2const)
	KDSKBENT(2const)
	KDSKBLED(2const)
	KDSKBMETA(2const)
	KDSKBMODE(2const)
	KDSKBSENT(2const)

	KEYCTL_ASSUME_AUTHORITY(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_CHOWN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_CLEAR(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_DESCRIBE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_DH_COMPUTE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_GET_KEYRING_ID(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_GET_PERSISTENT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_GET_SECURITY(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_INSTANTIATE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	KEYCTL_INSTANTIATE_IOV(2const)

	KEYCTL_INVALIDATE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_JOIN_SESSION_KEYRING(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_LINK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	KEYCTL_NEGATE(2const)

	KEYCTL_READ(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	KEYCTL_REJECT(2const)

	KEYCTL_RESTRICT_KEYRING(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_REVOKE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_SEARCH(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_SESSION_TO_PARENT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_SET_REQKEY_KEYRING(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_SET_TIMEOUT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_SETPERM(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_UNLINK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_UPDATE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	KIOCSOUND(2const)

	NS_GET_NSTYPE(2const)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	NS_GET_OWNER_UID(2const)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	NS_GET_PARENT(2const)

	NS_GET_USERNS(2const)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	PAGEMAP_SCAN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Supported page flags
	Supported operations
	The struct pm_scan_arg argument

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	PIO_CMAP(2const)
	PIO_FONT(2const)
	PIO_FONTRESET(2const)
	PIO_FONTX(2const)
	PIO_SCRNMAP(2const)
	PIO_UNIMAP(2const)
	PIO_UNIMAPCLR(2const)
	PIO_UNISCRNMAP(2const)

	PR_CAP_AMBIENT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAP_AMBIENT_CLEAR_ALL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAP_AMBIENT_IS_SET(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAP_AMBIENT_LOWER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAP_AMBIENT_RAISE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAPBSET_DROP(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAPBSET_READ(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_AUXV(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_CHILD_SUBREAPER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_DUMPABLE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_ENDIAN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_FP_MODE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_FPEMU(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_FPEXC(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_IO_FLUSHER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_KEEPCAPS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_MDWE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO
	PR_GET_NAME(2const)

	PR_GET_NO_NEW_PRIVS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_PDEATHSIG(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_SECCOMP(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_SECUREBITS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_SPECULATION_CTRL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_TAGGED_ADDR_CTRL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_THP_DISABLE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_TID_ADDRESS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_GET_TIMERSLACK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_TIMING(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_TSC(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_UNALIGN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_MCE_KILL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_MCE_KILL_CLEAR(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_MCE_KILL_GET(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_MCE_KILL_SET(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	PR_MPX_DISABLE_MANAGEMENT(2const)

	PR_MPX_ENABLE_MANAGEMENT(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_PAC_RESET_KEYS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_RISCV_SET_ICACHE_FLUSH_CTX(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	Program source: cmodx.c
	Program source: cmodx.S
	Expected result

	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_CHILD_SUBREAPER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_DUMPABLE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_ENDIAN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_FP_MODE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_FPEMU(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_FPEXC(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_IO_FLUSHER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_KEEPCAPS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MDWE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	PR_SET_MM_ARG_END(2const)

	PR_SET_MM_ARG_START(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_AUXV(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_BRK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	PR_SET_MM_END_CODE(2const)
	PR_SET_MM_END_DATA(2const)
	PR_SET_MM_ENV_END(2const)
	PR_SET_MM_ENV_START(2const)

	PR_SET_MM_EXE_FILE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_MAP(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	PR_SET_MM_MAP_SIZE(2const)

	PR_SET_MM_START_BRK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_START_CODE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_START_DATA(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_START_STACK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_NAME(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_NO_NEW_PRIVS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_PDEATHSIG(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_SET_PTRACER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_SECCOMP(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_SECUREBITS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_SPECULATION_CTRL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_SYSCALL_USER_DISPATCH(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_TAGGED_ADDR_CTRL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_SET_THP_DISABLE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_TIMERSLACK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_TIMING(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_SET_TSC(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_UNALIGN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_VMA(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SVE_GET_VL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_SVE_SET_VL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_TASK_PERF_EVENTS_DISABLE(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO
	PR_TASK_PERF_EVENTS_ENABLE(2const)
	TCFLSH(2const)
	TCGETA(2const)
	TCGETS(2const)
	TCGETS2(2const)

	TCSBRK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO
	TCSBRKP(2const)
	TCSETA(2const)
	TCSETAF(2const)
	TCSETAW(2const)

	TCSETS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO
	TCSETS2(2const)
	TCSETSF(2const)
	TCSETSF2(2const)
	TCSETSW(2const)
	TCSETSW2(2const)

	TCXONC(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO
	TIOCCBRK(2const)

	TIOCCONS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	HISTORY
	SEE ALSO

	TIOCEXCL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	HISTORY
	SEE ALSO
	TIOCGETD(2const)
	TIOCGEXCL(2const)
	TIOCGICOUNT(2const)
	TIOCGLCKTRMIOS(2const)
	TIOCGPGRP(2const)
	TIOCGPKT(2const)
	TIOCGPTLCK(2const)
	TIOCGPTPEER(2const)
	TIOCGSID(2const)
	TIOCGSOFTCAR(2const)
	TIOCGWINSZ(2const)
	TIOCINQ(2const)

	TIOCLINUX(2const)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO
	TIOCMBIC(2const)
	TIOCMBIS(2const)
	TIOCMGET(2const)
	TIOCMIWAIT(2const)

	TIOCMSET(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	EXAMPLES
	SEE ALSO
	TIOCNOTTY(2const)
	TIOCNXCL(2const)
	TIOCOUTQ(2const)

	TIOCPKT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	HISTORY
	SEE ALSO
	TIOCSBRK(2const)

	TIOCSCTTY(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO
	TIOCSERGETLSR(2const)

	TIOCSETD(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	TIOCSLCKTRMIOS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	CAVEATS
	SEE ALSO

	TIOCSPGRP(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO
	TIOCSPTLCK(2const)

	TIOCSSOFTCAR(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	TIOCSTI(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TIOCSWINSZ(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	TIOCTTYGSTRUCT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	HISTORY
	SEE ALSO

	UFFDIO_API(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	EXAMPLES
	SEE ALSO

	UFFDIO_CONTINUE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_COPY(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_POISON(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_REGISTER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_UNREGISTER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_WAKE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_WRITEPROTECT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_ZEROPAGE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	VFAT_IOCTL_READDIR_BOTH(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	VFAT_IOCTL_READDIR_SHORT(2const)
	VT_ACTIVATE(2const)
	VT_DISALLOCATE(2const)
	VT_GETMODE(2const)
	VT_GETSTATE(2const)
	VT_OPENQRY(2const)
	VT_RELDISP(2const)
	VT_RESIZE(2const)
	VT_RESIZEX(2const)
	VT_SETMODE(2const)
	VT_WAITACTIVE(2const)

	System Calls Manual (types)
	open_how(2type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO

	Library Functions Manual
	intro(3)
	NAME
	DESCRIPTION
	Subsections

	STANDARDS
	NOTES
	Authors and copyright conditions

	SEE ALSO

	a64l(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	abort(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	abs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	acos(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	acosf(3)

	acosh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	acoshf(3)
	acoshl(3)
	acosl(3)
	addmntent(3)

	addseverity(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	adjtime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	__after_morecore_hook(3)

	aio_cancel(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	aio_error(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	aio_fsync(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	aio_init(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	aio_read(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	aio_return(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	aio_suspend(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	aio_write(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	aligned_alloc(3)

	alloca(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	alphasort(3)

	arc4random(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	arc4random_buf(3)
	arc4random_uniform(3)
	argz(3)

	argz_add(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	BUGS
	SEE ALSO
	argz_add_sep(3)
	argz_append(3)
	argz_count(3)
	argz_create(3)
	argz_create_sep(3)
	argz_delete(3)
	argz_extract(3)
	argz_insert(3)
	argz_next(3)
	argz_replace(3)
	argz_stringify(3)
	asctime(3)
	asctime_r(3)

	asin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	asinf(3)

	asinh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	asinhf(3)
	asinhl(3)
	asinl(3)

	asprintf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO

	assert(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	assert_perror(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	BUGS
	SEE ALSO

	atan(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	atan2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	atan2f(3)
	atan2l(3)
	atanf(3)

	atanh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	atanhf(3)
	atanhl(3)
	atanl(3)

	atexit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	Linux notes

	EXAMPLES
	SEE ALSO

	atof(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	atoi(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	atol(3)
	atoll(3)
	atoq(3)
	auth_destroy(3)
	authnone_create(3)
	authunix_create(3)
	authunix_create_default(3)

	backtrace(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	backtrace_symbols(3)
	backtrace_symbols_fd(3)

	basename(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	bcmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	bcopy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	be16toh(3)
	be32toh(3)
	be64toh(3)

	bindresvport(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	NOTES
	STANDARDS
	SEE ALSO

	bsd_signal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	bsearch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	bstring(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	NOTES
	SEE ALSO

	bswap(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	EXAMPLES
	Program source

	SEE ALSO
	bswap_16(3)
	bswap_32(3)
	bswap_64(3)

	btowc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	btree(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	BUGS
	SEE ALSO

	BYTEORDER(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	bzero(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	cabs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	cabsf(3)
	cabsl(3)

	cacos(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	cacosf(3)

	cacosh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	cacoshf(3)
	cacoshl(3)
	cacosl(3)
	calloc(3)
	callrpc(3)

	canonicalize_file_name(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	carg(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	cargf(3)
	cargl(3)

	casin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	casinf(3)

	casinh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	casinhf(3)
	casinhl(3)
	casinl(3)

	catan(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	catanf(3)

	catanh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	catanhf(3)
	catanhl(3)
	catanl(3)
	catclose(3)

	catgets(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	catopen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ENVIRONMENT
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	cbc_crypt(3)

	cbrt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	cbrtf(3)
	cbrtl(3)

	ccos(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	ccosf(3)

	ccosh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO
	ccoshf(3)
	ccoshl(3)
	ccosl(3)

	ceil(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	ceilf(3)
	ceill(3)

	cexp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	cexp2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	SEE ALSO
	cexp2f(3)
	cexp2l(3)
	cexpf(3)
	cexpl(3)
	cfgetispeed(3)
	cfgetospeed(3)
	cfmakeraw(3)

	cfree(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	1-arg cfree
	3-arg cfree

	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	cfsetispeed(3)
	cfsetospeed(3)
	cfsetspeed(3)

	cimag(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	cimagf(3)
	cimagl(3)

	CIRCLEQ(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Creation
	Insertion
	Traversal
	Removal

	RETURN VALUE
	STANDARDS
	BUGS
	EXAMPLES
	SEE ALSO
	CIRCLEQ_EMPTY(3)
	CIRCLEQ_ENTRY(3)
	CIRCLEQ_FIRST(3)
	CIRCLEQ_FOREACH(3)
	CIRCLEQ_FOREACH_REVERSE(3)
	CIRCLEQ_HEAD(3)
	CIRCLEQ_HEAD_INITIALIZER(3)
	CIRCLEQ_INIT(3)
	CIRCLEQ_INSERT_AFTER(3)
	CIRCLEQ_INSERT_BEFORE(3)
	CIRCLEQ_INSERT_HEAD(3)
	CIRCLEQ_INSERT_TAIL(3)
	CIRCLEQ_LAST(3)
	CIRCLEQ_LOOP_NEXT(3)
	CIRCLEQ_LOOP_PREV(3)
	CIRCLEQ_NEXT(3)
	CIRCLEQ_PREV(3)
	CIRCLEQ_REMOVE(3)

	clearenv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	clearerr(3)
	clearerr_unlocked(3)
	clnt_broadcast(3)
	clnt_call(3)
	clnt_control(3)
	clnt_create(3)
	clnt_destroy(3)
	clnt_freeres(3)
	clnt_geterr(3)
	clnt_pcreateerror(3)
	clnt_perrno(3)
	clnt_perror(3)
	clnt_spcreateerror(3)
	clnt_sperrno(3)
	clnt_sperror(3)
	clntraw_create(3)
	clnttcp_create(3)
	clntudp_bufcreate(3)
	clntudp_create(3)

	clock(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	clock_getcpuclockid(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	clog(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	clog2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	clog10(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	clog10f(3)
	clog10l(3)
	clog2f(3)
	clog2l(3)
	clogf(3)
	clogl(3)

	closedir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	closelog(3)

	CMSG(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	CMSG_ALIGN(3)
	CMSG_DATA(3)
	CMSG_FIRSTHDR(3)
	CMSG_LEN(3)
	CMSG_NXTHDR(3)
	CMSG_SPACE(3)

	confstr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	conj(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	conjf(3)
	conjl(3)

	copysign(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	copysignf(3)
	copysignl(3)

	cos(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	cosf(3)

	cosh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	coshf(3)
	coshl(3)
	cosl(3)

	cpow(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	cpowf(3)
	cpowl(3)

	cproj(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	cprojf(3)
	cprojl(3)
	CPU_ALLOC(3)
	CPU_ALLOC_SIZE(3)
	CPU_AND(3)
	CPU_AND_S(3)
	CPU_CLR(3)
	CPU_CLR_S(3)
	CPU_COUNT(3)
	CPU_COUNT_S(3)
	CPU_EQUAL(3)
	CPU_EQUAL_S(3)
	CPU_FREE(3)
	CPU_ISSET(3)
	CPU_ISSET_S(3)
	CPU_OR(3)
	CPU_OR_S(3)

	CPU_SET(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Dynamically sized CPU sets

	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO
	CPU_SET_S(3)
	CPU_XOR(3)
	CPU_XOR_S(3)
	CPU_ZERO(3)
	CPU_ZERO_S(3)

	creal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	crealf(3)
	creall(3)

	crypt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	Availability in glibc

	NOTES
	Features in glibc

	SEE ALSO
	crypt_r(3)

	csin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	csinf(3)

	csinh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	csinhf(3)
	csinhl(3)
	csinl(3)

	csqrt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	csqrtf(3)
	csqrtl(3)

	ctan(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	ctanf(3)

	ctanh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	ctanhf(3)
	ctanhl(3)
	ctanl(3)

	ctermid(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	ctime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	Thread safety
	mktime()

	EXAMPLES
	Program source: mktime.c

	SEE ALSO
	ctime_r(3)
	cuserid(3)

	daemon(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	daylight(3)
	db(3)

	dbopen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Key/data pairs

	ERRORS
	BUGS
	SEE ALSO

	des_crypt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	DES_FAILED(3)
	des_setparity(3)

	difftime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	dirfd(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	dirname(3)

	div(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	dl_iterate_phdr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	dladdr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	dladdr1(3)
	dlclose(3)

	dlerror(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	dlinfo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	dlmopen(3)

	dlopen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	dlopen()
	dlmopen()
	dlclose()

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	dlmopen() and namespaces
	Initialization and finalization functions
	History

	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	dlsym(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	History

	EXAMPLES
	SEE ALSO
	dlvsym(3)
	dn_comp(3)
	dn_expand(3)
	dprintf(3)

	drand48(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	drand48_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO
	drem(3)
	dremf(3)
	dreml(3)

	duplocale(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	dysize(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	eaccess(3)
	ecb_crypt(3)

	ecvt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	ecvt_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO
	edata(3)

	encrypt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	Availability in glibc
	Features in glibc

	EXAMPLES
	SEE ALSO
	encrypt_r(3)

	end(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	endaliasent(3)
	endfsent(3)
	endgrent(3)
	endhostent(3)

	endian(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	endmntent(3)
	endnetent(3)
	endnetgrent(3)
	endprotoent(3)
	endpwent(3)
	endrpcent(3)
	endservent(3)
	endspent(3)
	endttyent(3)
	endusershell(3)
	endutent(3)
	endutxent(3)
	envz(3)

	envz_add(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	EXAMPLES
	SEE ALSO
	envz_entry(3)
	envz_get(3)
	envz_merge(3)
	envz_remove(3)
	envz_strip(3)
	erand48(3)
	erand48_r(3)

	erf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	erfc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	erfcf(3)
	erfcl(3)
	erff(3)
	erfl(3)

	err(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	errno(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	errno
	Error numbers and names
	List of error names

	NOTES
	SEE ALSO

	error(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	SEE ALSO
	error_at_line(3)
	error_message_count(3)
	error_one_per_line(3)
	error_print_progname(3)
	errx(3)
	etext(3)

	ether_aton(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	ether_aton_r(3)
	ether_hostton(3)
	ether_line(3)
	ether_ntoa(3)
	ether_ntoa_r(3)
	ether_ntohost(3)

	euidaccess(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	eventfd_read(3)
	eventfd_write(3)

	exec(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	l - execl(), execlp(), execle()
	v - execv(), execvp(), execvpe()
	e - execle(), execvpe()
	p - execlp(), execvp(), execvpe()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	Architecture-specific details

	SEE ALSO
	execl(3)
	execle(3)
	execlp(3)
	execv(3)
	execvp(3)
	execvpe(3)

	exit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	Signals sent to other processes

	SEE ALSO

	exp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	exp2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	exp10(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	exp10f(3)
	exp10l(3)
	exp2f(3)
	exp2l(3)
	expf(3)
	expl(3)
	explicit_bzero(3)

	expm1(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	expm1f(3)
	expm1l(3)

	fabs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	fabsf(3)
	fabsl(3)
	__fbufsize(3)

	fclose(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fcloseall(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO
	fcvt(3)
	fcvt_r(3)
	FD_CLR(3)
	FD_ISSET(3)
	FD_SET(3)
	FD_ZERO(3)

	fdim(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	fdimf(3)
	fdiml(3)
	fdopen(3)
	fdopendir(3)
	feclearexcept(3)
	fedisableexcept(3)
	feenableexcept(3)
	fegetenv(3)
	fegetexcept(3)
	fegetexceptflag(3)
	fegetround(3)
	feholdexcept(3)

	fenv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Exceptions
	Exception handling
	Rounding mode
	Floating-point environment

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	glibc notes

	BUGS
	SEE ALSO
	feof(3)
	feof_unlocked(3)
	feraiseexcept(3)

	ferror(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	CAVEATS
	SEE ALSO
	ferror_unlocked(3)
	fesetenv(3)
	fesetexceptflag(3)
	fesetround(3)
	fetestexcept(3)
	feupdateenv(3)

	fexecve(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	fflush(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	fflush_unlocked(3)

	ffs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO
	ffsl(3)
	ffsll(3)

	fgetc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	fgetc_unlocked(3)

	fgetgrent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	fgetgrent_r(3)
	fgetpos(3)

	fgetpwent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	fgetpwent_r(3)
	fgets(3)
	fgets_unlocked(3)
	fgetspent(3)
	fgetspent_r(3)

	fgetwc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	fgetwc_unlocked(3)

	fgetws(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	fgetws_unlocked(3)

	fileno(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	fileno_unlocked(3)

	finite(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	NOTES
	SEE ALSO
	finitef(3)
	finitel(3)
	__flbf(3)

	flockfile(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	floor(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	floorf(3)
	floorl(3)
	_flushlbf(3)

	fma(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	fmaf(3)
	fmal(3)

	fmax(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	fmaxf(3)
	fmaxl(3)

	fmemopen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	Binary mode

	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	fmin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	fminf(3)
	fminl(3)

	fmod(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO
	fmodf(3)
	fmodl(3)

	fmtmsg(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Dummy arguments
	The classification argument
	The severity argument

	RETURN VALUE
	ENVIRONMENT
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	fnmatch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fopen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fdopen()
	freopen()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	glibc notes

	BUGS
	SEE ALSO

	fopencookie(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	EXAMPLES
	Program source

	NOTES
	SEE ALSO
	forkpty(3)

	fpathconf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fpclassify(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	__fpending(3)
	fprintf(3)

	fpurge(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	__fpurge(3)
	fputc(3)
	fputc_unlocked(3)
	fputs(3)
	fputs_unlocked(3)

	fputwc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	fputwc_unlocked(3)

	fputws(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	fputws_unlocked(3)

	fread(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	fread_unlocked(3)
	__freadable(3)
	__freading(3)
	free(3)
	__free_hook(3)
	freeaddrinfo(3)
	freehostent(3)
	freeifaddrs(3)
	freelocale(3)
	freopen(3)

	frexp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	frexpf(3)
	frexpl(3)
	fscanf(3)

	fseek(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fseeko(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	__fsetlocking(3)
	fsetpos(3)
	fstatvfs(3)
	ftell(3)
	ftello(3)

	ftime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	ftok(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	ftrylockfile(3)

	fts(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fts_open()
	fts_read()
	fts_children()
	fts_set()
	fts_close()

	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	fts_children(3)
	fts_close(3)
	fts_open(3)
	fts_read(3)
	fts_set(3)

	ftw(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ftw()

	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	funlockfile(3)
	futimens(3)

	futimes(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fwide(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	fwprintf(3)
	__fwritable(3)
	fwrite(3)
	fwrite_unlocked(3)
	__fwriting(3)
	gai_cancel(3)
	gai_error(3)
	gai_strerror(3)
	gai_suspend(3)

	gamma(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	*BSD version
	glibc version

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	gammaf(3)
	gammal(3)

	gcvt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	_Generic(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	EXAMPLES
	get_avphys_pages(3)
	get_current_dir_name(3)
	get_myaddress(3)

	get_nprocs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	NOTES
	EXAMPLES
	SEE ALSO
	get_nprocs_conf(3)

	get_phys_pages(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	getaddrinfo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Extensions to getaddrinfo() for Internationalized Domain Names

	RETURN VALUE
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Server program
	Client program

	SEE ALSO

	getaddrinfo_a(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Synchronous example
	Asynchronous example

	SEE ALSO
	getaliasbyname(3)
	getaliasbyname_r(3)
	getaliasent(3)
	getaliasent_r(3)

	getauxval(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	getc(3)
	getc_unlocked(3)
	getchar(3)
	getchar_unlocked(3)

	getcontext(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getcwd(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	getdate(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ENVIRONMENT
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	getdate_err(3)
	getdate_r(3)
	getdelim(3)

	getdirentries(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO

	getdtablesize(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getentropy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getenv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getfsent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	getfsfile(3)
	getfsspec(3)

	getgrent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getgrent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	getgrgid(3)
	getgrgid_r(3)

	getgrnam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	getgrnam_r(3)

	getgrouplist(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	gethostbyaddr(3)
	gethostbyaddr_r(3)

	gethostbyname(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Historical

	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	System V/POSIX extension
	GNU extensions

	BUGS
	SEE ALSO
	gethostbyname_r(3)
	gethostbyname2(3)
	gethostbyname2_r(3)
	gethostent(3)
	gethostent_r(3)

	gethostid(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	getifaddrs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	getipnodebyaddr(3)

	getipnodebyname(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	getipnodebyname() arguments
	getipnodebyaddr() arguments

	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	getline(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	getloadavg(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getlogin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	STANDARDS
	BUGS
	SEE ALSO
	getlogin_r(3)

	getmntent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	getmntent_r(3)

	getnameinfo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Extensions to getnameinfo() for Internationalized Domain Names

	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	getnetbyaddr(3)
	getnetbyaddr_r(3)
	getnetbyname(3)
	getnetbyname_r(3)

	getnetent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getnetent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO
	getnetgrent(3)
	getnetgrent_r(3)

	getopt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	getopt_long() and getopt_long_only()

	RETURN VALUE
	ENVIRONMENT
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	getopt()
	getopt_long()

	SEE ALSO
	getopt_long(3)
	getopt_long_only(3)

	getpass(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	getprotobyname(3)
	getprotobyname_r(3)
	getprotobynumber(3)
	getprotobynumber_r(3)

	getprotoent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getprotoent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	EXAMPLES
	Program source

	SEE ALSO

	getpt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getpw(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	getpwent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getpwent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	getpwnam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	getpwnam_r(3)
	getpwuid(3)
	getpwuid_r(3)
	getrpcbyname(3)
	getrpcbyname_r(3)
	getrpcbynumber(3)
	getrpcbynumber_r(3)

	getrpcent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	getrpcent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO

	getrpcport(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY

	gets(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	getservbyname(3)
	getservbyname_r(3)
	getservbyport(3)
	getservbyport_r(3)

	getservent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getservent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	EXAMPLES
	Program source

	SEE ALSO
	getspent(3)
	getspent_r(3)

	getspnam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Reentrant versions
	Structure

	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO
	getspnam_r(3)

	getsubopt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	getttyent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO
	getttynam(3)

	getusershell(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getutent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	glibc notes

	EXAMPLES
	SEE ALSO
	getutent_r(3)
	getutid(3)
	getutid_r(3)
	getutline(3)
	getutline_r(3)

	getutmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	getutmpx(3)
	getutxent(3)
	getutxid(3)
	getutxline(3)

	getw(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	getwc(3)
	getwc_unlocked(3)

	getwchar(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	getwchar_unlocked(3)
	getwd(3)

	glob(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO
	globfree(3)
	gmtime(3)
	gmtime_r(3)
	gnu_dev_major(3)
	gnu_dev_makedev(3)
	gnu_dev_minor(3)
	gnu_get_libc_release(3)

	gnu_get_libc_version(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	grantpt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	group_member(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	SEE ALSO

	gsignal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	h_errno(3)

	hash(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	BUGS
	SEE ALSO
	hasmntopt(3)
	hcreate(3)
	hcreate_r(3)
	hdestroy(3)
	hdestroy_r(3)
	herror(3)

	hsearch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO
	hsearch_r(3)
	hstrerror(3)
	htobe16(3)
	htobe32(3)
	htobe64(3)
	htole16(3)
	htole32(3)
	htole64(3)
	htonl(3)
	htons(3)
	HUGE_VAL(3)
	HUGE_VALF(3)
	HUGE_VALL(3)

	hypot(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	hypotf(3)
	hypotl(3)

	iconv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iconv_close(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	iconv_open(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	if_freenameindex(3)
	if_indextoname(3)

	if_nameindex(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	if_nametoindex(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	ilogb(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	ilogbf(3)
	ilogbl(3)
	imaxabs(3)
	imaxdiv(3)

	index(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	inet(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	STANDARDS
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	inet_addr(3)
	inet_aton(3)
	inet_lnaof(3)
	inet_makeaddr(3)
	inet_net_ntop(3)

	inet_net_pton(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	inet_net_pton()
	inet_net_ntop()

	RETURN VALUE
	ERRORS
	STANDARDS
	NOTES
	Input presentation format for inet_net_pton()
	Return value of inet_net_pton()

	EXAMPLES
	Program source

	SEE ALSO
	inet_netof(3)
	inet_network(3)
	inet_ntoa(3)

	inet_ntop(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	inet_pton(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	INFINITY(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	initgroups(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	initstate(3)
	initstate_r(3)
	innetgr(3)

	insque(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	iruserok(3)
	iruserok_af(3)
	isalnum(3)
	isalnum_l(3)

	isalpha(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO
	isalpha_l(3)
	isascii(3)
	isascii_l(3)

	isatty(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	isblank(3)
	isblank_l(3)
	iscntrl(3)
	iscntrl_l(3)
	isdigit(3)
	isdigit_l(3)

	isfdtype(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	isfinite(3)
	isgraph(3)
	isgraph_l(3)

	isgreater(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	isgreaterequal(3)
	isinf(3)
	isinff(3)
	isinfl(3)
	isless(3)
	islessequal(3)
	islessgreater(3)
	islower(3)
	islower_l(3)
	isnan(3)
	isnanf(3)
	isnanl(3)
	isnormal(3)
	isprint(3)
	isprint_l(3)
	ispunct(3)
	ispunct_l(3)
	isspace(3)
	isspace_l(3)
	isunordered(3)
	isupper(3)
	isupper_l(3)

	iswalnum(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswalpha(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswblank(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswcntrl(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswctype(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswdigit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswgraph(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswlower(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswprint(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswpunct(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswspace(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswupper(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswxdigit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	isxdigit(3)
	isxdigit_l(3)

	j0(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	j1(3)
	j0f(3)
	j0l(3)
	j1f(3)
	j1l(3)
	jn(3)
	jnf(3)
	jnl(3)
	jrand48(3)
	jrand48_r(3)
	key_decryptsession(3)
	key_encryptsession(3)
	key_gendes(3)
	key_secretkey_is_set(3)

	key_setsecret(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	NOTES
	SEE ALSO

	killpg(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	SEE ALSO
	klogctl(3)
	l64a(3)
	labs(3)
	lckpwdf(3)
	lcong48(3)
	lcong48_r(3)

	ldexp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	ldexpf(3)
	ldexpl(3)
	ldiv(3)
	le16toh(3)
	le32toh(3)
	le64toh(3)
	lfind(3)

	lgamma(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	lgamma_r(3)
	lgammaf(3)
	lgammaf_r(3)
	lgammal(3)
	lgammal_r(3)

	lio_listio(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	LIST(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Creation
	Insertion
	Traversal
	Removal

	RETURN VALUE
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO
	LIST_EMPTY(3)
	LIST_ENTRY(3)
	LIST_FIRST(3)
	LIST_FOREACH(3)
	LIST_HEAD(3)
	LIST_HEAD_INITIALIZER(3)
	LIST_INIT(3)
	LIST_INSERT_AFTER(3)
	LIST_INSERT_BEFORE(3)
	LIST_INSERT_HEAD(3)
	LIST_NEXT(3)
	LIST_REMOVE(3)
	llabs(3)
	lldiv(3)
	llrint(3)
	llrintf(3)
	llrintl(3)
	llround(3)
	llroundf(3)
	llroundl(3)

	localeconv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	localtime(3)
	localtime_r(3)

	lockf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	log(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	log2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	log10(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	log10f(3)
	log10l(3)

	log1p(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	log1pf(3)
	log1pl(3)
	log2f(3)
	log2l(3)

	logb(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	logbf(3)
	logbl(3)
	logf(3)

	login(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	GNU details

	RETURN VALUE
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO
	login_tty(3)
	logl(3)
	logout(3)
	logwtmp(3)
	longjmp(3)
	lrand48(3)
	lrand48_r(3)

	lrint(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	lrintf(3)
	lrintl(3)

	lround(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	lroundf(3)
	lroundl(3)

	lsearch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	lseek64(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	lseek()
	lseek64()
	llseek()
	_llseek()

	ATTRIBUTES
	NOTES
	SEE ALSO
	lutimes(3)
	major(3)

	makecontext(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	makedev(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	mallinfo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	mallinfo2(3)

	malloc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	malloc()
	free()
	calloc()
	realloc()
	reallocarray()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	Nonportable behavior

	EXAMPLES
	SEE ALSO

	malloc_get_state(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO
	__malloc_hook(3)

	__malloc_hook(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	NOTES
	EXAMPLES
	SEE ALSO

	malloc_info(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	__malloc_initialize_hook(3)
	malloc_set_state(3)

	malloc_stats(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	malloc_trim(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	VERSIONS
	NOTES
	SEE ALSO

	malloc_usable_size(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	CAVEATS
	SEE ALSO

	mallopt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Environment variables

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	matherr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Math functions that employ matherr()

	ATTRIBUTES
	EXAMPLES
	Program source

	SEE ALSO

	MAX(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	MB_CUR_MAX(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	MB_LEN_MAX(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mblen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mbrlen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mbrtowc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mbsinit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mbsnrtowcs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO

	mbsrtowcs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mbstowcs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	mbtowc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mcheck(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	mcheck_check_all(3)
	mcheck_pedantic(3)
	memalign(3)
	__memalign_hook(3)

	memccpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	memchr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	memcmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	memcpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	memfrob(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	memmem(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	memmove(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	mempcpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	memrchr(3)

	memset(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	MIN(3)
	minor(3)

	mkdtemp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	mkfifo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	mkfifoat()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	mkfifoat(3)
	mkostemp(3)
	mkostemps(3)

	mkstemp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	mkstemps(3)

	mktemp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	mktime(3)
	mmap64(3)

	modf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	modff(3)
	modfl(3)

	mpool(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	STANDARDS
	SEE ALSO
	mprobe(3)

	mq_close(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mq_getattr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	mq_notify(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	mq_open(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	mq_receive(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	mq_send(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	mq_setattr(3)
	mq_timedreceive(3)
	mq_timedsend(3)

	mq_unlink(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	mrand48(3)
	mrand48_r(3)

	mtrace(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO
	muntrace(3)
	NAN(3)

	nan(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	nanf(3)
	nanl(3)
	nearbyint(3)
	nearbyintf(3)
	nearbyintl(3)

	netlink(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO

	newlocale(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	freelocale()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	nextafter(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	nextafterf(3)
	nextafterl(3)
	nextdown(3)
	nextdownf(3)
	nextdownl(3)
	nexttoward(3)
	nexttowardf(3)
	nexttowardl(3)

	nextup(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	nextupf(3)
	nextupl(3)
	nftw(3)

	nl_langinfo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	nl_langinfo_l(3)
	nrand48(3)
	nrand48_r(3)
	ntohl(3)
	ntohs(3)
	ntp_adjtime(3)

	ntp_gettime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	ntp_gettimex(3)

	offsetof(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	on_exit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	open_memstream(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO
	open_wmemstream(3)

	opendir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	STANDARDS
	NOTES
	SEE ALSO
	openlog(3)

	openpty(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	optarg(3)
	opterr(3)
	optind(3)
	optopt(3)
	passwd2des(3)
	pathconf(3)
	pclose(3)

	perror(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	pmap_getmaps(3)
	pmap_getport(3)
	pmap_rmtcall(3)
	pmap_set(3)
	pmap_unset(3)

	popen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	posix_fallocate(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	posix_madvise(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	posix_memalign(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	Headers

	NOTES
	SEE ALSO

	posix_openpt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	posix_spawn(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fork() step
	pre-exec() step: housekeeping
	exec() step

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	posix_spawnp(3)

	pow(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	Historical bugs (now fixed)

	SEE ALSO

	pow10(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	VERSIONS
	SEE ALSO
	pow10f(3)
	pow10l(3)

	powerof2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	CAVEATS
	SEE ALSO
	powf(3)
	powl(3)

	__ppc_get_timebase(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	__ppc_get_timebase_freq(3)
	__ppc_mdoio(3)
	__ppc_mdoom(3)
	__ppc_set_ppr_low(3)

	__ppc_set_ppr_med(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	__ppc_set_ppr_med_high(3)
	__ppc_set_ppr_med_low(3)
	__ppc_set_ppr_very_low(3)

	__ppc_yield(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	printf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Format of the format string
	Flag characters
	Field width
	Precision
	Length modifier
	Conversion specifiers

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	EXAMPLES
	SEE ALSO

	profil(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	program_invocation_name(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO
	program_invocation_short_name(3)
	psiginfo(3)

	psignal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	pthread_atfork(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	pthread_attr_destroy(3)
	pthread_attr_getaffinity_np(3)
	pthread_attr_getdetachstate(3)
	pthread_attr_getguardsize(3)
	pthread_attr_getinheritsched(3)
	pthread_attr_getschedparam(3)
	pthread_attr_getschedpolicy(3)
	pthread_attr_getscope(3)
	pthread_attr_getsigmask_np(3)
	pthread_attr_getstack(3)
	pthread_attr_getstackaddr(3)
	pthread_attr_getstacksize(3)

	pthread_attr_init(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	pthread_attr_setaffinity_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_attr_setdetachstate(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_attr_setguardsize(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	pthread_attr_setinheritsched(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	pthread_attr_setschedparam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_attr_setschedpolicy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	pthread_attr_setscope(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_attr_setsigmask_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_attr_setstack(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_attr_setstackaddr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_attr_setstacksize(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	pthread_cancel(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	pthread_cleanup_pop(3)
	pthread_cleanup_pop_restore_np(3)

	pthread_cleanup_push(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	pthread_cleanup_push_defer_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO
	pthread_cond_broadcast(3)
	pthread_cond_destroy(3)

	pthread_cond_init(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	CANCELLATION
	ASYNC-SIGNAL SAFETY
	RETURN VALUE
	ERRORS
	SEE ALSO
	EXAMPLE
	pthread_cond_signal(3)
	pthread_cond_timedwait(3)
	pthread_cond_wait(3)
	pthread_condattr_destroy(3)

	pthread_condattr_init(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	pthread_create(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Linux-specific details

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	pthread_detach(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_equal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_exit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	pthread_getaffinity_np(3)

	pthread_getattr_default_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	pthread_getattr_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	pthread_getconcurrency(3)

	pthread_getcpuclockid(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	pthread_getname_np(3)
	pthread_getschedparam(3)
	pthread_getspecific(3)

	pthread_join(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_key_create(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO
	EXAMPLE
	pthread_key_delete(3)

	pthread_kill(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_kill_other_threads_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_mutex_consistent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	pthread_mutex_consistent_np(3)
	pthread_mutex_destroy(3)

	pthread_mutex_init(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	CANCELLATION
	ASYNC-SIGNAL SAFETY
	RETURN VALUE
	ERRORS
	SEE ALSO
	EXAMPLE
	pthread_mutex_lock(3)
	pthread_mutex_trylock(3)
	pthread_mutex_unlock(3)
	pthread_mutexattr_destroy(3)
	pthread_mutexattr_getkind_np(3)

	pthread_mutexattr_getpshared(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	pthread_mutexattr_getrobust(3)
	pthread_mutexattr_getrobust_np(3)
	pthread_mutexattr_gettype(3)

	pthread_mutexattr_init(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_mutexattr_setkind_np(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO
	pthread_mutexattr_setpshared(3)

	pthread_mutexattr_setrobust(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO
	pthread_mutexattr_setrobust_np(3)
	pthread_mutexattr_settype(3)

	pthread_once(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	pthread_rwlockattr_getkind_np(3)

	pthread_rwlockattr_setkind_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	pthread_self(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_setaffinity_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	pthread_setattr_default_np(3)

	pthread_setcancelstate(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	Asynchronous cancelability
	Portability notes

	EXAMPLES
	SEE ALSO
	pthread_setcanceltype(3)

	pthread_setconcurrency(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_setname_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	pthread_setschedparam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	pthread_setschedprio(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	pthread_setspecific(3)

	pthread_sigmask(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	pthread_sigqueue(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	pthread_spin_destroy(3)

	pthread_spin_init(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_spin_lock(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO
	pthread_spin_trylock(3)
	pthread_spin_unlock(3)

	pthread_testcancel(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	pthread_timedjoin_np(3)

	pthread_tryjoin_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	pthread_yield(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	ptsname(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	ptsname_r(3)
	putc(3)
	putc_unlocked(3)
	putchar(3)
	putchar_unlocked(3)

	putenv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	putgrent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	putpwent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	puts(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	putspent(3)
	pututline(3)
	pututxline(3)
	putw(3)
	putwc(3)
	putwc_unlocked(3)

	putwchar(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	putwchar_unlocked(3)
	pvalloc(3)

	qecvt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	qecvt_r(3)
	qfcvt(3)
	qfcvt_r(3)
	qgcvt(3)

	qsort(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	qsort_r(3)
	queue(3)

	raise(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	rand(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	rand_r(3)

	random(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	CAVEATS
	BUGS
	SEE ALSO

	random_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	BUGS
	SEE ALSO
	rawmemchr(3)

	rcmd(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	rcmd()
	rresvport()
	iruserok() and ruserok()
	*_af() variants

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	rcmd_af(3)

	re_comp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	re_exec(3)

	readdir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	The d_name field

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	readdir_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	realloc(3)
	__realloc_hook(3)
	reallocarray(3)

	realpath(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	GNU extensions

	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	recno(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	BUGS
	SEE ALSO
	regcomp(3)
	regerror(3)

	regex(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Compilation
	Matching
	Match offsets
	Error reporting
	Freeing

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO
	regexec(3)
	regfree(3)
	register_printf_modifier(3)
	register_printf_specifier(3)
	register_printf_type(3)
	registerrpc(3)

	remainder(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO
	remainderf(3)
	remainderl(3)

	remove(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	remque(3)

	remquo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	remquof(3)
	remquol(3)
	res_init(3)
	res_mkquery(3)
	res_nclose(3)
	res_ninit(3)
	res_nmkquery(3)
	res_nquery(3)
	res_nquerydomain(3)
	res_nsearch(3)
	res_nsend(3)
	res_query(3)
	res_querydomain(3)
	res_search(3)
	res_send(3)

	resolver(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	rewind(3)

	rewinddir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	rexec(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	rexec_af()

	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	rexec_af(3)
	rindex(3)

	rint(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	rintf(3)
	rintl(3)

	__riscv_flush_icache(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	round(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	roundf(3)
	roundl(3)

	roundup(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	CAVEATS
	SEE ALSO

	rpc(3)
	NAME
	LIBRARY
	SYNOPSIS AND DESCRIPTION
	ATTRIBUTES
	SEE ALSO

	rpmatch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO
	rresvport(3)
	rresvport_af(3)

	rtime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	rtnetlink(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	BUGS
	EXAMPLES
	SEE ALSO
	ruserok(3)
	ruserok_af(3)
	S_ISBLK(3)
	S_ISCHR(3)
	S_ISDIR(3)
	S_ISFIFO(3)
	S_ISLNK(3)
	S_ISREG(3)
	S_ISSOCK(3)

	scalb(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	scalbf(3)
	scalbl(3)

	scalbln(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	scalblnf(3)
	scalblnl(3)
	scalbn(3)
	scalbnf(3)
	scalbnl(3)

	scandir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	scandirat()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO
	scandirat(3)

	scanf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	sched_getcpu(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	secure_getenv(3)
	seed48(3)
	seed48_r(3)

	seekdir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	sem_close(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sem_destroy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sem_getvalue(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sem_init(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	sem_open(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	sem_post(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	sem_timedwait(3)
	sem_trywait(3)

	sem_unlink(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	sem_wait(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	setaliasent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	setbuf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO
	setbuffer(3)
	setcontext(3)

	setenv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	__setfpucw(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO
	setfsent(3)
	setgrent(3)
	sethostent(3)
	sethostid(3)

	setjmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	sigsetjmp() and siglongjmp()

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	CAVEATS
	Nonlocal gotos and program readability
	Undefined behavior

	SEE ALSO
	setkey(3)
	setkey_r(3)
	setlinebuf(3)

	setlocale(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	Categories

	HISTORY
	Categories

	SEE ALSO

	setlogmask(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	setmntent(3)
	setnetent(3)

	setnetgrent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	setprotoent(3)
	setpwent(3)
	setrpcent(3)
	setservent(3)
	setspent(3)
	setstate(3)
	setstate_r(3)
	setttyent(3)
	setusershell(3)
	setutent(3)
	setutxent(3)
	setvbuf(3)
	sgetspent(3)
	sgetspent_r(3)

	shm_open(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source: pshm_ucase.h
	Program source: pshm_ucase_bounce.c
	Program source: pshm_ucase_send.c

	SEE ALSO
	shm_unlink(3)
	sigabbrev_np(3)
	sigaddset(3)
	sigandset(3)
	sigblock(3)
	sigdelset(3)
	sigdescr_np(3)
	sigemptyset(3)
	sigfillset(3)
	siggetmask(3)
	sighold(3)
	sigignore(3)

	siginterrupt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	sigisemptyset(3)
	sigismember(3)
	siglongjmp(3)
	sigmask(3)

	signbit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	signgam(3)

	significand(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	significandf(3)
	significandl(3)
	sigorset(3)

	sigpause(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	sigqueue(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	sigrelse(3)

	sigset(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	sigsetjmp(3)
	sigsetmask(3)

	SIGSETOPS(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	GNU

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	sigstack(3)

	sigvec(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sigwait(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	simpleq(3)
	SIMPLEQ_EMPTY(3)
	SIMPLEQ_ENTRY(3)
	SIMPLEQ_FIRST(3)
	SIMPLEQ_FOREACH(3)
	SIMPLEQ_HEAD(3)
	SIMPLEQ_HEAD_INITIALIZER(3)
	SIMPLEQ_INIT(3)
	SIMPLEQ_INSERT_AFTER(3)
	SIMPLEQ_INSERT_HEAD(3)
	SIMPLEQ_INSERT_TAIL(3)
	SIMPLEQ_NEXT(3)
	SIMPLEQ_REMOVE(3)
	SIMPLEQ_REMOVE_HEAD(3)

	sin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	sincos(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	sincosf(3)
	sincosl(3)
	sinf(3)

	sinh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	sinhf(3)
	sinhl(3)
	sinl(3)

	sleep(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	SLIST(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Creation
	Insertion
	Traversal
	Removal

	RETURN VALUE
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO
	SLIST_EMPTY(3)
	SLIST_ENTRY(3)
	SLIST_FIRST(3)
	SLIST_FOREACH(3)
	SLIST_HEAD(3)
	SLIST_HEAD_INITIALIZER(3)
	SLIST_INIT(3)
	SLIST_INSERT_AFTER(3)
	SLIST_INSERT_HEAD(3)
	SLIST_NEXT(3)
	SLIST_REMOVE(3)
	SLIST_REMOVE_HEAD(3)
	snprintf(3)

	sockatmark(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO
	sprintf(3)

	sqrt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	sqrtf(3)
	sqrtl(3)
	srand(3)
	srand48(3)
	srand48_r(3)
	srandom(3)
	srandom_r(3)

	sscanf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Conversions

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	The 'a' assignment-allocation modifier

	BUGS
	Numeric conversion specifiers
	Nonstandard modifiers

	EXAMPLES
	SEE ALSO
	ssignal(3)

	STAILQ(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Creation
	Insertion
	Traversal
	Removal
	Other features

	RETURN VALUE
	VERSIONS
	BUGS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	STAILQ_CONCAT(3)
	STAILQ_EMPTY(3)
	STAILQ_ENTRY(3)
	STAILQ_FIRST(3)
	STAILQ_FOREACH(3)
	STAILQ_HEAD(3)
	STAILQ_HEAD_INITIALIZER(3)
	STAILQ_INIT(3)
	STAILQ_INSERT_AFTER(3)
	STAILQ_INSERT_HEAD(3)
	STAILQ_INSERT_TAIL(3)
	STAILQ_NEXT(3)
	STAILQ_REMOVE(3)
	STAILQ_REMOVE_HEAD(3)
	_Static_assert(3)

	static_assert(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	EXAMPLES
	SEE ALSO

	statvfs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	NOTES
	STANDARDS
	HISTORY
	SEE ALSO

	stdarg(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	va_start()
	va_arg()
	va_end()
	va_copy()

	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO
	stderr(3)

	stdin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	stdio(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	List of functions

	STANDARDS
	HISTORY
	SEE ALSO

	stdio_ext(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	SEE ALSO
	stdout(3)
	stpcpy(3)

	stpncpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO

	strcasecmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	strcasestr(3)
	strcat(3)

	strchr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	strchrnul(3)

	strcmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	strcoll(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	strcpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	STANDARDS
	CAVEATS
	EXAMPLES
	SEE ALSO
	strcspn(3)

	strdup(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	strdupa(3)

	strerror(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	strerror_r()
	strerror_l()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	strerror_l(3)
	strerror_r(3)
	strerrordesc_np(3)
	strerrorname_np(3)

	strfmon(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	strfmon_l(3)

	strfromd(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Format of the format string

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	VERSIONS
	NOTES
	EXAMPLES
	SEE ALSO
	strfromf(3)
	strfroml(3)

	strfry(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	strftime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ENVIRONMENT
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	ISO~8601 week dates
	glibc notes

	BUGS
	EXAMPLES
	Example program
	Program source

	SEE ALSO
	strftime_l(3)

	string(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	strlen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	strncasecmp(3)

	strncat(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	EXAMPLES
	SEE ALSO
	strncmp(3)
	strncpy(3)
	strndup(3)
	strndupa(3)

	strnlen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strpbrk(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strptime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	glibc notes

	EXAMPLES
	SEE ALSO
	strrchr(3)

	strsep(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	Program source

	SEE ALSO

	strsignal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	strspn(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strstr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strtod(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO
	strtof(3)

	strtoimax(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strtok(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO
	strtok_r(3)

	strtol(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	Program source

	SEE ALSO
	strtold(3)
	strtoll(3)
	strtoq(3)

	strtoul(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO
	strtoull(3)
	strtoumax(3)
	strtouq(3)

	strverscmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	EXAMPLES
	Program source

	SEE ALSO

	strxfrm(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	svc_destroy(3)
	svc_freeargs(3)
	svc_getargs(3)
	svc_getcaller(3)
	svc_getreq(3)
	svc_getreqset(3)
	svc_register(3)
	svc_run(3)
	svc_sendreply(3)
	svc_unregister(3)
	svcerr_auth(3)
	svcerr_decode(3)
	svcerr_noproc(3)
	svcerr_noprog(3)
	svcerr_progvers(3)
	svcerr_systemerr(3)
	svcerr_weakauth(3)
	svcfd_create(3)
	svcraw_create(3)
	svctcp_create(3)
	svcudp_bufcreate(3)
	svcudp_create(3)

	swab(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	swapcontext(3)
	swprintf(3)
	sys_errlist(3)
	sys_nerr(3)
	sys_siglist(3)

	sysconf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	POSIX.1 variables
	POSIX.2 variables

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	syslog(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	openlog()
	syslog() and vsyslog()
	closelog()
	Values for option
	Values for facility
	Values for level

	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	system(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	Caveats

	BUGS
	SEE ALSO

	sysv_signal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO

	TAILQ(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Creation
	Insertion
	Traversal
	Removal
	Other features

	RETURN VALUE
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO
	TAILQ_CONCAT(3)
	TAILQ_EMPTY(3)
	TAILQ_ENTRY(3)
	TAILQ_FIRST(3)
	TAILQ_FOREACH(3)
	TAILQ_FOREACH_REVERSE(3)
	TAILQ_HEAD(3)
	TAILQ_HEAD_INITIALIZER(3)
	TAILQ_INIT(3)
	TAILQ_INSERT_AFTER(3)
	TAILQ_INSERT_BEFORE(3)
	TAILQ_INSERT_HEAD(3)
	TAILQ_INSERT_TAIL(3)
	TAILQ_LAST(3)
	TAILQ_NEXT(3)
	TAILQ_PREV(3)
	TAILQ_REMOVE(3)
	TAILQ_SWAP(3)

	tan(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	tanf(3)

	tanh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	tanhf(3)
	tanhl(3)
	tanl(3)
	tcdrain(3)
	tcflow(3)
	tcflush(3)
	tcgetattr(3)

	tcgetpgrp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	tcgetsid(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	tcsendbreak(3)
	tcsetattr(3)
	tcsetpgrp(3)
	tdelete(3)
	tdestroy(3)

	telldir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	tempnam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	termios(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The termios structure
	Retrieving and changing terminal settings
	Canonical and noncanonical mode
	Raw mode
	Line control
	Line speed

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	tfind(3)

	tgamma(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	tgammaf(3)
	tgammal(3)

	timegm(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	timelocal(3)

	timeradd(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO
	timerclear(3)
	timercmp(3)
	timerisset(3)
	timersub(3)

	timespec_get(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	timespec_getres(3)
	TIMESPEC_TO_TIMEVAL(3)

	TIMEVAL_TO_TIMESPEC(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	timezone(3)

	tmpfile(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	tmpnam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO
	tmpnam_r(3)

	toascii(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	tolower(3)
	tolower_l(3)

	toupper(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	toupper_l(3)

	towctrans(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	towlower(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	STANDARDS
	NOTES
	SEE ALSO
	towlower_l(3)

	towupper(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	towupper_l(3)

	trunc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	truncf(3)
	truncl(3)

	tsearch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	ttyname(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	ttyname_r(3)

	ttyslot(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Ancient history
	Ancient history (2)
	The semantics of ttyslot

	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	twalk(3)
	twalk_r(3)
	tzname(3)

	tzset(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ENVIRONMENT
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	ualarm(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	ulckpwdf(3)

	ulimit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	undocumented(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	Solicitation
	The list

	ungetc(3)

	ungetwc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	unlocked_stdio(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	unlockpt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	unsetenv(3)

	updwtmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO
	updwtmpx(3)

	uselocale(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	usleep(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO
	utmpname(3)
	utmpxname(3)
	va_arg(3)
	va_copy(3)
	va_end(3)
	va_start(3)
	valloc(3)
	vasprintf(3)
	vdprintf(3)
	verr(3)
	verrx(3)
	versionsort(3)
	vfprintf(3)
	vfscanf(3)
	vfwprintf(3)
	vlimit(3)
	vprintf(3)
	vscanf(3)
	vsnprintf(3)
	vsprintf(3)
	vsscanf(3)
	vswprintf(3)
	vsyslog(3)
	vtimes(3)
	vwarn(3)
	vwarnx(3)
	vwprintf(3)
	warn(3)
	warnx(3)

	wcpcpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	wcpncpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	wcrtomb(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wcscasecmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wcscat(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcschr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcscmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcscpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcscspn(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsdup(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcslen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	wcsncasecmp(3)

	wcsncat(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsncmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsncpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsnlen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsnrtombs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO

	wcspbrk(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsrchr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsrtombs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wcsspn(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsstr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcstoimax(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcstok(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	wcstombs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	wcstoumax(3)

	wcswidth(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wctob(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wctomb(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wctrans(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wctype(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wcwidth(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wmemchr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wmemcmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wmemcpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wmemmove(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO
	wmempcpy(3)

	wmemset(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wordexp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The string argument
	The expansion
	The output array
	The flags argument

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO
	wordfree(3)

	wprintf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	XCRYPT(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	BUGS
	SEE ALSO
	xdecrypt(3)

	xdr(3)
	NAME
	LIBRARY
	SYNOPSIS AND DESCRIPTION
	ATTRIBUTES
	SEE ALSO
	xdr_accepted_reply(3)
	xdr_array(3)
	xdr_authunix_parms(3)
	xdr_bool(3)
	xdr_bytes(3)
	xdr_callhdr(3)
	xdr_callmsg(3)
	xdr_char(3)
	xdr_destroy(3)
	xdr_double(3)
	xdr_enum(3)
	xdr_float(3)
	xdr_free(3)
	xdr_getpos(3)
	xdr_inline(3)
	xdr_int(3)
	xdr_long(3)
	xdr_opaque(3)
	xdr_opaque_auth(3)
	xdr_pmap(3)
	xdr_pmaplist(3)
	xdr_pointer(3)
	xdr_reference(3)
	xdr_rejected_reply(3)
	xdr_replymsg(3)
	xdr_setpos(3)
	xdr_short(3)
	xdr_string(3)
	xdr_u_char(3)
	xdr_u_int(3)
	xdr_u_long(3)
	xdr_u_short(3)
	xdr_union(3)
	xdr_vector(3)
	xdr_void(3)
	xdr_wrapstring(3)
	xdrmem_create(3)
	xdrrec_create(3)
	xdrrec_endofrecord(3)
	xdrrec_eof(3)
	xdrrec_skiprecord(3)
	xdrstdio_create(3)
	xencrypt(3)
	xprt_register(3)
	xprt_unregister(3)

	y0(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO
	y1(3)
	y0f(3)
	y0l(3)
	y1f(3)
	y1l(3)
	yn(3)
	ynf(3)
	ynl(3)

	Library Functions Manual (constants)
	EOF(3const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO
	EXIT_FAILURE(3const)

	EXIT_SUCCESS(3const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	NULL(3const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	CAVEATS
	BUGS
	SEE ALSO
	PA_CHAR(3const)
	PA_DOUBLE(3const)
	PA_FLAG_LONG(3const)
	PA_FLAG_LONG_DOUBLE(3const)
	PA_FLAG_LONG_LONG(3const)
	PA_FLAG_PTR(3const)
	PA_FLAG_SHORT(3const)
	PA_FLOAT(3const)
	PA_INT(3const)
	PA_LAST(3const)
	PA_POINTER(3const)
	PA_STRING(3const)
	PA_WCHAR(3const)
	PA_WSTRING(3const)

	Library Functions Manual (headers)
	printf.h(3head)
	NAME
	LIBRARY
	SYNOPSIS
	Callbacks
	Types
	Constants

	DESCRIPTION
	register_printf_specifier()
	register_printf_modifier()
	register_printf_type()

	RETURN VALUE
	Callbacks

	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	sysexits.h(3head)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	Library Functions Manual (types)
	aiocb(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	blkcnt_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	blksize_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	cc_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	clock_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	clockid_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	dev_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	div_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	double_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO
	epoll_data(3type)
	epoll_data_t(3type)

	epoll_event(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	C library/kernel differences

	STANDARDS
	SEE ALSO

	fenv_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO
	fexcept_t(3type)

	FILE(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	float_t(3type)
	gid_t(3type)

	id_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	imaxdiv_t(3type)
	in_addr(3type)
	in_addr_t(3type)
	in_port_t(3type)
	in6_addr(3type)
	int16_t(3type)
	int32_t(3type)
	int64_t(3type)
	int8_t(3type)

	intmax_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	intN_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	intptr_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iovec(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	itimerspec(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	lconv(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO
	ldiv_t(3type)
	lldiv_t(3type)

	locale_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	loff_t(3type)

	mbstate_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	mode_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	off_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	VERSIONS
	NOTES
	SEE ALSO
	off64_t(3type)
	pid_t(3type)
	printf_arginfo_size_function(3type)
	printf_function(3type)
	printf_info(3type)
	printf_va_arg_function(3type)

	ptrdiff_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO
	regex_t(3type)
	regmatch_t(3type)
	regoff_t(3type)
	rlim_t(3type)
	rlimit(3type)
	sa_family_t(3type)

	sigevent(3type)
	NAME
	SYNOPSIS
	DESCRIPTION
	sigevent
	sigval

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	siginfo_t(3type)
	sigset_t(3type)
	sigval(3type)

	size_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Use with printf(3) and scanf(3)

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sockaddr(3type)
	NAME
	LIBRARY
	SYNOPSIS
	Internet domain sockets
	UNIX domain sockets

	DESCRIPTION
	Internet domain sockets
	UNIX domain sockets

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	sockaddr_in(3type)
	sockaddr_in6(3type)
	sockaddr_storage(3type)
	sockaddr_un(3type)
	socklen_t(3type)
	speed_t(3type)
	ssize_t(3type)

	stat(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	suseconds_t(3type)
	tcflag_t(3type)

	time_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	timer_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	timespec(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	timeval(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	tm(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	uid_t(3type)
	uint16_t(3type)
	uint32_t(3type)
	uint64_t(3type)
	uint8_t(3type)
	uintmax_t(3type)
	uintN_t(3type)
	uintptr_t(3type)
	useconds_t(3type)

	va_list(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	void(3type)
	NAME
	SYNOPSIS
	DESCRIPTION
	Use with printf(3) and scanf(3)

	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	wchar_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wint_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	Kernel Interfaces Manual
	intro(4)
	NAME
	DESCRIPTION
	FILES
	NOTES
	Authors and copyright conditions

	SEE ALSO

	cciss(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Options
	Supported hardware
	Configuration details

	FILES
	Device nodes
	Files in /proc
	Files in /sys
	SCSI tape drive and medium changer support
	Hot plug support for SCSI tape drives
	SCSI error handling for tape drives and medium changers

	SEE ALSO

	console_codes(4)
	NAME
	DESCRIPTION
	Linux console controls
	Character sets
	Mouse tracking
	Comparisons with other terminals

	NOTES
	BUGS
	SEE ALSO
	console_ioctl(4)

	cpuid(4)
	NAME
	DESCRIPTION
	NOTES
	SEE ALSO

	dsp56k(4)
	NAME
	SYNOPSIS
	CONFIGURATION
	DESCRIPTION
	FILES
	SEE ALSO

	fd(4)
	NAME
	CONFIGURATION
	DESCRIPTION
	FILES
	NOTES
	SEE ALSO

	full(4)
	NAME
	CONFIGURATION
	DESCRIPTION
	FILES
	SEE ALSO

	fuse(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	The basic protocol
	Exchanged messages

	ERRORS
	STANDARDS
	NOTES
	SEE ALSO

	hd(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	hpsa(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Options
	Supported hardware
	Configuration details

	FILES
	Device nodes
	HPSA-specific host attribute files in /sys
	HPSA-specific disk attribute files in /sys
	Supported ioctl() operations

	SEE ALSO

	initrd(4)
	NAME
	CONFIGURATION
	DESCRIPTION
	Boot-up operation
	Options
	Changing the normal root filesystem
	Usage

	FILES
	NOTES
	SEE ALSO
	kmem(4)

	lirc(4)
	NAME
	DESCRIPTION
	Reading input with the LIRC_MODE_MODE2 mode
	Reading input with the LIRC_MODE_SCANCODE mode
	Writing output with the LIRC_MODE_PULSE mode
	Writing output with the LIRC_MODE_SCANCODE mode

	IOCTL COMMANDS
	Always Supported Commands
	Optional Commands

	FEATURES
	BUGS
	SEE ALSO

	loop(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	/dev/loop-control

	FILES
	EXAMPLES
	Program source

	SEE ALSO
	loop-control(4)

	lp(4)
	NAME
	SYNOPSIS
	CONFIGURATION
	DESCRIPTION
	FILES
	SEE ALSO

	mem(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	mouse(4)
	NAME
	CONFIGURATION
	DESCRIPTION
	Introduction
	Microsoft protocol
	3-button Microsoft protocol
	Logitech protocol
	Mousesystems protocol
	Sun protocol
	MM protocol

	FILES
	SEE ALSO

	msr(4)
	NAME
	DESCRIPTION
	NOTES
	SEE ALSO

	null(4)
	NAME
	DESCRIPTION
	FILES
	NOTES
	SEE ALSO
	port(4)
	ptmx(4)

	pts(4)
	NAME
	DESCRIPTION
	FILES
	NOTES
	SEE ALSO

	ram(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	random(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Usage
	Configuration
	/proc interfaces
	ioctl(2) interface

	FILES
	NOTES
	BUGS
	SEE ALSO

	rtc(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	RTC vs system clock
	RTC functionality
	ioctl(2) interface

	FILES
	NOTES
	SEE ALSO

	sd(4)
	NAME
	SYNOPSIS
	CONFIGURATION
	DESCRIPTION
	FILES

	sk98lin(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Parameters

	FILES
	BUGS
	SEE ALSO

	smartpqi(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Supported ioctl() operations
	Boot options

	FILES
	Device nodes
	SmartPQI-specific host attribute files in /sys
	SmartPQI-specific disk attribute files in /sys

	VERSIONS
	NOTES
	Configuration

	HISTORY
	SEE ALSO

	st(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Data transfer
	Ioctls
	MTIOCTOP - perform a tape operation
	MTIOCGET - get status
	MTIOCPOS - get tape position

	RETURN VALUE
	FILES
	NOTES
	SEE ALSO

	tty(4)
	NAME
	DESCRIPTION
	TIOCNOTTY

	FILES
	SEE ALSO
	tty_ioctl(4)

	ttyS(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO
	urandom(4)

	vcs(4)
	NAME
	DESCRIPTION
	FILES
	VERSIONS
	EXAMPLES
	SEE ALSO
	vcsa(4)

	veth(4)
	NAME
	DESCRIPTION
	SEE ALSO

	wavelan(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Parameters
	Wireless extensions
	NWID (or domain)
	Frequency & channels
	Statistics spy
	/proc/net/wireless
	Private ioctl
	Quality and level threshold
	Histogram
	Specific notes

	SEE ALSO
	zero(4)

	File Formats Manual
	intro(5)
	NAME
	DESCRIPTION
	NOTES
	Authors and copyright conditions

	SEE ALSO

	acct(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	Version 3 accounting file format

	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	charmap(5)
	NAME
	DESCRIPTION
	Syntax

	FILES
	STANDARDS
	EXAMPLES
	SEE ALSO

	core(5)
	NAME
	DESCRIPTION
	Naming of core dump files
	Piping core dumps to a program
	/proc/sys/kernel/core_pipe_limit
	Controlling which mappings are written to the core dump
	Core dumps and systemd

	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	dir_colors(5)
	NAME
	DESCRIPTION
	ISO/IEC~6429 (ANSI) color sequences
	Other terminal types (advanced configuration)
	Escape sequences

	FILES
	NOTES
	SEE ALSO

	ELF(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	Basic types
	ELF header (Ehdr)
	Program header (Phdr)
	Section header (Shdr)
	String and symbol tables
	Relocation entries (Rel & Rela)
	Dynamic tags (Dyn)
	Notes (Nhdr)

	NOTES
	SEE ALSO

	erofs(5)
	NAME
	DESCRIPTION
	Mount options

	VERSIONS
	CONFIGURATION
	SEE ALSO

	filesystems(5)
	NAME
	DESCRIPTION
	SEE ALSO
	fs(5)

	ftpusers(5)
	NAME
	DESCRIPTION
	Format

	FILES
	SEE ALSO

	gai.conf(5)
	NAME
	DESCRIPTION
	FILES
	VERSIONS
	EXAMPLES
	SEE ALSO

	group(5)
	NAME
	DESCRIPTION
	FILES
	BUGS
	SEE ALSO

	host.conf(5)
	NAME
	DESCRIPTION
	ENVIRONMENT
	FILES
	NOTES
	Historical

	SEE ALSO

	hosts(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	NOTES
	Historical notes

	EXAMPLES
	SEE ALSO

	hosts.equiv(5)
	NAME
	DESCRIPTION
	FILES
	NOTES
	EXAMPLES
	SEE ALSO

	issue(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	locale(5)
	NAME
	DESCRIPTION
	Syntax
	Locale category sections
	LC_ADDRESS
	LC_CTYPE
	LC_COLLATE
	LC_IDENTIFICATION
	LC_MESSAGES
	LC_MEASUREMENT
	LC_MONETARY
	LC_NAME
	LC_NUMERIC
	LC_PAPER
	LC_TELEPHONE
	LC_TIME

	FILES
	STANDARDS
	NOTES
	SEE ALSO

	motd(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	networks(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	nologin(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	nscd.conf(5)
	NAME
	DESCRIPTION
	NOTES
	Reloading

	SEE ALSO

	nss(5)
	NAME
	DESCRIPTION
	FILES
	EXAMPLES
	SEE ALSO

	nsswitch.conf(5)
	NAME
	DESCRIPTION
	Compatibility mode (compat)

	FILES
	NOTES
	SEE ALSO

	passwd(5)
	NAME
	DESCRIPTION
	FILES
	NOTES
	SEE ALSO

	proc(5)
	NAME
	DESCRIPTION
	Mount options
	Overview

	NOTES
	SEE ALSO

	proc_apm(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_buddyinfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_bus(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_cgroups(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_cmdline(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_config.gz(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_cpuinfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_crypto(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_devices(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_diskstats(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_dma(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_driver(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_execdomains(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_fb(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_filesystems(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_fs(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_ide(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_interrupts(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_iomem(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_ioports(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_kallsyms(5)
	NAME
	DESCRIPTION
	HISTORY
	SEE ALSO

	proc_kcore(5)
	NAME
	DESCRIPTION
	SEE ALSO
	proc_key-users(5)

	proc_keys(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_kmsg(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_kpagecgroup(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_kpagecount(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_kpageflags(5)
	NAME
	DESCRIPTION
	SEE ALSO
	proc_ksyms(5)

	proc_loadavg(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_locks(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_malloc(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_meminfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_modules(5)
	NAME
	DESCRIPTION
	SEE ALSO
	proc_mounts(5)

	proc_mtrr(5)
	NAME
	DESCRIPTION
	SEE ALSO
	proc_net(5)

	proc_partitions(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pci(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_attr(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_autogroup(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_auxv(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_cgroup(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_clear_refs(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_cmdline(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_comm(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_coredump_filter(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_cpuset(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_cwd(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_environ(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_exe(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_fd(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_fdinfo(5)
	NAME
	DESCRIPTION
	HISTORY
	SEE ALSO
	proc_pid_gid_map(5)

	proc_pid_io(5)
	NAME
	DESCRIPTION
	CAVEATS
	SEE ALSO

	proc_pid_limits(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_map_files(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_maps(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_mem(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_mountinfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_mounts(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_mountstats(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_net(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_ns(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_numa_maps(5)
	NAME
	DESCRIPTION
	SEE ALSO
	proc_pid_oom_adj(5)

	proc_pid_oom_score(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_oom_score_adj(5)
	NAME
	DESCRIPTION
	HISTORY
	SEE ALSO

	proc_pid_pagemap(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_personality(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_projid_map(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_root(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_seccomp(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_setgroups(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_smaps(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_stack(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_stat(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_statm(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_status(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_syscall(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_task(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_timers(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_timerslack_ns(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_uid_map(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_wchan(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_profile(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_scsi(5)
	NAME
	DESCRIPTION
	SEE ALSO
	proc_self(5)

	proc_slabinfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_stat(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_swaps(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_abi(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_debug(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_dev(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_fs(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_kernel(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_net(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_proc(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_sunrpc(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_user(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_vm(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sysrqtrigger(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sysvipc(5)
	NAME
	DESCRIPTION
	SEE ALSO
	proc_thread-self(5)
	proc_tid(5)

	proc_tid_children(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_timer_list(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_timer_stats(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_tty(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_uptime(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_version(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_vmstat(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_zoneinfo(5)
	NAME
	DESCRIPTION
	SEE ALSO
	procfs(5)

	protocols(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	repertoiremap(5)
	NAME
	DESCRIPTION
	Syntax

	FILES
	STANDARDS
	NOTES
	EXAMPLES
	SEE ALSO

	resolv.conf(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	resolver(5)

	rpc(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	securetty(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	services(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	shells(5)
	NAME
	DESCRIPTION
	FILES
	EXAMPLES
	SEE ALSO

	slabinfo(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	NOTES
	SEE ALSO

	sysfs(5)
	NAME
	DESCRIPTION
	Files and directories

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	termcap(5)
	NAME
	DESCRIPTION
	Boolean capabilities
	Numeric capabilities
	String capabilities

	SEE ALSO

	tmpfs(5)
	NAME
	DESCRIPTION
	Mount options

	VERSIONS
	NOTES
	SEE ALSO

	ttytype(5)
	NAME
	DESCRIPTION
	FILES
	EXAMPLES
	SEE ALSO

	tzfile(5)
	NAME
	DESCRIPTION
	Version 2 format
	Version 3 format
	Version 4 format
	Interoperability considerations
	Common interoperability issues

	SEE ALSO

	utmp(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO
	utmpx(5)
	wtmp(5)

	Games Manual
	intro(6)
	NAME
	DESCRIPTION
	NOTES
	Authors and copyright conditions

	Miscellaneous Information Manual
	intro(7)
	NAME
	DESCRIPTION
	NOTES
	Authors and copyright conditions

	SEE ALSO

	address_families(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	AIO(7)
	NAME
	DESCRIPTION
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	ARMSCII-8(7)
	NAME
	DESCRIPTION
	ArmSCII-8 characters

	SEE ALSO

	arp(7)
	NAME
	DESCRIPTION
	Ioctls
	/proc interfaces

	VERSIONS
	BUGS
	SEE ALSO

	ascii(7)
	NAME
	DESCRIPTION
	Tables

	NOTES
	History

	SEE ALSO

	attributes(7)
	NAME
	DESCRIPTION
	Conditionally safe features
	Other safety remarks

	SEE ALSO

	boot(7)
	NAME
	DESCRIPTION
	Hardware
	OS loader
	Kernel
	Root user-space process
	Boot scripts
	Sequencing directories
	Boot configuration

	FILES
	SEE ALSO

	bootparam(7)
	NAME
	DESCRIPTION
	The argument list
	General non-device-specific boot arguments
	Boot arguments for use by kernel developers
	Boot arguments for ramdisk use
	Boot arguments for SCSI devices
	Hard disks
	Ethernet devices
	The floppy disk driver
	The sound driver
	The line printer driver

	SEE ALSO

	BPF-HELPERS(7)
	NAME
	DESCRIPTION
	HELPERS
	EXAMPLES
	LICENSE
	IMPLEMENTATION
	SEE ALSO

	Capabilities(7)
	NAME
	DESCRIPTION
	Capabilities list
	Past and current implementation
	Notes to kernel developers
	Thread capability sets
	File capabilities
	File capability extended attribute versioning
	Transformation of capabilities during execve()
	Safety checking for capability-dumb binaries
	Capabilities and execution of programs by root
	Set-user-ID-root programs that have file capabilities
	Capability bounding set
	Effect of user ID changes on capabilities
	Programmatically adjusting capability sets
	The securebits flags: establishing a capabilities-only environment
	Per-user-namespace set-user-ID-root programs
	Namespaced file capabilities
	Interaction with user namespaces

	STANDARDS
	NOTES
	SEE ALSO

	cgroup_namespaces(7)
	NAME
	DESCRIPTION
	STANDARDS
	NOTES
	SEE ALSO

	cgroups(7)
	NAME
	DESCRIPTION
	Terminology
	Cgroups version 1 and version 2

	CGROUPS VERSION 1
	Tasks (threads) versus processes
	Mounting v1 controllers
	Unmounting v1 controllers
	Cgroups version 1 controllers
	Creating cgroups and moving processes
	Removing cgroups
	Cgroups v1 release notification
	Cgroup v1 named hierarchies

	CGROUPS VERSION 2
	Cgroups v2 unified hierarchy
	Cgroups v2 mount options
	Cgroups v2 controllers
	Cgroups v2 subtree control
	Cgroups v2 no internal processes rule
	Cgroups v2 cgroup.events file
	Cgroup v2 release notification
	Cgroups v2 cgroup.stat file
	Limiting the number of descendant cgroups

	CGROUPS DELEGATION: DELEGATING A HIERARCHY TO A LESS PRIVILEGED USER
	Cgroups v2 delegation: nsdelegate and cgroup namespaces
	Cgroup delegation containment rules

	CGROUPS VERSION 2 THREAD MODE
	Threaded versus domain controllers
	Creating a threaded subtree
	Using a threaded subtree
	Rules for writing to cgroup.type and creating threaded subtrees
	The domain threaded cgroup type
	Exceptions for the root cgroup
	The cgroups v2 cpu controller and realtime threads

	ERRORS
	NOTES
	/proc files
	/sys/kernel/cgroup files

	SEE ALSO

	charsets(7)
	NAME
	DESCRIPTION
	ASCII
	ISO/IEC~8859
	KOI8-R / KOI8-U
	GB 2312
	Big5
	JIS X 0208
	KS X 1001
	ISO/IEC~2022 and ISO/IEC~4873
	TIS-620
	Unicode

	SEE ALSO

	complex(7)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	cp1251(7)
	NAME
	DESCRIPTION
	CP 1251 characters

	NOTES
	SEE ALSO

	cp1252(7)
	NAME
	DESCRIPTION
	CP 1252 characters

	NOTES
	SEE ALSO

	cpuset(7)
	NAME
	DESCRIPTION
	FILES
	EXTENDED CAPABILITIES
	Exclusive cpusets
	Hardwall
	Notify on release
	Memory pressure
	Memory spread
	Memory migration
	Scheduler load balancing
	Scheduler relax domain level

	FORMATS
	Mask format
	List format

	RULES
	PERMISSIONS
	WARNINGS
	Enabling memory_pressure
	Using the echo command

	EXCEPTIONS
	Memory placement
	Renaming cpusets

	ERRORS
	VERSIONS
	NOTES
	BUGS
	EXAMPLES
	Creating and attaching to a cpuset.
	Migrating a job to different memory nodes.

	SEE ALSO

	credentials(7)
	NAME
	DESCRIPTION
	Process ID (PID)
	Parent process ID (PPID)
	Process group ID and session ID
	User and group identifiers
	Modifying process user and group IDs

	STANDARDS
	NOTES
	SEE ALSO

	ddp(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Socket options
	/proc interfaces
	Ioctls

	ERRORS
	VERSIONS
	NOTES
	Compatibility

	BUGS
	SEE ALSO

	environ(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTES
	BUGS
	SEE ALSO

	epoll(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Level-triggered and edge-triggered
	Interaction with autosleep
	/proc interfaces
	Example for suggested usage
	Questions and answers
	Possible pitfalls and ways to avoid them

	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fanotify(7)
	NAME
	DESCRIPTION
	fanotify_init(), fanotify_mark(), and notification groups
	The event queue
	Reading fanotify events
	Monitoring an fanotify file descriptor for events
	Dealing with permission events
	Monitoring filesystems for errors
	Closing the fanotify file descriptor
	/proc interfaces

	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Limitations and caveats

	BUGS
	EXAMPLES
	Example program: fanotify_example.c
	Program source: fanotify_example.c
	Example program: fanotify_fid.c
	Program source: fanotify_fid.c

	SEE ALSO

	feature_test_macros(7)
	NAME
	DESCRIPTION
	Specification of feature test macro requirements in manual pages
	Feature test macros understood by glibc
	Default definitions, implicit definitions, and combining definitions

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	fifo(7)
	NAME
	DESCRIPTION
	NOTES
	SEE ALSO

	futex(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Semantics

	VERSIONS
	NOTES
	SEE ALSO
	glibc(7)

	glob(7)
	NAME
	DESCRIPTION
	Wildcard matching
	Pathnames
	Empty lists

	NOTES
	Regular expressions
	Character classes and internationalization

	SEE ALSO

	hier(7)
	NAME
	DESCRIPTION
	STANDARDS
	BUGS
	SEE ALSO

	hostname(7)
	NAME
	DESCRIPTION
	SEE ALSO

	icmp(7)
	NAME
	DESCRIPTION
	/proc interfaces

	VERSIONS
	NOTES
	SEE ALSO

	inode(7)
	NAME
	DESCRIPTION
	The file type and mode

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	inotify(7)
	NAME
	DESCRIPTION
	Reading events from an inotify file descriptor
	inotify events
	Examples
	/proc interfaces

	STANDARDS
	HISTORY
	NOTES
	Limitations and caveats
	Dealing with rename() events

	BUGS
	EXAMPLES
	Example output
	Program source

	SEE ALSO

	ip(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Special and reserved addresses
	Socket options
	/proc interfaces
	Ioctls

	ERRORS
	NOTES
	Compatibility

	BUGS
	SEE ALSO

	ipc_namespaces(7)
	NAME
	DESCRIPTION
	SEE ALSO

	ipv6(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Socket options

	ERRORS
	VERSIONS
	NOTES
	BUGS
	SEE ALSO
	iso-8859-1(7)
	iso-8859-2(7)
	iso-8859-3(7)
	iso-8859-4(7)
	iso-8859-5(7)
	iso-8859-6(7)
	iso-8859-7(7)
	iso-8859-8(7)
	iso-8859-9(7)
	iso-8859-10(7)
	iso-8859-11(7)
	iso-8859-13(7)
	iso-8859-14(7)
	iso-8859-15(7)
	iso-8859-16(7)

	ISO_8859-1(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-1 characters

	NOTES
	SEE ALSO

	ISO_8859-2(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-2 characters

	NOTES
	SEE ALSO

	ISO_8859-3(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-3 characters

	NOTES
	SEE ALSO

	ISO_8859-4(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-4 characters

	NOTES
	SEE ALSO

	ISO_8859-5(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-5 characters

	SEE ALSO

	ISO_8859-6(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-6 characters

	NOTES
	SEE ALSO

	ISO_8859-7(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-7 characters

	NOTES
	SEE ALSO

	ISO_8859-8(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-8 characters

	NOTES
	SEE ALSO

	ISO_8859-9(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-9 characters

	NOTES
	SEE ALSO

	ISO_8859-10(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-10 characters

	NOTES
	SEE ALSO

	ISO_8859-11(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-11 characters

	NOTES
	SEE ALSO

	ISO_8859-13(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-13 characters

	NOTES
	SEE ALSO

	ISO_8859-14(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-14 characters

	NOTES
	SEE ALSO

	ISO_8859-15(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-15 characters

	NOTES
	SEE ALSO

	ISO_8859-16(7)
	NAME
	DESCRIPTION
	ISO/IEC~8859 alphabets
	ISO/IEC~8859-16 characters

	NOTES
	SEE ALSO
	iso_8859_1(7)
	iso_8859_2(7)
	iso_8859_3(7)
	iso_8859_4(7)
	iso_8859_5(7)
	iso_8859_6(7)
	iso_8859_7(7)
	iso_8859_8(7)
	iso_8859_9(7)
	iso_8859_10(7)
	iso_8859_11(7)
	iso_8859_13(7)
	iso_8859_14(7)
	iso_8859_15(7)
	iso_8859_16(7)

	kernel_lockdown(7)
	NAME
	DESCRIPTION
	Coverage

	VERSIONS
	NOTES

	keyrings(7)
	NAME
	DESCRIPTION
	Keys
	Key types
	Keyrings
	Anchoring keys
	Possession
	Access rights
	Searching for keys
	On-demand key creation
	Users

	FILES
	SEE ALSO

	KOI8-R(7)
	NAME
	DESCRIPTION
	KOI8-R characters

	NOTES
	SEE ALSO

	KOI8-U(7)
	NAME
	DESCRIPTION
	KOI8-U characters

	NOTES
	SEE ALSO

	Landlock(7)
	NAME
	DESCRIPTION
	Landlock rules
	Filesystem actions
	Network flags
	Scope flags
	Layers of file path access rights
	Bind mounts and OverlayFS
	Inheritance
	Ptrace restrictions
	IPC scoping
	Truncating files

	VERSIONS
	NOTES
	CAVEATS
	EXAMPLES
	SEE ALSO
	latin1(7)
	latin2(7)
	latin3(7)
	latin4(7)
	latin5(7)
	latin6(7)
	latin7(7)
	latin8(7)
	latin9(7)
	latin10(7)

	libc(7)
	NAME
	DESCRIPTION
	glibc
	Linux libc
	Other C libraries

	SEE ALSO

	locale(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	POSIX.1-2008 extensions to the locale API

	ENVIRONMENT
	FILES
	STANDARDS
	SEE ALSO

	mailaddr(7)
	NAME
	DESCRIPTION
	Abbreviation
	Route-addrs
	Postmaster

	FILES
	SEE ALSO
	man(7)

	man-pages(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Sections of the manual pages
	Macro package
	Conventions for source file layout
	Title line
	Sections within a manual page

	FORMATTING AND WORDING CONVENTIONS
	SYNOPSIS
	RETURN VALUE
	ATTRIBUTES

	STYLE GUIDE
	Use of gender-neutral language
	Formatting conventions for manual pages describing commands
	Formatting conventions for manual pages describing functions
	Use semantic newlines
	Lists
	Formatting conventions (general)
	Spelling
	BSD version numbers
	Capitalization
	Indentation of structure definitions, shell session logs, and so on
	Preferred terms
	Terms to avoid
	Trademarks
	NULL, NUL, null pointer, and null byte
	Hyperlinks
	Use of e.g., i.e., etc., a.k.a., and similar
	Em-dashes
	Hyphenation of attributive compounds
	Hyphenation with multi, non, pre, re, sub, and so on
	Generating optimal glyphs
	Example programs and shell sessions

	EXAMPLES
	SEE ALSO

	math_error(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Domain error
	Pole error
	Range error

	NOTES
	SEE ALSO

	mount_namespaces(7)
	NAME
	DESCRIPTION
	SHARED SUBTREES
	MS_SHARED and MS_PRIVATE example
	MS_SLAVE example
	MS_UNBINDABLE example
	Propagation type transitions
	Bind (MS_BIND) semantics
	Move (MS_MOVE) semantics
	Mount semantics
	Unmount semantics
	The /proc/ pid /mountinfo propagate_from tag

	STANDARDS
	HISTORY
	NOTES
	Restrictions on mount namespaces

	EXAMPLES
	SEE ALSO

	mq_overview(7)
	NAME
	DESCRIPTION
	Library interfaces and system calls
	Versions
	Kernel configuration
	Persistence
	Linking
	/proc interfaces
	Resource limit
	Mounting the message queue filesystem
	Linux implementation of message queue descriptors
	IPC namespaces

	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	namespaces(7)
	NAME
	DESCRIPTION
	Namespace types
	The namespaces API
	The /proc/pid/ns/ directory
	The /proc/sys/user directory
	Namespace lifetime

	EXAMPLES
	SEE ALSO

	netdevice(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Ioctls

	NOTES
	BUGS
	SEE ALSO

	netlink(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address formats
	Socket options

	VERSIONS
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	network_namespaces(7)
	NAME
	DESCRIPTION
	SEE ALSO

	nptl(7)
	NAME
	DESCRIPTION
	NPTL and signals
	NPTL and process credential changes

	STANDARDS
	NOTES
	SEE ALSO

	numa(7)
	NAME
	DESCRIPTION
	NUMA system calls
	/proc/pid/numa_maps (since Linux 2.6.14)

	STANDARDS
	NOTES
	Library support

	SEE ALSO

	operator(7)
	NAME
	DESCRIPTION

	packet(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address types
	Socket options
	Ioctls
	Error handling

	ERRORS
	VERSIONS
	NOTES
	Compatibility

	BUGS
	LLC header handling
	MSG_TRUNC issues
	spkt_device device name truncation
	Documentation issues

	SEE ALSO

	path_resolution(7)
	NAME
	DESCRIPTION
	Step 1: start of the resolution process
	Step 2: walk along the path
	Step 3: find the final entry
	. and ..
	Mount points
	Trailing slashes
	Final symbolic link
	Length limit
	Empty pathname
	Permissions
	Bypassing permission checks: superuser and capabilities

	SEE ALSO

	pathname(7)
	NAME
	DESCRIPTION
	SEE ALSO

	persistent-keyring(7)
	NAME
	DESCRIPTION
	Special operations

	NOTES
	SEE ALSO

	pid_namespaces(7)
	NAME
	DESCRIPTION
	The namespace init process
	Nesting PID namespaces
	setns(2) and unshare(2) semantics
	Adoption of orphaned children
	Compatibility of CLONE_NEWPID with other CLONE_* flags
	/proc and PID namespaces
	/proc files
	Miscellaneous

	STANDARDS
	EXAMPLES
	SEE ALSO

	pipe(7)
	NAME
	DESCRIPTION
	I/O on pipes and FIFOs
	Pipe capacity
	/proc files
	PIPE_BUF
	Open file status flags
	Portability notes
	BUGS

	SEE ALSO

	pkeys(7)
	NAME
	DESCRIPTION
	Signal Handler Behavior
	Protection Keys system calls

	EXAMPLES
	Program source

	SEE ALSO

	posixoptions(7)
	NAME
	DESCRIPTION
	ADV - _POSIX_ADVISORY_INFO - _SC_ADVISORY_INFO
	AIO - _POSIX_ASYNCHRONOUS_IO - _SC_ASYNCHRONOUS_IO
	BAR - _POSIX_BARRIERS - _SC_BARRIERS
	--- - POSIX_CHOWN_RESTRICTED
	CS - _POSIX_CLOCK_SELECTION - _SC_CLOCK_SELECTION
	CPT - _POSIX_CPUTIME - _SC_CPUTIME
	--- - _POSIX_FILE_LOCKING - _SC_FILE_LOCKING
	FSC - _POSIX_FSYNC - _SC_FSYNC
	IP6 - _POSIX_IPV6 - _SC_IPV6
	--- - _POSIX_JOB_CONTROL - _SC_JOB_CONTROL
	MF - _POSIX_MAPPED_FILES - _SC_MAPPED_FILES
	ML - _POSIX_MEMLOCK - _SC_MEMLOCK
	MR/MLR - _POSIX_MEMLOCK_RANGE - _SC_MEMLOCK_RANGE
	MPR - _POSIX_MEMORY_PROTECTION - _SC_MEMORY_PROTECTION
	MSG - _POSIX_MESSAGE_PASSING - _SC_MESSAGE_PASSING
	MON - _POSIX_MONOTONIC_CLOCK - _SC_MONOTONIC_CLOCK
	--- - _POSIX_MULTI_PROCESS - _SC_MULTI_PROCESS
	--- - _POSIX_NO_TRUNC
	PIO - _POSIX_PRIORITIZED_IO - _SC_PRIORITIZED_IO
	PS - _POSIX_PRIORITY_SCHEDULING - _SC_PRIORITY_SCHEDULING
	RS - _POSIX_RAW_SOCKETS
	--- - _POSIX_READER_WRITER_LOCKS - _SC_READER_WRITER_LOCKS
	RTS - _POSIX_REALTIME_SIGNALS - _SC_REALTIME_SIGNALS
	--- - _POSIX_REGEXP - _SC_REGEXP
	--- - _POSIX_SAVED_IDS - _SC_SAVED_IDS
	SEM - _POSIX_SEMAPHORES - _SC_SEMAPHORES
	SHM - _POSIX_SHARED_MEMORY_OBJECTS - _SC_SHARED_MEMORY_OBJECTS
	--- - _POSIX_SHELL - _SC_SHELL
	SPN - _POSIX_SPAWN - _SC_SPAWN
	SPI - _POSIX_SPIN_LOCKS - _SC_SPIN_LOCKS
	SS - _POSIX_SPORADIC_SERVER - _SC_SPORADIC_SERVER
	SIO - _POSIX_SYNCHRONIZED_IO - _SC_SYNCHRONIZED_IO
	TSA - _POSIX_THREAD_ATTR_STACKADDR - _SC_THREAD_ATTR_STACKADDR
	TSS - _POSIX_THREAD_ATTR_STACKSIZE - _SC_THREAD_ATTR_STACKSIZE
	TCT - _POSIX_THREAD_CPUTIME - _SC_THREAD_CPUTIME
	TPI - _POSIX_THREAD_PRIO_INHERIT - _SC_THREAD_PRIO_INHERIT
	TPP - _POSIX_THREAD_PRIO_PROTECT - _SC_THREAD_PRIO_PROTECT
	TPS - _POSIX_THREAD_PRIORITY_SCHEDULING - _SC_THREAD_PRIORITY_SCHEDULING
	TSH - _POSIX_THREAD_PROCESS_SHARED - _SC_THREAD_PROCESS_SHARED
	TSF - _POSIX_THREAD_SAFE_FUNCTIONS - _SC_THREAD_SAFE_FUNCTIONS
	TSP - _POSIX_THREAD_SPORADIC_SERVER - _SC_THREAD_SPORADIC_SERVER
	THR - _POSIX_THREADS - _SC_THREADS
	TMO - _POSIX_TIMEOUTS - _SC_TIMEOUTS
	TMR - _POSIX_TIMERS - _SC_TIMERS
	TRC - _POSIX_TRACE - _SC_TRACE
	TEF - _POSIX_TRACE_EVENT_FILTER - _SC_TRACE_EVENT_FILTER
	TRI - _POSIX_TRACE_INHERIT - _SC_TRACE_INHERIT
	TRL - _POSIX_TRACE_LOG - _SC_TRACE_LOG
	TYM - _POSIX_TYPED_MEMORY_OBJECTS - _SC_TYPED_MEMORY_OBJECT
	--- - _POSIX_VDISABLE

	X/OPEN SYSTEM INTERFACE EXTENSIONS
	XSI - _XOPEN_CRYPT - _SC_XOPEN_CRYPT
	XSI - _XOPEN_REALTIME - _SC_XOPEN_REALTIME
	ADV - --- - ---
	XSI - _XOPEN_REALTIME_THREADS - _SC_XOPEN_REALTIME_THREADS
	ADVANCED REALTIME THREADS - --- - ---
	TRACING - --- - ---
	STREAMS - _XOPEN_STREAMS - _SC_XOPEN_STREAMS
	XSI - _XOPEN_LEGACY - _SC_XOPEN_LEGACY
	XSI - _XOPEN_UNIX - _SC_XOPEN_UNIX

	SEE ALSO
	precedence(7)

	process-keyring(7)
	NAME
	DESCRIPTION
	SEE ALSO

	pthreads(7)
	NAME
	DESCRIPTION
	Pthreads function return values
	Thread IDs
	Thread-safe functions
	Async-cancel-safe functions
	Cancelation points
	Compiling on Linux
	Linux implementations of POSIX threads
	LinuxThreads
	NPTL
	Determining the threading implementation
	Selecting the threading implementation: LD_ASSUME_KERNEL

	SEE ALSO

	pty(7)
	NAME
	DESCRIPTION
	UNIX 98 pseudoterminals
	BSD pseudoterminals

	FILES
	NOTES
	SEE ALSO

	queue(7)
	NAME
	DESCRIPTION
	Singly linked lists (SLIST)
	Singly linked tail queues (STAILQ)
	Doubly linked data structures
	Doubly linked lists (LIST)
	Doubly linked tail queues (TAILQ)
	Doubly linked circular queues (CIRCLEQ)

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	random(7)
	NAME
	DESCRIPTION
	Initialization of the entropy pool
	Choice of random source
	Monte Carlo and other probabilistic sampling applications
	Comparison between getrandom, /dev/urandom, and /dev/random
	Generating cryptographic keys

	SEE ALSO

	raw(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Socket options
	Error handling

	ERRORS
	VERSIONS
	NOTES
	BUGS
	SEE ALSO

	regex(7)
	NAME
	DESCRIPTION
	BUGS
	AUTHOR
	SEE ALSO

	RTLD-AUDIT(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	la_version()
	la_objsearch()
	la_activity()
	la_objopen()
	la_objclose()
	la_preinit()
	la_symbind*()
	la_pltenter()
	la_pltexit()

	VERSIONS
	STANDARDS
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	rtnetlink(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Routing attributes
	Messages

	VERSIONS
	BUGS
	SEE ALSO

	sched(7)
	NAME
	DESCRIPTION
	API summary
	Scheduling policies
	SCHED_FIFO: First in-first out scheduling
	SCHED_RR: Round-robin scheduling
	SCHED_DEADLINE: Sporadic task model deadline scheduling
	SCHED_OTHER: Default Linux time-sharing scheduling
	The nice value
	SCHED_BATCH: Scheduling batch processes
	SCHED_IDLE: Scheduling very low priority jobs
	Resetting scheduling policy for child processes
	Privileges and resource limits
	Limiting the CPU usage of real-time and deadline processes
	Response time
	Miscellaneous
	The autogroup feature
	The nice value and group scheduling
	Real-time features in the mainline Linux kernel

	NOTES
	SEE ALSO

	sem_overview(7)
	NAME
	DESCRIPTION
	Versions
	Persistence
	Linking
	Accessing named semaphores via the filesystem

	NOTES
	EXAMPLES
	SEE ALSO

	session-keyring(7)
	NAME
	DESCRIPTION
	Special operations

	SEE ALSO

	shm_overview(7)
	NAME
	DESCRIPTION
	Versions
	Persistence
	Linking
	Accessing shared memory objects via the filesystem

	NOTES
	SEE ALSO
	sigevent(7)

	signal(7)
	NAME
	DESCRIPTION
	Signal dispositions
	Sending a signal
	Waiting for a signal to be caught
	Synchronously accepting a signal
	Signal mask and pending signals
	Execution of signal handlers
	Standard signals
	Queueing and delivery semantics for standard signals
	Signal numbering for standard signals
	Real-time signals
	Interruption of system calls and library functions by signal handlers
	Interruption of system calls and library functions by stop signals

	STANDARDS
	NOTES
	BUGS
	SEE ALSO

	signal-safety(7)
	NAME
	DESCRIPTION
	errno
	Deviations in the GNU C library

	SEE ALSO

	sock_diag(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Request
	Response
	UNIX domain sockets
	IPv4 and IPv6 sockets
	Socket memory information

	VERSIONS
	STANDARDS
	EXAMPLES
	SEE ALSO

	socket(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Socket-layer functions
	Socket address structures
	Socket options
	Signals
	/proc interfaces
	Ioctls

	VERSIONS
	NOTES
	SEE ALSO

	spufs(7)
	NAME
	DESCRIPTION
	Mount options
	Files

	EXAMPLES
	SEE ALSO

	standards(7)
	NAME
	DESCRIPTION
	SEE ALSO

	string_copying(7)
	NAME
	SYNOPSIS
	Strings
	Null-padded character sequences
	Length-bounded character sequences

	DESCRIPTION
	Terms (and abbreviations)
	Copy, catenate, and chain-copy
	Truncate or not?
	Null-padded character sequences
	Length-bounded character sequences
	String vs character sequence
	Functions

	RETURN VALUE
	ERRORS
	NOTES
	CAVEATS
	BUGS
	EXAMPLES
	Implementations

	SEE ALSO

	SUFFIXES(7)
	NAME
	DESCRIPTION
	STANDARDS
	BUGS
	SEE ALSO
	svipc(7)

	symlink(7)
	NAME
	DESCRIPTION
	Magic links
	Symbolic link ownership, permissions, and timestamps
	Obtaining a file descriptor that refers to a symbolic link
	Handling of symbolic links by system calls and commands
	Treatment of symbolic links in system calls
	Commands not traversing a file tree
	Commands traversing a file tree

	SEE ALSO

	system_data_types(7)
	NAME
	DESCRIPTION
	NOTES
	Conventions used in this page

	EXAMPLES
	SEE ALSO

	sysvipc(7)
	NAME
	DESCRIPTION
	Message queues
	Semaphore sets
	Shared memory segments
	IPC namespaces

	SEE ALSO

	tcp(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address formats
	/proc interfaces
	Socket options
	Sockets API
	Ioctls
	Error handling

	ERRORS
	VERSIONS
	BUGS
	SEE ALSO

	termio(7)
	NAME
	DESCRIPTION
	SEE ALSO

	thread-keyring(7)
	NAME
	DESCRIPTION
	SEE ALSO

	time(7)
	NAME
	DESCRIPTION
	Real time and process time
	The hardware clock
	The software clock, HZ, and jiffies
	System and process clocks; time namespaces
	High-resolution timers
	The Epoch
	Broken-down time
	Sleeping and setting timers
	Timer slack

	SEE ALSO

	time_namespaces(7)
	NAME
	DESCRIPTION
	/proc/pid/timens_offsets

	NOTES
	EXAMPLES
	SEE ALSO
	tis-620(7)

	udp(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Error handling
	/proc interfaces
	Socket options
	Ioctls

	ERRORS
	VERSIONS
	SEE ALSO

	udplite(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Socket options

	ERRORS
	FILES
	VERSIONS
	BUGS
	SEE ALSO

	unicode(7)
	NAME
	DESCRIPTION
	Combining characters
	Implementation levels
	Unicode under Linux
	Private Use Areas (PUA)
	Literature

	SEE ALSO

	units(7)
	NAME
	DESCRIPTION
	Decimal prefixes
	Binary prefixes
	Discussion

	SEE ALSO

	UNIX(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Pathname sockets
	Pathname socket ownership and permissions
	Abstract sockets
	Socket options
	Autobind feature
	Sockets API
	Ancillary messages
	Ioctls

	ERRORS
	VERSIONS
	NOTES
	BUGS
	EXAMPLES
	Example output
	Program source

	SEE ALSO

	uri(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Usage
	Character encoding
	Writing a URI

	STANDARDS
	NOTES
	Security

	BUGS
	SEE ALSO
	url(7)
	urn(7)

	user-keyring(7)
	NAME
	DESCRIPTION
	SEE ALSO

	user-session-keyring(7)
	NAME
	DESCRIPTION
	NOTES
	SEE ALSO

	user_namespaces(7)
	NAME
	DESCRIPTION
	Nested namespaces, namespace membership
	Capabilities
	Effect of capabilities within a user namespace
	Interaction of user namespaces and other types of namespaces
	User and group ID mappings: uid_map and gid_map
	Defining user and group ID mappings: writing to uid_map and gid_map
	Project ID mappings: projid_map
	Interaction with system calls that change process UIDs or GIDs
	The /proc/pid/setgroups file
	Unmapped user and group IDs
	Accessing files
	Operation of file-related capabilities
	Set-user-ID and set-group-ID programs
	Miscellaneous

	STANDARDS
	NOTES
	Global root
	Availability

	EXAMPLES
	Program source

	SEE ALSO

	UTF-8(7)
	NAME
	DESCRIPTION
	Properties
	Encoding
	Example
	Application notes
	Security
	Standards

	SEE ALSO
	utf8(7)

	uts_namespaces(7)
	NAME
	DESCRIPTION
	SEE ALSO

	vDSO(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Example background
	Finding the vDSO
	File format

	NOTES
	Source
	vDSO names
	strace(1), seccomp(2), and the vDSO

	ARCHITECTURE-SPECIFIC NOTES
	ARM functions
	aarch64 functions
	bfin (Blackfin) functions (port removed in Linux 4.17)
	mips functions
	ia64 (Itanium) functions
	parisc (hppa) functions
	ppc/32 functions
	ppc/64 functions
	riscv functions
	s390 functions
	s390x functions
	sh (SuperH) functions
	i386 functions
	x86-64 functions
	x86/x32 functions
	History

	SEE ALSO

	vsock(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Live migration
	Ioctls
	Local communication

	ERRORS
	VERSIONS
	SEE ALSO

	x25(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Socket addresses
	Socket options

	VERSIONS
	BUGS
	SEE ALSO

	xattr(7)
	NAME
	DESCRIPTION
	Extended attribute namespaces
	Extended security attributes
	System extended attributes
	Trusted extended attributes
	User extended attributes
	Filesystem differences

	STANDARDS
	NOTES
	SEE ALSO

	System Manager's Manual
	intro(8)
	NAME
	DESCRIPTION
	NOTES
	Authors and copyright conditions

	iconvconfig(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	FILES
	SEE ALSO

	ld.so(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	Dynamic string tokens

	OPTIONS
	ENVIRONMENT
	Secure-execution mode
	Environment variables

	FILES
	NOTES
	Legacy Hardware capabilities (from glibc 2.5 to glibc 2.37)
	glibc Hardware capabilities (from glibc 2.33)

	SEE ALSO
	ld-linux(8)
	ld-linux.so(8)

	ldconfig(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	SEE ALSO

	nscd(8)
	NAME
	DESCRIPTION
	OPTIONS
	NOTES
	SEE ALSO

	sln(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	tzselect(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT VARIABLES
	FILES
	EXIT STATUS
	SEE ALSO
	NOTES

	zdump(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	INTERVAL FORMAT
	LIMITATIONS
	SEE ALSO

	zic(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	EXTENDED EXAMPLE
	FILES
	NOTES
	SEE ALSO

